1
|
Zhu Y, Yao L, Gallo-Ferraz AL, Bombassaro B, Simões MR, Abe I, Chen J, Sarker G, Ciccarelli A, Zhou L, Lee C, Sidarta-Oliveira D, Martínez-Sánchez N, Dustin ML, Zhan C, Horvath TL, Velloso LA, Kajimura S, Domingos AI. Sympathetic neuropeptide Y protects from obesity by sustaining thermogenic fat. Nature 2024; 634:243-250. [PMID: 39198648 PMCID: PMC11446830 DOI: 10.1038/s41586-024-07863-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 07/22/2024] [Indexed: 09/01/2024]
Abstract
Human mutations in neuropeptide Y (NPY) have been linked to high body mass index but not altered dietary patterns1. Here we uncover the mechanism by which NPY in sympathetic neurons2,3 protects from obesity. Imaging of cleared mouse brown and white adipose tissue (BAT and WAT, respectively) established that NPY+ sympathetic axons are a smaller subset that mostly maps to the perivasculature; analysis of single-cell RNA sequencing datasets identified mural cells as the main NPY-responsive cells in adipose tissues. We show that NPY sustains the proliferation of mural cells, which are a source of thermogenic adipocytes in both BAT and WAT4-6. We found that diet-induced obesity leads to neuropathy of NPY+ axons and concomitant depletion of mural cells. This defect was replicated in mice with NPY abrogated from sympathetic neurons. The loss of NPY in sympathetic neurons whitened interscapular BAT, reducing its thermogenic ability and decreasing energy expenditure before the onset of obesity. It also caused adult-onset obesity of mice fed on a regular chow diet and rendered them more susceptible to diet-induced obesity without increasing food consumption. Our results indicate that, relative to central NPY, peripheral NPY produced by sympathetic nerves has the opposite effect on body weight by sustaining energy expenditure independently of food intake.
Collapse
Affiliation(s)
- Yitao Zhu
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Lu Yao
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Ana L Gallo-Ferraz
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | - Bruna Bombassaro
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | - Marcela R Simões
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | - Ichitaro Abe
- Beth Israel Deaconess Medical Center, Division of Endocrinology, Diabetes & Metabolism, Harvard Medical School, Boston, MA, USA
- Department of Cardiology and Clinical Examination, Oita University, Faculty of Medicine, Oita, Japan
| | - Jing Chen
- School of Sport Science, Beijing Sport University, Beijing, China
| | - Gitalee Sarker
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | | | - Linna Zhou
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Carl Lee
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | | | - Noelia Martínez-Sánchez
- Oxford Centre for Diabetes, Endocrinology and Metabolism Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Michael L Dustin
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Cheng Zhan
- Department of Haematology, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Tamas L Horvath
- Department of Obstetrics/Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
| | - Licio A Velloso
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | - Shingo Kajimura
- Beth Israel Deaconess Medical Center, Division of Endocrinology, Diabetes & Metabolism, Harvard Medical School, Boston, MA, USA
| | - Ana I Domingos
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
2
|
Kumari R, Pascalau R, Wang H, Bajpayi S, Yurgel M, Quansah K, Hattar S, Tampakakis E, Kuruvilla R. Sympathetic NPY controls glucose homeostasis, cold tolerance, and cardiovascular functions in mice. Cell Rep 2024; 43:113674. [PMID: 38236776 PMCID: PMC10951981 DOI: 10.1016/j.celrep.2024.113674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/17/2023] [Accepted: 01/01/2024] [Indexed: 01/30/2024] Open
Abstract
Neuropeptide Y (NPY) is best known for its effects in the brain as an orexigenic and anxiolytic agent and in reducing energy expenditure. NPY is also co-expressed with norepinephrine (NE) in sympathetic neurons. Although NPY is generally considered to modulate noradrenergic responses, its specific roles in autonomic physiology remain under-appreciated. Here, we show that sympathetic-derived NPY is essential for metabolic and cardiovascular regulation in mice. NPY and NE are co-expressed in 90% of prevertebral sympathetic neurons and only 43% of paravertebral neurons. NPY-expressing neurons primarily innervate blood vessels in peripheral organs. Sympathetic-specific NPY deletion elicits pronounced metabolic and cardiovascular defects in mice, including reductions in insulin secretion, glucose tolerance, cold tolerance, and pupil size and elevated heart rate, while notably, however, basal blood pressure was unchanged. These findings provide insight into target tissue-specific functions of NPY derived from sympathetic neurons and imply its potential involvement in metabolic and cardiovascular diseases.
Collapse
Affiliation(s)
- Raniki Kumari
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Raluca Pascalau
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Hui Wang
- Section on Light and Circadian Rhythms, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sheetal Bajpayi
- Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Maria Yurgel
- Section on Light and Circadian Rhythms, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kwaku Quansah
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA; Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Samer Hattar
- Section on Light and Circadian Rhythms, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Emmanouil Tampakakis
- Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Rejji Kuruvilla
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
3
|
Lorsignol A, Rabiller L, Labit E, Casteilla L, Pénicaud L. The nervous system and adipose tissues: a tale of dialogues. Am J Physiol Endocrinol Metab 2023; 325:E480-E490. [PMID: 37729026 DOI: 10.1152/ajpendo.00115.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/16/2023] [Accepted: 09/18/2023] [Indexed: 09/22/2023]
Abstract
White, beige, and brown adipose tissues play a crucial role in maintaining energy homeostasis. Due to the heterogeneous and diffuse nature of fat pads, this balance requires a fine and coordinated control of many actors and therefore permanent dialogues between these tissues and the central nervous system. For about two decades, many studies have been devoted to describe the neuro-anatomical and functional complexity involved to ensure this dialogue. Thus, if it is now clearly demonstrated that there is an efferent sympathetic innervation of different fat depots controlling plasticity as well as metabolic functions of the fat pad, the crucial role of sensory innervation capable of detecting local signals informing the central nervous system of the metabolic state of the relevant pads is much more recent. The purpose of this review is to provide the current state of knowledge on this subject.
Collapse
Affiliation(s)
- Anne Lorsignol
- RESTORE, CNRS, Inserm, Université de Toulouse, Toulouse, France
| | - Lise Rabiller
- RESTORE, CNRS, Inserm, Université de Toulouse, Toulouse, France
| | - Elodie Labit
- RESTORE, CNRS, Inserm, Université de Toulouse, Toulouse, France
| | - Louis Casteilla
- RESTORE, CNRS, Inserm, Université de Toulouse, Toulouse, France
| | - Luc Pénicaud
- RESTORE, CNRS, Inserm, Université de Toulouse, Toulouse, France
| |
Collapse
|
4
|
Sommer J, Ehnis H, Seitz T, Schneider J, Wild AB, Moceri S, Buechler C, Bozec A, Weber GF, Merkel S, Beckervordersandforth R, Steinkasserer A, Schüle R, Trebicka J, Hartmann A, Bosserhoff A, von Hörsten S, Dietrich P, Hellerbrand C. Four-and-a-Half LIM-Domain Protein 2 (FHL2) Induces Neuropeptide Y (NPY) in Macrophages in Visceral Adipose Tissue and Promotes Diet-Induced Obesity. Int J Mol Sci 2023; 24:14943. [PMID: 37834391 PMCID: PMC10573629 DOI: 10.3390/ijms241914943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Obesity is characterized by the expansion of the adipose tissue, usually accompanied by inflammation, with a prominent role of macrophages infiltrating the visceral adipose tissue (VAT). This chronic inflammation is a major driver of obesity-associated comorbidities. Four-and-a-half LIM-domain protein 2 (FHL2) is a multifunctional adaptor protein that is involved in the regulation of various biological functions and the maintenance of the homeostasis of different tissues. In this study, we aimed to gain new insights into the expression and functional role of FHL2 in VAT in diet-induced obesity. We found enhanced FHL2 expression in the VAT of mice with Western-type diet (WTD)-induced obesity and obese humans and identified macrophages as the cellular source of enhanced FHL2 expression in VAT. In mice with FHL2 deficiency (FHL2KO), WTD feeding resulted in reduced body weight gain paralleled by enhanced energy expenditure and uncoupling protein 1 (UCP1) expression, indicative of activated thermogenesis. In human VAT, FHL2 was inversely correlated with UCP1 expression. Furthermore, macrophage infiltration and the expression of the chemokine MCP-1, a known promotor of macrophage accumulation, was significantly reduced in WTD-fed FHL2KO mice compared with wild-type (wt) littermates. While FHL2 depletion did not affect the differentiation or lipid metabolism of adipocytes in vitro, FHL2 depletion in macrophages resulted in reduced expressions of MCP-1 and the neuropeptide Y (NPY). Furthermore, WTD-fed FHL2KO mice showed reduced NPY expression in VAT compared with wt littermates, and NPY expression was enhanced in VAT resident macrophages of obese individuals. Stimulation with recombinant NPY induced not only UCP1 expression and lipid accumulation but also MCP-1 expression in adipocytes. Collectively, these findings indicate that FHL2 is a positive regulator of NPY and MCP-1 expression in macrophages and herewith closely linked to the mechanism of obesity-associated lipid accumulation and inflammation in VAT. Thus, FHL2 appears as a potential novel target to interfere with the macrophage-adipocyte crosstalk in VAT for treating obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Judith Sommer
- Institute of Biochemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Fahrstr. 17, D-91054 Erlangen, Germany; (J.S.); (H.E.); (T.S.); (J.S.); (R.B.); (A.B.); (P.D.)
| | - Hanna Ehnis
- Institute of Biochemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Fahrstr. 17, D-91054 Erlangen, Germany; (J.S.); (H.E.); (T.S.); (J.S.); (R.B.); (A.B.); (P.D.)
| | - Tatjana Seitz
- Institute of Biochemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Fahrstr. 17, D-91054 Erlangen, Germany; (J.S.); (H.E.); (T.S.); (J.S.); (R.B.); (A.B.); (P.D.)
| | - Julia Schneider
- Institute of Biochemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Fahrstr. 17, D-91054 Erlangen, Germany; (J.S.); (H.E.); (T.S.); (J.S.); (R.B.); (A.B.); (P.D.)
| | - Andreas B. Wild
- Department of Immune Modulation, University Hospital Erlangen, Hartmannstr. 4, D-91052 Erlangen, Germany; (A.B.W.); (A.S.)
| | - Sandra Moceri
- Department of Experimental Therapy, Preclinical Experimental Center, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Palmsanlage 5, D-91054 Erlangen, Germany; (S.M.); (S.v.H.)
| | - Christa Buechler
- Department of Internal Medicine I, University Hospital of Regensburg, Franz-Josef-Strauß-Allee 11, D-93053 Regensburg, Germany;
| | - Aline Bozec
- Department of Internal Medicine 3, Rheumatology and Immunology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Glückstr. 6, D-91054 Erlangen, Germany;
| | - Georg F. Weber
- Department of Surgery, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Krankenhausstr. 12, D-91054 Erlangen, Germany; (G.F.W.)
| | - Susanne Merkel
- Department of Surgery, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Krankenhausstr. 12, D-91054 Erlangen, Germany; (G.F.W.)
| | - Ruth Beckervordersandforth
- Institute of Biochemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Fahrstr. 17, D-91054 Erlangen, Germany; (J.S.); (H.E.); (T.S.); (J.S.); (R.B.); (A.B.); (P.D.)
| | - Alexander Steinkasserer
- Department of Immune Modulation, University Hospital Erlangen, Hartmannstr. 4, D-91052 Erlangen, Germany; (A.B.W.); (A.S.)
| | - Roland Schüle
- Center for Clinical Research, University of Freiburg Medical School, Breisacherstr. 66, D-79106 Freiburg, Germany;
| | - Jonel Trebicka
- Department of Internal Medicine B, University of Münster, Albert-Schweitzer-Campus 1, D-48149 Münster, Germany;
| | - Arndt Hartmann
- Institute of Pathology, Friedrich-Alexander-University Erlangen-Nürnberg, Krankenhausstr. 8/10, D-91054 Erlangen, Germany;
| | - Anja Bosserhoff
- Institute of Biochemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Fahrstr. 17, D-91054 Erlangen, Germany; (J.S.); (H.E.); (T.S.); (J.S.); (R.B.); (A.B.); (P.D.)
| | - Stephan von Hörsten
- Department of Experimental Therapy, Preclinical Experimental Center, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Palmsanlage 5, D-91054 Erlangen, Germany; (S.M.); (S.v.H.)
| | - Peter Dietrich
- Institute of Biochemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Fahrstr. 17, D-91054 Erlangen, Germany; (J.S.); (H.E.); (T.S.); (J.S.); (R.B.); (A.B.); (P.D.)
| | - Claus Hellerbrand
- Institute of Biochemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Fahrstr. 17, D-91054 Erlangen, Germany; (J.S.); (H.E.); (T.S.); (J.S.); (R.B.); (A.B.); (P.D.)
| |
Collapse
|
5
|
Lu T, Cong L, Jiang T, Dong X, Song L. Neuropeptide Y Promotes the Treatment of Adipose Stem Cells on Type 2 Diabetic Wounds. Tissue Eng Regen Med 2023; 20:683-694. [PMID: 37084169 PMCID: PMC10352478 DOI: 10.1007/s13770-023-00540-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/27/2023] [Accepted: 03/21/2023] [Indexed: 04/22/2023] Open
Abstract
BACKGROUND Type 2 diabetes (T2D) is a common metabolic disorder. Due to insufficient insulin secretion or insulin resistance, increased blood glucose often leads to impaired wound healing in T2D patients. Our previous research showed that adipose-derived stem cells (ASCs) from normal mice and T2D mice improved the cutaneous wound healing of diabetic mice. We also found that the expression of neuropeptide Y (NPY) in T2D ASCs was significantly decreased. METHODS In order to explore the effects of NPY on ASCs and diabetic wound healing, we investigated the effects of NPY on ASCs proliferation and growth factors expression and secretion, the effects of NPY on skin fibroblasts, and the effects of NPY combined with ASCs on T2D wound healing. RESULTS The results showed that a certain concentration of NPY could promote the proliferation and the growth factors expression and secretion of ASCs, and promote the proliferation and migration of fibroblasts. At the same time, NPY and ASCs have a synergistic effect, which can promote wound healing and decrease inflammation in T2D wounds. NPY may regulate ASCs through the ERK pathway. These results are conducive to promoting ASCs and NPY in the treatment of diabetic wounds. CONCLUSIONS NPY can promote the effect of ASCs in the treatment of diabetic wounds.
Collapse
Affiliation(s)
- Tinghuan Lu
- College of Life Science, Qingdao Agricultural University, No. 700, Changcheng Road, Chengyang District, Qingdao, 266109, Shandong, People's Republic of China
| | - Lu Cong
- Department of Neurology, Peking University People's Hospital, Beijing, 100044, People's Republic of China
| | - Tong Jiang
- College of Life Science, Qingdao Agricultural University, No. 700, Changcheng Road, Chengyang District, Qingdao, 266109, Shandong, People's Republic of China
| | - Xiao Dong
- College of Life Science, Qingdao Agricultural University, No. 700, Changcheng Road, Chengyang District, Qingdao, 266109, Shandong, People's Republic of China.
| | - Lili Song
- College of Life Science, Qingdao Agricultural University, No. 700, Changcheng Road, Chengyang District, Qingdao, 266109, Shandong, People's Republic of China.
- School of Life Science, Shandong University, No. 72, Binhai Road, Qingdao, 266237, Shandong, People's Republic of China.
| |
Collapse
|
6
|
Kumari R, Pascalau R, Wang H, Bajpayi S, Yurgel M, Quansah K, Hattar S, Tampakakis E, Kuruvilla R. Sympathetic NPY controls glucose homeostasis, cold tolerance, and cardiovascular functions in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.24.550381. [PMID: 37546870 PMCID: PMC10402010 DOI: 10.1101/2023.07.24.550381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Neuropeptide Y (NPY) is best known for its effects in the brain as an orexigenic and anxiolytic agent and in reducing energy expenditure. NPY is also co-expressed with Norepinephrine (NE) in sympathetic neurons. Although NPY is generally considered to modulate noradrenergic responses, its specific roles in autonomic physiology remain under-appreciated. Here, we show that sympathetic-derived NPY is essential for metabolic and cardiovascular regulation in mice. NPY and NE are co-expressed in 90% of prevertebral sympathetic neurons and only 43% of paravertebral neurons. NPY-expressing neurons primarily innervate blood vessels in peripheral organs. Sympathetic-specific deletion of NPY elicits pronounced metabolic and cardiovascular defects in mice, including reductions in insulin secretion, glucose tolerance, cold tolerance, pupil size, and an elevation in heart rate, while notably, however, basal blood pressure was unchanged. These findings provide new knowledge about target tissue-specific functions of NPY derived from sympathetic neurons and imply its potential involvement in metabolic and cardiovascular diseases.
Collapse
Affiliation(s)
- Raniki Kumari
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, 21218, USA
| | - Raluca Pascalau
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, 21218, USA
| | - Hui Wang
- Section on Light and Circadian Rhythms, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Sheetal Bajpayi
- Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, Maryland, 21205, USA
| | - Maria Yurgel
- Section on Light and Circadian Rhythms, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Kwaku Quansah
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, 21218, USA
- Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, Maryland, 21205, USA
| | - Samer Hattar
- Section on Light and Circadian Rhythms, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Emmanouil Tampakakis
- Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, Maryland, 21205, USA
| | - Rejji Kuruvilla
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, 21218, USA
| |
Collapse
|
7
|
Wang Y, Ye L. Somatosensory innervation of adipose tissues. Physiol Behav 2023; 265:114174. [PMID: 36965573 PMCID: PMC11537203 DOI: 10.1016/j.physbeh.2023.114174] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/27/2023]
Abstract
The increasing prevalence of obesity and type 2 diabetes has led to a greater interest in adipose tissue physiology. Adipose tissue is now understood as an organ with endocrine and thermogenic capacities in addition to its role in fat storage. It plays a critical role in systemic metabolism and energy regulation, and its activity is tightly regulated by the nervous system. Fat is now recognized to receive sympathetic innervation, which transmits information from the brain, as well as sensory innervation, which sends information into the brain. The role of sympathetic innervation in adipose tissue has been extensively studied. However, the extent and the functional significance of sensory innervation have long been unclear. Recent studies have started to reveal that sensory neurons robustly innervate adipose tissue and play an important role in regulating fat activity. This brief review will discuss both historical evidence and recent advances, as well as important remaining questions about the sensory innervation of adipose tissue.
Collapse
Affiliation(s)
- Yu Wang
- Department of Neuroscience and Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Li Ye
- Department of Neuroscience and Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
8
|
The Bidirectional Relationship of NPY and Mitochondria in Energy Balance Regulation. Biomedicines 2023; 11:biomedicines11020446. [PMID: 36830982 PMCID: PMC9953676 DOI: 10.3390/biomedicines11020446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Energy balance is regulated by several hormones and peptides, and neuropeptide Y is one of the most crucial in feeding and energy expenditure control. NPY is regulated by a series of peripheral nervous and humoral signals that are responsive to nutrient sensing, but its role in the energy balance is also intricately related to the energetic status, namely mitochondrial function. During fasting, mitochondrial dynamics and activity are activated in orexigenic neurons, increasing the levels of neuropeptide Y. By acting on the sympathetic nervous system, neuropeptide Y modulates thermogenesis and lipolysis, while in the peripheral sites, it triggers adipogenesis and lipogenesis instead. Moreover, both central and peripheral neuropeptide Y reduces mitochondrial activity by decreasing oxidative phosphorylation proteins and other mediators important to the uptake of fatty acids into the mitochondrial matrix, inhibiting lipid oxidation and energy expenditure. Dysregulation of the neuropeptide Y system, as occurs in metabolic diseases like obesity, may lead to mitochondrial dysfunction and, consequently, to oxidative stress and to the white adipose tissue inflammatory environment, contributing to the development of a metabolically unhealthy profile. This review focuses on the interconnection between mitochondrial function and dynamics with central and peripheral neuropeptide Y actions and discusses possible therapeutical modulations of the neuropeptide Y system as an anti-obesity tool.
Collapse
|
9
|
Srivastava RK, Ruiz de Azua I, Conrad A, Purrio M, Lutz B. Cannabinoid CB1 Receptor Deletion from Catecholaminergic Neurons Protects from Diet-Induced Obesity. Int J Mol Sci 2022; 23:ijms232012635. [PMID: 36293486 PMCID: PMC9604114 DOI: 10.3390/ijms232012635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 11/17/2022] Open
Abstract
High-calorie diets and chronic stress are major contributors to the development of obesity and metabolic disorders. These two risk factors regulate the activity of the sympathetic nervous system (SNS). The present study showed a key role of the cannabinoid type 1 receptor (CB1) in dopamine β-hydroxylase (dbh)-expressing cells in the regulation of SNS activity. In a diet-induced obesity model, CB1 deletion from these cells protected mice from diet-induced weight gain by increasing sympathetic drive, resulting in reduced adipogenesis in white adipose tissue and enhanced thermogenesis in brown adipose tissue. The deletion of CB1 from catecholaminergic neurons increased the plasma norepinephrine levels, norepinephrine turnover, and sympathetic activity in the visceral fat, which coincided with lowered neuropeptide Y (NPY) levels in the visceral fat of the mutant mice compared with the controls. Furthermore, the mutant mice showed decreased plasma corticosterone levels. Our study provided new insight into the mechanisms underlying the roles of the endocannabinoid system in regulating energy balance, where the CB1 deletion in dbh-positive cells protected from diet-induced weight gain via multiple mechanisms, such as increased SNS activity, reduced NPY activity, and decreased basal hypothalamic-pituitary-adrenal (HPA) axis activity.
Collapse
Affiliation(s)
- Raj Kamal Srivastava
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz, 55128 Mainz, Germany
- Department of Zoology, Indira Gandhi National Tribal University, Amarkantak, Anuppur 484887, India
| | - Inigo Ruiz de Azua
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz, 55128 Mainz, Germany
- Leibniz Institute for Resilience Research (LIR), 55122 Mainz, Germany
| | - Andrea Conrad
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz, 55128 Mainz, Germany
| | - Martin Purrio
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz, 55128 Mainz, Germany
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz, 55128 Mainz, Germany
- Leibniz Institute for Resilience Research (LIR), 55122 Mainz, Germany
- Correspondence:
| |
Collapse
|
10
|
Puente-Ruiz SC, Jais A. Reciprocal signaling between adipose tissue depots and the central nervous system. Front Cell Dev Biol 2022; 10:979251. [PMID: 36200038 PMCID: PMC9529070 DOI: 10.3389/fcell.2022.979251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
In humans, various dietary and social factors led to the development of increased brain sizes alongside large adipose tissue stores. Complex reciprocal signaling mechanisms allow for a fine-tuned interaction between the two organs to regulate energy homeostasis of the organism. As an endocrine organ, adipose tissue secretes various hormones, cytokines, and metabolites that signal energy availability to the central nervous system (CNS). Vice versa, the CNS is a critical regulator of adipose tissue function through neural networks that integrate information from the periphery and regulate sympathetic nerve outflow. This review discusses the various reciprocal signaling mechanisms in the CNS and adipose tissue to maintain organismal energy homeostasis. We are focusing on the integration of afferent signals from the periphery in neuronal populations of the mediobasal hypothalamus as well as the efferent signals from the CNS to adipose tissue and its implications for adipose tissue function. Furthermore, we are discussing central mechanisms that fine-tune the immune system in adipose tissue depots and contribute to organ homeostasis. Elucidating this complex signaling network that integrates peripheral signals to generate physiological outputs to maintain the optimal energy balance of the organism is crucial for understanding the pathophysiology of obesity and metabolic diseases such as type 2 diabetes.
Collapse
|
11
|
Greene ES, Abdelli N, Dridi JS, Dridi S. Avian Neuropeptide Y: Beyond Feed Intake Regulation. Vet Sci 2022; 9:171. [PMID: 35448669 PMCID: PMC9028514 DOI: 10.3390/vetsci9040171] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 11/16/2022] Open
Abstract
Neuropeptide Y (NPY) is one of the most abundant and ubiquitously expressed neuropeptides in both the central and peripheral nervous systems, and its regulatory effects on feed intake and appetite- have been extensively studied in a wide variety of animals, including mammalian and non-mammalian species. Indeed, NPY has been shown to be involved in the regulation of feed intake and energy homeostasis by exerting stimulatory effects on appetite and feeding behavior in several species including chickens, rabbits, rats and mouse. More recent studies have shown that this neuropeptide and its receptors are expressed in various peripheral tissues, including the thyroid, heart, spleen, adrenal glands, white adipose tissue, muscle and bone. Although well researched centrally, studies investigating the distribution and function of peripherally expressed NPY in avian (non-mammalian vertebrates) species are very limited. Thus, peripherally expressed NPY merits more consideration and further in-depth exploration to fully elucidate its functions, especially in non-mammalian species. The aim of the current review is to provide an integrated synopsis of both centrally and peripherally expressed NPY, with a special focus on the distribution and function of the latter.
Collapse
Affiliation(s)
- Elizabeth S. Greene
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (E.S.G.); (N.A.)
| | - Nedra Abdelli
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (E.S.G.); (N.A.)
- Animal Nutrition and Welfare Service, Department of Animal and Food Sciences, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Jalila S. Dridi
- École Universitaire de Kinésithérapie, Université d’Orléans, Rue de Chartres, 45100 Orleans, France;
| | - Sami Dridi
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (E.S.G.); (N.A.)
| |
Collapse
|
12
|
Deng J, Guo Y, Du J, Gu J, Kong L, Tao B, Li J, Fu D. The Intricate Crosstalk Between Insulin and Pancreatic Ductal Adenocarcinoma: A Review From Clinical to Molecular. Front Cell Dev Biol 2022; 10:844028. [PMID: 35252207 PMCID: PMC8891560 DOI: 10.3389/fcell.2022.844028] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 01/21/2022] [Indexed: 12/14/2022] Open
Abstract
Increased insulin level (or "hyperinsulinemia") is a common phenomenon in pancreatic ductal adenocarcinoma (PDA) patients and signals poor clinical outcomes. Insulin is safe in low PDA risk population, while insulin significantly promotes PDA risk in high PDA risk population. The correlation between insulin and PDA is a reciprocal self-reinforcing relationship. On the one hand, pancreatic cancer cells synthesize multiple molecules to cause elevated peripheral insulin resistance, thus enhancing hyperinsulinemia. On the other hand, insulin promotes pancreatic cancer initiation and sustains PDA development by eliciting tumorigenic inflammation, regulating lipid and glucose metabolic reprogram, overcoming apoptosis through the crosstalk with IGF-1, stimulating cancer metastasis, and activating tumor microenvironment formation (inflammation, fibrosis, and angiogenesis). Currently, taking glucose sensitizing agents, including metformin, SGLT-2 inhibitor, and GLP-1 agonist, is an effective way of lowering insulin levels and controlling PDA development at the same time. In the future, new drugs targeting insulin-related signal pathways may pave a novel way for suppressing PDA initiation and progression.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ji Li
- Department of Pancreatic Surgery, Pancreatic Disease Institute, Huashan Hospital, Fudan University, Shanghai, China
| | | |
Collapse
|
13
|
Tucci M, Wilson GA, McGuire R, Benghuzzi HA. The Effects of NPY1 Receptor Antagonism on Intervertebral Disc and Bone Changes in Ovariectomized Rats. Global Spine J 2021; 11:1166-1175. [PMID: 32748636 PMCID: PMC8453679 DOI: 10.1177/2192568220939908] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
STUDY DESIGN Basic science. OBJECTIVE To compare the effects of a neuropeptide Y1 receptor antagonist (NPY-1RA) to estrogen on maintaining vertebral bone microarchitecture and disc height in a rat model of menopause. METHODS This study was an institutional animal care approved randomized control study with 104 ovariectomized rats and 32 intact control animals. Comparison of disc height, trabecular bone, body weights, circulating levels of NPY and estrogen, and distribution of Y1 receptors in the intervertebral disc in an established rodent osteoporotic model were made at baseline and after 2, 4, and 8 weeks after receiving either an implant containing estrogen or an antagonist to the neuropeptide Y1 receptor. Data was compared statistically using One-way analysis of variance. RESULTS Circulating levels of estrogen increased and NPY decreased following estrogen replacement, with values comparable to ovary-intact animals. NPY-1RA-treated animals had low estrogen and high NPY circulating levels and were similar to ovariectomized control rats. Both NPY-1RA and estrogen administration were able reduce, menopause associated weight gain. NPY-1RA appeared to restore bone formation and maintain disc height, while estrogen replacement prevented further bone loss. CONCLUSION NPY-1RA in osteoporotic rats activates osteoblast production of bone and decreased marrow and body fat more effectively than estrogen replacement when delivered in similar concentrations. Annulus cells had NPY receptors, which may play a role in disc nutrition, extracellular matrix production, and pain signaling cascades.
Collapse
Affiliation(s)
- Michelle Tucci
- University of Mississippi Medical Center, Jackson, MS, US,Michelle Tucci, Department of Anesthesiology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA.
| | | | - Robert McGuire
- University of Mississippi Medical Center, Jackson, MS, US
| | | |
Collapse
|
14
|
Dhamad A, Zampiga M, Greene ES, Sirri F, Dridi S. Neuropeptide Y and its receptors are expressed in chicken skeletal muscle and regulate mitochondrial function. Gen Comp Endocrinol 2021; 310:113798. [PMID: 33961876 DOI: 10.1016/j.ygcen.2021.113798] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/24/2021] [Accepted: 04/28/2021] [Indexed: 12/26/2022]
Abstract
Neuropeptide Y (NPY) is a highly conserved 36-amino acid neurotransmitter, which is primarily expressed in the mammalian arcuate nucleus of the hypothalamus. It is a potent orexigenic neuropeptide, stimulating appetite and inducing feed intake in a variety of species. Recent research has shown that NPY and its receptors can be expressed by peripheral tissues, but their role is not yet well defined. Specifically, this information is particularly sparse in avian species. Therefore, the aim of this study was to determine the expression of NPY and its receptors, and determine their regulation by environmental and nutritional stressors, in the skeletal muscle of avian species using in vivo and in vitro approaches. Here, we show that NPY and its receptors are expressed in chicken breast and leg muscle as well as in quail myoblast (QM7) cell line. Intraperitoneal injection of recombinant NPY increased feed intake in 9-d old chicks and upregulated the expression of NPY and NPY receptors in breast and leg muscle, suggesting autocrine and/or paracrine roles for NPY. Additionally, NPY is able to modulate the mitochondrial network. In breast muscle, a low dose of NPY upregulated (P < 0.05) the expression of genes involved in ATP production (uncoupling protein, UCP; nuclear factor erythroid 2 like 2, NFE2L2) and dynamics (mitofusin 1, MFN1), while a high dose decreased (P < 0.05) markers of mitochondrial dynamics (mitofusin 2, MFN2; OPA1 mitochondrial dynamin like GTPase, OPA1) and increased (P < 0.05) genes involved in mitochondrial biogenesis (D-loop, peroxisome proliferator activated receptor gamma, PPARG). In leg muscle, NPY decreased (P < 0.05) markers of mitochondrial biogenesis and ATP synthesis (D-loop; peroxisome proliferator activated receptor alpha, PCG1A; peroxisome proliferator-activated receptor gamma, coactivator 1 beta, PPARGC1B; PPARG; NFE2L2). In QM7 cells, genes associated with mitochondrial biogenesis, dynamics, and ATP synthesis were all upregulated (P < 0.05), even though basal respiration and ATP production were decreased (P < 0.05) with NPY treatment as measured by XF Flux analysis. Together, these data show that the NPY system is expressed in avian skeletal muscle and plays a role in mitochondrial function.
Collapse
Affiliation(s)
- Ahmed Dhamad
- University of Arkansas, Center of Excellence for Poultry Science, Fayetteville, AR 72701, United States
| | - Marco Zampiga
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Elizabeth S Greene
- University of Arkansas, Center of Excellence for Poultry Science, Fayetteville, AR 72701, United States
| | - Federico Sirri
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Sami Dridi
- University of Arkansas, Center of Excellence for Poultry Science, Fayetteville, AR 72701, United States.
| |
Collapse
|
15
|
Zhang Y, Liu CY, Chen WC, Shi YC, Wang CM, Lin S, He HF. Regulation of neuropeptide Y in body microenvironments and its potential application in therapies: a review. Cell Biosci 2021; 11:151. [PMID: 34344469 PMCID: PMC8330085 DOI: 10.1186/s13578-021-00657-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/12/2021] [Indexed: 12/26/2022] Open
Abstract
Neuropeptide Y (NPY), one of the most abundant neuropeptides in the body, is widely expressed in the central and peripheral nervous systems and acts on the cardiovascular, digestive, endocrine, and nervous systems. NPY affects the nutritional and inflammatory microenvironments through its interaction with immune cells, brain-derived trophic factor (BDNF), and angiogenesis promotion to maintain body homeostasis. Additionally, NPY has great potential for therapeutic applications against various diseases, especially as an adjuvant therapy for stem cells. In this review, we discuss the research progress regarding NPY, as well as the current evidence for the regulation of NPY in each microenvironment, and provide prospects for further research on related diseases.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China
| | - Chu-Yun Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China
| | - Wei-Can Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China
| | - Yan-Chuan Shi
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW, 2010, Australia
| | - Cong-Mei Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China
| | - Shu Lin
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China. .,Diabetes and Metabolism Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW, 2010, Australia. .,Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China.
| | - He-Fan He
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China.
| |
Collapse
|
16
|
Yang CH, Onda DA, Oakhill JS, Scott JW, Galic S, Loh K. Regulation of Pancreatic β-Cell Function by the NPY System. Endocrinology 2021; 162:6213414. [PMID: 33824978 DOI: 10.1210/endocr/bqab070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Indexed: 01/24/2023]
Abstract
The neuropeptide Y (NPY) system has been recognized as one of the most critical molecules in the regulation of energy homeostasis and glucose metabolism. Abnormal levels of NPY have been shown to contribute to the development of metabolic disorders including obesity, cardiovascular diseases, and diabetes. NPY centrally promotes feeding and reduces energy expenditure, while the other family members, peptide YY (PYY) and pancreatic polypeptide (PP), mediate satiety. New evidence has uncovered additional functions for these peptides that go beyond energy expenditure and appetite regulation, indicating a more extensive function in controlling other physiological functions. In this review, we will discuss the role of the NPY system in the regulation of pancreatic β-cell function and its therapeutic implications for diabetes.
Collapse
Affiliation(s)
- Chieh-Hsin Yang
- St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Danise-Ann Onda
- St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Jonathan S Oakhill
- St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Department of Medicine, University of Melbourne, Parkville, VIC 3010, Australia
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3000, Australia
| | - John W Scott
- St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3000, Australia
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3010, Australia
| | - Sandra Galic
- St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Department of Medicine, University of Melbourne, Parkville, VIC 3010, Australia
| | - Kim Loh
- St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Department of Medicine, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
17
|
Lactobacillus plantarum Reduces Low-Grade Inflammation and Glucose Levels in a Mouse Model of Chronic Stress and Diabetes. Infect Immun 2021; 89:e0061520. [PMID: 34001561 DOI: 10.1128/iai.00615-20] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
This study aimed to examine the effects of Lactobacillus plantarum, a lactic acid bacteria strain isolated from kimchi, on the development of low-grade inflammation and type 2 diabetes mellitus (T2DM) exacerbated by chronic stress. C57BL/6 mice were fed either a high-fat diet (HFD) and randomized into an HFD group or a group that was fed an HFD and subjected to chronic cold exposure-related stress (HFDS), or mice were fed a normal diet (ND) and randomized into an ND group or a group that was fed an ND and subjected to chronic cold exposure-related stress (NDS). Lactobacillus plantarum LRCC5310 (108, 1010 CFU) and LRCC5314 (108, 1010 CFU) as well as L. gasseri BNR17 (108 CFU), as a positive control, were administered orally twice every day to all the mice for 12 weeks. The expression of Glut4 and adiponectin, main glucose transporter-related genes, was upregulated in the LRCC5310- and LRCC5314-treated groups. Levels of serum proinflammatory cytokines (tumor necrosis factor-α [TNF-α], interleukin-6 [IL-6]) and of mRNAs of proinflammatory genes (Tnf-α, Il-6, Ccl2, leptin) were elevated in HFDS mice. The expression of proinflammatory genes was downregulated in LRCC5310- and LRCC5314-treated groups; this was not the case for Tnf-α expression in HFDS mice. Levels of serum corticosterone and mRNA levels of stress-related genes (Npy, Y2r) were decreased in lactic acid bacteria (LAB)-fed groups, with only LRCC5314 downregulating Npy expression in HFDS mice. These results suggest that the LAB strains can normalize the expression of metabolic genes, inhibit inflammatory responses, and suppress stress in HFDS mice.
Collapse
|
18
|
Obesity-induced changes in human islet G protein-coupled receptor expression: Implications for metabolic regulation. Pharmacol Ther 2021; 228:107928. [PMID: 34174278 DOI: 10.1016/j.pharmthera.2021.107928] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/10/2021] [Accepted: 05/18/2021] [Indexed: 12/22/2022]
Abstract
G protein-coupled receptors (GPCRs) are a large family of cell surface receptors that are the targets for many different classes of pharmacotherapy. The islets of Langerhans are central to appropriate glucose homeostasis through their secretion of insulin, and islet function can be modified by ligands acting at the large number of GPCRs that islets express. The human islet GPCRome is not a static entity, but one that is altered under pathophysiological conditions and, in this review, we have compared expression of GPCR mRNAs in human islets obtained from normal weight range donors, and those with a weight range classified as obese. We have also considered the likely outcomes on islet function that the altered GPCR expression status confers and the possible impact that adipokines, secreted from expanded fat depots, could have at those GPCRs showing altered expression in obesity.
Collapse
|
19
|
Xu J, Strasburg GM, Reed KM, Velleman SG. Effect of Temperature and Selection for Growth on Intracellular Lipid Accumulation and Adipogenic Gene Expression in Turkey Pectoralis Major Muscle Satellite Cells. Front Physiol 2021; 12:667814. [PMID: 34140894 PMCID: PMC8204085 DOI: 10.3389/fphys.2021.667814] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 05/05/2021] [Indexed: 12/11/2022] Open
Abstract
As multipotential stem cells, satellite cells (SCs) have the potential to express adipogenic genes resulting in lipid synthesis with thermal stress. The present study determined the effect of temperature on intracellular lipid synthesis and adipogenic gene expression in SCs isolated from the pectoralis major (p. major) muscle of 7-day-old fast-growing modern commercial (NC) turkeys compared to SCs from unselected slower-growing turkeys [Randombred Control Line 2 (RBC2)]. Since proliferating and differentiating SCs have different responses to thermal stress, three incubation strategies were used: (1) SCs proliferated at the control temperature of 38°C and differentiated at 43° or 33°C; (2) SCs proliferated at 43° or 33°C and differentiated at 38°C; or (3) SCs both proliferated and differentiated at 43°, 38°, or 33°C. During proliferation, lipid accumulation increased at 43°C and decreased at 33°C with the NC line showing greater variation than the RBC2 line. During proliferation at 43°C, peroxisome proliferator-activated receptor-γ (PPARγ) and neuropeptide-Y (NPY) expression was reduced to a greater extent in the NC line than the RBC2 line. At 33°C, expression of PPARγ, NPY, and CCAAT/enhancer-binding protein-β (C/EBPβ) was upregulated, but only in the RBC2 line. During differentiation, both lines showed greater changes in lipid accumulation and in C/EBPβ and NPY expression if the thermal challenge was initiated during proliferation. These data suggest that adipogenic gene expression is more responsive to thermal challenge in proliferating SCs than in differentiating SCs, and that growth-selection has increased temperature sensitivity of SCs, which may significantly affect breast muscle structure and composition.
Collapse
Affiliation(s)
- Jiahui Xu
- Department of Animal Sciences, The Ohio State University, Wooster, OH, United States
| | - Gale M Strasburg
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States
| | - Kent M Reed
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| | - Sandra G Velleman
- Department of Animal Sciences, The Ohio State University, Wooster, OH, United States
| |
Collapse
|
20
|
Endocrine role of bone in the regulation of energy metabolism. Bone Res 2021; 9:25. [PMID: 34016950 PMCID: PMC8137703 DOI: 10.1038/s41413-021-00142-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 12/20/2020] [Accepted: 01/12/2021] [Indexed: 02/06/2023] Open
Abstract
Bone mainly functions as a supportive framework for the whole body and is the major regulator of calcium homeostasis and hematopoietic function. Recently, an increasing number of studies have characterized the significance of bone as an endocrine organ, suggesting that bone-derived factors regulate local bone metabolism and metabolic functions. In addition, these factors can regulate global energy homeostasis by altering insulin sensitivity, feeding behavior, and adipocyte commitment. These findings may provide a new pathological mechanism for related metabolic diseases or be used in the diagnosis, treatment, and prevention of metabolic diseases such as osteoporosis, obesity, and diabetes mellitus. In this review, we summarize the regulatory effect of bone and bone-derived factors on energy metabolism and discuss directions for future research.
Collapse
|
21
|
Yan C, Zeng T, Lee K, Nobis M, Loh K, Gou L, Xia Z, Gao Z, Bensellam M, Hughes W, Lau J, Zhang L, Ip CK, Enriquez R, Gao H, Wang QP, Wu Q, Haigh JJ, Laybutt DR, Timpson P, Herzog H, Shi YC. Peripheral-specific Y1 receptor antagonism increases thermogenesis and protects against diet-induced obesity. Nat Commun 2021; 12:2622. [PMID: 33976180 PMCID: PMC8113522 DOI: 10.1038/s41467-021-22925-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 03/16/2021] [Indexed: 12/20/2022] Open
Abstract
Obesity is caused by an imbalance between food intake and energy expenditure (EE). Here we identify a conserved pathway that links signalling through peripheral Y1 receptors (Y1R) to the control of EE. Selective antagonism of peripheral Y1R, via the non-brain penetrable antagonist BIBO3304, leads to a significant reduction in body weight gain due to enhanced EE thereby reducing fat mass. Specifically thermogenesis in brown adipose tissue (BAT) due to elevated UCP1 is enhanced accompanied by extensive browning of white adipose tissue both in mice and humans. Importantly, selective ablation of Y1R from adipocytes protects against diet-induced obesity. Furthermore, peripheral specific Y1R antagonism also improves glucose homeostasis mainly driven by dynamic changes in Akt activity in BAT. Together, these data suggest that selective peripheral only Y1R antagonism via BIBO3304, or a functional analogue, could be developed as a safer and more effective treatment option to mitigate diet-induced obesity.
Collapse
Affiliation(s)
- Chenxu Yan
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, NSW, Australia.,Diabetes and Metabolism Division, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, NSW, Australia
| | - Tianshu Zeng
- Wuhan Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kailun Lee
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, NSW, Australia
| | - Max Nobis
- Invasion and Metastasis Lab, Cancer Division, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, NSW, Australia.,Faculty of Medicine, UNSW Australia, Sydney, NSW, Australia
| | - Kim Loh
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, NSW, Australia.,St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
| | - Luoning Gou
- Wuhan Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zefeng Xia
- Wuhan Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhongmin Gao
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, NSW, Australia
| | - Mohammed Bensellam
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, NSW, Australia.,Institute of Experimental and Clinical Research, Pole of Endocrinology, Diabetes and Nutrition, Université catholique de Louvain, Brussels, Belgium
| | - Will Hughes
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, NSW, Australia.,Faculty of Medicine, UNSW Australia, Sydney, NSW, Australia
| | - Jackie Lau
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, NSW, Australia
| | - Lei Zhang
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, NSW, Australia.,Faculty of Medicine, UNSW Australia, Sydney, NSW, Australia
| | - Chi Kin Ip
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, NSW, Australia.,Faculty of Medicine, UNSW Australia, Sydney, NSW, Australia
| | - Ronaldo Enriquez
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, NSW, Australia
| | - Hanyu Gao
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, NSW, Australia
| | - Qiao-Ping Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Qi Wu
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, NSW, Australia
| | - Jody J Haigh
- Research Institute in Oncology and Hematology, Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB, Canada
| | - D Ross Laybutt
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, NSW, Australia.,Faculty of Medicine, UNSW Australia, Sydney, NSW, Australia
| | - Paul Timpson
- Invasion and Metastasis Lab, Cancer Division, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, NSW, Australia.,Faculty of Medicine, UNSW Australia, Sydney, NSW, Australia
| | - Herbert Herzog
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, NSW, Australia. .,Faculty of Medicine, UNSW Australia, Sydney, NSW, Australia.
| | - Yan-Chuan Shi
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, NSW, Australia. .,Diabetes and Metabolism Division, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, NSW, Australia. .,Faculty of Medicine, UNSW Australia, Sydney, NSW, Australia.
| |
Collapse
|
22
|
Katus U, Villa I, Ringmets I, Veidebaum T, Harro J. Neuropeptide Y gene variants in obesity, dietary intake, blood pressure, lipid and glucose metabolism: A longitudinal birth cohort study. Peptides 2021; 139:170524. [PMID: 33652060 DOI: 10.1016/j.peptides.2021.170524] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/24/2021] [Accepted: 02/24/2021] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Neuropeptide Y affects several physiological functions, notably appetite regulation. We analysed the association between four single nucleotide polymorphisms (SNP) in the NPY gene (rs5574, rs16147, rs16139, rs17149106) and measures of obesity, dietary intake, physical activity, blood pressure, glucose and lipid metabolism from adolescence to young adulthood. METHODS The sample included both birth cohorts of the Estonian Children Personality Behaviour and Health Study at ages 15 (n = 1075 with available complete data), 18 (n = 913) and 25 (n = 926) years. Linear mixed-effects regression models were used for longitudinal association between NPY SNP-s and variables of interest. Associations at ages 15, 18 and 25 were analysed by ANOVA. RESULTS Rs5574 CC-homozygotes had a greater increase per year in waist-to-hip ratio (WHR) and a smaller decrease in daily energy intake and carbohydrate intake from age 15-25 years; fasting glucose and cholesterol were higher in rs5574 CC-homozygotes. Rs16147 TT-homozygotes had higher body weight and a greater increase in sum of 5 skinfolds, waist circumference, WHR and waist-to-height ratio; however, they had lower carbohydrate intake throughout the observation period. Rs16147 TT-homozygotes and both rs16139 and rs17149106 heterozygotes had higher triglyceride levels. All NPY SNP-s were associated with blood pressure: rs5574 TT-and rs16147 CC-homozygotes had a smaller increase in diastolic blood pressure, while rs16139 and rs17149106 heterozygous had lower blood pressure throughout the study. CONCLUSION Variants of the NPY gene were associated with measures of obesity, dietary intake, glucose and lipid metabolism and blood pressure from adolescence to young adulthood.
Collapse
Affiliation(s)
- Urmeli Katus
- Department of Family Medicine and Public Health, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Inga Villa
- Department of Family Medicine and Public Health, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Inge Ringmets
- Department of Family Medicine and Public Health, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Toomas Veidebaum
- Department of Chronic Diseases, National Institute for Health Development, Tallinn, Estonia
| | - Jaanus Harro
- Chair of Neuropsychopharmacology, Institute of Chemistry, University of Tartu, Tartu, Estonia.
| |
Collapse
|
23
|
Tyszkiewicz-Nwafor M, Jowik K, Dutkiewicz A, Krasinska A, Pytlinska N, Dmitrzak-Weglarz M, Suminska M, Pruciak A, Skowronska B, Slopien A. Neuropeptide Y and Peptide YY in Association with Depressive Symptoms and Eating Behaviours in Adolescents across the Weight Spectrum: From Anorexia Nervosa to Obesity. Nutrients 2021; 13:nu13020598. [PMID: 33670342 PMCID: PMC7917982 DOI: 10.3390/nu13020598] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 12/28/2022] Open
Abstract
Neuropeptide Y (NPY) and peptide YY (PYY) are involved in metabolic regulation. The purpose of the study was to assess the serum levels of NPY and PYY in adolescents with anorexia nervosa (AN) or obesity (OB), as well as in a healthy control group (CG). The effects of potential confounders on their concentrations were also analysed. Eighty-nine adolescents were included in this study (AN = 30, OB = 30, and CG = 29). Anthropometric measurements and psychometric assessment of depressive symptoms, eating behaviours, body attitudes, and fasting serum levels of NPY and PYY were analysed. The AN group presented severe depressive symptoms, while the OB group held different attitudes towards the body. The levels of NPY were lower in the AN and OB groups as compared with the CG. The PYY levels were higher in the OB group than in the AN group and the CG. The severity of eating disorder symptoms predicted fasting serum concentrations of NPY. Lower levels of NPY in AN, as well as in OB suggests the need to look for a common link in the mechanism of this effect. Higher level of PYY in OB may be important in explaining complex etiopathogenesis of the disease. The psychopathological symptoms may have an influence on the neurohormones regulating metabolism.
Collapse
Affiliation(s)
- Marta Tyszkiewicz-Nwafor
- Department of Child and Adolescent Psychiatry, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (K.J.); (A.D.); (N.P.); (A.S.)
- Correspondence:
| | - Katarzyna Jowik
- Department of Child and Adolescent Psychiatry, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (K.J.); (A.D.); (N.P.); (A.S.)
| | - Agata Dutkiewicz
- Department of Child and Adolescent Psychiatry, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (K.J.); (A.D.); (N.P.); (A.S.)
| | - Agata Krasinska
- Department of Pediatric Diabetes and Obesity, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (A.K.); (M.S.); (B.S.)
| | - Natalia Pytlinska
- Department of Child and Adolescent Psychiatry, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (K.J.); (A.D.); (N.P.); (A.S.)
| | - Monika Dmitrzak-Weglarz
- Psychiatric Genetics Unit, Department of Psychiatry, Poznan University of Medical Sciences, 61-701 Poznan, Poland;
| | - Marta Suminska
- Department of Pediatric Diabetes and Obesity, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (A.K.); (M.S.); (B.S.)
| | - Agata Pruciak
- Institute of Plant Protection—National Research Institute, Research Centre of Quarantine, Invasive and Genetically Modified Organisms, 60-318 Poznan, Poland;
| | - Bogda Skowronska
- Department of Pediatric Diabetes and Obesity, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (A.K.); (M.S.); (B.S.)
| | - Agnieszka Slopien
- Department of Child and Adolescent Psychiatry, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (K.J.); (A.D.); (N.P.); (A.S.)
| |
Collapse
|
24
|
Xiao Y, Liu D, Cline MA, Gilbert ER. Chronic stress, epigenetics, and adipose tissue metabolism in the obese state. Nutr Metab (Lond) 2020; 17:88. [PMID: 33088334 PMCID: PMC7574417 DOI: 10.1186/s12986-020-00513-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 10/08/2020] [Indexed: 12/11/2022] Open
Abstract
In obesity, endocrine and metabolic perturbations, including those induced by chronic activation of the hypothalamus-pituitary-adrenal axis, are associated with the accumulation of adipose tissue and inflammation. Such changes are attributable to a combination of genetic and epigenetic factors that are influenced by the environment and exacerbated by chronic activation of the hypothalamus-pituitary-adrenal axis. Stress exposure at different life stages can alter adipose tissue metabolism directly through epigenetic modification or indirectly through the manipulation of hypothalamic appetite regulation, and thereby contribute to endocrine changes that further disrupt whole-body energy balance. This review synthesizes current knowledge, with an emphasis on human clinical trials, to describe metabolic changes in adipose tissue and associated endocrine, genetic and epigenetic changes in the obese state. In particular, we discuss epigenetic changes induced by stress exposure and their contribution to appetite and adipocyte dysfunction, which collectively promote the pathogenesis of obesity. Such knowledge is critical for providing future directions of metabolism research and targets for treating metabolic disorders.
Collapse
Affiliation(s)
- Yang Xiao
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA USA
| | - Dongmin Liu
- Department of Human Nutrition, Foods, and Exercise, Virginia Polytechnic Institute and State University, Blacksburg, VA USA
| | - Mark A Cline
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA USA.,School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA USA
| | - Elizabeth R Gilbert
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA USA.,School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA USA
| |
Collapse
|
25
|
Zhang B, Zhang X, Xiao J, Zhou X, Chen Y, Gao C. Neuropeptide Y upregulates Runx2 and osterix and enhances osteogenesis in mouse MC3T3‑E1 cells via an autocrine mechanism. Mol Med Rep 2020; 22:4376-4382. [PMID: 33000198 PMCID: PMC7533442 DOI: 10.3892/mmr.2020.11506] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 08/20/2020] [Indexed: 12/23/2022] Open
Abstract
The neuropeptide Y (NPY) system is considered one of the primary neural signaling pathways. NPY, produced by osteoblasts and other peripheral tissues, is known to inhibit biological functions of osteoblasts. However, until recently, little was known of the autocrine mechanism by which NPY is regulated. To investigate this mechanism, overexpression plasmids and small interfering RNA (siRNA) targeting NPY were transfected into the MC3T3-E1 cell line to observe its effects on osteogenesis. NPY overexpression was found to markedly enhance the osteogenic ability of MC3T3-E1 cells by an autocrine mechanism, coincident with the upregulation of osterix and runt-related transcription factor 2 (Runx2). Furthermore, NPY increased the activities of alkaline phosphatase (ALP) and osteocalcin (OCN) by upregulating their osteoblastic expression in vitro (as well as that of osterix and Runx2). Following transfection with NPY-siRNA, the osteoblastic ability of MC3T3-E1 cells was markedly decreased, and NPY deficiency inhibited the protein expression of osterix, Runx2, OCN and ALP in primary osteoblasts. Collectively, these results indicated that NPY played an important role in osteoblast differentiation by regulating the osterix and Runx2 pathways.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Joint Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Xiaolei Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Juan Xiao
- Department of Evidence‑Based Medicine, Institute of Medical Sciences, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Xuguang Zhou
- Department of Joint Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Yuan Chen
- Departments of Central Research Lab, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Chunzheng Gao
- Departments of Spinal Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, P.R. China
| |
Collapse
|
26
|
Higher Serum Neuropeptide Y Levels Are Associated with Metabolically Unhealthy Obesity in Obese Chinese Adults: A Cross-Sectional Study. Mediators Inflamm 2020; 2020:7903140. [PMID: 32831640 PMCID: PMC7424399 DOI: 10.1155/2020/7903140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 07/23/2020] [Indexed: 12/26/2022] Open
Abstract
Objective Neuropeptide Y (NPY), an orexigenic peptide known to cause hyperphagia, has been involved in the occurrence and development of obesity. However, differences in the distribution of serum NPY levels in obese phenotypes (including metabolically unhealthy obesity (MUO) phenotype and metabolically healthy obesity (MHO) phenotype) and the association of NPY with MUO phenotype have not been unequivocally established. We therefore determined associations of serum NPY levels with MUO phenotype in obese Chinese adults. Methods A cross-sectional study was conducted from 400 obese adults in Hunan province, who underwent a health examination in the Second Xiangya Hospital, and 164 participants were finally enrolled in the study and divided into MHO and MUO groups. Serum NPY levels were examined; univariate and multivariate analyses as well as smooth curve fitting analyses were conducted to measure the association of NPY serum levels with the MUO phenotype. Results Serum NPY levels were significantly elevated in the MUO group compared with the MHO group ((667.69 ± 292.90) pg/mL vs. (478.89 ± 145.53) pg/mL, p < 0.001). A threshold and nonlinear association between serum NPY levels and MUO was found (p = 0.001). When serum NPY levels exceeded the turning point (471.5 pg/mL), each 10 pg/mL increment in the NPY serum level was significantly associated with an 18% increased odds ratio of MUO phenotype (OR: 1.18, 95% CI: 1.07–1.29, p = 0.0007) after adjusted for confounders. Conclusions Higher NPY serum levels were positively correlated with MUO phenotype in obese Chinese adults.
Collapse
|
27
|
Hutchings G, Janowicz K, Moncrieff L, Dompe C, Strauss E, Kocherova I, Nawrocki MJ, Kruszyna Ł, Wąsiatycz G, Antosik P, Shibli JA, Mozdziak P, Perek B, Krasiński Z, Kempisty B, Nowicki M. The Proliferation and Differentiation of Adipose-Derived Stem Cells in Neovascularization and Angiogenesis. Int J Mol Sci 2020; 21:ijms21113790. [PMID: 32471255 PMCID: PMC7312564 DOI: 10.3390/ijms21113790] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 05/25/2020] [Indexed: 12/13/2022] Open
Abstract
Neovascularization and angiogenesis are vital processes in the repair of damaged tissue, creating new blood vessel networks and increasing oxygen and nutrient supply for regeneration. The importance of Adipose-derived Mesenchymal Stem Cells (ASCs) contained in the adipose tissue surrounding blood vessel networks to these processes remains unknown and the exact mechanisms responsible for directing adipogenic cell fate remain to be discovered. As adipose tissue contains a heterogenous population of partially differentiated cells of adipocyte lineage; tissue repair, angiogenesis and neovascularization may be closely linked to the function of ASCs in a complex relationship. This review aims to investigate the link between ASCs and angiogenesis/neovascularization, with references to current studies. The molecular mechanisms of these processes, as well as ASC differentiation and proliferation are described in detail. ASCs may differentiate into endothelial cells during neovascularization; however, recent clinical trials have suggested that ASCs may also stimulate angiogenesis and neovascularization indirectly through the release of paracrine factors.
Collapse
Affiliation(s)
- Greg Hutchings
- The School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK; (G.H.); (K.J.); (L.M.)
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (I.K.); (M.J.N.); (B.K.)
| | - Krzysztof Janowicz
- The School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK; (G.H.); (K.J.); (L.M.)
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (I.K.); (M.J.N.); (B.K.)
| | - Lisa Moncrieff
- The School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK; (G.H.); (K.J.); (L.M.)
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland;
| | - Claudia Dompe
- The School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK; (G.H.); (K.J.); (L.M.)
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland;
- Correspondence:
| | - Ewa Strauss
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland;
- Department of Vascular, Endovascular Surgery, Angiology and Phlebology Poznan University of Medical Sciences, 61-701 Poznan, Poland; (L.K.); (Z.K.)
| | - Ievgeniia Kocherova
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (I.K.); (M.J.N.); (B.K.)
| | - Mariusz J. Nawrocki
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (I.K.); (M.J.N.); (B.K.)
| | - Łukasz Kruszyna
- Department of Vascular, Endovascular Surgery, Angiology and Phlebology Poznan University of Medical Sciences, 61-701 Poznan, Poland; (L.K.); (Z.K.)
| | - Grzegorz Wąsiatycz
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland; (G.W.); (P.A.)
| | - Paweł Antosik
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland; (G.W.); (P.A.)
| | - Jamil A. Shibli
- Department of Periodontology and Oral Implantology, Dental Research Division, University of Guarulhos, São Paulo 07023-070, Brazil;
| | - Paul Mozdziak
- Physiology Graduate Program, North Carolina State University, Raleigh, NC 27695, USA;
| | - Bartłomiej Perek
- Department of Cardiac Surgery and Transplantology, Poznan University of Medical Sciences, 61-848 Poznań, Poland;
| | - Zbigniew Krasiński
- Department of Vascular, Endovascular Surgery, Angiology and Phlebology Poznan University of Medical Sciences, 61-701 Poznan, Poland; (L.K.); (Z.K.)
| | - Bartosz Kempisty
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (I.K.); (M.J.N.); (B.K.)
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland;
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland; (G.W.); (P.A.)
- Department of Obstetrics and Gynecology, University Hospital and Masaryk University, 601 77 Brno, Czech Republic
| | - Michał Nowicki
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland;
| |
Collapse
|
28
|
Ceddia RP, Collins S. A compendium of G-protein-coupled receptors and cyclic nucleotide regulation of adipose tissue metabolism and energy expenditure. Clin Sci (Lond) 2020; 134:473-512. [PMID: 32149342 PMCID: PMC9137350 DOI: 10.1042/cs20190579] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/17/2020] [Accepted: 02/24/2020] [Indexed: 12/15/2022]
Abstract
With the ever-increasing burden of obesity and Type 2 diabetes, it is generally acknowledged that there remains a need for developing new therapeutics. One potential mechanism to combat obesity is to raise energy expenditure via increasing the amount of uncoupled respiration from the mitochondria-rich brown and beige adipocytes. With the recent appreciation of thermogenic adipocytes in humans, much effort is being made to elucidate the signaling pathways that regulate the browning of adipose tissue. In this review, we focus on the ligand-receptor signaling pathways that influence the cyclic nucleotides, cAMP and cGMP, in adipocytes. We chose to focus on G-protein-coupled receptor (GPCR), guanylyl cyclase and phosphodiesterase regulation of adipocytes because they are the targets of a large proportion of all currently available therapeutics. Furthermore, there is a large overlap in their signaling pathways, as signaling events that raise cAMP or cGMP generally increase adipocyte lipolysis and cause changes that are commonly referred to as browning: increasing mitochondrial biogenesis, uncoupling protein 1 (UCP1) expression and respiration.
Collapse
Affiliation(s)
- Ryan P Ceddia
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, U.S.A
| | - Sheila Collins
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, U.S.A
| |
Collapse
|
29
|
Corder KM, Li Q, Cortes MA, Bartley AF, Davis TR, Dobrunz LE. Overexpression of neuropeptide Y decreases responsiveness to neuropeptide Y. Neuropeptides 2020; 79:101979. [PMID: 31708112 PMCID: PMC6960342 DOI: 10.1016/j.npep.2019.101979] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 10/10/2019] [Accepted: 10/10/2019] [Indexed: 12/14/2022]
Abstract
Neuropeptide Y (NPY) is an endogenous neuropeptide that is abundantly expressed in the central nervous system. NPY is involved in various neurological processes and neuropsychiatric disorders, including fear learning and anxiety disorders. Reduced levels of NPY are reported in Post-Traumatic Stress Disorder (PTSD) patients, and NPY has been proposed as a potential therapeutic target for PTSD. It is therefore important to understand the effects of chronic enhancement of NPY on anxiety and fear learning. Previous studies have shown that acute elevation of NPY reduces anxiety, fear learning and locomotor activity. Models of chronic NPY overexpression have produced mixed results, possibly caused by ectopic NPY expression. NPY is expressed primarily by a subset of GABAergic interneurons, providing specific spatiotemporal release patterns. Administration of exogenous NPY throughout the brain, or overexpression in cells that do not normally release NPY, can have detrimental side effects, including memory impairment. In order to determine the effects of boosting NPY only in the cells that normally release it, we utilized a transgenic mouse line that overexpresses NPY only in NPY+ cells. We tested for effects on anxiety related behaviors in adolescent mice, an age with high incidence of anxiety disorders in humans. Surprisingly, we did not observe the expected reduction in anxiety-like behavior in NPY overexpression mice. There was no change in fear learning behavior, although there was a deficit in nest building. The effect of exogenous NPY on synaptic transmission in acute hippocampal slices was also diminished, indicating that the function of NPY receptors is impaired. Reduced NPY receptor function could contribute to the unexpected behavioral outcomes. We conclude that overexpression of NPY, even in cells that normally express it, can lead to reduced responsiveness of NPY receptors, potentially affecting the ability of NPY to function as a long-term therapeutic.
Collapse
Affiliation(s)
- Katelynn M Corder
- University of Alabama at Birmingham, Department of Neurobiology, 1825 University Blvd, SHEL 971, Birmingham, AL 35294, United States of America; University of Alabama at Birmingham, Department of Biology, 1670 University Blvd., VH G133B, Birmingham, AL 35233, United States of America
| | - Qin Li
- University of Alabama at Birmingham, Department of Neurobiology, 1825 University Blvd, SHEL 971, Birmingham, AL 35294, United States of America
| | - Mariana A Cortes
- University of Alabama at Birmingham, Department of Neurobiology, 1825 University Blvd, SHEL 971, Birmingham, AL 35294, United States of America
| | - Aundrea F Bartley
- University of Alabama at Birmingham, Department of Neurobiology, 1825 University Blvd, SHEL 971, Birmingham, AL 35294, United States of America
| | - Taylor R Davis
- University of Alabama at Birmingham, Department of Neurobiology, 1825 University Blvd, SHEL 971, Birmingham, AL 35294, United States of America
| | - Lynn E Dobrunz
- University of Alabama at Birmingham, Department of Neurobiology, 1825 University Blvd, SHEL 971, Birmingham, AL 35294, United States of America.
| |
Collapse
|
30
|
Urata Y, Salehi R, Lima PDA, Osuga Y, Tsang BK. Neuropeptide Y regulates proliferation and apoptosis in granulosa cells in a follicular stage-dependent manner. J Ovarian Res 2020; 13:5. [PMID: 31915051 PMCID: PMC6950994 DOI: 10.1186/s13048-019-0608-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/29/2019] [Indexed: 12/17/2022] Open
Abstract
Background The complex regulatory mechanism involved in ovarian follicular development is not completely understood. Neuronal neuropeptide Y (NPY) is involved in the regulation of feeding behavior, energy homeostasis, and reproduction behavior, while its function in ovarian follicular development is not clear. The objective of this study was to investigate if and how NPY regulates follicle development in the ovary. Methods All experiments were performed using Sprague Dawley rats. To understand NPY expression pattern at different stages of follicular development, NPY content was assessed using immunohistochemistry in individual follicles. NPY and its receptors expression pattern were evaluated in granulosa cells isolated from preantral (PA), early antral (EA) and late antral follicles (LAF). The influence of NPY on granulosa cell proliferation and apoptosis were further assessed in vitro, using Ki67- and TUNEL-positivity assays. To investigate whether NPY induced-proliferation in EA granulosa cells is mediated through the activation of NPY receptor Y5 (NPY5R) and Mitogen-activated protein kinase (MEK) signal pathway, EA granulosa cells were treated with NPY5R antagonist (CGP71683) and MEK inhibitors (PD98059 and U0126), and Ki67-positive cells were assessed. Results NPY protein expression was follicular stage-dependent and cell type-specific. NPY signal intensity in EA was higher than those in PA and LAF. Antral granulosa cells showed the highest signal intensity compared to mural granulosa cells, cumulus cells and theca cells. Granulosa cells NPY protein content and mRNA abundance were higher in EA than in LAF. NPY receptor contents in granulosa cells were follicular stage-dependent. While NPY reduced apoptosis of EA granulosa cells, it increased the proliferation through NPY5R and MEK pathway. In contrast, in LAF granulosa cells, NPY reduced proliferation and increased the number of apoptotic cells, with no significant effects on PA granulosa cells. Conclusion This study is the first to evaluate the intraovarian role of NPY in granulosa cells at various stage of follicular development. These results indicate that NPY regulates granulosa cells proliferation and apoptosis in a follicular stage-dependent and autocrine manner. NPY may play a role in pathogenesis of ovarian follicular disorders.
Collapse
Affiliation(s)
- Yoko Urata
- Departments of Obstetrics & Gynecology and Cellular & Molecular Medicine, Interdisciplinary School of Health Sciences, University of Ottawa; Chronic Disease Program, Ottawa Hospital Research Institute, Critical Care Wing, 3rd floor, Room W3107, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada. .,Department of Obstetrics and Gynecology, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Reza Salehi
- Departments of Obstetrics & Gynecology and Cellular & Molecular Medicine, Interdisciplinary School of Health Sciences, University of Ottawa; Chronic Disease Program, Ottawa Hospital Research Institute, Critical Care Wing, 3rd floor, Room W3107, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
| | - Patricia D A Lima
- Departments of Obstetrics & Gynecology and Cellular & Molecular Medicine, Interdisciplinary School of Health Sciences, University of Ottawa; Chronic Disease Program, Ottawa Hospital Research Institute, Critical Care Wing, 3rd floor, Room W3107, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada.,Queen's Cardiopulmonary Unit, Queen's University, BioSciences Complex, Room 1605, 116 Barrie Street, Kingston, ON, K7L 3N6, Canada
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Benjamin K Tsang
- Departments of Obstetrics & Gynecology and Cellular & Molecular Medicine, Interdisciplinary School of Health Sciences, University of Ottawa; Chronic Disease Program, Ottawa Hospital Research Institute, Critical Care Wing, 3rd floor, Room W3107, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
| |
Collapse
|
31
|
Wu Y, He H, Cheng Z, Bai Y, Ma X. The Role of Neuropeptide Y and Peptide YY in the Development of Obesity via Gut-brain Axis. Curr Protein Pept Sci 2019; 20:750-758. [PMID: 30678628 DOI: 10.2174/1389203720666190125105401] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 12/30/2018] [Accepted: 01/11/2019] [Indexed: 12/15/2022]
Abstract
Obesity is one of the main challenges of public health in the 21st century. Obesity can induce a series of chronic metabolic diseases, such as diabetes, dyslipidemia, hypertension and nonalcoholic fatty liver, which seriously affect human health. Gut-brain axis, the two-direction pathway formed between enteric nervous system and central nervous system, plays a vital role in the occurrence and development of obesity. Gastrointestinal signals are projected through the gut-brain axis to nervous system, and respond to various gastrointestinal stimulation. The central nervous system regulates visceral activity through the gut-brain axis. Brain-gut peptides have important regulatory roles in the gut-brain axis. The brain-gut peptides of the gastrointestinal system and the nervous system regulate the gastrointestinal movement, feeling, secretion, absorption and other complex functions through endocrine, neurosecretion and paracrine to secrete peptides. Both neuropeptide Y and peptide YY belong to the pancreatic polypeptide family and are important brain-gut peptides. Neuropeptide Y and peptide YY have functions that are closely related to appetite regulation and obesity formation. This review describes the role of the gutbrain axis in regulating appetite and maintaining energy balance, and the functions of brain-gut peptides neuropeptide Y and peptide YY in obesity. The relationship between NPY and PYY and the interaction between the NPY-PYY signaling with the gut microbiota are also described in this review.
Collapse
Affiliation(s)
- Yi Wu
- State Key Lab of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Hengxun He
- State Key Lab of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhibin Cheng
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunan 650201, China
| | - Yueyu Bai
- Animal Health Supervision of Henan province, Breeding Animal Genetic Performance Measurement Center of Henan province, Zhengzhou, Henan 450008, China.,Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Xi Ma
- State Key Lab of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
32
|
Wittrisch S, Klöting N, Mörl K, Chakaroun R, Blüher M, Beck-Sickinger AG. NPY 1R-targeted peptide-mediated delivery of a dual PPARα/γ agonist to adipocytes enhances adipogenesis and prevents diabetes progression. Mol Metab 2019; 31:163-180. [PMID: 31918918 PMCID: PMC6931124 DOI: 10.1016/j.molmet.2019.11.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/31/2019] [Accepted: 11/10/2019] [Indexed: 12/12/2022] Open
Abstract
Objective PPARα/γ dual agonists have been in clinical development for the treatment of metabolic diseases including type 2 diabetes and dyslipidemia. However, severe adverse side effects led to complications in clinical trials. As most of the beneficial effects rely on the compound activity in adipocytes, the selective targeting of this cell type is a cutting-edge strategy to develop safe anti-diabetic drugs. The goal of this study was to strengthen the adipocyte-specific uptake of the PPARα/γ agonist tesaglitazar via NPY1R-mediated internalization. Methods NPY1R-preferring peptide tesaglitazar-[F7, P34]-NPY (tesa-NPY) was synthesized by a combination of automated SPPS and manual couplings. Following molecular and functional analyses for proof of concept, cell culture experiments were conducted to monitor the effects on adipogenesis. Mice treated with peptide drug conjugates or vehicle either by gavage or intraperitoneal injection were characterized phenotypically and metabolically. Histological analysis and transcriptional profiling of the adipose tissue were performed. Results In vitro studies revealed that the tesaglitazar-[F7, P34]-NPY conjugate selectively activates PPARγ in NPY1R-expressing cells and enhances adipocyte differentiation and adiponectin expression in adipocyte precursor cells. In vivo studies using db/db mice demonstrated that the anti-diabetic activity of the peptide conjugate is as efficient as that of systemically administered tesaglitazar. Additionally, tesa-NPY induces adipocyte differentiation in vivo. Conclusions The use of the tesaglitazar-[F7, P34]-NPY conjugate is a promising strategy to apply the beneficial PPARα/γ effects in adipocytes while potentially omitting adverse effects in other tissues. Tesaglitazar-NPY targets adipocytes via NPY1R receptor-mediated internalization. Peptide-drug conjugate is specifically delivered to NPY1R-expressing cells. Release of tesaglitazar in adipocytes activates PPARγ. Drug delivery enhances adipocyte differentiation and adiponectin expression. Peptide conjugate exhibits antidiabetic activity in vivo.
Collapse
Affiliation(s)
- Stefanie Wittrisch
- Universität Leipzig, Institute of Biochemistry, Brüderstraße 34, 04103 Leipzig, Germany
| | - Nora Klöting
- Helmholtz Institute for Metabolic, Obesity, and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Ph.-Rosenthal-Str. 27, 04103 Leipzig, Germany.
| | - Karin Mörl
- Universität Leipzig, Institute of Biochemistry, Brüderstraße 34, 04103 Leipzig, Germany
| | - Rima Chakaroun
- Helmholtz Institute for Metabolic, Obesity, and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Ph.-Rosenthal-Str. 27, 04103 Leipzig, Germany; Department of Medicine, University of Leipzig, Liebigstraße 20, 04103 Leipzig, Germany
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity, and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Ph.-Rosenthal-Str. 27, 04103 Leipzig, Germany; Department of Medicine, University of Leipzig, Liebigstraße 20, 04103 Leipzig, Germany.
| | | |
Collapse
|
33
|
Guilherme A, Henriques F, Bedard AH, Czech MP. Molecular pathways linking adipose innervation to insulin action in obesity and diabetes mellitus. Nat Rev Endocrinol 2019; 15:207-225. [PMID: 30733616 PMCID: PMC7073451 DOI: 10.1038/s41574-019-0165-y] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Adipose tissue comprises adipocytes and many other cell types that engage in dynamic crosstalk in a highly innervated and vascularized tissue matrix. Although adipose tissue has been studied for decades, it has been appreciated only in the past 5 years that extensive arborization of nerve fibres has a dominant role in regulating the function of adipose tissue. This Review summarizes the latest literature, which suggests that adipocytes signal to local sensory nerve fibres in response to perturbations in lipolysis and lipogenesis. Such adipocyte signalling to the central nervous system causes sympathetic output to distant adipose depots and potentially other metabolic tissues to regulate systemic glucose homeostasis. Paracrine factors identified in the past few years that mediate such adipocyte-neuron crosstalk are also reviewed. Similarly, immune cells and endothelial cells within adipose tissue communicate with local nerve fibres to modulate neurotransmitter tone, blood flow, adipocyte differentiation and energy expenditure, including adipose browning to produce heat. This understudied field of neurometabolism related to adipose tissue biology has great potential to reveal new mechanistic insights and potential therapeutic strategies for obesity and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Adilson Guilherme
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Felipe Henriques
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Alexander H Bedard
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Michael P Czech
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
34
|
Klinjampa R, Sitticharoon C, Souvannavong-Vilivong X, Sripong C, Keadkraichaiwat I, Churintaraphan M, Chatree S, Lertbunnaphong T. Placental Neuropeptide Y ( NPY) and NPY receptors expressions and serum NPY levels in preeclampsia. Exp Biol Med (Maywood) 2019; 244:380-388. [PMID: 30760028 DOI: 10.1177/1535370219831437] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
IMPACT STATEMENT Neuropeptide Y (NPY) has been reported as a vasoconstrictive substance which might be associated with preeclampsia. The novel findings of this study were that Y1R, Y2R, and Y5R expressions were significantly lower in the PE than the NP group. Moreover, the NPY receptor expression ratio between the PE/NP groups was lowest for Y2R (0.27) compared to Y1R (0.42) and Y5R (0.40) suggestive of a reduction of this receptor in the preeclampsia group. Our results suggested that decreased Y2R mRNA in the PE group might be associated with abnormalities of placental angiogenesis which probably contributes to the pathophysiology of preeclampsia.
Collapse
Affiliation(s)
- Roongrit Klinjampa
- 1 Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Chantacha Sitticharoon
- 1 Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | | | - Chanakarn Sripong
- 1 Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Issarawan Keadkraichaiwat
- 1 Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Malika Churintaraphan
- 1 Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Saimai Chatree
- 1 Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Tripop Lertbunnaphong
- 2 Department of Obstetrics and Gynecology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
35
|
Boura‐Halfon S, Pecht T, Jung S, Rudich A. Obesity and dysregulated central and peripheral macrophage–neuron cross‐talk. Eur J Immunol 2018; 49:19-29. [DOI: 10.1002/eji.201747389] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/13/2018] [Accepted: 11/02/2018] [Indexed: 12/28/2022]
Affiliation(s)
| | - Tal Pecht
- Department of Clinical Biochemistry and Pharmacology Faculty of Health Sciences, and the National Institute of Biotechnology in the Negev Ben‐Gurion University of the Negev Beer Sheva Israel
| | - Steffen Jung
- Department of Immunology Weizmann Institute of Science Rehovot Israel
| | - Assaf Rudich
- Department of Clinical Biochemistry and Pharmacology Faculty of Health Sciences, and the National Institute of Biotechnology in the Negev Ben‐Gurion University of the Negev Beer Sheva Israel
| |
Collapse
|
36
|
Shin MK, Choi B, Kim EY, Park JE, Hwang ES, Lee HJ, Kim MK, Kim JE, Kim SW, Chang EJ. Elevated Pentraxin 3 in Obese Adipose Tissue Promotes Adipogenic Differentiation by Activating Neuropeptide Y Signaling. Front Immunol 2018; 9:1790. [PMID: 30105036 PMCID: PMC6077621 DOI: 10.3389/fimmu.2018.01790] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/19/2018] [Indexed: 12/18/2022] Open
Abstract
Obesity is accompanied by chronic systemic inflammation characterized by macrophage infiltration of obese tissues, an elevated plasma level of inflammatory substances, and excessive accumulation of lipids. The pro-inflammatory factor pentraxin 3 (PTX3) is also elevated in obese tissues, suggesting its potential role in adipogenesis. We found by analyzing murine preadipocyte 3T3-L1 cells, and human adipocytes derived from mesenchymal stem cells, which locally elevated PTX3 in obese adipose tissue augments adipocyte differentiation and subsequent lipid accumulation. This occurs via the upregulation of adipogenesis-related transcription factors. PTX3 enhanced lipid accumulation in murine 3T3-L1 cells by upregulating the expression of neuropeptide Y (NPY)/NPY receptor (NPYR) expression in preadipocytes. Pharmacological inhibition by NPYR antagonists abolished these effects. NPY also promoted the production of reactive oxygen species (ROS), a known trigger of adipogenesis. NPYR antagonists as well as antioxidant N-acetylcysteine showed anti-adipogenic effects by reducing the ROS levels, indicating that PTX3 mediates adipogenesis through NPY-dependent ROS production. These findings suggest that PTX3 plays a key role in the development of obesity by enhancing adipocyte differentiation and lipid synthesis via NPY/NPYR signaling. These observations provide a mechanistic explanation for the adipogenesis mediated by PTX3.
Collapse
Affiliation(s)
- Min-Kyung Shin
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.,Stem Cell Immunomodulation Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Bongkun Choi
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.,Stem Cell Immunomodulation Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Eun-Young Kim
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.,Stem Cell Immunomodulation Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Ji-Eun Park
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.,Stem Cell Immunomodulation Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Eui Seung Hwang
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hyang Ju Lee
- Stem Cell Immunomodulation Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.,Department of Biochemistry and Molecular Biology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Min Kyung Kim
- Stem Cell Immunomodulation Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.,Department of Biochemistry and Molecular Biology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Ji-Eun Kim
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Seong Who Kim
- Stem Cell Immunomodulation Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.,Department of Biochemistry and Molecular Biology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Eun-Ju Chang
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.,Stem Cell Immunomodulation Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| |
Collapse
|
37
|
Targeting AgRP neurons to maintain energy balance: Lessons from animal models. Biochem Pharmacol 2018; 155:224-232. [PMID: 30012460 DOI: 10.1016/j.bcp.2018.07.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/12/2018] [Indexed: 01/19/2023]
Abstract
The current obesity epidemic is a major worldwide health and economic burden. In the modern environment, an increase in the intake of high-fat and high-sugar foods plays a crucial role in the development of obesity by disrupting the mechanisms governing food intake and energy balance. Food intake and whole-body energy balance are regulated by the central nervous system through a sophisticated neuronal network located mostly in the hypothalamus. In particular, the hypothalamic arcuate nucleus (ARC) is a fundamental center that senses hormonal and nutrient-related signals informing about the energy state of the organism. The ARC contains two small, defined populations of neurons with opposite functions: anorexigenic proopiomelanocortin (POMC)-expressing neurons and orexigenic Agouti-related protein (AgRP)-expressing neurons. AgRP neurons, which also co-produce neuropeptide Y (NPY) and γ-Aminobutyric acid (GABA), are involved in an increase in hunger and a decrease in energy expenditure. In this review, we summarize the key findings from the most common animal models targeting AgRP neurons and the tools used to discern the role of this specific neuronal population in the control of peripheral metabolism, appetite, feeding-related behavior, and other complex behaviors. We also discuss how knowledge gained from these studies has revealed new pathways and key proteins that could be potential therapeutic targets to reduce appetite and food addictions in obesity and other diseases.
Collapse
|
38
|
Wang G, Cline MA, Gilbert ER. Responses to peripheral neuropeptide Y in avian adipose tissue are diet, depot, and time specific. Gen Comp Endocrinol 2018; 262:12-19. [PMID: 29510148 DOI: 10.1016/j.ygcen.2018.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 02/23/2018] [Accepted: 03/02/2018] [Indexed: 11/17/2022]
Abstract
The goal of this research was to determine the effect of dietary macronutrient composition on peripheral neuropeptide Y (NPY)-induced changes in adipose tissue dynamics in chicks. Chicks were fed one of three isocaloric diets from the day of hatch: high carbohydrate (HC), high fat (HF), or high protein (HP). On day 4 post-hatch, 0 (vehicle), 60, or 120 µg/kg BW of NPY was injected intraperitoneally, and subcutaneous, clavicular and abdominal adipose tissue samples were collected at 1 and 3 h post-injection. The effect of NPY was most pronounced in chicks fed the HF or HP diet. In the subcutaneous fat at 1 h post-injection, 60 µg/kg BW of NPY was associated with an increase in NPY receptor 2 (NPYR2) mRNA in chicks fed the HP diet and a decrease in 1-acylglycerol-3-phosphate O-acyltransferase 2 (AGPAT2) mRNA in chicks fed the HC diet. In response to 120 µg/kg BW of NPY, there was greater AGPAT2 mRNA in the clavicular fat of chicks that consumed the HP diet and less CCAAT/enhancer-binding protein alpha in the abdominal fat of chicks that were provided the HF diet. There were no gene expression changes in the abdominal fat at 3 h post-injection, whereas there were decreases in AGPAT2, adipose triglyceride lipase, fatty acid binding protein 4 and NPY mRNA in the clavicular fat of chicks fed the HP diet. Results demonstrate that diet affects exogenous NPY-dependent physiological effects in a time- and depot-dependent manner in chick adipose tissue.
Collapse
Affiliation(s)
- Guoqing Wang
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA; School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Mark A Cline
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA; School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Elizabeth R Gilbert
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA; School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| |
Collapse
|
39
|
Chatree S, Sitticharoon C, Maikaew P, Uawithya P, Chearskul S. Adipose Y5R mRNA is higher in obese than non-obese humans and is correlated with obesity parameters. Exp Biol Med (Maywood) 2018; 243:786-795. [PMID: 29763369 PMCID: PMC5956667 DOI: 10.1177/1535370218774889] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 04/13/2018] [Indexed: 01/13/2023] Open
Abstract
Neuropeptide Y is mainly expressed in the central nervous system to regulate food intake via its receptors, Y receptors, and in various peripheral tissues including adipose tissue. The objectives of this study were to compare Y5R mRNA and adipocyte parameters consisting of area, width, height, and perimeter either between obese and non-obese subjects or between subcutaneous and visceral fat as well as to compare between NPY, Y1R, Y2R, and Y5R mRNA expressions in subcutaneous and visceral adipose tissues. In subcutaneous and visceral adipose tissues, Y5R was greater in obese than in non-obese humans (both P < 0.05). Y1R mRNA expression was highest followed by Y5R, Y2R, and NPY mRNA expressions, respectively, in subcutaneous and visceral adipose tissues. Visceral Y5R mRNA had positive correlations with body weight, body mass index, waist circumference, hip circumference (R ≍ 0.4), and visceral Y1R mRNA (R = 0.773), but had a negative correlation with the quantitative insulin sensitivity check index (R=-0.421) (all P < 0.05). Subcutaneous and visceral adipocyte parameters were positively correlated with body weight, waist circumference, hip circumference, and waist-to-hip ratio, with greater values of correlation coefficient shown in visceral (R ≍ 0.5-0.8) than in subcutaneous adipocytes (R ≍ 0.4-0.6, all P < 0.05). The parameters of visceral adipocytes had positive correlations with serum NPY levels (R ≍ 0.4, all P < 0.05). Y5R mRNA in visceral adipose tissue is related to increased obesity and reduced insulin sensitivity. The dominant Y receptors in subcutaneous and visceral adipose tissue might be the Y1R and Y5R. Visceral adipocytes show higher correlations with obesity parameters than subcutaneous adipocytes, suggestive of an increased risk of metabolic syndrome in visceral obesity. Y1R and Y5R in visceral adipose tissue might be targets of drug development in prevention or treatment of adiposity. Impact statement Obesity, defined as excess fat accumulation, has been increasingly diagnosed worldwide causing adverse health consequences. The novel findings of this study were that Y5R mRNA expression in both subcutaneous and visceral fat was higher in obese than non-obese subjects. Furthermore, Y5R only in visceral fat, not subcutaneous fat, was positively correlated with visceral Y1R and obesity parameters but it was negatively correlated with the QUICKI. Moreover, we found that Y1R expression was highest followed by Y5R and Y2R, respectively, in both subcutaneous and visceral fat. Our results suggested that Y5R in visceral fat was associated with increased obesity and decreased insulin sensitivity. Y1R and Y5R might be the dominant receptors that mediate the effect of NPY-induced fat accumulation in both subcutaneous and visceral adipose tissues. Y1R and Y5R in visceral adipose tissue might be targets of drug development in prevention or treatment of obesity.
Collapse
Affiliation(s)
- Saimai Chatree
- Department of Physiology, Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Chantacha Sitticharoon
- Department of Physiology, Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Pailin Maikaew
- Department of Physiology, Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Panapat Uawithya
- Department of Physiology, Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Supornpim Chearskul
- Department of Physiology, Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| |
Collapse
|
40
|
Clark DL, McCormick JL, Velleman SG. Effect of incubation temperature on neuropeptide Y and neuropeptide Y receptors in turkey and chicken satellite cells. Comp Biochem Physiol A Mol Integr Physiol 2018; 219-220:58-66. [PMID: 29505887 DOI: 10.1016/j.cbpa.2018.02.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/27/2018] [Accepted: 02/27/2018] [Indexed: 12/21/2022]
Abstract
Neuropeptide Y (NPY) is an appetite stimulating peptide released from the central nervous system and impacts the function of many different cell types. A recent transcriptome study showed that NPY expression was altered when turkey breast muscle satellite cells were incubated at low or high temperatures, suggesting NPY may mediate temperature effects on satellite cells. However, to date minimal information exists describing the expression and function of NPY in satellite cells. The objective of this study was to determine how temperature impacts NPY and NPY receptor gene expression in satellite cells isolated from turkeys and chickens with differing genetic lineages. Two broiler and two turkey breast muscle satellite cell lines were incubated at 35, 38 or 41 °C during proliferation and differentiation. In both turkey lines, NPY, and receptors NPY2R and NPY5R expression increased at elevated temperatures after 72 h of proliferation. During differentiation NPY and NPY5R expression increased in both turkey lines with higher temperatures, whereas NPY2R was minimally affected by temperature. In contrast, in both chicken cell lines there were few significant differences for NPY and NPY receptor expression across temperature during proliferation. During differentiation, the temperature effect was different in the two chicken cell lines. In the BPM8 chicken line, there were few differences in NPY and NPY receptors across temperature; whereas elevated temperatures increased NPY, NPY2R, and NPY5R expression in the 708 line. The differences between turkey and chicken lines suggest NPY has species specific satellite cell functions in response to heat stress.
Collapse
Affiliation(s)
- Daniel L Clark
- Department of Animal Sciences, The Ohio State University/Ohio Agricultural Research and Development Center, Wooster, OH 44691, United States.
| | - Janet L McCormick
- Department of Animal Sciences, The Ohio State University/Ohio Agricultural Research and Development Center, Wooster, OH 44691, United States
| | - Sandra G Velleman
- Department of Animal Sciences, The Ohio State University/Ohio Agricultural Research and Development Center, Wooster, OH 44691, United States
| |
Collapse
|
41
|
Neuropeptides, Inflammation, and Diabetic Wound Healing: Lessons from Experimental Models and Human Subjects. CONTEMPORARY DIABETES 2018. [DOI: 10.1007/978-3-319-89869-8_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
42
|
Effects of Neuropeptide Y on Stem Cells and Their Potential Applications in Disease Therapy. Stem Cells Int 2017; 2017:6823917. [PMID: 29109742 PMCID: PMC5646323 DOI: 10.1155/2017/6823917] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/01/2017] [Accepted: 08/08/2017] [Indexed: 01/04/2023] Open
Abstract
Neuropeptide Y (NPY), a 36-amino acid peptide, is widely distributed in the central and peripheral nervous systems and other peripheral tissues. It takes part in regulating various biological processes including food intake, circadian rhythm, energy metabolism, and neuroendocrine secretion. Increasing evidence indicates that NPY exerts multiple regulatory effects on stem cells. As a kind of primitive and undifferentiated cells, stem cells have the therapeutic potential to replace damaged cells, secret paracrine molecules, promote angiogenesis, and modulate immunity. Stem cell-based therapy has been demonstrated effective and considered as one of the most promising treatments for specific diseases. However, several limitations still hamper its application, such as poor survival and low differentiation and integration rates of transplanted stem cells. The regulatory effects of NPY on stem cell survival, proliferation, and differentiation may be helpful to overcome these limitations and facilitate the application of stem cell-based therapy. In this review, we summarized the regulatory effects of NPY on stem cells and discussed their potential applications in disease therapy.
Collapse
|
43
|
Inhibition of Y1 receptor signaling improves islet transplant outcome. Nat Commun 2017; 8:490. [PMID: 28887564 PMCID: PMC5591241 DOI: 10.1038/s41467-017-00624-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 07/13/2017] [Indexed: 02/08/2023] Open
Abstract
Failure to secrete sufficient quantities of insulin is a pathological feature of type-1 and type-2 diabetes, and also reduces the success of islet cell transplantation. Here we demonstrate that Y1 receptor signaling inhibits insulin release in β-cells, and show that this can be pharmacologically exploited to boost insulin secretion. Transplanting islets with Y1 receptor deficiency accelerates the normalization of hyperglycemia in chemically induced diabetic recipient mice, which can also be achieved by short-term pharmacological blockade of Y1 receptors in transplanted mouse and human islets. Furthermore, treatment of non-obese diabetic mice with a Y1 receptor antagonist delays the onset of diabetes. Mechanistically, Y1 receptor signaling inhibits the production of cAMP in islets, which via CREB mediated pathways results in the down-regulation of several key enzymes in glycolysis and ATP production. Thus, manipulating Y1 receptor signaling in β-cells offers a unique therapeutic opportunity for correcting insulin deficiency as it occurs in the pathological state of type-1 diabetes as well as during islet transplantation.Islet transplantation is considered one of the potential treatments for T1DM but limited islet survival and their impaired function pose limitations to this approach. Here Loh et al. show that the Y1 receptor is expressed in β- cells and inhibition of its signalling, both genetic and pharmacological, improves mouse and human islet function.
Collapse
|
44
|
Nies VJM, Struik D, Wolfs MGM, Rensen SS, Szalowska E, Unmehopa UA, Fluiter K, van der Meer TP, Hajmousa G, Buurman WA, Greve JW, Rezaee F, Shiri-Sverdlov R, Vonk RJ, Swaab DF, Wolffenbuttel BHR, Jonker JW, van Vliet-Ostaptchouk JV. TUB gene expression in hypothalamus and adipose tissue and its association with obesity in humans. Int J Obes (Lond) 2017; 42:376-383. [PMID: 28852204 DOI: 10.1038/ijo.2017.214] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/21/2017] [Accepted: 07/30/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND/OBJECTIVES Mutations in the Tubby gene (TUB) cause late-onset obesity and insulin resistance in mice and syndromic obesity in humans. Although TUB gene function has not yet been fully elucidated, studies in rodents indicate that TUB is involved in the hypothalamic pathways regulating food intake and adiposity. Aside from the function in central nervous system, TUB has also been implicated in energy metabolism in adipose tissue in rodents. We aimed to determine the expression and distribution patterns of TUB in man as well as its potential association with obesity. SUBJECTS/METHODS In situ hybridization was used to localize the hypothalamic regions and cells expressing TUB mRNA. Using RT-PCR, we determined the mRNA expression level of the two TUB gene alternative splicing isoforms, the short and the long transcript variants, in the hypothalami of 12 obese and 12 normal-weight subjects, and in biopsies from visceral (VAT) and subcutaneous (SAT) adipose tissues from 53 severely obese and 24 non-obese control subjects, and correlated TUB expression with parameters of obesity and metabolic health. RESULTS Expression of both TUB transcripts was detected in the hypothalamus, whereas only the short TUB isoform was found in both VAT and SAT. TUB mRNA was detected in several hypothalamic regions involved in body weight regulation, including the nucleus basalis of Meynert and the paraventricular, supraoptic and tuberomammillary nuclei. We found no difference in the hypothalamic TUB expression between obese and control groups, whereas the level of TUB mRNA was significantly lower in adipose tissue of obese subjects as compared to controls. Also, TUB expression was negatively correlated with indices of body weight and obesity in a fat-depot-specific manner. CONCLUSIONS Our results indicate high expression of TUB in the hypothalamus, especially in areas involved in body weight regulation, and the correlation between TUB expression in adipose tissue and obesity. These findings suggest a role for TUB in human obesity.
Collapse
Affiliation(s)
- V J M Nies
- Section of Molecular Metabolism and Nutrition, Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - D Struik
- Section of Molecular Metabolism and Nutrition, Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - M G M Wolfs
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - S S Rensen
- Department of General Surgery, Maastricht University Medical Center, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht, The Netherlands
| | - E Szalowska
- Centre for Medical Biomics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - U A Unmehopa
- Department of Endocrinology & Metabolism, Academic Medical Center, Amsterdam, The Netherlands
| | - K Fluiter
- Department of Genome Analysis, Academic Medical Center, Amsterdam, The Netherlands
| | - T P van der Meer
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - G Hajmousa
- Cardiovascular Regenerative Medicine, Department Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - W A Buurman
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - J W Greve
- Department of Surgery, Zuyderland Medical Center Heerlen; Dutch Obesity Clinic South, Heerlen, The Netherlands
| | - F Rezaee
- Centre for Medical Biomics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - R Shiri-Sverdlov
- Departments of Molecular Genetics, School of Nutrition & Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - R J Vonk
- Centre for Medical Biomics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - D F Swaab
- Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - B H R Wolffenbuttel
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - J W Jonker
- Section of Molecular Metabolism and Nutrition, Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - J V van Vliet-Ostaptchouk
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
45
|
Yahara M, Tei K, Tamura M. Inhibition of neuropeptide Y Y1 receptor induces osteoblast differentiation in MC3T3‑E1 cells. Mol Med Rep 2017; 16:2779-2784. [PMID: 28656295 DOI: 10.3892/mmr.2017.6866] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 05/03/2017] [Indexed: 01/07/2023] Open
Abstract
Neuropeptide Y (NPY) is a major neural signaling molecule. NPY is produced by peripheral tissues, such as osteoblasts, and binds to the corresponding Y1 receptor that belongs to the G‑protein‑coupled receptor family. Osteoblast‑specific Y1 receptor knockout mice exhibit high bone mass, indicating a role of the NPY‑Y1 receptor axis in the regulation of bone homeostasis. In the bone microenvironment, peripheral nerve fibers and osteoblasts produce NPY. However, the effects of the Y1 receptor on osteoblasts remain unexplored. In the present study, an RNA interference approach was employed to target the Y1 receptor, in order to determine whether it may function to regulate the growth, differentiation and viability of osteoblasts. Knockdown of the Y1 receptor by small interfering RNA (siRNA) lead to induction of alkaline phosphatase (ALP) activity and mineralization in mouse MC3T3‑E1 osteoblast cells. In addition, the mRNA expression levels of ALP, osteocalcin, collagen (I) α1, and bone sialoprotein were significantly increased following transfection of a Y1 receptor siRNA. Furthermore, the mRNA expression levels of Runx2 and osterix were significantly increased; however, no significant alterations in cell proliferation and caspase‑3/7 activity were observed in Y1 receptor siRNA‑transfected cells when compared with non‑targeting controls. The results demonstrate that Y1 receptor inhibition may increase osteoblastic differentiation, which indicates a role of the Y1 receptor in the regulation of osteoblastic differentiation.
Collapse
Affiliation(s)
- Motoki Yahara
- Department of Biochemistry and Molecular Biology, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Hokkaido 060‑8586, Japan
| | - Kanchu Tei
- Department of Oral and Maxillofacial Surgery, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Hokkaido 060‑8586, Japan
| | - Masato Tamura
- Department of Biochemistry and Molecular Biology, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Hokkaido 060‑8586, Japan
| |
Collapse
|
46
|
Park YE, Musson DS, Naot D, Cornish J. Cell–cell communication in bone development and whole-body homeostasis and pharmacological avenues for bone disorders. Curr Opin Pharmacol 2017; 34:21-35. [DOI: 10.1016/j.coph.2017.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/07/2017] [Accepted: 04/06/2017] [Indexed: 12/11/2022]
|
47
|
Wu J, Liu S, Meng H, Qu T, Fu S, Wang Z, Yang J, Jin D, Yu B. Neuropeptide Y enhances proliferation and prevents apoptosis in rat bone marrow stromal cells in association with activation of the Wnt/β-catenin pathway in vitro. Stem Cell Res 2017; 21:74-84. [PMID: 28411439 DOI: 10.1016/j.scr.2017.04.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 03/31/2017] [Accepted: 04/02/2017] [Indexed: 01/03/2023] Open
Abstract
Neuropeptide Y (NPY) exhibits a critical but poorly understood regulatory signaling function and has been shown to promote proliferation, vascularization and migration in several types of cells and tissues. However, little is known about the specific role of NPY in the proliferation and apoptosis of bone marrow stromal cells (also known as bone marrow-derived mesenchymal stem cells, BMSCs), which contain a subpopulation of multipotent skeletal stem cells. Based on BrdU incorporation tests, Cell Counting Kit-8, flow cytometry, quantitative polymerase chain reaction and western blotting, we showed that NPY significantly promoted the proliferation of BMSCs in a concentration-dependent manner, with a maximal effect observed at a concentration of 10-10M for pro-proliferative and 10-12M for anti-apoptotic activities. Furthermore, NPY significantly increased the percentage of cells in S and G2/M phases. In addition, NPY exhibited a protective effect after 24h of serum starvation as illustrated by a reduction in the apoptosis rate, degree of nuclear condensation, and expression of apoptosis markers, including caspase-3, caspase-9 and Bax mRNA expression. NPY also increased the mRNA and protein expression levels of canonical Wnt signaling pathway proteins, including β-catenin and c-myc, during the induced proliferative and anti-apoptotic processes. However, the proliferative and anti-apoptotic activities of NPY were partially blocked by both PD160170 (1μM) and DKK1 (0.2μg/mL). These compounds also blocked the mRNA and protein expression of β-catenin, p-GSK-3β and c-myc. Therefore, the results of the present study demonstrated that NPY exerts a proliferative and protective effect on BMSCs in a dose- and time-dependent manner in vitro, and importantly, these effects may be mediated via its Y1 receptor and involved in activation of the canonical Wnt signaling pathway.
Collapse
Affiliation(s)
- Jianqun Wu
- Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Song Liu
- Department of Orthopedics, The Third Hospital of Guangzhou Medical University, Guangzhou City, Guangdong Province 510515, China; Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Huan Meng
- Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Tianyu Qu
- Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Su Fu
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Zhao Wang
- Department of Orthopedics, The Third Hospital of Guangzhou Medical University, Guangzhou City, Guangdong Province 510515, China; Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Jianguo Yang
- Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province 510515, China; Department of Orthopaedics, The First Hospital Huhhot, Huhhot, Inner Mongolia 010020, China
| | - Dan Jin
- Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Bin Yu
- Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province 510515, China.
| |
Collapse
|
48
|
TÖRÖK J, ZEMANČÍKOVÁ A, KOCIANOVÁ Z. Interaction of Perivascular Adipose Tissue and Sympathetic Nerves in Arteries From Normotensive and Hypertensive Rats. Physiol Res 2016; 65:S391-S399. [DOI: 10.33549/physiolres.933434] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The inhibitory action of perivascular adipose tissue (PVAT) in modulation of arterial contraction has been recently recognized and contrasted with the prohypertensive effect of obesity in humans. In this study we demonstrated that PVAT might have opposing effect on sympatho-adrenergic contractions in different rat conduit arteries. In superior mesenteric artery isolated from normotensive Wistar-Kyoto rats (WKY), PVAT exhibited inhibitory influence on the contractions to exogenous noradrenaline as well as to endogenous noradrenaline released from arterial sympathetic nerves during transmural electrical stimulation or after application of tyramine. In contrast, the abdominal aorta with intact PVAT responded with larger contractions to transmural electrical stimulation and tyramine when compared to the aorta after removing PVAT; the responses to noradrenaline were similar in both. This indicates that PVAT may contain additional sources of endogenous noradrenaline which could be responsible for the main difference in the modulatory effect of PVAT on adrenergic contractions between abdominal aortas and superior mesenteric arteries. In spontaneously hypertensive rats (SHR), the anticontractile effect of PVAT in mesenteric arteries was reduced, and the removal of PVAT completely eliminated the difference in the dose-response curves to exogenous noradrenaline between SHR and WKY. These results suggest that in mesenteric artery isolated from SHR, the impaired anticontractile influence of PVAT might significantly contribute to its increased sensitivity to adrenergic stimuli.
Collapse
Affiliation(s)
- J. TÖRÖK
- Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | | | | |
Collapse
|
49
|
Shipp SL, Cline MA, Gilbert ER. Recent advances in the understanding of how neuropeptide Y and α-melanocyte stimulating hormone function in adipose physiology. Adipocyte 2016; 5:333-350. [PMID: 27994947 DOI: 10.1080/21623945.2016.1208867] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 06/28/2016] [Accepted: 06/28/2016] [Indexed: 12/20/2022] Open
Abstract
Communication between the brain and the adipose tissue has been the focus of many studies in recent years, with the "brain-fat axis" identified as a system that orchestrates the assimilation and usage of energy to maintain body mass and adequate fat stores. It is now well-known that appetite-regulating peptides that were studied as neurotransmitters in the central nervous system can act both on the hypothalamus to regulate feeding behavior and also on the adipose tissue to modulate the storage of energy. Energy balance is thus partly controlled by factors that can alter both energy intake and storage/expenditure. Two such factors involved in these processes are neuropeptide Y (NPY) and α-melanocyte stimulating hormone (α-MSH). NPY, an orexigenic factor, is associated with promoting adipogenesis in both mammals and chickens, while α-MSH, an anorexigenic factor, stimulates lipolysis in rodents. There is also evidence of interaction between the 2 peptides. This review aims to summarize recent advances in the study of NPY and α-MSH regarding their role in adipose tissue physiology, with an emphasis on the cellular and molecular mechanisms. A greater understanding of the brain-fat axis and regulation of adiposity by bioactive peptides may provide insights on strategies to prevent or treat obesity and also enhance nutrient utilization efficiency in agriculturally-important species.
Collapse
|
50
|
Yan Y, Tian L, Xiang X, Ding W, Song G, Xu J. Chronic gastric electrical stimulation leads to weight loss via modulating multiple tissue neuropeptide Y, orexin, α-melanocyte-stimulating hormone and oxytocin in obese rats. Scand J Gastroenterol 2016. [PMID: 26199984 DOI: 10.3109/00365521.2015.1069391] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVES Gastric electrical stimulation (GES) has great potential for the treatment of obesity. We investigated the impact of chronic GES on the alteration of adipose tissue and the regulation of neuropeptide Y (NPY), orexin (OX), α-melanocyte-stimulating hormone (α-MSH) and oxytocin (OXT), and their receptors in several tissues. MATERIAL AND METHODS Most of the experiments included three groups of diet-induced obesity rats: (1) sham-GES (SGES); (2) GL-6mA (GES with 6 mA, 4 ms, 40 Hz, 2 s on, 3 s off at lesser curvature); and (3) SGES-PF (SGES rats receiving pair feeding to match the consumption of GL-6mA rats). Chronic GES was applied for 2 h every day for 4 weeks. During treatment with GES, food intake and body weight were monitored weekly. The alteration of epididymal fat weight, gastric emptying, and expression of peptides and their receptors in several tissues were determined. RESULTS GL-6mA was more potent than SGES-PF in decreasing body weight gain, epididymal fat tissue weight, adipocyte size and gastric emptying. Chronic GES significantly altered NPY, OX, α-MSH and OXT and their receptors in the hypothalamus, adipose tissue and stomach. CONCLUSIONS Chronic GES effectively leads to weight loss by reducing food intake, fat tissue weight and gastric emptying. NPY, α-MSH, orexin and OXT, and their receptors in the hypothalamus, adipose tissue and stomach appear to be involved in the anti-obesity effects of chronic GES.
Collapse
Affiliation(s)
- Yun Yan
- a 1 Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430022, China
| | - Lugao Tian
- a 1 Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430022, China
| | - Xuelian Xiang
- a 1 Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430022, China
| | - Wei Ding
- a 1 Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430022, China
| | - Gengqing Song
- b 2 Internal Medicine Department, Texas Tech University Health Sciences Center, Paul L. Foster School of Medicine , El Paso, TX, USA
| | - Junying Xu
- a 1 Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430022, China
| |
Collapse
|