1
|
Xu Z, Chen Y, Wang Y, Han W, Xu W, Liao X, Zhang T, Wang G. Matrix stiffness, endothelial dysfunction and atherosclerosis. Mol Biol Rep 2023; 50:7027-7041. [PMID: 37382775 DOI: 10.1007/s11033-023-08502-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 04/28/2023] [Indexed: 06/30/2023]
Abstract
Atherosclerosis (AS) is the leading cause of the human cardiovascular diseases (CVDs). Endothelial dysfunction promotes the monocytes infiltration and inflammation that participate fundamentally in atherogenesis. Endothelial cells (EC) have been recognized as mechanosensitive cells and have different responses to distinct mechanical stimuli. Emerging evidence shows matrix stiffness-mediated EC dysfunction plays a vital role in vascular disease, but the underlying mechanisms are not yet completely understood. This article aims to summarize the effect of matrix stiffness on the pro-atherosclerotic characteristics of EC including morphology, rigidity, biological behavior and function as well as the related mechanical signal. The review also discusses and compares the contribution of matrix stiffness-mediated phagocytosis of macrophages and EC to AS progression. These advances in our understanding of the relationship between matrix stiffness and EC dysfunction open the avenues to improve the prevention and treatment of now-ubiquitous atherosclerotic diseases.
Collapse
Affiliation(s)
- Zichen Xu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Yi Chen
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection, Chongqing Key Laboratory of Nano/Micro Composite Material and Device, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Yi Wang
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Wenbo Han
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Wenfeng Xu
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection, Chongqing Key Laboratory of Nano/Micro Composite Material and Device, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Xiaoling Liao
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection, Chongqing Key Laboratory of Nano/Micro Composite Material and Device, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Tao Zhang
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection, Chongqing Key Laboratory of Nano/Micro Composite Material and Device, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China.
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China.
- Bioengineering College of Chongqing University, NO.174, Shazheng Street, Shapingba District, Chongqing, 400030, PR China.
| |
Collapse
|
2
|
Infant Red Blood Cell Arachidonic to Docosahexaenoic Acid Ratio Inversely Associates with Fat-Free Mass Independent of Breastfeeding Exclusivity. Nutrients 2022; 14:nu14204238. [PMID: 36296922 PMCID: PMC9608835 DOI: 10.3390/nu14204238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/06/2022] [Accepted: 10/08/2022] [Indexed: 11/17/2022] Open
Abstract
The prevalence of childhood obesity has increased nearly ten times over the last 40 years, influenced by early life nutrients that have persistent effects on life-long metabolism. During the first six months, infants undergo accelerated adipose accumulation, but little is known regarding infant fatty acid status and its relationship to infant body composition. We tested the hypothesis that a low arachidonic to docosahexaenoic acid ratio (AA/DHA) in infant red blood cells (RBCs), a long-term indicator of fatty acid intake, would associate with more infant fat-free mass (FFM) and/or less adipose accumulation over the first 4 months of life. The fatty acid and composition of breastmilk and infant RBCs, as well as the phospholipid composition of infant RBCs, were quantified using targeted and unbiased lipid mass spectrometry from infants predominantly breastfed or predominantly formula-fed. Regardless of feeding type, FFM accumulation was inversely associated with the infant’s RBC AA/DHA ratio (p = 0.029, R2 = 0.216). Infants in the lowest AA/DHA ratio tertile had significantly greater FFM when controlling for infant sex, adiposity at 2 weeks, and feeding type (p < 0.0001). Infant RBC phospholipid analyses revealed greater peroxisome-derived ether lipids in the low AA/DHA group, primarily within the phosphatidylethanolamines. Our findings support a role for a low AA/DHA ratio in promoting FFM accrual and identify peroxisomal activity as a target of DHA in the growing infant. Both FFM abundance and peroxisomal activity may be important determinants of infant metabolism during development.
Collapse
|
3
|
Presby DM, Rudolph MC, Sherk VD, Jackman MR, Foright RM, Jones KL, Houck JA, Johnson GC, Higgins JA, Neufer PD, Eckel RH, MacLean PS. Lipoprotein Lipase Overexpression in Skeletal Muscle Attenuates Weight Regain by Potentiating Energy Expenditure. Diabetes 2021; 70:867-877. [PMID: 33536195 PMCID: PMC7980196 DOI: 10.2337/db20-0763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 01/27/2021] [Indexed: 11/13/2022]
Abstract
Moderate weight loss improves numerous risk factors for cardiometabolic disease; however, long-term weight loss maintenance (WLM) is often thwarted by metabolic adaptations that suppress energy expenditure and facilitate weight regain. Skeletal muscle has a prominent role in energy homeostasis; therefore, we investigated the effect of WLM and weight regain on skeletal muscle in rodents. In skeletal muscle of obesity-prone rats, WLM reduced fat oxidative capacity and downregulated genes involved in fat metabolism. Interestingly, even after weight was regained, genes involved in fat metabolism were also reduced. We then subjected mice with skeletal muscle lipoprotein lipase overexpression (mCK-hLPL), which augments fat metabolism, to WLM and weight regain and found that mCK-hLPL attenuates weight regain by potentiating energy expenditure. Irrespective of genotype, weight regain suppressed dietary fat oxidation and downregulated genes involved in fat metabolism in skeletal muscle. However, mCK-hLPL mice oxidized more fat throughout weight regain and had greater expression of genes involved in fat metabolism and lower expression of genes involved in carbohydrate metabolism during WLM and regain. In summary, these results suggest that skeletal muscle fat oxidation is reduced during WLM and regain, and therapies that improve skeletal muscle fat metabolism may attenuate rapid weight regain.
Collapse
Affiliation(s)
- David M Presby
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Michael C Rudolph
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Vanessa D Sherk
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Matthew R Jackman
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Rebecca M Foright
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS
| | - Kenneth L Jones
- Department of Pediatrics, University of Colorado Denver Anschutz Medical Campus, Aurora, CO
| | - Julie A Houck
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Ginger C Johnson
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Janine A Higgins
- Department of Pediatrics, University of Colorado Denver Anschutz Medical Campus, Aurora, CO
| | - P Darrell Neufer
- East Carolina Diabetes and Obesity Institute and the Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC
| | - Robert H Eckel
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Paul S MacLean
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
4
|
Dulloo AG. Physiology of weight regain: Lessons from the classic Minnesota Starvation Experiment on human body composition regulation. Obes Rev 2021; 22 Suppl 2:e13189. [PMID: 33543573 DOI: 10.1111/obr.13189] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/23/2022]
Abstract
Since its publication in 1950, the Biology of Human Starvation, which describes the classic longitudinal Minnesota Experiment of semistarvation and refeeding in healthy young men, has been the undisputed source of scientific reference about the impact of long-term food deprivation on human physiology and behavior. It has been a guide in developing famine and refugee relief programs for international agencies, in exploring the effects of food deprivation on the cognitive and social functioning of those with anorexia nervosa and bulimia nervosa, and in gaining insights into metabolic adaptations that undermine obesity therapy and cachexia rehabilitation. In more recent decades, the application of a systems approach to the analysis of its data on longitudinal changes in body composition, basal metabolic rate, and food intake during the 24 weeks of semistarvation and 20 weeks of refeeding has provided rare insights into the multitude of control systems that govern the regulation of body composition during weight regain. These have underscored an internal (autoregulatory) control of lean-fat partitioning (highly sensitive to initial adiposity), which operates during weight loss and weight regain and revealed the existence of feedback loops between changes in body composition and the control of food intake and adaptive thermogenesis for the purpose of accelerating the recovery of fat mass and fat-free mass. This paper highlights the general features and design of this grueling experiment of simulated famine that has allowed the unmasking of fundamental control systems in human body composition autoregulation. The integration of its outcomes constitutes the "famine reactions" that drive the normal physiology of weight regain and obesity relapse and provides a mechanistic "autoregulation-based" explanation of how dieting and weight cycling, transition to sedentarity, or developmental programming may predispose to obesity. It also provides a system physiology framework for research toward elucidating proteinstatic and adipostatic mechanisms that control hunger-appetite and adaptive thermogenesis, with major implications for a better understanding (and management) of cachexia, obesity, and cardiometabolic diseases.
Collapse
Affiliation(s)
- Abdul G Dulloo
- Faculty of Science and Medicine, Department of Endocrinology, Metabolism and Cardiovascular System, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
5
|
Di Munno C, Busiello RA, Calonne J, Salzano AM, Miles-Chan J, Scaloni A, Ceccarelli M, de Lange P, Lombardi A, Senese R, Cioffi F, Visser TJ, Peeters RP, Dulloo AG, Silvestri E. Adaptive Thermogenesis Driving Catch-Up Fat Is Associated With Increased Muscle Type 3 and Decreased Hepatic Type 1 Iodothyronine Deiodinase Activities: A Functional and Proteomic Study. Front Endocrinol (Lausanne) 2021; 12:631176. [PMID: 33746903 PMCID: PMC7971177 DOI: 10.3389/fendo.2021.631176] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/07/2021] [Indexed: 12/13/2022] Open
Abstract
Refeeding after caloric restriction induces weight regain and a disproportionate recovering of fat mass rather than lean mass (catch-up fat) that, in humans, associates with higher risks to develop chronic dysmetabolism. Studies in a well-established rat model of semistarvation-refeeding have reported that catch-up fat associates with hyperinsulinemia, glucose redistribution from skeletal muscle to white adipose tissue and suppressed adaptive thermogenesis sustaining a high efficiency for fat deposition. The skeletal muscle of catch-up fat animals exhibits reduced insulin-stimulated glucose utilization, mitochondrial dysfunction, delayed in vivo contraction-relaxation kinetics, increased proportion of slow fibers and altered local thyroid hormone metabolism, with suggestions of a role for iodothyronine deiodinases. To obtain novel insights into the skeletal muscle response during catch-up fat in this rat model, the functional proteomes of tibialis anterior and soleus muscles, harvested after 2 weeks of caloric restriction and 1 week of refeeding, were studied. Furthermore, to assess the implication of thyroid hormone metabolism in catch-up fat, circulatory thyroid hormones as well as liver type 1 (D1) and liver and skeletal muscle type 3 (D3) iodothyronine deiodinase activities were evaluated. The proteomic profiling of both skeletal muscles indicated catch-up fat-induced alterations, reflecting metabolic and contractile adjustments in soleus muscle and changes in glucose utilization and oxidative stress in tibialis anterior muscle. In response to caloric restriction, D3 activity increased in both liver and skeletal muscle, and persisted only in skeletal muscle upon refeeding. In parallel, liver D1 activity decreased during caloric restriction, and persisted during catch-up fat at a time-point when circulating levels of T4, T3 and rT3 were all restored to those of controls. Thus, during catch-up fat, a local hypothyroidism may occur in liver and skeletal muscle despite systemic euthyroidism. The resulting reduced tissue thyroid hormone bioavailability, likely D1- and D3-dependent in liver and skeletal muscle, respectively, may be part of the adaptive thermogenesis sustaining catch-up fat. These results open new perspectives in understanding the metabolic processes associated with the high efficiency of body fat recovery after caloric restriction, revealing new implications for iodothyronine deiodinases as putative biological brakes contributing in suppressed thermogenesis driving catch-up fat during weight regain.
Collapse
Affiliation(s)
- Celia Di Munno
- Department of Science and Technologies, University of Sannio, Benevento, Italy
| | | | - Julie Calonne
- Department of Medicine, Physiology, University of Fribourg, Fribourg, Switzerland
| | - Anna Maria Salzano
- Institute for the Animal Production System in the Mediterranean Environment, National Research Council, Naples, Italy
| | - Jennifer Miles-Chan
- Department of Medicine, Physiology, University of Fribourg, Fribourg, Switzerland
| | - Andrea Scaloni
- Institute for the Animal Production System in the Mediterranean Environment, National Research Council, Naples, Italy
| | - Michele Ceccarelli
- Department of Science and Technologies, University of Sannio, Benevento, Italy
| | - Pieter de Lange
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Caserta, Italy
| | | | - Rosalba Senese
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Federica Cioffi
- Department of Science and Technologies, University of Sannio, Benevento, Italy
| | - Theo J. Visser
- Department of Internal Medicine, Academic Center for Thyroid Diseases, Erasmus MC, Rotterdam, Netherlands
| | - Robin P. Peeters
- Department of Internal Medicine, Academic Center for Thyroid Diseases, Erasmus MC, Rotterdam, Netherlands
| | - Abdul G. Dulloo
- Department of Medicine, Physiology, University of Fribourg, Fribourg, Switzerland
| | - Elena Silvestri
- Department of Science and Technologies, University of Sannio, Benevento, Italy
- *Correspondence: Elena Silvestri,
| |
Collapse
|
6
|
Dietary Complex and Slow Digestive Carbohydrates Prevent Fat Deposits During Catch-Up Growth in Rats. Nutrients 2020; 12:nu12092568. [PMID: 32854204 PMCID: PMC7551611 DOI: 10.3390/nu12092568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/21/2020] [Accepted: 08/22/2020] [Indexed: 01/10/2023] Open
Abstract
A nutritional growth retardation study, which closely resembles the nutritional observations in children who consumed insufficient total energy to maintain normal growth, was conducted. In this study, a nutritional stress in weanling rats placed on restricted balanced diet for 4 weeks is produced, followed by a food recovery period of 4 weeks using two enriched diets that differ mainly in the slow (SDC) or fast (RDC) digestibility and complexity of their carbohydrates. After re-feeding with the RDC diet, animals showed the negative effects of an early caloric restriction: an increase in adiposity combined with poorer muscle performance, insulin resistance and, metabolic inflexibility. These effects were avoided by the SDC diet, as was evidenced by a lower adiposity associated with a decrease in fatty acid synthase expression in adipose tissue. The improved muscle performance of the SDC group was based on an increase in myocyte enhancer factor 2D (MEF2D) and creatine kinase as markers of muscle differentiation as well as better insulin sensitivity, enhanced glucose uptake, and increased metabolic flexibility. In the liver, the SDC diet promoted glycogen storage and decreased fatty acid synthesis. Therefore, the SDC diet prevents the catch-up fat phenotype through synergistic metabolic adaptations in adipose tissue, muscle, and liver. These coordinated adaptations lead to better muscle performance and a decrease in the fat/lean ratio in animals, which could prevent long-term negative metabolic alterations such as obesity, insulin resistance, dyslipidemia, and liver fat deposits later in life.
Collapse
|
7
|
Most J, Redman LM. Impact of calorie restriction on energy metabolism in humans. Exp Gerontol 2020; 133:110875. [DOI: 10.1016/j.exger.2020.110875] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/06/2020] [Accepted: 02/09/2020] [Indexed: 11/28/2022]
|
8
|
Calonne J, Arsenijevic D, Scerri I, Miles-Chan JL, Montani JP, Dulloo AG. Low 24-hour core body temperature as a thrifty metabolic trait driving catch-up fat during weight regain after caloric restriction. Am J Physiol Endocrinol Metab 2019; 317:E699-E709. [PMID: 31430205 DOI: 10.1152/ajpendo.00092.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The recovery of body weight after substantial weight loss or growth retardation is often characterized by a disproportionately higher rate of fat mass vs. lean mass recovery, with this phenomenon of "preferential catch-up fat" being contributed by energy conservation (thrifty) metabolism. To test the hypothesis that a low core body temperature (Tc) constitutes a thrifty metabolic trait underlying the high metabolic efficiency driving catch-up fat, the Anipill system, with telemetry capsules implanted in the peritoneal cavity, was used for continuous monitoring of Tc for several weeks in a validated rat model of semistarvation-refeeding in which catch-up fat is driven solely by suppressed thermogenesis. In animals housed at 22°C, 24-h Tc was reduced in response to semistarvation (-0.77°C, P < 0.001) and remained significantly lower than in control animals during the catch-up fat phase of refeeding (-0.27°C on average, P < 0.001), the lower Tc during refeeding being more pronounced during the light phase than during the dark phase of the 24-h cycle (-0.30°C vs. -0.23°C, P < 0.01) and with no between-group differences in locomotor activity. A lower 24-h Tc in animals showing catch-up fat was also observed when the housing temperature was raised to 29°C (i.e., at thermoneutrality). The reduced energy cost of homeothermy in response to caloric restriction persists during weight recovery and constitutes a thrifty metabolic trait that contributes to the high metabolic efficiency that underlies the rapid restoration of the body's fat stores during weight regain, with implications for obesity relapse after therapeutic slimming and the pathophysiology of catch-up growth.
Collapse
Affiliation(s)
- Julie Calonne
- Department of Endocrinology, Metabolism and Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Denis Arsenijevic
- Department of Endocrinology, Metabolism and Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Isabelle Scerri
- Department of Endocrinology, Metabolism and Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Jennifer L Miles-Chan
- Department of Endocrinology, Metabolism and Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Jean-Pierre Montani
- Department of Endocrinology, Metabolism and Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Abdul G Dulloo
- Department of Endocrinology, Metabolism and Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
9
|
Calonne J, Isacco L, Miles-Chan J, Arsenijevic D, Montani JP, Guillet C, Boirie Y, Dulloo AG. Reduced Skeletal Muscle Protein Turnover and Thyroid Hormone Metabolism in Adaptive Thermogenesis That Facilitates Body Fat Recovery During Weight Regain. Front Endocrinol (Lausanne) 2019; 10:119. [PMID: 30873123 PMCID: PMC6403129 DOI: 10.3389/fendo.2019.00119] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 02/08/2019] [Indexed: 11/13/2022] Open
Abstract
Objective: The recovery of body composition after weight loss is characterized by an accelerated rate of fat recovery (preferential catch-up fat) resulting partly from an adaptive suppression of thermogenesis. Although the skeletal muscle has been implicated as an effector site for such thrifty (energy conservation) metabolism driving catch-up fat, the underlying mechanisms remain to be elucidated. We test here the hypothesis that this thrifty metabolism driving catch-up fat could reside in a reduced rate of protein turnover (an energetically costly "futile" cycle) and in altered local thyroid hormone metabolism in skeletal muscle. Methods: Using a validated rat model of semistarvation-refeeding in which catch-up fat is driven solely by suppressed thermogenesis, we measured after 1 week of refeeding in refed and control animals the following: (i) in-vivo rates of protein synthesis in hindlimb skeletal muscles using the flooding dose technique of 13C-labeled valine incorporation in muscle protein, (ii) ex-vivo muscle assay of net formation of thyroid hormone tri-iodothyronine (T3) from precursor hormone thyroxine (T4), and (iii) protein expression of skeletal muscle deiodinases (type 1, 2, and 3). Results: We show that after 1 week of calorie-controlled refeeding, the fractional protein synthesis rate was lower in skeletal muscles of refed animals than in controls (by 30-35%, p < 0.01) despite no between-group differences in the rate of skeletal muscle growth or whole-body protein deposition-thereby underscoring concomitant reductions in both protein synthesis and protein degradation rates in skeletal muscles of refed animals compared to controls. These differences in skeletal muscle protein turnover during catch-up fat were found to be independent of muscle type and fiber composition, and were associated with a slower net formation of muscle T3 from precursor hormone T4, together with increases in muscle protein expression of deiodinases which convert T4 and T3 to inactive forms. Conclusions: These results suggest that diminished skeletal muscle protein turnover, together with altered local muscle metabolism of thyroid hormones leading to diminished intracellular T3 availability, are features of the thrifty metabolism that drives the rapid restoration of the fat reserves during weight regain after caloric restriction.
Collapse
Affiliation(s)
- Julie Calonne
- Department of Endocrinology, Metabolism and Cardiovascular System, Faculty of Sciences and Medicine, University of FribourgFribourg, Switzerland
| | - Laurie Isacco
- Department of Endocrinology, Metabolism and Cardiovascular System, Faculty of Sciences and Medicine, University of FribourgFribourg, Switzerland
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, CHU Clermont-Ferrand, Service de Nutrition Clinique, CRNH AuvergneClermont-Ferrand, France
- EA3920 and EPSI Platform, Bourgogne Franche-Comté UniversitéBesançon, France
| | - Jennifer Miles-Chan
- Department of Endocrinology, Metabolism and Cardiovascular System, Faculty of Sciences and Medicine, University of FribourgFribourg, Switzerland
| | - Denis Arsenijevic
- Department of Endocrinology, Metabolism and Cardiovascular System, Faculty of Sciences and Medicine, University of FribourgFribourg, Switzerland
| | - Jean-Pierre Montani
- Department of Endocrinology, Metabolism and Cardiovascular System, Faculty of Sciences and Medicine, University of FribourgFribourg, Switzerland
| | - Christelle Guillet
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, CHU Clermont-Ferrand, Service de Nutrition Clinique, CRNH AuvergneClermont-Ferrand, France
| | - Yves Boirie
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, CHU Clermont-Ferrand, Service de Nutrition Clinique, CRNH AuvergneClermont-Ferrand, France
| | - Abdul G. Dulloo
- Department of Endocrinology, Metabolism and Cardiovascular System, Faculty of Sciences and Medicine, University of FribourgFribourg, Switzerland
- *Correspondence: Abdul G. Dulloo
| |
Collapse
|
10
|
Santos AL, Sinha S, Lindner AB. The Good, the Bad, and the Ugly of ROS: New Insights on Aging and Aging-Related Diseases from Eukaryotic and Prokaryotic Model Organisms. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:1941285. [PMID: 29743972 PMCID: PMC5878877 DOI: 10.1155/2018/1941285] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 12/18/2017] [Accepted: 01/02/2018] [Indexed: 12/13/2022]
Abstract
Aging is associated with the accumulation of cellular damage over the course of a lifetime. This process is promoted in large part by reactive oxygen species (ROS) generated via cellular metabolic and respiratory pathways. Pharmacological, nonpharmacological, and genetic interventions have been used to target cellular and mitochondrial networks in an effort to decipher aging and age-related disorders. While ROS historically have been viewed as a detrimental byproduct of normal metabolism and associated with several pathologies, recent research has revealed a more complex and beneficial role of ROS in regulating metabolism, development, and lifespan. In this review, we summarize the recent advances in ROS research, focusing on both the beneficial and harmful roles of ROS, many of which are conserved across species from bacteria to humans, in various aspects of cellular physiology. These studies provide a new context for our understanding of the parts ROS play in health and disease. Moreover, we highlight the utility of bacterial models to elucidate the molecular pathways by which ROS mediate aging and aging-related diseases.
Collapse
Affiliation(s)
- Ana L. Santos
- Institut National de la Santé et de la Recherche Médicale, U1001 & Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Sanchari Sinha
- Defence Institute of Physiology and Allied Sciences, DRDO, New Delhi, India
| | - Ariel B. Lindner
- Institut National de la Santé et de la Recherche Médicale, U1001 & Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
11
|
Higginson AD, McNamara JM. An adaptive response to uncertainty can lead to weight gain during dieting attempts. EVOLUTION MEDICINE AND PUBLIC HEALTH 2016; 2016:369-380. [PMID: 27920041 PMCID: PMC5139007 DOI: 10.1093/emph/eow031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND AND OBJECTIVES Peoples' attempts to lose weight by low calorie diets often result in weight gain because of over-compensatory overeating during lapses. Animals usually respond to a change in food availability by adjusting their foraging effort and altering how much energy reserves they store. But in many situations the long-term availability of food is uncertain, so animals may attempt to estimate it to decide the appropriate level of fat storage. METHODOLOGY We report the results of a conceptual model of feeding in which the animal knows whether food is currently abundant or limited, but does not know the proportion of time, there will be an abundance in the long-term and has to learn it. RESULTS If the food supply is limited much of the time, such as during cycles of dieting attempts, the optimal response is to gain a lot of weight when food is abundant. CONCLUSIONS AND IMPLICATIONS This implies that recurring attempts to diet, by signalling to the body that the food supply is often insufficient, will lead to a greater fat storage than if food was always abundant. Our results shed light on the widespread phenomenon of weight gain during weight cycling and indicate possible interventions that may reduce the incidence of obesity.
Collapse
Affiliation(s)
- A D Higginson
- Centre for Research in Animal Behaviour, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QG, UK .,Previous address: School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - J M McNamara
- School of Mathematics, University of Bristol, University Walk, Bristol BS8 1TW, UK
| |
Collapse
|
12
|
Abstract
The regulation of organ size is essential to human health and has fascinated biologists for centuries. Key to the growth process is the ability of most organs to integrate organ-extrinsic cues (eg, nutritional status, inflammatory processes) with organ-intrinsic information (eg, genetic programs, local signals) into a growth response that adapts to changing environmental conditions and ensures that the size of an organ is coordinated with the rest of the body. Paired organs such as the vertebrate limbs and the long bones within them are excellent models for studying this type of regulation because it is possible to manipulate one member of the pair and leave the other as an internal control. During development, growth plates at the end of each long bone produce a transient cartilage model that is progressively replaced by bone. Here, we review how proliferation and differentiation of cells within each growth plate are tightly controlled mainly by growth plate-intrinsic mechanisms that are additionally modulated by extrinsic signals. We also discuss the involvement of several signaling hubs in the integration and modulation of growth-related signals and how they could confer remarkable plasticity to the growth plate. Indeed, long bones have a significant ability for "catch-up growth" to attain normal size after a transient growth delay. We propose that the characterization of catch-up growth, in light of recent advances in physiology and cell biology, will provide long sought clues into the molecular mechanisms that underlie organ growth regulation. Importantly, catch-up growth early in life is commonly associated with metabolic disorders in adulthood, and this association is not completely understood. Further elucidation of the molecules and cellular interactions that influence organ size coordination should allow development of novel therapies for human growth disorders that are noninvasive and have minimal side effects.
Collapse
Affiliation(s)
- Alberto Roselló-Díez
- Developmental Biology Program, Sloan Kettering Institute, New York, New York 10065
| | - Alexandra L Joyner
- Developmental Biology Program, Sloan Kettering Institute, New York, New York 10065
| |
Collapse
|
13
|
De Andrade PBM, Neff LA, Strosova MK, Arsenijevic D, Patthey-Vuadens O, Scapozza L, Montani JP, Ruegg UT, Dulloo AG, Dorchies OM. Caloric restriction induces energy-sparing alterations in skeletal muscle contraction, fiber composition and local thyroid hormone metabolism that persist during catch-up fat upon refeeding. Front Physiol 2015; 6:254. [PMID: 26441673 PMCID: PMC4584973 DOI: 10.3389/fphys.2015.00254] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 08/28/2015] [Indexed: 11/18/2022] Open
Abstract
Weight regain after caloric restriction results in accelerated fat storage in adipose tissue. This catch-up fat phenomenon is postulated to result partly from suppressed skeletal muscle thermogenesis, but the underlying mechanisms are elusive. We investigated whether the reduced rate of skeletal muscle contraction-relaxation cycle that occurs after caloric restriction persists during weight recovery and could contribute to catch-up fat. Using a rat model of semistarvation-refeeding, in which fat recovery is driven by suppressed thermogenesis, we show that contraction and relaxation of leg muscles are slower after both semistarvation and refeeding. These effects are associated with (i) higher expression of muscle deiodinase type 3 (DIO3), which inactivates tri-iodothyronine (T3), and lower expression of T3-activating enzyme, deiodinase type 2 (DIO2), (ii) slower net formation of T3 from its T4 precursor in muscles, and (iii) accumulation of slow fibers at the expense of fast fibers. These semistarvation-induced changes persisted during recovery and correlated with impaired expression of transcription factors involved in slow-twitch muscle development. We conclude that diminished muscle thermogenesis following caloric restriction results from reduced muscle T3 levels, alteration in muscle-specific transcription factors, and fast-to-slow fiber shift causing slower contractility. These energy-sparing effects persist during weight recovery and contribute to catch-up fat.
Collapse
Affiliation(s)
- Paula B M De Andrade
- Department of Medicine, Physiology, University of Fribourg Fribourg, Switzerland
| | - Laurence A Neff
- Pharmaceutical Biochemistry, Geneva-Lausanne School of Pharmaceutical Sciences, University of Geneva, University of Lausanne Geneva, Switzerland
| | - Miriam K Strosova
- Pharmacology, Geneva-Lausanne School of Pharmaceutical Sciences, University of Geneva, University of Lausanne Geneva, Switzerland
| | - Denis Arsenijevic
- Department of Medicine, Physiology, University of Fribourg Fribourg, Switzerland
| | - Ophélie Patthey-Vuadens
- Pharmaceutical Biochemistry, Geneva-Lausanne School of Pharmaceutical Sciences, University of Geneva, University of Lausanne Geneva, Switzerland ; Pharmacology, Geneva-Lausanne School of Pharmaceutical Sciences, University of Geneva, University of Lausanne Geneva, Switzerland
| | - Leonardo Scapozza
- Pharmaceutical Biochemistry, Geneva-Lausanne School of Pharmaceutical Sciences, University of Geneva, University of Lausanne Geneva, Switzerland
| | - Jean-Pierre Montani
- Department of Medicine, Physiology, University of Fribourg Fribourg, Switzerland
| | - Urs T Ruegg
- Pharmacology, Geneva-Lausanne School of Pharmaceutical Sciences, University of Geneva, University of Lausanne Geneva, Switzerland
| | - Abdul G Dulloo
- Department of Medicine, Physiology, University of Fribourg Fribourg, Switzerland
| | - Olivier M Dorchies
- Pharmaceutical Biochemistry, Geneva-Lausanne School of Pharmaceutical Sciences, University of Geneva, University of Lausanne Geneva, Switzerland ; Pharmacology, Geneva-Lausanne School of Pharmaceutical Sciences, University of Geneva, University of Lausanne Geneva, Switzerland
| |
Collapse
|
14
|
Liu H, Schultz CG, De Blasio MJ, Peura AM, Heinemann GK, Harryanto H, Hunter DS, Wooldridge AL, Kind KL, Giles LC, Simmons RA, Owens JA, Gatford KL. Effect of placental restriction and neonatal exendin-4 treatment on postnatal growth, adult body composition, and in vivo glucose metabolism in the sheep. Am J Physiol Endocrinol Metab 2015. [PMID: 26219868 PMCID: PMC4631533 DOI: 10.1152/ajpendo.00487.2014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Intrauterine growth restriction (IUGR) increases the risk of adult type 2 diabetes (T2D) and obesity. Neonatal exendin-4 treatment can prevent diabetes in the IUGR rat, but whether this will be effective in a species where the pancreas is more mature at birth is unknown. Therefore, we evaluated the effects of neonatal exendin-4 administration after experimental restriction of placental and fetal growth on growth and adult metabolic outcomes in sheep. Body composition, glucose tolerance, and insulin secretion and sensitivity were assessed in singleton-born adult sheep from control (CON; n = 6 females and 4 males) and placentally restricted pregnancies (PR; n = 13 females and 7 males) and in sheep from PR pregnancies that were treated with exendin-4 as neonates (daily sc injections of 1 nmol/kg exendin-4; PR + exendin-4; n = 11 females and 7 males). Placental restriction reduced birth weight (by 29%) and impaired glucose tolerance in the adult but did not affect adult adiposity, insulin secretion, or insulin sensitivity. Neonatal exendin-4 suppressed growth during treatment, followed by delayed catchup growth and unchanged adult adiposity. Neonatal exendin-4 partially restored glucose tolerance in PR progeny but did not affect insulin secretion or sensitivity. Although the effects on glucose tolerance are promising, the lack of effects on adult body composition, insulin secretion, and insulin sensitivity suggest that the neonatal period may be too late to fully reprogram the metabolic consequences of IUGR in species that are more mature at birth than rodents.
Collapse
Affiliation(s)
- Hong Liu
- Robinson Research Institute and School of Paediatrics and Reproductive Health
| | - Christopher G Schultz
- Department of Nuclear Medicine, PET and Bone Densitometry, Royal Adelaide Hospital, Adelaide, South Australia, Australia; and
| | - Miles J De Blasio
- Robinson Research Institute and School of Paediatrics and Reproductive Health
| | - Anita M Peura
- Robinson Research Institute and School of Paediatrics and Reproductive Health
| | - Gary K Heinemann
- Robinson Research Institute and School of Paediatrics and Reproductive Health
| | - Himawan Harryanto
- Robinson Research Institute and School of Paediatrics and Reproductive Health
| | - Damien S Hunter
- Robinson Research Institute and School of Paediatrics and Reproductive Health, School of Animal and Veterinary Sciences, and
| | - Amy L Wooldridge
- Robinson Research Institute and School of Paediatrics and Reproductive Health
| | - Karen L Kind
- Robinson Research Institute and School of Animal and Veterinary Sciences, and
| | - Lynne C Giles
- School of Population Health, University of Adelaide, Adelaide, South Australia, Australia
| | - Rebecca A Simmons
- University of Pennsylvania Medical School, Philadelphia, Pennsylvania
| | - Julie A Owens
- Robinson Research Institute and School of Paediatrics and Reproductive Health
| | - Kathryn L Gatford
- Robinson Research Institute and School of Paediatrics and Reproductive Health,
| |
Collapse
|
15
|
Solinas G, Borén J, Dulloo AG. De novo lipogenesis in metabolic homeostasis: More friend than foe? Mol Metab 2015; 4:367-77. [PMID: 25973385 PMCID: PMC4421107 DOI: 10.1016/j.molmet.2015.03.004] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 03/06/2015] [Accepted: 03/12/2015] [Indexed: 02/09/2023] Open
Abstract
Background An acute surplus of carbohydrates, and other substrates, can be converted and safely stored as lipids in adipocytes via de novo lipogenesis (DNL). However, in obesity, a condition characterized by chronic positive energy balance, DNL in non-adipose tissues may lead to ectopic lipid accumulation leading to lipotoxicity and metabolic stress. Indeed, DNL is dynamically recruited in liver during the development of fatty liver disease, where DNL is an important source of lipids. Nonetheless, a number of evidences indicates that DNL is an inefficient road for calorie to lipid conversion and that DNL may play an important role in sustaining metabolic homeostasis. Scope of review In this manuscript, we discuss the role of DNL as source of lipids during obesity, the energetic efficiency of this pathway in converting extra calories to lipids, and the function of DNL as a pathway supporting metabolic homeostasis. Major conclusion We conclude that inhibition of DNL in obese subjects, unless coupled with a correction of the chronic positive energy balance, may further promote lipotoxicity and metabolic stress. On the contrary, strategies aimed at specifically activating DNL in adipose tissue could support metabolic homeostasis in obese subjects by a number of mechanisms, which are discussed in this manuscript.
Collapse
Affiliation(s)
- Giovanni Solinas
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, Wallenberg Laboratory, University of Gothenburg, Gothenburg, Sweden
| | - Jan Borén
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, Wallenberg Laboratory, University of Gothenburg, Gothenburg, Sweden
| | - Abdul G Dulloo
- Division of Physiology, Department of Medicine, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
16
|
Lang F, Föller M. Regulation of ion channels and transporters by AMP-activated kinase (AMPK). Channels (Austin) 2013; 8:20-8. [PMID: 24366036 DOI: 10.4161/chan.27423] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The energy-sensing AMP-activated kinase AMPK ensures survival of energy-depleted cells by stimulating ATP production and limiting ATP utilization. Both energy production and energy consumption are profoundly influenced by transport processes across the cell membane including channels, carriers and pumps. Accordingly, AMPK is a powerful regulator of transport across the cell membrane. AMPK regulates diverse K(+) channels, Na(+) channels, Ca(2+) release activated Ca(2+) channels, Cl(-) channels, gap junctional channels, glucose carriers, Na(+)/H(+)-exchanger, monocarboxylate-, phosphate-, creatine-, amino acid-, peptide- and osmolyte-transporters, Na(+)/Ca(2+)-exchanger, H(+)-ATPase and Na(+)/K(+)-ATPase. AMPK activates ubiquitin ligase Nedd4-2, which labels several plasma membrane proteins for degradation. AMPK further regulates transport proteins by inhibition of Rab GTPase activating protein (GAP) TBC1D1. It stimulates phosphatidylinositol 3-phosphate 5-kinase PIKfyve and inhibits phosphatase and tensin homolog (PTEN) via glycogen synthase kinase 3β (GSK3β). Moreover, it stabilizes F-actin as well as downregulates transcription factor NF-κB. All those cellular effects serve to regulate transport proteins.
Collapse
Affiliation(s)
- Florian Lang
- Department of Physiology; University of Tübingen; Tübingen, Germany
| | - Michael Föller
- Department of Physiology; University of Tübingen; Tübingen, Germany
| |
Collapse
|
17
|
Westbrook R, Bonkowski MS, Arum O, Strader AD, Bartke A. Metabolic alterations due to caloric restriction and every other day feeding in normal and growth hormone receptor knockout mice. J Gerontol A Biol Sci Med Sci 2013; 69:25-33. [PMID: 23833202 DOI: 10.1093/gerona/glt080] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mutations causing decreased somatotrophic signaling are known to increase insulin sensitivity and extend life span in mammals. Caloric restriction and every other day (EOD) dietary regimens are associated with similar improvements to insulin signaling and longevity in normal mice; however, these interventions fail to increase insulin sensitivity or life span in growth hormone receptor knockout (GHRKO) mice. To investigate the interactions of the GHRKO mutation with caloric restriction and EOD dietary interventions, we measured changes in the metabolic parameters oxygen consumption (VO2) and respiratory quotient produced by either long-term caloric restriction or EOD in male GHRKO and normal mice. GHRKO mice had increased VO2, which was unaltered by diet. In normal mice, EOD diet caused a significant reduction in VO2 compared with ad libitum (AL) mice during fed and fasted conditions. In normal mice, caloric restriction increased both the range of VO2 and the difference in minimum VO2 between fed and fasted states, whereas EOD diet caused a relatively static VO2 pattern under fed and fasted states. No diet significantly altered the range of VO2 of GHRKO mice under fed conditions. This provides further evidence that longevity-conferring diets cause major metabolic changes in normal mice, but not in GHRKO mice.
Collapse
Affiliation(s)
- Reyhan Westbrook
- Department of Internal Medicine, Division of Geriatric Research, Southern Illinois University School of Medicine, PO Box 19628, Springfield, IL 62794-9628.
| | | | | | | | | |
Collapse
|
18
|
JANOVSKÁ P, FLACHS P, KAZDOVÁ L, KOPECKÝ J. Anti-Obesity Effect of n-3 Polyunsaturated Fatty Acids in Mice Fed High-Fat Diet Is Independent of Cold-Induced Thermogenesis. Physiol Res 2013; 62:153-61. [DOI: 10.33549/physiolres.932464] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFA) exert beneficial effects on health and they could help to prevent development of obesity and associated metabolic disorders. In our previous studies in mice fed high-fat (cHF; ~60 % calories as fat) diet and maintained at 20 °C, dietary LC n-3 PUFA could counteract accretion of body fat, without inducing mitochondrial uncoupling protein 1 (UCP1) in adipose tissue, suggesting that the anti-obesity effect was not linked to adaptive (UCP1-mediated) thermogenesis. To exclude a possible dependence of the anti-obesity effect on any mechanism inducible by cold, experiments were repeated in mice maintained at thermoneutrality (30 °C). Male C57BL/6J mice were fed either cHF diet, or cHF diet supplemented with LC n-3 PUFA, or standard diet for 7 months. Similarly as at 20 °C, the LC n-3 PUFA supplementation reduced accumulation of body fat, preserved lipid and glucose homeostasis, and induced fatty acid re-esterification in epididymal white adipose tissue. Food consumption was not affected by LC n-3 PUFA intake. Our results demonstrated anti-obesity metabolic effect of LC n-3 PUFA, independent of cold-induced thermogenesis and they suggested that induction of fatty acid re-esterification creating a substrate cycle in white fat, which results in energy expenditure, could contribute to the anti-obesity effect.
Collapse
Affiliation(s)
| | | | | | - J. KOPECKÝ
- Department of Adipose Tissue Biology, Institute of Physiology Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic
| |
Collapse
|
19
|
Wang CC, Adochio RL, Leitner JW, Abeyta IM, Draznin B, Cornier MA. Acute effects of different diet compositions on skeletal muscle insulin signalling in obese individuals during caloric restriction. Metabolism 2013; 62:595-603. [PMID: 23174405 PMCID: PMC3586754 DOI: 10.1016/j.metabol.2012.10.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Revised: 09/26/2012] [Accepted: 10/17/2012] [Indexed: 12/30/2022]
Abstract
OBJECTIVE The cellular effects of restricting fat versus carbohydrate during a low-calorie diet are unclear. The aim of this study was to examine acute effects of energy and macronutrient restriction on skeletal muscle insulin signalling in obesity. MATERIALS/METHODS Eighteen obese individuals without diabetes underwent euglycemic-hyperinsulinemic clamp and skeletal muscle biopsy after: (a) 5days of eucaloric diet (30% fat, 50% carbohydrate), and (b) 5days of a 30% calorie-restricted diet, either low fat/high carbohydrate (LF/HC: 20% fat, 60% carbohydrate) or high-fat/low carbohydrate (HF/LC: 50% fat, 30% carbohydrate). RESULTS Weight, body composition, and insulin sensitivity were similar between groups after eucaloric diet. Weight loss was similar between groups after hypocaloric diet, 1.3±1.3kg (p<0.0001 compared with eucaloric). Whole-body insulin sensitivity was unchanged after calorie restriction and similar between groups. However, ex vivo skeletal muscle insulin signalling differed depending on macronutrient composition of calorie-restricted diet. Skeletal muscle of the LF/HC group had increased insulin-stimulated tyrosine phosphorylation of IRS-1, decreased insulin-stimulated Ser307 phosphorylation of IRS-1, and increased IRS-1-associated phosphatidylinositol (PI)3-kinase activity. Conversely, insulin stimulation of tyrosine phosphorylated IRS-1 was absent and serine 307 phosphorylation of IRS-1 was increased on HF/LC, with blunting of IRS-1-associated PI3-kinase activity. CONCLUSION Acute caloric restriction with an LF/HC diet alters skeletal muscle insulin signalling in a way that improves insulin sensitivity, while acute caloric restriction with an HF/LC diet induces changes compatible with insulin resistance. In both cases, ex vivo changes in skeletal muscle insulin signalling appear prior to changes in whole body insulin sensitivity.
Collapse
Affiliation(s)
- Cecilia C.L. Wang
- Research Service, Department of Veterans Affairs, Denver, Colorado, USA
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Rebecca L. Adochio
- Research Service, Department of Veterans Affairs, Denver, Colorado, USA
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - J. Wayne Leitner
- Research Service, Department of Veterans Affairs, Denver, Colorado, USA
| | - Ian M. Abeyta
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Boris Draznin
- Research Service, Department of Veterans Affairs, Denver, Colorado, USA
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Marc-Andre Cornier
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
20
|
Marcelino H, Veyrat-Durebex C, Summermatter S, Sarafian D, Miles-Chan J, Arsenijevic D, Zani F, Montani JP, Seydoux J, Solinas G, Rohner-Jeanrenaud F, Dulloo AG. A role for adipose tissue de novo lipogenesis in glucose homeostasis during catch-up growth: a Randle cycle favoring fat storage. Diabetes 2013; 62:362-72. [PMID: 22961086 PMCID: PMC3554390 DOI: 10.2337/db12-0255] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Catch-up growth, a risk factor for type 2 diabetes, is characterized by hyperinsulinemia and accelerated body fat recovery. Using a rat model of semistarvation-refeeding that exhibits catch-up fat, we previously reported that during refeeding on a low-fat diet, glucose tolerance is normal but insulin-dependent glucose utilization is decreased in skeletal muscle and increased in adipose tissue, where de novo lipogenic capacity is concomitantly enhanced. Here we report that isocaloric refeeding on a high-fat (HF) diet blunts the enhanced in vivo insulin-dependent glucose utilization for de novo lipogenesis (DNL) in adipose tissue. These are shown to be early events of catch-up growth that are independent of hyperphagia and precede the development of overt adipocyte hypertrophy, adipose tissue inflammation, or defective insulin signaling. These results suggest a role for enhanced DNL as a glucose sink in regulating glycemia during catch-up growth, which is blunted by exposure to an HF diet, thereby contributing, together with skeletal muscle insulin resistance, to the development of glucose intolerance. Our findings are presented as an extension of the Randle cycle hypothesis, whereby the suppression of DNL constitutes a mechanism by which dietary lipids antagonize glucose utilization for storage as triglycerides in adipose tissue, thereby impairing glucose homeostasis during catch-up growth.
Collapse
Affiliation(s)
- Helena Marcelino
- Department of Medicine/Physiology, University of Fribourg, Fribourg, Switzerland
| | | | - Serge Summermatter
- Department of Medicine/Physiology, University of Fribourg, Fribourg, Switzerland
| | - Delphine Sarafian
- Department of Medicine/Physiology, University of Fribourg, Fribourg, Switzerland
| | - Jennifer Miles-Chan
- Department of Medicine/Physiology, University of Fribourg, Fribourg, Switzerland
| | - Denis Arsenijevic
- Department of Medicine/Physiology, University of Fribourg, Fribourg, Switzerland
| | - Fabio Zani
- Department of Medicine/Physiology, University of Fribourg, Fribourg, Switzerland
| | - Jean-Pierre Montani
- Department of Medicine/Physiology, University of Fribourg, Fribourg, Switzerland
| | - Josiane Seydoux
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Giovanni Solinas
- Department of Medicine/Physiology, University of Fribourg, Fribourg, Switzerland
| | | | - Abdul G. Dulloo
- Department of Medicine/Physiology, University of Fribourg, Fribourg, Switzerland
- Corresponding author: Abdul G. Dulloo,
| |
Collapse
|
21
|
Rai E, Sharma S, Kaul S, Jain K, Matharoo K, Bhanwer AS, Bamezai RNK. The interactive effect of SIRT1 promoter region polymorphism on type 2 diabetes susceptibility in the North Indian population. PLoS One 2012; 7:e48621. [PMID: 23133645 PMCID: PMC3486794 DOI: 10.1371/journal.pone.0048621] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Accepted: 10/01/2012] [Indexed: 11/18/2022] Open
Abstract
Our previous studies have implicated genes mainly involved in the activity of pancreatic β cells in type 2 diabetes (T2D) susceptibility in the North Indian population. Recent literature on the role of SIRT1 as a potential master switch modulating insulin secretion and regulating gene expression in pancreatic β cells has warranted an evaluation of SIRT1 promoter region polymorphisms in the North Indian population, which is the main focus of the present study. 1542 samples (692 T2D patients and 850 controls) were sequenced for the 1.46 kb region upstream the translation start site of the SIRT1 gene. We performed a functional characterization of the SIRT1 promoter region polymorphisms using luciferase assay and observed a single-nucleotide polymorphism (SNP), rs12778366, in association with SIRT1 expression. We propose that TT, the high-expressing genotype of SNP rs12778366 in the SIRT1 promoter region and present in >80% of the North Indian population, was favored under conditions of feast-famine cycles in evolution, which has turned out to be a cause of concern in the present sedentary lifestyle under ad libitum conditions. Case-control association analysis did not implicate rs12778366 in T2DM per se in the studied population. However, our earlier reported risk genotype combinations of mt-ND3, PGC1α, and UCP2-866, when compared with the protective genotype combinations, in the background of the high-expressing TT genotype of SIRT1 SNP rs12778366, showed a very high additive risk [corrected odd ratio (OR) = 8.91; p = 6.5×10(-11)]. The risk level was considerably low in the genotype backgrounds of TX (OR = 6.68; p = 2.71×10(-12)) and CX (OR = 3.74; p = 4.0×10(-3)). In addition, we screened other reported T2D-associated polymorphisms: PIK3R1 rs3730089, IRS1 rs1801278, and PPP1R3 rs1799999, which did not show any significant association in North Indian population. The present paper emphasizes the importance of gene interactions in the biological pathways of T2D, a complex lifestyle disease.
Collapse
Affiliation(s)
- Ekta Rai
- National Centre of Applied Human Genetics, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- Department of Immunology, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - Swarkar Sharma
- National Centre of Applied Human Genetics, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- Department of Research, Texas Scottish Rite Hospital, Dallas, Texas, United States of America
- * E-mail: (SS); (RNKB)
| | - Surabhi Kaul
- National Centre of Applied Human Genetics, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Kamal Jain
- National Centre of Applied Human Genetics, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Kawaljit Matharoo
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Amarjit S. Bhanwer
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Rameshwar N. K. Bamezai
- National Centre of Applied Human Genetics, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- * E-mail: (SS); (RNKB)
| |
Collapse
|
22
|
Crescenzo R, Bianco F, Falcone I, Tsalouhidou S, Yepuri G, Mougios V, Dulloo AG, Liverini G, Iossa S. Hepatic mitochondrial energetics during catch-up fat with high-fat diets rich in lard or safflower oil. Obesity (Silver Spring) 2012; 20:1763-72. [PMID: 21720434 DOI: 10.1038/oby.2011.167] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We have investigated whether altered hepatic mitochondrial energetics could explain the differential effects of high-fat diets with low or high ω6 polyunsaturated fatty acid content (lard vs. safflower oil) on the efficiency of body fat recovery (catch-up fat) during refeeding after caloric restriction. After 2 weeks of caloric restriction, rats were isocalorically refed with a low-fat diet (LF) or high-fat diets made from either lard or safflower oil for 1 week, and energy balance and body composition changes were assessed. Hepatic mitochondrial energetics were determined from measurements of liver mitochondrial mass, respiratory capacities, and proton leak. Compared to rats refed the LF, the groups refed high-fat diets showed lower energy expenditure and increased efficiency of fat gain; these differences were less marked with high-safflower oil than with high-lard diet. The increase in efficiency of catch-up fat by the high-fat diets could not be attributed to differences in liver mitochondrial activity. By contrast, the lower fat gain with high-safflower oil than with high-lard diet is accompanied by higher mitochondrial proton leak and increased proportion of arachidonic acid in mitochondrial membranes. In conclusion, the higher efficiency for catch-up fat on high-lard diet than on LF cannot be explained by altered hepatic mitochondrial energetics. By contrast, the ability of the high-safflower oil diet to produce a less pronounced increase in the efficiency of catch-up fat may partly reside in increased incorporation of arachidonic acid in hepatic mitochondrial membranes, leading to enhanced proton leak and mitochondrial uncoupling.
Collapse
Affiliation(s)
- Raffaella Crescenzo
- Department of Structural and Functional Biology, University of Naples, Naples, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Föller M, Jaumann M, Dettling J, Saxena A, Pakladok T, Munoz C, Ruth P, Sopjani M, Seebohm G, Rüttiger L, Knipper M, Lang F. AMP-activated protein kinase in BK-channel regulation and protection against hearing loss following acoustic overstimulation. FASEB J 2012; 26:4243-53. [PMID: 22767231 DOI: 10.1096/fj.12-208132] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The energy-sensing AMP-activated serine/threonine protein kinase (AMPK) confers cell survival in part by stimulation of cellular energy production and limitation of cellular energy utilization. AMPK-sensitive functions further include activities of epithelial Na+ channel ENaC and voltage-gated K+ channel KCNE1/KCNQ1. AMPK is activated by an increased cytosolic Ca2+ concentration. The present study explored whether AMPK regulates the Ca2+-sensitive large conductance and voltage-gated potassium (BK) channel. cRNA encoding BK channel was injected into Xenopus oocytes with and without additional injection of wild-type AMPK (AMPKα1+AMPKβ1+AMPKγ1), constitutively active AMPKγR70Q, or inactive AMPKαK45R. BK-channel activity was determined utilizing the 2-electrode voltage-clamp. Moreover, BK-channel protein abundance in the cell membrane was determined by confocal immunomicroscopy. As BK channels are expressed in outer hair cells (OHC) of the inner ear and lack of BK channels increases noise vulnerability, OHC BK-channel expression was examined by immunohistochemistry and hearing function analyzed by auditory brain stem response measurements in AMPKα1-deficient mice (ampk-/-) and in wild-type mice (ampk+/+). As a result, coexpression of AMPK or AMPKγR70Q but not of AMPKαK45R significantly enhanced BK-channel-mediated currents and BK-channel protein abundance in the oocyte cell membrane. BK-channel expression in the inner ear was lower in ampk-/- mice than in ampk+/+ mice. The hearing thresholds prior to and immediately after an acoustic overexposure were similar in ampk-/- and ampk+/+ mice. However, the recovery from the acoustic trauma was significantly impaired in ampk-/- mice compared to ampk+/+ mice. In summary, AMPK is a potent regulator of BK channels. It may thus participate in the signaling cascades that protect the inner ear from damage following acoustic overstimulation.
Collapse
Affiliation(s)
- Michael Föller
- Department of Physiology, University of Tübingen, Gmelinstr. 5, D-72076 Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Lang F, Eylenstein A, Shumilina E. Regulation of Orai1/STIM1 by the kinases SGK1 and AMPK. Cell Calcium 2012; 52:347-54. [PMID: 22682960 DOI: 10.1016/j.ceca.2012.05.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 05/07/2012] [Accepted: 05/09/2012] [Indexed: 01/08/2023]
Abstract
STIM and Orai isoforms orchestrate store operated Ca2+ entry (SOCE) and thus cytosolic Ca2+ fluctuations following stimulation by hormones, growth factors and further mediators. Orai1 is a target of Nedd4-2, an ubiquitin ligase preparing several plasma membrane proteins for degradation. Phosphorylation of Nedd4-2 by the serum and glucocorticoid inducible kinase SGK1 leads to the binding of Nedd4-2 to the protein 14-3-3 thus preventing its interaction with Orai1. Nedd4-2 is activated by the energy sensing AMP activated kinase AMPK. Thus, SGK1 disrupts and AMPK fosters degradation of Orai1. New synthesis of both, Orai1 and STIM1, is stimulated by the transcription factor NF-κB (nuclear factor kappa B), which binds to the respective promoter regions of the genes encoding STIM1 and Orai1. SGK1 upregulates and AMPK presumably downregulates NF-κB and thus de novo synthesis of Orai1 and STIM1 proteins. The regulation by SGK1 links SOCE to the signaling of a wide variety of hormones and growth factors, the AMPK dependent regulation of Orai1 and STIM1 may serve to limit inadequate activation of SOCE following energy depletion, which is otherwise expected to activate SOCE by depletion of intracellular Ca2+ stores due to impairment of the ATP consuming sarco/endoplasmatic reticulum Ca2+ ATPase SERCA.
Collapse
Affiliation(s)
- Florian Lang
- Department of Physiology, University of Tübingen, Gmelinstr. 5, D-72076 Tübingen, Germany.
| | | | | |
Collapse
|
25
|
De Blasio MJ, Gatford KL, Harland ML, Robinson JS, Owens JA. Placental restriction reduces insulin sensitivity and expression of insulin signaling and glucose transporter genes in skeletal muscle, but not liver, in young sheep. Endocrinology 2012; 153:2142-51. [PMID: 22434080 DOI: 10.1210/en.2011-1955] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Poor growth before birth is associated with impaired insulin sensitivity later in life, increasing the risk of type 2 diabetes. The tissue sites at which insulin resistance first develops after intrauterine growth restriction (IUGR), and its molecular basis, are unclear. We have therefore characterized the effects of placental restriction (PR), a major cause of IUGR, on whole-body insulin sensitivity and expression of molecular determinants of insulin signaling and glucose uptake in skeletal muscle and liver of young lambs. Whole-body insulin sensitivity was measured at 30 d by hyperinsulinaemic euglycaemic clamp and expression of insulin signaling genes (receptors, pathways, and targets) at 43 d in muscle and liver of control (n = 15) and PR (n = 13) lambs. PR reduced size at birth and increased postnatal growth, fasting plasma glucose (+15%, P = 0.004), and insulin (+115%, P = 0.009). PR reduced whole-body insulin sensitivity (-43%, P < 0.001) and skeletal muscle expression of INSR (-36%), IRS1 (-28%), AKT2 (-44%), GLUT4 (-88%), GSK3α (-35%), and GYS1 (-31%) overall (each P < 0.05) and decreased AMPKγ3 expression in females (P = 0.030). PR did not alter hepatic expression of insulin signaling and related genes but increased GLUT2 expression (P = 0.047) in males. Whole-body insulin sensitivity correlated positively with skeletal muscle expression of IRS1, AKT2, HK, AMPKγ2, and AMPKγ3 in PR lambs only (each P < 0.05) but not with hepatic gene expression in control or PR lambs. Onset of insulin resistance after PR and IUGR is accompanied by, and can be accounted for by, reduced expression of insulin signaling and metabolic genes in skeletal muscle but not liver.
Collapse
Affiliation(s)
- Miles J De Blasio
- The Robinson Institute and School of Pediatrics and Reproductive Health, University of Adelaide, Adelaide, South Australia 5005, Australia
| | | | | | | | | |
Collapse
|
26
|
Langeveld M, van den Berg SAA, Bijl N, Bijland S, van Roomen CP, Houben-Weerts JH, Ottenhoff R, Houten SM, van Dijk KW, Romijn JA, Groen AK, Aerts JM, Voshol PJ. Treatment of genetically obese mice with the iminosugar N-(5-adamantane-1-yl-methoxy-pentyl)-deoxynojirimycin reduces body weight by decreasing food intake and increasing fat oxidation. Metabolism 2012; 61:99-107. [PMID: 21816446 DOI: 10.1016/j.metabol.2011.05.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 05/05/2011] [Accepted: 05/09/2011] [Indexed: 10/17/2022]
Abstract
Obesity and its associated conditions such as type 2 diabetes mellitus are major causes of morbidity and mortality. The iminosugar N-(5-adamantane-1-yl-methoxy-pentyl)-deoxynojirimycin (AMP-DNM) improves insulin sensitivity in rodent models of insulin resistance and type 2 diabetes mellitus. In the current study, we characterized the impact of AMP-DNM on substrate oxidation patterns, food intake, and body weight gain in obese mice. Eight ob/ob mice treated with 100 mg/(kg d) AMP-DNM mixed in the food and 8 control ob/ob mice were placed in metabolic cages during the first, third, and fifth week of the experiment for measurement of substrate oxidation rates, energy expenditure, activity, and food intake. Mice were killed after 6 weeks of treatment. Initiation of treatment with AMP-DNM resulted in a rapid increase in fat oxidation by 129% (P = .05), a decrease in carbohydrate oxidation by 35% (P = .01), and a reduction in food intake by approximately 26% (P < .01) compared with control mice. Treatment with AMP-DNM decreased hepatic triglyceride content by 66% (P < .01) and, in line with the elevated fat oxidation rates, increased hepatic carnitine palmitoyl transferase 1a expression. Treatment with AMP-DNM increased plasma levels of the appetite-regulating peptide YY compared with control mice. Treatment with AMP-DNM rapidly reduces food intake and increases fat oxidation, resulting in improvement of the obese phenotype. These features of AMP-DNM, together with its insulin-sensitizing capacity, make it an attractive candidate drug for the treatment of obesity and its associated metabolic derangements.
Collapse
Affiliation(s)
- Mirjam Langeveld
- Department of Medical Biochemistry, Academic Medical Center, Meibergdreef 9, Amsterdam, the Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Klaus S, Keipert S, Rossmeisl M, Kopecky J. Augmenting energy expenditure by mitochondrial uncoupling: a role of AMP-activated protein kinase. GENES AND NUTRITION 2011; 7:369-86. [PMID: 22139637 DOI: 10.1007/s12263-011-0260-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 11/18/2011] [Indexed: 11/28/2022]
Abstract
Strategies to prevent and treat obesity aim to decrease energy intake and/or increase energy expenditure. Regarding the increase of energy expenditure, two key intracellular targets may be considered (1) mitochondrial oxidative phosphorylation, the major site of ATP production, and (2) AMP-activated protein kinase (AMPK), the master regulator of cellular energy homeostasis. Experiments performed mainly in transgenic mice revealed a possibility to ameliorate obesity and associated disorders by mitochondrial uncoupling in metabolically relevant tissues, especially in white adipose tissue (WAT), skeletal muscle (SM), and liver. Thus, ectopic expression of brown fat-specific mitochondrial uncoupling protein 1 (UCP1) elicited major metabolic effects both at the cellular/tissue level and at the whole-body level. In addition to expected increases in energy expenditure, surprisingly complex phenotypic effects were detected. The consequences of mitochondrial uncoupling in WAT and SM are not identical, showing robust and stable obesity resistance accompanied by improvement of lipid metabolism in the case of ectopic UCP1 in WAT, while preservation of insulin sensitivity in the context of high-fat feeding represents the major outcome of muscle UCP1 expression. These complex responses could be largely explained by tissue-specific activation of AMPK, triggered by a depression of cellular energy charge. Experimental data support the idea that (1) while being always activated in response to mitochondrial uncoupling and compromised intracellular energy status in general, AMPK could augment energy expenditure and mediate local as well as whole-body effects; and (2) activation of AMPK alone does not lead to induction of energy expenditure and weight reduction.
Collapse
Affiliation(s)
- Susanne Klaus
- German Institute of Human Nutrition, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | | | | | | |
Collapse
|
28
|
Pico C, Jilkova ZM, Kus V, Palou A, Kopecky J. Perinatal programming of body weight control by leptin: putative roles of AMP kinase and muscle thermogenesis. Am J Clin Nutr 2011; 94:1830S-1837S. [PMID: 21543529 DOI: 10.3945/ajcn.110.000752] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Breastfeeding, compared with infant-formula feeding, confers later protection against obesity. Leptin represents a candidate for the programming of the lean phenotype as suggested by 1) the presence of leptin in breast milk and its absence in infant formula, 2) a human study that showed a negative correlation between leptin concentrations in breast milk and body weights of infants until 2 y of age, and 3) intervention studies in animals. Milk-borne leptin and leptin synthesized in adipose tissue and the stomach may contribute to leptinemia in newborns. Studies in rodents suggested that early leptin treatment may program either a lean or obese phenotype, probably depending on the dose, route of administration, and timing of exposure to high leptin concentrations, whereas these studies also suggested the importance of the physiologic postnatal surge in leptinemia for the programming effect. Leptin oral administration at physiologic doses to neonate rats during the entire lactation period had later positive effects that prevented the animals from overweight and obesity and other metabolic alterations, which were particularly associated with feeding of a high-fat diet. High leptin sensitivity, which is associated with leanness, and leptin resistance in obesity may be programmed by the early life environment. The differential sensitivity to leptin implies a contribution of leptin-inducible energy expenditure to the adult phenotype. Available data have suggested the involvement of nonshivering thermogenesis induced by a leptin-AMP-activated protein kinase axis in oxidative muscles, which is based on lipid metabolism. Additional studies on the programming effects of leptin, mainly in response to the oral intake of leptin, are required.
Collapse
Affiliation(s)
- Catalina Pico
- Laboratory of Molecular Biology, Nutrition and Biotechnology, Palma de Mallorca, Spain
| | | | | | | | | |
Collapse
|
29
|
Summermatter S, Thurnheer R, Santos G, Mosca B, Baum O, Treves S, Hoppeler H, Zorzato F, Handschin C. Remodeling of calcium handling in skeletal muscle through PGC-1α: impact on force, fatigability, and fiber type. Am J Physiol Cell Physiol 2011; 302:C88-99. [PMID: 21918181 DOI: 10.1152/ajpcell.00190.2011] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Regular endurance exercise remodels skeletal muscle, largely through the peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α). PGC-1α promotes fiber type switching and resistance to fatigue. Intracellular calcium levels might play a role in both adaptive phenomena, yet a role for PGC-1α in the adaptation of calcium handling in skeletal muscle remains unknown. Using mice with transgenic overexpression of PGC-1α, we now investigated the effect of PGC-1α on calcium handling in skeletal muscle. We demonstrate that PGC-1α induces a quantitative reduction in calcium release from the sarcoplasmic reticulum by diminishing the expression of calcium-releasing molecules. Concomitantly, maximal muscle force is reduced in vivo and ex vivo. In addition, PGC-1α overexpression delays calcium clearance from the myoplasm by interfering with multiple mechanisms involved in calcium removal, leading to higher myoplasmic calcium levels following contraction. During prolonged muscle activity, the delayed calcium clearance might facilitate force production in mice overexpressing PGC-1α. Our results reveal a novel role of PGC-1α in altering the contractile properties of skeletal muscle by modulating calcium handling. Importantly, our findings indicate PGC-1α to be both down- as well as upstream of calcium signaling in this tissue. Overall, our findings suggest that in the adaptation to chronic exercise, PGC-1α reduces maximal force, increases resistance to fatigue, and drives fiber type switching partly through remodeling of calcium transients, in addition to promoting slow-type myofibrillar protein expression and adequate energy supply.
Collapse
Affiliation(s)
- Serge Summermatter
- Biozentrum, Department of Pharmacology/Neurobiology, University of Basel, Basel, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Knight WD, Witte MM, Parsons AD, Gierach M, Overton JM. Long-term caloric restriction reduces metabolic rate and heart rate under cool and thermoneutral conditions in FBNF1 rats. Mech Ageing Dev 2011; 132:220-9. [PMID: 21513729 DOI: 10.1016/j.mad.2011.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Revised: 02/14/2011] [Accepted: 04/02/2011] [Indexed: 12/21/2022]
Abstract
The long-term metabolic and cardiovascular responses to caloric restriction (CR) are poorly understood. We examined the responses to one year of CR in FBNF1 rats housed in cool (COOL; T(a)=15 °C) or thermoneutral (TMN; T(a)=30 °C) conditions. Rats were acclimated to COOL or TMN for 2 months, instrumented for cardiovascular telemetry and studied in calorimeters. Baseline caloric intake, oxygen consumption (VO(2)), mean arterial blood pressure (MAP), and heart rate (HR) were determined prior to assignment to ad lib (AL) or CR groups (30-40% CR) within each T(a) (n = 8). Groups of rats were studied after 10 weeks CR, one year CR, and after 4 days of re-feeding. Both 10 weeks and one year of CR reduced HR and VO(2) irrespective of T(a). Evaluation of the relationship between metabolic organ mass (liver, heart, brain, and kidney mass) and energy expenditure revealed a clear shift induced by CR to reduce expenditure per unit metabolic mass in both COOL and TMN groups. Re-feeding resulted in prompt elevations of HR and VO(2) to levels observed in control rats. These findings are consistent with the hypothesis that long term CR produces sustained reductions in metabolic rate and heart rate in rats.
Collapse
Affiliation(s)
- W David Knight
- Department of Biomedical Sciences and Program in Neuroscience, Florida State University, College of Medicine, Tallahassee, FL 32306-4340, USA
| | | | | | | | | |
Collapse
|
31
|
Coordinated balancing of muscle oxidative metabolism through PGC-1α increases metabolic flexibility and preserves insulin sensitivity. Biochem Biophys Res Commun 2011; 408:180-5. [PMID: 21501593 DOI: 10.1016/j.bbrc.2011.04.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 04/03/2011] [Indexed: 11/20/2022]
Abstract
The peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) enhances oxidative metabolism in skeletal muscle. Excessive lipid oxidation and electron transport chain activity can, however, lead to the accumulation of harmful metabolites and impair glucose homeostasis. Here, we investigated the effect of over-expression of PGC-1α on metabolic control and generation of insulin desensitizing agents in extensor digitorum longus (EDL), a muscle that exhibits low levels of PGC-1α in the untrained state and minimally relies on oxidative metabolism. We demonstrate that PGC-1α induces a strictly balanced substrate oxidation in EDL by concomitantly promoting the transcription of activators and inhibitors of lipid oxidation. Moreover, we show that PGC-1α enhances the potential to uncouple oxidative phosphorylation. Thereby, PGC-1α boosts elevated, yet tightly regulated oxidative metabolism devoid of side products that are detrimental for glucose homeostasis. Accordingly, PI3K activity, an early phase marker for insulin resistance, is preserved in EDL muscle. Our findings suggest that PGC-1α coordinately coactivates the simultaneous transcription of gene clusters implicated in the positive and negative regulation of oxidative metabolism and thereby increases metabolic flexibility. Thus, in mice fed a normal chow diet, over-expression of PGC-1α does not alter insulin sensitivity and the metabolic adaptations elicited by PGC-1α mimic the beneficial effects of endurance training on muscle metabolism in this context.
Collapse
|
32
|
Chen LL, Hu X, Zheng J, Kong W, Zhang HH, Yang WH, Zhu SP, Zeng TS, Zhang JY, Deng XL, Hu D. Lipid overaccumulation and drastic insulin resistance in adult catch-up growth rats induced by nutrition promotion after undernutrition. Metabolism 2011; 60:569-78. [PMID: 20619426 DOI: 10.1016/j.metabol.2010.05.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Revised: 03/22/2010] [Accepted: 05/24/2010] [Indexed: 10/19/2022]
Abstract
This study was designed to explore the metabolic changes resulting from catch-up growth in adult (CUGA) induced by varying degrees of nutrition promotion after undernutrition and to confirm whether these changes are transient or not. The CUGA models were developed on rats refed on intakes of normal chow or high-fat diet after a period of caloric restriction. The growth of the rats measured by body weight and length stagnated during caloric restriction and then rapidly accelerated following refeeding. Catch-up growth in adult resulted in an increase in intramuscular and intrahepatic lipid content, visceral fat deposition, and insulin resistance, which is consistent with a transient rise in food efficiency during the early stage of refeeding. In addition, ectopic lipid deposition, visceral fat accumulation, and insulin resistance were more severe in rats refed the high-fat diet than rats refed the normal chow. These findings suggest that CUGA induced by rapid nutrition promotion could result in persistent lipid overaccumulation (increased visceral fat and ectopic lipid deposition) and drastic systemic insulin resistance. The effects of CUGA on metabolic characteristics are dependent on the type of diet that is used for refeeding, especially on the amount of fat intake.
Collapse
Affiliation(s)
- Lu-Lu Chen
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Casimir M, de Andrade PB, Gjinovci A, Montani JP, Maechler P, Dulloo AG. A role for pancreatic beta-cell secretory hyperresponsiveness in catch-up growth hyperinsulinemia: Relevance to thrifty catch-up fat phenotype and risks for type 2 diabetes. Nutr Metab (Lond) 2011; 8:2. [PMID: 21244699 PMCID: PMC3033236 DOI: 10.1186/1743-7075-8-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Accepted: 01/18/2011] [Indexed: 12/14/2022] Open
Abstract
Current notions about mechanisms by which catch-up growth predisposes to later type 2 diabetes center upon those that link hyperinsulinemia with an accelerated rate of fat deposition (catch-up fat). Using a rat model of semistarvation-refeeding in which catch-up fat is driven solely by elevated metabolic efficiency associated with hyperinsulinemia, we previously reported that insulin-stimulated glucose utilization is diminished in skeletal muscle but increased in white adipose tissue. Here, we investigated the possibility that hyperinsulinemia during catch-up fat can be contributed by changes in the secretory response of pancreatic beta-cells to glucose. Using the rat model of semistarvation-refeeding showing catch-up fat and hyperinsulinemia, we compared isocalorically refed and control groups for potential differences in pancreatic morphology and in glucose-stimulated insulin secretion during in situ pancreas perfusions as well as ex vivo isolated islet perifusions. Between refed and control animals, no differences were found in islet morphology, insulin content, and the secretory responses of perifused isolated islets upon glucose stimulation. By contrast, the rates of insulin secretion from in situ perfused pancreas showed that raising glucose from 2.8 to 16.7 mmol/l produced a much more pronounced increase in insulin release in refed than in control groups (p < 0.01). These results indicate a role for islet secretory hyperresponsiveness to glucose in the thrifty mechanisms that drive catch-up fat through glucose redistribution between skeletal muscle and adipose tissue. Such beta-cell hyperresponsiveness to glucose may be a key event in the link between catch-up growth, hyperinsulinemia and risks for later type 2 diabetes.
Collapse
Affiliation(s)
- Marina Casimir
- Department of Cell Physiology and Metabolism, University of Geneva, Switzerland
| | - Paula B de Andrade
- Department of Medicine / Physiology, University of Fribourg, Switzerland
| | - Asllan Gjinovci
- Department of Cell Physiology and Metabolism, University of Geneva, Switzerland
| | | | - Pierre Maechler
- Department of Cell Physiology and Metabolism, University of Geneva, Switzerland
| | - Abdul G Dulloo
- Department of Medicine / Physiology, University of Fribourg, Switzerland.,Department of Medicine / Physiology, University of Fribourg, Rue du Musée 5, CH-1700 Fribourg, Switzerland
| |
Collapse
|
34
|
Ricart W, Fernández-Real JM. [Insulin resistance as a mechanism of adaptation during human evolution]. ENDOCRINOLOGIA Y NUTRICION : ORGANO DE LA SOCIEDAD ESPANOLA DE ENDOCRINOLOGIA Y NUTRICION 2010; 57:381-390. [PMID: 20675202 DOI: 10.1016/j.endonu.2010.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 05/06/2010] [Accepted: 05/10/2010] [Indexed: 05/29/2023]
Abstract
The recent application of concepts of evolution to human disease is proving useful to understand certain pathophysiological mechanisms of different entities that span genomic alterations of immunity, respiratory and hormone function, and the circulatory and neural systems. However, effort has concentrated on explaining the keys to adaptation that define human metabolism and, since the early 1960s, several theories have been developed. This article reviews some of the hypotheses postulated in recent years on the potential benefit of insulin resistance and discusses the most recent knowledge. The concept of the thrifty gene seems to have been definitively refuted by current knowledge. The current paradigm describes an interaction between the metabolic and the immune systems resulting from their coevolution, promoted by evolutionary pressures triggered by fasting, infection and intake of different foods. The activation and regulation of these ancient mechanisms in integrated and interdependent areas defines insulin resistance as a survival strategy that is critical during fasting and in the fight against infection. The relationship with some components of the diet and, particularly, with the symbiotic intestinal microflora points to new paradigms in understanding the pathophysiology of obesity, metabolic syndrome and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- W Ricart
- Servicio de Diabetis, Endocrinologia i Nutrició, Hospital Universitari de Girona Dr. Josep Trueta, Institut d'Investigació Biomédica de Girona, Centro de Investigación Biomédica en Red, Fisiopatología de la Obesidad y Nutrición, Girona, España.
| | | |
Collapse
|
35
|
Cerqueira FM, Kowaltowski AJ. Commonly adopted caloric restriction protocols often involve malnutrition. Ageing Res Rev 2010; 9:424-30. [PMID: 20493280 DOI: 10.1016/j.arr.2010.05.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 05/10/2010] [Accepted: 05/10/2010] [Indexed: 02/08/2023]
Abstract
Undernutrition without malnutrition is an intervention that enhances laboratory animal life span, and is widely studied to uncover factors limiting longevity. In a search of the literature over a course of four years, we found that most protocols currently adopted as caloric restriction do not meet micronutrient standards set by the National Research Council for laboratory rats and mice. We provide evidence that the most commonly adopted caloric restriction protocol, a 40% restriction of the AIN-93 diet without vitamin or mineral supplementation, leads to malnutrition in both mice and rats. Furthermore, others and we find that every other day feeding, another dietary intervention often referred to as caloric restriction, does not limit the total amount of calories consumed. Altogether, we propose that the term "caloric restriction" should be used specifically to describe diets that decrease calorie intake but not micronutrient availability, and that protocols adopted should be described in detail in order to allow for comparisons and better understanding of the effects of these diets.
Collapse
|
36
|
Berleze KJ, Müller AP, Schweigert ID, Longoni A, Sordi F, de Assis AM, Rotta LN, de Souza DOG, Perry MLS. Gestational and postnatal low protein diet alters insulin sensitivity in female rats. Exp Biol Med (Maywood) 2009; 234:1437-44. [PMID: 19934364 DOI: 10.3181/0903-rm-111] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Nutrition during pregnancy and lactation can program an offspring's metabolism with regard to glucose and lipid homeostasis. A suboptimal environment during fetal, neonatal and infant development is associated with impaired glucose tolerance, type 2 diabetes and insulin resistance in later adult life. However, studies on the effects of a low protein diet imposed from the beginning of gestation until adulthood are scarce. This study's objective was to investigate the effects of a low protein diet imposed from the gestational period until 4 months of age on the parameters of glucose tolerance and insulin responsiveness in Wistar rats. The rats were divided into a low protein diet group and a control group and received a diet with either 7% or 25% protein, respectively. After birth, the rats received the same diet as their mothers, until 4 months of age. In the low protein diet group it was observed that: (i) the hepatic glycogen concentration and hepatic glycogen synthesis from glycerol were significantly greater than in the control group; (ii) the disposal of 2-deoxyglucose in soleum skeletal muscle slices was 29.8% higher than in the control group; (iii) there was both a higher glucose tolerance in the glucose tolerance test; and (iv) a higher insulin responsiveness in than in the control group. The results suggest that the low protein diet animals show higher glucose tolerance and insulin responsiveness relative to normally nourished rats. These findings were supported by the higher hepatic glycogen synthesis and the higher disposal of 2-deoxyglucose in soleum skeletal muscle found in the low protein diet rats.
Collapse
Affiliation(s)
- Kally J Berleze
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600 - anexo, Porto Alegre, RS 90035-003, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Müller MJ, Bosy-Westphal A, Heller M. 'Functional' body composition: differentiating between benign and non-benign obesity. F1000 BIOLOGY REPORTS 2009; 1:75. [PMID: 20948613 PMCID: PMC2948251 DOI: 10.3410/b1-75] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Recent body composition analyses, together with assessments of insulin resistance, aerobic fitness, and intima-media thickness of the common carotid artery, have shown that metabolically-benign obese subjects have a similar BMI, waist circumference, and subcutaneous abdominal fat compared with non-metabolically-benign obese subjects. Research has suggested that 25-30% of the obese population do not need either treatment or prevention of secondary disorders. Therefore, assessment of functional body composition should replace nutritional status-based risk assessments (such as the body mass index) in both metabolic research and clinical decision making. The concept of ‘functional’ body composition gives us a more sophisticated view on nutritional status, metabolism, endocrinology, and diseases. Knowledge of detailed body composition enables characterization of biomedical traits which will give functional evidence relating genetic variants.
Collapse
Affiliation(s)
- Manfred J Müller
- Institut für Humanernährung und Lebensmittelkunde, Agrar- und Ernährungswissenschaftliche Fakultät, Christian-Albrechts-Universität, Düsternbrooker Weg 17-19, D-24105 Kiel, Germany.
| | | | | |
Collapse
|
38
|
Summermatter S, Marcelino H, Arsenijevic D, Buchala A, Aprikian O, Assimacopoulos-Jeannet F, Seydoux J, Montani JP, Solinas G, Dulloo AG. Adipose tissue plasticity during catch-up fat driven by thrifty metabolism: relevance for muscle-adipose glucose redistribution during catch-up growth. Diabetes 2009; 58:2228-37. [PMID: 19602538 PMCID: PMC2750217 DOI: 10.2337/db08-1793] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Catch-up growth, a risk factor for later type 2 diabetes, is characterized by hyperinsulinemia, accelerated body-fat recovery (catch-up fat), and enhanced glucose utilization in adipose tissue. Our objective was to characterize the determinants of enhanced glucose utilization in adipose tissue during catch-up fat. RESEARCH DESIGN AND METHODS White adipose tissue morphometry, lipogenic capacity, fatty acid composition, insulin signaling, in vivo glucose homeostasis, and insulinemic response to glucose were assessed in a rat model of semistarvation-refeeding. This model is characterized by glucose redistribution from skeletal muscle to adipose tissue during catch-up fat that results solely from suppressed thermogenesis (i.e., without hyperphagia). RESULTS Adipose tissue recovery during the dynamic phase of catch-up fat is accompanied by increased adipocyte number with smaller diameter, increased expression of genes for adipogenesis and de novo lipogenesis, increased fatty acid synthase activity, increased proportion of saturated fatty acids in triglyceride (storage) fraction but not in phospholipid (membrane) fraction, and no impairment in insulin signaling. Furthermore, it is shown that hyperinsulinemia and enhanced adipose tissue de novo lipogenesis occur concomitantly and are very early events in catch-up fat. CONCLUSIONS These findings suggest that increased adipose tissue insulin stimulation and consequential increase in intracellular glucose flux play an important role in initiating catch-up fat. Once activated, the machinery for lipogenesis and adipogenesis contribute to sustain an increased insulin-stimulated glucose flux toward fat storage. Such adipose tissue plasticity could play an active role in the thrifty metabolism that underlies glucose redistribution from skeletal muscle to adipose tissue.
Collapse
Affiliation(s)
- Serge Summermatter
- Department of Medicine/Physiology, University of Fribourg, Fribourg, Switzerland
| | - Helena Marcelino
- Department of Medicine/Physiology, University of Fribourg, Fribourg, Switzerland
| | - Denis Arsenijevic
- Department of Medicine/Physiology, University of Fribourg, Fribourg, Switzerland
| | - Antony Buchala
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | | | | | - Josiane Seydoux
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Jean-Pierre Montani
- Department of Medicine/Physiology, University of Fribourg, Fribourg, Switzerland
| | - Giovanni Solinas
- Department of Medicine/Physiology, University of Fribourg, Fribourg, Switzerland
| | - Abdul G. Dulloo
- Department of Medicine/Physiology, University of Fribourg, Fribourg, Switzerland
- Corresponding author: A.G. Dulloo,
| |
Collapse
|
39
|
Müller MJ, Bosy-Westphal A, Later W, Haas V, Heller M. Functional body composition: insights into the regulation of energy metabolism and some clinical applications. Eur J Clin Nutr 2009; 63:1045-56. [DOI: 10.1038/ejcn.2009.55] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
40
|
MacLean PS, Higgins JA, Wyatt HR, Melanson EL, Johnson GC, Jackman MR, Giles ED, Brown IE, Hill JO. Regular exercise attenuates the metabolic drive to regain weight after long-term weight loss. Am J Physiol Regul Integr Comp Physiol 2009; 297:R793-802. [PMID: 19587114 DOI: 10.1152/ajpregu.00192.2009] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Weight loss is accompanied by several metabolic adaptations that work together to promote rapid, efficient regain. We employed a rodent model of regain to examine the effects of a regular bout of treadmill exercise on these adaptations. Obesity was induced in obesity-prone rats with 16 wk of high-fat feeding and limited physical activity. Obese rats were then weight reduced (approximately 14% of body wt) with a calorie-restricted, low-fat diet and maintained at that reduced weight for 8 wk by providing limited provisions of the diet with (EX) or without (SED) a daily bout of treadmill exercise (15 m/min, 30 min/day, 6 days/wk). Weight regain, energy balance, fuel utilization, adipocyte cellularity, and humoral signals of adiposity were monitored during eight subsequent weeks of ad libitum feeding while the rats maintained their respective regimens of physical activity. Regular exercise decreased the rate of regain early in relapse and lowered the defended body weight. During weight maintenance, regular exercise reduced the biological drive to eat so that it came closer to matching the suppressed level of energy expenditure. The diurnal extremes in fuel preference observed in weight-reduced rats were blunted, since exercise promoted the oxidation of fat during periods of feeding (dark cycle) and promoted the oxidation of carbohydrate (CHO) later in the day during periods of deprivation (light cycle) . At the end of relapse, exercise reestablished the homeostatic steady state between intake and expenditure to defend a lower body weight. Compared with SED rats, relapsed EX rats exhibited a reduced turnover of energy, a lower 24-h oxidation of CHO, fewer adipocytes in abdominal fat pads, and peripheral signals that overestimated their adiposity. These observations indicate that regimented exercise altered several metabolic adaptations to weight reduction in a manner that would coordinately attenuate the propensity to regain lost weight.
Collapse
Affiliation(s)
- Paul S MacLean
- Center for Human Nutrition, Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Colorado Denver, Denver, Colorado, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
|
42
|
Dulloo AG. Adipose tissue plasticity in catch-up-growth trajectories to metabolic syndrome: hyperplastic versus hypertrophic catch-up fat. Diabetes 2009; 58:1037-9. [PMID: 19401433 PMCID: PMC2671056 DOI: 10.2337/db09-0290] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Abdul G Dulloo
- Institute of Physiology, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
43
|
Abstract
PURPOSE OF REVIEW Is trafficking of dietary fat involved in the development of obesity? RECENT FINDINGS Studies on energy expenditure and substrate utilization during overfeeding, studies on individual differences in substrate utilization between individuals fed at energy balance, and differences in responses in energy expenditure and substrate utilization in individuals after weight reduction, illustrate that the capacity of fat oxidation is a potential determinant for the development of obesity. SUMMARY The ability to store dietary fat seems to be involved in the susceptibility to gain weight during a positive energy balance. Obese individuals show less oxidation and more storage of dietary fat as compared with the lean phenotype. Differences in fuel trafficking make individuals prone to overeating in the current obesogenic environment with a high availability of energy-dense fatty foods. It is difficult to get rid of excess body fat as energy requirement for weight maintenance after weight reduction is lower than predicted from the new body composition reached and thus, there is a high risk for weight regain.
Collapse
Affiliation(s)
- Klaas R Westerterp
- Department of Human Biology, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
44
|
Bibliography. Current world literature. Nutrition and metabolism. Curr Opin Lipidol 2009; 20:63-72. [PMID: 19106709 DOI: 10.1097/mol.0b013e32832402a2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
45
|
Nonogaki K, Ohba Y, Sumii M, Wakameda M, Tamari T. Novel modulators for body weight changes induced by fasting and re-feeding in mice. Biochem Biophys Res Commun 2009; 378:249-54. [DOI: 10.1016/j.bbrc.2008.11.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Accepted: 11/10/2008] [Indexed: 11/17/2022]
|
46
|
Jackman MR, Steig A, Higgins JA, Johnson GC, Fleming-Elder BK, Bessesen DH, MacLean PS. Weight regain after sustained weight reduction is accompanied by suppressed oxidation of dietary fat and adipocyte hyperplasia. Am J Physiol Regul Integr Comp Physiol 2008; 294:R1117-29. [DOI: 10.1152/ajpregu.00808.2007] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A dual-tracer approach (dietary14C-palmitate and intraperitoneal3H-H2O) was used to assess the trafficking of dietary fat and net retention of carbon in triglyceride depots during the first 24 h of weight regain. Obesity-prone male Wistar rats were allowed to mature under obesogenic conditions for 16 wk. One group was switched to ad libitum feeding of a low-fat diet for 10 wk (Obese group). The remaining rats were switched to an energy-restricted, low-fat diet for 10 wk that reduced body weight by 14% and were then assessed in energy balance (Reduced group), with free access to the low-fat diet (Relapse-Day1 group), or with a provision that induced a minor imbalance (+10 kcal) equivalent to that observed in obese rats (Gap-Matched group). Fat oxidation remained at a high, steady rate throughout the day in Obese rats, but was suppressed in Reduced, Gap-Matched, and Relapse-Day1 rats though 9, 18, and 24 h, respectively. The same caloric excess in Obese and Gap-Matched rats led to less fat oxidation over the day and greater trafficking of dietary fat to visceral depots in the latter. In addition to trafficking nutrients to storage, Relapse-Day1 rats had more small, presumably new, adipocytes at the end of 24 h. Dietary fat oxidation at 24 h was related to the phosphorylation of skeletal muscle acetyl-CoA carboxylase and fatty acid availability. These observations provide evidence of adaptations in the oxidation and trafficking of dietary fat that extend beyond the energy imbalance, which facilitate rapid, efficient regain during the relapse to obesity.
Collapse
|