1
|
Sharma M, Rajawat NK. Neurotoxicity study of copper oxide nanoparticles and the protective role of a probiotic ( Lactobacillus acidophilus) in Swiss albino mice. Toxicol Ind Health 2025:7482337251350165. [PMID: 40492926 DOI: 10.1177/07482337251350165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2025]
Abstract
Nanoparticles (NPs 1-100 nm) play a vital role in medicine, food, and agriculture owing to their unique reactivity and size-dependent optical properties. There are growing concerns about health risks from exposure to engineered NPs. Among these, copper oxide nanoparticles (CuONPs) are an area of research because of their unique electronic, optical, and chemical properties. CuONPs can interact with biological systems, causing oxidative stress, inflammation, neurobehavioral changes, and other pathophysiological effects. This study evaluated the ability of a probiotic (Lactobacillus acidophilus) to prevent CuONP-treated neurotoxicity. In the present study, 24 animals were classified into four groups: control, probiotic (Lactobacillus acidophilus 6.42 mg/kg b.wt.), CuONPs-treated (80 mg/kg b.wt.), and co-administered CuONPs (80 mg/kg b.wt.) + Probiotic (6.42 mg/kg b.wt.). Neurotoxicity was assessed through behavioral tests, including open field, exploratory behavior, pole test, and grip strength tests. Levels of key neurotransmitters viz. acetylcholinesterase, dopamine, and serotonin were measured and histopathological analyses were performed. The CuONP-treated group displayed significant behavioral deficits, decreased neurotransmitter levels, and histopathological abnormalities. In contrast, co-administration of probiotic with CuONPs reduced these effects, as observed by normal behavioral parameters and neurotransmitter levels and improved histopathological architecture. These findings suggested that CuONPs caused neurotoxicity at the tested dose, but co-administration of probiotic effectively mitigated this toxicity. Hence, a probiotic is a promising preventative strategy against CuONP-induced neurotoxic effects.
Collapse
Affiliation(s)
- Manisha Sharma
- Department of Zoology, IIS (Deemed to be University) Jaipur, Jaipur, India
| | | |
Collapse
|
2
|
Hu P, Lu W, Gao X, Li Y, Yang Y, Yin W, Dong L, Ren R, Wang X. Atmospheric carbon monoxide and hospitalization for mental and behavioral disorders: insights from a longitudinal study in Shijiazhuang. Front Psychol 2025; 16:1573556. [PMID: 40370374 PMCID: PMC12076220 DOI: 10.3389/fpsyg.2025.1573556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Accepted: 04/14/2025] [Indexed: 05/16/2025] Open
Abstract
Background and aim Carbon monoxide (CO), a prevalent environmental pollutant, has been implicated in adverse mental health outcomes, but the mechanistic relationship between atmospheric CO levels and hospital admissions for mental and behavioral disorders remains unclear. This study investigates the epidemiological link between atmospheric CO and hospitalizations for mental health conditions in Shijiazhuang, China. Methodology Clinical data from patients hospitalized with mental and behavioral disorders at The First Hospital of Hebei Medical University between January 2014 and December 2020 were analyzed. Daily atmospheric CO levels, temperature, and relative humidity were concurrently monitored. A generalized additive model (GAM) was used to explore the correlation between CO levels and hospital admissions. Blood samples from patients with depressive disorders were analyzed for MAPK3 expression, and a mouse model of CO-induced depression was employed to further explore the molecular mechanisms. Results A total of 15,890 hospitalization records were included. A significant positive correlation was identified between CO levels and the number of daily hospitalizations, with the strongest effects observed when CO concentrations exceeded 40 μg/m3. This association was most pronounced in males and individuals aged over 45, as well as during both warm and cold seasons. A two-pollutant model confirmed CO as a major factor affecting hospitalizations, independent of other pollutants like nitric oxide and sulfur dioxide. Additionally, elevated MAPK3 expression was found in the blood samples of depressed patients, and treatment with the MAPK inhibitor PD98059 alleviated CO-induced depression in a mouse model. Conclusion This study provides compelling evidence for a significant association between atmospheric CO and hospitalizations for mental and behavioral disorders. The findings suggest that CO exposure may exacerbate mental health conditions, particularly in vulnerable populations. These insights underline the importance of air quality management and highlight potential pathways for therapeutic interventions targeting CO-induced mental health disorders.
Collapse
Affiliation(s)
- Peihua Hu
- Institute of Mental Health, First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Wenting Lu
- Hebei Medical University and Hebei Technical Innovation Center for Mental Health Assessment and Intervention, Hebei Clinical Research Center for Mental Disorders and Institute of Mental Health, Department of Psychiatry, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xian Gao
- Department of Clinical Pharmacy, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yating Li
- Department of Nursing, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yanli Yang
- Department of Nephrology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Wanyi Yin
- Department of Hematology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Liang Dong
- Department of Hospital Infection Management, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ruojia Ren
- Hebei Medical University and Hebei Technical Innovation Center for Mental Health Assessment and Intervention, Hebei Clinical Research Center for Mental Disorders and Institute of Mental Health, Department of Psychiatry, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xueyi Wang
- Institute of Mental Health, First Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
3
|
Kwon D, Paul KC, Kusters C, Wu J, Bronstein JM, Lill CM, Ketzel M, Raachou-Nielsen O, Hansen J, Ritz B. Interaction Between Traffic-Related Air Pollution and Parkinson Disease Polygenic Risk Score. JAMA Netw Open 2025; 8:e250854. [PMID: 40094665 PMCID: PMC11915066 DOI: 10.1001/jamanetworkopen.2025.0854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/12/2025] [Indexed: 03/19/2025] Open
Abstract
Importance Genetic and environmental factors are linked to Parkinson disease (PD), but the role of genetic susceptibility in the association between traffic-related air pollution (TRAP) and PD remains unclear. Objective To assess the gene-environment interaction between the polygenic risk score (PRS) for PD and long-term TRAP exposure and to estimate the joint effect with PD risk. Design, Setting, and Participants This population-based case-control study used a meta-analytical assessment of studies conducted in central California and Denmark. The Parkinson Environment and Genes (PEG) study in California (June 1, 2000, to July 31, 2017) included 634 patients with PD and 733 controls; the Parkinson Disease in Denmark (PASIDA) study (January 1, 2006, to December 31, 2017) included 966 patients with PD and 1045 controls. Data were analyzed from July 1 to October 31, 2024. Exposures PRS was computed by summing the effect estimates of well-known risk alleles from an existing genome-wide association study's summary statistics using participants' genetic arrays. TRAP exposure was estimated using dispersion models to calculate long-term exposure (10- or 15-year means with a 5-year lag) to traffic-related pollutants (represented by carbon monoxide [CO] levels) at participants' residences. Main Outcomes and Measures The main outcome was diagnosis of PD. Using multivariable logistic regression, PD risk was estimated from interactions between PRS (per SD) and TRAP exposure (per IQR), with joint effects based on low (quartiles 1-3) and high (quartile 4) exposure levels. Results A total of 1600 patients with PD (mean [SD] age, 65.1 [9.9] years; 990 [61.9%] male) and 1778 controls (mean [SD] age, 64.5 [10.3] years; 992 [55.8%] male) were included. Meta-analytical estimates suggest that both higher PRS and increased TRAP exposure increased PD risk, with an interaction effect estimate of 1.06 (95% CI, 1.00-1.12). Joint effect analysis indicated that individuals with both high PRS and high TRAP exposure were at greatest risk of PD (odds ratio, 3.05; 95% CI, 2.23-4.19) compared with the reference group with a low PRS and low TRAP exposure, suggesting a synergistic effect. Conclusions and Relevance In this gene-environment interaction study, a combination of long-term air pollution exposure and genetic susceptibility strongly contributed to the risk of developing PD. Widespread exposure to air pollution makes TRAP an important modifiable risk factor affecting large populations globally, particularly individuals with genetic vulnerability.
Collapse
Affiliation(s)
- Dayoon Kwon
- Department of Epidemiology, Fielding School of Public Health, UCLA (University of California, Los Angeles), Los Angeles
| | - Kimberly C. Paul
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles
| | - Cynthia Kusters
- Department of Epidemiology, Fielding School of Public Health, UCLA (University of California, Los Angeles), Los Angeles
- Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, UCLA, Los Angeles
| | - Jun Wu
- Department of Environmental and Occupational Health, School of Population and Public Health, University of California, Irvine
| | - Jeff M. Bronstein
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles
| | - Christina M. Lill
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
- Ageing Epidemiology Research Unit, School of Public Health, Imperial College, London, United Kingdom
| | - Matthias Ketzel
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
- Global Centre for Clean Air Research, Department of Civil and Environmental Engineering, University of Surrey, Guildford, United Kingdom
| | - Ole Raachou-Nielsen
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
- Danish Cancer Institute, Danish Cancer Society, Copenhagen, Denmark
| | - Johnni Hansen
- Danish Cancer Institute, Danish Cancer Society, Copenhagen, Denmark
| | - Beate Ritz
- Department of Epidemiology, Fielding School of Public Health, UCLA (University of California, Los Angeles), Los Angeles
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles
| |
Collapse
|
4
|
Kokubun K, Nemoto K, Ikaga T, Yamakawa Y. Whole-brain gray matter volume and fractional anisotropy of the posterior thalamic radiation and sagittal stratum in healthy adults correlate with the local environment. Neuroimage 2025; 308:121033. [PMID: 39870260 DOI: 10.1016/j.neuroimage.2025.121033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 01/29/2025] Open
Abstract
The impacts of air pollution, local climate, and urbanization on human health have been well-documented in recent studies. In this study, we combined magnetic resonance imaging (MRI) brain analysis with a questionnaire survey on the local environment in 141 healthy middle-aged men and women. Our findings reveal that a favorable environment is positively correlated with gray matter volume (GMV) in the frontal and occipital lobes, cerebellum, and whole brain, as well as with fractional anisotropy (FA) in the fornix (including the fornix stria terminalis), posterior thalamic radiation (PTR), sagittal stratum (SS), and whole brain. Among these, significant correlations between the local environment and whole-brain and cerebellar GMV, PTR, and SS FA remained after Bonferroni correction. Additionally, the positive relationship between the local environment and whole-brain GMV was further supported by principal component analysis (PCA). This is the first study to demonstrate that healthy adult brain structure, as indicated by GMV and FA values, can be influenced by the local environment.
Collapse
Affiliation(s)
- Keisuke Kokubun
- Open Innovation Institute, Kyoto University, Kyoto, Japan; Graduate School of Management, Kyoto University, Kyoto, Japan.
| | - Kiyotaka Nemoto
- Department of Psychiatry, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Toshiharu Ikaga
- Institute for Built Environment and Carbon Neutral for SDGs, Chiyoda, Tokyo, Japan
| | - Yoshinori Yamakawa
- Open Innovation Institute, Kyoto University, Kyoto, Japan; Graduate School of Management, Kyoto University, Kyoto, Japan; Institute of Innovative Research, Tokyo Institute of Technology, Meguro, Tokyo, Japan; ImPACT Program of Council for Science, Technology and Innovation (Cabinet Office, Government of Japan), Chiyoda, Tokyo, Japan; Office for Academic and Industrial Innovation, Kobe University, Kobe, Japan; Brain Impact, Kyoto, Japan
| |
Collapse
|
5
|
Holme JA, Myhre O, Øvrevik J. Adverse neurodevelopment in children associated with prenatal exposure to fine particulate matter (PM 2.5) - Possible roles of polycyclic aromatic hydrocarbons (PAHs) and mechanisms involved. Reprod Toxicol 2024; 130:108718. [PMID: 39276806 DOI: 10.1016/j.reprotox.2024.108718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Prenatal exposure to ambient fine particles (PM2.5) and polycyclic aromatic hydrocarbons (PAHs) has been associated with adverse birth outcomes including neurodevelopmental effects with cognitive and/or behavioral implications in early childhood. As a background we first briefly summarize human studies on PM2.5 and PAHs associated with adverse birth outcomes and modified neurodevelopment. Next, we add more specific information from animal studies and in vitro studies and elucidate possible biological mechanisms. More specifically we focus on the potential role of PAHs attached to PM2.5 and explore whether effects of these compounds may arise from disturbance of placental function or more directly by interfering with neurodevelopmental processes in the fetal brain. Possible molecular initiating events (MIEs) include interactions with cellular receptors such as the aryl hydrocarbon receptor (AhR), beta-adrenergic receptors (βAR) and transient receptor potential (TRP)-channels resulting in altered gene expression. MIE linked to the binding of PAHs to cytochrome P450 (CYP) enzymes and formation of reactive electrophilic metabolites are likely less important. The experimental animal and in vitro studies support the epidemiological findings and suggest steps involved in mechanistic pathways explaining the associations. An overall evaluation of the doses/concentrations used in experimental studies combined with the mechanistic understanding further supports the hypothesis that prenatal PAHs exposure may cause adverse outcomes (AOs) linked to human neurodevelopment. Several MIEs will likely occur simultaneously in various cells/tissues involving several key events (KEs) which relative importance will depend on dose, time, tissue, genetics, other environmental factors, and neurodevelopmental endpoint in study.
Collapse
Affiliation(s)
- Jørn A Holme
- Department of Air quality and Noise, Division of Climate and Environmental Health, Norwegian Institute of Public Health, PO Box PO Box 222 Skøyen, Oslo 0213, Norway.
| | - Oddvar Myhre
- Department of Chemical Toxicology, Division of Climate and Environmental Health, Norwegian Institute of Public Health, PO Box 222 Skøyen, Oslo 0213, Norway
| | - Johan Øvrevik
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, PO Box 1066 Blindern, Oslo 0316, Norway; Division of Climate and Environmental Health, Norwegian Institute of Public Health, PO Box 222 Skøyen, Oslo 0213, Norway
| |
Collapse
|
6
|
Kim JY, Kim A, Kim JH, Gil YC, Kim YD, Shin DI, Seo JH. Ferroptosis in the Substantia Nigra Pars Compacta of Mice: Triggering Role of Ultrafine Diesel Exhaust Particles and Mitigation by α-Lipoic Acid. Neurochem Res 2024; 50:37. [PMID: 39601947 DOI: 10.1007/s11064-024-04278-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/18/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024]
Abstract
Recent epidemiological and experimental studies have increasingly highlighted the association between environmental pollution, especially ultrafine particulate matter (PM), and the risk of neurodegenerative diseases, such as Parkinson's disease (PD). These previous studies suggest a potential mechanism by which ultrafine PM contributes to neuronal damage through processes, such as iron accumulation and oxidative stress. In this study, we aimed to elucidate the effects of ultrafine PM on ferroptosis, an iron-dependent form of cell death, in the mouse substantia nigra pars compacta (SNc) and to evaluate the protective role of α-lipoic acid (ALA). Mice were exposed to ultrafine diesel exhaust particles (ufDEP), a type of ultrafine PM, intranasally and injected ALA intraperitoneally for seven consecutive days. Iron accumulation and lipid peroxidation were significantly increased, and antioxidant capacity was significantly decreased in the SNc after ufDEP exposure, highlighting the deleterious effects of ufDEP on tyrosine hydroxylase (TH)-positive neurons. In contrast, ALA treatment effectively mitigated these effects by reducing iron accumulation, decreasing lipid peroxidation, and restoring antioxidant levels, resulting in the protection of TH-positive neurons from ferroptotic damage. Our results provide evidence that ufDEP can induce ferroptosis in dopaminergic neurons in the SNc, potentially contributing to PD pathogenesis. Furthermore, ALA showed protective effects against ufDEP-induced ferroptotic damage, suggesting its potential as a therapeutic intervention for PD.
Collapse
Affiliation(s)
- Ji Young Kim
- Department of Anatomy, Chungbuk National University College of Medicine, Chungdae-ro 1, Seowon-gu, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Aryun Kim
- Department of Neurology, Chungbuk National University Hospital, Chungbuk National University College of Medicine, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Jin-Hee Kim
- Department of Biomedical Laboratory Science, College of Health Science, Cheongju University, Cheongju, Chungbuk, 28503, Republic of Korea
| | - Young-Chun Gil
- Department of Anatomy, Chungbuk National University College of Medicine, Chungdae-ro 1, Seowon-gu, Cheongju, Chungbuk, 28644, Republic of Korea
- Biomedical Research Institute, Chungbuk National University Hospital, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Yong-Dae Kim
- Department of Preventive Medicine, Chungbuk National University College of Medicine, Cheongju, Chungbuk, 28644, Republic of Korea
- Biomedical Research Institute, Chungbuk National University Hospital, Cheongju, Chungbuk, 28644, Republic of Korea
- Chungbuk Regional Cancer Center, Chungbuk National University Hospital, Cheongju, Chungbuk, 28644, Republic of Korea
- Chungbuk Environmental Health Center, Chungbuk National University Hospital, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Dong-Ick Shin
- Department of Neurology, Chungbuk National University Hospital, Chungbuk National University College of Medicine, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Je Hoon Seo
- Department of Anatomy, Chungbuk National University College of Medicine, Chungdae-ro 1, Seowon-gu, Cheongju, Chungbuk, 28644, Republic of Korea.
- Biomedical Research Institute, Chungbuk National University Hospital, Cheongju, Chungbuk, 28644, Republic of Korea.
| |
Collapse
|
7
|
Brooks AW, Sandri BJ, Nixon JP, Nurkiewicz TR, Barach P, Trembley JH, Butterick TA. Neuroinflammation and Brain Health Risks in Veterans Exposed to Burn Pit Toxins. Int J Mol Sci 2024; 25:9759. [PMID: 39337247 PMCID: PMC11432193 DOI: 10.3390/ijms25189759] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Military burn pits, used for waste disposal in combat zones, involve the open-air burning of waste materials, including plastics, metals, chemicals, and medical waste. The pits release a complex mixture of occupational toxic substances, including particulate matter (PM), volatile organic compounds (VOCs), heavy metals, dioxins, and polycyclic aromatic hydrocarbons (PAHs). Air pollution significantly impacts brain health through mechanisms involving neuroinflammation. Pollutants penetrate the respiratory system, enter the bloodstream, and cross the blood-brain barrier (BBB), triggering inflammatory responses in the central nervous system (CNS). Chronic environmental exposures result in sustained inflammation, oxidative stress, and neuronal damage, contributing to neurodegenerative diseases and cognitive impairment. Veterans exposed to burn pit toxins are particularly at risk, reporting higher rates of respiratory issues, neurological conditions, cognitive impairments, and mental health disorders. Studies demonstrate that Veterans exposed to these toxins have higher rates of neuroinflammatory markers, accelerated cognitive decline, and increased risks of neurodegenerative diseases. This narrative review synthesizes the research linking airborne pollutants such as PM, VOCs, and heavy metals to neuroinflammatory processes and cognitive effects. There is a need for targeted interventions to mitigate the harmful and escalating effects of environmental air pollution exposures on the CNS, improving public health outcomes for vulnerable populations, especially for Veterans exposed to military burn pit toxins.
Collapse
Affiliation(s)
- Athena W Brooks
- Minneapolis Veterans Affairs Health Care System, Minneapolis, MN 55417, USA
- Medical School, University of Minnesota, Minneapolis, MN 55455, USA
| | - Brian J Sandri
- Minneapolis Veterans Affairs Health Care System, Minneapolis, MN 55417, USA
| | - Joshua P Nixon
- Minneapolis Veterans Affairs Health Care System, Minneapolis, MN 55417, USA
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108, USA
| | - Timothy R Nurkiewicz
- Department of Physiology, Pharmacology, and Toxicology, West Virginia University, Morgantown, WV 26506, USA
- Center for Inhalation Toxicology, West Virginia University, Morgantown, WV 26506, USA
| | - Paul Barach
- The Department of Safety and Quality Science in the College of Population Health, Thomas Jefferson University, Philadelphia, PA 19144, USA
| | - Janeen H Trembley
- Minneapolis Veterans Affairs Health Care System, Minneapolis, MN 55417, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Tammy A Butterick
- Minneapolis Veterans Affairs Health Care System, Minneapolis, MN 55417, USA
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108, USA
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
8
|
Turner A, Wolfe C, Ryan PH. Personal exposure to ultrafine particles in multiple microenvironments among adolescents. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024; 34:878-885. [PMID: 38418826 DOI: 10.1038/s41370-023-00638-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 03/02/2024]
Abstract
BACKGROUND Experimental studies suggest ultrafine particles (UFPs), the smallest size fraction of particulate matter, may be more toxic than larger particles, however personal sampling studies in children are lacking. OBJECTIVE The objective of this analysis was to examine individual, housing, and neighborhood characteristics associated with personal UFP concentrations as well as the differences in exposures that occur within varying microenvironments. METHODS We measured weekly personal UFP concentrations and GPS coordinates in 117 adolescents ages 13-17 to describe exposures across multiple microenvironments. Individual, home, and neighborhood characteristics were collected by caregiver completed questionnaires. RESULTS Participants regularly exposed to secondhand tobacco smoke had significantly higher indoor concentrations of UFPs compared to participants who were not. We observed that the 'home' microenvironment dominated the relative contribution of overall UFP concentrations and sampling time, however, relative proportion of integrated UFP exposure were higher in 'other' environments. IMPACT STATEMENT In this study, we employed a novel panel study design, involving real-time measurement of UFP exposure within the multiple microenvironments of adolescents. We found a combination of personal sampling and detailed activity patterns should be used in future studies to accurately describe exposure-behavior relationships.
Collapse
Affiliation(s)
- Ashley Turner
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | - Chris Wolfe
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Technology Advancement Commercialization Division, RTI International, Research Triangle Park, NC, USA
| | - Patrick H Ryan
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
9
|
Walker KA, Rhodes ST, Liberman DA, Gore AC, Bell MR. Microglial responses to inflammatory challenge in adult rats altered by developmental exposure to polychlorinated biphenyls in a sex-specific manner. Neurotoxicology 2024; 104:95-115. [PMID: 39038526 PMCID: PMC11548868 DOI: 10.1016/j.neuro.2024.07.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/24/2024]
Abstract
Polychlorinated biphenyls are ubiquitous environmental contaminants linkedc with peripheral immune and neural dysfunction. Neuroimmune signaling is critical to brain development and later health; however, effects of PCBs on neuroimmune processes are largely undescribed. This study extends our previous work in neonatal or adolescent rats by investigating longer-term effects of perinatal PCB exposure on later neuroimmune responses to an inflammatory challenge in adulthood. Male and female Sprague-Dawley rats were exposed to a low-dose, environmentally relevant, mixture of PCBs (Aroclors 1242, 1248, and 1254, 1:1:1, 20 μg / kg dam BW per gestational day) or oil control during gestation and via lactation. Upon reaching adulthood, rats were given a mild inflammatory challenge with lipopolysaccharide (LPS, 50 μg / kg BW, ip) or saline control and then euthanized 3 hours later for gene expression analysis or 24 hours later for immunohistochemical labeling of Iba1+ microglia. PCB exposure did not alter gene expression or microglial morphology independently, but instead interacted with the LPS challenge in brain region- and sex-specific ways. In the female hypothalamus, PCB exposure blunted LPS responses of neuroimmune and neuromodulatory genes without changing microglial morphology. In the female prefrontal cortex, PCBs shifted Iba1+ cells from reactive to hyperramified morphology in response to LPS. Conversely, in the male hypothalamus, PCBs shifted cell phenotypes from hyperramified to reactive morphologies in response to LPS. The results highlight the potential for long-lasting effects of environmental contaminants that are differentially revealed over a lifetime, sometimes only after a secondary challenge. These neuroimmune endpoints are possible mechanisms for PCB effects on a range of neural dysfunction in adulthood, including mental health and neurodegenerative disorders. The findings suggest possible interactions with other environmental challenges that also influence neuroimmune systems.
Collapse
Affiliation(s)
- Katherine A Walker
- Departments of Biological Sciences and Health Sciences, DePaul University, Chicago, IL 60614, USA.
| | - Simone T Rhodes
- Departments of Biological Sciences and Health Sciences, DePaul University, Chicago, IL 60614, USA.
| | - Deborah A Liberman
- Departments of Biological Sciences and Health Sciences, DePaul University, Chicago, IL 60614, USA.
| | - Andrea C Gore
- Division of Pharmacology and Toxicology, College of Pharmacy and Department of Psychology, University of Texas at Austin, Austin, TX 78712, USA.
| | - Margaret R Bell
- Departments of Biological Sciences and Health Sciences, DePaul University, Chicago, IL 60614, USA; Division of Pharmacology and Toxicology, College of Pharmacy and Department of Psychology, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
10
|
Zhang M, Liang C, Chen X, Cai Y, Cui L. Interplay between microglia and environmental risk factors in Alzheimer's disease. Neural Regen Res 2024; 19:1718-1727. [PMID: 38103237 PMCID: PMC10960290 DOI: 10.4103/1673-5374.389745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/09/2023] [Accepted: 10/24/2023] [Indexed: 12/18/2023] Open
Abstract
Alzheimer's disease, among the most common neurodegenerative disorders, is characterized by progressive cognitive impairment. At present, the Alzheimer's disease main risk remains genetic risks, but major environmental factors are increasingly shown to impact Alzheimer's disease development and progression. Microglia, the most important brain immune cells, play a central role in Alzheimer's disease pathogenesis and are considered environmental and lifestyle "sensors." Factors like environmental pollution and modern lifestyles (e.g., chronic stress, poor dietary habits, sleep, and circadian rhythm disorders) can cause neuroinflammatory responses that lead to cognitive impairment via microglial functioning and phenotypic regulation. However, the specific mechanisms underlying interactions among these factors and microglia in Alzheimer's disease are unclear. Herein, we: discuss the biological effects of air pollution, chronic stress, gut microbiota, sleep patterns, physical exercise, cigarette smoking, and caffeine consumption on microglia; consider how unhealthy lifestyle factors influence individual susceptibility to Alzheimer's disease; and present the neuroprotective effects of a healthy lifestyle. Toward intervening and controlling these environmental risk factors at an early Alzheimer's disease stage, understanding the role of microglia in Alzheimer's disease development, and targeting strategies to target microglia, could be essential to future Alzheimer's disease treatments.
Collapse
Affiliation(s)
- Miaoping Zhang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, China
| | - Chunmei Liang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, China
| | - Xiongjin Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, China
| | - Yujie Cai
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, China
| | - Lili Cui
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, China
| |
Collapse
|
11
|
Sebastijanović A, Azzurra Camassa LM, Malmborg V, Kralj S, Pagels J, Vogel U, Zienolddiny-Narui S, Urbančič I, Koklič T, Štrancar J. Particulate matter constituents trigger the formation of extracellular amyloid β and Tau -containing plaques and neurite shortening in vitro. Nanotoxicology 2024; 18:335-353. [PMID: 38907733 DOI: 10.1080/17435390.2024.2362367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/25/2024] [Accepted: 05/27/2024] [Indexed: 06/24/2024]
Abstract
Air pollution is an environmental factor associated with an increased risk of neurodegenerative diseases, such as Alzheimer's and Parkinson's, characterized by decreased cognitive abilities and memory. The limited models of sporadic Alzheimer's disease fail to replicate all pathological hallmarks of the disease, making it challenging to uncover potential environmental causes. Environmentally driven models of Alzheimer's disease are thus timely and necessary. We used live-cell confocal fluorescent imaging combined with high-resolution stimulated emission depletion (STED) microscopy to follow the response of retinoic acid-differentiated human neuroblastoma SH-SY5Y cells to nanomaterial exposure. Here, we report that exposure of the cells to some particulate matter constituents reproduces a neurodegenerative phenotype, including extracellular amyloid beta-containing plaques and decreased neurite length. Consistent with the existing in vivo research, we observed detrimental effects, specifically a substantial reduction in neurite length and formation of amyloid beta plaques, after exposure to iron oxide and diesel exhaust particles. Conversely, after exposure to engineered cerium oxide nanoparticles, the lengths of neurites were maintained, and almost no extracellular amyloid beta plaques were formed. Although the exact mechanism behind this effect remains to be explained, the retinoic acid differentiated SH-SY5Y cell in vitro model could serve as an alternative, environmentally driven model of neurodegenerative diseases, including Alzheimer's disease.
Collapse
Affiliation(s)
- Aleksandar Sebastijanović
- Infinite LLC, Maribor, Slovenia
- Laboratory of Biophysics, Condensed Matter Physics Department, Jožef Stefan Institute, Ljubljana, Slovenia
| | | | - Vilhelm Malmborg
- National Research Centre for the Working Environment, Copenhagen, Denmark
- Ergonomics and Aerosol Technology, Lund University, Lund, Sweden
- NanoLund, Lund University, Lund, Sweden
| | - Slavko Kralj
- Material Synthesis Department, Jožef Stefan Institute, Slovenia
| | - Joakim Pagels
- Ergonomics and Aerosol Technology, Lund University, Lund, Sweden
- NanoLund, Lund University, Lund, Sweden
| | - Ulla Vogel
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | | | - Iztok Urbančič
- Laboratory of Biophysics, Condensed Matter Physics Department, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Tilen Koklič
- Laboratory of Biophysics, Condensed Matter Physics Department, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Janez Štrancar
- Infinite LLC, Maribor, Slovenia
- Laboratory of Biophysics, Condensed Matter Physics Department, Jožef Stefan Institute, Ljubljana, Slovenia
| |
Collapse
|
12
|
Morris RH, Counsell SJ, McGonnell IM, Thornton C. Exposure to urban particulate matter (UPM) impairs mitochondrial dynamics in BV2 cells, triggering a mitochondrial biogenesis response. J Physiol 2024; 602:2737-2750. [PMID: 38795332 DOI: 10.1113/jp285978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 05/06/2024] [Indexed: 05/27/2024] Open
Abstract
World Health Organisation data suggest that up to 99% of the global population are exposed to air pollutants above recommended levels. Impacts to health range from increased risk of stroke and cardiovascular disease to chronic respiratory conditions, and air pollution may contribute to over 7 million premature deaths a year. Additionally, mounting evidence suggests that in utero or early life exposure to particulate matter (PM) in ambient air pollution increases the risk of neurodevelopmental impairment with obvious lifelong consequences. Identifying brain-specific cellular targets of PM is vital for determining its long-term consequences. We previously established that microglial-like BV2 cells were particularly sensitive to urban (U)PM-induced damage including reactive oxygen species production, which was abrogated by a mitochondrially targeted antioxidant. Here we extend those studies to find that UPM treatment causes a rapid impairment of mitochondrial function and increased mitochondrial fragmentation. However, there is a subsequent restoration of mitochondrial and therefore cell health occurring concomitantly with upregulated measures of mitochondrial biogenesis and mitochondrial load. Our data highlight that protecting mitochondrial function may represent a valuable mechanism to offset the effects of UPM exposure in the neonatal brain. KEY POINTS: Air pollution represents a growing risk to long-term health especially in early life, and the CNS is emerging a target for airborne particulate matter (PM). We previously showed that microglial-like BV2 cells were vulnerable to urban (U)PM exposure, which impaired cell survival and promoted reactive oxygen species production. Here we find that, following UPM exposure, BV2 mitochondrial membrane potential is rapidly reduced, concomitant with decreased cellular bioenergetics and increased mitochondrial fission. However, markers of mitochondrial biogenesis and mitochondrial mass are subsequently induced, which may represent a cellular mitigation strategy. As mitochondria are more vulnerable in the developing brain, exposure to air pollution may represent a greater risk to lifelong health in this cohort; conversely, promoting mitochondrial integrity may offset these risks.
Collapse
Affiliation(s)
- Rebecca H Morris
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Serena J Counsell
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Imelda M McGonnell
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Claire Thornton
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| |
Collapse
|
13
|
Ruggles A, Benakis C. Exposure to Environmental Toxins: Potential Implications for Stroke Risk via the Gut- and Lung-Brain Axis. Cells 2024; 13:803. [PMID: 38786027 PMCID: PMC11119296 DOI: 10.3390/cells13100803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/24/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024] Open
Abstract
Recent evidence indicates that exposure to environmental toxins, both short-term and long-term, can increase the risk of developing neurological disorders, including neurodegenerative diseases (i.e., Alzheimer's disease and other dementias) and acute brain injury (i.e., stroke). For stroke, the latest systematic analysis revealed that exposure to ambient particulate matter is the second most frequent stroke risk after high blood pressure. However, preclinical and clinical stroke investigations on the deleterious consequences of environmental pollutants are scarce. This review examines recent evidence of how environmental toxins, absorbed along the digestive tract or inhaled through the lungs, affect the host cellular response. We particularly address the consequences of environmental toxins on the immune response and the microbiome at the gut and lung barrier sites. Additionally, this review highlights findings showing the potential contribution of environmental toxins to an increased risk of stroke. A better understanding of the biological mechanisms underlying exposure to environmental toxins has the potential to mitigate stroke risk and other neurological disorders.
Collapse
Affiliation(s)
| | - Corinne Benakis
- Institute for Stroke and Dementia Research, University Hospital, LMU Munich, 81337 Munich, Germany;
| |
Collapse
|
14
|
Yu S, Zhang Z, Qin Z, Liu M, Zhao X, Cheng Y, Xue P, Wang X, Chen L, Wu Q, Ju L, Tang J. Prenatal diesel exhaust exposure alters hippocampal synaptic plasticity in offspring. Aging (Albany NY) 2024; 16:4348-4362. [PMID: 38431308 PMCID: PMC10968710 DOI: 10.18632/aging.205592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/23/2024] [Indexed: 03/05/2024]
Abstract
Diesel exhaust particles (DEPs) are major air pollutants emitted from automobile engines. Prenatal exposure to DEPs has been linked to neurodevelopmental and neurodegenerative diseases associated with aging. However, the specific mechanism by DEPs impair the hippocampal synaptic plasticity in the offspring remains unclear. Pregnant C57BL/6 mice were administered DEPs solution via the tail vein every other day for a total of 10 injections, then the male offsprings were studied to assess learning and memory by the Morris water maze. Additionally, protein expression in the hippocampus, including CPEB3, NMDAR (NR1, NR2A, NR2B), PKA, SYP, PSD95, and p-CREB was analyzed using Western blotting and immunohistochemistry. The alterations in the histomorphology of the hippocampus were observed in male offspring on postnatal day 7 following prenatal exposure to DEPs. Furthermore, 8-week-old male offspring exposed to DEPs during prenatal development exhibited impairments in the Morris water maze test, indicating deficits in learning and memory. Mechanistically, the findings from our study indicate that exposure to DEPs during pregnancy may alter the expression of CPEB3, SYP, PSD95, NMDAR (NR1, NR2A, and NR2B), PKA, and p-CREB in the hippocampus of both immature and mature male offspring. The results offer evidence for the role of the NMDAR/PKA/CREB and CPEB3 signaling pathway in mediating the learning and memory toxicity of DEPs in male offspring mice. The alterations in signaling pathways may contribute to the observed damage to synaptic structure and transmission function plasticity caused by DEPs. The findings hold potential for informing future safety assessments of DEPs.
Collapse
Affiliation(s)
- Shali Yu
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Ziyang Zhang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Ziyu Qin
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Meijun Liu
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Xiaoye Zhao
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Yulan Cheng
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Peng Xue
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Xiaoke Wang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Lin Chen
- Institute of Liver Diseases, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong Hospital 3 of Nantong University, Nantong 226006, China
| | - Qiyun Wu
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Linling Ju
- Institute of Liver Diseases, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong Hospital 3 of Nantong University, Nantong 226006, China
| | - Juan Tang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| |
Collapse
|
15
|
Singh S A, Ansari MN, M. Elossaily G, Vellapandian C, Prajapati B. Investigating the Potential Impact of Air Pollution on Alzheimer's Disease and the Utility of Multidimensional Imaging for Early Detection. ACS OMEGA 2024; 9:8615-8631. [PMID: 38434844 PMCID: PMC10905749 DOI: 10.1021/acsomega.3c06328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/25/2023] [Accepted: 01/30/2024] [Indexed: 03/05/2024]
Abstract
Pollution is ubiquitous, and much of it is anthropogenic in nature, which is a severe risk factor not only for respiratory infections or asthma sufferers but also for Alzheimer's disease, which has received a lot of attention recently. This Review aims to investigate the primary environmental risk factors and their profound impact on Alzheimer's disease. It underscores the pivotal role of multidimensional imaging in early disease identification and prevention. Conducting a comprehensive review, we delved into a plethora of literature sources available through esteemed databases, including Science Direct, Google Scholar, Scopus, Cochrane, and PubMed. Our search strategy incorporated keywords such as "Alzheimer Disease", "Alzheimer's", "Dementia", "Oxidative Stress", and "Phytotherapy" in conjunction with "Criteria Pollutants", "Imaging", "Pathology", and "Particulate Matter". Alzheimer's disease is not only a result of complex biological factors but is exacerbated by the infiltration of airborne particles and gases that surreptitiously breach the nasal defenses to traverse the brain, akin to a Trojan horse. Various imaging modalities and noninvasive techniques have been harnessed to identify disease progression in its incipient stages. However, each imaging approach possesses inherent limitations, prompting exploration of a unified technique under a single umbrella. Multidimensional imaging stands as the linchpin for detecting and forestalling the relentless march of Alzheimer's disease. Given the intricate etiology of the condition, identifying a prospective candidate for Alzheimer's disease may take decades, rendering the development of a multimodal imaging technique an imperative. This research underscores the pressing need to recognize the chronic ramifications of invisible particulate matter and to advance our understanding of the insidious environmental factors that contribute to Alzheimer's disease.
Collapse
Affiliation(s)
- Ankul Singh S
- Department
of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology (SRMIST), Kattankulathur, Tamil Nadu 603203, India
| | - Mohd Nazam Ansari
- Department
of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Gehan M. Elossaily
- Department
of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 13713, Saudi Arabia
| | - Chitra Vellapandian
- Department
of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology (SRMIST), Kattankulathur, Tamil Nadu 603203, India
| | - Bhupendra Prajapati
- Department
of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy,
Shree S.K. Patel College of Pharmaceutical Education and Research, Ganpat University, Gozaria Highway, Mehsana, North Gujarat 384012, India
| |
Collapse
|
16
|
Petkus AJ, Salminen LE, Wang X, Driscoll I, Millstein J, Beavers DP, Espeland MA, Braskie MN, Thompson PM, Casanova R, Gatz M, Chui HC, Resnick SM, Kaufman JD, Rapp SR, Shumaker S, Younan D, Chen JC. Alzheimer's Related Neurodegeneration Mediates Air Pollution Effects on Medial Temporal Lobe Atrophy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.29.23299144. [PMID: 38076972 PMCID: PMC10705654 DOI: 10.1101/2023.11.29.23299144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Exposure to ambient air pollution, especially particulate matter with aerodynamic diameter <2.5 μm (PM2.5) and nitrogen dioxide (NO2), are environmental risk factors for Alzheimer's disease and related dementia. The medial temporal lobe (MTL) is an important brain region subserving episodic memory that atrophies with age, during the Alzheimer's disease continuum, and is vulnerable to the effects of cerebrovascular disease. Despite the importance of air pollution it is unclear whether exposure leads to atrophy of the MTL and by what pathways. Here we conducted a longitudinal study examining associations between ambient air pollution exposure and MTL atrophy and whether putative air pollution exposure effects resembled Alzheimer's disease-related neurodegeneration or cerebrovascular disease-related neurodegeneration. Participants included older women (n = 627; aged 71-87) who underwent two structural brain MRI scans (MRI-1: 2005-6; MRI-2: 2009-10) as part of the Women's Health Initiative Memory Study of Magnetic Resonance Imaging. Regionalized universal kriging was used to estimate annual concentrations of PM2.5 and NO2 at residential locations aggregated to 3-year averages prior to MRI-1. The outcome was 5-year standardized change in MTL volumes. Mediators included voxel-based MRI measures of the spatial pattern of neurodegeneration of Alzheimer's disease (Alzheimer's disease pattern similarity scores [AD-PS]) and whole-brain white matter small-vessel ischemic disease (WM-SVID) volume as a proxy of global cerebrovascular damage. Structural equation models were constructed to examine whether the associations between exposures with MTL atrophy were mediated by the initial level or concurrent change in AD-PS score or WM-SVID while adjusting for sociodemographic, lifestyle, clinical characteristics, and intracranial volume. Living in locations with higher PM2.5 (per interquartile range [IQR]=3.17μg/m3) or NO2 (per IQR=6.63ppb) was associated with greater MTL atrophy (βPM2.5 = -0.29, 95% confidence interval [CI]=[-0.41,-0.18]; βNO2 =-0.12, 95%CI=[-0.23,-0.02]). Greater PM2.5 was associated with larger increases in AD-PS (βPM2.5 = 0.23, 95%CI=[0.12,0.33]) over time, which partially mediated associations with MTL atrophy (indirect effect= -0.10; 95%CI=[-0.15, -0.05]), explaining approximately 32% of the total effect. NO2 was positively associated with AD-PS at MRI-1 (βNO2=0.13, 95%CI=[0.03,0.24]), which partially mediated the association with MTL atrophy (indirect effect= -0.01, 95% CI=[-0.03,-0.001]). Global WM-SVID at MRI-1 or concurrent change were not significant mediators between exposures and MTL atrophy. Findings support the mediating role of Alzheimer's disease-related neurodegeneration contributing to MTL atrophy associated with late-life exposures to air pollutants. Alzheimer's disease-related neurodegeneration only partially explained associations between exposure and MTL atrophy suggesting the role of multiple neuropathological processes underlying air pollution neurotoxicity on brain aging.
Collapse
Affiliation(s)
- Andrew J. Petkus
- Department of Neurology, University of Southern California, Los Angeles, California, 90033, United States
| | - Lauren E. Salminen
- Department of Neurology, University of Southern California, Los Angeles, California, 90033, United States
- Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, 90033, United States
| | - Xinhui Wang
- Department of Neurology, University of Southern California, Los Angeles, California, 90033, United States
| | - Ira Driscoll
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, 53792, United States
| | - Joshua Millstein
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, California, 90033, United States
| | - Daniel P. Beavers
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, 27101, United States
| | - Mark A. Espeland
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, 27101, United States
| | - Meredith N. Braskie
- Department of Neurology, University of Southern California, Los Angeles, California, 90033, United States
- Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, 90033, United States
| | - Paul M. Thompson
- Department of Neurology, University of Southern California, Los Angeles, California, 90033, United States
- Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, 90033, United States
| | - Ramon Casanova
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, 27101, United States
| | - Margaret Gatz
- Center for Economic and Social Research, University of Southern California, Los Angeles, California, 90089, United States
| | - Helena C. Chui
- Department of Neurology, University of Southern California, Los Angeles, California, 90033, United States
| | - Susan M Resnick
- The Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, Maryland, 20898, United States
| | - Joel D. Kaufman
- Departments of Environmental & Occupational Health Sciences, Medicine (General Internal Medicine), and Epidemiology, University of Washington, Seattle, Washington, 98195, United States
| | - Stephen R. Rapp
- Departments of Psychiatry and Behavioral Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina , 27101, United States
- Department of Social Sciences and Health Policy, Wake Forest School of Medicine, Winston-Salem, North Carolina, 27101, United States
| | - Sally Shumaker
- Department of Social Sciences and Health Policy, Wake Forest School of Medicine, Winston-Salem, North Carolina, 27101, United States
| | - Diana Younan
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, California, 90033, United States
| | - Jiu-Chiuan Chen
- Department of Neurology, University of Southern California, Los Angeles, California, 90033, United States
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, California, 90033, United States
| |
Collapse
|
17
|
Finch CE. Air pollution, dementia, and lifespan in the socio-economic gradient of aging: perspective on human aging for planning future experimental studies. FRONTIERS IN AGING 2023; 4:1273303. [PMID: 38034419 PMCID: PMC10683094 DOI: 10.3389/fragi.2023.1273303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/12/2023] [Indexed: 12/02/2023]
Abstract
Air pollution (AirPoll) accelerates human aging, as assessed by increased adult mortality and earlier onset of cardiovascular diseases, and dementia. Socio-economic strata (SES) of wealth and education have parallel differences of mortality and these diseases. Children from impoverished homes differ in brain development at birth and in risk of early fat excess and hypertension. To further enhance the healthspan, biogerontologists may consider a wider range of environmental exposures from gestation through later life morbidity that comprise the Gero-Exposome. Experimental studies with rodents and nematodes document shared transcriptional responses to AirPoll. In rodents, AirPoll exposure activates gene systems for body-wide detoxification through Nrf2 and NFkB transcription factors that mediate multiple aging processes. Gestational environmental factors include maternal diet and exposure to AirPoll and cigarette smoke. Correspondingly, gestational exposure of mice to AirPoll increased adult body fat, impaired glucose clearance, and decreased adult neurogenesis in the hippocampus, a brain region damaged in dementia. Nematode larvae also respond to AirPoll with Alzheimer relevant responses. These experimental approaches could identify to interventions for expanded human health and longevity across SES gradients.
Collapse
Affiliation(s)
- Caleb E. Finch
- Leonard Davis School of Gerontology and Dornsife College, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
18
|
Aquino GV, Dabi A, Odom GJ, Lavado R, Nunn K, Thomas K, Schackmuth B, Shariff N, Jarajapu M, Pluto M, Miller SR, Eller L, Pressley J, Patel RR, Black J, Bruce ED. Evaluating the effect of acute diesel exhaust particle exposure on P-glycoprotein efflux transporter in the blood-brain barrier co-cultured with microglia. Curr Res Toxicol 2023; 4:100107. [PMID: 37332622 PMCID: PMC10276163 DOI: 10.1016/j.crtox.2023.100107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/15/2023] [Accepted: 06/01/2023] [Indexed: 06/20/2023] Open
Abstract
A growing public health concern, chronic Diesel Exhaust Particle (DEP) exposure is a heavy risk factor for the development of neurodegenerative diseases like Alzheimer's (AD). Considered the brain's first line of defense, the Blood-Brain Barrier (BBB) and perivascular microglia work in tandem to protect the brain from circulating neurotoxic molecules like DEP. Importantly, there is a strong association between AD and BBB dysfunction, particularly in the Aβ transporter and multidrug resistant pump, P-glycoprotein (P-gp). However, the response of this efflux transporter is not well understood in the context of environmental exposures, such as to DEP. Moreover, microglia are seldom included in in vitro BBB models, despite their significance in neurovascular health and disease. Therefore, the goal of this study was to evaluate the effect of acute (24 hr.) DEP exposure (2000 μg/ml) on P-gp expression and function, paracellular permeability, and inflammation profiles of the human in vitro BBB model (hCMEC/D3) with and without microglia (hMC3). Our results suggested that DEP exposure can decrease both the expression and function of P-gp in the BBB, and corroborated that DEP exposure impairs BBB integrity (i.e. increased permeability), a response that was significantly worsened by the influence of microglia in co-culture. Interestingly, DEP exposure seemed to produce atypical inflammation profiles and an unexpected general downregulation in inflammatory markers in both the monoculture and co-culture, which differentially expressed IL-1β and GM-CSF. Interestingly, the microglia in co-culture did not appear to influence the response of the BBB, save in the permeability assay, where it worsened the BBB's response. Overall, our study is important because it is the first (to our knowledge) to investigate the effect of acute DEP exposure on P-gp in the in vitro human BBB, while also investigating the influence of microglia on the BBB's responses to this environmental chemical.
Collapse
Affiliation(s)
- Grace V. Aquino
- Department of Environmental Science, Baylor University, 101 Bagby Ave, Waco, TX 76707, USA
| | - Amjad Dabi
- Department of Bioinformatics and Computational Biology, University of North Carolina Chapel Hill, 120-Mason Farm Rd, Chapel Hill, NC 27514, USA
| | - Gabriel J. Odom
- Department of Biostatistics, Sempel College of Public Health, Florida International University, 11200, SW 8th Street, AHC4-470, Miami, FL 33199, USA
| | - Ramon Lavado
- Department of Environmental Science, Baylor University, 101 Bagby Ave, Waco, TX 76707, USA
| | - Kaitlin Nunn
- Department of Environmental Science, Baylor University, 101 Bagby Ave, Waco, TX 76707, USA
| | - Kathryn Thomas
- Department of Environmental Science, Baylor University, 101 Bagby Ave, Waco, TX 76707, USA
| | - Bennett Schackmuth
- Department of Environmental Science, Baylor University, 101 Bagby Ave, Waco, TX 76707, USA
| | - Nazeel Shariff
- Department of Environmental Science, Baylor University, 101 Bagby Ave, Waco, TX 76707, USA
| | - Manogna Jarajapu
- Department of Environmental Science, Baylor University, 101 Bagby Ave, Waco, TX 76707, USA
| | - Morgan Pluto
- Department of Environmental Science, Baylor University, 101 Bagby Ave, Waco, TX 76707, USA
| | - Sara R. Miller
- Department of Environmental Science, Baylor University, 101 Bagby Ave, Waco, TX 76707, USA
| | - Leah Eller
- Department of Environmental Science, Baylor University, 101 Bagby Ave, Waco, TX 76707, USA
| | - Justin Pressley
- Department of Environmental Science, Baylor University, 101 Bagby Ave, Waco, TX 76707, USA
| | - Rishi R. Patel
- Department of Environmental Science, Baylor University, 101 Bagby Ave, Waco, TX 76707, USA
| | - Jeffrey Black
- Department of Environmental Science, Baylor University, 101 Bagby Ave, Waco, TX 76707, USA
| | - Erica D. Bruce
- Department of Environmental Science, Baylor University, 101 Bagby Ave, Waco, TX 76707, USA
| |
Collapse
|
19
|
Xie H, Cao Y, Li J, Lyu Y, Roberts N, Jia Z. Affective disorder and brain alterations in children and adolescents exposed to outdoor air pollution. J Affect Disord 2023; 331:413-424. [PMID: 36997124 DOI: 10.1016/j.jad.2023.03.082] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/20/2023] [Accepted: 03/24/2023] [Indexed: 04/01/2023]
Abstract
BACKGROUND Childhood and adolescence are critical periods for the development of the brain. However, a limited number of studies have explored how air pollution may associate with affective symptoms in youth. METHODS We performed a comprehensive review of the existing research on the associations between outdoor air pollution and affective disorders, suicidality, and the evidence for brain changes in youth. PRISMA guidelines were followed and PubMed, Embase, Web of Science, Cochrane Library, and PsychINFO databases were searched from their inception to June 2022. RESULTS From 2123 search records, 28 papers were identified as being relevant for studying the association between air pollution and affective disorders (n = 14), suicide (n = 5), and neuroimaging-based evidence of brain alterations (n = 9). The exposure levels and neuropsychological performance measures were highly heterogeneous and confounders including traffic-related noise, indoor air pollution, and social stressors were not consistently considered. Notwithstanding, 10 out of the 14 papers provide evidence that air pollution is associated with increased risk of depression symptoms, and 4 out of 5 papers provide evidence that air pollution might trigger suicidal attempts and behaviors. Besides, 5 neuroimaging studies revealed decreased gray-matter volume in the Cortico-Striato-Thalamo-Cortical neurocircuitry, and two found white matter hyperintensities in the prefrontal lobe. CONCLUSIONS Outdoor air pollution is associated with increased risks of affective disorders and suicide in youth, and there is evidence for associated structural and functional brain abnormalities. Future studies should determine the specific effects of each air pollutant, the critical exposure levels, and population susceptibility.
Collapse
Affiliation(s)
- Hongsheng Xie
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Yuan Cao
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, China; Functional and Molecular Imaging Key Laboratory of Sichuan University, Chengdu, China
| | - Jiafeng Li
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China
| | - Yichen Lyu
- Department of civil and environmental engineering, University of Illinois, Champaign, IL, United States of America
| | - Neil Roberts
- The Queens Medical Research Institute (QMRI), School of Clinical Sciences, University of Edinburgh, Edinburgh, UK
| | - Zhiyun Jia
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China; Functional and Molecular Imaging Key Laboratory of Sichuan University, Chengdu, China.
| |
Collapse
|
20
|
Wei D, Shen S, Lu J, Liu W, Chen N, Lam KBH, Au Yeung SL, Xia H, Qiu X. Association between incense burning and prenatal depressive symptoms: evidence from the Born in Guangzhou Cohort Study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:40860-40869. [PMID: 36622609 DOI: 10.1007/s11356-023-25154-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
This study aimed to examine the association of incense burning alone, a source of indoor air pollution, and jointly with passive smoking, with prenatal depressive symptoms. Information on incense exposure and depressive symptoms were collected at both early and late pregnancy using questionnaires in the Born in Guangzhou Cohort Study. Mixed-effects logistic regression models were used to assess the associations of incense exposure separately, and together with passive smoking, with prenatal depressive symptoms. Compared to the non-users, pregnant women with household incense burning had higher odds of depressive symptoms (odds ratio (OR), 1.17, 95% CI, 1.06, 1.28). Compared with non-users, women who occasionally (OR, 1.22, 95% CI, 1.09, 1.36) and frequently (1.51, 95% CI, 1.26, 1.80) smelled incense had higher odds of prenatal depressive symptoms. Higher duration of incense smelling was associated with higher odds of prenatal depressive symptoms compared with non-users. There was no strong evidence for an interaction of frequency of incense smelling and passive smoking in prenatal depressive symptoms. Prenatal exposure to incense burning was associated with higher odds of having depressive symptoms during pregnancy, and there is no evidence for interaction with concurrent exposure to passive smoking.
Collapse
Affiliation(s)
- Dongmei Wei
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No.9 Jinsui Road, Tianhe District, Guangzhou, 510623, China
- Department of Women's Health, Guangdong Provincial Key Clinical Specialty of Woman and Child Health, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Songying Shen
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No.9 Jinsui Road, Tianhe District, Guangzhou, 510623, China
| | - Jinhua Lu
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No.9 Jinsui Road, Tianhe District, Guangzhou, 510623, China
- Department of Women's Health, Guangdong Provincial Key Clinical Specialty of Woman and Child Health, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Wenyu Liu
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No.9 Jinsui Road, Tianhe District, Guangzhou, 510623, China
| | - Niannian Chen
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No.9 Jinsui Road, Tianhe District, Guangzhou, 510623, China
- Department of Women's Health, Guangdong Provincial Key Clinical Specialty of Woman and Child Health, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | | | - Shiu Lun Au Yeung
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No.9 Jinsui Road, Tianhe District, Guangzhou, 510623, China
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Huimin Xia
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No.9 Jinsui Road, Tianhe District, Guangzhou, 510623, China
- Department of Neonatal Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xiu Qiu
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No.9 Jinsui Road, Tianhe District, Guangzhou, 510623, China.
- Department of Women's Health, Guangdong Provincial Key Clinical Specialty of Woman and Child Health, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.
- Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
21
|
A Review of the GSTM1 Null Genotype Modifies the Association between Air Pollutant Exposure and Health Problems. Int J Genomics 2023; 2023:4961487. [PMID: 36793931 PMCID: PMC9925255 DOI: 10.1155/2023/4961487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 02/08/2023] Open
Abstract
Air pollution is one of the significant environmental risks known as the cause of premature deaths. It has deleterious effects on human health, including deteriorating respiratory, cardiovascular, nervous, and endocrine functions. Exposure to air pollution stimulates reactive oxygen species (ROS) production in the body, which can further cause oxidative stress. Antioxidant enzymes, such as glutathione S-transferase mu 1 (GSTM1), are essential to prevent oxidative stress development by neutralizing excess oxidants. When the antioxidant enzyme function is lacking, ROS can accumulate and, thus, cause oxidative stress. Genetic variation studies from different countries show that GSTM1 null genotype dominates the GSTM1 genotype in the population. However, the impact of the GSTM1 null genotype in modifying the association between air pollution and health problem is not yet clear. This study will elaborate on GSTM1's null genotype role in modifying the relationship between air pollution and health problems.
Collapse
|
22
|
Vastegani SM, Hajipour S, Sarkaki A, Basir Z, Farbood Y, Bavarsad K, Khoshnam SE. Curcumin Ameliorates Neurobehavioral Deficits in Ambient Dusty Particulate Matter-Exposure Rats: The Role of Oxidative Stress. Neurochem Res 2023; 48:1798-1810. [PMID: 36708454 DOI: 10.1007/s11064-023-03877-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/29/2023]
Abstract
It has been consistently found that exposure to ambient air pollution, such as particulate matter (PM), results in cognitive impairments and mental disorders. This study aimed to investigate the possible neuroprotective effects of curcumin, a polyphenol compound, on the neurobehavioral deficits and to identify the role of oxidative stress in dusty PM exposure rats. Rats received curcumin (50 mg/kg, daily, gavage, 2 weeks) 30 min before placing animals in a clean air chamber (≤ 150 µg/m3, 60 min daily, 2 weeks) or ambient dusty PM chamber (2000-8000 µg/m3, 60 min daily, 2 weeks). Subsequently, the cognitive and non-cognitive functions of the animals were evaluated using standard behavioral tests. Moreover, blood-brain barrier (BBB) permeability, brain water content (BWC), oxidative-antioxidative status, and histological changes were determined in the cerebral cortex and hippocampal areas of the rats. Our results showed that curcumin administration in dusty PM exposure rats attenuates memory impairment, decreases anxiety-/depression-like behaviors, and improves locomotor/exploratory activities. These findings were accompanied by reduced BBB permeability and BWC, decreasing oxidative stress, and lessening neuronal loss in the cerebral cortex and different hippocampal areas. The results of this study suggest that curcumin's antioxidant properties may contribute to its efficacy in improving neurobehavioral deficits and preventing neuronal loss associated with dusty PM exposure.
Collapse
Affiliation(s)
- Sadegh Moradi Vastegani
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Somayeh Hajipour
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Sarkaki
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Zahra Basir
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Yaghoob Farbood
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Kowsar Bavarsad
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
23
|
Morgan ZEM, Bailey MJ, Trifonova DI, Naik NC, Patterson WB, Lurmann FW, Chang HH, Peterson BS, Goran MI, Alderete TL. Prenatal exposure to ambient air pollution is associated with neurodevelopmental outcomes at 2 years of age. Environ Health 2023; 22:11. [PMID: 36694159 PMCID: PMC9872424 DOI: 10.1186/s12940-022-00951-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Higher prenatal ambient air pollution exposure has been associated with impaired neurodevelopment in preschoolers and school-aged children. The purpose of this study was to explore the relationships between prenatal ambient air pollution exposure and neurodevelopment during infancy. METHODS This study examined 161 Latino mother-infant pairs from the Southern California Mother's Milk Study. Exposure assessments included prenatal nitrogen dioxide (NO2) and particulate matter smaller than 2.5 and 10 microns in diameter (PM2.5 and PM10, respectively). The pregnancy period was also examined as three windows, early, mid, and late, which describe the first, middle, and last three months of pregnancy. Infant neurodevelopmental outcomes at 2 years of age were measured using the Bayley-III Scales of Infant and Toddler Development. Multivariable linear models and distributed lag linear models (DLM) were used to examine relationships between prenatal exposures and neurodevelopmental scores, adjusting for socioeconomic status, breastfeeding frequency, time of delivery, pre-pregnancy body mass index, and infant birthweight and sex. RESULTS Higher prenatal exposure to PM10 and PM2.5 was negatively associated with composite cognitive score (β = -2.01 [-3.89, -0.13] and β = -1.97 [-3.83, -0.10], respectively). In addition, higher average prenatal exposure to PM10 was negatively associated with composite motor (β = -2.35 [-3.95, -0.74]), scaled motor (β = -0.77 [-1.30, -0.24]), gross motor (β = -0.37 [-0.70, -0.04]), fine motor (β = -0.40 [-0.71, -0.09]), composite language (β = -1.87 [-3.52, -0.22]), scaled language (β = -0.61 [-1.18, -0.05]) and expressive communication scaled scores (β = -0.36 [-0.66, -0.05]). DLMs showed that higher prenatal air pollution exposure during mid and late pregnancy was inversely associated with motor, cognitive, and communication language scores. CONCLUSIONS Higher exposure to air pollutants during pregnancy, particularly in the mid and late prenatal periods, was inversely associated with scaled and composite motor, cognitive, and language scores at 2 years. These results indicate that prenatal ambient air pollution may negatively impact neurodevelopment in early life.
Collapse
Affiliation(s)
- Zachariah E M Morgan
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Maximilian J Bailey
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Diana I Trifonova
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Noopur C Naik
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - William B Patterson
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | | | - Howard H Chang
- Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Bradley S Peterson
- Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA, USA
| | - Michael I Goran
- Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA, USA
| | - Tanya L Alderete
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA.
| |
Collapse
|
24
|
Zhong YX, Liao JC, Liu X, Tian H, Deng LR, Long L. Low intensity focused ultrasound: a new prospect for the treatment of Parkinson's disease. Ann Med 2023; 55:2251145. [PMID: 37634059 PMCID: PMC10461511 DOI: 10.1080/07853890.2023.2251145] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/17/2023] [Accepted: 08/20/2023] [Indexed: 08/28/2023] Open
Abstract
Background: As a chronic and progressive neurodegenerative disease, Parkinson's disease (PD) still lacks effective and safe targeted drug therapy. Low-intensity focused ultrasound (LIFU), a new method to stimulate the brain and open the blood-brain barrier (BBB), has been widely concerned by PD researchers due to its non-invasive characteristics.Methods: PubMed was searched for the past 10 years using the terms 'focused ultrasound', 'transcranial ultrasound', 'pulse ultrasound', and 'Parkinson's disease'. Relevant citations were selected from the authors' references. After excluding articles describing high-intensity focused ultrasound or non-Parkinson's disease applications, we found more than 100 full-text analyses for pooled analysis.Results: Current preclinical studies have shown that LIFU could improve PD motor symptoms by regulating microglia activation, increasing neurotrophic factors, reducing oxidative stress, and promoting nerve repair and regeneration, while LIFU combined with microbubbles (MBs) can promote drugs to cross the BBB, which may become a new direction of PD treatment. Therefore, finding an efficient drug carrier system is the top priority of applying LIFU with MBs to deliver drugs.Conclusions: This article aims to review neuro-modulatory effect of LIFU and the possible biophysical mechanism in the treatment of PD, summarize the latest progress in delivering vehicles with MBs, and discuss its advantages and limitations.
Collapse
Affiliation(s)
- Yun-Xiao Zhong
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jin-Chi Liao
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xv Liu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hao Tian
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Li-Ren Deng
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ling Long
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
25
|
Andrade-Oliva MDLA, Debray-García Y, Morales-Figueroa GE, Escamilla-Sánchez J, Amador-Muñoz O, Díaz-Godoy RV, Kleinman M, Florán B, Arias-Montaño JA, De Vizcaya-Ruiz A. Effect of subchronic exposure to ambient fine and ultrafine particles on rat motor activity and ex vivo striatal dopaminergic transmission. Inhal Toxicol 2023; 35:1-13. [PMID: 36325922 DOI: 10.1080/08958378.2022.2140228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Alterations in dopaminergic transmission are associated with neurological disorders, such as depression, autism, and Parkinson's disease. Exposure of rats to ambient fine (FP) or ultrafine (UFP) particles induces oxidative and inflammatory responses in the striatum, a neuronal nucleus with dense dopaminergic innervation and critically involved in the control of motor activity.Objectives: We used an ex vivo system to evaluate the effect of in vivo inhalation exposure to FP and UFP on motor activity and dopaminergic transmission.Materials and Methods: Male adult Wistar rats were exposed to FP, UFP, or filtered air for 8 weeks (subchronic exposure; 5 h/day, 5 days/week) in a particle concentrator. Motor activity was evaluated using the open-field test. Uptake and release of [3H]-dopamine were assessed in striatal synaptosomes, and dopamine D2 receptor (D2R) affinity for dopamine was evaluated by the displacement of [3H]-spiperone binding to striatal membranes.Results: Exposure to FP or UFP significantly reduced spontaneous motor activity (ambulatory distance: FP -25%, UFP -32%; ambulatory time: FP -24%, UFP -22%; ambulatory episodes: FP -22%, UFP -30%), decreased [3H]-dopamine uptake (FP -18%, UFP -24%), and increased, although not significantly, [3H]-dopamine release (113.3 ± 16.3 and 138.6 ± 17.3%). Neither FP nor UFP exposure affected D2R density or affinity for dopamine.Conclusions: These results indicate that exposure to ambient particulate matter reduces locomotion in rats, which could be related to altered striatal dopaminergic transmission: UFP was more potent than FP. Our results contribute to the evidence linking environmental factors to changes in brain function that could turn into neurological and psychiatric disorders.HIGHLIGHTSYoung adult rats were exposed to fine (FP) or ultrafine (UFP) particles for 40 days.Exposure to FP or UFP reduced motor activity.Exposure to FP or UFP reduced dopamine uptake by striatal synaptosomes.Neither D2R density or affinity for dopamine was affected by FP or UFP.UFP was more potent than FP to exert the effects reported.
Collapse
Affiliation(s)
- María-de-Los-Angeles Andrade-Oliva
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| | - Yazmín Debray-García
- Departamento de Investigación de Toxicología y Medicina Ambiental, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, Mexico
| | - Guadalupe-Elide Morales-Figueroa
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| | - Juan Escamilla-Sánchez
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| | - Omar Amador-Muñoz
- Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Mexico
| | - Raúl V Díaz-Godoy
- Instituto Nacional de Investigaciones Nucleares, Ocoyoacac, Estado de México, México
| | - Michael Kleinman
- Department of Environmental and Occupational Health, University of California, Irvine, Irvine, CA, USA
| | - Benjamín Florán
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| | - José-Antonio Arias-Montaño
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| | - Andrea De Vizcaya-Ruiz
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, Mexico
| |
Collapse
|
26
|
Kim HJ, Kim HS, Kim S, Hwang J, Lee H, Park B, Kim B. Effects of vitamin D on associations between air pollution and mental health outcomes in Korean adults: Results from the Korea National Health and Nutrition Examination Survey (KNHANES). J Affect Disord 2023; 320:390-396. [PMID: 36183827 DOI: 10.1016/j.jad.2022.09.144] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/23/2022] [Accepted: 09/27/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND Evidence suggests that low individual vitamin D levels enhance adverse effects associated with air pollution on mental health conditions. The aim of this study was to identify associations between ambient air pollution exposure, mental health, and serum vitamin D status in the general population of South Korea. METHODS We included national representative data for 29,373 adults in the final analysis. We measured serum 25-hydroxyvitamin D concentrations to assess vitamin D status for each participant. We assessed mental health factors (i.e., perceived stress, depressive symptoms, and suicidal ideation), and analyzed associations between these factors and individuals' annual average exposures to air pollutants, including particulate matter with an aerodynamic diameter ≤ 10 μm (PM10), nitrogen dioxide (NO2), sulfur dioxide, and carbon monoxide (CO). RESULTS Using an adjusted model, we found PM10 affected mental health outcomes, such as perceived stress (odds ratio [OR] = 1.04; 95 % confidence interval [CI] = 1.00-1.09), depression symptoms (OR = 1.12; 95 % CI = 1.06-1.18), and suicidal ideation (OR = 1.11; 95 % CI = 1.05-1.17). Effects of the pollutants NO2 and CO were significant only in the group with perceived stress and depressive symptoms. PM10 and NO2 exposures were significantly associated with increased odds of adverse mental health in participants with vitamin D deficiency. LIMITATIONS Since the cross-sectional design of KNHANES data, it is not possible to evaluate the causal relationship between air pollution exposure, vitamin D status and mental health. CONCLUSIONS This study results suggest that associations between ambient air pollution and mental health outcomes were stronger in participants with vitamin D deficiency.
Collapse
Affiliation(s)
- Hyun-Jin Kim
- National Cancer Control Institute, National Cancer Center, Goyang 10408, Republic of Korea; National Cancer Center Graduate School of Cancer Science and Policy, Goyang 10408, Republic of Korea
| | - Hyo-Seon Kim
- National Cancer Control Institute, National Cancer Center, Goyang 10408, Republic of Korea
| | - Seyoung Kim
- National Cancer Control Institute, National Cancer Center, Goyang 10408, Republic of Korea
| | - Juyeon Hwang
- National Cancer Control Institute, National Cancer Center, Goyang 10408, Republic of Korea
| | - Hyejin Lee
- National Cancer Control Institute, National Cancer Center, Goyang 10408, Republic of Korea
| | - Bohyun Park
- National Cancer Control Institute, National Cancer Center, Goyang 10408, Republic of Korea
| | - Byungmi Kim
- National Cancer Control Institute, National Cancer Center, Goyang 10408, Republic of Korea; National Cancer Center Graduate School of Cancer Science and Policy, Goyang 10408, Republic of Korea.
| |
Collapse
|
27
|
Hu HY, Ma YH, Deng YT, Ou YN, Cheng W, Feng JF, Tan L, Yu JT. Residential greenness and risk of incident dementia: A prospective study of 375,342 participants. ENVIRONMENTAL RESEARCH 2023; 216:114703. [PMID: 36334822 DOI: 10.1016/j.envres.2022.114703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
INTRODUCTION Incorporation of greenspace may be a novel environmental policy that might result in positive health effects; hence, this study aimed to investigate the association between residential greenness and dementia incidence. The effects of particulate air pollution on mediating dementia were also determined. METHODS A prospective cohort study involving 375,342 UK biobank participants was conducted, in which Cox regression models were used to determine the association of greenspace exposure with the risks of all-cause dementia (ACD), Alzheimer's disease (AD) and vascular dementia (VD). Sociodemographic variables, lifestyle or dietary characteristics and apolipoprotein E4 status were controlled using two levels of adjusted models. Mediation analyses were performed to determine the mediation effects of PMs. RESULTS The results indicated that there were 4929 ACD, 2132 AD, and 1184 VD incidents throughout the 8-year study. In the multi-adjusted model, each interquartile increment in greenspace (buffer 300m) conferred the lower risks of ACD (HR = 0.968, 95% confidence intervals [CI]: 0.938-1.000]) and VD (HR = 0.926, 95% CI: 0.867-0.989). The fourth greenspace quartile conferred also reduced risks of ACD (HR = 0.891, 95% CI: 0.804-0.989) and VD (HR = 0.778, 95% CI: 0.630-0.960) in reference to the first quartile. With regard to 1000m catchment, each interquartile increment conferred a 5.0% (95% CI: 1.8-8.1) lower risk of ACD, and the fourth greenspace quartile conferred a 10.9% (95% CI: 0.9-19.8) lower risk of ACD compared to the first quartile. The protective effect of greenness might be mediated based on the reduction of PM2.5 and PM10 (Pindirect effect<0.05). CONCLUSIONS Increasing greenness reduces the risk of dementia. This study suggests that greenspace is an environmental strategy that helps prevent dementia.
Collapse
Affiliation(s)
- He-Ying Hu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China.
| | - Ya-Hui Ma
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China.
| | - Yue-Ting Deng
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Ya-Nan Ou
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China.
| | - Wei Cheng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.
| | - Jian-Feng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China.
| | - Jin-Tai Yu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
28
|
Kyi-Tha-Thu C, Fujitani Y, Hirano S, Win-Shwe TT. Early-Life Exposure to Traffic-Related Air Pollutants Induced Anxiety-like Behaviors in Rats via Neurotransmitters and Neurotrophic Factors. Int J Mol Sci 2022; 24:ijms24010586. [PMID: 36614034 PMCID: PMC9820394 DOI: 10.3390/ijms24010586] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/06/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Abstract
Recent epidemiological studies have reported significantly increasing hospital admission rates for mental disorders such as anxiety and depression, not only in adults but also in children and adolescents, indicating more research is needed for evaluation of the etiology and possible reduction and prevention of these disorders. The aim of the present study was to examine the associations between perinatal exposure to traffic-related air pollutants and anxiety-like behaviors and alterations in neurological and immunological markers in adulthood using a rat model. Sprague Dawley pregnant rats were exposed to clean air (control), diesel exhaust (DE) 101 ± 9 μg/m3 or diesel exhaust origin secondary organic aerosol (DE-SOA) 118 ± 23 μg/m3 from gestational day 14 to postnatal day 21. Anxiety-related behavioral tests including open field tests, elevated plus maze, light/dark transition tests and novelty-induced hypophagia were performed on 10-week-old rats. The hippocampal expression of neurotransmitters, neurotrophic factors, and inflammatory molecular markers was examined by real-time RT-PCR. Anxiety-like behaviors were observed in both male and female rat offspring exposed to DE or DE-SOA. Moreover, serotonin receptor (5HT1A), dopamine receptor (Drd2), brain-derived neurotrophic factor and vascular endothelial growth factor A mRNAs were significantly decreased, whereas interleukin-1β, cyclooxygenase-2, heme oxygenase-1 mRNAs and microglial activation were significantly increased in both male and female rats. These findings indicate that brain developmental period exposure to traffic-related air pollutants may induce anxiety-like behaviors via modulation of neurotransmitters, neurotrophic factors, and immunological molecular markers, triggering neuroinflammation and microglia activation in rats.
Collapse
Affiliation(s)
- Chaw Kyi-Tha-Thu
- Department of Immunology, School of Medicine, International University of Health and Welfare, 4-3, Kozunomori, Narita 286-8686, Chiba, Japan
| | - Yuji Fujitani
- Health and Environmental Risk Division, National Institute for Environmental Studies, Tsukuba 305-8506, Ibaraki, Japan
| | - Seishiro Hirano
- Health and Environmental Risk Division, National Institute for Environmental Studies, Tsukuba 305-8506, Ibaraki, Japan
| | - Tin-Tin Win-Shwe
- Health and Environmental Risk Division, National Institute for Environmental Studies, Tsukuba 305-8506, Ibaraki, Japan
- Correspondence: ; Tel.: +81-29-850-2542
| |
Collapse
|
29
|
Molot J, Sears M, Marshall LM, Bray RI. Neurological susceptibility to environmental exposures: pathophysiological mechanisms in neurodegeneration and multiple chemical sensitivity. REVIEWS ON ENVIRONMENTAL HEALTH 2022; 37:509-530. [PMID: 34529912 DOI: 10.1515/reveh-2021-0043] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/13/2021] [Indexed: 05/23/2023]
Abstract
The World Health Organization lists air pollution as one of the top five risks for developing chronic non-communicable disease, joining tobacco use, harmful use of alcohol, unhealthy diets and physical inactivity. This review focuses on how host defense mechanisms against adverse airborne exposures relate to the probable interacting and overlapping pathophysiological features of neurodegeneration and multiple chemical sensitivity. Significant long-term airborne exposures can contribute to oxidative stress, systemic inflammation, transient receptor subfamily vanilloid 1 (TRPV1) and subfamily ankyrin 1 (TRPA1) upregulation and sensitization, with impacts on olfactory and trigeminal nerve function, and eventual loss of brain mass. The potential for neurologic dysfunction, including decreased cognition, chronic pain and central sensitization related to airborne contaminants, can be magnified by genetic polymorphisms that result in less effective detoxification. Onset of neurodegenerative disorders is subtle, with early loss of brain mass and loss of sense of smell. Onset of MCS may be gradual following long-term low dose airborne exposures, or acute following a recognizable exposure. Upregulation of chemosensitive TRPV1 and TRPA1 polymodal receptors has been observed in patients with neurodegeneration, and chemically sensitive individuals with asthma, migraine and MCS. In people with chemical sensitivity, these receptors are also sensitized, which is defined as a reduction in the threshold and an increase in the magnitude of a response to noxious stimulation. There is likely damage to the olfactory system in neurodegeneration and trigeminal nerve hypersensitivity in MCS, with different effects on olfactory processing. The associations of low vitamin D levels and protein kinase activity seen in neurodegeneration have not been studied in MCS. Table 2 presents a summary of neurodegeneration and MCS, comparing 16 distinctive genetic, pathophysiological and clinical features associated with air pollution exposures. There is significant overlap, suggesting potential comorbidity. Canadian Health Measures Survey data indicates an overlap between neurodegeneration and MCS (p < 0.05) that suggests comorbidity, but the extent of increased susceptibility to the other condition is not established. Nevertheless, the pathways to the development of these conditions likely involve TRPV1 and TRPA1 receptors, and so it is hypothesized that manifestation of neurodegeneration and/or MCS and possibly why there is divergence may be influenced by polymorphisms of these receptors, among other factors.
Collapse
Affiliation(s)
- John Molot
- Family Medicine, University of Ottawa Faculty of Medicine, North York, ON, Canada
| | | | | | - Riina I Bray
- Family and Community Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
30
|
Zare Sakhvidi MJ, Lafontaine A, Lequy E, Berr C, de Hoogh K, Vienneau D, Goldberg M, Zins M, Lemogne C, Jacquemin B. Ambient air pollution exposure and depressive symptoms: Findings from the French CONSTANCES cohort. ENVIRONMENT INTERNATIONAL 2022; 170:107622. [PMID: 36384066 DOI: 10.1016/j.envint.2022.107622] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND AND AIM Few studies have reported the association between air pollution exposure with different dimensions of depression. We aimed to explore this association across different dimensions of depressive symptoms in a large population. METHODS Data from the enrollment phase of the French CONSTANCES cohort (2012-2020) were analyzed cross-sectionally. Annual concentrations of particulate matter with a diameter < 2.5 µm (PM2.5), black carbon (BC), and nitrogen dioxide (NO2) from the land-use regression models were assigned to the residential addresses of participants. Total depressive symptoms and its four dimensions (depressed affect, disturbed interpersonal relations, low positive affect, somatic complaints) were measured using Centre of Epidemiologic Studies Depression questionnaire (CES-D). We reported results of negative binomial regression models (reported as Incidence Rate Ratio (IRR) and 95 % confidence interval (CI) for an interquartile range (IQR) increase in exposure), for each pollutant separately. Stratified analyses were performed by sex, income, family status, education, and neighborhood deprivation. RESULTS The study included 123,754 participants (mean age, 46.50 ± 13.61 years; 52.4 % women). The mean concentration of PM2.5, BC and NO2 were 17.14 µg/m3 (IQR = 4.89), 1.82 10-5/m (IQR = 0.88) and 26.58 µg/m3 (IQR = 17.41) respectively. Exposures to PM2.5, BC and NO2 were significantly associated with a higher CES-D total (IRR = 1.022; 95 % CI = 1.002: 1.042, IRR = 1.027; 95 % CI = 1.013: 1.040, and IRR = 1.029; 95 % CI = 1.015: 1.042 respectively), and with depressed affect, and somatic complaints. For all pollutants, a higher estimate was observed for depressed affect. We found stronger adverse associations for men, lower-income participants, low and middle education groups, those living in highly deprived areas, and single participants. CONCLUSION Our finding could assist the exploration of the etiological pathway of air pollution on depression and also considering primary prevention strategies in the areas with air pollution.
Collapse
Affiliation(s)
- Mohammad Javad Zare Sakhvidi
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Antoine Lafontaine
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Emeline Lequy
- Université Paris Cité, Unité "Cohortes en Population" INSERM, Université Paris Saclay, UVSQ, UMS 011 Paris, France
| | - Claudine Berr
- University of Montpellier, INM, Inserm U1198 Neuropeps team, Montpellier, France; Memory Research and Resources Center, Department of Neurology, Montpellier, France
| | - Kees de Hoogh
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Danielle Vienneau
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Marcel Goldberg
- Université Paris Cité, Unité "Cohortes en Population" INSERM, Université Paris Saclay, UVSQ, UMS 011 Paris, France
| | - Marie Zins
- Université Paris Cité, Unité "Cohortes en Population" INSERM, Université Paris Saclay, UVSQ, UMS 011 Paris, France
| | - Cédric Lemogne
- Université Paris Cité, INSERM U1266, Institut de Psychiatrie et Neurosciences de Paris, F-75014 Paris, France; Service de Psychiatrie de l'adulte, AP-HP, Hôpital Hôtel-Dieu, F-75004 Paris, France
| | - Bénédicte Jacquemin
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France.
| |
Collapse
|
31
|
Serafini MM, Maddalon A, Iulini M, Galbiati V. Air Pollution: Possible Interaction between the Immune and Nervous System? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192316037. [PMID: 36498110 PMCID: PMC9738575 DOI: 10.3390/ijerph192316037] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/14/2022] [Accepted: 11/26/2022] [Indexed: 06/01/2023]
Abstract
Exposure to environmental pollutants is a serious and common public health concern associated with growing morbidity and mortality worldwide, as well as economic burden. In recent years, the toxic effects associated with air pollution have been intensively studied, with a particular focus on the lung and cardiovascular system, mainly associated with particulate matter exposure. However, epidemiological and mechanistic studies suggest that air pollution can also influence skin integrity and may have a significant adverse impact on the immune and nervous system. Air pollution exposure already starts in utero before birth, potentially causing delayed chronic diseases arising later in life. There are, indeed, time windows during the life of individuals who are more susceptible to air pollution exposure, which may result in more severe outcomes. In this review paper, we provide an overview of findings that have established the effects of air pollutants on the immune and nervous system, and speculate on the possible interaction between them, based on mechanistic data.
Collapse
|
32
|
Liu T, Zhou Y, Wei J, Chen Q, Xu R, Pan J, Lu W, Wang Y, Fan Z, Li Y, Xu L, Cui X, Shi C, Zhang L, Chen X, Bao W, Sun H, Liu Y. Association between short-term exposure to ambient air pollution and dementia mortality in Chinese adults. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 849:157860. [PMID: 35934025 DOI: 10.1016/j.scitotenv.2022.157860] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Short-term exposure to ambient air pollution has been linked to an increased risk of mortality from a variety of causes, but its effects on mortality from dementia remain largely unknown. OBJECTIVES To investigate the association between short-term exposure to ambient air pollution and dementia mortality, and quantitatively assess the excess mortality. METHODS In this time-stratified case-crossover study, 47,108 dementia deaths were identified in Jiangsu province, China during 2015-2019. Exposure to particulate matter with an aerodynamic diameter ≤ 2.5 μm (PM2.5), PM10, sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), and ozone (O3) was assessed by extracting daily concentrations from a validated grid dataset based on each subject's residential address. Conditional logistic regression models were applied for exposure-response analyses. RESULTS There were 47,108 case days and 159,852 control days during the study period. Each 10 μg/m3 increase of lag 04-day exposure to PM2.5, PM10, and NO2 was significantly associated with a 1.43 % (95 % CI: 0.77, 2.09 %), 1.06 % (0.59, 1.54 %), and 2.80 % (1.51, 4.10 %) increase in odds of dementia mortality, corresponding to an excess mortality of 4.87 %, 5.50 %, and 6.43 %, respectively. We estimated that reducing ambient air pollutant exposures to the WHO air quality guidelines would avoid up to 4.17 % of the dementia deaths, while the ambient air quality standards in China would only help avoid up to 0.39 %. CONCLUSIONS This study provides consistent evidence that short-term exposure to PM2.5, PM10, and NO2 is associated with increased odds of dementia mortality, which can be translated to a considerable excess mortality. Our findings highlight a potential approach to prevent deaths from dementia by reducing individual exposures to ambient air pollution, especially in areas with high levels of ambient air pollution.
Collapse
Affiliation(s)
- Tingting Liu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Yun Zhou
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China; Department of Preventive Medicine, School of Public Health, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD 20740, USA
| | - Qi Chen
- Department of Environment and Health, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu 210009, China
| | - Ruijun Xu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Jingju Pan
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan, Hubei 430079, China
| | - Wenfeng Lu
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China; Department of Preventive Medicine, School of Public Health, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Yaqi Wang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Zhaoyu Fan
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Yingxin Li
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Luxi Xu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Xiuqing Cui
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan, Hubei 430079, China
| | - Chunxiang Shi
- Meteorological Data Laboratory, National Meteorological Information Center, Beijing 100081, China
| | - Lan Zhang
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan, Hubei 430079, China
| | - Xi Chen
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Wei Bao
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hong Sun
- Department of Environment and Health, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu 210009, China.
| | - Yuewei Liu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.
| |
Collapse
|
33
|
Glaubitz L, Stumme J, Lucht S, Moebus S, Schramm S, Jockwitz C, Hoffmann B, Caspers S. Association between Long-Term Air Pollution, Chronic Traffic Noise, and Resting-State Functional Connectivity in the 1000BRAINS Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:97007. [PMID: 36154234 PMCID: PMC9512146 DOI: 10.1289/ehp9737] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/04/2022] [Accepted: 07/22/2022] [Indexed: 06/02/2023]
Abstract
BACKGROUND Older adults show a high variability in cognitive performance that cannot be explained by aging alone. Although research has linked air pollution and noise to cognitive impairment and structural brain alterations, the potential impact of air pollution and noise on functional brain organization is unknown. OBJECTIVE This study examined the associations between long-term air pollution and traffic noise with measures of functional brain organization in older adults. We hypothesize that exposures to high air pollution and noise levels are associated with age-like changes in functional brain organization, shown by less segregated brain networks. METHODS Data from 574 participants (44.1% female, 56-85 years of age) in the German 1000BRAINS study (2011-2015) were analyzed. Exposure to particulate matter (PM10, PM2.5, and PM2.5 absorbance), accumulation mode particle number (PNAM), and nitrogen dioxide (NO2) was estimated applying land-use regression and chemistry transport models. Noise exposures were assessed as weighted 24-h (Lden) and nighttime (Lnight) means. Functional brain organization of seven established brain networks (visual, sensorimotor, dorsal and ventral attention, limbic, frontoparietal and default network) was assessed using resting-state functional brain imaging data. To assess functional brain organization, we determined the degree of segregation between networks by comparing the strength of functional connections within and between networks. We estimated associations between air pollution and noise exposure with network segregation, applying multiple linear regression models adjusted for age, sex, socioeconomic status, and lifestyle variables. RESULTS Overall, small associations of high exposures with lesser segregated networks were visible. For the sensorimotor networks, we observed small associations between high air pollution and noise and lower network segregation, which had a similar effect size as a 1-y increase in age [e.g., in sensorimotor network, -0.006 (95% CI: -0.021, 0.009) per 0.3 ×10-5/m increase in PM2.5 absorbance and -0.004 (95% CI: -0.006, -0.002) per 1-y age increase]. CONCLUSION High exposure to air pollution and noise was associated with less segregated functional brain networks. https://doi.org/10.1289/EHP9737.
Collapse
Affiliation(s)
- Lina Glaubitz
- Environmental Epidemiology Group, Institute of Occupational, Social and Environmental Medicine, Centre for Health and Society, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Johanna Stumme
- Institute of Neuroscience and Medicine, Research Centre Jülich, Jülich, Germany
- Institute for Anatomy I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sarah Lucht
- Environmental Epidemiology Group, Institute of Occupational, Social and Environmental Medicine, Centre for Health and Society, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Susanne Moebus
- Institute for Urban Public Health, University of Duisburg-Essen, Essen, Germany
| | - Sara Schramm
- Institute of Medical Informatics, Biometry and Epidemiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Christiane Jockwitz
- Institute of Neuroscience and Medicine, Research Centre Jülich, Jülich, Germany
- Institute for Anatomy I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Barbara Hoffmann
- Environmental Epidemiology Group, Institute of Occupational, Social and Environmental Medicine, Centre for Health and Society, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Svenja Caspers
- Institute of Neuroscience and Medicine, Research Centre Jülich, Jülich, Germany
- Institute for Anatomy I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
34
|
Shkirkova K, Lamorie-Foote K, Zhang N, Li A, Diaz A, Liu Q, Thorwald MA, Godoy-Lugo JA, Ge B, D'Agostino C, Zhang Z, Mack WJ, Sioutas C, Finch CE, Mack WJ, Zhang H. Neurotoxicity of Diesel Exhaust Particles. J Alzheimers Dis 2022; 89:1263-1278. [PMID: 36031897 DOI: 10.3233/jad-220493] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Air pollution particulate matter (PM) is strongly associated with risks of accelerated cognitive decline, dementia and Alzheimer's disease. Ambient PM batches have variable neurotoxicity by collection site and season, which limits replicability of findings within and between research groups for analysis of mechanisms and interventions. Diesel exhaust particles (DEP) offer a replicable model that we define in further detail. OBJECTIVE Define dose- and time course neurotoxic responses of mice to DEP from the National Institute of Science and Technology (NIST) for neurotoxic responses shared by DEP and ambient PM. METHODS For dose-response, adult C57BL/6 male mice were exposed to 0, 25, 50, and 100μg/m3 of re-aerosolized DEP (NIST SRM 2975) for 5 h. Then, mice were exposed to 100μg/m3 DEP for 5, 100, and 200 h and assayed for amyloid-β peptides, inflammation, oxidative damage, and microglial activity and morphology. RESULTS DEP exposure at 100μg/m3 for 5 h, but not lower doses, caused oxidative damage, complement and microglia activation in cerebral cortex and corpus callosum. Longer DEP exposure for 8 weeks/200 h caused further oxidative damage, increased soluble Aβ, white matter injury, and microglial soma enlargement that differed by cortical layer. CONCLUSION Exposure to 100μg/m3 DEP NIST SRM 2975 caused robust neurotoxic responses that are shared with prior studies using DEP or ambient PM0.2. DEP provides a replicable model to study neurotoxic mechanisms of ambient PM and interventions relevant to cognitive decline and dementia.
Collapse
Affiliation(s)
- Kristina Shkirkova
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Krista Lamorie-Foote
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Nathan Zhang
- Dornsife College, University of Southern California, Los Angeles, CA, USA
| | - Andrew Li
- Dornsife College, University of Southern California, Los Angeles, CA, USA
| | - Arnold Diaz
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Qinghai Liu
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Max A Thorwald
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Jose A Godoy-Lugo
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Brandon Ge
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Carla D'Agostino
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Zijiao Zhang
- Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Wendy J Mack
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Constantinos Sioutas
- Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Caleb E Finch
- Dornsife College, University of Southern California, Los Angeles, CA, USA.,Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - William J Mack
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Hongqiao Zhang
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
35
|
Song J, Han K, Wang Y, Qu R, Liu Y, Wang S, Wang Y, An Z, Li J, Wu H, Wu W. Microglial Activation and Oxidative Stress in PM2.5-Induced Neurodegenerative Disorders. Antioxidants (Basel) 2022; 11:antiox11081482. [PMID: 36009201 PMCID: PMC9404971 DOI: 10.3390/antiox11081482] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/20/2022] [Accepted: 07/27/2022] [Indexed: 11/22/2022] Open
Abstract
Fine particulate matter (PM2.5) pollution remains a prominent environmental problem worldwide, posing great threats to human health. The adverse effects of PM2.5 on the respiratory and cardiovascular systems have been extensively studied, while its detrimental effects on the central nervous system (CNS), specifically neurodegenerative disorders, are less investigated. Neurodegenerative disorders are characterized by reduced neurogenesis, activated microglia, and neuroinflammation. A variety of studies involving postmortem examinations, epidemiological investigations, animal experiments, and in vitro cell models have shown that PM2.5 exposure results in neuroinflammation, oxidative stress, mitochondrial dysfunction, neuronal apoptosis, and ultimately neurodegenerative disorders, which are strongly associated with the activation of microglia. Microglia are the major innate immune cells of the brain, surveilling and maintaining the homeostasis of CNS. Upon activation by environmental and endogenous insults, such as PM exposure, microglia can enter an overactivated state that is featured by amoeboid morphology, the over-production of reactive oxygen species, and pro-inflammatory mediators. This review summarizes the evidence of microglial activation and oxidative stress and neurodegenerative disorders following PM2.5 exposure. Moreover, the possible mechanisms underlying PM2.5-induced microglial activation and neurodegenerative disorders are discussed. This knowledge provides certain clues for the development of therapies that may slow or halt the progression of neurodegenerative disorders induced by ambient PM.
Collapse
Affiliation(s)
- Jie Song
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China; (J.S.); (K.H.); (R.Q.); (Y.L.); (S.W.); (Y.W.); (Z.A.); (J.L.); (H.W.)
| | - Keyang Han
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China; (J.S.); (K.H.); (R.Q.); (Y.L.); (S.W.); (Y.W.); (Z.A.); (J.L.); (H.W.)
| | - Ya Wang
- Nursing School, Zhenjiang College, Zhenjiang 212028, China;
| | - Rongrong Qu
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China; (J.S.); (K.H.); (R.Q.); (Y.L.); (S.W.); (Y.W.); (Z.A.); (J.L.); (H.W.)
| | - Yuan Liu
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China; (J.S.); (K.H.); (R.Q.); (Y.L.); (S.W.); (Y.W.); (Z.A.); (J.L.); (H.W.)
| | - Shaolan Wang
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China; (J.S.); (K.H.); (R.Q.); (Y.L.); (S.W.); (Y.W.); (Z.A.); (J.L.); (H.W.)
| | - Yinbiao Wang
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China; (J.S.); (K.H.); (R.Q.); (Y.L.); (S.W.); (Y.W.); (Z.A.); (J.L.); (H.W.)
| | - Zhen An
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China; (J.S.); (K.H.); (R.Q.); (Y.L.); (S.W.); (Y.W.); (Z.A.); (J.L.); (H.W.)
| | - Juan Li
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China; (J.S.); (K.H.); (R.Q.); (Y.L.); (S.W.); (Y.W.); (Z.A.); (J.L.); (H.W.)
| | - Hui Wu
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China; (J.S.); (K.H.); (R.Q.); (Y.L.); (S.W.); (Y.W.); (Z.A.); (J.L.); (H.W.)
| | - Weidong Wu
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China; (J.S.); (K.H.); (R.Q.); (Y.L.); (S.W.); (Y.W.); (Z.A.); (J.L.); (H.W.)
- Correspondence:
| |
Collapse
|
36
|
Turner AL, Brokamp C, Wolfe C, Reponen T, Brunst KJ, Ryan PH. Mental and Physical Stress Responses to Personal Ultrafine Particle Exposure in Adolescents. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19127509. [PMID: 35742759 PMCID: PMC9223710 DOI: 10.3390/ijerph19127509] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 02/05/2023]
Abstract
Incidence rates of mental health disorders among adolescents is increasing, indicating a strong need for effective prevention efforts at a population level. The etiology of mental health disorders includes genetic, social, and environmental factors. Ultrafine particles (UFPs; particles less than 0.1 μm in diameter) have been shown to exert neurotoxic effects on the brain; however, epidemiologic evidence on the relationship between UFPs and childhood mental health outcomes is unclear. The objective of this study was to determine if exposure to UFPs was associated with symptoms of mental health in adolescents. Adolescents completed personal UFP monitoring for one week as well as a series of validated Patient-Reported Outcomes Measurement Information System (PROMIS) assessments to measure five domains of mental and physical stress symptoms. Multivariable linear regression models were used to estimate the association between PROMIS domain T-scores and median weekly personal UFP exposure with the inclusion of interactions to explore sex differences. We observed that median weekly UFP exposure was significantly associated with physical stress symptoms (β: 5.92 per 10-fold increase in UFPs, 95% CI [0.72, 11.13]) but no other measured domains. Further, we did not find effect modification by sex on any of the PROMIS outcomes. The results of this study indicate UFPs are associated with physical symptoms of stress response among adolescents, potentially contributing to mental health disorders in this population.
Collapse
Affiliation(s)
- Ashley L. Turner
- Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (C.B.); (C.W.); (P.H.R.)
- Correspondence: ; Tel.: +1-630-306-2259
| | - Cole Brokamp
- Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (C.B.); (C.W.); (P.H.R.)
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Chris Wolfe
- Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (C.B.); (C.W.); (P.H.R.)
| | - Tiina Reponen
- Department of Environmental and Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, OH 45221, USA; (T.R.); (K.J.B.)
| | - Kelly J. Brunst
- Department of Environmental and Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, OH 45221, USA; (T.R.); (K.J.B.)
| | - Patrick H. Ryan
- Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (C.B.); (C.W.); (P.H.R.)
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45221, USA
| |
Collapse
|
37
|
Sola P, Krishnamurthy PT, Kumari M, Byran G, Gangadharappa HV, Garikapati KK. Neuroprotective approaches to halt Parkinson's disease progression. Neurochem Int 2022; 158:105380. [PMID: 35718278 DOI: 10.1016/j.neuint.2022.105380] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 02/07/2023]
Abstract
One of the most significant threats in Parkinson's disease (PD) is neurodegeneration. Neurodegeneration at both nigral as well as non-nigral regions of the brain is considered responsible for disease progression in PD. The key factors that initiate neurodegeneration are oxidative stress, neuroinflammation, mitochondrial complex-1 inhibition, and abnormal α-synuclein (SNCA) protein aggregations. Nigral neurodegeneration results in motor symptoms (tremor, bradykinesia, rigidity, shuffling gait, and postural instability) whereas; non-nigral neurodegeneration is responsible for non-motor symptoms (depression, cognitive dysfunctions, sleep disorders, hallucination, and psychosis). The available therapies for PD aim at increasing dopamine levels. The medications such as Monoamine oxidase B (MAO-B) inhibitors, catechol o-methyltransferase (COMT) inhibitors, Dopamine precursor (Levodopa), dopamine agonists, and dopamine reuptake inhibitors drastically improve the motor symptoms and quality of life only in the early stages of the disease. However, dopa resistant motor symptoms (abnormality in posture, speech impediment, gait, and balance problems), dopa resistant non-motor signs (sleep problems, autonomic dysfunction, mood, and cognitive impairment, pain), and drug-related side effects (motor fluctuations, psychosis, and dyskinesias) are considered responsible for the failure of these therapies. Further, none of the treatments, alone or in combination, are capable of halting the disease progression in the long run. Therefore, there is a need to develop safe and efficient neuroprotective agents, which can slow or stop the disease progression for the better management of PD. In this review, an effort has been made to discuss the various mechanisms responsible for progressive neurodegeneration (disease progression) in PD and also multiple strategies available for halting disease progression.
Collapse
Affiliation(s)
- Piyong Sola
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, 643001, India
| | - Praveen Thaggikuppe Krishnamurthy
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, 643001, India.
| | - Mamta Kumari
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, 643001, India
| | - Gowramma Byran
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, 643001, India
| | | | - Kusuma Kumari Garikapati
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, 643001, India
| |
Collapse
|
38
|
Particulate Matter Exacerbates the Death of Dopaminergic Neurons in Parkinson's Disease through an Inflammatory Response. Int J Mol Sci 2022; 23:ijms23126487. [PMID: 35742931 PMCID: PMC9223534 DOI: 10.3390/ijms23126487] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 01/27/2023] Open
Abstract
Particulate matter (PM), a component of air pollution, has been epidemiologically associated with a variety of diseases. Recent reports reveal that PM has detrimental effects on the brain. In this study, we aimed to investigate the biological effects of ambient particles on the neurodegenerative disease Parkinson’s disease (PD). We exposed mice to coarse particles (PM10: 2.5–10 μm) for short (5 days) and long (8 weeks) durations via intratracheal instillation. Long-term PM10 exposure exacerbated motor impairment and dopaminergic neuron death in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse models. Short-term PM10 exposure resulted in both pulmonary and systemic inflammatory responses in mice. We further investigated the mechanism underlying PM10-induced neurotoxicity in cocultures of lung LA-4 epithelial cells and RAW264.7 macrophages. PM10 treatment elicited a dramatic increase in proinflammatory mediators in LA-4/RAW264.7 coculture. Treating BV2 microglial cells with PM10-treated conditioned medium induced microglial activation. Furthermore, 1-methyl-4-phenylpyridinium (MPP+) treatment caused notable cell death in N2A neurons cocultured with activated BV2 cells in PM10-conditioned medium. Altogether, our results demonstrated that PM10 plays a role in the neurodegeneration associated with PD. Thus, the impact of PM10 on neurodegeneration could be related to detrimental air pollution-induced systemic effects on the brain.
Collapse
|
39
|
Ni Y, Loftus CT, Szpiro AA, Young MT, Hazlehurst MF, Murphy LE, Tylavsky FA, Mason WA, LeWinn KZ, Sathyanarayana S, Barrett ES, Bush NR, Karr CJ. Associations of Pre- and Postnatal Air Pollution Exposures with Child Behavioral Problems and Cognitive Performance: A U.S. Multi-Cohort Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:67008. [PMID: 35737514 PMCID: PMC9222764 DOI: 10.1289/ehp10248] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
BACKGROUND Population studies support the adverse associations of air pollution exposures with child behavioral functioning and cognitive performance, but few studies have used spatiotemporally resolved pollutant assessments. OBJECTIVES We investigated these associations using more refined exposure assessments in 1,967 mother-child dyads from three U.S. pregnancy cohorts in six cities in the ECHO-PATHWAYS Consortium. METHODS Pre- and postnatal nitrogen dioxide (NO2) and particulate matter (PM) ≤2.5μm in aerodynamic diameter (PM2.5) exposures were derived from an advanced spatiotemporal model. Child behavior was reported as Total Problems raw score using the Child Behavior Checklist at age 4-6 y. Child cognition was assessed using cohort-specific cognitive performance scales and quantified as the Full-Scale Intelligence Quotient (IQ). We fitted multivariate linear regression models that were adjusted for sociodemographic, behavioral, and psychological factors to estimate associations per 2-unit increase in pollutant in each exposure window and examined modification by child sex. Identified critical windows were further verified by distributed lag models (DLMs). RESULTS Mean NO2 and PM2.5 ranged from 8.4 to 9.0 ppb and 8.4 to 9.1 μg/m3, respectively, across pre- and postnatal windows. Average child Total Problems score and IQ were 22.7 [standard deviation (SD): 18.5] and 102.6 (SD: 15.3), respectively. Children with higher prenatal NO2 exposures were likely to have more behavioral problems [β: 1.24; 95% confidence interval (CI): 0.39, 2.08; per 2 ppb NO2], particularly NO2 in the first and second trimester. Each 2-μg/m3 increase in PM2.5 at age 2-4 y was associated with a 3.59 unit (95% CI: 0.35, 6.84) higher Total Problems score and a 2.63 point (95% CI: -5.08, -0.17) lower IQ. The associations between PM2.5 and Total Problems score were generally stronger in girls. Most predefined windows identified were not confirmed by DLMs. DISCUSSION Our study extends earlier findings that have raised concerns about impaired behavioral functioning and cognitive performance in children exposed to NO2 and PM2.5 in utero and in early life. https://doi.org/10.1289/EHP10248.
Collapse
Affiliation(s)
- Yu Ni
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington, USA
| | - Christine T. Loftus
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington, USA
| | - Adam A. Szpiro
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, Washington, USA
| | - Michael T. Young
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington, USA
| | - Marnie F. Hazlehurst
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington, USA
| | - Laura E. Murphy
- Department of Psychiatry, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Frances A. Tylavsky
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - W. Alex Mason
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Kaja Z. LeWinn
- Department of Psychiatry, School of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Sheela Sathyanarayana
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington, USA
- Department of Pediatrics, School of Medicine, University of Washington, Seattle, Washington, USA
- Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Emily S. Barrett
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey, USA
| | - Nicole R. Bush
- Department of Psychiatry, School of Medicine, University of California, San Francisco, San Francisco, California, USA
- Department of Pediatrics, School of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Catherine J. Karr
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington, USA
- Department of Pediatrics, School of Medicine, University of Washington, Seattle, Washington, USA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington, USA
| |
Collapse
|
40
|
Margolis AE, Liu R, Conceição VA, Ramphal B, Pagliaccio D, DeSerisy ML, Koe E, Selmanovic E, Raudales A, Emanet N, Quinn AE, Beebe B, Pearson BL, Herbstman JB, Rauh VA, Fifer WP, Fox NA, Champagne FA. Convergent neural correlates of prenatal exposure to air pollution and behavioral phenotypes of risk for internalizing and externalizing problems: Potential biological and cognitive pathways. Neurosci Biobehav Rev 2022; 137:104645. [PMID: 35367513 DOI: 10.1016/j.neubiorev.2022.104645] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/20/2022] [Accepted: 03/28/2022] [Indexed: 02/04/2023]
Abstract
Humans are ubiquitously exposed to neurotoxicants in air pollution, causing increased risk for psychiatric outcomes. Effects of prenatal exposure to air pollution on early emerging behavioral phenotypes that increase risk of psychopathology remain understudied. We review animal models that represent analogues of human behavioral phenotypes that are risk markers for internalizing and externalizing problems (behavioral inhibition, behavioral exuberance, irritability), and identify commonalities among the neural mechanisms underlying these behavioral phenotypes and the neural targets of three types of air pollutants (polycyclic aromatic hydrocarbons, traffic-related air pollutants, fine particulate matter < 2.5 µm). We conclude that prenatal exposure to air pollutants increases risk for behavioral inhibition and irritability through distinct mechanisms, including altered dopaminergic signaling and hippocampal morphology, neuroinflammation, and decreased brain-derived neurotrophic factor expression. Future studies should investigate these effects in human longitudinal studies incorporating complex exposure measurement methods, neuroimaging, and behavioral characterization of temperament phenotypes and neurocognitive processing to facilitate efforts aimed at improving long-lasting developmental benefits for children, particularly those living in areas with high levels of exposure.
Collapse
Affiliation(s)
- Amy E Margolis
- Division of Child and Adolescent Psychiatry, New York State Psychiatric Institute, New York, NY, USA; Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| | - Ran Liu
- Division of Child and Adolescent Psychiatry, New York State Psychiatric Institute, New York, NY, USA; Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Vasco A Conceição
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Bruce Ramphal
- Division of Child and Adolescent Psychiatry, New York State Psychiatric Institute, New York, NY, USA; Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - David Pagliaccio
- Division of Child and Adolescent Psychiatry, New York State Psychiatric Institute, New York, NY, USA; Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Mariah L DeSerisy
- Division of Child and Adolescent Psychiatry, New York State Psychiatric Institute, New York, NY, USA; Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Emily Koe
- Division of Child and Adolescent Psychiatry, New York State Psychiatric Institute, New York, NY, USA; Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Ena Selmanovic
- Division of Child and Adolescent Psychiatry, New York State Psychiatric Institute, New York, NY, USA; Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Amarelis Raudales
- Division of Child and Adolescent Psychiatry, New York State Psychiatric Institute, New York, NY, USA; Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Nur Emanet
- Division of Child and Adolescent Psychiatry, New York State Psychiatric Institute, New York, NY, USA; Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Aurabelle E Quinn
- Division of Child and Adolescent Psychiatry, New York State Psychiatric Institute, New York, NY, USA
| | - Beatrice Beebe
- Division of Child and Adolescent Psychiatry, New York State Psychiatric Institute, New York, NY, USA; Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Brandon L Pearson
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Julie B Herbstman
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA; Columbia Center for Children's Environmental Health, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Virginia A Rauh
- Columbia Center for Children's Environmental Health, Mailman School of Public Health, Columbia University, New York, NY, USA; Heilbrunn Department of Population & Family Health, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - William P Fifer
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Pediatrics, Columbia University Medical Center, New York, NY, USA; Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY, USA
| | - Nathan A Fox
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD, USA; Department of Human Development and Quantitative Methodology, University of Maryland, College Park, MD, USA
| | | |
Collapse
|
41
|
Ultrafine Diesel Exhaust Particles Induce Apoptosis of Oligodendrocytes by Increasing Intracellular Reactive Oxygen Species through NADPH Oxidase Activation. Antioxidants (Basel) 2022; 11:antiox11051031. [PMID: 35624895 PMCID: PMC9137819 DOI: 10.3390/antiox11051031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/20/2022] [Accepted: 05/20/2022] [Indexed: 02/04/2023] Open
Abstract
Diesel exhaust particles (DEPs) are a main contributor to air pollution. Ultrafine DEPs can cause neurodegenerative diseases by increasing intracellular reactive oxygen species (ROS). Compared with other cells in the brain, oligodendrocytes responsible for myelination are more susceptible to oxidative stress. However, the mechanisms underlying ROS generation in oligodendrocytes and the susceptibility of oligodendrocytes to ROS by ultrafine DEPs remain unclear. Herein, we examined the effects of excessive ROS generated by NOX2, an isoform of the NADPH oxidase family, after exposure to ultrafine DEPs (200 μg/mL) on the survival of two types of oligodendrocytes—oligodendrocyte precursor cells (OPCs) and mature oligodendrocytes (mOLs)––isolated from the brain of neonatal rats. In addition, mice were exposed to ultrafine DEP suspension (20 μL, 0.4 mg/mL) via the nasal route for 1 week, after which the expression of NOX2 and cleaved caspase-3 was examined in the white matter of the cerebellum. Exposure to DEPs significantly increased NOX2 expression and ROS generation in OPCs and mOLs. OPCs and mOLs clearly exhibited viability reduction, and a significant change in p53, Bax, Bcl-2, and cleaved caspase-3 expression, after DEP exposure. In contrast, treatment with berberine (BBR), an NOX2 inhibitor, significantly mitigated these effects. In mice exposed to DEP, the presence of NOX2-positive and cleaved caspase-3-positive oligodendrocytes was demonstrated in the cerebellar white matter; NOX2 and cleaved caspase-3 expression in the cerebellum lysates was significantly increased. BBR treatment returned expression of these proteins to control levels. These results demonstrate that the susceptibility of OPCs and mOLs to ultrafine DEPs is, at least in part, caused by excessive ROS produced by NOX2 and the sequential changes in the expression of p53, Bax, Bcl-2, and cleaved caspase-3. Overall, NOX2 inhibitor enhances the survival of two types of oligodendrocytes.
Collapse
|
42
|
Cristaldi A, Fiore M, Oliveri Conti G, Pulvirenti E, Favara C, Grasso A, Copat C, Ferrante M. Possible association between PM 2.5 and neurodegenerative diseases: A systematic review. ENVIRONMENTAL RESEARCH 2022; 208:112581. [PMID: 34979121 DOI: 10.1016/j.envres.2021.112581] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Air pollution is one of the most serious environmental problems that afflict our planet and one of the greatest risk factors for human health. In particular, PM2.5 is able to cross the blood-alveolar and blood-brain barriers, thus increasing the onset of respiratory, cardiovascular and neurodegenerative diseases. Neurodegenerative disease is a progressive neuronal dysfunction that leads to neuronal lesions in both structure and function, and includes several diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), vascular dementia (VaD), multiple sclerosis (MS), and others. We carried out a systematic review using PRISMA approach to investigate on the possible association between exposure to PM2.5 and neurodegenerative diseases. The international databases (PubMed, Science Direct, Web of Sciences) were used to find published studies on the topic. The search period was between January 2011 and June 2021. About 2000 full research articles were selected, and finally, we included 20 full-research articles. Selected studies have highlighted how PM2.5 exposure can be associated with the onset of neurodegenerative diseases (AD, PD, MS, VaD). This association depends not only on age, PM2.5 levels and exposure time, but also on exposure to other air pollutants, proximity to areas with high vehicular traffic, and the presence of comorbidities. Exposure to PM2.5 promotes neuroinflammation processes, because through breathing the particles can reach the nasal epithelial mucosa and transferred to the brain through the olfactory bulb. Furthermore, exposure to PM2.5 has been associated with an increased expression of markers of neurodegenerative diseases (e.g. alpha-synuclein or beta-amyloid), which can contribute to the etiopathogenesis of neurodegenerative diseases. Although many studies have revealed the pathological relationship between PM2.5 exposure and cognitive impairment, the potential cellular and molecular mechanisms of PM2.5 leading to neurodegenerative disease remain not entirely clear, and then, further studies need to be carried out on the topic.
Collapse
Affiliation(s)
- Antonio Cristaldi
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, Catania, 95123, Italy
| | - Maria Fiore
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, Catania, 95123, Italy
| | - Gea Oliveri Conti
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, Catania, 95123, Italy.
| | - Eloise Pulvirenti
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, Catania, 95123, Italy
| | - Claudia Favara
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, Catania, 95123, Italy
| | - Alfina Grasso
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, Catania, 95123, Italy
| | - Chiara Copat
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, Catania, 95123, Italy
| | - Margherita Ferrante
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, Catania, 95123, Italy
| |
Collapse
|
43
|
Murata H, Barnhill LM, Bronstein JM. Air Pollution and the Risk of Parkinson's Disease: A Review. Mov Disord 2022; 37:894-904. [PMID: 35043999 PMCID: PMC9119911 DOI: 10.1002/mds.28922] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/15/2021] [Accepted: 12/27/2021] [Indexed: 12/11/2022] Open
Abstract
Parkinson's disease, as well as other neurodegenerative disorders, are primarily characterized by pathological accumulation of proteins, inflammation, and neuron loss. Although there are some known genetic risk factors, most cases cannot be explained by genetics alone. Therefore, it is important to determine the environmental factors that confer risk and the mechanisms by which they act. Recent epidemiological studies have found that exposure to air pollution is associated with an increased risk for development of Parkinson's disease, although not all results are uniform. The variability between these studies is likely due to differences in what components of air pollution are measured, timing and methods used to determine exposures, and correction for other variables. There are several potential mechanisms by which air pollution could act to increase the risk for development of Parkinson's disease, including direct neuronal toxicity, induction of systemic inflammation leading to central nervous system inflammation, and alterations in gut physiology and the microbiome. Taken together, air pollution is an emerging risk factor in the development of Parkinson's disease. A number of potential mechanisms have been implicated by which it promotes neuropathology providing biological plausibility, and these mechanisms are likely relevant to the development of other neurodegenerative disorders such as Alzheimer's disease. This field is in its early stages, but a better understanding of how environmental exposures influence the pathogenesis of neurodegeneration is essential for reducing the incidence of disease and finding disease-modifying therapies. © 2022 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
| | | | - Jeff M. Bronstein
- David Geffen School of Medicine at UCLA, Department of Neurology and Molecular Toxicology, 710 Westwood Plaza, Los Angeles, CA 90095
| |
Collapse
|
44
|
Wang KC, Lo YTC, Liao CC, Jou YY, Huang HB. Associations Between Symptoms of Depression and Air Pollutant Exposure Among Older Adults: Results From the Taiwan Longitudinal Study on Aging (TLSA). Front Public Health 2022; 9:779192. [PMID: 35096739 PMCID: PMC8790292 DOI: 10.3389/fpubh.2021.779192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 12/17/2021] [Indexed: 11/22/2022] Open
Abstract
Background: Little epidemiological research has investigated the associations of air pollutant exposure over various time windows with older adults' symptoms of depression. This study aimed to analyze the relationships of long- and short-term ambient air pollution exposure (to coarse particulate matter, O3, SO2, CO, and NOx) with depressive symptoms in a sample of community-dwelling older adults. Methods: A sample of older adults (n = 1,956) was recruited from a nationally representative multiple-wave study (Taiwan Longitudinal Study on Aging). Between 1996 and 2007, four waves of surveys investigated depressive symptoms by using the 10-item Center for Epidemiologic Studies Depression questionnaire. We approximated air pollutant concentrations from 1995 to 2007 by using daily concentration data for five air pollutants at air quality monitoring stations in the administrative zone of participants' residences. after adjusting for covariates, we applied generalized linear mixed models to analyze associations for different exposure windows (7-, 14-, 21-, 30-, 60-, 90-, and 180-day and 1-year moving averages). Results: In a one-pollutant model, long- and short-term exposure to CO and NOx was associated with heightened risks of depressive symptoms; the odds ratio and corresponding 95% confidence interval for each interquartile range (IQR) increment in CO at 7-, 14-, 21-, 30-, 60-, 90-, and 180-day and 1-year moving averages were 1.232 (1.116, 1.361), 1.237 (1.136, 1.348), 1.216 (1.128, 1.311), 1.231 (1.133, 1.338), 1.224 (1.124, 1.332), 1.192 (1.106, 1.285), 1.228 (1.122, 1.344), and 1.180 (1.102, 1.265), respectively. Those for each IQR increment in NOx were 1.312 (1.158, 1.488), 1.274 (1.162, 1.398), 1.295 (1.178, 1.432), 1.310 (1.186, 1.447), 1.345 (1.209, 1.496), 1.348 (1.210, 1.501), 1.324 (1.192, 1.471), and 1.219 (1.130, 1.314), respectively. The exposure to PM10, O3, and SO2 over various windows were not significant. In the two-pollutant model, only the associations of NOx exposure with depressive symptoms remained robust after adjustment for any other pollutant. Conclusions: Exposure to traffic-associated air pollutants could increase depression risks among older adults.
Collapse
Affiliation(s)
- Kuan-Chin Wang
- School of Public Health, National Defense Medical Center, Taipei, Taiwan
| | - Yuan-Ting C Lo
- School of Public Health, National Defense Medical Center, Taipei, Taiwan
| | - Chun-Cheng Liao
- Department of Family Medicine, Taichung Armed Forces General Hospital, Taichung, Taiwan
| | - Yann-Yuh Jou
- Health Promotion Administration, Ministry of Health and Welfare, Taipei, Taiwan
| | - Han-Bin Huang
- School of Public Health, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
45
|
He F, Tang J, Zhang T, Lin J, Li F, Gu X, Chen A, Nevill A, Chen R. Impact of air pollution exposure on the risk of Alzheimer's disease in China: A community-based cohort study. ENVIRONMENTAL RESEARCH 2022; 205:112318. [PMID: 34742710 DOI: 10.1016/j.envres.2021.112318] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/25/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
Alzheimer's disease (AD) is the most common type of dementia. Impact of air pollution (AP) on the risk of AD is unclear. It is unknown which air pollutants are independently associated with AD and whether fish consumption mitigated the association. We carried out a community-based cohort of 6115 participants aged ≥60 years in China to examine the association of PM2.5, PM10, CO, NO2, SO2 and O3 exposure with AD, and differences in the association between people with low and high consumption of fish. The participants were randomly recruited from six counties in Zhejiang province for health survey to document socio-demographic and disease risk factors in 2014, and were followed up to diagnose AD in 2019. A total of 986 cohort members were diagnosed with AD. Based on the daily mean air pollutants monitored in 2013-2015 in the counties, participants were divided into low, middle and high AP exposure groups for subsequent analysis. The multiple adjusted odds ratio (OR) of AD in participants living with the middle and high levels of PM2.5 exposure versus the low exposure were 1.50 (95% CI 0.90-2.50) and 3.92 (2.09-7.37). The increased ORs were also with PM10 (1.74, 0.65-4.64; 3.00, 1.22-7.41) and CO (2.86, 1.32-6.20; 1.19, 0.45-3.18), but not with NO2 (0.63, 0.17-2.27; 0.95, 0.28-3.19), SO2 (0.44, 0.19-1.001; 1.21, 0.56-2.62), and O3 (0.38, 0.20-0.74; 0.50, 0.21-1.21). There were no significant interaction effects of AP with fish consumption on AD. However, participants with low consumption of fish appeared to have higher ORs in PM2.5 exposure (1.80, 1.39-2.33; 5.18, 3.93-6.82) than those high consumption (1.38, 0.78-2.47; 2.89, 1.50-5.59). Our findings of PM2.5, PM10 and CO exposure significantly increased the risk of AD and the potential mitigating effect of fish consumption on the association provide evidence for developing effective strategies for AD reduction and air pollution control.
Collapse
Affiliation(s)
- Fan He
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Jie Tang
- Faculty of Education, Health and Wellbeing, University of Wolverhampton, UK; Department of Preventive Medicine, School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Tao Zhang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Junfen Lin
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Fudong Li
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Xue Gu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Anthony Chen
- Institute of Epidemiology and Health Care, University College London, UK
| | - Alan Nevill
- Faculty of Education, Health and Wellbeing, University of Wolverhampton, UK
| | - Ruoling Chen
- Faculty of Education, Health and Wellbeing, University of Wolverhampton, UK.
| |
Collapse
|
46
|
Jia ZL, Zhu CY, Rajendran RS, Xia Q, Liu KC, Zhang Y. Impact of airborne total suspended particles (TSP) and fine particulate matter (PM 2.5 )-induced developmental toxicity in zebrafish (Danio rerio) embryos. J Appl Toxicol 2022; 42:1585-1602. [PMID: 35315093 DOI: 10.1002/jat.4325] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/14/2022] [Accepted: 02/22/2022] [Indexed: 01/11/2023]
Abstract
Airborne total suspended particles (TSP) and particulate matter (PM2.5 ) threaten global health and their potential impact on cardiovascular and respiratory diseases are extensively studied. Recent studies attest premature deaths, low birth weight, and congenital anomalies in the fetus of pregnant women exposed to air pollution. In this regard, only few studies have explored the effects of TSP and PM2.5 on cardiovascular and cerebrovascular development. As both TSP and PM2.5 differ in size and composition, this study is attempted to assess the variability in toxicity effects between TSP and PM2.5 on the development of cardiovascular and cerebrovascular systems and the underlying mechanisms in a zebrafish model. To explore the potential toxic effects of TSP and PM2.5 , zebrafish embryos/larvae were exposed to 25, 50, 100, 200, and 400 μg/ml of TSP and PM2.5 from 24 to 120 hpf (hours post-fertilization). Both TSP and PM2.5 exposure increased the rate of mortality, malformations, and oxidative stress, whereas locomotor behavior, heart rate, blood flow velocity, development of cardiovasculature and neurovasculature, and dopaminergic neurons were reduced. The expression of genes involved in endoplasmic reticulum stress (ERS), Wnt signaling, and central nervous system (CNS) development were altered in a dose- and time-dependent manner. This study provides evidence for acute exposure to TSP and PM2.5 -induced cardiovascular and neurodevelopmental toxicity, attributed to enhanced oxidative stress and aberrant gene expression. Comparatively, the effects of PM2.5 were more pronounced than TSP.
Collapse
Affiliation(s)
- Zhi-Li Jia
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, China.,Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, Shandong Province, China.,School of life sciences, Henan University, Kaifeng, Henan Province, China
| | - Cheng-Yue Zhu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, China.,Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, Shandong Province, China
| | - R Samuel Rajendran
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, China.,Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, Shandong Province, China
| | - Qing Xia
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, China.,Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, Shandong Province, China
| | - Ke-Chun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, China.,Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, Shandong Province, China
| | - Yun Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, China.,Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, Shandong Province, China
| |
Collapse
|
47
|
Mata C, Lappharat S, Chusiri Y, Khumjorhor M, Taneepanichskul N. Effect of residential proximity to the lignite-fired power plant on depression, sleep quality, and morning salivary cortisol in the elderly. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 811:151346. [PMID: 34728209 DOI: 10.1016/j.scitotenv.2021.151346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/14/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
Exposures to air pollution of by-products emission from the lignite-fired power plant elevated risks of carcinogenic effects, endocrine disruptors, central nervous system structural and functional changes. Residence in the proximity of the lignite-fired power plant appeared to have more chance to have higher risks of health problems. This study aimed to assess associations of residential proximity to the lignite-fired power plant on depression, sleep quality, and morning salivary cortisol among the elderly. The distance of residential proximity to the power plant was categorized into three groups (units in kilometer): <10 km, 10-15 km, and >15 km. The coefficients of log (morning salivary cortisol) was -0.320 (95%CI: -0.460, -0.179; p-value < 0.001) for those living <10 km compared to those living >15 km. Coefficients of sleep quality score were 1.350 (95%CI: 0.265, 2.436; p-value = 0.015) for those living <10 km compared to those living >15 km. Residential proximity to the lignite-fired power plant was not associated with depression. Our study concluded that living within 10 km to the lignite-fired power plant was related to negative health outcomes among the elderly. Policymakers need to reconsider the distance of the buffer zone to the power plant.
Collapse
Affiliation(s)
- Chatsuda Mata
- College of Public Health Sciences, Chulalongkorn University, Bangkok, Thailand; Community Public Health, Lampang Rajabhat University, Lampang, Thailand.
| | - Sattamat Lappharat
- Department of Research and International Relations, Sirindhorn College of Public Health, Yala, Thailand.
| | - Yaowares Chusiri
- Chemistry Program, Faculty of Science, Lampang Rajabhat University, Lampang, Thailand.
| | | | - Nutta Taneepanichskul
- College of Public Health Sciences, Chulalongkorn University, Bangkok, Thailand; HAUS IAQ Research Unit, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University King Chulalongkorn Memorial Hospital, Bangkok, Thailand.
| |
Collapse
|
48
|
Yan C, Wu X, Cao X, Li M, Zhou L, Xiu G, Zeng J. In vitro and in vitro toxicity study of diesel exhaust particles using BEAS-2B cell line and the nematode Caenorhabditis elegans as biological models. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:60704-60716. [PMID: 34160767 DOI: 10.1007/s11356-021-14908-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 06/10/2021] [Indexed: 06/13/2023]
Abstract
It is well accepted that diesel exhaust particles (DEPs) are highly associated with improper function of organ systems. In this study, DEP toxicity was performed by using in vitro human BEAS-2B cell line and in vivo animal model, namely, Caenorhabditis elegans (C. elegans). The potential toxicity of DEP was assessed by the apical endpoints of BEAS-2B cell line and reflections of C. elegans under exposure scenarios of 0~50 μg mL-1 DEP. With the increase of DEP exposure concentration, microscopic accumulations in the cytoplasm of cell line and intestine of C. elegans were observed. Such invasion of DEP impaired the behaviors of C. elegans as well as its un-exposed offspring and caused significant impeded locomotion. Moreover, the disorders of dopaminergic function were observed simultaneously under DEP exposure, specifically manifested by the decreased transcriptional expression of dat-1. The stress responses instructed by the expression of hsp-16.2 were also increased sharply in TJ375 strain of C. elegans at DEP concentrations of 1 and 10 μg mL-1. In the case of cellular reactions to DEP exposure, the injuries of membrane integrity and the decreased viability of cell line were simultaneously identified, and reactive oxygen species (ROS), damaged DNA fragment, and upregulated apoptosis were monotonically elevated in cell lines with the increase of DEP concentrations. This study provided a systematic insight into toxicity of DEP both in vivo and vitro, demonstrating that DEP exposure could disturb the stability of cell system and further threat the stability of organism.
Collapse
Affiliation(s)
- Chenzhi Yan
- Shanghai Environmental Protection Key Laboratory for Environmental Standard and Risk Management of Chemical Pollutants, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
- State Environmental Protection Key Lab of Environmental Risk Assessment and Control on Chemical Processes. School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xuan Wu
- Shanghai Environmental Protection Key Laboratory for Environmental Standard and Risk Management of Chemical Pollutants, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
- State Environmental Protection Key Lab of Environmental Risk Assessment and Control on Chemical Processes. School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xue Cao
- Shanghai Environmental Protection Key Laboratory for Environmental Standard and Risk Management of Chemical Pollutants, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China.
- State Environmental Protection Key Lab of Environmental Risk Assessment and Control on Chemical Processes. School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Meng Li
- American Chemical Society, 2 Kexueyuan Nanlu, Haidian District, Beijing, 100190, China
| | - Lei Zhou
- Shanghai Environmental Protection Key Laboratory for Environmental Standard and Risk Management of Chemical Pollutants, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
- State Environmental Protection Key Lab of Environmental Risk Assessment and Control on Chemical Processes. School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Guangli Xiu
- Shanghai Environmental Protection Key Laboratory for Environmental Standard and Risk Management of Chemical Pollutants, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China.
- State Environmental Protection Key Lab of Environmental Risk Assessment and Control on Chemical Processes. School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| | - Jiayi Zeng
- The Second Affiliated High School of East China Normal University, Shanghai, 201203, China
| |
Collapse
|
49
|
Effects of diesel exhaust particles and urban particles on brain endothelial cells. Toxicol Res 2021; 38:91-98. [PMID: 35070944 PMCID: PMC8748579 DOI: 10.1007/s43188-021-00110-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/26/2021] [Accepted: 09/29/2021] [Indexed: 01/03/2023] Open
Abstract
Exposure to diesel exhaust particles (DEPs) and urban particles (UPs) increases the incidence of degenerative brain diseases as well as respiratory diseases. However, there is limited evidence on the mechanism of neurotoxicity on exposure to these particles. In the present study, the damage to blood-brain barrier (BBB) function by DEP or UP exposure was evaluated in bEnd.3 cells, which are derived from the brain tissue of Balb/c mice. It was demonstrated that DEP and UP exposure may induce oxidative stress via increasing reactive oxygen species (ROS) and decreasing total antioxidant capacity (TAC) level in bEnd.3 cells. In addition, cells exposed to DEP and UP demonstrated a resistance value of about 50% each compared to the value noted prior to exposure; additionally, Claudin-5 and ZO-1 expression levels were significantly decreased compared to the corresponding levels in the control. It was inferred that DEP or UP exposure diminishes the expression of tight junction proteins in endothelial cells through ROS generation, thereby enhancing endothelial membrane permeability. This study showed that DEPs or UPs induced cell permeability and oxidative stress by increasing ROS generation in bEnd.3 cells. This suggests the possibility that exposure to DEPs or UPs may compromise the integrity of the BBB and induce adverse effects in the CNS.
Collapse
|
50
|
Lecordier S, Manrique-Castano D, El Moghrabi Y, ElAli A. Neurovascular Alterations in Vascular Dementia: Emphasis on Risk Factors. Front Aging Neurosci 2021; 13:727590. [PMID: 34566627 PMCID: PMC8461067 DOI: 10.3389/fnagi.2021.727590] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 08/05/2021] [Indexed: 12/25/2022] Open
Abstract
Vascular dementia (VaD) constitutes the second most prevalent cause of dementia in the world after Alzheimer’s disease (AD). VaD regroups heterogeneous neurological conditions in which the decline of cognitive functions, including executive functions, is associated with structural and functional alterations in the cerebral vasculature. Among these cerebrovascular disorders, major stroke, and cerebral small vessel disease (cSVD) constitute the major risk factors for VaD. These conditions alter neurovascular functions leading to blood-brain barrier (BBB) deregulation, neurovascular coupling dysfunction, and inflammation. Accumulation of neurovascular impairments over time underlies the cognitive function decline associated with VaD. Furthermore, several vascular risk factors, such as hypertension, obesity, and diabetes have been shown to exacerbate neurovascular impairments and thus increase VaD prevalence. Importantly, air pollution constitutes an underestimated risk factor that triggers vascular dysfunction via inflammation and oxidative stress. The review summarizes the current knowledge related to the pathological mechanisms linking neurovascular impairments associated with stroke, cSVD, and vascular risk factors with a particular emphasis on air pollution, to VaD etiology and progression. Furthermore, the review discusses the major challenges to fully elucidate the pathobiology of VaD, as well as research directions to outline new therapeutic interventions.
Collapse
Affiliation(s)
- Sarah Lecordier
- Neuroscience Axis, Research Center of CHU de Québec-Université Laval, Québec City, QC, Canada.,Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Québec City, QC, Canada
| | - Daniel Manrique-Castano
- Neuroscience Axis, Research Center of CHU de Québec-Université Laval, Québec City, QC, Canada.,Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Québec City, QC, Canada
| | - Yara El Moghrabi
- Neuroscience Axis, Research Center of CHU de Québec-Université Laval, Québec City, QC, Canada.,Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Québec City, QC, Canada
| | - Ayman ElAli
- Neuroscience Axis, Research Center of CHU de Québec-Université Laval, Québec City, QC, Canada.,Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Québec City, QC, Canada
| |
Collapse
|