1
|
Shi E, Nie M, Wang X, Jing H, Feng L, Xu Y, Zhang Z, Zhang G, Li D, Dai Z. Polysaccharides affect the utilization of β-carotene through gut microbiota investigated by in vitro and in vivo experiments. Food Res Int 2023; 174:113592. [PMID: 37986456 DOI: 10.1016/j.foodres.2023.113592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 11/22/2023]
Abstract
This study aimed to evaluate the effects of six polysaccharides on the utilization of β-carotene from the perspective of gut microbiota using both in vitro simulated anaerobic fermentation systems and in vivo animal experiments. In the in vitro experiments, the addition of arabinoxylan, arabinogalactan, mannan, inulin, chitosan, and glucan led to a 31.07-79.12% decrease in β-carotene retention and a significant increase in retinol content (0.21-0.99-fold) compared to β-carotene alone. Among them, the addition of chitosan produced the highest level of retinol. In the in vivo experiments, mice treated with the six polysaccharides exhibited a significant increase (2.51-5.78-fold) in serum β-carotene content compared to the group treated with β-carotene alone. The accumulation of retinoids in the serum, liver, and small intestine increased by 13.56-21.61%, 12.64-56.27%, and 7.9%-71.69%, respectively. The expression of β-carotene cleavage enzymes was increased in the liver. Genetic analysis of small intestinal tissue revealed no significant enhancement in the expression of genes related to β-carotene metabolism. In the gut microbiota environment, the addition of polysaccharides generated more SCFAs and altered the structure and composition of the gut microbiota. The correlation analysis revealed a strong association between gut microbes (Ruminococcaceae and Odoribacteraceae) and β-carotene metabolism and absorption. Collectively, our findings suggest that the addition of polysaccharides may improve β-carotene utilization by modulating the gut microbiota.
Collapse
Affiliation(s)
- Enjuan Shi
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Meimei Nie
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xiaoqin Wang
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Huili Jing
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Lei Feng
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yayuan Xu
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zhongyuan Zhang
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Guodong Zhang
- Jiangsu Aland Nutrition Co., Ltd., Taizhou 214500, China
| | - Dajing Li
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhuqing Dai
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
2
|
Ytrestøyl T, Bou M, Dimitriou C, Berge GM, Østbye TK, Ruyter B. Dietary Level of the Omega-3 Fatty Acids EPA and DHA Influence the Flesh Pigmentation in Atlantic Salmon. AQUACULTURE NUTRITION 2023; 2023:5528942. [PMID: 36909926 PMCID: PMC9998164 DOI: 10.1155/2023/5528942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/16/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Atlantic salmon with a start weight of 53 g were fed diets with different levels of EPA and DHA or a diet with 1 : 1 EPA+DHA (0%, 1.0%, and 2.0% of the diet). At 400 g, all fish groups were mixed and equally distributed in new tanks and fed three diets with 0.2%, 1.0%, or 1.7% of EPA+DHA. At 1200 g, the fish were transferred to seawater pens where they were fed the same three diets until they reached a slaughter size of 3.5 kg. The fillet concentration of astaxanthin and its metabolite idoxanthin was analysed before transfer to seawater pens at 1200 g and at slaughter. The fatty acid composition in the fillet was also analysed at the same time points. Salmon fed low levels of EPA and DHA had lower fillet astaxanthin concentration and higher metabolic conversion of astaxanthin to idoxanthin compared to salmon fed higher dietary levels of EPA and/or DHA. DHA had a more positive effect on fillet astaxanthin concentrations than EPA. There were positive correlations between fillet DHA, EPA, sum N-3 fatty acids, and fillet astaxanthin concentration. A negative correlation was found between the concentration of N-6 fatty acids in the fillet and the astaxanthin concentration.
Collapse
Affiliation(s)
- T. Ytrestøyl
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), 6600 Sunndalsøra, Norway
| | - M. Bou
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), 1432 Ås, Norway
| | - C. Dimitriou
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - G. M. Berge
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), 6600 Sunndalsøra, Norway
| | - T.-K. Østbye
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), 1432 Ås, Norway
| | - B. Ruyter
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), 1432 Ås, Norway
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
3
|
Valdebenito D, Urrutia S, Leyton A, Chisti Y, Asenjo JA, Shene C. Nitrogen Sources Affect the Long-Chain Polyunsaturated Fatty Acids Content in Thraustochytrium sp. RT2316-16. Mar Drugs 2022; 21:md21010015. [PMID: 36662188 PMCID: PMC9864179 DOI: 10.3390/md21010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
The psychrophilic marine microorganism Thraustochytrium sp. RT2316-16 can produce carotenoids as well as lipids containing the omega-3 polyunsaturated fatty acids (PUFA) eicosapentaenoic acid and docosahexaenoic acid. This work reports on the effects of the composition of the culture medium, including certain amino acids, on growth and lipid synthesis by RT2316-16. Compared with the culture on glutamate, the use of lysine, alanine, or serine, increased the content of the omega-3 PUFA in total lipids. In the media that contained yeast extract, glutamate, and glucose, lipid accumulation occurred when organic ammonium was exhausted earlier than glucose. In contrast, lipid mobilization was promoted if glucose was exhausted while organic ammonium (supplied by yeast extract and glutamate) remained in the medium. The total content of carotenoids in the lipid-free biomass decreased during the first 12 to 24 h of culture, simultaneously with a decrease in the total lipid content of the biomass. The experimental data suggested a possible interrelationship between the metabolism of carotenoids and lipids. A high content of omega-3 PUFA in the total lipids could be obtained by growing the thraustochytrid in a medium with a low glucose concentration (6 g L-1) and a high concentration of organic nitrogen (yeast extract 12 g L-1; glutamate 1.06 g L-1), after glucose was exhausted. These observations may guide the development of a strategy to enhance omega-3 PUFA in the biomass.
Collapse
Affiliation(s)
- Diego Valdebenito
- Center for Biotechnology and Bioengineering (CeBiB), Center of Food Biotechnology and Bioseparations, BIOREN and Department of Chemical Engineering, Universidad de La Frontera, Francisco Salazar 01145, Temuco 4780000, Chile
| | - Sebastián Urrutia
- Center for Biotechnology and Bioengineering (CeBiB), Center of Food Biotechnology and Bioseparations, BIOREN and Department of Chemical Engineering, Universidad de La Frontera, Francisco Salazar 01145, Temuco 4780000, Chile
| | - Allison Leyton
- Center for Biotechnology and Bioengineering (CeBiB), Center of Food Biotechnology and Bioseparations, BIOREN and Department of Chemical Engineering, Universidad de La Frontera, Francisco Salazar 01145, Temuco 4780000, Chile
| | - Yusuf Chisti
- Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia
| | - Juan A. Asenjo
- Centre for Biotechnology and Bioengineering (CeBiB), Department of Chemical Engineering, Biotechnology and Materials, Universidad de Chile, Beauchef 851, Santiago 8370459, Chile
| | - Carolina Shene
- Center for Biotechnology and Bioengineering (CeBiB), Center of Food Biotechnology and Bioseparations, BIOREN and Department of Chemical Engineering, Universidad de La Frontera, Francisco Salazar 01145, Temuco 4780000, Chile
- Correspondence:
| |
Collapse
|
4
|
Wan S, Li Q, Yu H, Liu S, Kong L. A nuclear receptor heterodimer, CgPPAR2-CgRXR, acts as a regulator of carotenoid metabolism in Crassostrea gigas. Gene 2022; 827:146473. [PMID: 35390448 DOI: 10.1016/j.gene.2022.146473] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/23/2022] [Accepted: 03/31/2022] [Indexed: 12/22/2022]
Abstract
Nuclear receptors (NRs) are mostly ligand-activated transcription factors in animals and play essential roles in metabolism and homeostasis. The NR heterodimer composed of PPAR/RXR (peroxisome proliferator-activated receptor/retinoid X receptor) is considered a key regulator of lipid metabolism in vertebrate. However, in molluscs, how this heterodimer is involved in carotenoid metabolism remains unclear. To elucidate how this heterodimer regulates carotenoid metabolism, we identified a PPAR gene in C. gigas, designated as CgPPAR2 (LOC105323212), and functionally characterized it using two-hybrid and reporter systems. CgPPAR2 is a direct orthologue of vertebrate PPARs and the second PPAR gene identified in C. gigas genome in addition to CgPPAR1 (LOC105317849). The results demonstrated that CgPPAR2 protein can form heterodimer with C. gigas RXR (CgRXR), and then regulate carotenoid metabolism by controlling carotenoid cleavage oxygenases with different carotenoid cleavage efficiencies. This regulation can be affected by retinoid ligands, i.e., carotenoid derivatives, validating a negative feedback regulation mechanism of carotenoid cleavage for retinoid production. Besides, organotins may disrupt this regulatory process through the mediation of CgPPAR2/CgRXR heterodimer. This is the first report of PPAR/RXR heterodimer regulating carotenoid metabolism in mollusks, contributing to a better understanding of the evolution and conservation of this nuclear receptor heterodimer.
Collapse
Affiliation(s)
- Sai Wan
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Wenhai Road, Qingdao 266237, China.
| | - Hong Yu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Shikai Liu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Lingfeng Kong
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| |
Collapse
|
5
|
Wan S, Li Q, Yu H, Liu S, Kong L. Transcriptome analysis based on dietary beta-carotene supplement reveals genes potentially involved in carotenoid metabolism in Crassostrea gigas. Gene 2022; 818:146226. [PMID: 35063572 DOI: 10.1016/j.gene.2022.146226] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/18/2021] [Accepted: 01/13/2022] [Indexed: 12/17/2022]
Abstract
Carotenoids are essential micronutrients for animals, and they can only be obtained from the diet for mollusk as well as other animals. In the body, carotenoids undergo processes including absorption, transport, deposition, and metabolic conversion; however, knowledge of the involved genes is still limited. To elucidate the molecular mechanisms of carotenoid processing and identify the related genes in Pacific oyster (Crassostrea gigas), we performed a comparative transcriptome analysis using digestive gland tissues of oysters on a beta-carotene supplemented diet or a normal diet. A total of 718 differentially expressed genes were obtained, including 505 upregulated and 213 downregulated genes in the beta-carotene supplemented group. Function Annotation and enrichment analyses revealed enrichment in genes possibly involved in carotenoid transport and storage (e.g., LOC105342035), carotenoid cleavage (e.g., LOC105341121), retinoid homeostasis (e.g., LOC105339597) and PPAR signaling pathway (e.g., LOC105323212). Notably, down-regulation of mRNA expressions of two apolipoprotein genes (LOC105342035 and LOC105342186) by RNA interference significantly decreased the carotenoid level in the digestive gland, supporting their role in carotenoid transport and storage. Based on these differentially expressed genes, we propose that there may be a negative feedback mechanism regulated by nuclear receptor transcription factors controlling carotenoid oxygenases. Our findings provide useful hints for elucidating the molecular basis of carotenoid metabolism and functions of carotenoid-related genes in the oyster.
Collapse
Affiliation(s)
- Sai Wan
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Wenhai Road, Qingdao 266237, China.
| | - Hong Yu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Shikai Liu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Lingfeng Kong
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| |
Collapse
|
6
|
Nishino A, Maoka T, Yasui H. Preventive Effects of β-Cryptoxanthin, a Potent Antioxidant and Provitamin A Carotenoid, on Lifestyle-Related Diseases-A Central Focus on Its Effects on Non-Alcoholic Fatty Liver Disease (NAFLD). Antioxidants (Basel) 2021; 11:antiox11010043. [PMID: 35052547 PMCID: PMC8772992 DOI: 10.3390/antiox11010043] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 12/25/2022] Open
Abstract
Humans usually get dietary carotenoids from foods such as green and yellow vegetables and algae. Carotenoids have been reported to effectively reduce the risk of developing lifestyle-related diseases. β-Cryptoxanthin, which is an antioxidative carotenoid and a type of provitamin A, is metabolically converted to vitamin A. β-Cryptoxanthin has recently gained attention for its risk-reducing effects on lifestyle-related diseases, especially on non-alcoholic fatty liver disease (NAFLD), from epidemiological, interventional, and mechanistic studies. Retinoids (vitamin A) have also been reported to be useful as a therapeutic agent for NAFLD. Provitamin A is known to serve as a supply source of retinoids through metabolic conversion by the regulated activity of β-carotene 15,15′-monooxygenase 1 (BCMO1) to the retina only when retinoids are deficient. From mechanistic studies using NAFLD-model mice, β-cryptoxanthin has been shown to contribute to the improvement of NAFLD through a multifaceted approach, including improved insulin resistance, suppression of oxidative stress and inflammation, a reduction of macrophages and a shift of their subsets, and control of lipid metabolism by peroxisome proliferator-activated receptor (PPAR) family activation, which are also expected to have clinical applications. β-Cryptoxanthin has the potential to prevent lifestyle-related diseases from different angles, not only as an antioxidant but also as a retinoid precursor.
Collapse
Affiliation(s)
- Azusa Nishino
- Applied Research Laboratory, Ezaki Glico Co., Ltd., 4-6-5 Utajima, Nishiyodogawa-ku, Osaka 555-8502, Japan;
| | - Takashi Maoka
- Research Institute for Production Development, 15 Morimoto-cho, Shimogamo, Sakyo-ku, Kyoto 606-0805, Japan;
| | - Hiroyuki Yasui
- Department of Analytical and Bioinorganic Chemistry, Division of Analytical and Physical Sciences, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-841, Japan
- Correspondence: ; Tel.: +81-75-595-4629
| |
Collapse
|
7
|
Role of Peroxisome Proliferator-Activated Receptors (PPARs) in Energy Homeostasis of Dairy Animals: Exploiting Their Modulation through Nutrigenomic Interventions. Int J Mol Sci 2021; 22:ijms222212463. [PMID: 34830341 PMCID: PMC8619600 DOI: 10.3390/ijms222212463] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/31/2021] [Accepted: 11/16/2021] [Indexed: 12/22/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are the nuclear receptors that could mediate the nutrient-dependent transcriptional activation and regulate metabolic networks through energy homeostasis. However, these receptors cannot work properly under metabolic stress. PPARs and their subtypes can be modulated by nutrigenomic interventions, particularly under stress conditions to restore cellular homeostasis. Many nutrients such as polyunsaturated fatty acids, vitamins, dietary amino acids and phytochemicals have shown their ability for potential activation or inhibition of PPARs. Thus, through different mechanisms, all these nutrients can modulate PPARs and are ultimately helpful to prevent various metabolic disorders, particularly in transition dairy cows. This review aims to provide insights into the crucial role of PPARs in energy metabolism and their potential modulation through nutrigenomic interventions to improve energy homeostasis in dairy animals.
Collapse
|
8
|
von Lintig J, Moon J, Lee J, Ramkumar S. Carotenoid metabolism at the intestinal barrier. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158580. [PMID: 31794861 PMCID: PMC7987234 DOI: 10.1016/j.bbalip.2019.158580] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 12/17/2022]
Abstract
Carotenoids exert a rich variety of physiological functions in mammals and are beneficial for human health. These lipids are acquired from the diet and metabolized to apocarotenoids, including retinoids (vitamin A and its metabolites). The small intestine is a major site for their absorption and bioconversion. From here, carotenoids and their metabolites are distributed within the body in triacylglycerol-rich lipoproteins to support retinoid signaling in peripheral tissues and photoreceptor function in the eyes. In recent years, much progress has been made in identifying carotenoid metabolizing enzymes, transporters, and binding proteins. A diet-responsive regulatory network controls the activity of these components and adapts carotenoid absorption and bioconversion to the bodily requirements of these lipids. Genetic variability in the genes encoding these components alters carotenoid homeostasis and is associated with pathologies. We here summarize the advanced state of knowledge about intestinal carotenoid metabolism and its impact on carotenoid and retinoid homeostasis of other organ systems, including the eyes, liver, and immune system. The implication of the findings for science-based intake recommendations for these essential dietary lipids is discussed. This article is part of a Special Issue entitled Carotenoids recent advances in cell and molecular biology edited by Johannes von Lintig and Loredana Quadro.
Collapse
Affiliation(s)
- Johannes von Lintig
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, United States of America.
| | - Jean Moon
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, United States of America
| | - Joan Lee
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, United States of America
| | - Srinivasagan Ramkumar
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, United States of America
| |
Collapse
|
9
|
von Lintig J, Moon J, Babino D. Molecular components affecting ocular carotenoid and retinoid homeostasis. Prog Retin Eye Res 2020; 80:100864. [PMID: 32339666 DOI: 10.1016/j.preteyeres.2020.100864] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/13/2020] [Accepted: 04/17/2020] [Indexed: 12/15/2022]
Abstract
The photochemistry of vision employs opsins and geometric isomerization of their covalently bound retinylidine chromophores. In different animal classes, these light receptors associate with distinct G proteins that either hyperpolarize or depolarize photoreceptor membranes. Vertebrates also use the acidic form of chromophore, retinoic acid, as the ligand of nuclear hormone receptors that orchestrate eye development. To establish and sustain these processes, animals must acquire carotenoids from the diet, transport them, and metabolize them to chromophore and retinoic acid. The understanding of carotenoid metabolism, however, lagged behind our knowledge about the biology of their receptor molecules. In the past decades, much progress has been made in identifying the genes encoding proteins that mediate the transport and enzymatic transformations of carotenoids and their retinoid metabolites. Comparative analysis in different animal classes revealed how evolutionary tinkering with a limited number of genes evolved different biochemical strategies to supply photoreceptors with chromophore. Mutations in these genes impair carotenoid metabolism and induce various ocular pathologies. This review summarizes this advancement and introduces the involved proteins, including the homeostatic regulation of their activities.
Collapse
Affiliation(s)
- Johannes von Lintig
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| | - Jean Moon
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Darwin Babino
- Department of Ophthalmology, School of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
10
|
Wei C, Tan X, Liu G, Wan F, Zhao H, Zhang C, You W, Liu X, Zhang X, Jin Q. β-carotene as a dietary factor affecting expression of genes connected with carotenoid, vitamin A and lipid metabolism in the subcutaneous and omental adipose tissue of beef cattle. JOURNAL OF ANIMAL AND FEED SCIENCES 2020. [DOI: 10.22358/jafs/117866/2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Bonet ML, Ribot J, Galmés S, Serra F, Palou A. Carotenoids and carotenoid conversion products in adipose tissue biology and obesity: Pre-clinical and human studies. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158676. [PMID: 32120014 DOI: 10.1016/j.bbalip.2020.158676] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 02/07/2023]
Abstract
Antiobesity activities of carotenoids and carotenoid conversion products (CCPs) have been demonstrated in pre-clinical studies, and mechanisms behind have begun to be unveiled, thus suggesting these compounds may help obesity prevention and management. The antiobesity action of carotenoids and CCPs can be traced to effects in multiple tissues, notably the adipose tissues. Key aspects of the biology of adipose tissues appear to be affected by carotenoid and CCPs, including adipogenesis, metabolic capacities for energy storage, release and inefficient oxidation, secretory function, and modulation of oxidative stress and inflammatory pathways. Here, we review the connections of carotenoids and CCPs with adipose tissue biology and obesity as revealed by cell and animal intervention studies, studies addressing the role of endogenous retinoid metabolism, and human epidemiological and intervention studies. We also consider human genetic variability influencing carotenoid and vitamin A metabolism, particularly in adipose tissues, as a potentially relevant aspect towards personalization of dietary recommendations to prevent or manage obesity and optimize metabolic health. This article is part of a Special Issue entitled Carotenoids recent advances in cell and molecular biology edited by Johannes von Lintig and Loredana Quadro.
Collapse
Affiliation(s)
- M Luisa Bonet
- Grup de Recerca Nutrigenòmica i Obesitat, Laboratori de Biologia Molecular, Nutrició i Biotecnologia (LBNB), Universitat de les Illes Balears, Palma de Mallorca, Spain; Institut d'Investigació Sanitària Illes Balears (IdISBa), Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Spain.
| | - Joan Ribot
- Grup de Recerca Nutrigenòmica i Obesitat, Laboratori de Biologia Molecular, Nutrició i Biotecnologia (LBNB), Universitat de les Illes Balears, Palma de Mallorca, Spain; Institut d'Investigació Sanitària Illes Balears (IdISBa), Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Spain
| | | | - Francisca Serra
- Grup de Recerca Nutrigenòmica i Obesitat, Laboratori de Biologia Molecular, Nutrició i Biotecnologia (LBNB), Universitat de les Illes Balears, Palma de Mallorca, Spain; Institut d'Investigació Sanitària Illes Balears (IdISBa), Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Spain
| | - Andreu Palou
- Grup de Recerca Nutrigenòmica i Obesitat, Laboratori de Biologia Molecular, Nutrició i Biotecnologia (LBNB), Universitat de les Illes Balears, Palma de Mallorca, Spain; Institut d'Investigació Sanitària Illes Balears (IdISBa), Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Spain
| |
Collapse
|
12
|
Gong X, Marisiddaiah R, Rubin LP. Inhibition of pulmonary β-carotene 15, 15'-oxygenase expression by glucocorticoid involves PPARα. PLoS One 2017; 12:e0181466. [PMID: 28732066 PMCID: PMC5521778 DOI: 10.1371/journal.pone.0181466] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 06/30/2017] [Indexed: 01/19/2023] Open
Abstract
β-carotene 15,15'-oxygenase (BCO1) catalyzes the first step in the conversion of dietary provitamin A carotenoids to vitamin A. This enzyme is expressed in a variety of developing and adult tissues, suggesting that its activity may regulate local retinoid synthesis. Vitamin A and related compounds (retinoids) are critical regulators of lung epithelial development, integrity, and injury repair. A balance between the actions of retinoids and glucocorticoids (GCs) promotes normal lung development and, in particular, alveolarization. Alterations in this balance, including vitamin A deficiency and GC excess, contribute to the development of chronic lung disorders. Consequently, we investigated if GCs counteract retinoid effects in alveolar epithelial cells by mechanisms involving BCO1-dependent local vitamin A metabolism. We demonstrate that BCO1 is expressed in human fetal lung tissue and human alveolar epithelial-like A549 cells. Our results indicate A549 cells metabolize β-carotene to retinal and retinoic acid (RA). GCs exposure using dexamethasone (DEX) decreases BCO1 mRNA and protein levels in A549 cells and reduces BCO1 promoter activity via inhibiting peroxisome proliferator-activated receptor γ (PPARγ) DNA binding. DEX also induces expression of PPARα, which in turn most likely causes a decrease in PPARγ/RXRα heterodimer binding to the bco1 gene promoter and consequent inhibition of bco1 gene expression. PPARα knockdown with siRNA abolishes DEX-induced suppression of BCO1 expression, confirming the requirement for PPARα in this DEX-mediated BCO1 mechanism. Taken together, these findings provide the first evidence that GCs regulate vitamin A (retinoid) signaling via inhibition of bco1 gene expression in a PPARα-dependent manner. These results explicate novel aspects of local GC:retinoid interactions that may contribute to alveolar tissue remodeling in chronic lung diseases that affect children and, possibly, adults.
Collapse
Affiliation(s)
- Xiaoming Gong
- Department of Pediatrics, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas, United States of America
- * E-mail: (XG); (LPR)
| | - Raju Marisiddaiah
- All Children’s Research Institute, St. Petersburg, Florida, United States of America
| | - Lewis P. Rubin
- Department of Pediatrics, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas, United States of America
- Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas, United States of America
- * E-mail: (XG); (LPR)
| |
Collapse
|
13
|
Jin Q, Zhao HB, Liu XM, Wan FC, Liu YF, Cheng HJ, You W, Liu GF, Tan XW. Effect of β-carotene supplementation on the expression of lipid metabolism-related genes and the deposition of back fat in beef cattle. ANIMAL PRODUCTION SCIENCE 2017. [DOI: 10.1071/an15434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
To evaluate the effects of β-carotene (βC) supplementation on lipid metabolism in the back fat of beef cattle, 120 continental crossbred (Simmental × local Luxi yellow cattle) steers were selected randomly from feedlots and allotted to four groups. Each steer was supplemented with 0, 600, 1200, or 1800 mg/day of βC for 90 days, and then received no βC for 60 days (depletion period). The βC levels significantly increased in steers supplemented with βC (P < 0.01), and then decreased to the control level by Day 150. Back fat thickness decreased slightly with increasing βC supplementation, and significantly differed among groups after supplementation ceased (P < 0.01 on Day 120, P < 0.05 on Day 150). Significant regression relationships between βC supplement level and both βC content in back fat tissue on Day 90 and back fat thickness on Days 90, 120, and 150 were established (P < 0.01). No significant differences in the dry matter intake or average daily gain were detected, but higher net meat percentages were observed in the 1200 and 1800 mg/day βC-supplemented groups compared with the control (P < 0.05). The mRNA expression of two fat synthesis-related genes, acetyl-CoA carboxylase and fatty acid synthase, were downregulated during the supplementation period, but upregulated during the next 60 days when the steers received no βC supplementation. In contrast, the expression of two fat hydrolysis-related genes, hormone-sensitive lipase and adipose triglyceride lipase, were upregulated during the supplementation period and downregulated in the subsequent 60 days. The results showed that βC supplementation suppresses back fat deposition in beef cattle by inhibiting fat synthesis and enhancing fat hydrolysis.
Collapse
|
14
|
Smith JW, Ford NA, Thomas-Ahner JM, Moran NE, Bolton EC, Wallig MA, Clinton SK, Erdman JW. Mice lacking β-carotene-15,15'-dioxygenase exhibit reduced serum testosterone, prostatic androgen receptor signaling, and prostatic cellular proliferation. Am J Physiol Regul Integr Comp Physiol 2016; 311:R1135-R1148. [PMID: 27629887 DOI: 10.1152/ajpregu.00261.2016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 09/09/2016] [Accepted: 09/09/2016] [Indexed: 01/05/2023]
Abstract
β-Carotene-15,15'-dioxygenase (BCO1) cleaves dietary carotenoids at the central 15,15' double bond, most notably acting on β-carotene to yield retinal. However, Bco1 disruption also impacts diverse physiological end points independent of dietary carotenoid feeding, including expression of genes controlling androgen metabolism. Using the Bco1-/- mouse model, we sought to probe the effects of Bco1 disruption on testicular steroidogenesis, prostatic androgen signaling, and prostatic proliferation. Male wild-type (WT) and Bco1-/- mice were raised on carotenoid-free AIN-93G diets before euthanasia between 10 and 14 wk of age. Weights of the prostate and seminal vesicles were significantly lower in Bco1-/- than in WT mice (-18% and -29%, respectively). Serum testosterone levels in Bco1-/- mice were significantly reduced by 73%. Bco1 disruption significantly reduced Leydig cell number and decreased testicular mRNA expression of Hsd17b3, suggesting inhibition of testicular testosterone synthesis. Immunofluorescent staining of the androgen receptor (AR) in the dorsolateral prostate lobes of Bco1-/- mice revealed a decrease in AR nuclear localization. Analysis of prostatic morphology suggested decreases in gland size and secretion. These findings were supported by reduced expression of the proliferation marker Ki-67 in Bco1-/- prostates. Expression analysis of 200 prostate cancer- and androgen-related genes suggested that Bco1 loss significantly disrupted prostatic androgen receptor signaling, cell cycle progression, and proliferation. This is the first demonstration that Bco1 disruption lowers murine circulating testosterone levels and thereby reduces prostatic androgen receptor signaling and prostatic cellular proliferation, further supporting the role of this protein in processes more diverse than carotenoid cleavage.
Collapse
Affiliation(s)
- Joshua W Smith
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Nikki A Ford
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | | | - Nancy E Moran
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Eric C Bolton
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Matthew A Wallig
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Department of Veterinary Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Steven K Clinton
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.,Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio; and
| | - John W Erdman
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois; .,Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois
| |
Collapse
|
15
|
Huebbe P, Lange J, Lietz G, Rimbach G. Dietary beta-carotene and lutein metabolism is modulated by the APOE genotype. Biofactors 2016; 42:388-96. [PMID: 27040933 DOI: 10.1002/biof.1284] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/09/2016] [Indexed: 12/17/2022]
Abstract
The human apolipoprotein E (APOE) genotype has been suggested to interact with nutrient metabolism particularly with lipid soluble vitamins. Plasma carotenoid levels are determined by numerous dietary and genetic factors with high inter-individual variation; however, the APOE genotype has not been systematically examined so far. Our aim was to investigate the effect of the APOE genotype on dietary carotenoid metabolism with special regard to transcriptional regulation of carotenoid absorption, cleavage and adipocyte fat storage. We supplemented targeted replacement mice expressing human APOE3 and APOE4 isoforms with dietary beta-carotene (BC) and lutein (LUT) for 8 weeks. Plasma BC and adipose tissue BC and LUT levels were in trend lower in APOE4 than APOE3 mice, while hepatic expression of the beta-carotene oxygenases BCO1 and BCO2 was significantly higher. In contrast to the liver, mRNA levels of proteins involved in carotenoid absorption and cleavage in the small intestinal mucosa as well as of adipogenic markers in the adipose tissue were not different between APOE3 and APOE4 mice. Our data suggest that the hepatic carotenoid cleavage activity is higher in APOE4 mice partially reducing the circulation and extra-hepatic accumulation of intact carotenoids as compared to APOE3. Therefore we suggest considering the APOE genotype as modulator of carotenoid status in the future. © 2016 BioFactors, 42(4):388-396, 2016.
Collapse
Affiliation(s)
- Patricia Huebbe
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, 24118, Germany
| | - Jennifer Lange
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, 24118, Germany
| | - Georg Lietz
- School of Agriculture, Food and Rural Development, Human Nutrition Research Centre, University of Newcastle, Newcastle upon Tyne, NE1 7RU, U.K
| | - Gerald Rimbach
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, 24118, Germany
| |
Collapse
|
16
|
Abstract
Cell, animal and human studies dealing with carotenoids and carotenoid derivatives as nutritional regulators of adipose tissue biology with implications for the etiology and management of obesity and obesity-related metabolic diseases are reviewed. Most studied carotenoids in this context are β-carotene, cryptoxanthin, astaxanthin and fucoxanthin, together with β-carotene-derived retinoids and some other apocarotenoids. Studies indicate an impact of these compounds on essential aspects of adipose tissue biology including the control of adipocyte differentiation (adipogenesis), adipocyte metabolism, oxidative stress and the production of adipose tissue-derived regulatory signals and inflammatory mediators. Specific carotenoids and carotenoid derivatives restrain adipogenesis and adipocyte hypertrophy while enhancing fat oxidation and energy dissipation in brown and white adipocytes, and counteract obesity in animal models. Intake, blood levels and adipocyte content of carotenoids are reduced in human obesity. Specifically designed human intervention studies in the field, though still sparse, indicate a beneficial effect of carotenoid supplementation in the accrual of abdominal adiposity. In summary, studies support a role of specific carotenoids and carotenoid derivatives in the prevention of excess adiposity, and suggest that carotenoid requirements may be dependent on body composition.
Collapse
Affiliation(s)
- M Luisa Bonet
- Group of Nutrigenomics and Obesity, Laboratory of Molecular Biology, Nutrition and Biotechnology, Universitat de les Illes Balears, Cra. Valldemossa Km 7.5. 07122, Palma de Mallorca, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Palma de Mallorca, Spain.
| | - Jose A Canas
- Metabolism and Diabetes, Nemours Children's Clinic, Jacksonville, FL, 32207, USA
| | - Joan Ribot
- Group of Nutrigenomics and Obesity, Laboratory of Molecular Biology, Nutrition and Biotechnology, Universitat de les Illes Balears, Cra. Valldemossa Km 7.5. 07122, Palma de Mallorca, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Palma de Mallorca, Spain
| | - Andreu Palou
- Group of Nutrigenomics and Obesity, Laboratory of Molecular Biology, Nutrition and Biotechnology, Universitat de les Illes Balears, Cra. Valldemossa Km 7.5. 07122, Palma de Mallorca, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Palma de Mallorca, Spain
| |
Collapse
|
17
|
Luisa Bonet M, Canas JA, Ribot J, Palou A. Carotenoids and their conversion products in the control of adipocyte function, adiposity and obesity. Arch Biochem Biophys 2015; 572:112-125. [DOI: 10.1016/j.abb.2015.02.022] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 02/10/2015] [Accepted: 02/17/2015] [Indexed: 12/22/2022]
|
18
|
Yamaguchi N, Sunto A, Goda T, Suruga K. Competitive regulation of human intestinal β-carotene 15,15′-monooxygenase 1 (BCMO1) gene expression by hepatocyte nuclear factor (HNF)-1α and HNF-4α. Life Sci 2014; 119:34-9. [DOI: 10.1016/j.lfs.2014.10.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 09/17/2014] [Accepted: 10/16/2014] [Indexed: 10/24/2022]
|
19
|
Poulaert M, Gunata Z, During A, Reboul E, Laurent C, Gaillet S, Dhuique-Mayer C. Hesperidin increases intestinal β,β-carotene 15-15′ mono-oxygenase 1 (BCMO1) activity in Mongolian gerbils (Meriones unguiculatus) fed with β-carotene-free diet. Food Chem 2014; 159:477-85. [DOI: 10.1016/j.foodchem.2014.03.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 01/29/2014] [Accepted: 03/05/2014] [Indexed: 10/25/2022]
|
20
|
Inactivity of human β,β-carotene-9',10'-dioxygenase (BCO2) underlies retinal accumulation of the human macular carotenoid pigment. Proc Natl Acad Sci U S A 2014; 111:10173-8. [PMID: 24982131 DOI: 10.1073/pnas.1402526111] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The macula of the primate retina uniquely concentrates high amounts of the xanthophyll carotenoids lutein, zeaxanthin, and meso-zeaxanthin, but the underlying biochemical mechanisms for this spatial- and species-specific localization have not been fully elucidated. For example, despite abundant retinal levels in mice and primates of a binding protein for zeaxanthin and meso-zeaxanthin, the pi isoform of glutathione S-transferase (GSTP1), only human and monkey retinas naturally contain detectable levels of these carotenoids. We therefore investigated whether or not differences in expression, localization, and activity between mouse and primate carotenoid metabolic enzymes could account for this species-specific difference in retinal accumulation. We focused on β,β-carotene-9',10'-dioxygenase (BCO2, also known as BCDO2), the only known mammalian xanthophyll cleavage enzyme. RT-PCR, Western blot analysis, and immunohistochemistry (IHC) confirmed that BCO2 is expressed in both mouse and primate retinas. Cotransfection of expression plasmids of human or mouse BCO2 into Escherichia coli strains engineered to produce zeaxanthin demonstrated that only mouse BCO2 is an active zeaxanthin cleavage enzyme. Surface plasmon resonance (SPR) binding studies showed that the binding affinities between human BCO2 and lutein, zeaxanthin, and meso-zeaxanthin are 10- to 40-fold weaker than those for mouse BCO2, implying that ineffective capture of carotenoids by human BCO2 prevents cleavage of xanthophyll carotenoids. Moreover, BCO2 knockout mice, unlike WT mice, accumulate zeaxanthin in their retinas. Our results provide a novel explanation for how primates uniquely concentrate xanthophyll carotenoids at high levels in retinal tissue.
Collapse
|
21
|
Zhang Y, Zhang L, Sun J, Qiu J, Hu X, Hu J, Bao Z. Proteomic analysis identifies proteins related to carotenoid accumulation in Yesso scallop (Patinopecten yessoensis). Food Chem 2014; 147:111-6. [DOI: 10.1016/j.foodchem.2013.09.078] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 01/08/2013] [Accepted: 09/14/2013] [Indexed: 12/19/2022]
|
22
|
β-Carotene regulates expression of β-carotene 15,15′-monoxygenase in human alveolar epithelial cells. Arch Biochem Biophys 2013; 539:230-8. [DOI: 10.1016/j.abb.2013.09.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 09/14/2013] [Accepted: 09/16/2013] [Indexed: 01/28/2023]
|
23
|
Ford NA, Elsen AC, Erdman JW. Genetic ablation of carotene oxygenases and consumption of lycopene or tomato powder diets modulate carotenoid and lipid metabolism in mice. Nutr Res 2013; 33:733-42. [PMID: 24034573 DOI: 10.1016/j.nutres.2013.07.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 07/05/2013] [Accepted: 07/08/2013] [Indexed: 11/27/2022]
Abstract
Carotene-15,15'-monooxygenase (CMO-I) cleaves β-carotene to form vitamin A, whereas carotene-9',10'-monooxygenase (CMO-II) preferentially cleaves non-provitamin A carotenoids. Recent reports indicate that β-carotene metabolites regulate dietary lipid uptake, whereas lycopene regulates peroxisome proliferator-activated receptor expression. To determine the physiologic consequences of carotenoids and their interactions with CMO-I and CMO-II, we characterized mammalian carotenoid metabolism, metabolic perturbations, and lipid metabolism in female CMO-I(-/-) and CMO-II(-/-) mice fed lycopene or tomato-containing diets for 30 days. We hypothesized that there would be significant interactions between diet and genotype on carotenoid accumulation and lipid parameters. CMO-I(-/-) mice had higher levels of leptin, insulin, and hepatic lipidosis but lower levels of serum cholesterol. CMO-II(-/-) mice had increased tissue lycopene and phytofluene accumulation, reduced insulin-like growth factor 1 levels and cholesterol levels, but elevated liver lipids and cholesterol compared with wild-type mice. The diets did not modulate these genotypic perturbations, but lycopene and tomato powder significantly decreased serum insulin-like growth factor 1. Tomato powder also increased hepatic peroxisome proliferator-activated receptor expression, independent of genotype. These data point to the pleiotropic actions of CMO-I and CMO-II supporting a strong role of these proteins in regulating tissue carotenoid accumulation and the lipid metabolic phenotype as well as tomato carotenoid-independent regulation of lipid metabolism.
Collapse
Affiliation(s)
- Nikki A Ford
- Department of Nutritional Sciences, University of Texas at Austin, Austin TX 78723, USA
| | | | | |
Collapse
|
24
|
Wassef L, Spiegler E, Quadro L. Embryonic phenotype, β-carotene and retinoid metabolism upon maternal supplementation of β-carotene in a mouse model of severe vitamin A deficiency. Arch Biochem Biophys 2013; 539:223-9. [PMID: 23871845 DOI: 10.1016/j.abb.2013.07.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 06/10/2013] [Accepted: 07/03/2013] [Indexed: 11/17/2022]
Abstract
We investigated the effect of β-carotene (bC) supplementation during pregnancy in a mouse model of severe vitamin A deficiency, i.e. Lrat-/-Rbp-/- dams maintained on a vitamin A-deficient diet during gestation. bC, a provitamin A carotenoid, can be enzymatically cleaved to form vitamin A for use by the developing embryo. We found that an acute supplementation (13.5 days post coitum, dpc) of bC to Lrat-/-Rbp-/- dams on a vitamin A-deficient diet activated transcriptional mechanisms in the developing tissues to maximize the utilization of bC provided to the dams. Nevertheless, these regulatory mechanisms are inefficient under this regimen, as the embryonic phenotype was not improved. We further investigated the effect of a repeated supplementation of bC during a crucial developmental period (6.5-9.5 dpc) on the above-mentioned mouse model. This treatment improved the embryonic abnormalities, as 40% of the embryos showed a normal phenotype. In addition, analysis of retinoic acid-responsive genes, such as Cyp26a1 in these embryos suggests that bC cleavage results in the production of retinoic acid which then can be used by the embryo. Taken together, these in vivo studies show that bC can be used as a source of vitamin A for severely vitamin A-deficient mammalian embryos.
Collapse
Affiliation(s)
- L Wassef
- Department of Food Science and Rutgers Center for Lipid Research, Rutgers University, NJ, USA
| | | | | |
Collapse
|
25
|
Jeyakumar S, Yasmeen R, Reichert B, Ziouzenkova O. Metabolism of Vitamin A in White Adipose Tissue and Obesity. OXIDATIVE STRESS AND DISEASE 2013. [DOI: 10.1201/b14569-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
26
|
Lobo GP, Amengual J, Baus D, Shivdasani RA, Taylor D, von Lintig J. Genetics and diet regulate vitamin A production via the homeobox transcription factor ISX. J Biol Chem 2013; 288:9017-27. [PMID: 23393141 DOI: 10.1074/jbc.m112.444240] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Low dietary intake of β-carotene is associated with chronic disease and vitamin A deficiency. β-Carotene is converted to vitamin A in the intestine by the enzyme β-carotene-15,15'-monoxygenase (BCMO1) to support vision, reproduction, immune function, and cell differentiation. Considerable variability for this key step in vitamin A metabolism, as reported in the human population, could be related to genetics and individual vitamin A status, but it is unclear how these factors influence β-carotene metabolism and vitamin A homeostasis. Here we show that the intestine-specific transcription factor ISX binds to the Bcmo1 promoter. Moreover, upon induction by the β-carotene derivative retinoic acid, this ISX binding decreased expression of a luciferase reporter gene in human colonic CaCo-2 cells indicating that ISX acts as a transcriptional repressor of BCMO1 expression. Mice deficient for this transcription factor displayed increased intestinal BCMO1 expression and produced significantly higher amounts of vitamin A from supplemental β-carotene. The ISX binding site in the human BCMO1 promoter contains a common single nucleotide polymorphism that is associated with decreased conversion rates and increased fasting blood levels of β-carotene. Thus, our study establishes ISX as a critical regulator of vitamin A production and provides a mechanistic explanation for how both genetics and diet can affect this process.
Collapse
Affiliation(s)
- Glenn P Lobo
- Department of Pharmacology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
| | | | | | | | | | | |
Collapse
|
27
|
Ortuño Sahagún D, Márquez-Aguirre AL, Quintero-Fabián S, López-Roa RI, Rojas-Mayorquín AE. Modulation of PPAR-γ by Nutraceutics as Complementary Treatment for Obesity-Related Disorders and Inflammatory Diseases. PPAR Res 2012; 2012:318613. [PMID: 23251142 PMCID: PMC3515933 DOI: 10.1155/2012/318613] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 10/03/2012] [Accepted: 10/23/2012] [Indexed: 12/16/2022] Open
Abstract
A direct correlation between adequate nutrition and health is a universally accepted truth. The Western lifestyle, with a high intake of simple sugars, saturated fat, and physical inactivity, promotes pathologic conditions. The main adverse consequences range from cardiovascular disease, type 2 diabetes, and metabolic syndrome to several cancers. Dietary components influence tissue homeostasis in multiple ways and many different functional foods have been associated with various health benefits when consumed. Natural products are an important and promising source for drug discovery. Many anti-inflammatory natural products activate peroxisome proliferator-activated receptors (PPAR); therefore, compounds that activate or modulate PPAR-gamma (PPAR-γ) may help to fight all of these pathological conditions. Consequently, the discovery and optimization of novel PPAR-γ agonists and modulators that would display reduced side effects is of great interest. In this paper, we present some of the main naturally derived products studied that exert an influence on metabolism through the activation or modulation of PPAR-γ, and we also present PPAR-γ-related diseases that can be complementarily treated with nutraceutics from functional foods.
Collapse
Affiliation(s)
- D. Ortuño Sahagún
- Laboratorio de Desarrollo y Regeneración Neural, Instituto de Neurobiología, Departamento de Biología Celular y Molecular, CUCBA, Universidad de Guadalajara, camino Ing. R. Padilla Sánchez 2100, Las Agujas, 44600 Zapopan JAL, Mexico
| | - A. L. Márquez-Aguirre
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., 44270 Guadalajara, JAL, Mexico
| | - S. Quintero-Fabián
- Laboratorio de Desarrollo y Regeneración Neural, Instituto de Neurobiología, Departamento de Biología Celular y Molecular, CUCBA, Universidad de Guadalajara, camino Ing. R. Padilla Sánchez 2100, Las Agujas, 44600 Zapopan JAL, Mexico
- Departamento de Farmacobiología, CUCEI, Universidad de Guadalajara, Boulevard Marcelino García Barragán, 44430 Tlaquepaque, JAL, Mexico
| | - R. I. López-Roa
- Departamento de Farmacobiología, CUCEI, Universidad de Guadalajara, Boulevard Marcelino García Barragán, 44430 Tlaquepaque, JAL, Mexico
| | - A. E. Rojas-Mayorquín
- Departamento de Ciencias Ambientales, Instituto de Neurociencias, CUCBA, Universidad de Guadalajara, 45100, JAL, Mexico
- Departamento de Investigación Básica, Instituto Nacional de Geriatría (INGER), Periférico Sur No. 2767, Col, San Jerónimo Lídice, Delegación Magdalena Contreras 10200, México DF, Mexico
| |
Collapse
|
28
|
Abstract
Vitamin A deficiency is a major public health problem in developing countries. Some studies also implicate a suboptimal vitamin A intake in certain parts of the population of the industrialized world. Provitamin A carotenoids such as β-carotene are the major source for retinoids (vitamin A and its derivatives) in the human diet. However, it is still controversial how much β-carotene intake is required and safe. An important contributor to this uncertainty is the lack of knowledge about the biochemical and molecular basis of β-carotene metabolism. Recently, key players of provitamin A metabolism have been molecularly identified and biochemically characterized. Studies in knockout mouse models showed that intestinal β-carotene absorption and conversion to retinoids is under negative feedback regulation that adapts this process to the actual requirement of vitamin A of the body. These studies also showed that in peripheral tissues a conversion of β-carotene occurs and affects retinoid-dependent physiologic processes. Moreover, these analyses provided a possible explanation for the adverse health effects of carotenoids by showing that a pathologic accumulation of these compounds can induce oxidative stress in mitochondria and cell signaling pathways related to disease. Genetic polymorphisms in identified genes exist in humans and also alter carotenoid homeostasis. Here, the advanced knowledge of β-carotene metabolism is reviewed, which provides a molecular framework for understanding the role of this important micronutrient in health and disease.
Collapse
Affiliation(s)
- Johannes von Lintig
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
29
|
Hill GE, Johnson JD. The Vitamin A–Redox Hypothesis: A Biochemical Basis for Honest Signaling via Carotenoid Pigmentation. Am Nat 2012; 180:E127-50. [DOI: 10.1086/667861] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
30
|
PPAR-alpha cloning, expression, and characterization. Methods Mol Biol 2012; 952:7-34. [PMID: 23100222 DOI: 10.1007/978-1-62703-155-4_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Peroxisome proliferator-activated receptor α (PPARα) is a member of the nuclear/steroid receptor gene superfamily that also comprises β, δ, and γ isoforms. PPARα is a ligand-activated transcription factor that plays an important role in the regulation of many genes involved in key metabolic processes. Today, PPARα has been cloned from mammalian, marsupial, and a number of marine species and its expression has been found to be relatively tissue- and species-specific. Here, we describe the methods for cloning of PPARα genes by RT-PCR and RACE approaches and related protocols for studying the expression of cloned PPARα cDNAs in mammalian cell systems.
Collapse
|
31
|
Osuala K, Baker CN, Nguyen HL, Martinez C, Weinshenker D, Ebert SN. Physiological and genomic consequences of adrenergic deficiency during embryonic/fetal development in mice: impact on retinoic acid metabolism. Physiol Genomics 2012; 44:934-47. [PMID: 22911456 DOI: 10.1152/physiolgenomics.00180.2011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Adrenergic hormones are essential for early heart development. To gain insight into understanding how these hormones influence heart development, we evaluated genomic expression changes in embryonic hearts from adrenergic-deficient and wild-type control mice. To perform this study, we used a mouse model with targeted disruption of the Dopamine β-hydroxylase (Dbh) gene, whose product is responsible for enzymatic conversion of dopamine into norepinephrine. Embryos homozygous for the null allele (Dbh(-/-)) die from heart failure beginning as early as embryonic day 10.5 (E10.5). To assess underlying causes of heart failure, we isolated hearts from Dbh(-/-) and Dbh(+/+) embryos prior to manifestation of the phenotype and examined gene expression changes using genomic Affymetrix 430A 2.0 arrays, which enabled simultaneous evaluation of >22,000 genes. We found that only 22 expressed genes showed a significant twofold or greater change, representing ~0.1% of the total genes analyzed. More than half of these genes are associated with either metabolism (31%) or signal transduction (22%). Remarkably, several of the altered genes encode for proteins that are directly involved in retinoic acid (RA) biosynthesis and transport. Subsequent evaluation showed that RA concentrations were significantly elevated by an average of ~3-fold in adrenergic-deficient (Dbh(-/-)) embryos compared with controls, thereby suggesting that RA may be an important downstream mediator of adrenergic action during embryonic heart development.
Collapse
Affiliation(s)
- Kingsley Osuala
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, Florida 32827, USA.
| | | | | | | | | | | |
Collapse
|
32
|
Levi L, Ziv T, Admon A, Levavi-Sivan B, Lubzens E. Insight into molecular pathways of retinal metabolism, associated with vitellogenesis in zebrafish. Am J Physiol Endocrinol Metab 2012; 302:E626-44. [PMID: 22205629 DOI: 10.1152/ajpendo.00310.2011] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Retinal is the main retinoid stored in oviparous eggs of fish, amphibians, and reptiles, reaching the oocytes in association with vitellogenins, the yolk precursor proteins. During early presegmentation stages of zebrafish embryos, retinal is metabolized to retinoic acid (RA), which regulates genes involved in cell proliferation, differentiation, and tissue function and is therefore essential for normal embryonic development. While synthesis of vitellogenin and its regulation by 17β-estradiol (E(2)) were extensively investigated, pathways for retinal synthesis remain obscure. We determined the expression pattern of 46 candidate genes, aiming at identifying enzymes associated with retinal synthesis, ascertaining whether they were regulated by E(2), and finding pathways that could fulfill the demand for retinoids during vitellogenesis. Genes associated with retinal synthesis were upregulated in liver (rdh10, rdh13, sdr) and surprisingly also in intestine (rdh13) and ovary (rdh1, sdr), concomitantly with higher gene expression and synthesis of vitellogenins in liver but also in extrahepatic tissues, shown here for the first time. Vitellogenin synthesis in the ovary was regulated by E(2). Gene expression studies suggest that elevated retinal synthesis in liver, intestine, and ovary also depends on cleavage of carotenoids (by Bcdo2 or Bmco1), but in the ovary it may also be contingent on higher uptake of retinol from the circulatory system (via Stra6) and retinol synthesis from retinyl esters (by Lpl). Decrease in oxidation (by Raldh2 or Raldh3) of retinal to RA and/or degradation of RA (by Cyp26a1) may also facilitate higher hepatic retinal levels. Together, these processes enable meeting the putative demands of retinal for binding to vitellogenins. Bioinformatic tools reveal multiple hormone response elements in the studied genes, suggesting complex and intricate regulation of these processes.
Collapse
Affiliation(s)
- Liraz Levi
- Dept. of Marine Biology and Biotechnology, Israel Oceanographic and Limnological Research, Haifa, Israel
| | | | | | | | | |
Collapse
|
33
|
Spiegler E, Kim YK, Wassef L, Shete V, Quadro L. Maternal-fetal transfer and metabolism of vitamin A and its precursor β-carotene in the developing tissues. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1821:88-98. [PMID: 21621637 PMCID: PMC3184320 DOI: 10.1016/j.bbalip.2011.05.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 05/01/2011] [Accepted: 05/12/2011] [Indexed: 11/17/2022]
Abstract
The requirement of the developing mammalian embryo for retinoic acid is well established. Retinoic acid, the active form of vitamin A, can be generated from retinol and retinyl ester obtained from food of animal origin, and from carotenoids, mainly β-carotene, from vegetables and fruits. The mammalian embryo relies on retinol, retinyl ester and β-carotene circulating in the maternal bloodstream for its supply of vitamin A. The maternal-fetal transfer of retinoids and carotenoids, as well as the metabolism of these compounds in the developing tissues are still poorly understood. The existing knowledge in this field has been summarized in this review in reference to our basic understanding of the transport and metabolism of retinoids and carotenoids in adult tissues. The need for future research on the metabolism of these essential lipophilic nutrients during development is highlighted. This article is part of a Special Issue entitled: Retinoid and Lipid Metabolism.
Collapse
Affiliation(s)
- Elizabeth Spiegler
- Department of Food Sciences and Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ 08901, USA
| | | | | | | | | |
Collapse
|
34
|
Lobo GP, Amengual J, Palczewski G, Babino D, von Lintig J. Mammalian carotenoid-oxygenases: key players for carotenoid function and homeostasis. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1821:78-87. [PMID: 21569862 PMCID: PMC3162997 DOI: 10.1016/j.bbalip.2011.04.010] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 04/19/2011] [Accepted: 04/26/2011] [Indexed: 12/31/2022]
Abstract
Humans depend on a dietary intake of lipids to maintain optimal health. Among various classes of dietary lipids, the physiological importance of carotenoids is still controversially discussed. On one hand, it is well established that carotenoids, such as β,β-carotene, are a major source for vitamin A that plays critical roles for vision and many aspects of cell physiology. On the other hand, large clinical trials have failed to show clear health benefits of carotenoids supplementation and even suggest adverse health effects in individuals at risk of disease. In recent years, key molecular players for carotenoid metabolism have been identified, including an evolutionarily well conserved family of carotenoid-oxygenases. Studies in knockout mouse models for these enzymes revealed that carotenoid metabolism is a highly regulated process and that this regulation already takes place at the level of intestinal absorption. These studies also provided evidence that β,β-carotene conversion can influence retinoid-dependent processes in the mouse embryo and in adult tissues. Moreover, these analyses provide an explanation for adverse health effects of carotenoids by showing that a pathological accumulation of these compounds can induce oxidative stress in mitochondria and cell signaling pathways related to disease. Advancing knowledge about carotenoid metabolism will contribute to a better understanding of the biochemical and physiological roles of these important micronutrients in health and disease. This article is part of a Special Issue entitled Retinoid and Lipid Metabolism.
Collapse
Affiliation(s)
- Glenn P. Lobo
- Case Western Reserve University, School of Medicine, Department of Pharmacology, Cleveland, OH 44106, USA
| | - Jaume Amengual
- Case Western Reserve University, School of Medicine, Department of Pharmacology, Cleveland, OH 44106, USA
| | - Grzegorz Palczewski
- Case Western Reserve University, School of Medicine, Department of Pharmacology, Cleveland, OH 44106, USA
| | - Darwin Babino
- Case Western Reserve University, School of Medicine, Department of Pharmacology, Cleveland, OH 44106, USA
| | - Johannes von Lintig
- Case Western Reserve University, School of Medicine, Department of Pharmacology, Cleveland, OH 44106, USA
| |
Collapse
|
35
|
Lietz G, Oxley A, Boesch-Saadatmandi C, Kobayashi D. Importance of β,β-carotene 15,15'-monooxygenase 1 (BCMO1) and β,β-carotene 9',10'-dioxygenase 2 (BCDO2) in nutrition and health. Mol Nutr Food Res 2011; 56:241-50. [PMID: 22147584 DOI: 10.1002/mnfr.201100387] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 09/06/2011] [Accepted: 09/27/2011] [Indexed: 11/12/2022]
Abstract
In humans, varying amounts of absorbed β-carotene are oxidatively cleaved by the enzyme β,β-carotene 15,15'-monooxygenase 1 (BCMO1) into two molecules of all-trans-retinal. The other carotenoid cleavage enzyme β,β-carotene 9',10'-dioxygenase (BCDO2) cleaves β-carotene at the 9',10' double bond forming β-apo-10'-carotenal and β-ionone. Although the contribution of BCDO2 to vitamin A formation has long been debated, BCMO1 is currently considered the key enzyme for retinoid metabolism. Furthermore, BCMO1 has limited enzyme activity towards carotenoids other than provitamin A carotenoids, whereas BCDO2 exhibits a broader specificity. Both enzymes are located at different sites within the cell, with BCMO1 being a cytosolic protein and BCDO2 being located in the mitochondria. Expression of BCMO1 in tissues other than the intestine has recently revealed its function for tissue-specific retinoid metabolism with importance in embryogenesis and lipid metabolism. On the other hand, biological activity of BCDO2 metabolites has been shown to be important in protecting against carotenoid-induced mitochondrial dysfunction. Single-nucleotide polymorphisms (SNPs) such as R267S and A379V in BCMO1 can partly explain inter-individual variations observed in carotenoid metabolism. Advancing knowledge about the physiological role of these two enzymes will contribute to understanding the importance of carotenoids in health and disease.
Collapse
Affiliation(s)
- Georg Lietz
- Newcastle University, Human Nutrition Research Centre, Institute for Ageing and Health, School of Agriculture, Food and Rural Development, Newcastle upon Tyne, UK.
| | | | | | | |
Collapse
|
36
|
The Role of PPAR Ligands in Controlling Growth-Related Gene Expression and their Interaction with Lipoperoxidation Products. PPAR Res 2011; 2008:524671. [PMID: 18615196 PMCID: PMC2443425 DOI: 10.1155/2008/524671] [Citation(s) in RCA: 203] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Accepted: 06/05/2008] [Indexed: 11/18/2022] Open
Abstract
Peroxisome proliferators-activated receptors (PPARs) are ligand-activated transcription factors that belong to the nuclear hormone receptor superfamily. The three PPAR isoforms (α, γ and β/δ) have been found to play a pleiotropic role in cell fat metabolism. Furthermore, in recent years, evidence has been found regarding the antiproliferative, proapoptotic, and differentiation-promoting activities displayed by PPAR ligands, particularly by PPARγ ligands. PPAR ligands affect the expression of different growth-related genes through both PPAR-dependent and PPAR-independent mechanisms. Moreover, an interaction between PPAR ligands and other molecules which strengthen the effects of PPAR ligands has been described. Here we review the action of PPAR on the control of gene expression with particular regard to the effect of PPAR ligands on the expression of genes involved in the regulation of cell-cycle, differentiation, and apoptosis. Moreover, the interaction between PPAR ligands and 4-hydroxynonenal (HNE), the major product of the lipid peroxidation, has been reviewed.
Collapse
|
37
|
Lipid metabolism in mammalian tissues and its control by retinoic acid. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1821:177-89. [PMID: 21669299 DOI: 10.1016/j.bbalip.2011.06.001] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 05/10/2011] [Accepted: 06/01/2011] [Indexed: 12/18/2022]
Abstract
Evidence has accumulated that specific retinoids impact on developmental and biochemical processes influencing mammalian adiposity including adipogenesis, lipogenesis, adaptive thermogenesis, lipolysis and fatty acid oxidation in tissues. Treatment with retinoic acid, in particular, has been shown to reduce body fat and improve insulin sensitivity in lean and obese rodents by enhancing fat mobilization and energy utilization systemically, in tissues including brown and white adipose tissues, skeletal muscle and the liver. Nevertheless, controversial data have been reported, particularly regarding retinoids' effects on hepatic lipid and lipoprotein metabolism and blood lipid profile. Moreover, the molecular mechanisms underlying retinoid effects on lipid metabolism are complex and remain incompletely understood. Here, we present a brief overview of mammalian lipid metabolism and its control, introduce mechanisms through which retinoids can impact on lipid metabolism, and review reported activities of retinoids on different aspects of lipid metabolism in key tissues, focusing on retinoic acid. Possible implications of this knowledge in the context of the management of obesity and the metabolic syndrome are also addressed. This article is part of a Special Issue entitled Retinoid and Lipid Metabolism.
Collapse
|
38
|
Amengual J, Gouranton E, van Helden YGJ, Hessel S, Ribot J, Kramer E, Kiec-Wilk B, Razny U, Lietz G, Wyss A, Dembinska-Kiec A, Palou A, Keijer J, Landrier JF, Bonet ML, von Lintig J. Beta-carotene reduces body adiposity of mice via BCMO1. PLoS One 2011; 6:e20644. [PMID: 21673813 PMCID: PMC3106009 DOI: 10.1371/journal.pone.0020644] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 05/05/2011] [Indexed: 11/19/2022] Open
Abstract
Evidence from cell culture studies indicates that β-carotene-(BC)-derived apocarotenoid signaling molecules can modulate the activities of nuclear receptors that regulate many aspects of adipocyte physiology. Two BC metabolizing enzymes, the BC-15,15′-oxygenase (Bcmo1) and the BC-9′,10′-oxygenase (Bcdo2) are expressed in adipocytes. Bcmo1 catalyzes the conversion of BC into retinaldehyde and Bcdo2 into β-10′-apocarotenal and β-ionone. Here we analyzed the impact of BC on body adiposity of mice. To genetically dissect the roles of Bcmo1 and Bcdo2 in this process, we used wild-type and Bcmo1-/- mice for this study. In wild-type mice, BC was converted into retinoids. In contrast, Bcmo1-/- mice showed increased expression of Bcdo2 in adipocytes and β-10′-apocarotenol accumulated as the major BC derivative. In wild-type mice, BC significantly reduced body adiposity (by 28%), leptinemia and adipocyte size. Genome wide microarray analysis of inguinal white adipose tissue revealed a generalized decrease of mRNA expression of peroxisome proliferator-activated receptor γ (PPARγ) target genes. Consistently, the expression of this key transcription factor for lipogenesis was significantly reduced both on the mRNA and protein levels. Despite β-10′-apocarotenoid production, this effect of BC was absent in Bcmo1-/- mice, demonstrating that it was dependent on the Bcmo1-mediated production of retinoids. Our study evidences an important role of BC for the control of body adiposity in mice and identifies Bcmo1 as critical molecular player for the regulation of PPARγ activity in adipocytes
Collapse
Affiliation(s)
- Jaume Amengual
- Laboratory of Molecular Biology, Nutrition and Biotechnology, Universitat de les Illes Balears and CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Palma de Mallorca, Spain
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio United States of America
| | - Erwan Gouranton
- INRA, UMR 1260 Nutriments Lipidiques et Prevention des Maladies Métaboliques/Universite Aix-Marseille I et II, Marseille, France
| | - Yvonne G. J. van Helden
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
- University Maastricht, Maastricht, The Netherlands
- RIKILT-Institute of Food Safety, Wageningen, The Netherlands
| | - Susanne Hessel
- Institute of Biology I, University of Freiburg, Freiburg, Germany
| | - Joan Ribot
- Laboratory of Molecular Biology, Nutrition and Biotechnology, Universitat de les Illes Balears and CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Palma de Mallorca, Spain
| | - Evelien Kramer
- RIKILT-Institute of Food Safety, Wageningen, The Netherlands
| | - Beata Kiec-Wilk
- Department of Clinical Biochemistry, The Jagiellonian University Medical College, Krakow, Poland
| | - Ursula Razny
- Department of Clinical Biochemistry, The Jagiellonian University Medical College, Krakow, Poland
| | - Georg Lietz
- School of AFRD, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Adrian Wyss
- DSM Nutritional Products, R&D Human Nutrition and Health, Kaiseraugst, Switzerland
| | - Aldona Dembinska-Kiec
- Department of Clinical Biochemistry, The Jagiellonian University Medical College, Krakow, Poland
| | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology, Universitat de les Illes Balears and CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Palma de Mallorca, Spain
| | - Jaap Keijer
- INRA, UMR 1260 Nutriments Lipidiques et Prevention des Maladies Métaboliques/Universite Aix-Marseille I et II, Marseille, France
| | - Jean François Landrier
- INRA, UMR 1260 Nutriments Lipidiques et Prevention des Maladies Métaboliques/Universite Aix-Marseille I et II, Marseille, France
| | - M. Luisa Bonet
- Laboratory of Molecular Biology, Nutrition and Biotechnology, Universitat de les Illes Balears and CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Palma de Mallorca, Spain
- * E-mail: (MLB); (JVL)
| | - Johannes von Lintig
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio United States of America
- Institute of Biology I, University of Freiburg, Freiburg, Germany
- * E-mail: (MLB); (JVL)
| |
Collapse
|
39
|
Zhang X, Zhao WE, Hu L, Zhao L, Huang J. Carotenoids inhibit proliferation and regulate expression of peroxisome proliferators-activated receptor gamma (PPARγ) in K562 cancer cells. Arch Biochem Biophys 2011; 512:96-106. [PMID: 21620794 DOI: 10.1016/j.abb.2011.05.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 04/10/2011] [Accepted: 05/12/2011] [Indexed: 01/04/2023]
Abstract
As one of the main micronutrients in vegetables and fruit carotenoids are almost daily intaken in significant quantity. Although the pharmacological roles of carotenoids in the prevention and reduction of cancer incidence have received more and more attention, the exact molecular mechanisms underlying anticancer effects of carotenoids remain unclear yet. Activated peroxisome proliferator-activated receptor gamma (PPARγ) plays an inhibitory role in cancer cell proliferation and growth. Involvement of PPARγ in the growth inhibition of leukemia K562 cells by carotenoids was investigated in the present study. The results demonstrated that β-carotene, astaxanthin, capsanthin, and bixin inhibited the proliferation and decreased the viability of leukemia K562 cells in dose- and time-dependent manners, induced cell apoptosis, and interfered with cell cycle progression. Pretreatment with GW9662, a potent antagonist of PPARγ, partly attenuated the inhibition of K562 cell proliferation by the four carotenoids at 8μM. These carotenoids up-regulated the expression of PPARγ and p21 and down-regulated the expression of cyclin D1 in a dose-dependent manner. In addition, β-carotene, astaxanthin, capsanthin and bixin also up-regulated the expression of Nrf2, an important transcription factor in Keap1-Nrf2/EpRE/ARE signaling pathway. It appears to us that PPARγ signaling pathways and Keap1-Nrf2/EpRE/ARE signaling pathway were involved in the inhibition of K562 cell proliferation by carotenoids and the up-regulation of PPARγ expression at least partly contributed to the antiproliferative effects of β-carotene, astaxanthin, capsanthin, and bixin on K562 cells.
Collapse
Affiliation(s)
- Xia Zhang
- School of Chemical Engineering and Energy, Zhengzhou University, No. 100 Science Road, Zhengzhou 450001, PR China
| | | | | | | | | |
Collapse
|
40
|
McConaha ME, Eckstrum K, An J, Steinle JJ, Bany BM. Microarray assessment of the influence of the conceptus on gene expression in the mouse uterus during decidualization. Reproduction 2011; 141:511-27. [PMID: 21300692 PMCID: PMC3076716 DOI: 10.1530/rep-10-0358] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
During pregnancy in several species including humans and rodents, the endometrium undergoes decidualization. This process of differentiation from endometrial to decidual tissue occurs only after the onset of implantation in mice. It can also be artificially induced causing the formation of deciduomal tissue. The purpose of this study was to compare the gene expression profile of the developing decidua in pregnant mice with the deciduoma formed after artificial induction in an effort to identify conceptus-influenced changes in uterine gene expression during decidualization. We induced decidualization artificially by transferring blastocyst-sized ConA-coated agarose beads into the uterus on day 2.5 of pseudopregnancy. Recently published work has found this model to be more 'physiological' than other methods. Total RNA was isolated from blastocyst and bead-induced 'implantation' sites of the uteri of day 7.5 pregnant (decidua) and pseudopregnant (deciduoma) mice respectively. This RNA was then used for microarray analysis using Mouse Illumina BeadArray chips. This analysis revealed potential differential mRNA levels of only 45 genes between the decidua and bead-induced deciduoma tissues. We confirmed the differential mRNA levels of 31 of these genes using quantitative RT-PCR. Finally, the level and localization of some of the mRNAs for select genes (Aldh3a1, Bcmo1, Guca2b, and Inhbb) identified by our microarray analysis were examined in more detail. This study provides the identity of a small set of genes whose expression in the uterus during decidualization may be influenced by molecular signals from the conceptus.
Collapse
Affiliation(s)
- ME McConaha
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL, USA
| | - K Eckstrum
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL, USA
| | - J An
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL, USA
| | - JJ Steinle
- Department of Ophthalmology, University of Tennessee School of Medicine, Memphis, TN, USA
| | - BM Bany
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL, USA
- Department of Obstetrics & Gynecology, Southern Illinois University School of Medicine, Carbondale, IL, USA
| |
Collapse
|
41
|
Reynaud E, Aydemir G, Rühl R, Dangles O, Caris-Veyrat C. Organic synthesis of new putative lycopene metabolites and preliminary investigation of their cell-signaling effects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:1457-1463. [PMID: 21247174 DOI: 10.1021/jf104092e] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Tomato is the main dietary source of lycopene, a carotenoid that is known to have protective effects on health and whose metabolites could also be involved in bioactivity. Herein we present the first organic synthesis of two potentially bioactive lycopene metabolites, namely, 10'-apolycopen-10'-oic acid (6) and 14'-apolycopen-14'-oic acid (13), which were obtained in their (all-E) stereoisomeric forms using Wittig and Horner-Wadsworth-Emmons type coupling reactions. Both molecules are shown to up-regulate the carotenoid asymmetric cleavage enzyme BCO2 while having no effect on BCO1 expression.
Collapse
Affiliation(s)
- Eric Reynaud
- Safety and Quality of Plant Products, INRA , UMR 408, F-84000 Avignon, France
| | | | | | | | | |
Collapse
|
42
|
D'Ambrosio DN, Clugston RD, Blaner WS. Vitamin A metabolism: an update. Nutrients 2011; 3:63-103. [PMID: 21350678 PMCID: PMC3042718 DOI: 10.3390/nu3010063] [Citation(s) in RCA: 353] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 12/24/2010] [Accepted: 01/11/2011] [Indexed: 12/18/2022] Open
Abstract
Retinoids are required for maintaining many essential physiological processes in the body, including normal growth and development, normal vision, a healthy immune system, normal reproduction, and healthy skin and barrier functions. In excess of 500 genes are thought to be regulated by retinoic acid. 11-cis-retinal serves as the visual chromophore in vision. The body must acquire retinoid from the diet in order to maintain these essential physiological processes. Retinoid metabolism is complex and involves many different retinoid forms, including retinyl esters, retinol, retinal, retinoic acid and oxidized and conjugated metabolites of both retinol and retinoic acid. In addition, retinoid metabolism involves many carrier proteins and enzymes that are specific to retinoid metabolism, as well as other proteins which may be involved in mediating also triglyceride and/or cholesterol metabolism. This review will focus on recent advances for understanding retinoid metabolism that have taken place in the last ten to fifteen years.
Collapse
Affiliation(s)
- Diana N D'Ambrosio
- Department of Medicine and Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| | | | | |
Collapse
|
43
|
von Lintig J. Colors with functions: elucidating the biochemical and molecular basis of carotenoid metabolism. Annu Rev Nutr 2010; 30:35-56. [PMID: 20415581 DOI: 10.1146/annurev-nutr-080508-141027] [Citation(s) in RCA: 183] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Carotenoids affect a rich variety of physiological functions in nature and are beneficial for human health, serving as antioxidants in lipophilic environments and blue light filters in the macula of human retina. These dietary compounds also serve as precursors of a unique set of apo-carotenoid cleavage products, including retinoids. Although knowledge about retinoid biology has tremendously increased, the metabolism of retinoids' parent precursors remains poorly understood. Recently, molecular players in carotenoid metabolism have been identified and biochemically characterized. Moreover, mutations in their corresponding genes impair carotenoid metabolism and induce various pathologies in animal models. Polymorphisms in these genes alter carotenoid and retinoid homeostasis in humans as well. This review summarizes our current knowledge about the molecular/biochemical basis of carotenoid metabolism and particularly the physiological role of carotenoids in retinoid-dependent physiological processes.
Collapse
Affiliation(s)
- Johannes von Lintig
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4965, USA.
| |
Collapse
|
44
|
Lietz G, Lange J, Rimbach G. Molecular and dietary regulation of β,β-carotene 15,15′-monooxygenase 1 (BCMO1). Arch Biochem Biophys 2010; 502:8-16. [DOI: 10.1016/j.abb.2010.06.032] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 06/25/2010] [Accepted: 06/28/2010] [Indexed: 11/28/2022]
|
45
|
Luvizotto RAM, Nascimento AF, Veeramachaneni S, Liu C, Wang X. Chronic alcohol intake upregulates hepatic expression of carotenoid cleavage enzymes and PPAR in rats. J Nutr 2010; 140:1808-14. [PMID: 20702748 PMCID: PMC2937575 DOI: 10.3945/jn.110.123398] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Excessive and chronic alcohol intake leads to a lower hepatic vitamin A status by interfering with vitamin A metabolism. Dietary provitamin A carotenoids can be converted into vitamin A mainly by carotenoid 15,15'-monooxygenase 1 (CMO1) and, to a lesser degree, carotenoid 9'10'-monooxygenase 2 (CMO2). CMO1 has been shown to be regulated by several transcription factors, such as the PPAR, retinoid X receptor, and thyroid receptor (TR). The regulation of CMO2 has yet to be identified. The impact of chronic alcohol intake on hepatic expressions of CMO1 and CMO2 and their related transcription factors are unknown. In this study, Fischer 344 rats were pair-fed either a liquid ethanol Lieber-DeCarli diet (n = 10) or a control diet (n = 10) for 11 wk. Hepatic retinoid concentration and expressions of CMO1, CMO2, PPARγ, PPARα, and TRβ as well as plasma thyroid hormones levels were analyzed. We observed that administering alcohol decreased hepatic retinoid levels but increased mRNA concentrations of CMO1, CMO2, PPARγ, PPARα, and TRβ and upregulated protein levels of CMO2, PPARγ, and PPARα. There was a positive correlation of PPARγ with CMO1 (r = 0.89; P < 0.0001) and both PPARγ and PPARα with CMO2 (r = 0.72, P < 0.001 and r = 0.62, P < 0.01, respectively). Plasma thyroid hormone concentrations did not differ between the control rats and alcohol-fed rats. This study suggests that chronic alcohol intake significantly upregulates hepatic expression of CMO1 and, to a much lesser extent, CMO2. This process may be due to alcohol-induced PPARγ expression and lower vitamin A status in the liver.
Collapse
Affiliation(s)
- Renata A. M. Luvizotto
- Nutrition and Cancer Biology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111,Department of Clinical Medicine, Botucatu School of Medicine, University of Sao Paulo State, Botucatu 18618-000, SP, Brazil
| | - André F. Nascimento
- Nutrition and Cancer Biology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111,Department of Clinical Medicine, Botucatu School of Medicine, University of Sao Paulo State, Botucatu 18618-000, SP, Brazil
| | - Sudipta Veeramachaneni
- Nutrition and Cancer Biology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111
| | - Chun Liu
- Nutrition and Cancer Biology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111
| | - Xiang‐Dong Wang
- Nutrition and Cancer Biology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111,To whom correspondence should be addressed. E-mail:
| |
Collapse
|
46
|
Kim YS, Oh DK. Biotransformation of carotenoids to retinal by carotenoid 15,15'-oxygenase. Appl Microbiol Biotechnol 2010; 88:807-16. [PMID: 20717662 DOI: 10.1007/s00253-010-2823-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 08/03/2010] [Accepted: 08/03/2010] [Indexed: 12/01/2022]
Abstract
Retinal, a precursor of vitamin A, has been used in foods, cosmetics, pharmaceuticals, nutraceuticals, and animal feed additives. Carotenoid 15,15'-oxygenases, including β-carotene 15,15'-oxygenases from mammalians, chickens, fruit flies, zebrafishes, the uncultured marine bacterium, and the fungus Fusarium fujikuroi, and apo-carotenoid 15,15'-oxygenases from cyanobacteria produce retinal from carotenoids. In this article, the biochemical properties, reaction mechanism, and substrate specificity of carotenoid oxygenases are reviewed, along with a description of the enzymatic biotransformation of carotenoids to retinal. Retinal producing methods using metabolically engineered cells and uncharacterized proteins are suggested.
Collapse
Affiliation(s)
- Yeong-Su Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Republic of Korea
| | | |
Collapse
|
47
|
Lobo GP, Amengual J, Li HNM, Golczak M, Bonet ML, Palczewski K, von Lintig J. Beta,beta-carotene decreases peroxisome proliferator receptor gamma activity and reduces lipid storage capacity of adipocytes in a beta,beta-carotene oxygenase 1-dependent manner. J Biol Chem 2010; 285:27891-9. [PMID: 20573961 DOI: 10.1074/jbc.m110.132571] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Increasing evidence has been provided for a connection between retinoid metabolism and the activity of peroxisome proliferator receptors (Ppars) in the control of body fat reserves. Two different precursors for retinoids exist in the diet as preformed vitamin A (all-trans-retinol) and provitamin A (beta,beta-carotene). For retinoid production, beta,beta-carotene is converted to retinaldehyde by beta,beta-carotene monooxygenase 1 (Bcmo1). Previous analysis showed that Bcmo1 knock-out mice develop dyslipidemia and are more susceptible to diet-induced obesity. However, the role of Bcmo1 for adipocyte retinoid metabolism has yet not been well defined. Here, we showed that Bcmo1 mRNA and protein expression are induced during adipogenesis in NIH 3T3-L1 cells. In mature adipocytes, beta,beta-carotene but not all-trans-retinol was metabolized to retinoic acid (RA). RA decreased the expression of Ppar gamma and CCAAT/enhancer-binding protein alpha, key lipogenic transcription factors, and reduced the lipid content of mature adipocytes. This process was inhibited by the retinoic acid receptor antagonist LE450, showing that it involves canonical retinoid signaling. Accordingly, gavage of beta,beta-carotene but not all-trans-retinol induced retinoid signaling and decreased Ppar gamma expression in white adipose tissue of vitamin A-deficient mice. Our study identifies beta,beta-carotene as a critical physiological precursor for RA production in adipocytes and implicates provitamin A as a dietary regulator of body fat reserves.
Collapse
Affiliation(s)
- Glenn P Lobo
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Shmarakov I, Fleshman MK, D'Ambrosio DN, Piantedosi R, Riedl KM, Schwartz SJ, Curley RW, von Lintig J, Rubin LP, Harrison EH, Blaner WS. Hepatic stellate cells are an important cellular site for β-carotene conversion to retinoid. Arch Biochem Biophys 2010; 504:3-10. [PMID: 20470748 DOI: 10.1016/j.abb.2010.05.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 05/07/2010] [Accepted: 05/10/2010] [Indexed: 11/19/2022]
Abstract
Hepatic stellate cells (HSCs) are responsible for storing 90-95% of the retinoid present in the liver. These cells have been reported in the literature also to accumulate dietary β-carotene, but the ability of HSCs to metabolize β-carotene in situ has not been explored. To gain understanding of this, we investigated whether β-carotene-15,15'-monooxygenase (Bcmo1) and β-carotene-9',10'-monooxygenase (Bcmo2) are expressed in HSCs. Using primary HSCs and hepatocytes purified from wild type and Bcmo1-deficient mice, we establish that Bcmo1 is highly expressed in HSCs; whereas Bcmo2 is expressed primarily in hepatocytes. We also confirmed that HSCs are an important cellular site within the liver for accumulation of dietary β-carotene. Bcmo2 expression was found to be significantly elevated for livers and hepatocytes isolated from Bcmo1-deficient compared to wild type mice. This elevation in Bcmo2 expression was accompanied by a statistically significant increase in hepatic apo-12'-carotenal levels of Bcmo1-deficient mice. Although apo-10'-carotenal, like apo-12'-carotenal, was readily detectable in livers and serum from both wild type and Bcmo1-deficient mice, we were unable to detect either apo-8'- or apo-14'-carotenals in livers or serum from the two strains. We further observed that hepatic triglyceride levels were significantly elevated in livers of Bcmo1-deficient mice fed a β-carotene-containing diet compared to mice receiving no β-carotene. Collectively, our data establish that HSCs are an important cellular site for β-carotene accumulation and metabolism within the liver.
Collapse
Affiliation(s)
- Igor Shmarakov
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Lobo GP, Hessel S, Eichinger A, Noy N, Moise AR, Wyss A, Palczewski K, von Lintig J. ISX is a retinoic acid-sensitive gatekeeper that controls intestinal beta,beta-carotene absorption and vitamin A production. FASEB J 2010; 24:1656-66. [PMID: 20061533 DOI: 10.1096/fj.09-150995] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The uptake of dietary lipids from the small intestine is a complex process that depends on the activities of specific membrane receptors with yet unknown regulatory mechanisms. Using both mouse models and human cell lines, we show here that intestinal lipid absorption by the scavenger receptor class B type 1 (SR-BI) is subject to control by retinoid signaling. Retinoic acid via retinoic acid receptors induced expression of the intestinal transcription factor ISX. ISX then repressed the expression of SR-B1 and the carotenoid-15,15'-oxygenase Bcmo1. BCMO1 acts downstream of SR-BI and converts absorbed beta,beta-carotene to the retinoic acid precursor, retinaldehyde. Using BCMO1-knockout mice, we demonstrated increased intestinal SR-BI expression and systemic beta,beta-carotene accumulation. SR-BI-dependent accumulation of beta,beta-carotene was prevented by dietary retinoids that induced ISX expression. Thus, our study revealed a diet-responsive regulatory network that controls beta,beta-carotene absorption and vitamin A production by negative feedback regulation. The role of SR-BI in the intestinal absorption of other dietary lipids, including cholesterol, fatty acids, and tocopherols, implicates retinoid signaling in the regulation of lipid absorption more generally and has clinical implications for diseases associated with dyslipidemia.
Collapse
Affiliation(s)
- Glenn P Lobo
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44160, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Schimek C, Wöstemeyer J. Carotene derivatives in sexual communication of zygomycete fungi. PHYTOCHEMISTRY 2009; 70:1867-1875. [PMID: 19665150 DOI: 10.1016/j.phytochem.2009.07.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2009] [Revised: 07/10/2009] [Accepted: 07/10/2009] [Indexed: 05/28/2023]
Abstract
Recognition between mating partners, early sexual morphogenesis and development are regulated by a family of beta-carotene derived signal compounds, the trisporoids, in zygomycete fungi. Mating type-specific precursors are released from the hyphae and exert their physiological effects upon compatible mating partners. In a cooperative synthesis pathway, later intermediates and finally trisporic acid are formed. All trisporoids occur in a number of derivatives. Trisporic acid and some precursors directly influence the transcription of genes involved in sexual development. This has been demonstrated for TSP3, encoding the carotene oxygenase involved in sexually induced cleavage of beta-carotene. Species specificity of mating despite a common and commonly recognized signaling system is maintained by several factors. Specific distribution and recognition patterns of the trisporoid derivatives and the proposed divergence in trisporoid synthesis pathways in diverse species play a role. The derivatives elicit vastly differing, partially mating type-specific responses during early sexual development. Another specificity factor is the realization of different regulation levels for the trisporoid synthesis enzymes in different species. Enzymes in the trisporoid synthesis pathway show remarkable variations in mating type-specific activity and the exact activation time during sexual development. This allows for the observed complex network of possible interactions, but at the same time forbids successful mating between dissimilar partners because the necessary transcripts or gene products are not available at the appropriate developmental stage.
Collapse
Affiliation(s)
- Christine Schimek
- General Microbiology and Microbial Genetics, Institute of Microbiology, Friedrich-Schiller-University Jena, Jena, Germany.
| | | |
Collapse
|