1
|
Drumm BT, Gupta N, Mircea A, Griffin CS. Cells and ionic conductances contributing to spontaneous activity in bladder and urethral smooth muscle. J Physiol 2024. [PMID: 39323077 DOI: 10.1113/jp284744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 09/02/2024] [Indexed: 09/27/2024] Open
Abstract
Smooth muscle organs of the lower urinary tract comprise the bladder detrusor and urethral wall, which have a reciprocal contractile relationship during urine storage and micturition. As the bladder fills with urine, detrusor smooth muscle cells (DSMCs) remain relaxed to accommodate increases in intravesical pressure while urethral smooth muscle cells (USMCs) sustain tone to occlude the urethral orifice, preventing leakage. While neither organ displays coordinated regular contractions as occurs in small intestine, lymphatics or renal pelvis, they do exhibit patterns of rhythmicity at cellular and tissue levels. In rabbit and guinea-pig urethra, electrical slow waves are recorded from USMCs. This activity is linked to cells expressing vimentin, c-kit and Ca2+-activated Cl- channels, like interstitial cells of Cajal in the gastrointestinal tract. In mouse, USMCs are rhythmically active (firing propagating Ca2+ waves linked to contraction), and this cellular rhythmicity is asynchronous across tissues and summates to form tone. Experiments in mice have failed to demonstrate a voltage-dependent mechanism for regulating this rhythmicity or contractions in vitro, suggesting that urethral tone results from an intrinsic ability of USMCs to 'pace' their own Ca2+ mobilization pathways required for contraction. DSMCs exhibit spontaneous transient contractions, increases in intracellular Ca2+ and action potentials. Consistent across numerous species, including humans, this activity relies on voltage-dependent Ca2+ influx in DSMCs. While interstitial cells are present in the bladder, they do not 'pace' the organ in an excitatory manner. Instead, specialized cells (PDGFRα+ interstitial cells) may 'negatively pace' DSMCs to prevent bladder overexcitability.
Collapse
Affiliation(s)
- Bernard T Drumm
- Smooth Muscle Research Centre, Department of Life & Health Science, Dundalk Institute of Technology, Dundalk, Ireland
| | - Neha Gupta
- Smooth Muscle Research Centre, Department of Life & Health Science, Dundalk Institute of Technology, Dundalk, Ireland
| | - Alexandru Mircea
- Smooth Muscle Research Centre, Department of Life & Health Science, Dundalk Institute of Technology, Dundalk, Ireland
| | - Caoimhin S Griffin
- Smooth Muscle Research Centre, Department of Life & Health Science, Dundalk Institute of Technology, Dundalk, Ireland
| |
Collapse
|
2
|
Zhang W, Yang F, Li W, Ma Y, Ma Z, Wang X, Hu C. Drugs Associated with Urinary Retention Adverse Reactions: A Joint Analysis of FDA Adverse Event Reporting System and Mendelian Randomization. Urology 2024:S0090-4295(24)00763-5. [PMID: 39222669 DOI: 10.1016/j.urology.2024.08.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVE To explore the association between drugs and urinary retention using the FDA Adverse Event Reporting System (FAERs) database and Mendelian randomization (MR) analysis, providing preliminary insights into the underlying mechanisms. METHODS Drug-adverse reaction reports from the FAERs database from 2004 to 2023 were obtained, and MR analysis was conducted to further validate the causal relationship between drugs and urinary retention using genetic data provided by the IEU OpenGWAS project. RESULTS We identified 78 drugs associated with urinary retention, including Mirabegron, Tiotropium, Quetiapine, Amlodipine, etc. MR analysis indicated genetic markers (SNPs rs10500326, rs4815689, and rs1216743) of Amlodipine were associated with an increased risk of urinary retention. Sensitivity analysis demonstrated the robustness and reliability of the results. CONCLUSION This study identified various drugs associated with urinary retention, particularly Amlodipine. This finding provides new clues for further investigation into the mechanisms of drug effects on bladder function and offers important references for clinical practice. However, further randomized controlled trials are needed to validate these associations and explore deeper mechanisms.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Urology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Fan Yang
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Weichao Li
- Department of Thyroid Surgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yuepeng Ma
- Department of High School, Jinzhong Boya Peiwen Experimental School, Taiyuan, Shanxi, China
| | - Zhifang Ma
- Department of Urology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xin Wang
- Department of Urology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Caoyang Hu
- Department of Urology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
3
|
Iheanacho CO, Okwesilieze CN, Eyong AK. Role of calcium channel blockers in lower urinary tract symptoms in benign prostatic hyperplasia: a literature review. AFRICAN JOURNAL OF UROLOGY 2022. [DOI: 10.1186/s12301-022-00320-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Abstract
Background
Benign prostatic hyperplasia (BPH) and the use of CCBs are common in older persons, and are also associated with lower urinary tract symptoms (LUTS). This review summarised and synthesised relevant information and recent advances to improve clinical knowledge on the role of CCBs in LUTS, BPH symptoms and health-related quality of life.
Main body of the abstract
A search of databases of PubMed, Web of science, Hinari, and Google scholar was performed using several keywords. Relevant studies were also extracted from references of identified studies. Selected studies were assessed for content related to CCBs, BPH and LUTS, and the most relevant reports were included. The inhibition of calcium channels by CCBs interferes with influx of extracellular Ca2+ into the detrusor muscle, which interferes with bladder contraction and relaxation. Hence, CCBs are associated with precipitation or aggravation of urinary storage and voiding symptoms, which are also common symptoms of BPH. This suggests a potential aggravation of BPH symptoms with the use of CCBs.
Short conclusion
Persons at high risk of LUTS such as in BPH, may benefit from other classes of antihypertensive drugs. Therefore, it is essential to identify persons with BPH prior to commencement of therapy with CCBs. Patients on CCBs should be routinely reviewed for any potential precipitation or aggravation of LUTS. Patients should also be counselled to notify their healthcare provider of unusual urinary symptoms during CCB use. This will facilitate enhanced quality of life in patients with BPH.
Collapse
|
4
|
Chen H, Wu A, Zeidel ML, Yu W. Smooth Muscle Insulin Receptor Deletion Causes Voiding Dysfunction: A Mechanism for Diabetic Bladder Dysfunction. Diabetes 2022; 71:2197-2208. [PMID: 35876633 PMCID: PMC9501730 DOI: 10.2337/db22-0233] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 07/20/2022] [Indexed: 01/03/2023]
Abstract
Diabetic bladder dysfunction (DBD) is the most common complication in diabetes. Myogenic abnormalities are common in DBD; however, the underlying mechanisms leading to these remain unclear. To understand the importance of smooth muscle insulin receptor (IR)-mediated signaling in the pathogenesis of DBD, we conditionally deleted it to achieve either heterozygous (SMIR+/-) or homozygous (SMIR-/-) deletion in smooth muscle cells. Despite impaired glucose and insulin tolerance seen with SMIR-/- mice, both SMIR+/- and SMIR-/- mice exhibited normal blood glucose and plasma insulin levels. Interestingly, these mice had abnormal voiding phenotypes, that included urinary frequency and small voids, and bladder smooth muscle (BSM) had significantly diminished contraction force. Morphology revealed a dilated bladder with thinner BSM layer, and BSM bundles were disorganized with penetrating interstitial tissue. Deletion of IR elevated FoxO and decreased mTOR protein expression, which further decreased the expression of Chrm3, P2x1, Sm22, and Cav1.2, crucial functional proteins for BSM contraction. Furthermore, we determined the expression of adiponectin in BSM, and deletion of IR in BSM inhibited adiponectin-mediated signaling. In summary, disruption of IR-mediated signaling in BSM caused abnormalities in proliferation and differentiation, leading to diminished BSM contractility and a voiding dysfunction phenotype that recapitulates human DBD.
Collapse
Affiliation(s)
| | | | | | - Weiqun Yu
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| |
Collapse
|
5
|
Oliveira AL, Medeiros ML, de Oliveira MG, Teixeira CJ, Mónica FZ, Antunes E. Enhanced RAGE Expression and Excess Reactive-Oxygen Species Production Mediates Rho Kinase-Dependent Detrusor Overactivity After Methylglyoxal Exposure. Front Physiol 2022; 13:860342. [PMID: 35418871 PMCID: PMC8996136 DOI: 10.3389/fphys.2022.860342] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/11/2022] [Indexed: 12/23/2022] Open
Abstract
Methylglyoxal (MGO) is a highly reactive dicarbonyl compound implicated in diabetes-associated diseases. In vascular tissues, MGO induces the formation of advanced glycation end products (AGEs) that bounds its receptor RAGE, initiating the downstream tissue injury. Outside the cardiovascular system, MGO intake produces mouse voiding dysfunction and bladder overactivity. We have sought that MGO-induced bladder overactivity is due to activation of AGE-RAGE-reactive-oxygen species (ROS) signaling cascade, leading to Rho kinase activation. Therefore, female mice received 0.5% MGO orally for 12 weeks, after which in vitro bladder contractions were evaluated in the presence or not of superoxide dismutase (PEG-SOD) or the Rho kinase inhibitor Y27632. Treatment with MGO significantly elevated the serum levels of MGO and fluorescent AGEs, as well as the RAGE immunostaining in the urothelium, detrusor, and vascular endothelium. RAGE mRNA expression in the bladder was also higher in the MGO group. Methylglyoxal significantly increased the ROS production in both urothelium and detrusor smooth muscle, with the increases in detrusor markedly higher than urothelium. The bladder activity of superoxide dismutase (SOD) was significantly reduced in the MGO group. Gene expressions of L-type Ca2+ channels, RhoA, ROCK-1, and ROCK-2 in bladder tissues were significantly elevated in the MGO group. Increased bladder contractions to electrical-field stimulation, carbachol α,β-methylene ATP, and extracellular Ca2+ were observed after MGO exposure, which was significantly reduced by prior incubation with either PEG-SOD or Y27632. Overall, our data indicate serum MGO accumulation elevates the AGEs levels and activates the RAGE-ROS signaling leading to Rho kinase-induced muscle sensitization, ultimately leading to detrusor overactivity.
Collapse
Affiliation(s)
- Akila L Oliveira
- Department of Pharmacology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Matheus L Medeiros
- Department of Pharmacology, University of Campinas (UNICAMP), Campinas, Brazil
| | | | - Caio Jordão Teixeira
- Department of Physiology and Biophysics, Institute of Biomedical Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Fabíola Z Mónica
- Department of Pharmacology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Edson Antunes
- Department of Pharmacology, University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
6
|
Yu W. Reviving Cav1.2 as an attractive drug target to treat bladder dysfunction. FASEB J 2022; 36:e22118. [PMID: 34939692 PMCID: PMC9841550 DOI: 10.1096/fj.202101475r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 01/18/2023]
Abstract
Inhibition of bladder contraction with antimuscarinics is a common approach to treat bladder hyperactivity, and the L-type voltage-gated calcium channel α1C (Cav1.2) is crucial for bladder contractility. Therefore, strategies aimed at inhibiting Cav1.2 appear warranted. However, multiple clinical trials that attempted to treat bladder overactivity with calcium channel blockers (CCBs) have been unsuccessful, creating an unsolved mystery. In contrast, cardiologists and epidemiologists have reported strong associations between CCB use and bladder hyperactivity, opposing expectations of urologists. Recent findings from our lab offer a potential explanation. We have demonstrated that ketamine which can cause cystitis, functions, like nifedipine, as a Cav1.2 antagonist. We also show that a Cav1.2 agonist which potentiates muscle contraction, rather than antagonizing it, can increase the volume of voids and reduce voiding frequency. This perspective will discuss in detail the unsuccessful urological trials of CCBs and the promise of Cav1.2 agonists as potential novel therapies for bladder dysfunctions.
Collapse
Affiliation(s)
- Weiqun Yu
- Department of Medicine Beth Israel Deaconess Medical Center and Harvard Medical School Boston Massachuesetts USA
| |
Collapse
|
7
|
Dixon RE, Navedo MF, Binder MD, Santana LF. Mechanisms and Physiological Implications of Cooperative Gating of Ion Channels Clusters. Physiol Rev 2021; 102:1159-1210. [PMID: 34927454 DOI: 10.1152/physrev.00022.2021] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Ion channels play a central role in the regulation of nearly every cellular process. Dating back to the classic 1952 Hodgkin-Huxley model of the generation of the action potential, ion channels have always been thought of as independent agents. A myriad of recent experimental findings exploiting advances in electrophysiology, structural biology, and imaging techniques, however, have posed a serious challenge to this long-held axiom as several classes of ion channels appear to open and close in a coordinated, cooperative manner. Ion channel cooperativity ranges from variable-sized oligomeric cooperative gating in voltage-gated, dihydropyridine-sensitive Cav1.2 and Cav1.3 channels to obligatory dimeric assembly and gating of voltage-gated Nav1.5 channels. Potassium channels, transient receptor potential channels, hyperpolarization cyclic nucleotide-activated channels, ryanodine receptors (RyRs), and inositol trisphosphate receptors (IP3Rs) have also been shown to gate cooperatively. The implications of cooperative gating of these ion channels range from fine tuning excitation-contraction coupling in muscle cells to regulating cardiac function and vascular tone, to modulation of action potential and conduction velocity in neurons and cardiac cells, and to control of pace-making activity in the heart. In this review, we discuss the mechanisms leading to cooperative gating of ion channels, their physiological consequences and how alterations in cooperative gating of ion channels may induce a range of clinically significant pathologies.
Collapse
Affiliation(s)
- Rose Ellen Dixon
- Department of Physiology and Membrane Biology, University of California, Davis, CA, United States
| | - Manuel F Navedo
- Department of Pharmacology, University of California, Davis, CA, United States
| | - Marc D Binder
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, United States
| | - L Fernando Santana
- Department of Physiology and Membrane Biology, University of California, Davis, CA, United States
| |
Collapse
|
8
|
Xie X, Liang J, Huang R, Luo C, Yang J, Xing H, Zhou L, Qiao H, Ergu E, Chen H. Molecular pathways underlying tissue injuries in the bladder with ketamine cystitis. FASEB J 2021; 35:e21703. [PMID: 34105799 DOI: 10.1096/fj.202100437] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/14/2021] [Indexed: 12/11/2022]
Abstract
Ketamine cystitis (KC) is a chronic bladder inflammation leading to urinary urgency, frequency, and pain. The pathogenesis of KC is complicated and involves multiple tissue injuries in the bladder. Recent studies indicated that urothelium disruption, lamina propria fibrosis and inflammation, microvascular injury, neuropathological alterations, and bladder smooth muscle (BSM) abnormalities all contribute to the pathogenesis of KC. Ketamine has been shown to induce these tissue injuries by regulating different signaling pathways. Ketamine can stimulate antiproliferative factor, adenosine triphosphate, and oxidative stress to disrupt urothelium. Lamina propria fibrosis and inflammation are associated with the activation of cyclooxygenase-2, nitric oxide synthase, immunoglobulin E, and transforming growth factor β1. Ketamine contributes to microvascular injury via the N-methyl-D aspartic receptor (NMDAR), and multiple inflammatory and angiogenic factors such as tumor necrosis factor α and vascular endothelial growth factor. For BSM abnormalities, ketamine can depress the protein kinase B, extracellular signal-regulated kinase, Cav1.2, and muscarinic receptor signaling. Elevated purinergic signaling also plays a role in BSM abnormalities. In addition, ketamine affects neuropathological alterations in the bladder by regulating NMDAR- and brain-derived neurotrophic factor-dependent signaling. Inflammatory cells also contribute to neuropathological changes via the secretion of chemical mediators. Clarifying the role and function of these signaling underlying tissue injuries in the bladder with KC can contribute to a better understanding of the pathophysiology of this disease and to the design of effective treatments for KC.
Collapse
Affiliation(s)
- Xiang Xie
- Public Center of Experimental Technology and The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Jiayu Liang
- Public Center of Experimental Technology and The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Run Huang
- Public Center of Experimental Technology and The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Chuang Luo
- Public Center of Experimental Technology and The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Jiali Yang
- Public Center of Experimental Technology and The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Hongming Xing
- Public Center of Experimental Technology and The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Le Zhou
- Public Center of Experimental Technology and The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Han Qiao
- Public Center of Experimental Technology and The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Erti Ergu
- Public Center of Experimental Technology and The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Huan Chen
- Public Center of Experimental Technology and The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| |
Collapse
|
9
|
Xie X, Chen H, Zhang L, Chan D, Hill WG, Zeidel ML, Yu W. Molecular mechanisms of voiding dysfunction in a novel mouse model of acute urinary retention. FASEB J 2021; 35:e21447. [PMID: 33742688 PMCID: PMC9844132 DOI: 10.1096/fj.202002415r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/22/2021] [Accepted: 02/01/2021] [Indexed: 01/19/2023]
Abstract
Acute urinary retention (AUR) is a common urological emergency and affects a significant patient population. The inability to eliminate urine may lead to permanent damage to the bladder's structure and functioning. However, we know little about the underlying molecular sequelae to the urine retention. To closely mirror the potential high pressures that patients with AUR could experience, we catheterized anesthetized female mice via the urethra and filled the bladder by pumping saline (25 µL/min) into the bladder lumen to 50 cm or 80 cm water pressure. A water column with designated height (50 or 80 cm) was then adjusted to maintain constant pressure in the bladder lumen for 30 minutes. Functional and morphological evaluations were performed from 0 to 24 hours after AUR treatment. Mice exhibited incontinence and overactivity with diminished voiding pressure. Significant injury was confirmed which revealed bladders with disrupted urothelial barrier, edematous lamina propria, and distorted muscle bundles. Bladder smooth muscle (BSM) from pressure-treated mice have significantly diminished contraction force, suggesting that bladder voiding dysfunction can be attributed to impaired BSM contractility. Indeed, dysregulation of acetylcholine and purinergic signaling pathways were demonstrated, indicating that reduced efficacy of these pathways contributes to impaired BSM contractility. Finally, altered expression of β1-integrin and extracellular matrix mediated mechanotransduction pathways were detected, suggesting a profound remodeling process. These data demonstrated an easy to perform, quantifiable, and reproducible AUR mouse model, which mimics well the characteristics of human AUR patients, and our data generate new insights into the molecular mechanisms that occur following AUR.
Collapse
Affiliation(s)
- Xiang Xie
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Huan Chen
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Lanlan Zhang
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Daniel Chan
- Brown University/Harvard Summer Research Program in Kidney Medicine, Providence, RI, USA
| | - Warren G. Hill
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Mark L. Zeidel
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Weiqun Yu
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
10
|
Malysz J, Petkov GV. Detrusor Smooth Muscle K V7 Channels: Emerging New Regulators of Urinary Bladder Function. Front Physiol 2020; 11:1004. [PMID: 33041840 PMCID: PMC7526500 DOI: 10.3389/fphys.2020.01004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 07/23/2020] [Indexed: 01/21/2023] Open
Abstract
Relaxation and contraction of the urinary bladder smooth muscle, also known as the detrusor smooth muscle (DSM), facilitate the micturition cycle. DSM contractility depends on cell excitability, which is established by the synchronized activity of multiple diverse ion channels. K+ channels, the largest family of channels, control DSM excitability by maintaining the resting membrane potential and shaping the action potentials that cause the phasic contractions. Among the members of the voltage-gated K+ (KV) channel superfamily, KV type 7 (KV7) channels - KV7.1-KV7.5 members encoded by KCNQ1-KCNQ5 genes - have been recently identified as functional regulators in various cell types including vascular, cardiac, and neuronal cells. Their regulatory roles in DSM, however, are just now emerging and remain to be elucidated. To address this gap, our research group has initiated the systematic investigation of human DSM KV7 channels in collaboration with clinical urologists. In this comprehensive review, we summarize the current understanding of DSM Kv7 channels and highlight recent discoveries in the field. We describe KV7 channel expression profiles at the mRNA and protein levels, and further elaborate on functional effects of KV7 channel selective modulators on DSM excitability, contractility, and intracellular Ca2+ dynamics in animal species along with in vivo studies and the limited data on human DSM. Within each topic, we highlight the main observations, current gaps in knowledge, and most pressing questions and concepts in need of resolution. We emphasize the lack of systematic studies on human DSM KV7 channels that are now actively ongoing in our laboratory.
Collapse
Affiliation(s)
- John Malysz
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Georgi V. Petkov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, United States
- Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
- Department of Urology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
11
|
Chen H, Vandorpe DH, Xie X, Alper SL, Zeidel ML, Yu W. Disruption of Cav1.2-mediated signaling is a pathway for ketamine-induced pathology. Nat Commun 2020; 11:4328. [PMID: 32859919 PMCID: PMC7455701 DOI: 10.1038/s41467-020-18167-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 08/04/2020] [Indexed: 01/03/2023] Open
Abstract
The general anesthetic ketamine has been repurposed by physicians as an anti-depressant and by the public as a recreational drug. However, ketamine use can cause extensive pathological changes, including ketamine cystitis. The mechanisms of ketamine's anti-depressant and adverse effects remain poorly understood. Here we present evidence that ketamine is an effective L-type Ca2+ channel (Cav1.2) antagonist that directly inhibits calcium influx and smooth muscle contractility, leading to voiding dysfunction. Ketamine prevents Cav1.2-mediated induction of immediate early genes and transcription factors, and inactivation of Cav1.2 in smooth muscle mimics the ketamine cystitis phenotype. Our results demonstrate that ketamine inhibition of Cav1.2 signaling is an important pathway mediating ketamine cystitis. In contrast, Cav1.2 agonist Bay k8644 abrogates ketamine-induced smooth muscle dysfunction. Indeed, Cav1.2 activation by Bay k8644 decreases voiding frequency while increasing void volume, indicating Cav1.2 agonists might be effective drugs for treatment of bladder dysfunction.
Collapse
Affiliation(s)
- Huan Chen
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - David H Vandorpe
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Xiang Xie
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Seth L Alper
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Mark L Zeidel
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Weiqun Yu
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
12
|
Malysz J, Petkov GV. Urinary bladder smooth muscle ion channels: expression, function, and regulation in health and disease. Am J Physiol Renal Physiol 2020; 319:F257-F283. [PMID: 32628539 PMCID: PMC7473901 DOI: 10.1152/ajprenal.00048.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/21/2020] [Accepted: 06/28/2020] [Indexed: 12/17/2022] Open
Abstract
Urinary bladder smooth muscle (UBSM), also known as detrusor smooth muscle, forms the bladder wall and ultimately determines the two main attributes of the organ: urine storage and voiding. The two functions are facilitated by UBSM relaxation and contraction, respectively, which depend on UBSM excitability shaped by multiple ion channels. In this review, we summarize the current understanding of key ion channels establishing and regulating UBSM excitability and contractility. They include excitation-enhancing voltage-gated Ca2+ (Cav) and transient receptor potential channels, excitation-reducing K+ channels, and still poorly understood Cl- channels. Dynamic interplay among UBSM ion channels determines the overall level of Cav channel activity. The net Ca2+ influx via Cav channels increases global intracellular Ca2+ concentration, which subsequently triggers UBSM contractility. Here, for each ion channel type, we describe UBSM tissue/cell expression (mRNA and protein) profiles and their role in regulating excitability and contractility of UBSM in various animal species, including the mouse, rat, and guinea pig, and, most importantly, humans. The currently available data reveal certain interspecies differences, which complicate the translational value of published animal research results to humans. This review highlights recent developments, findings on genetic knockout models, pharmacological data, reports on UBSM ion channel dysfunction in animal bladder disease models, and the very limited human studies currently available. Among all gaps in present-day knowledge, the unknowns on expression and functional roles for ion channels determined directly in human UBSM tissues and cells under both normal and disease conditions remain key hurdles in the field.
Collapse
Affiliation(s)
- John Malysz
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Georgi V Petkov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee
- Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
- Department of Urology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
13
|
Corpus cavernosum smooth muscle cell dysfunction and phenotype transformation are related to erectile dysfunction in prostatitis rats with chronic prostatitis/chronic pelvic pain syndrome. JOURNAL OF INFLAMMATION-LONDON 2020; 17:2. [PMID: 31911760 PMCID: PMC6945598 DOI: 10.1186/s12950-019-0233-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/29/2019] [Indexed: 01/09/2023]
Abstract
Background The relationship between chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) and erectile dysfunction (ED) has been shown in many studies. However, the specific mechanism remains unclear. This study was to investigate the corpus cavernosum smooth muscle cell function and phenotype transformation in Experimental autoimmune prostatitis (EAP) rats. Methods EAP was induced in rats by using prostate protein supplemented with immuneadjuvant extraction, and the max-ICP and MAP were measured. IHC and Masson staining were done to assess inflammatory infiltration and collagen deposition in the corpus cavernosum, respectively. Subsequently, normal rat and EAP rat CCSMCs were purified by tissue block implantation and differential adherence method. The oxidative stress, smooth muscle phenotype transformation, cell cycle and intracellular calcium ion transport were also evaluated. Results The ratio of max ICP/MAP in EAP rats significantly reduced, and the TNF-α content and collagen deposition in the corpus cavernosum markedly increased as compared to healthy rats. High-purity rat CCSMCs were obtained. Oxidative stress was evident and the cGMP content decreased in the EAP rat CCSMCs. The expression of Cav1.2, IP3R1 and RyR2 increased, but the SERCA2 expression decreased in EAP rat CCSMCs, which was accompanied by increased intracellular calcium. Increased expression of OPN, collagen and KCa3.1, decreased Calponin expression and increased proportion of cells in the S phase were also observed in the EAP rat CCSMCs. Conclusion CP causes oxidative stress and imbalance of intracellular calcium in CCSMCs and promotes CCSMCs transformation from contractile to synthetic state, which may be involved in the pathogenesis of ED.
Collapse
|
14
|
Dér B, Molnár PJ, Ruisanchez É, Őrsy P, Kerék M, Faragó B, Nyirády P, Offermanns S, Benyó Z. NK2 receptor-mediated detrusor muscle contraction involves G q/11-dependent activation of voltage-dependent Ca 2+ channels and the RhoA-Rho kinase pathway. Am J Physiol Renal Physiol 2019; 317:F1154-F1163. [PMID: 31461351 DOI: 10.1152/ajprenal.00106.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Tachykinins (TKs) are involved in both the physiological regulation of urinary bladder functions and development of overactive bladder syndrome. The aim of the present study was to investigate the signal transduction pathways of TKs in the detrusor muscle to provide potential pharmacological targets for the treatment of bladder dysfunctions related to enhanced TK production. Contraction force, intracellular Ca2+ concentration, and RhoA activity were measured in the mouse urinary bladder smooth muscle (UBSM). TKs and the NK2 receptor (NK2R)-specific agonist [β-Ala8]-NKA(4-10) evoked contraction, which was inhibited by the NKR2 antagonist MEN10376. In Gαq/11-deficient mice, [β-Ala8]-NKA(4-10)-induced contraction and the intracellular Ca2+ concentration increase were abolished. Although Gq/11 proteins are linked principally to phospholipase Cβ and inositol trisphosphate-mediated Ca2+ release from intracellular stores, we found that phospholipase Cβ inhibition and sarcoplasmic reticulum Ca2+ depletion failed to have any effect on contraction induced by [β-Ala8]-NKA(4-10). In contrast, lack of extracellular Ca2+ or blockade of voltage-dependent Ca2+ channels (VDCCs) suppressed contraction. Furthermore, [β-Ala8]-NKA(4-10) increased RhoA activity in the UBSM in a Gq/11-dependent manner and inhibition of Rho kinase with Y-27632 decreased contraction force, whereas the combination of Y-27632 with either VDCC blockade or depletion of extracellular Ca2+ resulted in complete inhibition of [β-Ala8]-NKA(4-10)-induced contractions. In summary, our results indicate that NK2Rs are linked exclusively to Gq/11 proteins in the UBSM and that the intracellular signaling involves the simultaneous activation of VDCC and the RhoA-Rho kinase pathway. These findings may help to identify potential therapeutic targets of bladder dysfunctions related to upregulation of TKs.
Collapse
Affiliation(s)
- Bálint Dér
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Péter József Molnár
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary.,Department of Urology, Semmelweis University, Budapest, Hungary
| | - Éva Ruisanchez
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Petra Őrsy
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Margit Kerék
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Bernadett Faragó
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Péter Nyirády
- Department of Urology, Semmelweis University, Budapest, Hungary
| | - Stefan Offermanns
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Zoltán Benyó
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
15
|
Hao Y, Wang L, Chen H, Hill WG, Robson SC, Zeidel ML, Yu W. Targetable purinergic receptors P2Y12 and A2b antagonistically regulate bladder function. JCI Insight 2019; 4:122112. [PMID: 31434806 DOI: 10.1172/jci.insight.122112] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/26/2019] [Indexed: 12/21/2022] Open
Abstract
Abnormalities in purine availability or purinergic receptor density are commonly seen in patients with lower urinary tract symptoms (LUTS), but the underlying mechanisms relating altered receptor function to LUTS are unknown. Here we provide extensive evidence for the reciprocal interplay of multiple receptors responding to ATP, ADP (adenosine diphosphate), and adenosine, agonists that regulate bladder function significantly. ADP stimulated P2Y12 receptors, causing bladder smooth muscle (BSM) contraction, whereas adenosine signaling through potentially newly defined A2b receptors, actively inhibited BSM purinergic contractility. The modulation of adenylyl cyclase-cAMP signaling via A2b and P2Y12 interaction actively regulated bladder contractility by modulating intracellular calcium levels. KO mice lacking the receptors display diametrically opposed bladder phenotypes, with P2Y12-KO mice exhibiting an underactive bladder (UAB) phenotype with increased bladder capacity and reduced voiding frequency, whereas A2b-KO mice have an overactive bladder (OAB), with decreased capacity and increased voiding frequency. The opposing phenotypes in P2Y12-KO and A2b-KO mice not only resulted from dysregulated BSM contractility, but also from abnormal BSM cell growth. Finally, we demonstrate that i.p. administration of drugs targeting P2Y12 or A2b receptor rescues these abnormal phenotypes in both KO mice. These findings strongly indicate that P2Y12 and A2b receptors are attractive therapeutic targets for human patients with LUTS.
Collapse
Affiliation(s)
- Yuan Hao
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Lu Wang
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA.,Chongqing University, Chongqing, China
| | - Huan Chen
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Warren G Hill
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Simon C Robson
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Mark L Zeidel
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Weiqun Yu
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
16
|
Yarotskyy V, Malysz J, Petkov GV. Properties of single-channel and whole cell Cl - currents in guinea pig detrusor smooth muscle cells. Am J Physiol Cell Physiol 2019; 316:C698-C710. [PMID: 30566392 DOI: 10.1152/ajpcell.00327.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Multiple types of Cl- channels regulate smooth muscle excitability and contractility in vascular, gastrointestinal, and airway smooth muscle cells. However, little is known about Cl- channels in detrusor smooth muscle (DSM) cells. Here, we used inside-out single channel and whole cell patch-clamp recordings for detailed biophysical and pharmacological characterizations of Cl- channels in freshly isolated guinea pig DSM cells. The recorded single Cl- channels displayed unique gating with multiple subconductive states, a fully opened single-channel conductance of 164 pS, and a reversal potential of -41.5 mV, which is close to the ECl of -65 mV, confirming preferential permeability to Cl-. The Cl- channel demonstrated strong voltage dependence of activation (half-maximum of mean open probability, V0.5, ~-20 mV) and robust prolonged openings at depolarizing voltages. The channel displayed similar gating when exposed intracellularly to solutions containing Ca2+-free or 1 mM Ca2+. In whole cell patch-clamp recordings, macroscopic current demonstrated outward rectification, inhibitions by 4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid (DIDS) and niflumic acid, and insensitivity to chlorotoxin. The outward current was reversibly reduced by 94% replacement of extracellular Cl- with I-, Br-, or methanesulfonate (MsO-), resulting in anionic permeability sequence: Cl->Br->I->MsO-. While intracellular Ca2+ levels (0, 300 nM, and 1 mM) did not affect the amplitude of Cl- current and outward rectification, high Ca2+ slowed voltage-step current activation at depolarizing voltages. In conclusion, our data reveal for the first time the presence of a Ca2+-independent DIDS and niflumic acid-sensitive, voltage-dependent Cl- channel in the plasma membrane of DSM cells. This channel may be a key regulator of DSM excitability.
Collapse
Affiliation(s)
- Viktor Yarotskyy
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center , Memphis, Tennessee
| | - John Malysz
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center , Memphis, Tennessee
| | - Georgi V Petkov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center , Memphis, Tennessee
| |
Collapse
|
17
|
Muscarinic receptor-induced contractions of the detrusor are impaired in TRPC4 deficient mice. Sci Rep 2018; 8:9264. [PMID: 29915209 PMCID: PMC6006323 DOI: 10.1038/s41598-018-27617-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 06/06/2018] [Indexed: 01/25/2023] Open
Abstract
Acetylcholine contracts the bladder by binding to muscarinic M3 receptors on the detrusor, leading to Ca2+ influx via voltage-gated Ca2+ channels. The cellular mechanisms linking these events are poorly understood, but studies have suggested that activation of TRPC4 channels could be involved. The purpose of this study was to investigate if spontaneous and cholinergic-mediated contractions of the detrusor were impaired in TRPC4 deficient (TRPC4−/−) mice. Isometric tension recordings were made from strips of wild-type (WT) and TRPC4−/− detrusor. Spontaneous phasic detrusor contractions were significantly smaller in TRPC4−/− mice compared to wild-type, however no difference in response to exogenous application of 60 mM KCl was observed. Cholinergic responses, induced by electric-field stimulation (EFS), bath application of the cholinergic agonist carbachol, or the acetylcholinesterase inhibitor neostigmine were all significantly smaller in TRPC4−/− detrusor strips than wild-type. Surprisingly, the TRPC4/5 inhibitor ML204 reduced EFS and CCh-evoked contractions in TRPC4−/− detrusor strips. However, TRPC5 expression was up-regulated in these preparations and, in contrast to wild-type, EFS responses were reduced in amplitude by the TRPC5 channel inhibitor clemizole hydrochloride. This study demonstrates that TRPC4 channels are involved in spontaneous and cholinergic-mediated contractions of the murine detrusor. TRPC5 expression is up-regulated in TRPC4−/− detrusor strips, and may partially compensate for loss of TRPC4 channels.
Collapse
|
18
|
Transepithelial Fluid and Salt Re-Absorption Regulated by cGK2 Signals. Int J Mol Sci 2018; 19:ijms19030881. [PMID: 29547542 PMCID: PMC5877742 DOI: 10.3390/ijms19030881] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 02/12/2018] [Accepted: 03/14/2018] [Indexed: 12/23/2022] Open
Abstract
Transepithelial fluid and salt re-absorption in epithelial tissues play an important role in fluid and salt homeostasis. In absorptive epithelium, fluid and salt flux is controlled by machinery mainly composed of epithelial sodium channels (ENaC), cystic fibrosis transmembrane conductance regulator (CFTR), Na⁺/H⁺ exchanger (NHE), aquaporin, and sodium potassium adenosine triphosphatase (Na⁺/K⁺-ATPase). Dysregulation of fluid and salt transport across epithelium contributes to the pathogenesis of many diseases, such as pulmonary edema and cystic fibrosis. Intracellular and extracellular signals, i.e., hormones and protein kinases, regulate fluid and salt turnover and resolution. Increasing evidence demonstrates that transepithelial fluid transport is regulated by cyclic guanosine monophosphate-dependent protein kinase (cGK) signals. cGK2 was originally identified and cloned from intestinal specimens, the presence of which has also been confirmed in the kidney and the lung. cGK2 regulates fluid and salt through ENaC, CFTR and NHE. Deficient cGK2 regulation of transepithelial ion transport was seen in acute lung injury, and cGK2 could be a novel druggable target to restore edematous disorder in epithelial tissues.
Collapse
|
19
|
Drake MJ, Fry CH, Hashitani H, Kirschner-Hermanns R, Rahnama'i MS, Speich JE, Tomoe H, Kanai AJ, McCloskey KD. What are the origins and relevance of spontaneous bladder contractions? ICI-RS 2017. Neurourol Urodyn 2018; 37:S13-S19. [PMID: 29360173 DOI: 10.1002/nau.23485] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 12/14/2017] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Storage phase bladder activity is a counter-intuitive observation of spontaneous contractions. They are potentially an intrinsic feature of the smooth muscle, but interstitial cells in the mucosa and the detrusor itself, as well as other muscular elements in the mucosa may substantially influence them. They are identified in several models explaining lower urinary tract dysfunction. METHODS A consensus meeting at the International Consultation on Incontinence Research Society (ICI-RS) 2017 congress considered the origins and relevance of spontaneous bladder contractions by debating which cell type(s) modulate bladder spontaneous activity, whether the methodologies are sufficiently robust, and implications for healthy and abnormal lower urinary tract function. RESULTS The identified research priorities reflect a wide range of unknown aspects. Cellular contributions to spontaneous contractions in detrusor smooth muscle are still uncertain. Accordingly, insight into the cellular physiology of the bladder wall, particularly smooth muscle cells, interstitial cells, and urothelium, remains important. Upstream influences, such as innervation, endocrine, and paracrine factors, are particularly important. The cellular interactions represent the key understanding to derive the integrative physiology of organ function, notably the nature of signalling between mucosa and detrusor layers. Indeed, it is still not clear to what extent spontaneous contractions generated in isolated preparations mirror their normal and pathological counterparts in the intact bladder. Improved models of how spontaneous contractions influence pressure generation and sensory nerve function are also needed. CONCLUSIONS Deriving approaches to robust evaluation of spontaneous contractions and their influences for experimental and clinical use could yield considerable progress in functional urology.
Collapse
Affiliation(s)
- Marcus J Drake
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom.,Bristol Urological Institute, Southmead Hospital, Bristol, United Kingdom
| | - Christopher H Fry
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Hikaru Hashitani
- Department of Cell Physiology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Ruth Kirschner-Hermanns
- Neuro-Urology/Urology, University Clinic, Rheinische Friedrich Wilhelms University Bonn and Neurological Rehabilitation Center Godeshöhe, Bonn, Germany
| | | | - John E Speich
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, Virginia
| | - Hikaru Tomoe
- Department of Urology and Pelvic Reconstructive Surgery, Tokyo Women's Medical University Medical Center East, Tokyo, Japan
| | - Anthony J Kanai
- Department of Medicine, Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Karen D McCloskey
- Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
20
|
Effect of Calcium Channel Blockers on Lower Urinary Tract Symptoms: A Systematic Review. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4269875. [PMID: 29124064 PMCID: PMC5662820 DOI: 10.1155/2017/4269875] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 08/21/2017] [Accepted: 09/12/2017] [Indexed: 11/25/2022]
Abstract
Background Numerous medications are known to be associated with the development of lower urinary tract symptoms (LUTS). One such medication group is calcium channel blockers (CCB). Objective To critically examine the literature regarding the involvement of CCB in manifestation of LUTS in humans. Methods A systematic literature search was conducted on PubMed, SciELO, Scopus, and OpenGrey databases to find all potentially relevant research studies before August 2016. Results Five studies met the inclusion criteria and were included in this review. Three out of five studies stated that CCB were involved in either precipitation or exacerbation of LUTS. As for the remaining two studies, one study found out that only the monotherapy of CCB was associated with increased prevalence of nocturia and voiding symptoms in young females, whereas the other study reported an inverse association of CCB with LUTS. The methodological quality of studies was considered high for four studies and low for one study. Conclusion Healthcare providers should make efforts for an earlier identification of the individuals at risk of LUTS prior to the commencement of CCB therapy. Moreover, patients should be counselled to notify their healthcare provider if they notice urinary symptoms after the initiation of CCB.
Collapse
|
21
|
|
22
|
Griffin CS, Bradley E, Dudem S, Hollywood MA, McHale NG, Thornbury KD, Sergeant GP. Muscarinic Receptor Induced Contractions of the Detrusor are Mediated by Activation of TRPC4 Channels. J Urol 2016; 196:1796-1808. [PMID: 27287524 DOI: 10.1016/j.juro.2016.05.108] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2016] [Indexed: 11/27/2022]
Abstract
PURPOSE Muscarinic receptor mediated contractions of the detrusor rely on Ca2+ influx through voltage-gated Ca2+ channels but to our knowledge the mechanism linking stimulation of M3Rs to the activation of voltage dependent Ca2+ channels has not been established. TRPC4 channels are receptor operated cation channels that couple muscarinic receptor activation to depolarization of intestinal smooth muscle cells, voltage-activated Ca2+ influx and contraction. We investigated whether TRPC4 channels are involved in cholinergic mediated contractions of the detrusor. MATERIALS AND METHODS Isometric tension recordings were made on strips of murine detrusor and intracellular Ca2+ measurements were made on isolated detrusor myocytes using confocal microscopy. Transcriptional expression of TRPC and IP3R subtypes in intact detrusor strips and isolated detrusor myocytes was assessed using reverse transcriptase-polymerase chain reaction. RESULTS Cholinergic stimulation of the detrusor induced by electrical field stimulation or exogenous application of carbachol or neostigmine evoked contractions consisting of a transient plus a tonic response, which was blocked by ML204, an inhibitor of TRPC4 channels. A phasic oscillatory component was blocked by the IP3R inhibitor 2-APB. Carbachol evoked reproducible Ca2+ responses in isolated detrusor myocytes, consisting of an initial Ca2+ transient followed by Ca2+ oscillations. ML204 inhibited the initial Ca2+ transient whereas 2-APB inhibited the Ca2+ oscillations. Reverse transcriptase-polymerase chain reaction experiments showed that TRPC4β, TRPC6 and IP3R1 were selectively expressed in isolated detrusor myocytes. Control experiments demonstrated that ML204 did not affect L-type Ca2+ or BK current amplitude, caffeine induced Ca2+ transients or KCl induced contractions of the detrusor. CONCLUSIONS Muscarinic receptor mediated contractions of the detrusor involve the activation of TRPC4β channels.
Collapse
Affiliation(s)
- Caoimhin S Griffin
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland
| | - Eamonn Bradley
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland
| | - Srikanth Dudem
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland
| | - Mark A Hollywood
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland
| | - Noel G McHale
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland
| | - Keith D Thornbury
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland
| | - Gerard P Sergeant
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland.
| |
Collapse
|
23
|
Propping S, Lorenz K, Michel MC, Wirth MP, Ravens U. β-Adrenoceptor-mediated Relaxation of Urinary Bladder Muscle in β2-Adrenoceptor Knockout Mice. Front Pharmacol 2016; 7:118. [PMID: 27242525 PMCID: PMC4860462 DOI: 10.3389/fphar.2016.00118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 04/22/2016] [Indexed: 11/13/2022] Open
Abstract
Background and Objective: In order to characterize the β-adrenoceptor (AR) subtypes involved in agonist-stimulated relaxation of murine urinary bladder we studied the effects of (-)-isoprenaline and CL 316,243 on tonic contraction and spontaneous contractions in detrusor strips of wild-type (WT) and β2-AR knockout (β2-AR KO) mice. Materials and Methods: Urinary bladders were isolated from male WT and β2-AR KO mice. β-AR subtype expression was determined with quantitative real-time PCR. Intact muscle strips pre-contracted with KCl (40 mM) were exposed to cumulatively increasing concentrations of (-)-isoprenaline or β3-AR agonist CL 316,243 in the presence and absence of the subtype-selective β-AR blockers CGP 20712A (β1-ARs), ICI 118,551 (β2-ARs), and L748,337 (β3-ARs). Results: Quantitative real-time PCR confirmed lack of β2-AR expression in bladder tissue from β2-AR KO mice. In isolated detrusor strips, pre-contraction with KCl increased basal tone and enhanced spontaneous activity significantly more in β2-AR KO than in WT. (-)-Isoprenaline relaxed tonic tension and attenuated spontaneous activity with similar potency, but the concentrations required were two orders of magnitude higher in β2-AR KO than WT. The concentration-response curves (CRCs) for relaxation were not affected by CGP 20712A (300 nM), but were shifted to the right by ICI 118,551 (50 nM) and L748,337 (10 μM). The -logEC50 values for (-)-isoprenaline in WT and β2-AR KO tissue were 7.98 and 6.00, respectively, suggesting a large receptor reserve of β2-AR. (-)-CL 316,243 relaxed detrusor and attenuated spontaneous contractions from WT and β2-AR KO mice with a potency corresponding to the drug’s affinity for β3-AR. L743,337 shifted the CRCs to the right. Conclusion: Our findings in β2-AR KO mice suggest that there is a large receptor reserve for β2-AR in WT mice so that this β-AR subtype will mediate relaxation of tone and attenuation of spontaneous activity under physiological conditions. Nevertheless, upon removal of this reserve, β3-AR can also mediate murine detrusor relaxation.
Collapse
Affiliation(s)
- Stefan Propping
- Department of Urology, Faculty of Medicine Carl Gustav Carus, Dresden University of TechnologyDresden, Germany; Department of Physiology, Faculty of Medicine Carl Gustav Carus, Dresden University of TechnologyDresden, Germany
| | - Kristina Lorenz
- Department of Pharmacology and Toxicology, Julius Maximilian University WürzburgWürzburg, Germany; Leibniz-Institute für Analytische Wissenschaften-ISAS-e.V.Dortmund, Germany; West German Heart and Vascular Center Essen, University Hospital Essen-DuisburgDuisburg, Germany
| | - Martin C Michel
- Department of Pharmacology, Johannes Gutenberg University Mainz, Germany
| | - Manfred P Wirth
- Department of Urology, Faculty of Medicine Carl Gustav Carus, Dresden University of Technology Dresden, Germany
| | - Ursula Ravens
- Department of Physiology, Faculty of Medicine Carl Gustav Carus, Dresden University of Technology Dresden, Germany
| |
Collapse
|
24
|
Brun J, Lutz KA, Neumayer KMH, Klein G, Seeger T, Uynuk-Ool T, Wörgötter K, Schmid S, Kraushaar U, Guenther E, Rolauffs B, Aicher WK, Hart ML. Smooth Muscle-Like Cells Generated from Human Mesenchymal Stromal Cells Display Marker Gene Expression and Electrophysiological Competence Comparable to Bladder Smooth Muscle Cells. PLoS One 2015; 10:e0145153. [PMID: 26673782 PMCID: PMC4684225 DOI: 10.1371/journal.pone.0145153] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 11/30/2015] [Indexed: 12/19/2022] Open
Abstract
The use of mesenchymal stromal cells (MSCs) differentiated toward a smooth muscle cell (SMC) phenotype may provide an alternative for investigators interested in regenerating urinary tract organs such as the bladder where autologous smooth muscle cells cannot be used or are unavailable. In this study we measured the effects of good manufacturing practice (GMP)-compliant expansion followed by myogenic differentiation of human MSCs on the expression of a range of contractile (from early to late) myogenic markers in relation to the electrophysiological parameters to assess the functional role of the differentiated MSCs and found that differentiation of MSCs associated with electrophysiological competence comparable to bladder SMCs. Within 1-2 weeks of myogenic differentiation, differentiating MSCs significantly expressed alpha smooth muscle actin (αSMA; ACTA2), transgelin (TAGLN), calponin (CNN1), and smooth muscle myosin heavy chain (SM-MHC; MYH11) according to qRT-PCR and/or immunofluorescence and Western blot. Voltage-gated Na+ current levels also increased within the same time period following myogenic differentiation. In contrast to undifferentiated MSCs, differentiated MSCs and bladder SMCs exhibited elevated cytosolic Ca2+ transients in response to K+-induced depolarization and contracted in response to K+ indicating functional maturation of differentiated MSCs. Depolarization was suppressed by Cd2+, an inhibitor of voltage-gated Ca2+-channels. The expression of Na+-channels was pharmacologically identified as the Nav1.4 subtype, while the K+ and Ca2+ ion channels were identified by gene expression of KCNMA1, CACNA1C and CACNA1H which encode for the large conductance Ca2+-activated K+ channel BKCa channels, Cav1.2 L-type Ca2+ channels and Cav3.2 T-type Ca2+ channels, respectively. This protocol may be used to differentiate adult MSCs into smooth muscle-like cells with an intermediate-to-late SMC contractile phenotype exhibiting voltage-gated ion channel activity comparable to bladder SMCs which may be important for urological regenerative medicine applications.
Collapse
Affiliation(s)
- Juliane Brun
- Clinical Research Group KFO 273, Department of Urology, University of Tübingen, Tübingen, Germany
| | - Katrin A. Lutz
- Clinical Research Group KFO 273, Department of Urology, University of Tübingen, Tübingen, Germany
| | - Katharina M. H. Neumayer
- Clinical Research Group KFO 273, Department of Urology, University of Tübingen, Tübingen, Germany
| | - Gerd Klein
- Center for Medical Research, University Medical Clinic, Department II, University of Tübingen, Tübingen, Germany
| | - Tanja Seeger
- Center for Medical Research, University Medical Clinic, Department II, University of Tübingen, Tübingen, Germany
| | - Tatiana Uynuk-Ool
- Siegfried Weller Institute for Trauma Research, Laboratory for Molecular Biomechanics, University of Tübingen, Tübingen, Germany
| | - Katharina Wörgötter
- Siegfried Weller Institute for Trauma Research, Laboratory for Molecular Biomechanics, University of Tübingen, Tübingen, Germany
| | - Sandra Schmid
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Department of Electrophysiology, Reutlingen, Germany
| | - Udo Kraushaar
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Department of Electrophysiology, Reutlingen, Germany
| | - Elke Guenther
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Department of Electrophysiology, Reutlingen, Germany
| | - Bernd Rolauffs
- Siegfried Weller Institute for Trauma Research, Laboratory for Molecular Biomechanics, University of Tübingen, Tübingen, Germany
| | - Wilhelm K. Aicher
- Clinical Research Group KFO 273, Department of Urology, University of Tübingen, Tübingen, Germany
| | - Melanie L. Hart
- Clinical Research Group KFO 273, Department of Urology, University of Tübingen, Tübingen, Germany
- Siegfried Weller Institute for Trauma Research, Laboratory for Molecular Biomechanics, University of Tübingen, Tübingen, Germany
| |
Collapse
|
25
|
Jha A, Singh AK, Weissgerber P, Freichel M, Flockerzi V, Flavell RA, Jha MK. Essential roles for Cavβ2 and Cav1 channels in thymocyte development and T cell homeostasis. Sci Signal 2015; 8:ra103. [DOI: 10.1126/scisignal.aac7538] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
26
|
Urinary Bladder Dysfunction in Transgenic Sickle Cell Disease Mice. PLoS One 2015; 10:e0133996. [PMID: 26241312 PMCID: PMC4524596 DOI: 10.1371/journal.pone.0133996] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 07/04/2015] [Indexed: 01/03/2023] Open
Abstract
Background Urological complications associated with sickle cell disease (SCD), include nocturia, enuresis, urinary infections and urinary incontinence. However, scientific evidence to ascertain the underlying cause of the lower urinary tract symptoms in SCD is lacking. Objective Thus, the aim of this study was to evaluate urinary function, in vivo and ex vivo, in the Berkeley SCD murine model (SS). Methods Urine output was measured in metabolic cage for both wild type and SS mice (25-30 g). Bladder strips and urethra rings were dissected free and mounted in organ baths. In isolated detrusor smooth muscle (DSM), relaxant response to mirabegron and isoproterenol (1nM-10μM) and contractile response to (carbachol (CCh; 1 nM-100μM), KCl (1 mM-300mM), CaCl2 (1μM-100mM), α,β-methylene ATP (1, 3 and 10 μM) and electrical field stimulation (EFS; 1-32 Hz) were measured. Phenylephrine (Phe; 10nM-100μM) was used to evaluate the contraction mechanism in the urethra rings. Cystometry and histomorphometry were also performed in the urinary bladder. Results SS mice present a reduced urine output and incapacity to produce typical bladder contractions and bladder emptying (ex vivo), compared to control animals. In DSM, relaxation in response to a selective β3-adrenergic agonist (mirabegron) and to a non-selective β-adrenergic (isoproterenol) agonist were lower in SS mice. Additionally, carbachol, α, β-methylene ATP, KCl, extracellular Ca2+ and electrical-field stimulation promoted smaller bladder contractions in SS group. Urethra contraction induced by phenylephrine was markedly reduced in SS mice. Histological analyses of SS mice bladder revealed severe structural abnormalities, such as reductions in detrusor thickness and bladder volume, and cell infiltration. Conclusions Taken together, our data demonstrate, for the first time, that SS mice display features of urinary bladder dysfunction, leading to impairment in urinary continence, which may have an important role in the pathogenesis of the enuresis and infections observed the SCD patients.
Collapse
|
27
|
Ramos-Filho ACS, Shah A, Augusto TM, Barbosa GO, Leiria LO, de Carvalho HF, Antunes E, Grant AD. Menthol inhibits detrusor contractility independently of TRPM8 activation. PLoS One 2014; 9:e111616. [PMID: 25375115 PMCID: PMC4222941 DOI: 10.1371/journal.pone.0111616] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 10/06/2014] [Indexed: 11/19/2022] Open
Abstract
Agonists such as icilin and menthol can activate the cool temperature-sensitive ion channel TRPM8. However, biological responses to menthol may occur independently of TRPM8 activation. In the rodent urinary bladder, menthol facilitates the micturition reflex but inhibits muscarinic contractions of the detrusor smooth muscle. The site(s) of TRPM8 expression in the bladder are controversial. In this study we investigated the regulation of bladder contractility in vitro by menthol. Bladder strips from wild type and TRPM8 knockout male mice (25–30 g) were dissected free and mounted in organ baths. Isometric contractions to carbachol (1 nM–30 µM), CaCl2 (1 µM to 100 mM) and electrical field stimulation (EFS; 8, 16, 32 Hz) were measured. Strips from both groups contracted similarly in response to both carbachol and EFS. Menthol (300 µM) or nifedipine (1 µM) inhibited carbachol and EFS-induced contractions in both wild type and TRPM8 knockout bladder strips. Incubation with the sodium channel blocker tetrodotoxin (1 µM), replacement of extracellular sodium with the impermeant cation N-Methyl-D-Glucamine, incubation with a cocktail of potassium channel inhibitors (100 nM charybdotoxin, 1 µM apamin, 10 µM glibenclamide and 1 µM tetraethylammonium) or removal of the urothelium did not affect the inhibitory actions of menthol. Contraction to CaCl2 was markedly inhibited by either menthol or nifedipine. In cultured bladder smooth muscle cells, menthol or nifedipine abrogated the carbachol or KCl-induced increases in [Ca2+]i. Intravesical administration of menthol increased voiding frequency while decreasing peak voiding pressure. We conclude that menthol inhibits muscarinic bladder contractions through blockade of L-type calcium channels, independently of TRPM8 activation.
Collapse
Affiliation(s)
| | - Ajay Shah
- Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| | - Taize Machado Augusto
- Department of Anatomy, Cellular Biology, Physiology and Biophysics, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Guilherme Oliveira Barbosa
- Department of Anatomy, Cellular Biology, Physiology and Biophysics, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Luiz Osorio Leiria
- Department of Pharmacology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Hernandes Faustino de Carvalho
- Department of Anatomy, Cellular Biology, Physiology and Biophysics, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Edson Antunes
- Department of Pharmacology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Andrew Douglas Grant
- Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
28
|
Hofmann F, Flockerzi V, Kahl S, Wegener JW. L-type CaV1.2 calcium channels: from in vitro findings to in vivo function. Physiol Rev 2014; 94:303-26. [PMID: 24382889 DOI: 10.1152/physrev.00016.2013] [Citation(s) in RCA: 239] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The L-type Cav1.2 calcium channel is present throughout the animal kingdom and is essential for some aspects of CNS function, cardiac and smooth muscle contractility, neuroendocrine regulation, and multiple other processes. The L-type CaV1.2 channel is built by up to four subunits; all subunits exist in various splice variants that potentially affect the biophysical and biological functions of the channel. Many of the CaV1.2 channel properties have been analyzed in heterologous expression systems including regulation of the L-type CaV1.2 channel by Ca(2+) itself and protein kinases. However, targeted mutations of the calcium channel genes confirmed only some of these in vitro findings. Substitution of the respective serines by alanine showed that β-adrenergic upregulation of the cardiac CaV1.2 channel did not depend on the phosphorylation of the in vitro specified amino acids. Moreover, well-established in vitro phosphorylation sites of the CaVβ2 subunit of the cardiac L-type CaV1.2 channel were found to be irrelevant for the in vivo regulation of the channel. However, the molecular basis of some kinetic properties, such as Ca(2+)-dependent inactivation and facilitation, has been approved by in vivo mutagenesis of the CaV1.2α1 gene. This article summarizes recent findings on the in vivo relevance of well-established in vitro results.
Collapse
|
29
|
Sand C, Michel MC. Bradykinin Contracts Rat Urinary Bladder Largely Independently of Phospholipase C. J Pharmacol Exp Ther 2013; 348:25-31. [DOI: 10.1124/jpet.113.208025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
30
|
Li Y, Sun Y, Zhang Z, Feng X, Meng H, Li S, Zhu Y, Chen S, Wang Y, Wang J, Zhang D, Jiang X, Li N, Shi B. Cannabinoid receptors 1 and 2 are associated with bladder dysfunction in an experimental diabetic rat model. BJU Int 2013; 112:E143-50. [PMID: 23795792 DOI: 10.1111/bju.12172] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yan Li
- Department of Urology; Qilu Hospital of Shandong University; Jinan; China
| | - Yan Sun
- Department of Ophthalmology; Jinan Second People's Hospital; Jinan; China
| | - Zhaocun Zhang
- Department of Urology; Qilu Hospital of Shandong University; Jinan; China
| | - Xiaodi Feng
- Department of Urology; Qilu Hospital of Shandong University; Jinan; China
| | - Hui Meng
- Department of Urology; Qilu Hospital of Shandong University; Jinan; China
| | - Shun Li
- Department of Urology; Qianfoshan Hospital of Shandong University; Jinan; China
| | - Yaofeng Zhu
- Department of Urology; Qilu Hospital of Shandong University; Jinan; China
| | - Shouzhen Chen
- Department of Urology; Qilu Hospital of Shandong University; Jinan; China
| | - Yang Wang
- Department of Urology; Qilu Hospital of Shandong University; Jinan; China
| | - Jun Wang
- Department of Urology; Qilu Hospital of Shandong University; Jinan; China
| | - Deqing Zhang
- Department of Urology; Qilu Hospital of Shandong University; Jinan; China
| | - Xuewen Jiang
- Department of Urology; Qilu Hospital of Shandong University; Jinan; China
| | - Ning Li
- Department of Anesthesiology; Second Hospital of Shandong University; Jinan; China
| | - Benkang Shi
- Department of Urology; Qilu Hospital of Shandong University; Jinan; China
| |
Collapse
|
31
|
Elhebir ES, Hughes JD, Hilmi SC. Calcium Antagonists Use and Its Association with Lower Urinary Tract Symptoms: A Cross-Sectional Study. PLoS One 2013; 8:e66708. [PMID: 23805268 PMCID: PMC3689686 DOI: 10.1371/journal.pone.0066708] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Accepted: 05/13/2013] [Indexed: 11/22/2022] Open
Abstract
Background Lower urinary tract symptoms (LUTS) have been reported amongst the side effects of calcium antagonists (CA). CAs act on the bladder by affecting the ability of the detrusor muscle to create enough contractile force to overcome obstruction to normal voiding. We aimed to determine the relationship between CA use and LUTS in general medical inpatients. Methods and Findings In this cross-sectional study we recruited 278 medical inpatients (including 85 CA users) aged ≥40 (72.1±13.7) years. LUTS was assessed using the International Prostate Symptoms Score (IPSS) questionnaire. A Logistic regression model using a ‘backwards-elimination’ strategy was used to identify variables associated with LUTS and for calculating the adjusted odds ratios and the 95% confidence intervals (CI). After adjusting for other risk factors and drugs, patients on amlodipine/nifedipine and diltiazem/verapamil (compared to non-users) were more likely to suffer from severe LUTS [Males: 12.45(CI: 1.57–98.63) and Females: 7.75(CI: 0.94–63.94)] and moderate-to-severe LUTS [Males: 17.43(CI: 2·26–134.39) and Females: 47.8(CI: 6.22–367.37)]. Patients on felodipine/lercanidipine were less likely to suffer from either severe or moderate-to-severe LUTS. Further, 19 (22.4%) CA-users were on treatment for LUTS compared to 18 (9.3%) of the non-users group, p = 0.003. Both male and female CA-users were three times more likely to be on alpha-blockers than non-users, p<0.001. CA-users were more likely to have undergone urinary tract-related surgery (Males: two times, p = 0.07 and females: nine times, p = 0.029). The study was limited by the fact that a causal relationship could not be established between CA use and LUTS. Conclusions Our results demonstrate an association between CA use and an increasing severity of LUTS. They also demonstrate that CA-users are more likely to have medical or surgical treatment for LUTS. However, these CA’s effects on LUTS vary, and the use of highly vascular selective agents does not appear to pose significant risk.
Collapse
Affiliation(s)
- Elsamaul S. Elhebir
- School of Pharmacy, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia
- * E-mail: (ESE); (JDH)
| | - Jeffery D. Hughes
- School of Pharmacy, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia
- * E-mail: (ESE); (JDH)
| | - Samantha C. Hilmi
- Pharmacy Department, Royal Perth Hospital, Perth, Western Australia, Australia
| |
Collapse
|
32
|
Abstract
cGMP-dependent protein kinases (cGK) are serine/threonine kinases that are widely distributed in eukaryotes. Two genes-prkg1 and prkg2-code for cGKs, namely, cGKI and cGKII. In mammals, two isozymes, cGKIα and cGKIβ, are generated from the prkg1 gene. The cGKI isozymes are prominent in all types of smooth muscle, platelets, and specific neuronal areas such as cerebellar Purkinje cells, hippocampal neurons, and the lateral amygdala. The cGKII prevails in the secretory epithelium of the small intestine, the juxtaglomerular cells, the adrenal cortex, the chondrocytes, and in the nucleus suprachiasmaticus. Both cGKs are major downstream effectors of many, but not all, signalling events of the NO/cGMP and the ANP/cGMP pathways. cGKI relaxes smooth muscle tone and prevents platelet aggregation, whereas cGKII inhibits renin secretion, chloride/water secretion in the small intestine, the resetting of the clock during early night, and endochondral bone growth. This chapter focuses on the involvement of cGKs in cardiovascular and non-cardiovascular processes including cell growth and metabolism.
Collapse
Affiliation(s)
- Franz Hofmann
- FOR 923, Institut für Pharmakologie und Toxikologie, der Technischen Universität München, Munich, Germany
| | | |
Collapse
|
33
|
Leiria LO, Sollon C, Calixto MC, Lintomen L, Mónica FZ, Anhê GF, De Nucci G, Zanesco A, Grant AD, Antunes E. Role of PKC and CaV1.2 in detrusor overactivity in a model of obesity associated with insulin resistance in mice. PLoS One 2012; 7:e48507. [PMID: 23144896 PMCID: PMC3492456 DOI: 10.1371/journal.pone.0048507] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 09/26/2012] [Indexed: 12/02/2022] Open
Abstract
Obesity/metabolic syndrome are common risk factors for overactive bladder. This study aimed to investigate the functional and molecular changes of detrusor smooth muscle (DSM) in high-fat insulin resistant obese mice, focusing on the role of protein kinase C (PKC) and Ca(v)1.2 in causing bladder dysfunction. Male C57BL/6 mice were fed with high-fat diet for 10 weeks. In vitro functional responses and cystometry, as well as PKC and Ca(v)1.2 expression in bladder were evaluated. Obese mice exhibited higher body weight, epididymal fat mass, fasting glucose and insulin resistance. Carbachol (0.001-100 µM), α,β-methylene ATP (1-10 µM), KCl (1-300 mM), extracellular Ca(2+) (0.01-100 mM) and phorbol-12,13-dibutyrate (PDBu; 0.001-3 µM) all produced greater DSM contractions in obese mice, which were fully reversed by the Ca(v)1.2 blocker amlodipine. Cystometry evidenced augmented frequency, non-void contractions and post-void pressure in obese mice that were also prevented by amlodipine. Metformin treatment improved the insulin sensitivity, and normalized the in vitro bladder hypercontractility and cystometric dysfunction in obese mice. The PKC inhibitor GF109203X (1 µM) also reduced the carbachol induced contractions. PKC protein expression was markedly higher in bladder tissues from obese mice, which was normalized by metformin treatment. The Ca(v)1.2 channel protein expression was not modified in any experimental group. Our findings show that Ca(v)1.2 blockade and improvement of insulin sensitization restores the enhanced PKC protein expression in bladder tissues and normalizes the overactive detrusor. It is likely that insulin resistance importantly contributes for the pathophysiology of this urological disorder in obese mice.
Collapse
Affiliation(s)
- Luiz O. Leiria
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Carolina Sollon
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Marina C. Calixto
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Letícia Lintomen
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Fabíola Z. Mónica
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Gabriel F. Anhê
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Gilberto De Nucci
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Angelina Zanesco
- Department of Physical Education, Institute of Bioscience, University of São Paulo State (UNESP), Rio Claro, São Paulo, Brazil
| | - Andrew D. Grant
- Wolfson Centre for Age-Related Diseases, King’s College, London, United Kingdom
| | - Edson Antunes
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
34
|
Tsai MH, Kamm KE, Stull JT. Signalling to contractile proteins by muscarinic and purinergic pathways in neurally stimulated bladder smooth muscle. J Physiol 2012; 590:5107-21. [PMID: 22890701 DOI: 10.1113/jphysiol.2012.235424] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Urinary bladder smooth muscle contraction is triggered by parasympathetic nerves, which release ATP and acetylcholine (ACh) that bind to purinergic and muscarinic receptors, respectively. Neuronal signalling may thus elicit myosin regulatory light chain (RLC) phosphorylation and contraction through the combined, but distinct contributions of these receptors. Both receptors mediate Ca2+ influx whereas muscarinic receptors may also recruit Ca2+-sensitization mechanisms. Using transgenic mice expressing calmodulin sensor myosin light chain kinase (MLCK) in smooth muscles, the effects of suramin/α,β-methylene ATP (α,β-meATP) (purinergic inhibition) or atropine (muscarinic inhibition) on neurally stimulated elevation of [Ca2+]i, MLCK activation, force and phosphorylation of RLC, myosin light chain phosphatase (MLCP) targeting subunit MYPT1 and MLCP inhibitor protein CPI-17 were examined. Electric field stimulation (EFS) increased [Ca2+]i, MLCK activation and concomitant force in a frequency-dependent manner. The dependence of force on [Ca2+]i and MLCK activation decreased with time suggesting increased Ca2+ sensitization in the late contractile phase. RLC and CPI-17 phosphorylation increased upon stimulation with maximal responses at 20 Hz; both responses were attenuated by atropine, but only RLC phosphorylation was inhibited by suramin/α,β-meATP. Antagonism of purinergic receptors suppressed maximal MLCK activation to a greater extent in the early contractile phase than in the late contractile phase; atropine had the opposite effect. A frequency- and time-dependent increase in MLCK phosphorylation explained the desensitization of MLCK to Ca2+, since MLCK activation declined more rapidly than [Ca2+]i. EFS elicited little or no effect on MYPT1 Thr696 or 850 phosphorylation. Thus, purinergic Ca2+ signals provide the initial activation of MLCK with muscarinic receptors supporting sustained responses. Activation of muscarinic receptors recruits CPI-17, but not MYPT1-mediated Ca2+ sensitization. Furthermore, nerve-released ACh also initiates signalling cascades leading to phosphorylation-dependent desensitization of MLCK.
Collapse
Affiliation(s)
- Ming-Ho Tsai
- Department of Physiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-9040, USA
| | | | | |
Collapse
|
35
|
Balkanci ZD, Pehlivanoğlu B, Bayrak S, Karabulut I, Karaismailoğlu S, Erdem A. The effect of hypercholesterolemia on carbachol-induced contractions of the detrusor smooth muscle in rats: increased role of L-type Ca2+ channels. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2012; 385:1141-8. [PMID: 22868398 DOI: 10.1007/s00210-012-0784-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 07/15/2012] [Indexed: 10/27/2022]
Abstract
To investigate a possible relation between hypercholesterolemia and detrusor smooth muscle function, we studied the contractile response to potassium challenge, carbachol (CCh), and the components of CCh-induced contractile mechanism in high-cholesterol diet-fed rats. Adult male Sprague-Dawley rats were fed with standard (control group, N = 17) or 4 % cholesterol diet (hypercholesterolemia group (HC), N = 16) for 4 weeks. Spontaneous contractions of detrusor muscle strips and their responses to potassium chloride (KCl) or cumulative dose-contraction curves to CCh were recorded. The effects of muscarinic receptor antagonists (methoctramin and/or 4-diphenylacetoxy-N-methylpiperidine), L-type Ca(+2) channel blocker (nifedipine), and/or rho-kinase inhibitor Y-27632 were investigated. Blood cholesterol level was increased in the HC group with no sign of atherosclerosis. The KCl-induced detrusor smooth muscle contractions were higher in HC, whereas spontaneous and CCh-induced responses were similar in both groups. Preincubation with receptor antagonist for M(3) but not for M(2) attenuated contraction significantly, shifting the dose-response curve to the right. This response was similar in both groups. Among two effector mechanisms of M(3)-mediated detrusor smooth muscle contraction, rho-kinase pathway was not affected by hypercholesterolemia, whereas blockade of L-type Ca(+2) channels potently reduced contractions. The results of this study point out a relation between hypercholesterolemia and contractile mechanism of detrusor smooth muscle likely to change urinary bladder function, via altering L-type Ca(+2) channels. Taken together with escalating incidence of hypercholesterolemia and lower urinary tract symptoms, it is a field which deserves to be investigated further.
Collapse
Affiliation(s)
- Zeynep Dicle Balkanci
- Department of Physiology, Faculty of Medicine, Hacettepe University, 39, Sihhiye, 06100, Ankara, Turkey
| | | | | | | | | | | |
Collapse
|
36
|
Sadegh MK, Ekman M, Rippe C, Uvelius B, Swärd K, Albinsson S. Deletion of Dicer in smooth muscle affects voiding pattern and reduces detrusor contractility and neuroeffector transmission. PLoS One 2012; 7:e35882. [PMID: 22558254 PMCID: PMC3338793 DOI: 10.1371/journal.pone.0035882] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 03/23/2012] [Indexed: 11/19/2022] Open
Abstract
MicroRNAs have emerged as important regulators of smooth muscle phenotype and may play important roles in pathogenesis of various smooth muscle related disease states. The aim of this study was to investigate the role of miRNAs for urinary bladder function. We used an inducible and smooth muscle specific Dicer knockout (KO) mouse which resulted in significantly reduced levels of miRNAs, including miR-145, miR-143, miR-22, miR125b-5p and miR-27a, from detrusor preparations without mucosa. Deletion of Dicer resulted in a disturbed micturition pattern in vivo and reduced depolarization-induced pressure development in the isolated detrusor. Furthermore, electrical field stimulation revealed a decreased cholinergic but maintained purinergic component of neurogenic activation in Dicer KO bladder strips. The ultrastructure of detrusor smooth muscle cells was well maintained, and the density of nerve terminals was similar. Western blotting demonstrated reduced contents of calponin and desmin. Smooth muscle α-actin, SM22α and myocardin were unchanged. Activation of strips with exogenous agonists showed that depolarization-induced contraction was preferentially reduced; ATP- and calyculin A-induced contractions were unchanged. Quantitative real time PCR and western blotting demonstrated reduced expression of Cav1.2 (Cacna1c). It is concluded that smooth muscle miRNAs play an important role for detrusor contractility and voiding pattern of unrestrained mice. This is mediated in part via effects on expression of smooth muscle differentiation markers and L-type Ca(2+) channels in the detrusor.
Collapse
Affiliation(s)
| | - Mari Ekman
- Department of Experimental Medical Science, Biomedical Centre, Lund University, Lund, Sweden
| | - Catarina Rippe
- Department of Experimental Medical Science, Biomedical Centre, Lund University, Lund, Sweden
| | - Bengt Uvelius
- Department of Urology, Clinical Sciences, Lund University, Lund, Sweden
| | - Karl Swärd
- Department of Experimental Medical Science, Biomedical Centre, Lund University, Lund, Sweden
| | - Sebastian Albinsson
- Department of Experimental Medical Science, Biomedical Centre, Lund University, Lund, Sweden
| |
Collapse
|
37
|
Hall SA, Chiu GR, Kaufman DW, Wittert GA, Link CL, McKinlay JB. Commonly used antihypertensives and lower urinary tract symptoms: results from the Boston Area Community Health (BACH) Survey. BJU Int 2011; 109:1676-84. [PMID: 21951754 DOI: 10.1111/j.1464-410x.2011.10593.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
UNLABELLED Study Type - Prevalence (inception cohort) Level of Evidence 1b What's known on the subject? and What does the study add? Certain antihypertensives, particularly diuretics and calcium channel blockers, are known to be associated with increased risk of LUTS including nocturia, but little is known about gender-specific effects. This is the first epidemiological study, to our knowledge, to compare the prevalence of several urological symptoms (storage, voiding and nocturia) among male and female users of a wide variety of common antihypertensives using a community-based sample. OBJECTIVE To examine differences in the prevalence of lower urinary tract symptom (LUTS) among users of five common AHT classes compared with non-users, adjusted for LUTS risk factors in a large, representative sample. SUBJECTS AND METHODS Data were from the Boston Area Community Health Survey, a population-based study of community-dwelling male and female (30-79 years) residents of Boston, MA, USA for whom prescription drug information was collected between 2002 and 2005. The urological symptoms of storage, voiding, and nocturia were assessed using interviewer-administered questionnaires and the American Urological Association Symptom Index. This analysis was conducted among 1865 participants with an AHT indication. Associations of angiotensin-converting enzyme inhibitors, beta blockers, calcium channel blockers (CCBs) and loop and thiazide diuretics with the three groups of LUTS were estimated using odds ratios (ORs) and 95% confidence intervals (CIs) from multivariate logistic regression (referent group: untreated hypertension). Overlap in use was accounted for using monotherapy and combination therapy exposure categories. RESULTS Among women, monotherapy with CCBs was associated with increased prevalence of nocturia (OR = 2.65, 95% CI: 1.04-6.74) and voiding symptoms (OR = 3.84, 95% CI: 1.24-11.87); these results were confined to women aged <55 years. Among men of all ages, positive associations were observed for thiazides and voiding symptoms (monotherapy OR = 2.90, 95% CI: 1.17-7.19), and loop diuretics and nocturia (combination therapy OR = 2.55, 95% CI: 1.26-5.14). CONCLUSION Results are consistent with the hypothesis that certain AHTs may aggravate LUTS. The presence of new or worsening LUTS among AHT users suggests medications should be reviewed and a change in AHT class considered.
Collapse
Affiliation(s)
- Susan A Hall
- New England Research Institutes, Boston University, Boston, MA, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Hill-Eubanks DC, Werner ME, Heppner TJ, Nelson MT. Calcium signaling in smooth muscle. Cold Spring Harb Perspect Biol 2011; 3:a004549. [PMID: 21709182 DOI: 10.1101/cshperspect.a004549] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Changes in intracellular Ca(2+) are central to the function of smooth muscle, which lines the walls of all hollow organs. These changes take a variety of forms, from sustained, cell-wide increases to temporally varying, localized changes. The nature of the Ca(2+) signal is a reflection of the source of Ca(2+) (extracellular or intracellular) and the molecular entity responsible for generating it. Depending on the specific channel involved and the detection technology employed, extracellular Ca(2+) entry may be detected optically as graded elevations in intracellular Ca(2+), junctional Ca(2+) transients, Ca(2+) flashes, or Ca(2+) sparklets, whereas release of Ca(2+) from intracellular stores may manifest as Ca(2+) sparks, Ca(2+) puffs, or Ca(2+) waves. These diverse Ca(2+) signals collectively regulate a variety of functions. Some functions, such as contractility, are unique to smooth muscle; others are common to other excitable cells (e.g., modulation of membrane potential) and nonexcitable cells (e.g., regulation of gene expression).
Collapse
Affiliation(s)
- David C Hill-Eubanks
- Department of Pharmacology, College of Medicine, University of Vermont, Burlington, Vermont 05405, USA
| | | | | | | |
Collapse
|
39
|
Domes K, Ding J, Lemke T, Blaich A, Wegener JW, Brandmayr J, Moosmang S, Hofmann F. Truncation of murine CaV1.2 at Asp-1904 results in heart failure after birth. J Biol Chem 2011; 286:33863-71. [PMID: 21832054 DOI: 10.1074/jbc.m111.252312] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The carboxyl-terminal intracellular tail of the L-type Ca(2+) channel CaV1.2 modulates various aspects of channel activity.For example, deletion of the carboxyl-terminal sequence at Ser-1905 increased CaV1.2 currents in an expression model. To verify this finding in an animal model, we inserted three stop codons at the corresponding Asp-1904 in the murine CaV1.2 gene. Mice homozygous for the Stop mutation (Stop/Stop mice)were born at a Mendelian ratio but died after birth. Stop/Stop hearts showed reduced beating frequencies and contractions.Surprisingly, Stop/Stop cardiomyocytes displayed reduced IBa and a minor expression of the CaV1.2Stop protein. In contrast,expression of the CaV1.2Stop protein was normal in pooled smooth muscle samples from Stop/Stop embryos. As the CaV1.2 channel exists in a cardiac and smooth muscle splice variant, HK1 and LK1, respectively, we analyzed the consequences of the deletion of the carboxyl terminus in the respective splice variant using the rabbit CaV1.2 clone expressed in HEK293 cells.HEK293 cells transfected with the HK1Stop channel showed a reduced IBa and CaV1.2 expression. Treatment with proteasome inhibitors increased the expression of HK1Stop protein and IBa in HEK293 cells and in Stop/Stop cardiomyocytes indicating that truncation of CaV1.2 containing the cardiac exon 1a amino terminus results in proteasomal degradation of the translated protein. In contrast, HEK293 cells transfected with the LK1Stop channel had normal IBa and CaV1.2 expression. These findings indicate that absence of the carboxyl-terminal tail differentially determines the fate of the cardiac and smooth muscle splice variant of the CaV1.2 channel in the mouse.
Collapse
Affiliation(s)
- Katrin Domes
- From the Forschergruppe 923, Institut für Pharmakologie und Toxikologie, Technische Universität München, Biedersteiner Strasse 29, 80802 München, Germany
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Leiria LOS, Mónica FZT, Carvalho FDGF, Claudino MA, Franco-Penteado CF, Schenka A, Grant AD, De Nucci G, Antunes E. Functional, morphological and molecular characterization of bladder dysfunction in streptozotocin-induced diabetic mice: evidence of a role for L-type voltage-operated Ca2+ channels. Br J Pharmacol 2011; 163:1276-88. [PMID: 21391978 PMCID: PMC3144540 DOI: 10.1111/j.1476-5381.2011.01311.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 12/29/2010] [Accepted: 02/02/2011] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Diabetic cystopathy is one of the most common and incapacitating complications of diabetes mellitus. This study aimed to evaluate the functional, structural and molecular alterations of detrusor smooth muscle (DSM) in streptozotocin-induced diabetic mice, focusing on the contribution of Ca(2+) influx through L-type voltage-operated Ca(2+) channels (L-VOCC). EXPERIMENTAL APPROACH Male C57BL/6 mice were injected with streptozotocin (125 mg·kg(-1) ). Four weeks later, contractile responses to carbachol, α,β-methylene ATP, KCl, extracellular Ca(2+) and electrical-field stimulation were measured in urothelium-intact DSM strips. Cystometry and histomorphometry were performed, and mRNA expression for muscarinic M(2) /M(3) receptors, purine P2X1 receptors and L-VOCC in the bladder was determined. KEY RESULTS Diabetic mice exhibited higher bladder capacity, frequency, non-void contractions and post-void pressure. Increased bladder weight, wall thickness, bladder volume and neural tissue were observed in diabetic bladders. Carbachol, α,β-methylene ATP, KCl, extracellular Ca(2+) and electrical-field stimulation all produced greater DSM contractions in diabetic mice. The L-VOCC blocker nifedipine almost completely reversed the enhanced DSM contractions in bladders from diabetic animals. The Rho-kinase inhibitor Y27632 had no effect on the enhanced carbachol contractions in the diabetic group. Expression of mRNA for muscarinic M(3) receptors and L-VOCC were greater in the bladders of diabetic mice, whereas levels of M(2) and P2X1 receptors remained unchanged. CONCLUSIONS AND IMPLICATIONS Diabetic mice exhibit features of urinary bladder dysfunction, as characterized by overactive DSM and decreased voiding efficiency. Functional and molecular data suggest that overactive DSM in diabetes is the result of enhanced extracellular Ca(2+) influx through L-VOCC.
Collapse
MESH Headings
- Amides/pharmacology
- Animals
- Calcium Channel Blockers/pharmacology
- Calcium Channels, L-Type/metabolism
- Calcium Chloride/pharmacology
- Carbachol/pharmacology
- Cholinergic Agonists/pharmacology
- Diabetes Mellitus, Experimental/complications
- Enzyme Inhibitors/pharmacology
- Gene Expression Regulation/physiology
- Male
- Mice
- Mice, Inbred C57BL
- Nifedipine/pharmacology
- Pyridines/pharmacology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptor, Muscarinic M2/genetics
- Receptor, Muscarinic M2/metabolism
- Receptor, Muscarinic M3/genetics
- Receptor, Muscarinic M3/metabolism
- Receptors, Purinergic P2X1/genetics
- Receptors, Purinergic P2X1/metabolism
- Urinary Bladder Diseases/etiology
- Urinary Bladder Diseases/pathology
- rho-Associated Kinases/metabolism
Collapse
Affiliation(s)
- L O S Leiria
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Nausch B, Heppner TJ, Nelson MT. Nerve-released acetylcholine contracts urinary bladder smooth muscle by inducing action potentials independently of IP3-mediated calcium release. Am J Physiol Regul Integr Comp Physiol 2010; 299:R878-88. [PMID: 20573989 DOI: 10.1152/ajpregu.00180.2010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Nerve-released ACh is the main stimulus for contraction of urinary bladder smooth muscle (UBSM). Here, the mechanisms by which ACh contracts UBSM are explored by determining Ca(2+) and electrical signals induced by nerve-released ACh. Photolysis of caged inositol 1,4,5-trisphosphate (IP(3)) evoked Ca(2+) release from the sarcoplasmic reticulum. Electrical field stimulation (20 Hz) induced Ca(2+) waves within the smooth muscle that were present only during stimulus application. Ca(2+) waves were blocked by inhibition of muscarinic ACh receptors (mAChRs) with atropine and depletion of sarcoplasmic reticulum Ca(2+) stores with cyclopiazonic acid (CPA), and therefore likely reflect activation of IP(3) receptors (IP(3)Rs). Electrical field stimulation also increased excitability to induce action potentials (APs) that were accompanied by Ca(2+) flashes, reflecting Ca(2+) entry through voltage-dependent Ca(2+) channels (VDCCs) during the action potential. The evoked Ca(2+) flashes and APs occurred as a burst with a lag time of approximately 1.5 s after onset of stimulation. They were not inhibited by blocking IP(3)-mediated Ca(2+) waves, but by blockers of mAChRs (atropine) and VDCCs (diltiazem). Nerve-evoked contractions of UBSM strips were greatly reduced by blocking VDCCs, but not by preventing IP(3)-mediated Ca(2+) signaling with cyclopiazonic acid or inhibition of PLC with U73122. These results indicate that ACh released from nerve varicosities induces IP(3)-mediated Ca(2+) waves during stimulation; but contrary to expectations, these signals do not appear to participate in contraction. In addition, our data provide compelling evidence that UBSM contractions evoked by nerve-released ACh depend on increased excitability and the resultant Ca(2+) entry through VDCCs during APs.
Collapse
Affiliation(s)
- Bernhard Nausch
- Department of Pharmacology, College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | | | | |
Collapse
|
42
|
Huster M, Frei E, Hofmann F, Wegener JW. A complex of Ca(V)1.2/PKC is involved in muscarinic signaling in smooth muscle. FASEB J 2010; 24:2651-9. [PMID: 20371628 DOI: 10.1096/fj.09-149856] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Here we present functional and biochemical evidence for a Ca(2+) channel (Ca(V)1.2)/protein kinase C (PKC) signaling complex being a key player in muscarinic regulation of urinary bladder smooth muscle. Muscarinic stimulation induced Ca(2+) signals and concomitant contractions in detrusor muscle from mice that were dependent on functional Ca(2+) channels. These signals were still present in muscles being depolarized by 85 mM extracellular K(+). Muscarinic-induced contractions were reduced by a PKC inhibitor [bisindolylmaleimide I (BIM-I)] and a phospholipase D (PLD) inhibitor (1-butanol). A phorbol ester (PDBu) enlarged muscarinic-induced Ca(2+) signals and contractions. The effects of BIM-I and PDBu were inhibited by isradipine and/or absent in muscles from Ca(V)1.2-deficient mice. Both carbachol and PDBu increased Ca(V)1.2 channel currents in isolated bladder myocytes. Blue native-PAGE electrophoresis revealed that Ca(V)1.2, PKC, and PLD are closely associated in muscles being previously stimulated by carbachol. Immunoprecipitation using anti-Ca(V)1.2 followed by Western blotting demonstrated that Ca(V)1.2 and PKC are coupled in stimulated muscles from wild-type mice. Autoradiography on immunoprecipitates showed that Ca(V)1.2 is a substrate for PKC-mediated phosphorylation. These findings suggest that a signaling complex consisting of Ca(V)1.2, PKC, and, probably, PLD controls muscarinic-mediated phasic contraction of urinary bladder smooth muscle.
Collapse
Affiliation(s)
- Maria Huster
- Institut für Pharmakologie und Toxikologie, TU München, Biedersteiner Str. 29, 80802 Munich, Germany
| | | | | | | |
Collapse
|
43
|
Propping S, Braeter M, Grimm MO, Wirth MP, Ravens U, Wuest M. Anticholinergic effects of cis- and trans-isomers of two metabolites of propiverine. Naunyn Schmiedebergs Arch Pharmacol 2010; 381:329-38. [PMID: 20182702 DOI: 10.1007/s00210-010-0493-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 01/26/2010] [Indexed: 10/19/2022]
Abstract
The muscarinic receptor antagonist propiverine used for therapy of overactive bladder undergoes first pass metabolism, leading to several active metabolites, which affect muscarinic receptors and L-type Ca(2+) channels with different potencies. M-5, the major metabolite in blood, and M-6 can be synthesized as cis- and trans-isomers. We systematically investigated the pharmacodynamic profiles of the isomers on detrusor contractile function. In murine and porcine detrusor, the effects of the derivatives were examined on contractions induced by electric field stimulation (EFS), cumulatively increasing concentrations of carbachol or high KCl concentration. EFS contractions were concentration-dependently reduced by the M-5 and M-6 isomers although to a different extent. M-5(cis) was slightly more potent than M-5(trans), but the differences did not reach statistical significance. M-6(cis) was significantly more potent than M-6(trans). Responses to carbachol were antagonized by all compounds due to rightward shifts of the concentration-response curves, but only M-5(trans) also significantly reduced the maximum response. pK (B) values obtained with Schild plot analysis indicated slightly higher potency for M-6(cis) than M-6(trans). Ca(2+) influx-dependent contractions elicited by K(+) depolarization were less impaired by low concentrations of the M-6 isomers, but strongly suppressed by 100 microM of the M-5 isomers, suggesting an additional effect of the two M-5 isomers on Ca(2+) influx. All investigated isomers of M-5 and M-6 are biologically active in reducing detrusor contraction in animal tissue. While M-5( cis,) M-6(cis), and M-6(trans) possess surmountable or partially surmountable antagonistic properties at muscarinic receptors, M-5(trans) is a strong non-competitive antagonist. However, at higher concentration ranges, all four compounds seem to have additional effects on Ca(2+) influx.
Collapse
Affiliation(s)
- Stefan Propping
- Department of Urology, University Hospital Carl Gustav Carus, Dresden University of Technology, Fetscherstrasse 74, 01307 Dresden, Germany.
| | | | | | | | | | | |
Collapse
|
44
|
Liu HP, Chen GL, Liu P, Xu XP. Amlodipine alone or combined with terazosin improves lower urinary tract disorder in rat models of benign prostatic hyperplasia or detrusor instability: focus on detrusor overactivity. BJU Int 2009; 104:1752-7. [DOI: 10.1111/j.1464-410x.2009.08659.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
45
|
Layne JJ, Nausch B, Olesen SP, Nelson MT. BK channel activation by NS11021 decreases excitability and contractility of urinary bladder smooth muscle. Am J Physiol Regul Integr Comp Physiol 2009; 298:R378-84. [PMID: 19923353 DOI: 10.1152/ajpregu.00458.2009] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Large-conductance Ca(2+)-activated potassium (BK) channels play an important role in regulating the function and activity of urinary bladder smooth muscle (UBSM), and the loss of BK channel function has been shown to increase UBSM excitability and contractility. However, it is not known whether activation of BK channels has the converse effect of reducing UBSM excitability and contractility. Here, we have sought to investigate this possibility by using the novel BK channel opener NS11021. NS11021 (3 microM) caused an approximately threefold increase in both single BK channel open probability (P(o)) and whole cell BK channel currents. The frequency of spontaneous action potentials in UBSM strips was reduced by NS11021 from a control value of 20.9 + or - 5.9 to 10.9 + or - 3.7 per minute. NS11021 also reduced the force of UBSM spontaneous phasic contractions by approximately 50%, and this force reduction was blocked by pretreatment with the BK channel blocker iberiotoxin. NS11021 (3 microM) had no effect on contractions evoked by nerve stimulation. These findings indicate that activating BK channels reduces the force of UBSM spontaneous phasic contractions, principally through decreasing the frequency of spontaneous action potentials.
Collapse
Affiliation(s)
- Jeffrey J Layne
- Department of Pharmacology, College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | | | | | | |
Collapse
|
46
|
Heppner TJ, Werner ME, Nausch B, Vial C, Evans RJ, Nelson MT. Nerve-evoked purinergic signalling suppresses action potentials, Ca2+ flashes and contractility evoked by muscarinic receptor activation in mouse urinary bladder smooth muscle. J Physiol 2009; 587:5275-88. [PMID: 19736301 DOI: 10.1113/jphysiol.2009.178806] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Contraction of urinary bladder smooth muscle (UBSM) is caused by the release of ATP and ACh from parasympathetic nerves. Although both purinergic and muscarinic pathways are important to contraction, their relative contributions and signalling mechanisms are not well understood. Here, the contributions of each pathway to urinary bladder contraction and the underlying electrical and Ca(2+) signalling events were examined in UBSM strips from wild type mice and mice deficient in P2X1 receptors (P2X1(-/-)) before and after pharmacological inhibition of purinergic and muscarinic receptors. Electrical field stimulation was used to excite parasympathetic nerves to increase action potentials, Ca(2+) flash frequency, and force. Loss of P2X1 function not only eliminated action potentials and Ca(2+) flashes during stimulation, but it also led to a significant increase in Ca(2+) flashes following stimulation and a corresponding increase in the force transient. Block of muscarinic receptors did not affect action potentials or Ca(2+) flashes during stimulation, but prevented them following stimulation. These findings indicate that nerve excitation leads to rapid engagement of smooth muscle P2X1 receptors to increase action potentials (Ca(2+) flashes) during stimulation, and a delayed increase in excitability in response to muscarinic receptor activation. Together, purinergic and muscarinic stimulation shape the time course of force transients. Furthermore, this study reveals a novel inhibitory effect of P2X1 receptor activation on subsequent increases in muscarinic-driven excitability and force generation.
Collapse
Affiliation(s)
- Thomas J Heppner
- Department of Pharmacology, Given Bldg, Room C315, 89 Beaumont Avenue, University of Vermont, Burlington, VT 05405-0068, USA.
| | | | | | | | | | | |
Collapse
|
47
|
KIM DY. Role of Ion Channels in the Bladder. Low Urin Tract Symptoms 2009. [DOI: 10.1111/j.1757-5672.2009.00029.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
48
|
Steers WD, Tuttle JB. Role of ion channels in bladder function and voiding disorders. CURRENT BLADDER DYSFUNCTION REPORTS 2009. [DOI: 10.1007/s11884-009-0018-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
49
|
Pharmacological treatment of overactive bladder: report from the International Consultation on Incontinence. Curr Opin Urol 2009; 19:380-94. [DOI: 10.1097/mou.0b013e32832ce8a4] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
50
|
Ding HL, Ryder JW, Stull JT, Kamm KE. Signaling processes for initiating smooth muscle contraction upon neural stimulation. J Biol Chem 2009; 284:15541-8. [PMID: 19349274 DOI: 10.1074/jbc.m900888200] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Relationships among biochemical signaling processes involved in Ca2+/calmodulin (CaM)-dependent phosphorylation of smooth muscle myosin regulatory light chain (RLC) by myosin light chain kinase (MLCK) were determined. A genetically-encoded biosensor MLCK for measuring Ca(2+)-dependent CaM binding and activation was expressed in smooth muscles of transgenic mice. We performed real-time evaluations of the relationships among [Ca2+](i), MLCK activation, and contraction in urinary bladder smooth muscle strips neurally stimulated for 3 s. Latencies for the onset of [Ca2+](i) and kinase activation were 55 +/- 8 and 65 +/- 6 ms, respectively. Both increased with RLC phosphorylation at 100 ms, whereas force latency was 109 +/- 3 ms. [Ca2+](i), kinase activation, and RLC phosphorylation responses were maximal by 1.2 s, whereas force increased more slowly to a maximal value at 3 s. A delayed temporal response between RLC phosphorylation and force is probably due to mechanical effects associated with elastic elements in the tissue. MLCK activation partially declined at 3 s of stimulation with no change in [Ca2+](i) and also declined more rapidly than [Ca2+](i) during relaxation. The apparent desensitization of MLCK to Ca2+ activation appears to be due to phosphorylation in its calmodulin binding segment. Phosphorylation of two myosin light chain phosphatase regulatory proteins (MYPT1 and CPI-17) or a protein implicated in strengthening membrane adhesion complexes for force transmission (paxillin) did not change during force development. Thus, neural stimulation leads to rapid increases in [Ca2+](i), MLCK activation, and RLC phosphorylation in phasic smooth muscle, showing a tightly coupled Ca2+ signaling complex as an elementary mechanism initiating contraction.
Collapse
Affiliation(s)
- Hai-Lei Ding
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | | | |
Collapse
|