1
|
MacLean A, Horn M, Midkiff C, Van Zandt A, Saied A. Combination antiretroviral therapy prevents SIV- induced aging in the hippocampus and neurodegeneration throughout the brain. RESEARCH SQUARE 2024:rs.3.rs-4681317. [PMID: 39149452 PMCID: PMC11326353 DOI: 10.21203/rs.3.rs-4681317/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Virus-induced accelerated aging has been proposed as a potential mechanism underlying the persistence of HIV-associated neurocognitive disorders (HAND) despite advances in access and adherence to combination antiretroviral therapies (cART). While some studies have demonstrated evidence of accelerated aging in PLWH, studies examining acute infection, and cART intervention are limited, with most studies being in vitro or utilizing small animal models. Here, we utilized FFPE tissues from Simian immunodeficiency virus (SIV) infected rhesus macaques to assess the levels of two proteins commonly associated with aging - the cellular senescence marker p16INK4a (p16) and the NAD-dependent deacetylase sirtuin 1 (SIRT1). Our central hypothesis was that SIV infection induces accelerated aging phenotypes in the brain characterized by increased expression of p16 and altered expression of SIRT1 that correlate with increased neurodegeneration, and that cART inhibits this process. We found that SIV infection induced increased GFAP, p16, SIRT1, and neurodegeneration in multiple brain regions, and treatment with cART reduced GFAP expression in SIV-infected animals and thus likely decreases inflammation in the brain. Importantly, cART reversed SIV-induced accelerated aging (p16 and SIRT1) and neurodegeneration in the frontal lobe and hippocampus. Combined, these data suggest that cART is both safe and effective in reducing neuroinflammation and age-associated alterations in astrocytes that contribute to neurodegeneration, providing possible therapeutic targets in the treatment of HAND.
Collapse
|
2
|
Tong P, Zhang J, Liu S, An J, Jing G, Ma L, Wang R, Wang Z. miRNA-142-3p aggravates hydrogen peroxide-induced human umbilical vein endothelial cell premature senescence by targeting SIRT1. Biosci Rep 2024; 44:BSR20231511. [PMID: 38663003 PMCID: PMC11096645 DOI: 10.1042/bsr20231511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/16/2024] Open
Abstract
Vascular endothelial cell premature senescence plays an important part in stroke. Many microRNAs (miRNAs) are known to be involved in the pathological process of vascular endothelial cell premature senescence. The present study aimed to investigate the mechanism of hydrogen peroxide (H2O2)-induced premature senescence in human umbilical vein endothelial cells (HUVECs) and effect of miR-142-3p on hydrogen peroxide (H2O2)-induced premature senescence. HUVECs were exposed to H2O2 to establish a model premature senescence in endothelial cells. CCK-8 assay was performed to detect cell viability. Senescence-associated β-galactosidase staining assay and senescence-related proteins p16 and p21 were used to detect changes in the degree of cell senescence. RT-qPCR and Western blot were conducted to measure mRNA and protein levels, respectively. The scratch wound-healing assay, transwell assay, and EdU assay were performed to evaluate the ability of migration and proliferation, respectively. miRNA-142-3p and silencing information regulator 2 related enzyme 1 (SIRT1) binding was verified using Targetscan software and a dual-luciferase assay. We found that miRNA-142-3p is abnormally up-regulated in HUVECs treated with H2O2. Functionally, miRNA-142-3p inhibition may mitigate the degree of HUVEC senescence and improve HUVEC migration and proliferation. Mechanistically, SIRT1 was validated to be targeted by miRNA-142-3p in HUVECs. Moreover, SIRT1 inhibition reversed the effects of miRNA-142-3p inhibition on senescent HUVECs exposed to H2O2. To our knowledge, this is the first study to show that miRNA-142-3p ameliorates H2O2-induced HUVECs premature senescence by targeting SIRT1 and may shed light on the role of the miR-142-3p/SIRT1 axis in stroke treatment.
Collapse
Affiliation(s)
- Pengfei Tong
- Department of Neurosurgery, The Third People’s Hospital of Henan Province, Zhengzhou 450006, China
| | - Jingke Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Shuang Liu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jiyang An
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Gehan Jing
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Laifeng Ma
- Department of Neurosurgery, The Third People’s Hospital of Henan Province, Zhengzhou 450006, China
| | - Ruihua Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zhengfeng Wang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| |
Collapse
|
3
|
Dolcetti E, Musella A, Balletta S, Gilio L, Bruno A, Stampanoni Bassi M, Lauritano G, Buttari F, Fresegna D, Tartacca A, Mariani F, Palmerio F, Rovella V, Ferese R, Gambardella S, Giardina E, Finardi A, Furlan R, Mandolesi G, Centonze D, De Vito F. Interaction between miR-142-3p and BDNF Val/Met Polymorphism Regulates Multiple Sclerosis Severity. Int J Mol Sci 2024; 25:5253. [PMID: 38791290 PMCID: PMC11121620 DOI: 10.3390/ijms25105253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/02/2024] [Accepted: 05/05/2024] [Indexed: 05/26/2024] Open
Abstract
MiR-142-3p has recently emerged as key factor in tailoring personalized treatments for multiple sclerosis (MS), a chronic autoimmune demyelinating disease of the central nervous system (CNS) with heterogeneous pathophysiology and an unpredictable course. With its involvement in a detrimental regulatory axis with interleukin-1beta (IL1β), miR-142-3p orchestrates excitotoxic synaptic alterations that significantly impact both MS progression and therapeutic outcomes. In this study, we investigated for the first time the influence of individual genetic variability on the miR-142-3p excitotoxic effect in MS. We specifically focused on the single-nucleotide polymorphism Val66Met (rs6265) of the brain-derived neurotrophic factor (BDNF) gene, known for its crucial role in CNS functioning. We assessed the levels of miR-142-3p and IL1β in cerebrospinal fluid (CSF) obtained from a cohort of 114 patients with MS upon diagnosis. By stratifying patients according to their genetic background, statistical correlations with clinical parameters were performed. Notably, in Met-carrier patients, we observed a decoupling of miR-142-3p levels from IL1β levels in the CSF, as well as from of disease severity (Expanded Disability Status Score, EDSS; Multiple Sclerosis Severity Score, MSSS; Age-Related Multiple Sclerosis Severity Score, ARMSS) and progression (Progression Index, PI). Our discovery of the interference between BDNF Val66Met polymorphism and the synaptotoxic IL1β-miR-142-3p axis, therefore hampering miR-142-3p action on MS course, provides valuable insights for further development of personalized medicine in the field.
Collapse
Affiliation(s)
- Ettore Dolcetti
- Neurology Unit, IRCCS Neuromed, 86077 Pozzilli, Italy; (E.D.); (S.B.); (L.G.); (A.B.); (M.S.B.); (G.L.); (F.B.); (R.F.); (S.G.)
- Ph.D. Program in Neuroscience, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (A.T.); (F.P.)
| | - Alessandra Musella
- Synaptic Immunopathology Laboratory, IRCCS San Raffaele Roma, 00163 Rome, Italy; (A.M.); (D.F.); (G.M.)
- Department of Human Sciences and Quality of Life Promotion, University of Rome San Raffaele, 00163 Rome, Italy
| | - Sara Balletta
- Neurology Unit, IRCCS Neuromed, 86077 Pozzilli, Italy; (E.D.); (S.B.); (L.G.); (A.B.); (M.S.B.); (G.L.); (F.B.); (R.F.); (S.G.)
| | - Luana Gilio
- Neurology Unit, IRCCS Neuromed, 86077 Pozzilli, Italy; (E.D.); (S.B.); (L.G.); (A.B.); (M.S.B.); (G.L.); (F.B.); (R.F.); (S.G.)
- Faculty of Psychology, Uninettuno Telematic International University, 00186 Rome, Italy
| | - Antonio Bruno
- Neurology Unit, IRCCS Neuromed, 86077 Pozzilli, Italy; (E.D.); (S.B.); (L.G.); (A.B.); (M.S.B.); (G.L.); (F.B.); (R.F.); (S.G.)
- Ph.D. Program in Neuroscience, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (A.T.); (F.P.)
| | - Mario Stampanoni Bassi
- Neurology Unit, IRCCS Neuromed, 86077 Pozzilli, Italy; (E.D.); (S.B.); (L.G.); (A.B.); (M.S.B.); (G.L.); (F.B.); (R.F.); (S.G.)
| | - Gianluca Lauritano
- Neurology Unit, IRCCS Neuromed, 86077 Pozzilli, Italy; (E.D.); (S.B.); (L.G.); (A.B.); (M.S.B.); (G.L.); (F.B.); (R.F.); (S.G.)
| | - Fabio Buttari
- Neurology Unit, IRCCS Neuromed, 86077 Pozzilli, Italy; (E.D.); (S.B.); (L.G.); (A.B.); (M.S.B.); (G.L.); (F.B.); (R.F.); (S.G.)
- Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (F.M.); (V.R.)
| | - Diego Fresegna
- Synaptic Immunopathology Laboratory, IRCCS San Raffaele Roma, 00163 Rome, Italy; (A.M.); (D.F.); (G.M.)
| | - Alice Tartacca
- Ph.D. Program in Neuroscience, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (A.T.); (F.P.)
| | - Fabrizio Mariani
- Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (F.M.); (V.R.)
| | - Federica Palmerio
- Ph.D. Program in Neuroscience, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (A.T.); (F.P.)
| | - Valentina Rovella
- Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (F.M.); (V.R.)
| | - Rosangela Ferese
- Neurology Unit, IRCCS Neuromed, 86077 Pozzilli, Italy; (E.D.); (S.B.); (L.G.); (A.B.); (M.S.B.); (G.L.); (F.B.); (R.F.); (S.G.)
| | - Stefano Gambardella
- Neurology Unit, IRCCS Neuromed, 86077 Pozzilli, Italy; (E.D.); (S.B.); (L.G.); (A.B.); (M.S.B.); (G.L.); (F.B.); (R.F.); (S.G.)
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, 61029 Urbino, Italy
| | - Emiliano Giardina
- Genomic Medicine Laboratory, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy;
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Annamaria Finardi
- Clinical Neuroimmunology Unit, Institute of Experimental Neurology (INSpe), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (A.F.); (R.F.)
- Faculty of Medicine and Surgery, Vita e Salute San Raffaele University, 20132 Milan, Italy
| | - Roberto Furlan
- Clinical Neuroimmunology Unit, Institute of Experimental Neurology (INSpe), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (A.F.); (R.F.)
- Faculty of Medicine and Surgery, Vita e Salute San Raffaele University, 20132 Milan, Italy
| | - Georgia Mandolesi
- Synaptic Immunopathology Laboratory, IRCCS San Raffaele Roma, 00163 Rome, Italy; (A.M.); (D.F.); (G.M.)
- Department of Human Sciences and Quality of Life Promotion, University of Rome San Raffaele, 00163 Rome, Italy
| | - Diego Centonze
- Neurology Unit, IRCCS Neuromed, 86077 Pozzilli, Italy; (E.D.); (S.B.); (L.G.); (A.B.); (M.S.B.); (G.L.); (F.B.); (R.F.); (S.G.)
- Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (F.M.); (V.R.)
| | - Francesca De Vito
- Neurology Unit, IRCCS Neuromed, 86077 Pozzilli, Italy; (E.D.); (S.B.); (L.G.); (A.B.); (M.S.B.); (G.L.); (F.B.); (R.F.); (S.G.)
| |
Collapse
|
4
|
Kaur S, Verma H, Kaur S, Gangwar P, Yadav A, Yadav B, Rao R, Dhiman M, Mantha AK. Understanding the multifaceted role of miRNAs in Alzheimer's disease pathology. Metab Brain Dis 2024; 39:217-237. [PMID: 37505443 DOI: 10.1007/s11011-023-01265-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/16/2023] [Indexed: 07/29/2023]
Abstract
Small non-coding RNAs (miRNAs) regulate gene expression by binding to mRNA and mediating its degradation or inhibiting translation. Since miRNAs can regulate the expression of several genes, they have multiple roles to play in biological processes and human diseases. The majority of miRNAs are known to be expressed in the brain and are involved in synaptic functions, thus marking their presence and role in major neurodegenerative disorders, including Alzheimer's disease (AD). In AD, amyloid beta (Aβ) plaques and neurofibrillary tangles (NFTs) are known to be the major hallmarks. The clearance of Aβ and tau is known to be associated with miRNA dysregulation. In addition, the β-site APP cleaving enzyme (BACE 1), which cleaves APP to form Aβ, is also found to be regulated by miRNAs, thus directly affecting Aβ accumulation. Growing evidences suggest that neuroinflammation can be an initial event in AD pathology, and miRNAs have been linked with the regulation of neuroinflammation. Inflammatory disorders have also been associated with AD pathology, and exosomes associated with miRNAs are known to regulate brain inflammation, suggesting for the role of systemic miRNAs in AD pathology. Several miRNAs have been related in AD, years before the clinical symptoms appear, most of which are associated with regulating the cell cycle, immune system, stress responses, cellular senescence, nerve growth factor (NGF) signaling, and synaptic regulation. Phytochemicals, especially polyphenols, alter the expression of various miRNAs by binding to miRNAs or binding to the transcriptional activators of miRNAs, thus control/alter various metabolic pathways. Awing to the sundry biological processes being regulated by miRNAs in the brain and regulation of expression of miRNAs via phytochemicals, miRNAs and the regulatory bioactive phytochemicals can serve as therapeutic agents in the treatment and management of AD.
Collapse
Affiliation(s)
- Sharanjot Kaur
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Harkomal Verma
- Department of Zoology, School of Basic Sciences, Central University of Punjab, VPO - Ghudda, Bathinda, 151 401, Punjab, India
| | - Sukhchain Kaur
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Prabhakar Gangwar
- Department of Zoology, School of Basic Sciences, Central University of Punjab, VPO - Ghudda, Bathinda, 151 401, Punjab, India
| | - Anuradha Yadav
- Department of Zoology, School of Basic Sciences, Central University of Punjab, VPO - Ghudda, Bathinda, 151 401, Punjab, India
| | - Bharti Yadav
- Department of Zoology, School of Basic Sciences, Central University of Punjab, VPO - Ghudda, Bathinda, 151 401, Punjab, India
| | - Rashmi Rao
- Department of Zoology, School of Basic Sciences, Central University of Punjab, VPO - Ghudda, Bathinda, 151 401, Punjab, India
| | - Monisha Dhiman
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Anil Kumar Mantha
- Department of Zoology, School of Basic Sciences, Central University of Punjab, VPO - Ghudda, Bathinda, 151 401, Punjab, India.
| |
Collapse
|
5
|
Seyhan AA. Circulating microRNAs as Potential Biomarkers in Pancreatic Cancer-Advances and Challenges. Int J Mol Sci 2023; 24:13340. [PMID: 37686149 PMCID: PMC10488102 DOI: 10.3390/ijms241713340] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
There is an urgent unmet need for robust and reliable biomarkers for early diagnosis, prognosis, and prediction of response to specific treatments of many aggressive and deadly cancers, such as pancreatic cancer, and liquid biopsy-based miRNA profiling has the potential for this. MiRNAs are a subset of non-coding RNAs that regulate the expression of a multitude of genes post-transcriptionally and thus are potential diagnostic, prognostic, and predictive biomarkers and have also emerged as potential therapeutics. Because miRNAs are involved in the post-transcriptional regulation of their target mRNAs via repressing gene expression, defects in miRNA biogenesis pathway and miRNA expression perturb the expression of a multitude of oncogenic or tumor-suppressive genes that are involved in the pathogenesis of various cancers. As such, numerous miRNAs have been identified to be downregulated or upregulated in many cancers, functioning as either oncomes or oncosuppressor miRs. Moreover, dysregulation of miRNA biogenesis pathways can also change miRNA expression and function in cancer. Profiling of dysregulated miRNAs in pancreatic cancer has been shown to correlate with disease diagnosis, indicate optimal treatment options and predict response to a specific therapy. Specific miRNA signatures can track the stages of pancreatic cancer and hold potential as diagnostic, prognostic, and predictive markers, as well as therapeutics such as miRNA mimics and miRNA inhibitors (antagomirs). Furthermore, identified specific miRNAs and genes they regulate in pancreatic cancer along with downstream pathways can be used as potential therapeutic targets. However, a limited understanding and validation of the specific roles of miRNAs, lack of tissue specificity, methodological, technical, or analytical reproducibility, harmonization of miRNA isolation and quantification methods, the use of standard operating procedures, and the availability of automated and standardized assays to improve reproducibility between independent studies limit bench-to-bedside translation of the miRNA biomarkers for clinical applications. Here I review recent findings on miRNAs in pancreatic cancer pathogenesis and their potential as diagnostic, prognostic, and predictive markers.
Collapse
Affiliation(s)
- Attila A. Seyhan
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA;
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI 02912, USA
- Legorreta Cancer Center, Brown University, Providence, RI 02912, USA
| |
Collapse
|
6
|
Panda K, Chinnapaiyan S, Rahman MS, Santiago MJ, Black SM, Unwalla HJ. Circadian-Coupled Genes Expression and Regulation in HIV-Associated Chronic Obstructive Pulmonary Disease (COPD) and Lung Comorbidities. Int J Mol Sci 2023; 24:9140. [PMID: 37298092 PMCID: PMC10253051 DOI: 10.3390/ijms24119140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/13/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
People living with HIV (PLWH) have an elevated risk of chronic obstructive pulmonary disease (COPD) and are at a higher risk of asthma and worse outcomes. Even though the combination of antiretroviral therapy (cART) has significantly improved the life expectancy of HIV-infected patients, it still shows a higher incidence of COPD in patients as young as 40 years old. Circadian rhythms are endogenous 24 h oscillations that regulate physiological processes, including immune responses. Additionally, they play a significant role in health and diseases by regulating viral replication and its corresponding immune responses. Circadian genes play an essential role in lung pathology, especially in PLWH. The dysregulation of core clock and clock output genes plays an important role in chronic inflammation and aberrant peripheral circadian rhythmicity, particularly in PLWH. In this review, we explained the mechanism underlying circadian clock dysregulation in HIV and its effects on the development and progression of COPD. Furthermore, we discussed potential therapeutic approaches to reset the peripheral molecular clocks and mitigate airway inflammation.
Collapse
Affiliation(s)
- Kingshuk Panda
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA; (K.P.); (S.C.); (M.S.R.); (M.J.S.)
| | - Srinivasan Chinnapaiyan
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA; (K.P.); (S.C.); (M.S.R.); (M.J.S.)
| | - Md. Sohanur Rahman
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA; (K.P.); (S.C.); (M.S.R.); (M.J.S.)
| | - Maria J. Santiago
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA; (K.P.); (S.C.); (M.S.R.); (M.J.S.)
| | - Stephen M. Black
- Department of Cellular Biology & Pharmacology, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA;
| | - Hoshang J. Unwalla
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA; (K.P.); (S.C.); (M.S.R.); (M.J.S.)
| |
Collapse
|
7
|
Soltani S, Shahbahrami R, Jahanabadi S, Siri G, Emadi MS, Zandi M. Possible role of CNS microRNAs in Human Mpox virus encephalitis-a mini-review. J Neurovirol 2023; 29:135-140. [PMID: 36964438 DOI: 10.1007/s13365-023-01125-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/01/2023] [Accepted: 03/08/2023] [Indexed: 03/26/2023]
Abstract
In May 2022, a re-emerging viral pathogen belonging to the Poxviridae was first reported from the UK, and WHO confirmed the outbreak after the prevalence of the disease increased. As of February 15, 2023, more than 85,000 confirmed cases have been recorded in 110 countries. Due to the spread of the virus across multiple countries, WHO declared the mpox outbreak as a public health emergency. Human mpox virus is an enveloped virus with a linear double-stranded DNA that can cause encephalitis with neurological complications such as pharyngitis, fever, anorexia, adenopathy, vesiculopapular rash, and headache. Dysregulation of microRNAs in viral encephalitis has been reported in a variety of documents. In this mini-review, we aim to discuss the possibility of CNS-related microRNA dysregulation in mpox-related encephalitis.
Collapse
Affiliation(s)
- Saber Soltani
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Shahbahrami
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Somaye Jahanabadi
- Specialist of Infectious and Tropical Diseases, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Goli Siri
- Department of Internal Medicine, School of Medicine, Amir Alam Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Saeid Emadi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Milad Zandi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
McDew-White M, Lee E, Premadasa LS, Alvarez X, Okeoma CM, Mohan M. Cannabinoids modulate the microbiota-gut-brain axis in HIV/SIV infection by reducing neuroinflammation and dysbiosis while concurrently elevating endocannabinoid and indole-3-propionate levels. J Neuroinflammation 2023; 20:62. [PMID: 36890518 PMCID: PMC9993397 DOI: 10.1186/s12974-023-02729-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/13/2023] [Indexed: 03/10/2023] Open
Abstract
BACKGROUND Although the advent of combination anti-retroviral therapy (cART) has transformed HIV into a manageable chronic disease, an estimated 30-50% of people living with HIV (PLWH) exhibit cognitive and motor deficits collectively known as HIV-associated neurocognitive disorders (HAND). A key driver of HAND neuropathology is chronic neuroinflammation, where proinflammatory mediators produced by activated microglia and macrophages are thought to inflict neuronal injury and loss. Moreover, the dysregulation of the microbiota-gut-brain axis (MGBA) in PLWH, consequent to gastrointestinal dysfunction and dysbiosis, can lead to neuroinflammation and persistent cognitive impairment, which underscores the need for new interventions. METHODS We performed RNA-seq and microRNA profiling in basal ganglia (BG), metabolomics (plasma) and shotgun metagenomic sequencing (colon contents) in uninfected and SIV-infected rhesus macaques (RMs) administered vehicle (VEH/SIV) or delta-9-tetrahydrocannabinol (THC) (THC/SIV). RESULTS Long-term, low-dose THC reduced neuroinflammation and dysbiosis and significantly increased plasma endocannabinoid, endocannabinoid-like, glycerophospholipid and indole-3-propionate levels in chronically SIV-infected RMs. Chronic THC potently blocked the upregulation of genes associated with type-I interferon responses (NLRC5, CCL2, CXCL10, IRF1, IRF7, STAT2, BST2), excitotoxicity (SLC7A11), and enhanced protein expression of WFS1 (endoplasmic reticulum stress) and CRYM (oxidative stress) in BG. Additionally, THC successfully countered miR-142-3p-mediated suppression of WFS1 protein expression via a cannabinoid receptor-1-mediated mechanism in HCN2 neuronal cells. Most importantly, THC significantly increased the relative abundance of Firmicutes and Clostridia including indole-3-propionate (C. botulinum, C. paraputrificum, and C. cadaveris) and butyrate (C. butyricum, Faecalibacterium prausnitzii and Butyricicoccus pullicaecorum) producers in colonic contents. CONCLUSION This study demonstrates the potential of long-term, low-dose THC to positively modulate the MGBA by reducing neuroinflammation, enhancing endocannabinoid levels and promoting the growth of gut bacterial species that produce neuroprotective metabolites, like indole-3-propionate. The findings from this study may benefit not only PLWH on cART, but also those with no access to cART and more importantly, those who fail to suppress the virus under cART.
Collapse
Affiliation(s)
- Marina McDew-White
- Southwest National Primate Research Center, Texas Biomedical Research Institute, 8715 West Military Drive, San Antonio, TX, 78227-5302, USA
| | - Eunhee Lee
- Southwest National Primate Research Center, Texas Biomedical Research Institute, 8715 West Military Drive, San Antonio, TX, 78227-5302, USA
| | - Lakmini S Premadasa
- Southwest National Primate Research Center, Texas Biomedical Research Institute, 8715 West Military Drive, San Antonio, TX, 78227-5302, USA
| | - Xavier Alvarez
- Southwest National Primate Research Center, Texas Biomedical Research Institute, 8715 West Military Drive, San Antonio, TX, 78227-5302, USA
| | - Chioma M Okeoma
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, NY, 10595-1524, USA
| | - Mahesh Mohan
- Southwest National Primate Research Center, Texas Biomedical Research Institute, 8715 West Military Drive, San Antonio, TX, 78227-5302, USA.
| |
Collapse
|
9
|
Qi Z, Wang S, Xuan A, Gu X, Deng J, Huang C, Zhang L, Yin X. MiR-142a-3p: A novel ACh receptor transcriptional regulator in association with peripheral nerve injury. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 30:325-336. [PMID: 36381585 PMCID: PMC9633872 DOI: 10.1016/j.omtn.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 10/12/2022] [Indexed: 12/15/2022]
Abstract
Long-term denervation leads to the disintegration of nicotinic acetylcholine receptor (nAChR) located at the endplate structure, which translates to deficits in functional activation despite nerve repair. Because of a lack of effective measures to protect AChR expression, we explored the effect of alterations in muscular miR-142a-3p on nAChR. In this study, we constructed a model of miR-142a-3p knockdown by transfecting a miR-142a-3p inhibitor short hairpin RNA (shRNA) into C2C12 myotubes, and we injected this miR-142a-3p inhibitor shRNA into the tibialis anterior (TA) muscle in uninjured mice and in denervated mice by transecting the sciatic nerve. Our results showed that miR-142a-3p knockdown led to an increased number and area of AChR clusters in myotubes in vitro and larger neuromuscular endplates in adult mice. Furthermore, miR-142a-3p knockdown delayed the disintegration of motor endplates after denervation. Last, upon miR-142a-3p knockdown in uninjured and denervated mice, we observed an increase in the mRNA levels of five AChR subunits as well as mRNAs of genes implicated in AChR transcription and AChR clustering. Together, these results suggest that miR-142a-3p may be a potential target for therapeutic intervention to prevent motor endplate degradation following peripheral nerve injury.
Collapse
Affiliation(s)
- Zhidan Qi
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing, China
| | - Shen Wang
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing, China
| | - Ang Xuan
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China,MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Xinyi Gu
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing, China
| | - Jin Deng
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing, China
| | - Chen Huang
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing, China
| | - Lei Zhang
- Electron Microscopy Analysis Laboratory, Medical and Health Analysis Center, Peking University, Beijing, China,Department of Biophysics, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Xiaofeng Yin
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing, China,Pizhou People’s Hospital, Jiangsu, China,Corresponding author Xiaofeng Yin, Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing, China.
| |
Collapse
|
10
|
Basova LV, Bortell N, Conti B, Fox HS, Milner R, Marcondes MCG. Age-associated changes in microglia activation and Sirtuin-1- chromatin binding patterns. Aging (Albany NY) 2022; 14:8205-8220. [PMID: 36227148 PMCID: PMC9648798 DOI: 10.18632/aging.204329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/30/2022] [Indexed: 11/25/2022]
Abstract
The aging process is associated with changes in mechanisms maintaining physiology, influenced by genetics and lifestyle, and impacting late life quality and longevity. Brain health is critical in healthy aging. Sirtuin 1 (Sirt1), a histone deacetylase with silencing properties, is one of the molecular determinants experimentally linked to health and longevity. We compared brain pathogenesis and Sirt1-chromatin binding dynamics in brain pre-frontal cortex from 2 groups of elder rhesus macaques, divided by age of necropsy: shorter-lived animals (18-20 years old (yo)), equivalent to 60-70 human yo; and longer-lived animals (23-29 yo), corresponding to 80-100 human yo and modeling successful aging. These were compared with young adult brains (4-7 yo). Our findings indicated drastic differences in the microglia marker Iba1, along with factors influencing Sirt1 levels and activity, such as CD38 (an enzyme limiting NAD that controls Sirt1 activity) and mir142 (a microRNA targeting Sirt1 transcription) between the elder groups. Iba1 was lower in shorter-lived animals than in the other groups, while CD38 was higher in both aging groups compared to young. mir142 and Sirt1 levels were inversely correlated in longer-lived brains (>23yo), but not in shorter-lived brains (18-20 yo). We also found that Sirt1 binding showed signs of better efficiency in longer-lived animals compared to shorter-lived ones, in genes associated with nuclear activity and senescence. Overall, differences in neuroinflammation and Sirt1 interactions with chromatin distinguished shorter- and longer-lived animals, suggesting the importance of preserving microglia and Sirt1 functional efficiency for longevity.
Collapse
Affiliation(s)
- Liana V. Basova
- San Diego Biomedical Research Institute, San Diego, CA 92121, USA
| | | | - Bruno Conti
- San Diego Biomedical Research Institute, San Diego, CA 92121, USA
| | - Howard S. Fox
- University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Richard Milner
- San Diego Biomedical Research Institute, San Diego, CA 92121, USA
| | | |
Collapse
|
11
|
Lopez Lloreda C, Chowdhury S, Ghura S, Alvarez-Periel E, Jordan-Sciutto K. HIV-Associated Insults Modulate ADAM10 and Its Regulator Sirtuin1 in an NMDA Receptor-Dependent Manner. Cells 2022; 11:cells11192962. [PMID: 36230925 PMCID: PMC9564041 DOI: 10.3390/cells11192962] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/14/2022] [Accepted: 09/19/2022] [Indexed: 12/02/2022] Open
Abstract
Neurologic deficits associated with human immunodeficiency virus (HIV) infection impact about 50% of persons with HIV (PWH). These disorders, termed HIV-associated neurocognitive disorders (HAND), possess neuropathologic similarities to Alzheimer’s disease (AD), including intra- and extracellular amyloid-beta (Aβ) peptide aggregates. Aβ peptide is produced through cleavage of the amyloid precursor protein (APP) by the beta secretase BACE1. However, this is precluded by cleavage of APP by the non-amyloidogenic alpha secretase, ADAM10. Previous studies have found that BACE1 expression was increased in the CNS of PWH with HAND as well as animal models of HAND. Further, BACE1 contributed to neurotoxicity. Yet in in vitro models, the role of ADAM10 and its potential regulatory mechanisms had not been examined. To address this, primary rat cortical neurons were treated with supernatants from HIV-infected human macrophages (HIV/MDMs). We found that HIV/MDMs decreased levels of both ADAM10 and Sirtuin1 (SIRT1), a regulator of ADAM10 that is implicated in aging and in AD. Both decreases were blocked with NMDA receptor antagonists, and treatment with NMDA was sufficient to induce reduction in ADAM10 and SIRT1 protein levels. Furthermore, decreases in SIRT1 protein levels were observed at an earlier time point than the decreases in ADAM10 protein levels, and the reduction in SIRT1 was reversed by proteasome inhibitor MG132. This study indicates that HIV-associated insults, particularly excitotoxicity, contribute to changes of APP secretases by downregulating levels of ADAM10 and its regulator.
Collapse
Affiliation(s)
- Claudia Lopez Lloreda
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Oral Medicine, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sarah Chowdhury
- College of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shivesh Ghura
- Department of Oral Medicine, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pharmacology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Elena Alvarez-Periel
- Department of Oral Medicine, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kelly Jordan-Sciutto
- Department of Oral Medicine, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Correspondence:
| |
Collapse
|
12
|
Yan J, Tang X, Zhou ZQ, Zhang J, Zhao Y, Li S, Luo A. Sirtuins functions in central nervous system cells under neurological disorders. Front Physiol 2022; 13:886087. [PMID: 36111151 PMCID: PMC9468898 DOI: 10.3389/fphys.2022.886087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/25/2022] [Indexed: 11/14/2022] Open
Abstract
The sirtuins (SIRTs), a class of NAD+ -dependent deacylases, contain seven SIRT family members in mammals, from SIRT1 to SIRT7. Extensive studies have revealed that SIRT proteins regulate virous cell functions. Central nervous system (CNS) decline resulted in progressive cognitive impairment, social and physical abilities dysfunction. Therefore, it is of vital importance to have a better understanding of potential target to promote homeostasis of CNS. SIRTs have merged as the underlying regulating factors of the process of neurological disorders. In this review, we profile multiple functions of SIRT proteins in different cells during brain function and under CNS injury.
Collapse
Affiliation(s)
- Jing Yan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaole Tang
- Department of Anesthesiology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhi-qiang Zhou
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yilin Zhao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiyong Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Shiyong Li, ; Ailin Luo,
| | - Ailin Luo
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Shiyong Li, ; Ailin Luo,
| |
Collapse
|
13
|
Bayomy NR, Shaaban MA, Dawood AEDAS, Habib MEA, Kamel MA. Correlation between circulating MicroRNA-142-5p expression and Hashimoto's thyroiditis diagnosis and autoimmunity symptoms prediction, pilot study. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2021.101470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Zhu L, Qiu C, Dai L, Zhang L, Feng M, Yang Y, Qiu C, Zhang A, Huang J, Wang Y, Wan Y, Zhao C, Wu H, Lyu J, Zhang X, Xu J. Hsa-miR-31 Governs T-Cell Homeostasis in HIV Protection via IFN-γ-Stat1-T-Bet Axis. Front Immunol 2021; 12:771279. [PMID: 34804062 PMCID: PMC8602903 DOI: 10.3389/fimmu.2021.771279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/21/2021] [Indexed: 11/20/2022] Open
Abstract
It remains poorly defined whether any human miRNAs play protective roles during HIV infection. Here, focusing on a unique cohort of HIV-infected former blood donors, we identified miR-31 (hsa-miR-31) by comparative miRNA profiling as the only miRNA inversely correlating with disease progression. We further validated this association in two prospective cohort studies. Despite conservation during evolution, hsa-miR-31, unlike its mouse counterpart (mmu-miR-31), was downregulated in human T cell upon activation. Our ex vivo studies showed that inhibiting miR-31 in naïve CD4+ T cells promoted a transcriptional profile with activation signature. Consistent with this skewing effect, miR-31 inhibition led to remarkably increased susceptibility to HIV infection. The suppressive nature of miR-31 in CD4+ T cell activation was pinpointed to its ability to decrease T-bet, the key molecule governing IFN-γ production and activation of CD4+ T cells, by directly targeting the upstream STAT1 transcriptional factor for downregulation, thus blunting Th1 response. Our results implicated miR-31 as a useful biomarker for tracking HIV disease progression and, by demonstrating its importance in tuning the activation of CD4+ T cells, suggested that miR-31 may play critical roles in other physiological contexts where the CD4+ T cell homeostasis needs to be deliberately controlled.
Collapse
Affiliation(s)
- Lingyan Zhu
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Chao Qiu
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Lili Dai
- Beijing You'an Hospital, Capital Medical University, Beijing, China
| | - Linxia Zhang
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Meiqi Feng
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yu Yang
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Chenli Qiu
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Anli Zhang
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jun Huang
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Ying Wang
- Department of AIDS/STD, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Ying Wan
- Biomedical Analysis Center, Army Medical University, Chongqing, China
| | - Chen Zhao
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Hao Wu
- Beijing You'an Hospital, Capital Medical University, Beijing, China
| | - Jianxin Lyu
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Xiaoyan Zhang
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jianqing Xu
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
15
|
Kadbhane A, Patel M, Srivastava S, Singh PK, Madan J, Singh SB, Khatri DK. Perspective insights and application of exosomes as a novel tool against neurodegenerative disorders: An expository appraisal. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
Roblain Q, Louis T, Yip C, Baudin L, Struman I, Caolo V, Lambert V, Lecomte J, Noël A, Heymans S. Intravitreal injection of anti-miRs against miR-142-3p reduces angiogenesis and microglia activation in a mouse model of laser-induced choroidal neovascularization. Aging (Albany NY) 2021; 13:12359-12377. [PMID: 33952723 PMCID: PMC8148470 DOI: 10.18632/aging.203035] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 03/14/2021] [Indexed: 12/16/2022]
Abstract
Age-related macular degeneration (AMD) is a worldwide leading cause of blindness affecting individuals over 50 years old. The most aggressive form, wet AMD, is characterized by choroidal neovascularization (CNV) and inflammation involving microglia recruitment. By using a laser-induced CNV mouse model, we provide evidence for a key role played by miR-142-3p during CNV formation. MiR-142-3p was overexpressed in murine CNV lesions and its pharmacological inhibition decreased vascular and microglia densities by 46% and 30%, respectively. Consistently, miR-142-3p overexpression with mimics resulted in an increase of 136% and 126% of blood vessels and microglia recruitment. Interestingly, miR-142-3p expression was linked to the activation state of mouse microglia cells as determined by morphological analysis (cell solidity) through a computational method. In vitro, miR-142-3p overexpression in human microglia cells (HMC3) modulated microglia activation, as shown by CD68 levels. Interestingly, miR142-3p modulation also regulated the production of VEGF-A, the main pro-angiogenic factor. Together, these data strongly support the unprecedented importance of miR-142-3p-dependent vascular-inflammation axis during CNV progression, through microglia activation.
Collapse
Affiliation(s)
- Quentin Roblain
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liège, Liège, Belgium.,Department of Cardiology, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Thomas Louis
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Cassandre Yip
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Louis Baudin
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Ingrid Struman
- Molecular Angiogenesis Laboratory, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Vincenza Caolo
- Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, Leuven, Belgium
| | - Vincent Lambert
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liège, Liège, Belgium.,Ophthalmic Tissue Bank, Department of Ophthalmology, University Hospital of Liège, Sart-Tilman, Belgium
| | - Julie Lecomte
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Agnès Noël
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Stephane Heymans
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands.,Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, Leuven, Belgium
| |
Collapse
|
17
|
Qiu Y, Zhou X, Liu Y, Tan S, Li Y. The Role of Sirtuin-1 in Immune Response and Systemic Lupus Erythematosus. Front Immunol 2021; 12:632383. [PMID: 33981300 PMCID: PMC8110204 DOI: 10.3389/fimmu.2021.632383] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/19/2021] [Indexed: 12/13/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a potentially fatal multisystem inflammatory chronic disorder, the etiology and pathogenesis of which remain unclear. The loss of immune tolerance in SLE patients contributes to the production of autoantibodies that attack multiple organs and tissues, such as the skin, joints, and kidneys. Immune cells play important roles in the occurrence and progression of SLE through amplified immune responses. Sirtuin-1 (SIRT1), an NAD+-dependent histone deacetylase, has been shown to be a pivotal regulator in various physiological processes, including cell differentiation, apoptosis, metabolism, aging, and immune responses, via modulation of different signaling pathways, such as the nuclear factor κ-light-chain-enhancer of activated B cells and activator protein 1 pathways. Recent studies have provided evidence that SIRT1 could be a regulatory element in the immune system, whose altered functions are likely relevant to SLE development. This review aims to illustrate the functions of SIRT1 in different types of immune cells and the potential roles of SIRT1 in the SLE pathogenesis and its therapeutic perspectives.
Collapse
Affiliation(s)
- Yueqi Qiu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Xingyu Zhou
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Yu Liu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Siqi Tan
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Yaping Li
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
18
|
Morsey B, Niu M, Dyavar SR, Fletcher CV, Lamberty BG, Emanuel K, Fangmeier A, Fox HS. Cryopreservation of microglia enables single-cell RNA sequencing with minimal effects on disease-related gene expression patterns. iScience 2021; 24:102357. [PMID: 33870145 PMCID: PMC8044433 DOI: 10.1016/j.isci.2021.102357] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/27/2021] [Accepted: 03/22/2021] [Indexed: 12/31/2022] Open
Abstract
Microglia play a key role in brain development, normal homeostasis, and neurodegenerative disorders. Single-cell technologies have led to important findings about microglia, with many animal model studies using single-cell RNA sequencing (scRNA-seq), whereas most human specimen studies using archived frozen brains for single-nucleus RNA sequencing (snRNA-seq). However, microglia compose a small proportion of the total brain tissue; snRNAseq depletes expression of microglia activation genes that characterize many diseases. Here we examine the use of purified, cryopreserved microglia for scRNA-seq. Comparison of scRNA-seq on paired fresh and cryopreserved microglia from rhesus monkeys revealed a high level of correlation of gene expression between the two conditions. Disease-related genes were relatively unaffected, but an increase in immediate-early gene expression was present in cryopreserved cells. Regardless, changes in immediate-early gene expression are still detectable. Cryopreservation of microglia is a suitable procedure for prospectively archiving samples.
Collapse
Affiliation(s)
- Brenda Morsey
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Meng Niu
- Department of Genetics, Cell Biology and Anatomy; and Bioinformatics and Systems Biology Core, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Shetty Ravi Dyavar
- Antiviral Pharmacology Laboratory, UNMC Center for Drug Discovery, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Courtney V. Fletcher
- Antiviral Pharmacology Laboratory, UNMC Center for Drug Discovery, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Benjamin G. Lamberty
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Katy Emanuel
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Anna Fangmeier
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Howard S. Fox
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
19
|
Walsh AD, Nguyen LT, Binder MD. miRNAs in Microglia: Important Players in Multiple Sclerosis Pathology. ASN Neuro 2021; 13:1759091420981182. [PMID: 33517686 PMCID: PMC7863159 DOI: 10.1177/1759091420981182] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Microglia are the resident immune cells of the central nervous system and important regulators of brain homeostasis. Central to this role is a dynamic phenotypic plasticity that enables microglia to respond to environmental and pathological stimuli. Importantly, different microglial phenotypes can be both beneficial and detrimental to central nervous system health. Chronically activated inflammatory microglia are a hallmark of neurodegeneration, including the autoimmune disease multiple sclerosis (MS). By contrast, microglial phagocytosis of myelin debris is essential for resolving inflammation and promoting remyelination. As such, microglia are being explored as a potential therapeutic target for MS. MicroRNAs (miRNAs) are short non-coding ribonucleic acids that regulate gene expression and act as master regulators of cellular phenotype and function. Dysregulation of certain miRNAs can aberrantly activate and promote specific polarisation states in microglia to modulate their activity in inflammation and neurodegeneration. In addition, miRNA dysregulation is implicated in MS pathogenesis, with circulating biomarkers and lesion specific miRNAs identified as regulators of inflammation and myelination. However, the role of miRNAs in microglia that specifically contribute to MS progression are still largely unknown. miRNAs are being explored as therapeutic agents, providing an opportunity to modulate microglial function in neurodegenerative diseases such as MS. This review will focus firstly on elucidating the complex role of microglia in MS pathogenesis. Secondly, we explore the essential roles of miRNAs in microglial function. Finally, we focus on miRNAs that are implicated in microglial processes that contribute directly to MS pathology, prioritising targets that could inform novel therapeutic approaches to MS.
Collapse
Affiliation(s)
- Alexander D Walsh
- The Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, Australia
| | - Linda T Nguyen
- The Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, Australia
| | - Michele D Binder
- The Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, Australia.,Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Melbourne, Australia
| |
Collapse
|
20
|
Varma-Doyle AV, Lukiw WJ, Zhao Y, Lovera J, Devier D. A hypothesis-generating scoping review of miRs identified in both multiple sclerosis and dementia, their protein targets, and miR signaling pathways. J Neurol Sci 2020; 420:117202. [PMID: 33183778 DOI: 10.1016/j.jns.2020.117202] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 09/26/2020] [Accepted: 10/19/2020] [Indexed: 12/11/2022]
Abstract
Cognitive impairment (CI) is a frequent complication affecting people with multiple sclerosis (MS). The causes of CI in MS are not fully understood. Besides MRI measures, few other biomarkers exist to help us predict the development of CI and understand its biology. MicroRNAs (miRs) are relatively stable, non-coding RNA molecules about 22 nucleotides in length that can serve as biomarkers and possible therapeutic targets in several autoimmune and neurodegenerative diseases, including the dementias. In this review, we identify dysregulated miRs in MS that overlap with dysregulated miRs in cognitive disorders and dementia and explore how these overlapping miRs play a role in CI in MS. MiR-15, miR-21, miR-128, miR-132, miR-138, miR-142, miR-146a, miR-155, miR-181, miR-572, and let-7 are known to contribute to various forms of dementia and show abnormal expression in MS. These overlapping miRs are involved in pathways related to apoptosis, neuroinflammation, glutamate toxicity, astrocyte activation, microglial burst activity, synaptic dysfunction, and remyelination. The mechanisms of action suggest that these miRs may be related to CI in MS. From our review, we also delineated miRs that could be neuroprotective in MS, namely miR-23a, miR-219, miR-214, and miR-22. Further studies can help clarify if these miRs are responsible for CI in MS, leading to potential therapeutic targets.
Collapse
Affiliation(s)
- Aditi Vian Varma-Doyle
- Louisiana State University Health Sciences Center -New Orleans School of Medicine, Department of Neurology, New Orleans, United States of America
| | - Walter J Lukiw
- Louisiana State University Health Sciences Center -New Orleans School of Medicine, Department of Neurology, New Orleans, United States of America; Louisiana State University Health Sciences Center - New Orleans Neuroscience Center, United States of America; Louisiana State University Health Sciences Center - New Orleans Department of Ophthalmology, United States of America
| | - Yuhai Zhao
- Louisiana State University Health Sciences Center - New Orleans Department of Cell Biology and Anatomy, United States of America; Louisiana State University Health Sciences Center - New Orleans Neuroscience Center, United States of America
| | - Jesus Lovera
- Louisiana State University Health Sciences Center -New Orleans School of Medicine, Department of Neurology, New Orleans, United States of America.
| | - Deidre Devier
- Louisiana State University Health Sciences Center -New Orleans School of Medicine, Department of Neurology, New Orleans, United States of America; Louisiana State University Health Sciences Center - New Orleans Department of Cell Biology and Anatomy, United States of America.
| |
Collapse
|
21
|
Korotkov A, Puhakka N, Gupta SD, Vuokila N, Broekaart DWM, Anink JJ, Heiskanen M, Karttunen J, van Scheppingen J, Huitinga I, Mills JD, van Vliet EA, Pitkänen A, Aronica E. Increased expression of miR142 and miR155 in glial and immune cells after traumatic brain injury may contribute to neuroinflammation via astrocyte activation. Brain Pathol 2020; 30:897-912. [PMID: 32460356 PMCID: PMC7540383 DOI: 10.1111/bpa.12865] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 02/17/2020] [Accepted: 05/15/2020] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) is associated with the pathological activation of immune-competent cells in the brain, such as astrocytes, microglia and infiltrating immune blood cells, resulting in chronic inflammation and gliosis. This may contribute to the secondary injury after TBI, thus understanding of these processes is crucial for the development of effective treatments of post-traumatic pathologies. MicroRNAs (miRNAs, miRs) are small noncoding RNAs, functioning as posttranscriptional regulators of gene expression. The increased expression of inflammation-associated microRNAs miR155 and miR142 has been reported after TBI in rats. However, expression of these miRNAs in the human brain post-TBI is not studied and their functions are not well understood. Moreover, circulating miR155 and miR142 are candidate biomarkers. Therefore, we characterized miR142 and miR155 expression in the perilesional cortex and plasma of rats that underwent lateral fluid-percussion injury, a model for TBI and in the human perilesional cortex post-TBI. We demonstrated higher miR155 and miR142 expression in the perilesional cortex of rats 2 weeks post-TBI. In plasma, miR155 was associated with proteins and miR142 with extracellular vesicles, however their expression did not change. In the human perilesional cortex miR155 was most prominently expressed by activated astrocytes, whereas miR142 was expressed predominantly by microglia, macrophages and lymphocytes. Pro-inflammatory medium from macrophage-like cells stimulated miR155 expression in astrocytes and overexpression of miR142 in these cells further potentiated a pro-inflammatory state of activated astrocytes. We conclude that miR155 and miR142 promote brain inflammation via astrocyte activation and may be involved in the secondary brain injury after TBI.
Collapse
Affiliation(s)
- Anatoly Korotkov
- Department of (Neuro)Pathology, Amsterdam NeuroscienceAmsterdam UMC, University of AmsterdamMeibergdreef 9Amsterdam1105 AZthe Netherlands
| | - Noora Puhakka
- Department of Neurology, A. I. Virtanen Institute for Molecular SciencesUniversity of Eastern FinlandKuopioFI‐70211Finland
| | - Shalini Das Gupta
- Department of Neurology, A. I. Virtanen Institute for Molecular SciencesUniversity of Eastern FinlandKuopioFI‐70211Finland
| | - Niina Vuokila
- Department of Neurology, A. I. Virtanen Institute for Molecular SciencesUniversity of Eastern FinlandKuopioFI‐70211Finland
| | - Diede W. M. Broekaart
- Department of (Neuro)Pathology, Amsterdam NeuroscienceAmsterdam UMC, University of AmsterdamMeibergdreef 9Amsterdam1105 AZthe Netherlands
| | - Jasper J. Anink
- Department of (Neuro)Pathology, Amsterdam NeuroscienceAmsterdam UMC, University of AmsterdamMeibergdreef 9Amsterdam1105 AZthe Netherlands
| | - Mette Heiskanen
- Department of Neurology, A. I. Virtanen Institute for Molecular SciencesUniversity of Eastern FinlandKuopioFI‐70211Finland
| | - Jenni Karttunen
- Department of Neurology, A. I. Virtanen Institute for Molecular SciencesUniversity of Eastern FinlandKuopioFI‐70211Finland
| | - Jackelien van Scheppingen
- Department of (Neuro)Pathology, Amsterdam NeuroscienceAmsterdam UMC, University of AmsterdamMeibergdreef 9Amsterdam1105 AZthe Netherlands
- Department of NeuroimmunologyNetherlands Institute for NeuroscienceMeibergdreef 47Amsterdam1105 BAthe Netherlands
| | - Inge Huitinga
- Department of NeuroimmunologyNetherlands Institute for NeuroscienceMeibergdreef 47Amsterdam1105 BAthe Netherlands
| | - James D. Mills
- Department of (Neuro)Pathology, Amsterdam NeuroscienceAmsterdam UMC, University of AmsterdamMeibergdreef 9Amsterdam1105 AZthe Netherlands
| | - Erwin A. van Vliet
- Department of (Neuro)Pathology, Amsterdam NeuroscienceAmsterdam UMC, University of AmsterdamMeibergdreef 9Amsterdam1105 AZthe Netherlands
- Swammerdam Institute for Life Sciences, Center for NeuroscienceUniversity of AmsterdamScience Park 904Amsterdam1090 GEthe Netherlands
| | - Asla Pitkänen
- Department of Neurology, A. I. Virtanen Institute for Molecular SciencesUniversity of Eastern FinlandKuopioFI‐70211Finland
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Amsterdam NeuroscienceAmsterdam UMC, University of AmsterdamMeibergdreef 9Amsterdam1105 AZthe Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN)Heemstedethe Netherlands
| |
Collapse
|
22
|
Gupta N, Jadhav S, Tan KL, Saw G, Mallilankaraman KB, Dheen ST. miR-142-3p Regulates BDNF Expression in Activated Rodent Microglia Through Its Target CAMK2A. Front Cell Neurosci 2020; 14:132. [PMID: 32508597 PMCID: PMC7253665 DOI: 10.3389/fncel.2020.00132] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/20/2020] [Indexed: 12/31/2022] Open
Abstract
Microglia, the innate immune effector cells of the mammalian central nervous system (CNS), are involved in the development, homeostasis, and pathology of CNS. Microglia become activated in response to various insults and injuries and protect the CNS by phagocytosing the invading pathogens, dead neurons, and other cellular debris. Recent studies have demonstrated that the epigenetic mechanisms ensure the coordinated regulation of genes involved in microglial activation. In this study, we performed a microRNA (miRNA) microarray in activated primary microglia derived from rat pup's brain and identified differentially expressed miRNAs targeting key genes involved in cell survival, apoptosis, and inflammatory responses. Interestingly, miR-142-3p, one of the highly up-regulated miRNAs in microglia upon lipopolysaccharide (LPS)-mediated activation, compared to untreated primary microglia cells was predicted to target Ca2+/calmodulin dependent kinase 2a (CAMK2A). Further, luciferase reporter assay confirmed that miR-142-3p targets the 3'UTR of Camk2a. CAMK2A has been implicated in regulating the expression of brain-derived neurotrophic factor (BDNF) and long-term potentiation (LTP), a cellular mechanism underlying memory and learning. Given this, this study further focused on understanding the miR-142-3p mediated regulation of the CAMK2A-BDNF pathway via Cyclic AMP-responsive element-binding protein (CREB) in activated microglia. The results revealed that CAMK2A was downregulated in activated microglia, suggesting an inverse relationship between miR-142-3p and Camk2a in activated microglia. Overexpression of miR-142-3p in microglia was found to decrease the expression of CAMK2A and subsequently BDNF through regulation of CREB phosphorylation. Functional analysis through shRNA-mediated stable knockdown of CAMK2A in microglia confirmed that the regulation of BDNF by miR-142-3p is via CAMK2A. Overall, this study provides a database of differentially expressed miRNAs in activated primary microglia and reveals that microglial miR-142-3p regulates the CAMK2A-CREB-BDNF pathway which is involved in synaptic plasticity.
Collapse
Affiliation(s)
- Neelima Gupta
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Shweta Jadhav
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kai-Leng Tan
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Genevieve Saw
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Karthik Babu Mallilankaraman
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - S Thameem Dheen
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
23
|
Tang B, Li W, Ji T, Li X, Qu X, Feng L, Zhu Y, Qi Y, Zhu C, Bai S. Downregulation of XIST ameliorates acute kidney injury by sponging miR-142-5p and targeting PDCD4. J Cell Physiol 2020; 235:8852-8863. [PMID: 32347551 DOI: 10.1002/jcp.29729] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 04/13/2020] [Indexed: 12/15/2022]
Abstract
Acute kidney injury (AKI) is a common kidney disease that markedly affects public health. To date, the roles of long noncoding RNA XIST in AKI are poorly understood. Here, we investigated the biological functions of XIST in AKI. We observed that XIST expression increased in patients with AKI and HK-2 cells stimulated by CoCl2 . In addition, a rat AKI model induced by ischemia-reperfusion was established. Tumor necrosis factor-α, interleukin-6, and cyclooxygenase-2 messenger RNA expression were induced in vivo; moreover, XIST expression was upregulated. Knockdown of XIST significantly repressed CoCl2 -triggered injury in HK-2 cells. However, microRNA (miR)-142-5p, a downstream target of XIST, was downregulated in AKI. miR-142-5p was repressed by XIST and miR-142-5p could inhibit CoCl2 -induced injury in HK-2 cells. Moreover, PDCD4 expression was significantly increased in AKI. PDCD4 was predicted to be the target of miR-142-5p. Subsequently, loss of PDCD4 was able to retard injury in HK-2 cells exposed to CoCl2. Thus, we suggest that XIST regulates miR-142-5p and PDCD4, and it has the potential to function as a biomarker in therapeutic strategies for AKI.
Collapse
Affiliation(s)
- Bo Tang
- Department of Nephrology, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Weiliang Li
- Department of Urology, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Tingting Ji
- Department of Nephrology, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Xiaoying Li
- Department of Nephrology, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Xiaolei Qu
- Department of Nephrology, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Linhong Feng
- Department of Nephrology, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Yingchun Zhu
- Department of Nephrology, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Yinghui Qi
- Department of Nephrology, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Chun Zhu
- Department of Nephrology, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Shoujun Bai
- Department of Nephrology, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| |
Collapse
|
24
|
Systems Biology Analysis of the Antagonizing Effects of HIV-1 Tat Expression in the Brain over Transcriptional Changes Caused by Methamphetamine Sensitization. Viruses 2020; 12:v12040426. [PMID: 32283831 PMCID: PMC7232389 DOI: 10.3390/v12040426] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/27/2020] [Accepted: 04/01/2020] [Indexed: 01/06/2023] Open
Abstract
Methamphetamine (Meth) abuse is common among humans with immunodeficiency virus (HIV). The HIV-1 regulatory protein, trans-activator of transcription (Tat), has been described to induce changes in brain gene transcription that can result in impaired reward circuitry, as well as in inflammatory processes. In transgenic mice with doxycycline-induced Tat protein expression in the brain, i.e., a mouse model of neuroHIV, we tested global gene expression patterns induced by Meth sensitization. Meth-induced locomotor sensitization included repeated daily Meth or saline injections for seven days and Meth challenge after a seven-day abstinence period. Brain samples were collected 30 min after the Meth challenge. We investigated global gene expression changes in the caudate putamen, an area with relevance in behavior and HIV pathogenesis, and performed pathway and transcriptional factor usage predictions using systems biology strategies. We found that Tat expression alone had a very limited impact in gene transcription after the Meth challenge. In contrast, Meth-induced sensitization in the absence of Tat induced a global suppression of gene transcription. Interestingly, the interaction between Tat and Meth broadly prevented the Meth-induced global transcriptional suppression, by maintaining regulation pathways, and resulting in gene expression profiles that were more similar to the controls. Pathways associated with mitochondrial health, initiation of transcription and translation, as well as with epigenetic control, were heavily affected by Meth, and by its interaction with Tat in anti-directional ways. A series of systems strategies have predicted several components impacted by these interactions, including mitochondrial pathways, mTOR/RICTOR, AP-1 transcription factor, and eukaryotic initiation factors involved in transcription and translation. In spite of the antagonizing effects of Tat, a few genes identified in relevant gene networks remained downregulated, such as sirtuin 1, and the amyloid precursor protein (APP). In conclusion, Tat expression in the brain had a low acute transcriptional impact but strongly interacted with Meth sensitization, to modify effects in the global transcriptome.
Collapse
|
25
|
Chen J, Jiang C, Du J, Xie CL. MiR-142-5p Protects Against 6-OHDA-Induced SH-SY5Y Cell Injury by Downregulating BECN1 and Autophagy. Dose Response 2020; 18:1559325820907016. [PMID: 32127787 PMCID: PMC7036514 DOI: 10.1177/1559325820907016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/07/2020] [Accepted: 01/16/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND MiR-142-5p has been demonstrated to hold significant implications in neurological diseases. However, the impact and underlying regulatory mechanism of miR-142-5p in Parkinson's disease (PD) are still ominous. METHODS To simulate the PD, 6-hydroxydopamine (6-OHDA)-treated SH-SY5Y cell model was used in this study. Levels of messenger RNA and protein were tested by quantitative real-time polymerase chain reaction and Western blot analyses, respectively. The direct interaction between miR-142-5p and Beclin 1 (BECN1) was assessed by luciferase reporter assay. Furthermore, Cell Counting Kit-8 assay was performed to assess cytotoxicity of SH-SY5Y cell. RESULTS In consequence, a significant decrease of miR-142-5p was observed in 6-OHDA-induced SH-SY5Y cells. Over-/Low-expressed miR-142-5p resulted in a significant enhancement/inhibition on cell vitalities of 6-OHDA-treated SH-SY5Y cells, which might be modulated by repressing cellular autophagy through inhibiting level of BECN1 and LC3 II/LC3 I and elevating P62 level. Luciferase reporter assay showed that the BECN1 was the target gene of miR-142-5p. Additionally, the loss/gain of BECN1 rescued/blocked the effects of miR-142-5p on the viability of 6-OHDA-induced SH-SY5Y cells. CONCLUSIONS These results highlight that miR-142-5p functions as a neuroprotective regulator in 6-OHDA-induced neuronal SH-SY5Y cells simulating PD model in vitro via regulating autophagy-related protein BECN1 and autophagy to influence cell viability.
Collapse
Affiliation(s)
- Jian Chen
- Department of Senile Neurology, Shandong Provincial Hospital
Affiliated to Shandong First Medical University, Jinan, People’s Republic of
China
| | - Chuan Jiang
- Department of Neurology, Shandong Provincial ENT Hospital, Shandong
Provincial ENT Hospital Affiliated to Shandong University, Jinan, People's Republic
of China
| | - Juan Du
- Department of Center Sterile Supply, Shandong Cancer Hospital
Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan,
People’s Republic of China
| | - Chun-Li Xie
- Department of Neurology, Fourth People’s Hospital of Jinan, Jinan,
People’s Republic of China
| |
Collapse
|
26
|
Ghanbari M, Munshi ST, Ma B, Lendemeijer B, Bansal S, Adams HH, Wang W, Goth K, Slump DE, den Hout MC, IJcken WF, Bellusci S, Pan Q, Erkeland SJ, Vrij FM, Kushner SA, Ikram MA. A functional variant in the miR‐142 promoter modulating its expression and conferring risk of Alzheimer disease. Hum Mutat 2019; 40:2131-2145. [DOI: 10.1002/humu.23872] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 06/13/2019] [Accepted: 07/11/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Mohsen Ghanbari
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam Rotterdam the Netherlands
- Department of Genetics, School of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Shashini T. Munshi
- Department of Psychiatry, Erasmus MC University Medical Center Rotterdam Rotterdam the Netherlands
| | - Buyun Ma
- Department of Gastroenterology, Erasmus MC University Medical Center Rotterdam Rotterdam the Netherlands
| | - Bas Lendemeijer
- Department of Psychiatry, Erasmus MC University Medical Center Rotterdam Rotterdam the Netherlands
| | - Sakshi Bansal
- Department of Psychiatry, Erasmus MC University Medical Center Rotterdam Rotterdam the Netherlands
| | - Hieab H. Adams
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam Rotterdam the Netherlands
- Department of Clinical Genetics, Erasmus MC University Medical Center Rotterdam Rotterdam the Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center Rotterdam Rotterdam the Netherlands
| | - Wenshi Wang
- Department of Gastroenterology, Erasmus MC University Medical Center Rotterdam Rotterdam the Netherlands
| | - Kerstin Goth
- Department of Lung Matrix Remodeling, Excellence Cluster Cardio‐Pulmonary System (ECCPS) University Justus Liebig Giessen Giessen Germany
| | - Denise E. Slump
- Department of Psychiatry, Erasmus MC University Medical Center Rotterdam Rotterdam the Netherlands
| | - Mirjam C.G.N. den Hout
- Center for Biomics, Department of Cell Biology, Erasmus MC University Medical Center Rotterdam Rotterdam the Netherlands
| | - Wilfred F.J. IJcken
- Center for Biomics, Department of Cell Biology, Erasmus MC University Medical Center Rotterdam Rotterdam the Netherlands
| | - Saverio Bellusci
- Department of Lung Matrix Remodeling, Excellence Cluster Cardio‐Pulmonary System (ECCPS) University Justus Liebig Giessen Giessen Germany
| | - Qiuwei Pan
- Department of Gastroenterology, Erasmus MC University Medical Center Rotterdam Rotterdam the Netherlands
| | - Stefan J. Erkeland
- Department of Immunology, Erasmus MC University Medical Center Rotterdam Rotterdam the Netherlands
| | - Femke M.S. Vrij
- Department of Psychiatry, Erasmus MC University Medical Center Rotterdam Rotterdam the Netherlands
| | - Steven A. Kushner
- Department of Psychiatry, Erasmus MC University Medical Center Rotterdam Rotterdam the Netherlands
| | - M. Arfan Ikram
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam Rotterdam the Netherlands
| |
Collapse
|
27
|
Chen X, Zhang XL, Zhang GH, Gao YF. Artesunate promotes Th1 differentiation from CD4+ T cells to enhance cell apoptosis in ovarian cancer via miR-142. ACTA ACUST UNITED AC 2019; 52:e7992. [PMID: 31038546 PMCID: PMC6489539 DOI: 10.1590/1414-431x20197992] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 02/15/2019] [Indexed: 11/21/2022]
Abstract
The aim of this study was to evaluate the influence of artesunate on Th1 differentiation and its anti-tumor effect on ovarian cancer. A Murine ovarian cancer model was established by ID8 cells transplantation. The expression of miR-142 and Sirt1 proteins in peripheral CD4+ T cells were quantified with qRT-PCR and western blot, respectively. Peripheral CD4+ T cells were induced for Th1 differentiation. The percentages of apoptosis of Th1/CD4+ T cells and ovarian cancer cells were analyzed by flow cytometry. The IFN-γ level was examined through enzyme-linked immunosorbent assay. Artesunate promoted miR-142 expression in peripheral CD4+ T cells and Th1 differentiation from CD4+ T cells. Artesunate promoted cell apoptosis of ovarian cancer cells by inducing Th1 differentiation. By up-regulating miR-142, artesunate suppressed Sirt1 level and promoted Th1 differentiation. Artesunate enhanced the pro-apoptotic effects of Th1 cells on ovarian cancer via the miR-142/Sirt1 pathway. Artesunate promoted Th1 differentiation from CD4+ T cells by down-regulating Sirt1 through miR-142, thereby enhancing cell apoptosis in ovarian cancer.
Collapse
Affiliation(s)
- Xiao Chen
- Department of Gynecology and Obstetrics, The Fourth Hospital of Shijiazhuang, Shijiazhuang, China
| | - Xue-Ling Zhang
- Department of Gynecology and Obstetrics, The Fourth Hospital of Shijiazhuang, Shijiazhuang, China
| | - Guo-Hua Zhang
- Department of Gynecology and Obstetrics, The Fourth Hospital of Shijiazhuang, Shijiazhuang, China
| | - Ying-Fang Gao
- Department of Gynecology and Obstetrics, The Fourth Hospital of Shijiazhuang, Shijiazhuang, China
| |
Collapse
|
28
|
Pittenger ST, Schaal VL, Moore D, Guda RS, Koul S, Yelamanchili SV, Bevins RA, Pendyala G. MicroRNA cluster miR199a/214 are differentially expressed in female and male rats following nicotine self-administration. Sci Rep 2018; 8:17464. [PMID: 30504847 PMCID: PMC6269448 DOI: 10.1038/s41598-018-35747-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 11/05/2018] [Indexed: 12/19/2022] Open
Abstract
Previous research has established sex differences associated with nicotine intake, however a significant gap in knowledge remains regarding the molecular mechanisms that govern these differences at the transcriptional level. One critical regulator of transcription are microRNAs (miRNAs). miRNAs are a family of non-coding RNAs that regulate an array of important biological functions altered in several disease states, including neuroadaptive changes within the brain associated with drug dependence. We examined the prefrontal cortex (PFC) from male and female Sprague-Dawley rats following self-administration (22 days) of nicotine or yoked saline controls using next generation RNA-Sequencing (RNA-Seq) technology and found an array of miRNAs to be significantly and differentially regulated by nicotine self-administration. Of these, we found the expression of miR-199a and 214, which are expressed on the same cluster of chromosome 1, to be upregulated in the female rats exposed to nicotine; upregulation in this group was further validated by real time polymerase chain reaction (RT-PCR). Bioinformatics analysis to assess common targets of miR-199/214 identified Sirtuin 1 (SIRT1), a nicotinamide adenine dinucleotide (NAD)- dependent deacetylase that plays a role in apoptosis, neuron survival, and stress resistance. Using western-blot, we confirmed downregulation of SIRT1 and increased cleaved caspase 3 expression in the brains of nicotine-exposed female rats and no change in expression levels in the other groups. Collectively, our findings highlight a miR-199/214 regulatory network that, through SIRT1, may be associated with nicotine seeking in females which may serve as a potential therapeutic target for sex-specific treatment approaches.
Collapse
Affiliation(s)
- Steven T Pittenger
- Department of Psychology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Yale University School of Medicine, Division of Molecular Psychiatry, New Haven, Connecticut, USA
| | - Victoria L Schaal
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Dalia Moore
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Rahul S Guda
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Sneh Koul
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Sowmya V Yelamanchili
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Rick A Bevins
- Department of Psychology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Gurudutt Pendyala
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, Nebraska, USA.
| |
Collapse
|
29
|
Cheng D, Li J, Zhang L, Hu L. miR-142-5p suppresses proliferation and promotes apoptosis of human osteosarcoma cell line, HOS, by targeting PLA2G16 through the ERK1/2 signaling pathway. Oncol Lett 2018; 17:1363-1371. [PMID: 30655907 DOI: 10.3892/ol.2018.9712] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 07/17/2018] [Indexed: 12/14/2022] Open
Abstract
Previous studies have revealed that miR-142-5p serves a critical role in human cancer progression. However, the biological function of miR-142-5p in osteosarcoma (OS) development remains unclear. In the present study, the role of miR-142-5p in human OS HOS cells was determined, and the underlying mechanism involved was examined. Compared with the adjacent healthy tissues, the expression level of miR-142-5p was downregulated and the expression level of group XVI phospholipase A2 (PLA2G16) protein was upregulated in human OS tissues. The aforementioned results were also indicated in human OS HOS cells when compared with human fetal osteoblastic hFOB1.19 cells. Additionally, the results demonstrated that PLA2G16 was a direct target of miR-142-5p. miR-142-5p transfection upregulated the expression level of miR-142-5p and suppressed the expression level of PLA2G16 protein in HOS cells. MTT assays indicated a time-dependent decrease by miR-142-5p transfection in the proliferation of HOS cells. 5-bromo-2'-deoxyuridine incorporation assays confirmed that miR-142-5p transfection inhibited DNA synthesis in HOS cells. In addition, miR-142-5p transfection increased the Caspase-3 (CASP3) activity and apoptotic rate. Western blot analysis indicated that miR-142-5p transfection reduced BCL2, apoptosis regulator expression and upregulated the expression of CASP3 and BCL2 associated X, apoptosis regulator in HOS cells. Furthermore, miR-142-5p transfection decreased the expression levels of phosphorylated (p)-proto-oncogene, serine/threonine kinase, p-mitogen-activated protein kinase kinase, and p-extracellular signal-regulated kinase (ERK) 1/2 proteins in HOS cells. PLA2G16 overexpression restored the expression level of p-ERK 1/2 protein, which was reduced by miR-142-5p overexpression. MTT and CASP3 activity assays indicated that restoration of PLA2G16 reversed the tumour-suppressive role of miR-142-5p transfection in HOS cells. In conclusion, the results of the present study indicated that miR-142-5p suppressed proliferation and promoted apoptosis in human OS HOS cells by targeting PLA2G16 through ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- Deliang Cheng
- Department of Hand Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
| | - Jiageng Li
- Department of Hand Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
| | - Lijun Zhang
- Department of Hand Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
| | - Leiming Hu
- Department of Hand Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
| |
Collapse
|
30
|
Sierksma A, Lu A, Salta E, Vanden Eynden E, Callaerts-Vegh Z, D'Hooge R, Blum D, Buée L, Fiers M, De Strooper B. Deregulation of neuronal miRNAs induced by amyloid-β or TAU pathology. Mol Neurodegener 2018; 13:54. [PMID: 30314521 PMCID: PMC6186090 DOI: 10.1186/s13024-018-0285-1] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 09/27/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Despite diverging levels of amyloid-β (Aβ) and TAU pathology, different mouse models, as well as sporadic AD patients show predictable patterns of episodic memory loss. MicroRNA (miRNA) deregulation is well established in AD brain but it is unclear whether Aβ or TAU pathology drives those alterations and whether miRNA changes contribute to cognitive decline. METHODS miRNAseq was performed on cognitively intact (4 months) and impaired (10 months) male APPtg (APPswe/PS1L166P) and TAUtg (THY-Tau22) mice and their wild-type littermates (APPwt and TAUwt). We analyzed the hippocampi of 12 mice per experimental group (n = 96 in total), and employed a 2-way linear model to extract differentially expressed miRNAs. Results were confirmed by qPCR in a separate cohort of 4 M and 10 M APPtg and APPwt mice (n = 7-9 per group) and in human sporadic AD and non-demented control brain. Fluorescent in situ hybridization identified their cellular expression. Functional annotation of predicted targets was performed using GO enrichment. Behavior of wild-type mice was assessed after intracerebroventricular infusion of miRNA mimics. RESULTS Six miRNAs (miR-10a-5p, miR-142a-5p, miR-146a-5p, miR-155-5p, miR-211-5p, miR-455-5p) are commonly upregulated between APPtg and TAUtg mice, and four of these (miR-142a-5p, miR-146a-5p, miR-155-5p and miR-455-5p) are altered in AD patients. All 6 miRNAs are strongly enriched in neurons. Upregulating these miRNAs in wild-type mice is however not causing AD-related cognitive disturbances. CONCLUSION Diverging AD-related neuropathologies induce common disturbances in the expression of neuronal miRNAs. 4 of these miRNAs are also upregulated in AD patients. Therefore these 4 miRNAs (miR-142a-5p, miR-146a-5p, miR-155-5p and miR-455-5p) appear part of a core pathological process in AD patients and APPtg and TAUtg mice. They are however not causing cognitive disturbances in wild-type mice. As some of these miRNA target AD relevant proteins, they may be, in contrast, part of a protective response in AD.
Collapse
Affiliation(s)
- Annerieke Sierksma
- VIB Center for Brain & Disease Research, Leuven, Belgium
- Department of Neurosciences, Leuven research Institute for Neuroscience and Disease (LIND), KU Leuven, Leuven, Belgium
| | - Ashley Lu
- VIB Center for Brain & Disease Research, Leuven, Belgium
- Department of Neurosciences, Leuven research Institute for Neuroscience and Disease (LIND), KU Leuven, Leuven, Belgium
| | - Evgenia Salta
- VIB Center for Brain & Disease Research, Leuven, Belgium
- Department of Neurosciences, Leuven research Institute for Neuroscience and Disease (LIND), KU Leuven, Leuven, Belgium
| | - Elke Vanden Eynden
- VIB Center for Brain & Disease Research, Leuven, Belgium
- Department of Neurosciences, Leuven research Institute for Neuroscience and Disease (LIND), KU Leuven, Leuven, Belgium
| | - Zsuzsanna Callaerts-Vegh
- Faculty of Psychology and Educational Sciences, Laboratory of Biological Psychology, KU Leuven, Leuven, Belgium
| | - Rudi D'Hooge
- Faculty of Psychology and Educational Sciences, Laboratory of Biological Psychology, KU Leuven, Leuven, Belgium
| | - David Blum
- Université Lille, INSERM, CHU Lille, UMR-S 1172, LabEx DISTALZ, Alzheimer & Tauopathies, Lille, France
| | - Luc Buée
- Université Lille, INSERM, CHU Lille, UMR-S 1172, LabEx DISTALZ, Alzheimer & Tauopathies, Lille, France
| | - Mark Fiers
- VIB Center for Brain & Disease Research, Leuven, Belgium.
- Department of Neurosciences, Leuven research Institute for Neuroscience and Disease (LIND), KU Leuven, Leuven, Belgium.
| | - Bart De Strooper
- VIB Center for Brain & Disease Research, Leuven, Belgium.
- Department of Neurosciences, Leuven research Institute for Neuroscience and Disease (LIND), KU Leuven, Leuven, Belgium.
- Dementia Research Institute UK, ION, University College London, London, UK.
| |
Collapse
|
31
|
Higuchi Y, Soga T, Parhar IS. Potential Roles of microRNAs in the Regulation of Monoamine Oxidase A in the Brain. Front Mol Neurosci 2018; 11:339. [PMID: 30271325 PMCID: PMC6149293 DOI: 10.3389/fnmol.2018.00339] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 08/28/2018] [Indexed: 12/15/2022] Open
Abstract
Monoamine oxidase A (MAO-A) is an enzyme that regulates the levels of monoamine neurotransmitters, such as serotonin, noradrenaline and dopamine and it has been used as a therapeutic target for depression. However, MAO-A inhibitors, which directly acts on MAO-A protein, have limited use due to their adverse effects. microRNAs (miRNAs) are 18-22 nucleotide long, small non-coding RNAs, which have recently emerged as regulators of protein levels that could potentially be new therapeutic targets for psychiatric disorders. This review article aims to discuss the current status of the treatment for depression with MAO-A inhibitors and the regulatory factors of MAO-A. Further, the review also proposes possible regulatory mechanisms of MAO-A by miRNAs, which leads to better understanding of the pathology of depressive disorders and their potential use as therapeutic agents.
Collapse
Affiliation(s)
| | | | - Ishwar S. Parhar
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
32
|
Han B, Zhang Y, Zhang Y, Bai Y, Chen X, Huang R, Wu F, Leng S, Chao J, Zhang JH, Hu G, Yao H. Novel insight into circular RNA HECTD1 in astrocyte activation via autophagy by targeting MIR142-TIPARP: implications for cerebral ischemic stroke. Autophagy 2018; 14:1164-1184. [PMID: 29938598 DOI: 10.1080/15548627.2018.1458173] [Citation(s) in RCA: 280] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Circular RNAs (circRNAs) are highly expressed in the central nervous system and are involved in the regulation of physiological and pathophysiological processes. However, the potential role of circRNAs in stroke remains largely unknown. Here, using a circRNA microarray, we showed that circular RNA Hectd1 (circHectd1) levels were significantly increased in ischemic brain tissues in transient middle cerebral artery occlusion (tMCAO) mouse stroke models and further validated this finding in plasma samples from acute ischemic stroke (AIS) patients. Knockdown of circHectd1 expression significantly decreased infarct areas, attenuated neuronal deficits, and ameliorated astrocyte activation in tMCAO mice. Mechanistically, circHECTD1 functions as an endogenous MIR142 (microRNA 142) sponge to inhibit MIR142 activity, resulting in the inhibition of TIPARP (TCDD inducible poly[ADP-ribose] polymerase) expression with subsequent inhibition of astrocyte activation via macroautophagy/autophagy. Taken together, the results of our study indicate that circHECTD1 and its coupling mechanism are involved in cerebral ischemia, thus providing translational evidence that circHECTD1 can serve as a novel biomarker of and therapeutic target for stroke. ABBREVIATIONS 3-MA: 3-methyladenine; ACTB: actin beta; AIS: acute ischemic stroke; AS: primary mouse astrocytes; BECN1: beclin 1, autophagy related; BMI: body mass index; circHECTD1: circRNA HECTD1; circRNAs: circular RNAs; CBF: cerebral blood flow; Con: control; DAPI: 4',6-diamidino-2-phenylindole; ECA: external carotid artery; FISH: fluorescence in situ hybridization; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; Gdna: genomic DNA; GFAP: glial fibrillary acidic protein; GO: gene ontology; HDL: high-density lipoprotein; IOD: integrated optical density; LDL: low-density lipoprotein; LPA: lipoprotein(a); MAP1LC3B: microtubule-associated protein 1 light chain 3 beta; MIR142: microRNA 142; mNSS: modified neurological severity scores; MRI: magnetic resonance imaging; NIHSS: National Institute of Health Stoke Scale; OGD-R: oxygen glucose deprivation-reperfusion; PCR: polymerase chain reaction; PFA: paraformaldehyde; SQSTM1: sequestosome 1; TIPARP: TCDD inducible poly(ADP-ribose) polymerase; tMCAO: transient middle cerebral artery occlusion; TTC: 2,3,5-triphenyltetrazolium chloride; UTR: untranslated region; WT: wild type.
Collapse
Affiliation(s)
- Bing Han
- a Department of Pharmacology , School of Medicine, Southeast University , Nanjing , Jiangsu , China
| | - Yuan Zhang
- a Department of Pharmacology , School of Medicine, Southeast University , Nanjing , Jiangsu , China
| | - Yanhong Zhang
- a Department of Pharmacology , School of Medicine, Southeast University , Nanjing , Jiangsu , China
| | - Ying Bai
- a Department of Pharmacology , School of Medicine, Southeast University , Nanjing , Jiangsu , China
| | - Xufeng Chen
- b Department of Emergency , Jiangsu Province Hospital and The First Affiliated Hospital of Nanjing Medical University , Nanjing , Jiangsu , China
| | - Rongrong Huang
- a Department of Pharmacology , School of Medicine, Southeast University , Nanjing , Jiangsu , China
| | - Fangfang Wu
- a Department of Pharmacology , School of Medicine, Southeast University , Nanjing , Jiangsu , China
| | - Shuo Leng
- c Department of Radiology , School of Medicine, Southeast University , Nanjing , Jiangsu , China
| | - Jie Chao
- d Department of Physiology , School of Medicine, Southeast University , Nanjing , Jiangsu , China
| | - John H Zhang
- e Department of Physiology and Pharmacology , School of Medicine, Loma Linda University , Loma Linda , California , USA
| | - Gang Hu
- f Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology , Nanjing Medical University , Nanjing , Jiangsu , China
| | - Honghong Yao
- a Department of Pharmacology , School of Medicine, Southeast University , Nanjing , Jiangsu , China.,g Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease , Southeast University , Nanjing , Jiangsu , China
| |
Collapse
|
33
|
Presymptomatic change in microRNAs modulates Tau pathology. Sci Rep 2018; 8:9251. [PMID: 29915328 PMCID: PMC6006352 DOI: 10.1038/s41598-018-27527-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 05/29/2018] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRs) are 18~23 nucleotides long non-coding RNAs that regulate gene expression. To explore whether miR alterations in tauopathy contribute to pathological conditions, we first determined which hippocampal miRs are altered at the presymptomatic and symptomatic stages of tauopathy using rTg4510 mice (Tau mice), a well-characterized tauopathy model. miR-RNA pairing analysis using QIAGEN Ingenuity Pathway Analysis (IPA) revealed 401 genes that can be regulated by 71 miRs altered in Tau hippocampi at the presymptomatic stage. Among several miRs confirmed with real-time qPCR, miR142 (−3p and −5p) in Tau hippocampi were significantly upregulated by two-weeks of age and onward. Transcriptome studies by RNAseq and IPA revealed several overlapping biological and disease associated pathways affected by either Tau or miR142 overexpression, including Signal Transducer and Activator of Transcription 3 (Stat3) and Tumor Necrosis Factor Receptor 2 (Tnfr2) signaling pathways. Similar to what was observed in Tau brains, overexpressing miR142 in wildtype cortical neurons augments mRNA levels of Glial Fibrillary Acidic Protein (Gfap) and Colony Stimulating Factor 1 (Csf1), accompanied by a significant increase in microglia and reactive astrocyte numbers. Taken together, our study suggests that miR alterations by Tau overexpression may contribute to the neuroinflammation observed in Tau brains.
Collapse
|
34
|
Matamala JM, Arias-Carrasco R, Sanchez C, Uhrig M, Bargsted L, Matus S, Maracaja-Coutinho V, Abarzua S, van Zundert B, Verdugo R, Manque P, Hetz C. Genome-wide circulating microRNA expression profiling reveals potential biomarkers for amyotrophic lateral sclerosis. Neurobiol Aging 2018; 64:123-138. [DOI: 10.1016/j.neurobiolaging.2017.12.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 12/18/2017] [Accepted: 12/21/2017] [Indexed: 12/17/2022]
|
35
|
TNFα and IL-1β modify the miRNA cargo of astrocyte shed extracellular vesicles to regulate neurotrophic signaling in neurons. Cell Death Dis 2018; 9:363. [PMID: 29507357 PMCID: PMC5838212 DOI: 10.1038/s41419-018-0369-4] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/23/2018] [Accepted: 01/25/2018] [Indexed: 11/09/2022]
Abstract
Astrocytes are known to be critical regulators of neuronal function. However, relatively few mediators of astrocyte to neuron communication have been identified. Recent advancements in the biology of extracellular vesicles have begun to implicate astrocyte derived extracellular vesicles (ADEV) as mediators of astrocyte to neuron communication, suggesting that alterations in the release and/or composition of ADEVs could influence gliotransmission. TNFα and IL-1β are key mediators of glial activation and neuronal damage, but the effects of these cytokines on the release or molecular composition of ADEVs is unknown. We found that ADEVs released in response to IL-1β (ADEV-IL-1β) and TNFα (ADEV-TNFα) were enriched with miRNAs that target proteins involved in neurotrophin signaling. We confirmed that miR-125a-5p and miR-16-5p (both enriched in ADEV-IL-1β and ADEV-TNFα) targeted NTKR3 and its downstream effector Bcl2. Downregulation of these targets in neurons was associated with reductions in dendritic growth, dendritic complexity, reduced spike rates, and burst activity. Molecular interference of miR-125a-5p and miR-16-5p prevented ADEV-IL-1β from reducing dendritic complexity, spike, and burst rates. These findings suggest that astrocytes respond to inflammatory challenge by modifying the miRNA cargo of ADEVs to diminish the activity of target neurons by regulating the translational expression of proteins controlling programs essential for synaptic stability and neuronal excitability.
Collapse
|
36
|
Yang L, Niu F, Yao H, Liao K, Chen X, Kook Y, Ma R, Hu G, Buch S. Exosomal miR-9 Released from HIV Tat Stimulated Astrocytes Mediates Microglial Migration. J Neuroimmune Pharmacol 2018; 13:330-344. [PMID: 29497921 DOI: 10.1007/s11481-018-9779-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 02/19/2018] [Indexed: 12/22/2022]
Abstract
Chronic neuroinflammation still remains a common underlying feature of HIV-infected patients on combined anti-retroviral therapy (cART). Previous studies have reported that despite near complete suppression of virus replication by cART, cytotoxic viral proteins such as HIV trans-activating regulatory protein (Tat) continue to persist in tissues such as the brain and the lymph nodes, thereby contributing, in part, to chronic glial activation observed in HIV-associated neurological disorders (HAND). Understanding how the glial cells cross talk to mediate neuropathology is thus of paramount importance. MicroRNAs (miR) also known as regulators of gene expression, have emerged as key paracrine signaling mediators that regulate disease pathogenesis and cellular crosstalk, through their transfer via the extracellular vesicles (EV). In the current study we have identified a novel function of miR-9, that of mediating microglial migration. We demonstrate that miR-9 released from Tat-stimulated astrocytes can be taken up by microglia resulting in their migratory phenotype. Exposure of human astrocytoma (A172) cells to HIV Tat resulted in induction and release of miR-9 in the EVs, which, was taken up by microglia, leading in turn, increased migration of the latter cells, a process that could be blocked by both an exosome inhibitor GW4869 or a specific target protector of miR-9. Furthermore, it was also demonstrated that EV miR-9 mediated inhibition of the expression of target PTEN, via its binding to the 3'UTR seed sequence of the PTEN mRNA, was critical for microglial migration. To validate the role of miR-9 in this process, microglial cells were treated with EVs loaded with miR-9, which resulted in significant downregulation of PTEN expression with a concomitant increase in microglial migration. These findings were corroborated by transfecting microglia with a specific target protector of PTEN, that blocked miR-9-mediated downregulation of PTEN as well as microglial migration. In vivo studies wherein the miR-9 precursor-transduced microglia were transplanted into the striatum of mice, followed by assessing their migration in response to a stimulus administered distally, further validated the role of miR-9 in mediating microglial migration. Collectively, our findings provide evidence that glial crosstalk via miRs released from EVs play a vital role in mediating disease pathogenesis and could provide new avenues for development of novel therapeutic strategies aimed at dampening neuropathogenesis.
Collapse
Affiliation(s)
- Lu Yang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Fang Niu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Honghong Yao
- Department of Pharmacology, Medical School of Southeast University, Southeast University, Nanjing, China.,Key Laboratory of Developmental Genes and Human Disease, Southeast University, Institute of Life Sciences, Nanjing, China
| | - Ke Liao
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Xufeng Chen
- The first Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yeonhee Kook
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Rong Ma
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Guoku Hu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
37
|
Abstract
Microglia serve as brain-resident myeloid cells that affect cerebral development, ischemia, neurodegeneration, and neuro-viral infection. MicroRNAs play a key role in central nervous system disease through post-transcriptional regulation. Indeed, evidence shows that microRNAs are one of the most important regulators mediating microglial activation, polarization, and autophagy, and subsequently affecting neuroinflammation and the outcome of central nervous system disease. In this review, we provide insight into the function of microRNAs, which may be an attractive strategy and influential treatment for microglia-related central nervous system dysfunction. Moreover, we comprehensively describe how microglia fight against central nervous system disease via multiple functional microRNAs.
Collapse
Affiliation(s)
- Xiao-Hua Wang
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University; Institute of Geriatrics; National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Tian-Long Wang
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University; Institute of Geriatrics; National Clinical Research Center for Geriatric Disorders, Beijing, China
| |
Collapse
|
38
|
Bagla S, Cukovic D, Asano E, Sood S, Luat A, Chugani HT, Chugani DC, Dombkowski AA. A distinct microRNA expression profile is associated with α[ 11C]-methyl-L-tryptophan (AMT) PET uptake in epileptogenic cortical tubers resected from patients with tuberous sclerosis complex. Neurobiol Dis 2018; 109:76-87. [PMID: 28993242 PMCID: PMC6070303 DOI: 10.1016/j.nbd.2017.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 09/09/2017] [Accepted: 10/06/2017] [Indexed: 10/18/2022] Open
Abstract
Tuberous sclerosis complex (TSC) is characterized by hamartomatous lesions in various organs and arises due to mutations in the TSC1 or TSC2 genes. TSC mutations lead to a range of neurological manifestations including epilepsy, cognitive impairment, autism spectrum disorders (ASD), and brain lesions that include cortical tubers. There is evidence that seizures arise at or near cortical tubers, but it is unknown why some tubers are epileptogenic while others are not. We have previously reported increased tryptophan metabolism measured with α[11C]-methyl-l-tryptophan (AMT) positron emission tomography (PET) in epileptogenic tubers in approximately two-thirds of patients with tuberous sclerosis and intractable epilepsy. However, the underlying mechanisms leading to seizure onset in TSC remain poorly characterized. MicroRNAs are enriched in the brain and play important roles in neurodevelopment and brain function. Recent reports have shown aberrant microRNA expression in epilepsy and TSC. In this study, we performed microRNA expression profiling in brain specimens obtained from TSC patients undergoing epilepsy surgery for intractable epilepsy. Typically, in these resections several non-seizure onset tubers are resected together with the seizure-onset tubers because of their proximity. We directly compared seizure onset tubers, with and without increased tryptophan metabolism measured with PET, and non-onset tubers to assess the role of microRNAs in epileptogenesis associated with these lesions. Whether a particular tuber was epileptogenic or non-epileptogenic was determined with intracranial electrocorticography, and tryptophan metabolism was measured with AMT PET. We identified a set of five microRNAs (miR-142-3p, 142-5p, 223-3p, 200b-3p and 32-5p) that collectively distinguish among the three primary groups of tubers: non-onset/AMT-cold (NC), onset/AMT-cold (OC), and onset/AMT-hot (OH). These microRNAs were significantly upregulated in OH tubers compared to the other two groups, and microRNA expression was most significantly associated with AMT-PET uptake. The microRNAs target a group of genes enriched for synaptic signaling and epilepsy risk, including SLC12A5, SYT1, GRIN2A, GRIN2B, KCNB1, SCN2A, TSC1, and MEF2C. We confirmed the interaction between miR-32-5p and SLC12A5 using a luciferase reporter assay. Our findings provide a new avenue for subsequent mechanistic studies of tuber epileptogenesis in TSC.
Collapse
Affiliation(s)
- Shruti Bagla
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Daniela Cukovic
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Eishi Asano
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Sandeep Sood
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Aimee Luat
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Harry T Chugani
- Department of Neurology, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Diane C Chugani
- Research Department, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA; Communication Sciences and Disorders Department, College of Health Sciences, University of Delaware, Newark, DE, USA
| | - Alan A Dombkowski
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
39
|
Bortell N, Basova L, Najera JA, Morsey B, Fox HS, Marcondes MCG. Sirtuin 1-Chromatin-Binding Dynamics Points to a Common Mechanism Regulating Inflammatory Targets in SIV Infection and in the Aging Brain. J Neuroimmune Pharmacol 2017; 13:163-178. [PMID: 29280055 DOI: 10.1007/s11481-017-9772-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 11/20/2017] [Indexed: 12/20/2022]
Abstract
Microglia and macrophages are the main non-neuronal subsets of myeloid origin in the brain, and are critical regulators in neurodegenerative disorders, where inflammation is a key factor. Since HIV infection results in neurological perturbations that are similar to those in aging, we examined microglial and infiltrating myeloid subsets in the search for changes that might resemble the ones in aging. For that, we used the SIV infection in rhesus macaques to model neuroAIDS. We found that Sirt-1, a molecule that impacts survival and health in many models, was decreased in cell preparations containing a majority of microglia and myeloid cells from the brain of infected macaques. The role of Sirt-1 in neuroAIDS is unknown. We hypothesized that Sirt-1 silencing functions are affected by SIV. Mapping of Sirt-1 binding patterns to chromatin revealed that the number of Sirt-1-bound genes was 29.6% increased in myeloid cells from infected animals with mild or no detectable neuropathology, but 51% was decreased in severe neuropathology, compared to controls. Importantly, Sirt-1-bound genes in controls largely participate in neuroinflammation. Promoters of type I IFN pathway genes IRF7, IRF1, IFIT1, and AIF1, showed Sirt-1 binding in controls, which was consistently lost after infection, together with higher transcription. Loss of Sirt-1 binding was also found in brains from old uninfected animals, suggesting a common regulation. The role of Sirt-1 in regulating these inflammatory markers was confirmed in two different in vitro models, where Sirt-1 blockage modulated IRF7, IRF1 and AIF1 levels both in human macrophage cell lines and in human blood-derived monocytes from various normal donors, stimulated with a TLR9 agonist. Our data suggests that Sirt-1-inflammatory gene silencing is disturbed by SIV infection, resembling aging in brains. These findings may impact our knowledge on the contribution of myeloid subsets to the neurological consequences of HIV infection, aggravated and overlapping with the aging process.
Collapse
Affiliation(s)
- Nikki Bortell
- Molecular and Cellular Neurosciences Department, The Scripps Research Institute, La Jolla, CA, USA
| | - Liana Basova
- Molecular and Cellular Neurosciences Department, The Scripps Research Institute, La Jolla, CA, USA.,San Diego Biomedical Research Institute, 10865 Road to Cure, Suite 100, San Diego, CA, 92121, USA
| | - Julia A Najera
- Molecular and Cellular Neurosciences Department, The Scripps Research Institute, La Jolla, CA, USA
| | - Brenda Morsey
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5800, USA
| | - Howard S Fox
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5800, USA
| | - Maria Cecilia Garibaldi Marcondes
- Molecular and Cellular Neurosciences Department, The Scripps Research Institute, La Jolla, CA, USA. .,San Diego Biomedical Research Institute, 10865 Road to Cure, Suite 100, San Diego, CA, 92121, USA.
| |
Collapse
|
40
|
Improvement of therapeutic effects of mesenchymal stem cells in myocardial infarction through genetic suppression of microRNA-142. Oncotarget 2017; 8:85549-85558. [PMID: 29156740 PMCID: PMC5689630 DOI: 10.18632/oncotarget.20935] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/08/2017] [Indexed: 11/30/2022] Open
Abstract
Transplanted mesenchymal stem cells (MSCs) have been shown to contribute to myocardial repair after myocardial infarction (MI), primarily through production and secretion some growth factors and cytokines related to cell survival and regeneration. Further improvement of the therapeutic potential of MSCs appears to be an attractive strategy for MI treatment. CXC chemokine receptor (CXCR) 7 is the receptor for stromal cell-derived factor-1 (SDF-1), an important chemokine that is essential for tissue repair and angiogenesis. SDF-1/CXCR7 axis plays a critical role in the mobilization, recruitment and function of MSCs during tissue regeneration. Here, we depleted miR-142 that targets CXCR7 in MSCs cells through expression of antisense of miR-142, resulting in enhanced expression of CXCR7 in these miR-142-depleted MSCs (md-MSCs). In vitro, presence of md-MSCs reduced hypoxia-induced cardiac muscle cell apoptosis in a more pronounced manner than MSCs. In vivo, compared to transplantation of MSCs, transplantation of md-MSCs further enhanced cardiac re-vascularization and further improved cardiac functions after MI in mice. Together, our data suggest that depletion of miR-142 in MSCs may improve their therapeutic effects on MI.
Collapse
|
41
|
Flum M, Kleemann M, Schneider H, Weis B, Fischer S, Handrick R, Otte K. miR-217-5p induces apoptosis by directly targeting PRKCI, BAG3, ITGAV and MAPK1 in colorectal cancer cells. J Cell Commun Signal 2017; 12:451-466. [PMID: 28905214 DOI: 10.1007/s12079-017-0410-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 08/30/2017] [Indexed: 12/17/2022] Open
Abstract
Apoptosis is a genetically directed process of programmed cell death. A variety of microRNAs (miRNAs), endogenous single-stranded non-coding RNAs of about 22 nucleotides in length have been shown to be involved in the regulation of the intrinsic or extrinsic apoptotic pathways. There is increasing evidence that the aberrant expression of miRNAs plays a causal role in the development of diseases such as cancer. This makes miRNAs promising candidate molecules as therapeutic targets or agents. MicroRNA (miR)-217-5p has been implicated in carcinogenesis of various cancer entities, including colorectal cancer. Here, we analyzed the pro-apoptotic potential of miR-217-5p in a variety of colorecatal cancer cell lines showing that miR-217-5p mimic transfection led to the induction of apoptosis causing the breakdown of mitochondrial membrane potential, externalization of phosphatidylserine, activation of caspases and fragmentation of DNA. Furthermore, elevated miR-217-5p levels downregulated mRNA and protein expression of atypical protein kinase c iota type I (PRKCI), BAG family molecular chaperone regulator 3 (BAG3), integrin subunit alpha v (ITGAV) and mitogen-activated protein kinase 1 (MAPK1). A direct miR-217-5p mediated regulation to those targets was shown by repressed luciferase activity of reporter constructs containing the miR-217-5p binding sites in the 3' untranslated region. Taken together, our observations have uncovered the apoptosis-inducing potential of miR-217-5p through its regulation of multiple target genes involved in the ERK-MAPK signaling pathway by regulation of PRKCI, BAG3, ITGAV and MAPK1.
Collapse
Affiliation(s)
- Marion Flum
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, Hubertus-Liebrecht-Str. 35, 88400, Biberach, Germany
- Faculty of Medicine, University of Ulm, Albert-Einstein-Allee 11, 89079, Ulm, Germany
| | - Michael Kleemann
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, Hubertus-Liebrecht-Str. 35, 88400, Biberach, Germany.
| | - Helga Schneider
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, Hubertus-Liebrecht-Str. 35, 88400, Biberach, Germany
| | - Benjamin Weis
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, Hubertus-Liebrecht-Str. 35, 88400, Biberach, Germany
| | - Simon Fischer
- Boehringer Ingelheim Pharma GmbH & Co KG, Cell Culture Development CMB, Birkendorfer Straße 65, 88397, Biberach, Germany
| | - René Handrick
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, Hubertus-Liebrecht-Str. 35, 88400, Biberach, Germany
| | - Kerstin Otte
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, Hubertus-Liebrecht-Str. 35, 88400, Biberach, Germany
| |
Collapse
|
42
|
Hu G, Liao K, Yang L, Pendyala G, Kook Y, Fox HS, Buch S. Tat-Mediated Induction of miRs-34a & -138 Promotes Astrocytic Activation via Downregulation of SIRT1: Implications for Aging in HAND. J Neuroimmune Pharmacol 2017; 12:420-432. [PMID: 28236278 PMCID: PMC5546000 DOI: 10.1007/s11481-017-9730-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 02/15/2017] [Indexed: 12/13/2022]
Abstract
Astrocyte activation is a hallmark of HIV infection and aging in the CNS. In chronically infected HIV patients, prolonged activation of astrocytes has been linked to accelerated aging including but not limited to neurocognitive impairment and frailty. The current study addresses the role of HIV protein Tat in inducing a set of small noncoding microRNAs (miRNA) that play critical role in astrogliosis. In our efforts to link astrocyte activation as an indicator of aging, we assessed the brains of both wild type and HIV transgenic rats for the expression of glial fibrillary acidic protein (GFAP). As expected, in the WT animals we observed age-dependent increase in astrogliosis in the older animals compared to the younger group. Interestingly, compared to the young WT group, young HIV Tg rats exhibited higher levels of GFAP in this trend was also observed in the older HIV Tg rats compared to the older WT group. Based on the role of SIRT1 in aging and the regulation of SIRT1 by miRNAs-34a and -138, we next assessed the expression levels of these miRs in the brains of both the young an old WT and HIV Tg rats. While there were no significant differences in the young WT versus the HIV Tg rats, in the older HIV Tg rats there was a significant upregulation in the expression of miRs-34a & -138 in the brains. Furthermore, increased expression of miRs-34a & -138 in the older Tg rats, correlated with a concomitant decrease in their common anti-aging target protein SIRT1, in the brains of these animals. To delineate the mechanism of action we assessed the role of HIV-Tat (present in the Tg rats) in inducing miRs-34a & -138 in both the primary astrocytes and the astrocytoma cell line A172, thereby leading to posttranscriptional suppression of SIRT1 with a concomitant up regulation of NF-kB driven expression of GFAP.
Collapse
Affiliation(s)
- Guoku Hu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ke Liao
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Lu Yang
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Gurudutt Pendyala
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yeonhee Kook
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Howard S Fox
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
43
|
Tu M, Tang J, He H, Cheng P, Chen C. MiR-142-5p promotes bone repair by maintaining osteoblast activity. J Bone Miner Metab 2017; 35:255-264. [PMID: 27085967 DOI: 10.1007/s00774-016-0757-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 03/11/2016] [Indexed: 12/19/2022]
Abstract
MicroRNAs play important roles in regulating bone regeneration and remodeling. However, the pathophysiological roles of microRNAs in bone repair remain unclear. Here we identify a significant upregulation of miR-142-5p correlated with active osteoblastogenesis during the bone healing process. In vitro, miR-142-5p promoted osteoblast activity and matrix mineralization by targeting the gene encoding WW-domain-containing E3 ubiquitin protein ligase 1. We also found that the expression of miR-142-5p in the callus of aged mice was lower than that in the callus of young mice and directly correlated with the age-related delay in bone healing. Furthermore, treatment with agomir-142-5p in the fracture areas stimulated osteoblast activity which repaired the bone fractures in aged mice. Thus, our study revealed that miR-142-5p plays a crucial role in healing fractures by maintaining osteoblast activity, and provided a new molecular target therapeutic strategy for bone healing.
Collapse
Affiliation(s)
- Manli Tu
- Institute of Endocrinology and Metabolism, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Juanjuan Tang
- Department of Gynaecology and Obstetrics, The First Hospital Affiliated to Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Hongbo He
- Department of Orthopedics, Xiangya Hospital of Central South University, 87# Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - Peng Cheng
- Department of Gerontology, The First Hospital Affiliated to Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China.
| | - Chao Chen
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, People's Republic of China.
| |
Collapse
|
44
|
Ge QM, Huang CM, Zhu XY, Bian F, Pan SM. Differentially expressed miRNAs in sepsis-induced acute kidney injury target oxidative stress and mitochondrial dysfunction pathways. PLoS One 2017; 12:e0173292. [PMID: 28296904 PMCID: PMC5351858 DOI: 10.1371/journal.pone.0173292] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 02/17/2017] [Indexed: 12/22/2022] Open
Abstract
Objective To identify specific miRNAs involved in sepsis-induced AKI and to explore their targeting pathways. Methods The expression profiles of miRNAs in serum from patients with sepsis-induced AKI (n = 6), sepsis-non AKI (n = 6), and healthy volunteers (n = 3) were investigated by microarray assay and validated by quantitative PCR (qPCR). The targets of the differentially expressed miRNAs were predicted by Target Scan, mirbase and Miranda. Then the significant functions and involvement in signaling pathways of gene ontology (GO) and KEGG pathways were analyzed. Furthermore, eight miRNAs were randomly selected out of the differentially expressed miRNAs for further testing by qPCR. Results qPCR analysis confirmed that the expressions levels of hsa-miR-23a-3p, hsa-miR-4456, hsa-miR-142-5p, hsa-miR-22-3p and hsa-miR-191-5p were significantly lower in patients with sepsis compared with the healthy volunteers, while hsa-miR-4270, hsa-miR-4321, hsa-miR-3165 were higher in the sepsis patients. Statistically, miR-4321; miR-4270 were significantly upregulated in the sepsis-induced AKI compared with sepsis-non AKI, while only miR-4321 significantly overexpressed in the sepsis groups compared with control groups. GO analysis showed that biological processes regulated by the predicted target genes included diverse terms. They were related to kidney development, regulation of nitrogen compound metabolic process, regulation of cellular metabolic process, cellular response to oxidative stress, mitochondrial outer membrane permeabilization, etc. Pathway analysis showed that several significant pathways of the predicted target genes related to oxidative stress. miR-4321 was involved in regulating AKT1, mTOR and NOX5 expression while miR-4270 was involved in regulating PPARGC1A, AKT3, NOX5, PIK3C3, WNT1 expression. Function and pathway analysis highlighted the possible involvement of miRNA-deregulated mRNAs in oxidative stress and mitochondrial dysfunction. Conclusion This study might help to improve understanding of the relationship between serum miRNAs and sepsis-induced AKI, and laid an important foundation for further identification of the potential mechanisms of sepsis-induced AKI and oxidative stress and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Qin-Min Ge
- Department of Emergency, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chun-Mei Huang
- Department of Emergency, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiang-Yang Zhu
- Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic College of Medicine, Rochester, MN, United States of America
| | - Fan Bian
- Department of Nephrology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shu-Ming Pan
- Department of Emergency, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- * E-mail:
| |
Collapse
|
45
|
Vascular microRNA-204 is remotely governed by the microbiome and impairs endothelium-dependent vasorelaxation by downregulating Sirtuin1. Nat Commun 2016; 7:12565. [PMID: 27586459 PMCID: PMC5025761 DOI: 10.1038/ncomms12565] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 07/13/2016] [Indexed: 12/22/2022] Open
Abstract
Gut microbiota promotes atherosclerosis, and vascular endothelial dysfunction, signalled by impaired endothelium-dependent vasorelaxation, is an early marker of atherosclerosis. Here we show that vascular microRNA-204 (miR-204) expression is remotely regulated by the microbiome, and impairs endothelial function by targeting the Sirtuin1 lysine deacetylase (Sirt1). MiR-204 is downregulated, while Sirt1 is upregulated, in aortas of germ-free mice. Suppression of gut microbiome with broad-spectrum antibiotics decreases miR-204, increases Sirt1 and bioavailable vascular nitric oxide, and improves endothelium-dependent vasorelaxation in mouse aortas. Antibiotics curtail aortic miR-204 upregulation, and rescue decline of aortic Sirt1 and endothelium-dependent vasorelaxation, triggered by high-fat diet feeding. Improvement of endothelium-dependent vasorelaxation by antibiotics is lost in mice lacking endothelial Sirt1. Systemic antagonism of miR-204 rescues impaired endothelium-dependent vasorelaxation and vascular Sirt1, and decreases vascular inflammation induced by high-fat diet. These findings reveal a gut microbe-vascular microRNA–Sirtuin1 nexus that leads to endothelial dysfunction. Commensal bacteria, the vast majority of which reside in the gut, are involved in development of many diseases, including atherosclerotic vascular disease. Here the authors show that these bacteria remotely increase expression of vascular microRNA-204, which targets Sirt1 in the endothelium to impair endothelial function.
Collapse
|
46
|
Iwasaki K, Yamamoto T, Inanaga Y, Hiramitsu T, Miwa Y, Murotani K, Narumi S, Watarai Y, Katayama A, Uchida K, Kobayashi T. MiR-142-5p and miR-486-5p as biomarkers for early detection of chronic antibody-mediated rejection in kidney transplantation. Biomarkers 2016; 22:45-54. [PMID: 27323802 DOI: 10.1080/1354750x.2016.1204000] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
De novo donor-specific HLA antibody (DSA) would not necessarily contribute to chronic antibody-mediated rejection (CAMR) in kidney transplantation. Here, we investigated whether PBMC miRNAs could be predictable biomarkers for CAMR. Microarray profiling of 435 mature miRNAs in pooled samples was conducted. Individual analysis revealed that miR-142-5p was significantly (p < 0.01) underexpressed in patients with DSA. After DSA production, miR-486-5p and its target PTEN/foxO3 mRNA were significantly overexpressed (p < 0.01) and underexpressed (p < 0.01), respectively, in patients with biopsy-proven CAMR, compared with non-CAMR. Our studies suggest that miRNA expression patterns may serve as noninvasive diagnostic biomarkers to evaluate immune response and kidney allograft status.
Collapse
Affiliation(s)
- Kenta Iwasaki
- a Department of Kidney Disease and Transplant Immunology , Aichi Medical University , Nagakute , Japan
| | - Takayuki Yamamoto
- b Department of Transplant Surgery , Nagoya Daini Red Cross Hospital , Nagoya , Japan
| | - Yukiko Inanaga
- c Department of Surgery II , Nagoya University School of Medicine , Nagoya , Japan
| | - Takahisa Hiramitsu
- b Department of Transplant Surgery , Nagoya Daini Red Cross Hospital , Nagoya , Japan
| | - Yuko Miwa
- c Department of Surgery II , Nagoya University School of Medicine , Nagoya , Japan
| | - Kenta Murotani
- d Department of Center for Clinical Research , Aichi Medical University , Nagakute , Japan
| | - Shuji Narumi
- b Department of Transplant Surgery , Nagoya Daini Red Cross Hospital , Nagoya , Japan
| | - Yoshihiko Watarai
- b Department of Transplant Surgery , Nagoya Daini Red Cross Hospital , Nagoya , Japan
| | - Akio Katayama
- e Department of Transplant Surgery , Masuko Memorial Hospital , Nagoya , Japan
| | - Kazuharu Uchida
- a Department of Kidney Disease and Transplant Immunology , Aichi Medical University , Nagakute , Japan.,f Department of Transplant Surgery , Aichi Medical University , Nagakute , Japan
| | - Takaaki Kobayashi
- f Department of Transplant Surgery , Aichi Medical University , Nagakute , Japan
| |
Collapse
|
47
|
Zhu J, Zhang Y, Zhang W, Zhang W, Fan L, Wang L, Liu Y, Liu S, Guo Y, Wang Y, Yi J, Yan Q, Wang Z, Huang G. MicroRNA-142-5p contributes to Hashimoto's thyroiditis by targeting CLDN1. J Transl Med 2016; 14:166. [PMID: 27277258 PMCID: PMC4898455 DOI: 10.1186/s12967-016-0917-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/20/2016] [Indexed: 12/20/2022] Open
Abstract
Background MicroRNAs have the potential as diagnostic biomarkers and therapeutic targets in autoimmune diseases. However, very limited studies have evaluated the expression of microRNA profile in thyroid gland related to Hashimoto’s thyroiditis (HT). Methods MicroRNA microarray expression profiling was performed and validated by quantitative RT-PCR. The expression pattern of miR-142-5p was detected using locked nucleic acid-in situ hybridization. The target gene was predicted and validated using miRNA targets prediction database, gene expression analysis, quantitative RT-PCR, western blot, and luciferase assay. The potential mechanisms of miR-142-5p were studied using immunohistochemistry, immunofluorescence, and quantitative assay of thyrocyte permeability. Results Thirty-nine microRNAs were differentially expressed in HT (Fold change ≥2, P < 0.05) and miR-142-5p, miR-142-3p, and miR-146a were only high expression in HT thyroid gland (P < 0.001). miR-142-5p, which was expressed at high levels in injured follicular epithelial cells, was also detected in HT patient serum and positively correlated with thyroglobulin antibody (r ≥ 0.6, P < 0.05). Furthermore, luciferase assay demonstrated CLDN1 was the direct target gene of miR-142-5p (P < 0.05), and Immunohistochemical staining showed a reverse expression patterns with miR-142-5p and CLDN1. Overexpression of miR-142-5p in thyrocytes resulted in reducing of the expression of claudin-1 both in mRNA and protein level (P = 0.032 and P = 0.009 respectively) and increasing the permeability of thyrocytes monolayer (P < 0.01). Conclusions Our findings indicate a previously unrecognized mechanism that miR-142-5p, targeting CLDN1, plays an important role in HT pathogenesis. Electronic supplementary material The online version of this article (doi:10.1186/s12967-016-0917-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jin Zhu
- State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, Fourth Military Medical University, Changle West Road #169, Xi'an, 710032, People's Republic of China.,Department of Clinical Laboratory, Lintong Sanatorium, Lanzhou Military Command, Xi'an, 710600, People's Republic of China
| | - Yuehua Zhang
- State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, Fourth Military Medical University, Changle West Road #169, Xi'an, 710032, People's Republic of China.,Department of Pathology, Foshan First People's Hospital, Foshan, 528000, People's Republic of China
| | - Weichen Zhang
- State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, Fourth Military Medical University, Changle West Road #169, Xi'an, 710032, People's Republic of China
| | - Wei Zhang
- The Helmholtz Sino-German Laboratory for Cancer Research, Department of Pathology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, People's Republic of China
| | - Linni Fan
- State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, Fourth Military Medical University, Changle West Road #169, Xi'an, 710032, People's Republic of China
| | - Lu Wang
- State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, Fourth Military Medical University, Changle West Road #169, Xi'an, 710032, People's Republic of China
| | - Yixiong Liu
- State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, Fourth Military Medical University, Changle West Road #169, Xi'an, 710032, People's Republic of China
| | - Shasha Liu
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, People's Republic of China
| | - Ying Guo
- State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, Fourth Military Medical University, Changle West Road #169, Xi'an, 710032, People's Republic of China
| | - Yingmei Wang
- State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, Fourth Military Medical University, Changle West Road #169, Xi'an, 710032, People's Republic of China
| | - Jun Yi
- Department of Vascular and Endocrine Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Qingguo Yan
- State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, Fourth Military Medical University, Changle West Road #169, Xi'an, 710032, People's Republic of China.
| | - Zhe Wang
- State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, Fourth Military Medical University, Changle West Road #169, Xi'an, 710032, People's Republic of China.
| | - Gaosheng Huang
- State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, Fourth Military Medical University, Changle West Road #169, Xi'an, 710032, People's Republic of China.
| |
Collapse
|
48
|
Longitudinal Examination of the Intestinal Lamina Propria Cellular Compartment of Simian Immunodeficiency Virus-Infected Rhesus Macaques Provides Broader and Deeper Insights into the Link between Aberrant MicroRNA Expression and Persistent Immune Activation. J Virol 2016; 90:5003-5019. [PMID: 26937033 DOI: 10.1128/jvi.00189-16] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 03/02/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Chronic immune activation/inflammation driven by factors like microbial translocation is a key determinant of human immunodeficiency virus/simian immunodeficiency virus (HIV/SIV) disease progression. Although extensive research on inflammation has focused on studying protein regulators, increasing evidence suggests a critical role for microRNAs (miRNAs) in regulating several aspects of the immune/inflammatory response and immune cell proliferation, differentiation, and activation. To understand their immunoregulatory role, we profiled miRNA expression sequentially in intestinal lamina propria leukocytes (LPLs) of eight macaques before and at 21, 90, and 180 days postinfection (dpi). At 21 dpi, ∼20 and 9 miRNAs were up- and downregulated, respectively. However, at 90 dpi (n = 60) and 180 dpi (n = 44), ≥75% of miRNAs showed decreased expression. Notably, the T-cell activation-associated miR-15b, miR-142-3p, miR-142-5p, and miR-150 expression was significantly downregulated at 90 and 180 dpi. Out of ∼10 downregulated miRNAs predicted to regulate CD69, we confirmed miR-92a to directly target CD69. Interestingly, the SIV-induced miR-190b expression was elevated at all time points. Additionally, elevated lipopolysaccharide (LPS)-responsive miR-146b-5p expression at 180 dpi was confirmed in primary intestinal macrophages following LPS treatment in vitro Further, reporter and overexpression assays validated IRAK1 (interleukin-1 receptor 1 kinase) as a direct miR-150 target. Furthermore, IRAK1 protein levels were markedly elevated in intestinal LPLs and epithelium. Finally, blockade of CD8(+) T-cell activation/proliferation with delta-9 tetrahydrocannabinol (Δ(9)-THC) significantly prevented miR-150 downregulation and IRAK1 upregulation. Our findings suggest that miR-150 downregulation during T-cell activation disrupts the translational control of IRAK1, facilitating persistent gastrointestinal (GI) inflammation. Finally, the ability of Δ(9)-THC to block the miR-150-IRAK1 regulatory cascade highlights the potential of cannabinoids to inhibit persistent inflammation/immune activation in HIV/SIV infection. IMPORTANCE Persistent GI tract disease/inflammation is a cardinal feature of HIV/SIV infection. Increasing evidence points to a critical role for miRNAs in controlling several aspects of the immune/inflammatory response. Here, we show significant dysregulation of miRNA expression exclusively in the intestinal lamina propria cellular compartment through the course of SIV infection. Specifically, the study identified miRNA signatures associated with key pathogenic events, such as viral replication, T-cell activation, and microbial translocation. The T-cell-enriched miR-150 showed significant downregulation throughout SIV infection and was confirmed to target IRAK1, a critical signal-transducing component of the IL-1 receptor and TLR signaling pathways. Reduced miR-150 expression was associated with markedly elevated IRAK1 expression in the intestines of chronically SIV-infected macaques. Finally, Δ(9)-THC-mediated blockade of CD8(+) T-cell activation in vitro significantly inhibited miR-150 downregulation and IRAK1 upregulation, suggesting its potential for targeted immune modulation in HIV infection.
Collapse
|
49
|
Didier ES, MacLean AG, Mohan M, Didier PJ, Lackner AA, Kuroda MJ. Contributions of Nonhuman Primates to Research on Aging. Vet Pathol 2016; 53:277-90. [PMID: 26869153 PMCID: PMC5027759 DOI: 10.1177/0300985815622974] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Aging is the biological process of declining physiologic function associated with increasing mortality rate during advancing age. Humans and higher nonhuman primates exhibit unusually longer average life spans as compared with mammals of similar body mass. Furthermore, the population of humans worldwide is growing older as a result of improvements in public health, social services, and health care systems. Comparative studies among a wide range of organisms that include nonhuman primates contribute greatly to our understanding about the basic mechanisms of aging. Based on their genetic and physiologic relatedness to humans, nonhuman primates are especially important for better understanding processes of aging unique to primates, as well as for testing intervention strategies to improve healthy aging and to treat diseases and disabilities in older people. Rhesus and cynomolgus macaques are the predominant monkeys used in studies on aging, but research with lower nonhuman primate species is increasing. One of the priority topics of research about aging in nonhuman primates involves neurologic changes associated with cognitive decline and neurodegenerative diseases. Additional areas of research include osteoporosis, reproductive decline, caloric restriction, and their mimetics, as well as immune senescence and chronic inflammation that affect vaccine efficacy and resistance to infections and cancer. The purpose of this review is to highlight the findings from nonhuman primate research that contribute to our understanding about aging and health span in humans.
Collapse
Affiliation(s)
- E S Didier
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA, USA
| | - A G MacLean
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, USA
| | - M Mohan
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, USA
| | - P J Didier
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, USA
| | - A A Lackner
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, USA
| | - M J Kuroda
- Division of Immunology, Tulane National Primate Research Center, Covington, LA, USA
| |
Collapse
|
50
|
Castro V, Bertrand L, Luethen M, Dabrowski S, Lombardi J, Morgan L, Sharova N, Stevenson M, Blasig IE, Toborek M. Occludin controls HIV transcription in brain pericytes via regulation of SIRT-1 activation. FASEB J 2015; 30:1234-46. [PMID: 26601824 DOI: 10.1096/fj.15-277673] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 11/16/2015] [Indexed: 12/22/2022]
Abstract
HIV invades the brain early after infection; however, its interactions with the cells of the blood-brain barrier (BBB) remain poorly understood. Our goal was to evaluate the role of occludin, one of the tight junction proteins that regulate BBB functions in HIV infection of BBB pericytes. We provide evidence that occludin levels largely control the metabolic responses of human pericytes to HIV. Occludin in BBB pericytes decreased by 10% during the first 48 h after HIV infection, correlating with increased nuclear translocation of the gene repressor C-terminal-binding protein (CtBP)-1 and NFκB-p65 activation. These changes were associated with decreased expression and activation of the class III histone deacetylase sirtuin (SIRT)-1. Occludin levels recovered 96 h after infection, restoring SIRT-1 and reducing HIV transcription to 20% of its highest values. We characterized occludin biochemically as a novel NADH oxidase that controls the expression and activation of SIRT-1. The inverse correlation between occludin and HIV transcription was then replicated in human primary macrophages and differentiated monocytic U937 cells, in which occludin silencing resulted in 75 and 250% increased viral transcription, respectively. Our work shows that occludin has previously unsuspected metabolic properties and is a target of HIV infection, opening the possibility of designing novel pharmacological approaches to control HIV transcription.
Collapse
Affiliation(s)
- Victor Castro
- *Department of Biochemistry and Molecular Biology and Division of Infectious Diseases, University of Miami Miller School of Medicine, Miami, Florida, USA; Department of Biology, Freie Universität Berlin, Berlin, Germany; and Leibniz-Institut für Molekulare Pharmakologie, Berlin, Germany
| | - Luc Bertrand
- *Department of Biochemistry and Molecular Biology and Division of Infectious Diseases, University of Miami Miller School of Medicine, Miami, Florida, USA; Department of Biology, Freie Universität Berlin, Berlin, Germany; and Leibniz-Institut für Molekulare Pharmakologie, Berlin, Germany
| | - Mareen Luethen
- *Department of Biochemistry and Molecular Biology and Division of Infectious Diseases, University of Miami Miller School of Medicine, Miami, Florida, USA; Department of Biology, Freie Universität Berlin, Berlin, Germany; and Leibniz-Institut für Molekulare Pharmakologie, Berlin, Germany
| | - Sebastian Dabrowski
- *Department of Biochemistry and Molecular Biology and Division of Infectious Diseases, University of Miami Miller School of Medicine, Miami, Florida, USA; Department of Biology, Freie Universität Berlin, Berlin, Germany; and Leibniz-Institut für Molekulare Pharmakologie, Berlin, Germany
| | - Jorge Lombardi
- *Department of Biochemistry and Molecular Biology and Division of Infectious Diseases, University of Miami Miller School of Medicine, Miami, Florida, USA; Department of Biology, Freie Universität Berlin, Berlin, Germany; and Leibniz-Institut für Molekulare Pharmakologie, Berlin, Germany
| | - Laura Morgan
- *Department of Biochemistry and Molecular Biology and Division of Infectious Diseases, University of Miami Miller School of Medicine, Miami, Florida, USA; Department of Biology, Freie Universität Berlin, Berlin, Germany; and Leibniz-Institut für Molekulare Pharmakologie, Berlin, Germany
| | - Natalia Sharova
- *Department of Biochemistry and Molecular Biology and Division of Infectious Diseases, University of Miami Miller School of Medicine, Miami, Florida, USA; Department of Biology, Freie Universität Berlin, Berlin, Germany; and Leibniz-Institut für Molekulare Pharmakologie, Berlin, Germany
| | - Mario Stevenson
- *Department of Biochemistry and Molecular Biology and Division of Infectious Diseases, University of Miami Miller School of Medicine, Miami, Florida, USA; Department of Biology, Freie Universität Berlin, Berlin, Germany; and Leibniz-Institut für Molekulare Pharmakologie, Berlin, Germany
| | - Ingolf E Blasig
- *Department of Biochemistry and Molecular Biology and Division of Infectious Diseases, University of Miami Miller School of Medicine, Miami, Florida, USA; Department of Biology, Freie Universität Berlin, Berlin, Germany; and Leibniz-Institut für Molekulare Pharmakologie, Berlin, Germany
| | - Michal Toborek
- *Department of Biochemistry and Molecular Biology and Division of Infectious Diseases, University of Miami Miller School of Medicine, Miami, Florida, USA; Department of Biology, Freie Universität Berlin, Berlin, Germany; and Leibniz-Institut für Molekulare Pharmakologie, Berlin, Germany
| |
Collapse
|