1
|
Lim C, McKendry J, Lees M, Atherton PJ, Burd NA, Holwerda AM, van Loon LJC, McGlory C, Mitchell CJ, Smith K, Wilkinson DJ, Stokes T, Phillips SM. Turning over new ideas in human skeletal muscle proteostasis: What do we know and where to from here? Exp Physiol 2025. [PMID: 39910909 DOI: 10.1113/ep092353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/03/2025] [Indexed: 02/07/2025]
Abstract
Understanding the turnover of proteins in tissues gives information as to how external stimuli result in phenotypic change. Nowhere is such phenotypic change more conspicuous than skeletal muscle, which can be effectively remodelled by increased loading, ageing and unloading (disuse), all of which are subject to modification by nutrition and other environmental stimuli. The understanding of muscle proteome remodelling has undergone a renaissance recently with the reintroduction of deuterated water (D2O) and its ingestion to label amino acids and measure their incorporation into proteins. However, there is confusion around the use of the deuterated water methodology and the interpretation of the data it provides. Here, we provide a short review of some of the more salient features of the method and clarify some of the confusion around the method of deuterated water methods and its use in humans and how the interpretation of the data is in contrast to that of rodents.
Collapse
Affiliation(s)
- Changhyun Lim
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
- Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - James McKendry
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Matthew Lees
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Philip J Atherton
- MRC/ARUK Centre for Musculoskeletal Ageing Research and National Institute of Health Research, Biomedical Research Centre, School of Medicine, University of Nottingham, Derby, UK
- Ritsumeikan Advanced Research Academy (RARA) Fellow and Visiting Professor, Faculty of Sport and Health Science, Ritsumeikan University, Kyoto, Japan
| | - Nicholas A Burd
- Department of Health and Kinesiology and Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Andrew M Holwerda
- Department of Human Biology, NUTRIM Institute of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Luc J C van Loon
- Department of Human Biology, NUTRIM Institute of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Chris McGlory
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
- Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Cameron J Mitchell
- Faculty of Education, School of Kinesiology, The University of British Columbia, Vancouver, BC, Canada
| | - Kenneth Smith
- MRC/ARUK Centre for Musculoskeletal Ageing Research and National Institute of Health Research, Biomedical Research Centre, School of Medicine, University of Nottingham, Derby, UK
| | - Daniel J Wilkinson
- MRC/ARUK Centre for Musculoskeletal Ageing Research and National Institute of Health Research, Biomedical Research Centre, School of Medicine, University of Nottingham, Derby, UK
| | - Tanner Stokes
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Stuart M Phillips
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
- Department of Sport and Exercise Sciences, Manchester Metropolitan University Institute of Sport, Manchester, UK
| |
Collapse
|
2
|
Kaspy MS, Hannaian SJ, Bell ZW, Churchward-Venne TA. The effects of branched-chain amino acids on muscle protein synthesis, muscle protein breakdown and associated molecular signalling responses in humans: an update. Nutr Res Rev 2024; 37:273-286. [PMID: 37681443 DOI: 10.1017/s0954422423000197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Branched-chain amino acids (BCAA: leucine, isoleucine and valine) are three of the nine indispensable amino acids, and are frequently consumed as a dietary supplement by athletes and recreationally active individuals alike. The popularity of BCAA supplements is largely predicated on the notion that they can stimulate rates of muscle protein synthesis (MPS) and suppress rates of muscle protein breakdown (MPB), the combination of which promotes a net anabolic response in skeletal muscle. To date, several studies have shown that BCAA (particularly leucine) increase the phosphorylation status of key proteins within the mechanistic target of rapamycin (mTOR) signalling pathway involved in the regulation of translation initiation in human muscle. Early research in humans demonstrated that BCAA provision reduced indices of whole-body protein breakdown and MPB; however, there was no stimulatory effect of BCAA on MPS. In contrast, recent work has demonstrated that BCAA intake can stimulate postprandial MPS rates at rest and can further increase MPS rates during recovery after a bout of resistance exercise. The purpose of this evidence-based narrative review is to critically appraise the available research pertaining to studies examining the effects of BCAA on MPS, MPB and associated molecular signalling responses in humans. Overall, BCAA can activate molecular pathways that regulate translation initiation, reduce indices of whole-body and MPB, and transiently stimulate MPS rates. However, the stimulatory effect of BCAA on MPS rates is less than the response observed following ingestion of a complete protein source providing the full complement of indispensable amino acids.
Collapse
Affiliation(s)
- Matthew S Kaspy
- Department of Kinesiology and Physical Education, McGill University, 475 Avenue Des Pins H2W 1S4, Montreal, QC, Canada
| | - Sarkis J Hannaian
- Department of Kinesiology and Physical Education, McGill University, 475 Avenue Des Pins H2W 1S4, Montreal, QC, Canada
- Research Institute of the McGill University Health Centre, Glen Site, 1001 Boul. Décarie, H4A 3J1 Montreal, QC, Canada
| | - Zachary W Bell
- Department of Kinesiology and Physical Education, McGill University, 475 Avenue Des Pins H2W 1S4, Montreal, QC, Canada
| | - Tyler A Churchward-Venne
- Department of Kinesiology and Physical Education, McGill University, 475 Avenue Des Pins H2W 1S4, Montreal, QC, Canada
- Division of Geriatric Medicine, McGill University, Montreal General Hospital, Room D6 237.F, 1650 Cedar Avenue, H3G 1A4, Montreal, QC, Canada
- Research Institute of the McGill University Health Centre, Glen Site, 1001 Boul. Décarie, H4A 3J1 Montreal, QC, Canada
| |
Collapse
|
3
|
Kouw IWK, Parr EB, Wheeler MJ, Radford BE, Hall RC, Senden JM, Goessens JPB, van Loon LJC, Hawley JA. Short-term intermittent fasting and energy restriction do not impair rates of muscle protein synthesis: A randomised, controlled dietary intervention. Clin Nutr 2024; 43:174-184. [PMID: 39418832 DOI: 10.1016/j.clnu.2024.09.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Intermittent fasting (IF) is an effective energy restricted dietary strategy to reduce body and fat mass and improve metabolic health in individuals with either an overweight or obese status. However, dietary energy restriction may impair muscle protein synthesis (MPS) resulting in a concomitant decline in lean body mass. Due to periods of prolonged fasting combined with irregular meal intake, we hypothesised that IF would reduce rates of MPS compared to an energy balanced diet with regular meal patterns. AIMS We assessed the impact of a short-term, ten days, alternate day fasting or a continuous energy restricted diet to a control diet on integrated rates of skeletal MPS in middle-aged males with overweight or obesity. METHODS Twenty-seven middle-aged males with overweight or obesity (age: 44.6 ± 5.4 y; BMI: 30.3 ± 2.6 kg/m2) consumed a three-day lead-in diet, followed by a ten-day controlled dietary intervention matched for protein intake, as alternate day fasting (ADF: 62.5 energy (En)%, days of 25 En% alternated with days of 100 En% food ingestion), continuous energy restriction (CER: 62.5 En%), or an energy balanced, control diet (CON: 100 En%). Deuterated water (D2O) methodology with saliva, blood, and skeletal muscle sampling were used to assess integrated rates of MPS over the ten-day intervention period. Secondary measures included fasting plasma glucose, insulin, and gastrointestinal hormone concentrations, continuous glucose monitoring, and assessment of body composition. RESULTS There were no differences in daily rates of MPS between groups (ADF: 1.18 ± 0.13, CER: 1.13 ± 0.16, and CON: 1.18 ± 0.18 %/day, P > 0.05). The reductions in body mass were greater in ADF and CER compared to CON (P < 0.001). Lean and fat mass were decreased by a similar magnitude across groups (main time effect, P < 0.001; main group effect, P > 0.05). Fasting plasma leptin concentrations decreased in ADF and CER (P < 0.001), with no differences in fasting plasma glucose or insulin concentrations between groups. CONCLUSION Short-term alternate day fasting does not lower rates of MPS compared to continuous energy restriction or an energy balanced, control diet with matched protein intake. The prolonged effects of IF and periods of irregular energy and protein intake patterns on muscle mass maintenance remain to be investigated. This trial was registered under Australian New Zealand Clinical Trial Registry (https://www.anzctr.org.au), identifier no. ACTRN12619000757112.
Collapse
Affiliation(s)
- Imre W K Kouw
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia.
| | - Evelyn B Parr
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Michael J Wheeler
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Bridget E Radford
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Rebecca C Hall
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Joan M Senden
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Joy P B Goessens
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Luc J C van Loon
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia; Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - John A Hawley
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia; Department of Sport and Exercise Sciences, Manchester Metropolitan University Institute of Sport, Manchester, United Kingdom
| |
Collapse
|
4
|
Tinsley GM, Heymsfield SB. Fundamental Body Composition Principles Provide Context for Fat-Free and Skeletal Muscle Loss With GLP-1 RA Treatments. J Endocr Soc 2024; 8:bvae164. [PMID: 39372917 PMCID: PMC11450469 DOI: 10.1210/jendso/bvae164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Indexed: 10/08/2024] Open
Abstract
During weight loss, reductions in body mass are commonly described using molecular body components (eg, fat mass and fat-free mass [FFM]) or tissues and organs (eg, adipose tissue and skeletal muscle). While often conflated, distinctions between body components established by different levels of the 5-level model of body composition-which partitions body mass according to the atomic, molecular, cellular, tissue/organ, or whole-body level-are essential to recall when interpreting the composition of weight loss. A contemporary area of clinical and research interest that demonstrates the importance of these concepts is the discussion surrounding body composition changes with glucagon-like peptide-1 receptor agonists (GLP-1RA), particularly in regard to changes in FFM and skeletal muscle mass. The present article emphasizes the importance of fundamental principles when interpreting body composition changes experienced during weight loss, with a particular focus on GLP-1RA drug trials. The potential for obligatory loss of FFM due to reductions in adipose tissue mass and distribution of FFM loss from distinct body tissues are also discussed. Finally, selected countermeasures to combat loss of FFM and skeletal muscle, namely resistance exercise training and increased protein intake, are presented. Collectively, these considerations may allow for enhanced clarity when conceptualizing, discussing, and seeking to influence body composition changes experienced during weight loss.
Collapse
Affiliation(s)
- Grant M Tinsley
- Energy Balance & Body Composition Laboratory, Department of Kinesiology & Sport Management, Texas Tech University, Lubbock, TX 79409, USA
| | - Steven B Heymsfield
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| |
Collapse
|
5
|
VAN Vossel K, Hardeel J, VAN DER Stede T, Cools T, Vandecauter J, Vanhaecke L, Boone J, Blemker SS, Lievens E, Derave W. Evidence for Simultaneous Muscle Atrophy and Hypertrophy in Response to Resistance Training in Humans. Med Sci Sports Exerc 2024; 56:1634-1643. [PMID: 38687626 DOI: 10.1249/mss.0000000000003475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
PURPOSE Human skeletal muscle has the profound ability to hypertrophy in response to resistance training (RT). However, this has a high energy and protein cost and is presumably mainly restricted to recruited muscles. It remains largely unknown what happens with nonrecruited muscles during RT. This study investigated the volume changes of 17 recruited and 13 nonrecruited muscles during a 10-wk single-joint RT program targeting upper arm and upper leg musculature. METHODS Muscle volume changes were measured by manual or automatic 3D segmentation in 21 RT novices. Subjects ate ad libitum during the study and energy and protein intake were assessed by self-reported diaries. RESULTS Posttraining, all recruited muscles increased in volume (range: +2.2% to +17.7%, P < 0.05), whereas the nonrecruited adductor magnus (mean: -1.5% ± 3.1%, P = 0.038) and soleus (-2.4% ± 2.3%, P = 0.0004) decreased in volume. Net muscle growth ( r = 0.453, P = 0.045) and changes in adductor magnus volume ( r = 0.450, P = 0.047) were positively associated with protein intake. Changes in total nonrecruited muscle volume ( r = 0.469, P = 0.037), adductor magnus ( r = 0.640, P = 0.002), adductor longus ( r = 0.465, P = 0.039), and soleus muscle volume ( r = 0.481, P = 0.032) were positively related to energy intake. When subjects were divided into a HIGH or LOW energy intake group, overall nonrecruited muscle volume (-1.7% ± 2.0%), adductor longus (-5.6% ± 3.7%), adductor magnus (-2.8% ± 2.4%), and soleus volume (-3.7% ± 1.8%) decreased significantly ( P < 0.05) in the LOW but not the HIGH group. CONCLUSIONS To our knowledge, this is the first study documenting that some nonrecruited muscles significantly atrophy during a period of RT. Our data therefore suggest muscle mass reallocation, that is, that hypertrophy in recruited muscles takes place at the expense of atrophy in nonrecruited muscles, especially when energy and protein availability are limited.
Collapse
Affiliation(s)
- Kim VAN Vossel
- Department of Movement and Sports Sciences, Ghent University, Ghent, BELGIUM
| | - Julie Hardeel
- Department of Movement and Sports Sciences, Ghent University, Ghent, BELGIUM
| | | | - Tom Cools
- Laboratory of Integrative Metabolomics, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, BELGIUM
| | - Jonas Vandecauter
- Department of Movement and Sports Sciences, Ghent University, Ghent, BELGIUM
| | | | - Jan Boone
- Department of Movement and Sports Sciences, Ghent University, Ghent, BELGIUM
| | | | - Eline Lievens
- Department of Movement and Sports Sciences, Ghent University, Ghent, BELGIUM
| | - Wim Derave
- Department of Movement and Sports Sciences, Ghent University, Ghent, BELGIUM
| |
Collapse
|
6
|
Suzuki D, Suzuki Y. Identifying and Analyzing Low Energy Availability in Athletes: The Role of Biomarkers and Red Blood Cell Turnover. Nutrients 2024; 16:2273. [PMID: 39064716 PMCID: PMC11279570 DOI: 10.3390/nu16142273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/28/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Low energy availability (LEA) is a growing concern that can lead to several problems for athletes. However, adaptation to LEA occurs to maintain balance over time, making diagnosis difficult. In this review, we categorize LEA into two phases: the initial phase leading to adaptation and the phase in which adaptation is achieved and maintained. We review the influence of LEA on sports performance and health and discuss biomarkers for diagnosing LEA in each phase. This review also proposes future research topics for diagnosing LEA, with an emphasis on the recently discovered association between red blood cell turnover and LEA.
Collapse
Affiliation(s)
- Daisuke Suzuki
- Department of Biological Production Science, United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu 183-8509, Tokyo, Japan;
| | - Yoshio Suzuki
- Graduate School of Health and Sports Science, Juntendo University, Inzai 276-1695, Chiba, Japan
| |
Collapse
|
7
|
Kurose S, Onishi K, Miyauchi T, Takahashi K, Kimura Y. Effects of weight loss rate on myostatin and follistatin dynamics in patients with obesity. Front Endocrinol (Lausanne) 2024; 15:1418177. [PMID: 39006362 PMCID: PMC11239380 DOI: 10.3389/fendo.2024.1418177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/10/2024] [Indexed: 07/16/2024] Open
Abstract
Background Exercise-induced cytokines involved in controlling body composition include myostatin (MST) and follistatin (FST), both of which are influenced by physical activity. This study investigated changes in body composition and physical activity during a weight loss program, as well as the impact on serum MST and FST levels at various weight loss rates. Methods A total of 126 patients with obesity who completed a 6-month weight loss program were divided into three groups based on weight loss rate (%): low (< 3%), middle (3-10%), and high (≥10%). The International Physical Activity Questionnaire was used for assessing physical activity, whereas dual X-ray absorptiometry was used to determine body composition. Serum MST and FST levels were measured using the enzyme-linked immunosorbent assay. Results The middle and high groups showed a significant decrease in percent body fat and a significant increase in percent lean body mass and physical activity. Serum MST levels increased significantly in all three groups, although FST levels reduced significantly only in the middle group. After adjusting for sex and body composition, changes in peak oxygen intake (β = -0.359) and serum FST levels (β = -0.461) were identified as independent factors for the change in MST levels in the low group. Sex (β = -0.420) and changes in MST levels (β = -0.525) were identified as independent factors for the change in serum FST levels in the low group, whereas in the high group, sitting time (β = -0.600) during the weight loss program was identified as an independent factor for change in serum FST levels. Conclusion Serum MST levels in patients with obesity increased significantly following the weight loss program, independent of weight loss rate. In contrast, serum FST levels reduced significantly only in the 3-10% weight loss group. These findings indicate that MST and FST secretion dynamics may fluctuate in response to physical activity, while also reflecting feedback regulation of body composition and metabolism during weight reduction.
Collapse
Affiliation(s)
- Satoshi Kurose
- Health Science Center, Kansai Medical University, Hirakata, Osaka, Japan
| | - Katsuko Onishi
- Health Science Center, Kansai Medical University, Hirakata, Osaka, Japan
| | - Takumi Miyauchi
- Health Science Center, Kansai Medical University, Hirakata, Osaka, Japan
| | - Kazuhisa Takahashi
- Department of Medicine II, Kansai Medical University, Hirakata, Osaka, Japan
| | - Yutaka Kimura
- Health Science Center, Kansai Medical University, Hirakata, Osaka, Japan
| |
Collapse
|
8
|
de Moraes AM, Vidal-Espinoza R, Bergamo RR, Gómez-Campos R, de Lazari E, de Campos LFCC, Sulla-Torres J, Cossio-Bolaños M. Prediction of fat-free mass from body surface area in young basketball players. BMC Sports Sci Med Rehabil 2024; 16:65. [PMID: 38449019 PMCID: PMC10916216 DOI: 10.1186/s13102-024-00857-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/25/2024] [Indexed: 03/08/2024]
Abstract
BACKGROUND Fat Free Mass (FFM) is an important and essential indicator in various sports populations, since greater muscle and bone mass generates greater strength, endurance and speed in athletes. OBJECTIVE The purpose of the study was to validate Body Surface Area (BSA) as an anthropometric indicator to estimate FFM in young basketball players. METHODS A descriptive cross-sectional study was carried out in 105 male basketball players of the Brazilian Basketball Confederation of Sao Paulo (Campinas), Brazil. The age range was 11 to 15 years. Weight and height were evaluated. BSA, body mass index (BMI) and maturity status (MS) were calculated. Total body scanning was performed by dual X-ray absorptiometry (DXA). The components were extracted: Fat mass (FM), Fat free mass (FFM), percentage of fat mass (%FM) and bone mass (BM). The data were analyzed using the correlation coefficient of concordance (CCC) in terms of precision and accuracy. RESULTS Three regression equations were generated: equation 1 had age and body weight as predictors [FFM= -30.059+(2.926*age)+(0.625*Weight)] (R2 = 92%, precision = 0.96 and accuracy = 0.99), equation 2 used age and BSA [FFM=-45.719+(1.934*age)+(39.388*BSA)] (R2 = 94%, precision = 0.97 and accuracy = 0.99) and equation 3 was based on APHV and BSA [FFM=-15.284+(1.765*APHV)+(37.610*(BSA)] (R2 = 94%, precision = 0.96 and accuracy = 0.99). CONCLUSIONS The results suggest the use of anthropometric equation using decimal age and BSA to estimate FFM in young basketball players. This new method developed can be used to design, evaluate and control training programs and monitor the weight status of athletes.
Collapse
Affiliation(s)
- Anderson Marques de Moraes
- Department of Physical Education, School of Sports, Pontifical Catholic University of Campinas, Campinas, Brasil
| | | | - Raiany Rosa Bergamo
- Laboratory of Growth and Development (LabCred), Pediatrics Research Center (CIPED), Sao Paulo, Brazil
- Faculty of Medical Sciences (FCM), State University of Campinas (Unicamp), Campinas, Sao Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
9
|
Lee MJ, Caruana NJ, Saner NJ, Kuang J, Stokes T, McLeod JC, Oikawa SY, Bishop DJ, Bartlett JD, Phillips SM. Resistance-only and concurrent exercise induce similar myofibrillar protein synthesis rates and associated molecular responses in moderately active men before and after training. FASEB J 2024; 38:e23392. [PMID: 38153675 DOI: 10.1096/fj.202302024r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 12/29/2023]
Abstract
Aerobic and resistance exercise (RE) induce distinct molecular responses. One hypothesis is that these responses are antagonistic and unfavorable for the anabolic response to RE when concurrent exercise is performed. This thesis may also depend on the participants' training status and concurrent exercise order. We measured free-living myofibrillar protein synthesis (MyoPS) rates and associated molecular responses to resistance-only and concurrent exercise (with different exercise orders), before and after training. Moderately active men completed one of three exercise interventions (matched for age, baseline strength, body composition, and aerobic capacity): resistance-only exercise (RE, n = 8), RE plus high-intensity interval exercise (RE+HIIE, n = 8), or HIIE+RE (n = 9). Participants trained 3 days/week for 10 weeks; concurrent sessions were separated by 3 h. On the first day of Weeks 1 and 10, muscle was sampled immediately before and after, and 3 h after each exercise mode and analyzed for molecular markers of MyoPS and muscle glycogen. Additional muscle, sampled pre- and post-training, was used to determine MyoPS using orally administered deuterium oxide (D2 O). In both weeks, MyoPS rates were comparable between groups. Post-exercise changes in proteins reflective of protein synthesis were also similar between groups, though MuRF1 and MAFbx mRNA exhibited some exercise order-dependent responses. In Week 10, exercise-induced changes in MyoPS and some genes (PGC-1ɑ and MuRF1) were dampened from Week 1. Concurrent exercise (in either order) did not compromise the anabolic response to resistance-only exercise, before or after training. MyoPS rates and some molecular responses to exercise are diminished after training.
Collapse
Affiliation(s)
- Matthew J Lee
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Nikeisha J Caruana
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
- Department of Biochemistry and Pharmacology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Nicholas J Saner
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Jujiao Kuang
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Tanner Stokes
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Jonathan C McLeod
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Sara Y Oikawa
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - David J Bishop
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Jonathan D Bartlett
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Stuart M Phillips
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
10
|
Larsen MS, Witard OC, Holm L, Scaife P, Hansen R, Smith K, Tipton KD, Mose M, Bengtsen MB, Lauritsen KM, Mikkelsen UR, Hansen M. Dose-Response of Myofibrillar Protein Synthesis To Ingested Whey Protein During Energy Restriction in Overweight Postmenopausal Women: A Randomized, Controlled Trial. J Nutr 2023; 153:3173-3184. [PMID: 37598750 DOI: 10.1016/j.tjnut.2023.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/30/2023] [Accepted: 08/10/2023] [Indexed: 08/22/2023] Open
Abstract
BACKGROUND Diet-induced weight loss is associated with a decline in lean body mass, as mediated by an impaired response of muscle protein synthesis (MPS). The dose-response of MPS to ingested protein, with or without resistance exercise, is well characterized during energy balance but limited data exist under conditions of energy restriction in clinical populations. OBJECTIVE To determine the dose-response of MPS to ingested whey protein following short-term diet-induced energy restriction in overweight, postmenopausal, women at rest and postexercise. DESIGN Forty middle-aged (58.6±0.4 y), overweight (BMI: 28.6±0.4), postmenopausal women were randomly assigned to 1 of 4 groups: Three groups underwent 5 d of energy restriction (∼800 kcal/d). On day 6, participants performed a unilateral leg resistance exercise bout before ingesting either a bolus of 15g (ERW15, n = 10), 35g (ERW35, n = 10) or 60g (ERW60, n = 10) of whey protein. The fourth group (n = 10) ingested a 35g whey protein bolus after 5 d of an energy balanced diet (EBW35, n = 10). Myofibrillar fractional synthetic rate (FSR) was calculated under basal, fed (FED) and postexercise (FED-EX) conditions by combining an L-[ring-13C6] phenylalanine tracer infusion with the collection of bilateral muscle biopsies. RESULTS Myofibrillar FSR was greater in ERW35 (0.043±0.003%/h, P = 0.013) and ERW60 (0.042±0.003%/h, P = 0.026) than ERW15 (0.032 ± 0.003%/h), with no differences between ERW35 and ERW60 (P = 1.000). Myofibrillar FSR was greater in FED (0.044 ± 0.003%/h, P < 0.001) and FED-EX (0.048 ± 0.003%/h, P < 0.001) than BASAL (0.027 ± 0.003%/h), but no differences were detected between FED and FED-EX (P = 0.732) conditions. No differences in myofibrillar FSR were observed between EBW35 (0.042 ± 0.003%/h) and ERW35 (0.043 ± 0.003%/h, P = 0.744). CONCLUSION A 35 g dose of whey protein, ingested with or without resistance exercise, is sufficient to stimulate a maximal acute response of MPS following short-term energy restriction in overweight, postmenopausal women, and thus may provide a per serving protein recommendation to mitigate muscle loss during a weight loss program. TRIAL REGISTRY clinicaltrials.gov (ID: NCT03326284).
Collapse
Affiliation(s)
- Mads S Larsen
- Department of Public Health, Aarhus University, Denmark; Arla Foods Ingredients Group P/S, Denmark
| | - Oliver C Witard
- Centre for Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Lars Holm
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, UK
| | - Paula Scaife
- Metabolic Physiology, Medical Research Council and Arthritis Research United Kingdom Centre for Excellence in Musculoskeletal Ageing, School of Graduate Entry Medicine and Health, University of Nottingham, Derby, UK
| | | | - Kenneth Smith
- Metabolic Physiology, Medical Research Council and Arthritis Research United Kingdom Centre for Excellence in Musculoskeletal Ageing, School of Graduate Entry Medicine and Health, University of Nottingham, Derby, UK
| | - Kevin D Tipton
- Department of Sport and Exercise Sciences, Durham University, UK
| | - Maike Mose
- Medical Research Laboratory, Institute for Clinical Medicine, Aarhus University, Denmark
| | - Mads B Bengtsen
- Medical Research Laboratory, Institute for Clinical Medicine, Aarhus University, Denmark
| | - Katrine M Lauritsen
- Medical Research Laboratory, Institute for Clinical Medicine, Aarhus University, Denmark
| | | | - Mette Hansen
- Department of Public Health, Aarhus University, Denmark.
| |
Collapse
|
11
|
Janssen TAH, Van Every DW, Phillips SM. The impact and utility of very low-calorie diets: the role of exercise and protein in preserving skeletal muscle mass. Curr Opin Clin Nutr Metab Care 2023; 26:521-527. [PMID: 37724991 PMCID: PMC10552824 DOI: 10.1097/mco.0000000000000980] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
PURPOSE OF REVIEW Very low-calorie diets (VLCD) are used as a weight loss intervention, but concerns have been raised about their potential negative impact on lean mass. Here, we review the available evidence regarding the effects of VLCD on lean mass and explore their utility and strategies to mitigate reductions in skeletal muscle. RECENT FINDINGS We observed that VLCD, despite their effects on lean mass, may be suitable in certain populations but have a risk in reducing lean mass. The extent of the reduction in lean mass may depend on various factors, such as the duration and degree of energy deficit of the diet, as well as the individual's starting weight and overall health. SUMMARY VLCD may be a viable option in certain populations; however, priority needs to be given to resistance exercise training, and secondarily to adequate protein intake should be part of this dietary regime to mitigate losing muscle mass.
Collapse
|
12
|
Areta JL. Physical performance during energy deficiency in humans: An evolutionary perspective. Comp Biochem Physiol A Mol Integr Physiol 2023; 284:111473. [PMID: 37406958 DOI: 10.1016/j.cbpa.2023.111473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/07/2023]
Abstract
Energy deficiency profoundly disrupts normal endocrinology, metabolism, and physiology, resulting in an orchestrated response for energy preservation. As such, despite energy deficit is typically thought as positive for weight-loss and treatment of cardiometabolic diseases during the current obesity pandemic, in the context of contemporary sports and exercise nutrition, chronic energy deficiency is associated to negative health and athletic performance consequences. However, the evidence of energy deficit negatively affecting physical capacity and sports performance is unclear. While severe energy deficiency can negatively affect physical capacity, humans can also improve aerobic fitness and strength while facing significant energy deficit. Many athletes, also, compete at an elite and world-class level despite showing clear signs of energy deficiency. Maintenance of high physical capacity despite the suppression of energetically demanding physiological traits seems paradoxical when an evolutionary viewpoint is not considered. Humans have evolved facing intermittent periods of food scarcity in their natural habitat and are able to thrive in it. In the current perspective it is argued that when facing limited energy availability, maintenance of locomotion and physical capacity are of high priority given that they are essential for food procurement for survival in the habitat where humans evolved. When energetic resources are limited, energy may be allocated to tasks essential for survival (e.g. locomotion) while minimising energy allocation to traits that are not (e.g. growth and reproduction). The current perspective provides a model of energy allocation during energy scarcity supported by observation of physiological and metabolic responses that are congruent with this paradigm.
Collapse
Affiliation(s)
- José L Areta
- Research Institute for Sport and Exercise Sciences, School of Sport and Exercise Sciences, Liverpool John Moores University, UK.
| |
Collapse
|
13
|
Halsey LG, Areta JL, Koehler K. Does eating less or exercising more to reduce energy availability produce distinct metabolic responses? Philos Trans R Soc Lond B Biol Sci 2023; 378:20220217. [PMID: 37482781 PMCID: PMC10363695 DOI: 10.1098/rstb.2022.0217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/04/2023] [Indexed: 07/25/2023] Open
Abstract
When less energy is available to consume, people often lose weight, which reduces their overall metabolic rate. Their cellular metabolic rate may also decrease (metabolic adaptation), possibly reflected in physiological and/or endocrinological changes. Reduced energy availability can result from calorie restriction or increased activity energy expenditure, raising the following question that our review explores: do the body's metabolic and physiological responses to this reduction differ or not depending on whether they are induced by dietary restriction or increased activity? First, human studies offer indirect, contentious evidence that the body metabolically adapts to reduced energy availability, both in response to either a calorie intake deficit or increased activity (exercise; without a concomitant increase in food intake). Considering individual aspects of the body's physiology as constituents of whole-body metabolic rate, similar responses to reduced energy availability are observed in terms of reproductive capacity, somatic maintenance and hormone levels. By contrast, tissue phenotypic responses differ, most evidently for skeletal tissue, which is preserved in response to exercise but not calorie restriction. Thus, while in many ways 'a calorie deficit is a calorie deficit', certain tissues respond differently depending on the energy deficit intervention. This article is part of a discussion meeting issue 'Causes of obesity: theories, conjectures and evidence (Part I)'.
Collapse
Affiliation(s)
| | - José L. Areta
- Liverpool John Moores University, Liverpool, L3 3AF, UK
| | | |
Collapse
|
14
|
Nederveen JP, Mastrolonardo AJ, Xhuti D, Di Carlo A, Manta K, Fuda MR, Tarnopolsky MA. Novel Multi-Ingredient Supplement Facilitates Weight Loss and Improves Body Composition in Overweight and Obese Individuals: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Nutrients 2023; 15:3693. [PMID: 37686725 PMCID: PMC10490028 DOI: 10.3390/nu15173693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Despite the growing recognition of the obesity crisis, its rates continue to rise. The current first-line therapies, such as dietary changes, energy restriction, and physical activity, are typically met with poor adherence. Novel nutritional interventions can address the root causes of obesity, including mitochondrial dysfunction, and facilitate weight loss. OBJECTIVE The objective of this study was to investigate the effects of a multi-ingredient nutritional supplement designed to facilitate mitochondrial function and metabolic health outcomes over a 12 wk period. METHODS Fifty-five overweight and/or obese participants (age (mean ± SEM): 26 ± 1; body mass index (BMI) (kg/m2): 30.5 ± 0.6) completed this double-blind, placebo-controlled clinical trial. Participants were randomized to 12 wks of daily consumption of multi-ingredient supplement (MIS; n = 28; containing 50 mg forskolin, 500 mg green coffee bean extract, 500 mg green tea extract, 500 mg beet root extract, 400 mg α-lipoic acid, 200 IU vitamin E, and 200 mg CoQ10) or control placebo (PLA, n = 27; containing microcrystalline cellulose) matched in appearance. The co-primary outcomes were bodyweight and fat mass (kg) changes. The secondary outcomes included other body composition measures, plasma markers of obesity, fatty liver disease biomarkers, resting energy metabolism, blood pressure, physical performance, and quality of life. The post-intervention differences between MIS and PLA were examined via ANCOVA which was adjusted for the respective pre-intervention variables. RESULTS After adjustment for pre-intervention data, there was a significant difference in weight (p < 0.001) and fat mass (p < 0.001) post-intervention between the PLA and MIS treatment arms. Post-intervention weight and fat mass were significantly lower in MIS. Significant post-intervention differences corrected for baseline were found in markers of clinical biochemistry (AST, p = 0.017; ALT, p = 0.008), molecular metabolism (GDF15, p = 0.028), and extracellular vesicle-associated miRNA species miR-122 and miR-34a in MIS (p < 0.05). CONCLUSIONS Following the 12 wks of MIS supplementation, weight and body composition significantly improved, concomitant with improvements in molecular markers of liver health and metabolism.
Collapse
Affiliation(s)
- Joshua P. Nederveen
- Department of Pediatrics, Faculty of Health Sciences, McMaster University Medical Center (MUMC), Hamilton, ON L8N 3Z5, Canada; (J.P.N.)
| | - Alexander J. Mastrolonardo
- Department of Pediatrics, Faculty of Health Sciences, McMaster University Medical Center (MUMC), Hamilton, ON L8N 3Z5, Canada; (J.P.N.)
| | - Donald Xhuti
- Department of Pediatrics, Faculty of Health Sciences, McMaster University Medical Center (MUMC), Hamilton, ON L8N 3Z5, Canada; (J.P.N.)
| | - Alessia Di Carlo
- Department of Pediatrics, Faculty of Health Sciences, McMaster University Medical Center (MUMC), Hamilton, ON L8N 3Z5, Canada; (J.P.N.)
| | - Katherine Manta
- Department of Pediatrics, Faculty of Health Sciences, McMaster University Medical Center (MUMC), Hamilton, ON L8N 3Z5, Canada; (J.P.N.)
| | - Matthew R. Fuda
- Department of Pediatrics, Faculty of Health Sciences, McMaster University Medical Center (MUMC), Hamilton, ON L8N 3Z5, Canada; (J.P.N.)
| | - Mark A. Tarnopolsky
- Department of Pediatrics, Faculty of Health Sciences, McMaster University Medical Center (MUMC), Hamilton, ON L8N 3Z5, Canada; (J.P.N.)
- Exerkine Corporation, McMaster University Medical Center (MUMC), Hamilton, ON L8N 3Z5, Canada
| |
Collapse
|
15
|
Oxfeldt M, Phillips SM, Andersen OE, Johansen FT, Bangshaab M, Risikesan J, McKendry J, Melin AK, Hansen M. Low energy availability reduces myofibrillar and sarcoplasmic muscle protein synthesis in trained females. J Physiol 2023; 601:3481-3497. [PMID: 37329147 DOI: 10.1113/jp284967] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/14/2023] [Indexed: 06/18/2023] Open
Abstract
Low energy availability (LEA) describes a state where the energy intake is insufficient to cover the energy costs of both exercise energy expenditure and basal physiological body functions. LEA has been associated with various physiological consequences, such as reproductive dysfunction. However, the effect of LEA on skeletal muscle protein synthesis in females performing exercise training is still poorly understood. We conducted a randomized controlled trial to investigate the impact of LEA on daily integrated myofibrillar and sarcoplasmic muscle protein synthesis in trained females. Thirty eumenorrheic females were matched based on training history and randomized to undergo 10 days of LEA (25 kcal · kg fat-free mass (FFM)-1 · day-1 ) or optimal energy availability (OEA, 50 kcal · kg FFM-1 · day-1 ). Before the intervention, both groups underwent a 5-day 'run-in' period with OEA. All foods were provided throughout the experimental period with a protein content of 2.2 g kg lean mass-1 · day-1 . A standardized, supervised combined resistance and cardiovascular exercise training programme was performed over the experimental period. Daily integrated muscle protein synthesis was measured by deuterium oxide (D2 O) consumption along with changes in body composition, resting metabolic rate, blood biomarkers and 24 h nitrogen balance. We found that LEA reduced daily integrated myofibrillar and sarcoplasmic muscle protein synthesis compared with OEA. Concomitant reductions were observed in lean mass, urinary nitrogen balance, free androgen index, thyroid hormone concentrations and resting metabolic rate following LEA. These results highlight that LEA may negatively affect skeletal muscle adaptations in females performing exercise training. KEY POINTS: Low energy availability (LEA) with potential health and performance impairments is widespread among female athletes. We investigated the impact of 10 days of LEA on daily integrated myofibrillar and sarcoplasmic muscle protein synthesis in young, trained females. We show that LEA impairs myofibrillar and sarcoplasmic muscle protein synthesis in trained females performing exercise training. These findings suggest that LEA may have negative consequences for skeletal muscle adaptations and highlight the importance of ensuring adequate energy availability in female athletes.
Collapse
Affiliation(s)
- Mikkel Oxfeldt
- Department of Public Health, Aarhus University, Aarhus C, Denmark
| | - Stuart M Phillips
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Ole Emil Andersen
- Department of Public Health, Aarhus University, Aarhus C, Denmark
- Steno Diabetes Center Aarhus, Aarhus University, Aarhus, Denmark
| | | | - Maj Bangshaab
- Steno Diabetes Center Aarhus, Aarhus University, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus C, Denmark
| | - Jeyanthini Risikesan
- Department of Child and Adolescent Medicine, Regional Hospital Gødstrup, Gødstrup, Denmark
| | - James McKendry
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | | | - Mette Hansen
- Department of Public Health, Aarhus University, Aarhus C, Denmark
| |
Collapse
|
16
|
Monteyne AJ, Coelho MOC, Murton AJ, Abdelrahman DR, Blackwell JR, Koscien CP, Knapp KM, Fulford J, Finnigan TJA, Dirks ML, Stephens FB, Wall BT. Vegan and Omnivorous High Protein Diets Support Comparable Daily Myofibrillar Protein Synthesis Rates and Skeletal Muscle Hypertrophy in Young Adults. J Nutr 2023:S0022-3166(23)12680-0. [PMID: 36822394 DOI: 10.1016/j.tjnut.2023.02.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/30/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND It remains unclear whether non-animal-derived dietary protein sources (and therefore vegan diets) can support resistance training-induced skeletal muscle remodeling to the same extent as animal-derived protein sources. METHODS In Phase 1, 16 healthy young adults (m = 8, f = 8; age: 23 ± 1 y; BMI: 23 ± 1 kg/m2) completed a 3-d dietary intervention (high protein, 1.8 g·kg bm-1·d-1) where protein was derived from omnivorous (OMNI1; n = 8) or exclusively non-animal (VEG1; n = 8) sources, alongside daily unilateral leg resistance exercise. Resting and exercised daily myofibrillar protein synthesis (MyoPS) rates were assessed using deuterium oxide. In Phase 2, 22 healthy young adults (m = 11, f = 11; age: 24 ± 1 y; BMI: 23 ± 0 kg/m2) completed a 10 wk, high-volume (5 d/wk), progressive resistance exercise program while consuming an omnivorous (OMNI2; n = 12) or non-animal-derived (VEG2; n = 10) high-protein diet (∼2 g·kg bm-1·d-1). Muscle fiber cross-sectional area (CSA), whole-body lean mass (via DXA), thigh muscle volume (via MRI), muscle strength, and muscle function were determined pre, after 2 and 5 wk, and postintervention. OBJECTIVES To investigate whether a high-protein, mycoprotein-rich, non-animal-derived diet can support resistance training-induced skeletal muscle remodeling to the same extent as an isonitrogenous omnivorous diet. RESULTS Daily MyoPS rates were ∼12% higher in the exercised than in the rested leg (2.46 ± 0.27%·d-1 compared with 2.20 ± 0.33%·d-1 and 2.62 ± 0.56%·d-1 compared with 2.36 ± 0.53%·d-1 in OMNI1 and VEG1, respectively; P < 0.001) and not different between groups (P > 0.05). Resistance training increased lean mass in both groups by a similar magnitude (OMNI2 2.6 ± 1.1 kg, VEG2 3.1 ± 2.5 kg; P > 0.05). Likewise, training comparably increased thigh muscle volume (OMNI2 8.3 ± 3.6%, VEG2 8.3 ± 4.1%; P > 0.05), and muscle fiber CSA (OMNI2 33 ± 24%, VEG2 32 ± 48%; P > 0.05). Both groups increased strength (1 repetition maximum) of multiple muscle groups, to comparable degrees. CONCLUSIONS Omnivorous and vegan diets can support comparable rested and exercised daily MyoPS rates in healthy young adults consuming a high-protein diet. This translates to similar skeletal muscle adaptive responses during prolonged high-volume resistance training, irrespective of dietary protein provenance. This trial was registered at clinicaltrials.gov as NCT03572127.
Collapse
Affiliation(s)
- Alistair J Monteyne
- Department of Public Health and Sports Sciences, Nutritional Physiology Research Group, University of Exeter, Exeter, United Kingdom
| | - Mariana O C Coelho
- Department of Public Health and Sports Sciences, Nutritional Physiology Research Group, University of Exeter, Exeter, United Kingdom
| | - Andrew J Murton
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas, United States; Sealy Center of Aging, University of Texas Medical Branch, Galveston, Texas, United States
| | - Doaa R Abdelrahman
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas, United States; Sealy Center of Aging, University of Texas Medical Branch, Galveston, Texas, United States
| | - Jamie R Blackwell
- Department of Public Health and Sports Sciences, Nutritional Physiology Research Group, University of Exeter, Exeter, United Kingdom
| | - Christopher P Koscien
- Department of Public Health and Sports Sciences, Nutritional Physiology Research Group, University of Exeter, Exeter, United Kingdom
| | - Karen M Knapp
- College of Medicine and Health, University of Exeter, Exeter, United Kingdom
| | - Jonathan Fulford
- College of Medicine and Health, University of Exeter, Exeter, United Kingdom
| | | | - Marlou L Dirks
- Department of Public Health and Sports Sciences, Nutritional Physiology Research Group, University of Exeter, Exeter, United Kingdom
| | - Francis B Stephens
- Department of Public Health and Sports Sciences, Nutritional Physiology Research Group, University of Exeter, Exeter, United Kingdom
| | - Benjamin T Wall
- Department of Public Health and Sports Sciences, Nutritional Physiology Research Group, University of Exeter, Exeter, United Kingdom.
| |
Collapse
|
17
|
Brook MS, Stokes T, Gorissen SH, Bass JJ, McGlory C, Cegielski J, Wilkinson DJ, Phillips BE, Smith K, Phillips SM, Atherton PJ. Declines in muscle protein synthesis account for short-term muscle disuse atrophy in humans in the absence of increased muscle protein breakdown. J Cachexia Sarcopenia Muscle 2022; 13:2005-2016. [PMID: 35606155 PMCID: PMC9397550 DOI: 10.1002/jcsm.13005] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/30/2022] [Accepted: 04/04/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND We determined the short-term (i.e. 4 days) impacts of disuse atrophy in relation to muscle protein turnover [acute fasted-fed muscle protein synthesis (MPS)/muscle protein breakdown (MPB) and integrated MPS/estimated MPB]. METHODS Healthy men (N = 9, 22 ± 2 years, body mass index 24 ± 3 kg m-2 ) underwent 4 day unilateral leg immobilization. Vastus lateralis (VL) muscle thickness (MT) and extensor strength and thigh lean mass (TLM) were measured. Bilateral VL muscle biopsies were collected on Day 4 at t = -120, 0, 90, and 180 min to determine integrated MPS, estimated MPB, acute fasted-fed MPS (l-[ring-13 C6 ]-phe), and acute fasted tracer decay rate representative of MPB (l-[15 N]-phe and l-[2 H8 ]-phe). Protein turnover cell signalling was measured by immunoblotting. RESULTS Immobilization decreased TLM [pre: 7477 ± 1196 g, post: 7352 ± 1209 g (P < 0.01)], MT [pre: 2.67 ± 0.50 cm, post: 2.55 ± 0.51 cm (P < 0.05)], and strength [pre: 260 ± 43 N m, post: 229 ± 37 N m (P < 0.05)] with no change in control legs. Integrated MPS decreased in immob vs. control legs [control: 1.55 ± 0.21% day-1 , immob: 1.29 ± 0.17% day-1 (P < 0.01)], while tracer decay rate (i.e. MPB) (control: 0.02 ± 0.006, immob: 0.015 ± 0.015) and fractional breakdown rate (FBR) remained unchanged [control: 1.44 ± 0.51% day-1 , immob: 1.73 ± 0.35% day-1 (P = 0.21)]. Changes in MT correlated with those in MPS but not FBR. MPS increased in the control leg following feeding [fasted: 0.043 ± 0.012% h-1 , fed: 0.065 ± 0.017% h-1 (P < 0.05)] but not in immob [fasted: 0.034 ± 0.014% h-1 , fed: 0.049 ± 0.023% h-1 (P = 0.09)]. There were no changes in markers of MPB with immob (P > 0.05). CONCLUSIONS Human skeletal muscle disuse atrophy is driven by declines in MPS, not increases in MPB. Pro-anabolic therapies to mitigate disuse atrophy would likely be more effective than therapies aimed at attenuating protein degradation.
Collapse
Affiliation(s)
- Matthew S. Brook
- MRC‐Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRC, Centre Of Metabolism, Ageing and Physiology (COMAP), School of MedicineUniversity of NottinghamDerbyUK
- School of Life SciencesUniversity of NottinghamNottinghamUK
| | - Tanner Stokes
- Department of KinesiologyMcMaster UniversityHamiltonONCanada
| | | | - Joseph J. Bass
- MRC‐Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRC, Centre Of Metabolism, Ageing and Physiology (COMAP), School of MedicineUniversity of NottinghamDerbyUK
| | - Chris McGlory
- School of Kinesiology and Health StudiesQueen's UniversityKingstonONCanada
| | - Jessica Cegielski
- MRC‐Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRC, Centre Of Metabolism, Ageing and Physiology (COMAP), School of MedicineUniversity of NottinghamDerbyUK
| | - Daniel J. Wilkinson
- MRC‐Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRC, Centre Of Metabolism, Ageing and Physiology (COMAP), School of MedicineUniversity of NottinghamDerbyUK
| | - Bethan E. Phillips
- MRC‐Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRC, Centre Of Metabolism, Ageing and Physiology (COMAP), School of MedicineUniversity of NottinghamDerbyUK
| | - Ken Smith
- MRC‐Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRC, Centre Of Metabolism, Ageing and Physiology (COMAP), School of MedicineUniversity of NottinghamDerbyUK
| | | | - Philip J. Atherton
- MRC‐Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRC, Centre Of Metabolism, Ageing and Physiology (COMAP), School of MedicineUniversity of NottinghamDerbyUK
| |
Collapse
|
18
|
Howard EE, Shankaran M, Evans WJ, Berryman CE, Margolis LM, Lieberman HR, Karl JP, Young AJ, Montano MA, Matthews MD, Bizieff A, Nyangao E, Mohammed H, Harris MN, Hellerstein MK, Rood JC, Pasiakos SM. Effects of Testosterone on Mixed-Muscle Protein Synthesis and Proteome Dynamics During Energy Deficit. J Clin Endocrinol Metab 2022; 107:e3254-e3263. [PMID: 35532889 DOI: 10.1210/clinem/dgac295] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Indexed: 11/19/2022]
Abstract
CONTEXT Effects of testosterone on integrated muscle protein metabolism and muscle mass during energy deficit are undetermined. OBJECTIVE The objective was to determine the effects of testosterone on mixed-muscle protein synthesis (MPS), proteome-wide fractional synthesis rates (FSR), and skeletal muscle mass during energy deficit. DESIGN This was a randomized, double-blind, placebo-controlled trial. SETTING The study was conducted at Pennington Biomedical Research Center. PARTICIPANTS Fifty healthy men. INTERVENTION The study consisted of 14 days of weight maintenance, followed by a 28-day 55% energy deficit with 200 mg testosterone enanthate (TEST, n = 24) or placebo (PLA, n = 26) weekly, and up to 42 days of ad libitum recovery feeding. MAIN OUTCOME MEASURES Mixed-MPS and proteome-wide FSR before (Pre), during (Mid), and after (Post) the energy deficit were determined using heavy water (days 1-42) and muscle biopsies. Muscle mass was determined using the D3-creatine dilution method. RESULTS Mixed-MPS was lower than Pre at Mid and Post (P < 0.0005), with no difference between TEST and PLA. The proportion of individual proteins with numerically higher FSR in TEST than PLA was significant by 2-tailed binomial test at Post (52/67; P < 0.05), but not Mid (32/67; P > 0.05). Muscle mass was unchanged during energy deficit but was greater in TEST than PLA during recovery (P < 0.05). CONCLUSIONS The high proportion of individual proteins with greater FSR in TEST than PLA at Post suggests exogenous testosterone exerted a delayed but broad stimulatory effect on synthesis rates across the muscle proteome during energy deficit, resulting in muscle mass accretion during subsequent recovery.
Collapse
Affiliation(s)
- Emily E Howard
- Military Nutrit ion Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA 01760, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830, USA
| | - Mahalakshmi Shankaran
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA 94720, USA
| | - Willian J Evans
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA 94720, USA
| | - Claire E Berryman
- Military Nutrit ion Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA 01760, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830, USA
- Department of Nutrition, Food, and Exercise Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Lee M Margolis
- Military Nutrit ion Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA 01760, USA
| | - Harris R Lieberman
- Military Nutrit ion Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA 01760, USA
| | - J Philip Karl
- Military Nutrit ion Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA 01760, USA
| | - Andrew J Young
- Military Nutrit ion Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA 01760, USA
| | - Monty A Montano
- MyoSyntax Corporation, Worcester, MA 01605, USA
- Harvard Medical School, Boston, MA 02115, USA
- Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Marcy D Matthews
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA 94720, USA
| | - Alec Bizieff
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA 94720, USA
| | - Edna Nyangao
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA 94720, USA
| | - Hussein Mohammed
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA 94720, USA
| | - Melissa N Harris
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Marc K Hellerstein
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA 94720, USA
| | - Jennifer C Rood
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Stefan M Pasiakos
- Military Performance Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA 01760, USA
| |
Collapse
|
19
|
Margolis LM, Hatch-McChesney A, Allen JT, DiBella MN, Carrigan CT, Murphy NE, Karl JP, Gwin JA, Hennigar SR, McClung JP, Pasiakos SM. Circulating and skeletal muscle microRNA profiles are more sensitive to sustained aerobic exercise than energy balance in males. J Physiol 2022; 600:3951-3963. [PMID: 35822542 DOI: 10.1113/jp283209] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/22/2022] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Circulating and skeletal muscle miRNA profiles are more sensitive to high levels of aerobic exercise-induced energy expenditures compared to energy status Changes in circulating miRNA in response to high levels of daily sustained aerobic exercise are not reflective of changes in skeletal muscle miRNA. ABSTRACT MicroRNA (miRNA) regulate molecular processes governing muscle metabolism. Physical activity and energy balance influence both muscle anabolism and metabolism, but whether circulating and skeletal muscle miRNA mediate those effects remains unknown. This study assessed the impact of sustained physical activity with participants in energy balance (BAL) or deficit (DEF) on circulating and skeletal muscle miRNA. Using a randomized cross-over design, 10 recreational active healthy males (mean ± SD; 22±5 yrs, 87±11 kg) completed 72 hours of high aerobic exercise-induced energy expenditures in BAL (689±852 kcal/d) or DEF (-2047±920 kcal/d). Blood and muscle samples were collected under rested/fasted conditions before (PRE) and immediately after 120-min load carriage exercise bout at the end (POST) of the 72 hours. Trials were separated by 7 days. Circulating and skeletal muscle miRNA were measured using microarray RT-qPCR. Independent of energy status, 36 circulating miRNA decreased (P<0.05), while 10 miRNA increased and 3 miRNA decreased in skeletal muscle (P<0.05) at POST compared to PRE. Of these, miR-122-5p, miR-221-3p, miR-222-3p, and miR-24-3p decreased in circulation and increased in skeletal muscle. Two circulating (miR-145-5p and miR-193a-5p) and 4 skeletal muscle (miR-21-5p, miR-372-3p, miR-34a-5p, and miR-9-5p) miRNA had time-by-treatment effects (P<0.05). These data suggest that changes in miRNA profiles are more sensitive to increased physical activity compared to energy status, and that changes in circulating miRNA in response to high levels of daily aerobic exercise are not reflective of changes in skeletal muscle miRNA. Graphical abstract legend In response to 72 hours of high aerobic exercise, circulating miRNA decreased and miRNA in skeletal muscle primarily increased. The changes in miRNA occurred independent of energy status (i.e., exercise-induced energy defcit or exercise plus increased energy intake to achieve energy balance), and circulating miRNA did not refect changes in skeletal muscle. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Lee M Margolis
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA
| | | | - Jillian T Allen
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA.,Oak Ridge Institute of Science and Technology, Belcamp, MD, USA
| | - Marissa N DiBella
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA.,Oak Ridge Institute of Science and Technology, Belcamp, MD, USA
| | - Christopher T Carrigan
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA
| | - Nancy E Murphy
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA
| | - J Philip Karl
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA
| | - Jess A Gwin
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA
| | - Stephen R Hennigar
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL, USA
| | - James P McClung
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA
| | - Stefan M Pasiakos
- Military Performance Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA
| |
Collapse
|
20
|
Barakat C, Escalante G, Stevenson SW, Bradshaw JT, Barsuhn A, Tinsley GM, Walters J. Can Bodybuilding Peak Week Manipulations Favorably Affect Muscle Size, Subcutaneous Thickness, and Related Body Composition Variables? A Case Study. Sports (Basel) 2022; 10:106. [PMID: 35878117 PMCID: PMC9321665 DOI: 10.3390/sports10070106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/17/2022] [Accepted: 06/26/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The purpose of this case study was to implement an evidence-based dietary approach to peaking for a bodybuilding competition and monitor its impact on body composition, muscle thickness (MT), intra-to-extra-cellular fluid shifts, subcutaneous thickness (ST), and hydration status. Secondarily, to document any adverse events of this peak week approach in a small, controlled setting. Methods Dietary practices were recorded, and laboratory testing was conducted throughout peak week, including competition morning. Assessments included: dual-energy X-ray absorptiometry (DEXA) for body composition, B-mode ultrasound for MT and ST, bioimpedance spectroscopy (BIS) for total body water (TBW)/intracellular water (ICW)/extracellular water (ECW), and raw BIS data (i.e., resistance, reactance, and phase angle), urine specific gravity (USG) for hydration status, and subjective fullness. Sequential dietary manipulations were made (i.e., CHO depletion/fat loading, CHO/water loading, and a refinement phase) with specific physiological goals. This was reflected in changes observed across all assessments throughout the peak week. RESULTS From the carbohydrate-depleted state (three days out) to competition day, we observed increases in lean body mass, MT, TBW (primarily ICW), and subjective fullness. Kendall's Tau B revealed a strong relationship between carbohydrate intake and ∑MT (τ = 0.733, p = 0.056). Additionally, novel ST data demonstrated a 10% reduction for the summation of all seven sites, with some drastic changes in specific regions (e.g., -43% for triceps ST) from three days out to competition day. CONCLUSIONS These data suggest that the prototypical goals of bodybuilders' peak week (i.e., increasing muscle fullness, decreasing subcutaneous thickness) to enhance their aesthetics/muscularity presented can be achieved with a drug-free protocol involving dietary manipulations.
Collapse
Affiliation(s)
- Christopher Barakat
- Health Sciences and Human Performance Department, The University of Tampa, Tampa, FL 33606, USA; (J.T.B.); (A.B.); (J.W.)
- Competitive Breed LLC., Lutz, FL 33558, USA
| | - Guillermo Escalante
- Department of Kinesiology, California State University, San Bernardino, CA 92407, USA;
| | | | - Joshua T. Bradshaw
- Health Sciences and Human Performance Department, The University of Tampa, Tampa, FL 33606, USA; (J.T.B.); (A.B.); (J.W.)
- Competitive Breed LLC., Lutz, FL 33558, USA
| | - Andrew Barsuhn
- Health Sciences and Human Performance Department, The University of Tampa, Tampa, FL 33606, USA; (J.T.B.); (A.B.); (J.W.)
| | - Grant M. Tinsley
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX 79409, USA;
| | - Joseph Walters
- Health Sciences and Human Performance Department, The University of Tampa, Tampa, FL 33606, USA; (J.T.B.); (A.B.); (J.W.)
| |
Collapse
|
21
|
Cegielski J, Brook MS, Phillips BE, Boereboom C, Gates A, Gladman JFR, Smith K, Wilkinson DJ, Atherton PJ. The Combined Oral Stable Isotope Assessment of Muscle (COSIAM) reveals D-3 creatine derived muscle mass as a standout cross-sectional biomarker of muscle physiology vitality in older age. GeroScience 2022; 44:2129-2138. [PMID: 35303223 DOI: 10.1007/s11357-022-00541-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/03/2022] [Indexed: 12/21/2022] Open
Abstract
Validated diagnostics of skeletal muscle vitality could benefit clinical and basic science in terms of mechanistic insights and in determining the efficacy of interventions, e.g. exercise/pharmaceuticals/nutrients. We recently developed a Combined Oral Assessment of Muscle (COSIAM) that can be used to simultaneously quantify whole-body muscle mass (WBMM), muscle protein synthesis (MPS) and muscle protein breakdown (MPB). Here, we aimed to establish, in a cross-sectional fashion, links between COSIAM parameters and established aspects of muscle function. We recruited 37 healthy older adults (male (M):female (F) (21/16); 72 ± 5 y)) into a 3-day trial. Subjects consumed D3-creatine (D3-Cr dilution to assess WBMM), D2O (MPS by incorporation of alanine) and D3-3-methylhistidine (D3-MH dilution to assess MPB). A biopsy at day 3 was used to determine MPS, and blood/urine samples were collected to determine D3-Cr/D3-MH dilution for WBMM and MPB. Physiological measures of muscle mass (e.g. DXA/ultrasound) and function (e.g. handgrip strength, maximum voluntary contraction (MVC), one-repetition maximum (1-RM)) were ascertained. A stepwise linear regression approach was used to address links between facets of COSIAM (MPS, MPB, WBMM) and muscle physiology. Despite expected differences in muscle mass, there were no significant differences in MPS or MPB between sexes. WBMM as measured using D3-Cr positively correlated with DXA-derived lean body mass (LBM) and appendicular LBM (ABLM). Stepwise linear regression was used to assess which combination of MPS, MPB, D3-Cr and absolute synthesis rate (ASR) best predicted physiological measures of muscle health in these older adults. D3-Cr WBMM alone was the best predictor of handgrip, 1RM and MVC, and outperformed more traditional measures of muscle mass by DXA. The COSIAM approach substantiates D3-Cr as a robust biomarker of multiple muscle physiology health biomarkers. Future work using COSIAM should focus upon how and which parameters it can inform upon in relation to disease progression and the efficacy of interventions.
Collapse
Affiliation(s)
- Jessica Cegielski
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRC, Clinical, Metabolic and Molecular Physiology, School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Uttoxeter Road, Derby, DE22 3DT, UK
| | - Matthew S Brook
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRC, Clinical, Metabolic and Molecular Physiology, School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Uttoxeter Road, Derby, DE22 3DT, UK
| | - Bethan E Phillips
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRC, Clinical, Metabolic and Molecular Physiology, School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Uttoxeter Road, Derby, DE22 3DT, UK
| | - Catherine Boereboom
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRC, Clinical, Metabolic and Molecular Physiology, School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Uttoxeter Road, Derby, DE22 3DT, UK
| | - Amanda Gates
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRC, Clinical, Metabolic and Molecular Physiology, School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Uttoxeter Road, Derby, DE22 3DT, UK
| | | | - Kenneth Smith
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRC, Clinical, Metabolic and Molecular Physiology, School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Uttoxeter Road, Derby, DE22 3DT, UK
| | - Daniel J Wilkinson
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRC, Clinical, Metabolic and Molecular Physiology, School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Uttoxeter Road, Derby, DE22 3DT, UK
| | - Philip J Atherton
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRC, Clinical, Metabolic and Molecular Physiology, School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Uttoxeter Road, Derby, DE22 3DT, UK. .,MRC/Versus Arthritis Centre for Musculoskeletal Ageing Research, Division of Medical Sciences and Graduate Entry Medicine, University of Nottingham, Royal Derby Hospital Centre, Uttoxeter Road, Derby, DE22 3DT, UK.
| |
Collapse
|
22
|
Shirley MK, Longman DP, Elliott-Sale KJ, Hackney AC, Sale C, Dolan E. A Life History Perspective on Athletes with Low Energy Availability. Sports Med 2022; 52:1223-1234. [PMID: 35113390 DOI: 10.1007/s40279-022-01643-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2022] [Indexed: 12/19/2022]
Abstract
The energy costs of athletic training can be substantial, and deficits arising from costs unmet by adequate energy intake, leading to a state of low energy availability, may adversely impact athlete health and performance. Life history theory is a branch of evolutionary theory that recognizes that the way the body uses energy-and responds to low energy availability-is an evolved trait. Energy is a finite resource that must be distributed throughout the body to simultaneously fuel all biological processes. When energy availability is low, insufficient energy may be available to equally support all processes. As energy used for one function cannot be used for others, energetic "trade-offs" will arise. Biological processes offering the greatest immediate survival value will be protected, even if this results in energy being diverted away from others, potentially leading to their downregulation. Athletes with low energy availability provide a useful model for anthropologists investigating the biological trade-offs that occur when energy is scarce, while the broader conceptual framework provided by life history theory may be useful to sport and exercise researchers who investigate the influence of low energy availability on athlete health and performance. The goals of this review are: (1) to describe the core tenets of life history theory; (2) consider trade-offs that might occur in athletes with low energy availability in the context of four broad biological areas: reproduction, somatic maintenance, growth, and immunity; and (3) use this evolutionary perspective to consider potential directions for future research.
Collapse
Affiliation(s)
- Meghan K Shirley
- Division of GI, Hepatology and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Daniel P Longman
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Kirsty J Elliott-Sale
- Musculoskeletal Physiology Research Group, Sport Health and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Anthony C Hackney
- Department of Exercise and Sport Science, Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Craig Sale
- Musculoskeletal Physiology Research Group, Sport Health and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Eimear Dolan
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.
| |
Collapse
|
23
|
Intermittent fasting and continuous energy restriction result in similar changes in body composition and muscle strength when combined with a 12 week resistance training program. Eur J Nutr 2022; 61:2183-2199. [PMID: 35084574 PMCID: PMC9106626 DOI: 10.1007/s00394-022-02804-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/06/2022] [Indexed: 12/17/2022]
Abstract
Purpose The objective of this study was to compare the effects of 12 weeks of resistance training combined with either 5:2 intermittent fasting or continuous energy restriction on body composition, muscle size and quality, and upper and lower body strength.
Methods Untrained individuals undertook 12 weeks of resistance training plus either continuous energy restriction [20% daily energy restriction (CERT)] or 5:2 intermittent fasting [~ 70% energy restriction 2 days/week, euenergetic consumption 5 days/week (IFT)], with both groups prescribed a mean of ≥ 1.4 g of protein per kilogram of body weight per day. Participants completed 2 supervised resistance and 1 unsupervised aerobic/resistance training combination session per week. Changes in lean body mass (LBM), thigh muscle size and quality, strength and dietary intake were assessed.
Results Thirty-four participants completed the study (CERT = 17, IFT = 17). LBM was significantly increased (+ 3.7%, p < 0.001) and body weight (− 4.6%, p < 0.001) and fat (− 24.1%, p < 0.001) were significantly reduced with no significant difference between groups, though results differed by sex. Both groups showed improvements in thigh muscle size and quality, and reduced intramuscular and subcutaneous fat assessed by ultrasonography and peripheral quantitative computed tomography (pQCT), respectively. The CERT group demonstrated a significant increase in muscle surface area assessed by pQCT compared to the IFT group. Similar gains in upper and lower body strength and muscular endurance were observed between groups.
Conclusion When combined with resistance training and moderate protein intake, continuous energy restriction and 5:2 intermittent fasting resulted in similar improvements in body composition, muscle quality, and strength. ACTRN: ACTRN12620000920998, September 2020, retrospectively registered.
Supplementary Information The online version contains supplementary material available at 10.1007/s00394-022-02804-3.
Collapse
|
24
|
Oliveira-Junior G, Pinto RS, Shirley MK, Longman DP, Koehler K, Saunders B, Roschel H, Dolan E. The Skeletal Muscle Response to Energy Deficiency: A Life History Perspective. ADAPTIVE HUMAN BEHAVIOR AND PHYSIOLOGY 2022. [DOI: 10.1007/s40750-021-00182-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
25
|
Puzziferri N, Friedman AN, Wolfe BM. Bariatric surgery and kidney disease. NUTRITIONAL MANAGEMENT OF RENAL DISEASE 2022:793-804. [DOI: 10.1016/b978-0-12-818540-7.00022-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
26
|
Cannataro R, Carbone L, Petro JL, Cione E, Vargas S, Angulo H, Forero DA, Odriozola-Martínez A, Kreider RB, Bonilla DA. Sarcopenia: Etiology, Nutritional Approaches, and miRNAs. Int J Mol Sci 2021; 22:9724. [PMID: 34575884 PMCID: PMC8466275 DOI: 10.3390/ijms22189724] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 02/06/2023] Open
Abstract
Sarcopenia, an age-related decline in skeletal muscle mass and function, dramatically affects the quality of life. Although there is a consensus that sarcopenia is a multifactorial syndrome, the etiology and underlying mechanisms are not yet delineated. Moreover, research about nutritional interventions to prevent the development of sarcopenia is mainly focused on the amount and quality of protein intake. The impact of several nutrition strategies that consider timing of food intake, anti-inflammatory nutrients, metabolic control, and the role of mitochondrial function on the progression of sarcopenia is not fully understood. This narrative review summarizes the metabolic background of this phenomenon and proposes an integral nutritional approach (including dietary supplements such as creatine monohydrate) to target potential molecular pathways that may affect reduce or ameliorate the adverse effects of sarcopenia. Lastly, miRNAs, in particular those produced by skeletal muscle (MyomiR), might represent a valid tool to evaluate sarcopenia progression as a potential rapid and early biomarker for diagnosis and characterization.
Collapse
Affiliation(s)
- Roberto Cannataro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
- Galascreen Laboratories, University of Calabria, 87036 Rende, Italy
- Research Division, Dynamical Business & Science Society, DBSS International SAS, Bogotá 110311, Colombia; (J.L.P.); (S.V.); (D.A.B.)
| | - Leandro Carbone
- Research Division, Dynamical Business & Science Society, DBSS International SAS, Bogotá 110311, Colombia; (J.L.P.); (S.V.); (D.A.B.)
- Faculty of Medicine, University of Salvador, Buenos Aires 1020, Argentina
| | - Jorge L. Petro
- Research Division, Dynamical Business & Science Society, DBSS International SAS, Bogotá 110311, Colombia; (J.L.P.); (S.V.); (D.A.B.)
- Research Group in Physical Activity, Sports and Health Sciences (GICAFS), Universidad de Córdoba, Montería 230002, Colombia
| | - Erika Cione
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
- Galascreen Laboratories, University of Calabria, 87036 Rende, Italy
| | - Salvador Vargas
- Research Division, Dynamical Business & Science Society, DBSS International SAS, Bogotá 110311, Colombia; (J.L.P.); (S.V.); (D.A.B.)
- Faculty of Sport Sciences, EADE-University of Wales Trinity Saint David, 29018 Málaga, Spain
| | - Heidy Angulo
- Grupo de Investigación Programa de Medicina (GINUMED), Corporación Universitaria Rafael Núñez, Cartagena 130001, Colombia;
| | - Diego A. Forero
- Health and Sport Sciences Research Group, School of Health and Sport Sciences, Fundación Universitaria del Área Andina, Bogotá 111221, Colombia;
| | - Adrián Odriozola-Martínez
- Sport Genomics Research Group, Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country UPV/EHU, 48940 Leioa, Spain;
- kDNA Genomics, Joxe Mari Korta Research Center, University of the Basque Country UPV/EHU, 20018 Donostia-San Sebastián, Spain
| | - Richard B. Kreider
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Texas A&M University, College Station, TX 77843, USA;
| | - Diego A. Bonilla
- Research Division, Dynamical Business & Science Society, DBSS International SAS, Bogotá 110311, Colombia; (J.L.P.); (S.V.); (D.A.B.)
- Research Group in Physical Activity, Sports and Health Sciences (GICAFS), Universidad de Córdoba, Montería 230002, Colombia
- kDNA Genomics, Joxe Mari Korta Research Center, University of the Basque Country UPV/EHU, 20018 Donostia-San Sebastián, Spain
- Research Group in Biochemistry and Molecular Biology, Universidad Distrital Francisco José de Caldas, Bogotá 110311, Colombia
| |
Collapse
|
27
|
Varanoske AN, Shankaran M, Hennigar SR, Berryman CE, Margolis LM, Field TJ, Palacios H, Nyangau E, Mohammed H, Kelly AM, Anderson BJ, Evans WJ, McClung JP, Hellerstein MK, Pasiakos SM. Energy Restriction Suppresses Muscle Protein Synthesis, and High Protein Diets Extend Protein Half-Lives Across the Muscle Proteome in Obese Female Zucker Rats. J Nutr 2021; 151:2551-2563. [PMID: 34132333 DOI: 10.1093/jn/nxab181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/11/2021] [Accepted: 05/14/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Effects of high protein (HP) diets and prolonged energy restriction (ER) on integrated muscle protein kinetics have not been determined. OBJECTIVE The objective of this study was to measure protein kinetics in response to prolonged ER and HP on muscle protein synthesis (MPS; absolute rates of synthesis) and muscle protein breakdown (MPB; half-lives) for proteins across the muscle proteome. METHODS Female 6-wk-old obese Zucker rats (Leprfa+/fa+, n = 48) were randomly assigned to one of four diets for 10 wk: ad libitum-standard protein (AL-SP; 15% kcal from protein), AL-HP (35% kcal from protein), ER-SP, and ER-HP (both fed 60% feed consumed by AL-SP). During week 10, heavy/deuterated water (2H2O) was administered by intraperitoneal injection, and isotopic steady-state was maintained via 2H2O in drinking water. Rats were euthanized after 1 wk, and mixed-MPS as well as fractional replacement rate (FRR), relative concentrations, and half-lives of individual muscle proteins were quantified in the gastrocnemius. Data were analyzed using 2-factor (energy × protein) ANOVAs and 2-tailed t-tests or binomial tests as appropriate. RESULTS Absolute MPS was lower in ER than AL for mixed-MPS (-29.6%; P < 0.001) and MPS of most proteins measured [23/26 myofibrillar, 48/60 cytoplasmic, and 46/60 mitochondrial (P < 0.05)], corresponding with lower gastrocnemius mass in ER compared with AL (-29.4%; P < 0.001). Although mixed-muscle protein half-life was not different between groups, prolonged half-lives were observed for most individual proteins in HP compared with SP in ER and AL (P < 0.001), corresponding with greater gastrocnemius mass in HP than SP (+5.3%; P = 0.043). CONCLUSIONS ER decreased absolute bulk MPS and most individual MPS rates compared with AL, and HP prolonged half-lives of most proteins across the proteome. These data suggest that HP, independent of energy intake, may reduce MPB, and reductions in MPS may contribute to lower gastrocnemius mass during ER by reducing protein deposition in obese female Zucker rats.
Collapse
Affiliation(s)
- Alyssa N Varanoske
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, Natick, MA, USA.,Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Mahalakshmi Shankaran
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA, USA
| | - Stephen R Hennigar
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, Natick, MA, USA.,Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA.,Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA
| | - Claire E Berryman
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, Natick, MA, USA.,Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA.,Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA
| | - Lee M Margolis
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, Natick, MA, USA
| | - Tyler J Field
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA, USA
| | - Hector Palacios
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA, USA
| | - Edna Nyangau
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA, USA
| | - Hussein Mohammed
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA, USA
| | - Alyssa M Kelly
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, Natick, MA, USA.,Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Bradley J Anderson
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, Natick, MA, USA.,Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - William J Evans
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA, USA
| | - James P McClung
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, Natick, MA, USA
| | - Marc K Hellerstein
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA, USA
| | - Stefan M Pasiakos
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, Natick, MA, USA
| |
Collapse
|
28
|
McKendry J, Stokes T, Mcleod JC, Phillips SM. Resistance Exercise, Aging, Disuse, and Muscle Protein Metabolism. Compr Physiol 2021; 11:2249-2278. [PMID: 34190341 DOI: 10.1002/cphy.c200029] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Skeletal muscle is the organ of locomotion, its optimal function is critical for athletic performance, and is also important for health due to its contribution to resting metabolic rate and as a site for glucose uptake and storage. Numerous endogenous and exogenous factors influence muscle mass. Much of what is currently known regarding muscle protein turnover is owed to the development and use of stable isotope tracers. Skeletal muscle mass is determined by the meal- and contraction-induced alterations of muscle protein synthesis and muscle protein breakdown. Increased loading as resistance training is the most potent nonpharmacological strategy by which skeletal muscle mass can be increased. Conversely, aging (sarcopenia) and muscle disuse lead to the development of anabolic resistance and contribute to the loss of skeletal muscle mass. Nascent omics-based technologies have significantly improved our understanding surrounding the regulation of skeletal muscle mass at the gene, transcript, and protein levels. Despite significant advances surrounding the mechanistic intricacies that underpin changes in skeletal muscle mass, these processes are complex, and more work is certainly needed. In this article, we provide an overview of the importance of skeletal muscle, describe the influence that resistance training, aging, and disuse exert on muscle protein turnover and the molecular regulatory processes that contribute to changes in muscle protein abundance. © 2021 American Physiological Society. Compr Physiol 11:2249-2278, 2021.
Collapse
Affiliation(s)
- James McKendry
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Tanner Stokes
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Jonathan C Mcleod
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Stuart M Phillips
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
29
|
Coleman JL, Carrigan CT, Margolis LM. Body composition changes in physically active individuals consuming ketogenic diets: a systematic review. J Int Soc Sports Nutr 2021; 18:41. [PMID: 34090453 PMCID: PMC8180141 DOI: 10.1186/s12970-021-00440-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/11/2021] [Indexed: 12/28/2022] Open
Abstract
Background To achieve ideal strength/power to mass ratio, athletes may attempt to lower body mass through reductions in fat mass (FM), while maintaining or increasing fat-free mass (FFM) by manipulating their training regimens and diets. Emerging evidence suggests that consumption of high-fat, ketogenic diets (KD) may be advantageous for reducing body mass and FM, while retaining FFM. Methods A systematic review of the literature was conducted using PubMed and Cochrane Library databases to compare the effects of KD versus control diets (CON) on body mass and composition in physically active populations. Randomized and non-randomized studies were included if participants were healthy (free of chronic disease), physically active men or women age ≥ 18 years consuming KD (< 50 g carbohydrate/d or serum or whole blood β-hydroxybutyrate (βhb) > 0.5 mmol/L) for ≥14 days. Results Thirteen studies (9 parallel and 4 crossover/longitudinal) that met the inclusion criteria were identified. Aggregated results from the 13 identified studies show body mass decreased 2.7 kg in KD and increased 0.3 kg in CON. FM decreased by 2.3 kg in KD and 0.3 kg in CON. FFM decreased by 0.3 kg in KD and increased 0.7 kg in CON. Estimated energy balance based on changes in body composition was − 339 kcal/d in KD and 5 kcal/d in CON. Risk of bias identified some concern of bias primarily due to studies which allowed participants to self-select diet intervention groups, as well as inability to blind participants to the study intervention, and/or longitudinal study design. Conclusion KD can promote mobilization of fat stores to reduce FM while retaining FFM. However, there is variance in results of FFM across studies and some risk-of-bias in the current literature that is discussed in this systematic review. Supplementary Information The online version contains supplementary material available at 10.1186/s12970-021-00440-6.
Collapse
Affiliation(s)
- Julie L Coleman
- U.S. Army Research Institute of Environmental Medicine, 10 General Greene Ave, Building 42, Natick, MA, 01760, USA.,Oak Ridge Institute of Science and Education, Belcamp, MD, USA
| | - Christopher T Carrigan
- U.S. Army Research Institute of Environmental Medicine, 10 General Greene Ave, Building 42, Natick, MA, 01760, USA
| | - Lee M Margolis
- U.S. Army Research Institute of Environmental Medicine, 10 General Greene Ave, Building 42, Natick, MA, 01760, USA.
| |
Collapse
|
30
|
Paulussen KJM, McKenna CF, Beals JW, Wilund KR, Salvador AF, Burd NA. Anabolic Resistance of Muscle Protein Turnover Comes in Various Shapes and Sizes. Front Nutr 2021; 8:615849. [PMID: 34026802 PMCID: PMC8131552 DOI: 10.3389/fnut.2021.615849] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 03/01/2021] [Indexed: 12/18/2022] Open
Abstract
Anabolic resistance is defined by a blunted stimulation of muscle protein synthesis rates (MPS) to common anabolic stimuli in skeletal muscle tissue such as dietary protein and exercise. Generally, MPS is the target of most exercise and feeding interventions as muscle protein breakdown rates seem to be less responsive to these stimuli. Ultimately, the blunted responsiveness of MPS to dietary protein and exercise underpins the loss of the amount and quality of skeletal muscle mass leading to decrements in physical performance in these populations. The increase of both habitual physical activity (including structured exercise that targets general fitness characteristics) and protein dense food ingestion are frontline strategies utilized to support muscle mass, performance, and health. In this paper, we discuss anabolic resistance as a common denominator underpinning muscle mass loss with aging, obesity, and other disease states. Namely, we discuss the fact that anabolic resistance exists as a dimmer switch, capable of varying from higher to lower levels of resistance, to the main anabolic stimuli of feeding and exercise depending on the population. Moreover, we review the evidence on whether increased physical activity and targeted exercise can be leveraged to restore the sensitivity of skeletal muscle tissue to dietary amino acids regardless of the population.
Collapse
Affiliation(s)
- Kevin J. M. Paulussen
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Colleen F. McKenna
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Joseph W. Beals
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO, United States
| | - Kenneth R. Wilund
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Amadeo F. Salvador
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Nicholas A. Burd
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
31
|
Understanding the effects of nutrition and post-exercise nutrition on skeletal muscle protein turnover: Insights from stable isotope studies. CLINICAL NUTRITION OPEN SCIENCE 2021. [DOI: 10.1016/j.nutos.2021.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
32
|
Martínez-Gómez MG, Roberts BM. Metabolic Adaptations to Weight Loss: A Brief Review. J Strength Cond Res 2021; 36:2970-2981. [PMID: 33677461 DOI: 10.1519/jsc.0000000000003991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
ABSTRACT Martínez-Gómez, MG and Roberts, BM. Metabolic adaptations to weight loss: A brief review. J Strength Cond Res XX(X): 000-000, 2021-As the scientific literature has continuously shown, body mass loss attempts do not always follow a linear fashion nor always go as expected even when the intervention is calculated with precise tools. One of the main reasons why this tends to happen relies on our body's biological drive to regain the body mass we lose to survive. This phenomenon has been referred to as "metabolic adaptation" many times in the literature and plays a very relevant role in the management of obesity and human weight loss. This review will provide insights into some of the theoretical models for the etiology of metabolic adaptation as well as a quick look into the physiological and endocrine mechanisms that underlie it. Nutritional strategies and dietetic tools are thus necessary to confront these so-called adaptations to body mass loss. Among some of these strategies, we can highlight increasing protein needs, opting for high-fiber foods or programming-controlled diet refeeds, and diet breaks over a large body mass loss phase. Outside the nutritional aspects, it might be wise to increase the physical activity and thus the energy flux of an individual when possible to maintain diet-induced body mass loss in the long term. This review will examine these protocols and their viability in the context of adherence and sustainability for the individual toward successful body mass loss.
Collapse
Affiliation(s)
- Mario G Martínez-Gómez
- CarloSportNutrition, Spain; and University of Alabama at Birmingham, Birmingham, Alabama
| | | |
Collapse
|
33
|
Pearson AG, Alexander L, Witard OC, Coughlin TE, Tipton KD, Walshe IH. A hypoenergetic diet with decreased protein intake does not reduce lean body mass in trained females. Eur J Appl Physiol 2021; 121:771-781. [PMID: 33258997 PMCID: PMC7892501 DOI: 10.1007/s00421-020-04555-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 11/07/2020] [Indexed: 12/21/2022]
Abstract
PURPOSE Increasing protein intake during energy restriction (ER) attenuates lean body mass (LBM) loss in trained males. However, whether this relationship exists in trained females is unknown. This study examined the impact of higher compared to lower protein intakes (35% versus 15% of energy intake) on body composition in trained females during 2 weeks of severe ER. METHODS Eighteen well-trained females completed a 1-week energy balanced diet (HD100), followed by a 2-week hypoenergetic (40% ER) diet (HD60). During HD60, participants consumed either a high protein (HP; 35% protein, 15% fat) or lower protein (CON; 15% protein, 35% fat) diet. Body composition, peak power, leg strength, sprint time, and anaerobic endurance were assessed at baseline, pre-HD60, and post-HD60. RESULTS Absolute protein intake was reduced during HD60 in the CON group (from 1.6 to 0.9 g·d·kgBM-1) and maintained in the HP group (~ 1.7 g·d·kgBM-1). CON and HP groups decreased body mass equally during HD60 (- 1.0 ± 1.1 kg; p = 0.026 and - 1.1 ± 0.7 kg; p = 0.002, respectively) and maintained LBM. There were no interactions between time point and dietary condition on exercise performance. CONCLUSION The preservation of LBM during HD60, irrespective of whether absolute protein intake is maintained or reduced, contrasts with findings in trained males. In trained females, the relationship between absolute protein intake and LBM change during ER warrants further investigation. Future recommendations for protein intake during ER should be expressed relative to body mass, not total energy intake, in trained females.
Collapse
Affiliation(s)
- Alice G Pearson
- Department of Sport and Exercise Sciences, Durham University, Durham, UK
| | - Lee Alexander
- Physiology, Exercise and Nutrition Research Group, University of Stirling, Stirling, UK
| | - Oliver C Witard
- Centre of Human and Applied Physiological Research, King's College London, London, UK
| | - Thomas E Coughlin
- Physiology, Exercise and Nutrition Research Group, University of Stirling, Stirling, UK
| | - Kevin D Tipton
- Department of Sport and Exercise Sciences, Durham University, Durham, UK
| | - Ian H Walshe
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle, UK.
| |
Collapse
|
34
|
Jespersen SE, Agergaard J. Evenness of dietary protein distribution is associated with higher muscle mass but not muscle strength or protein turnover in healthy adults: a systematic review. Eur J Nutr 2021; 60:3185-3202. [PMID: 33550490 DOI: 10.1007/s00394-021-02487-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 01/08/2021] [Indexed: 02/06/2023]
Abstract
PURPOSE Age-related decrease in muscle mass is, among several other factors, caused by suboptimal dietary protein intake. The protein intake of the general population has a skewed distribution towards the evening meal. However, it is hypothesised that an intake of protein with an even meal distribution leads to a more frequently maximised protein synthesis. This review investigates whether an even protein distribution is associated with preservation or gain in muscle mass, muscle strength, and protein turnover. METHODS Seven databases: PubMed, Web of Science, Google Scholar, CINAHL, Cochrane Database of Systematic Reviews, Cochrane Central Register of Controlled Trials, and Embase were searched. Studies included had a healthy population between 20 and 85 years of age, with a BMI between 18.5 and 30.0, investigated even vs. skewed protein distribution, and measured skeletal muscle relevant outcomes. Case studies and systematic reviews were excluded. Studies were appraised using the AXIS scale for observational studies and the PEDro scale for the remaining studies. RESULTS Fifteen studies met the eligibility criteria and were included. Three out of seven studies showed an association between even protein distribution and higher muscle mass. Two out of seven studies showed an association between greater muscle strength and an even protein distribution. Only one out of six studies found a positive association between protein synthesis and an even protein distribution. CONCLUSION Evidence indicated an association between muscle mass and an even protein intake. However, the evidence is currently insufficient to conclude whether an even protein intake is positively associated with muscle strength or protein turnover.
Collapse
Affiliation(s)
- Simon E Jespersen
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark and Center for Healthy Aging, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Jakob Agergaard
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark and Center for Healthy Aging, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
35
|
Mercer D, Convit L, Condo D, Carr AJ, Hamilton DL, Slater G, Snipe RMJ. Protein Requirements of Pre-Menopausal Female Athletes: Systematic Literature Review. Nutrients 2020; 12:E3527. [PMID: 33207749 PMCID: PMC7696053 DOI: 10.3390/nu12113527] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 12/23/2022] Open
Abstract
This systematic literature review aimed to determine the protein requirements of pre-menopausal (e.g., 18-45 years) female athletes and identify if the menstrual cycle phase and/or hormonal contraceptive use influence protein requirements. Four databases were searched for original research containing pre-menopausal female athletes that ingested protein alongside exercise. The Academy of Nutrition and Dietetics Quality Criteria Checklist was used to determine study quality. Fourteen studies, which included 204 recreationally active or competitive females, met the eligibility criteria for inclusion in this review, and all were assessed as positive quality. The estimated average requirement (EAR) for protein intake of pre-menopausal recreational and/or competitive female athletes is similar for those undertaking aerobic endurance (1.28-1.63 g/kg/day), resistance (1.49 g/kg/day) and intermittent exercise (1.41 g/kg/day) of ~60-90 min duration. The optimal acute protein intake and influence of menstrual cycle phase or hormonal contraceptive use on protein requirements could not be determined. However, pre- and post-exercise protein intakes of 0.32-0.38 g/kg have demonstrated beneficial physiological responses in recreational and competitive female athletes completing resistance and intermittent exercise. The protein requirements outlined in this review can be used for planning and assessing protein intakes of recreational and competitive pre-menopausal female athletes.
Collapse
Affiliation(s)
- Drew Mercer
- Centre for Sport Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood 3125, Victoria, Australia; (D.M.); (L.C.); (D.C.); (A.J.C.)
| | - Lilia Convit
- Centre for Sport Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood 3125, Victoria, Australia; (D.M.); (L.C.); (D.C.); (A.J.C.)
| | - Dominique Condo
- Centre for Sport Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood 3125, Victoria, Australia; (D.M.); (L.C.); (D.C.); (A.J.C.)
| | - Amelia J. Carr
- Centre for Sport Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood 3125, Victoria, Australia; (D.M.); (L.C.); (D.C.); (A.J.C.)
| | - D. Lee Hamilton
- Institute for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University, Geelong 3216, Victoria, Australia;
| | - Gary Slater
- School of Health and Sport Sciences, University of the Sunshine Coast, Maroochydore 4558, Queensland, Australia;
| | - Rhiannon M. J. Snipe
- Centre for Sport Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood 3125, Victoria, Australia; (D.M.); (L.C.); (D.C.); (A.J.C.)
| |
Collapse
|
36
|
Bariatric surgery affects obesity-related protein requirements. Clin Nutr ESPEN 2020; 40:392-400. [PMID: 33183568 DOI: 10.1016/j.clnesp.2020.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 05/28/2020] [Accepted: 06/05/2020] [Indexed: 12/31/2022]
Abstract
CONTEXT Following bariatric surgery, protein deficiency intakes are reported in morbidly obese patients, whereas post-bariatric protein requirements are not specifically defined with validated method in this population. OBJECTIVE To assess average protein requirement (APR) in obese subjects, before, 3 months and 12 months after bariatric surgery using the validated method of nitrogen balance. DESIGN AND SETTING Prospective longitudinal study conducted in 21 morbidly obese patients (BMI 43.9 ± 1.4 kg/m2) before (M0), 3 months (M3) and 12 months (M12) after sleeve gastrectomy or Roux-en-Y gastric by-pass. An additional larger cross-sectional study was performed to validate APR before surgery in non-operated matched obese patients (n = 106). APR was evaluated at M0, M3, M12 by measuring 3 days dietary intakes together with losses of nitrogen in urine and stools. MAIN OUTCOME MEASURE APR was defined as the mean value of protein intake required to achieve balance nitrogen equilibrium. RESULTS Before surgery, APR in morbidly obese patients was 0.76 [95%CI, 0.66-0.92] g/kg Body Weight (BW)/d in the experimental group, and 0.74 [0.70-0.80] g/kg BW/d in the validation group. APR was 0.62 [0.51-0.75] g/kg/d at M3 and 0.87 [0.75-0.98] g/kg/d at M12, with no difference between surgical procedures. Spontaneous protein intakes were respectively 0.80 ± 0.05, 0.43 ± 0.03 and 0.71 ± 0.04 g/kg BW/d respectively at M0, M3 and M12. CONCLUSION This study demonstrates a temporal change in protein requirement after bariatric surgery whatever the type of surgery. Spontaneous protein intakes following bariatric surgery does not cover protein requirements for most patients, suggesting that specific dietary protein recommandations have to be adapted in obese patients with bariatric surgery. TRIAL REGISTRATION Clinicaltrials.gov Identifier: NCT01249326.
Collapse
|
37
|
Gwin JA, Church DD, Wolfe RR, Ferrando AA, Pasiakos SM. Muscle Protein Synthesis and Whole-Body Protein Turnover Responses to Ingesting Essential Amino Acids, Intact Protein, and Protein-Containing Mixed Meals with Considerations for Energy Deficit. Nutrients 2020; 12:nu12082457. [PMID: 32824200 PMCID: PMC7469068 DOI: 10.3390/nu12082457] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/07/2020] [Accepted: 08/13/2020] [Indexed: 02/07/2023] Open
Abstract
Protein intake recommendations to optimally stimulate muscle protein synthesis (MPS) are derived from dose-response studies examining the stimulatory effects of isolated intact proteins (e.g., whey, egg) on MPS in healthy individuals during energy balance. Those recommendations may not be adequate during periods of physiological stress, specifically the catabolic stress induced by energy deficit. Providing supplemental intact protein (20–25 g whey protein, 0.25–0.3 g protein/kg per meal) during strenuous military operations that elicit severe energy deficit does not stimulate MPS-associated anabolic signaling or attenuate lean mass loss. This occurs likely because a greater proportion of the dietary amino acids consumed are targeted for energy-yielding pathways, whole-body protein synthesis, and other whole-body essential amino acid (EAA)-requiring processes than the proportion targeted for MPS. Protein feeding formats that provide sufficient energy to offset whole-body energy and protein-requiring demands during energy deficit and leverage EAA content, digestion, and absorption kinetics may optimize MPS under these conditions. Understanding the effects of protein feeding format-driven alterations in EAA availability and subsequent changes in MPS and whole-body protein turnover is required to design feeding strategies that mitigate the catabolic effects of energy deficit. In this manuscript, we review the effects, advantages, disadvantages, and knowledge gaps pertaining to supplemental free-form EAA, intact protein, and protein-containing mixed meal ingestion on MPS. We discuss the fundamental role of whole-body protein balance and highlight the importance of comprehensively assessing whole-body and muscle protein kinetics when evaluating the anabolic potential of varying protein feeding formats during energy deficit.
Collapse
Affiliation(s)
- Jess A. Gwin
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA 01760, USA;
- Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830, USA
| | - David D. Church
- Department of Geriatrics, Donald W. Reynolds Institute on Aging, Center for Translational Research in Aging & Longevity, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (D.D.C); (R.R.W.); (A.A.F.)
| | - Robert R. Wolfe
- Department of Geriatrics, Donald W. Reynolds Institute on Aging, Center for Translational Research in Aging & Longevity, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (D.D.C); (R.R.W.); (A.A.F.)
| | - Arny A. Ferrando
- Department of Geriatrics, Donald W. Reynolds Institute on Aging, Center for Translational Research in Aging & Longevity, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (D.D.C); (R.R.W.); (A.A.F.)
| | - Stefan M. Pasiakos
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA 01760, USA;
- Correspondence: ; Tel.: +1-508-206-2353
| |
Collapse
|
38
|
Direct or indirect regulation of muscle protein synthesis by energy status? Clin Nutr 2020; 40:1893-1896. [PMID: 32788089 DOI: 10.1016/j.clnu.2020.07.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 04/10/2020] [Accepted: 07/14/2020] [Indexed: 11/20/2022]
Abstract
Muscle protein synthesis (MPS) is a complex and finely-regulated mechanism that plays a key role in muscle homeostasis. Amino acid bioavailability is widely considered a major driver of MPS regulation via mTOR pathway activation. However, recent results suggest that amino acid bioavailability affects cellular energy status. Whatever the tool used to modulate energy status (amino acid depletion or mild mitochondrial uncoupling), a decrease in cellular energy status decreases MPS, without necessarily involving the mTOR pathway. Here we propose that energy status directly regulates one or several energy-consuming step(s) during MPS. This new paradigm modifies our vision of protein metabolism and raises prospects for new advances in therapeutics.
Collapse
|
39
|
The Effects of Intermittent Fasting Combined with Resistance Training on Lean Body Mass: A Systematic Review of Human Studies. Nutrients 2020; 12:nu12082349. [PMID: 32781538 PMCID: PMC7468742 DOI: 10.3390/nu12082349] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/30/2020] [Accepted: 08/03/2020] [Indexed: 12/14/2022] Open
Abstract
Diets utilising intermittent fasting (IF) as a strategic method to manipulate body composition have recently grown in popularity, however, dietary practices involving fasting have also been followed for centuries for religious reasons (i.e., Ramadan). Regardless of the reasons for engaging in IF, the impacts on lean body mass (LBM) may be detrimental. Previous research has demonstrated that resistance training promotes LBM accrual, however, whether this still occurs during IF is unclear. Therefore, the objective of this review is to systematically analyse human studies investigating the effects of variations of IF combined with resistance training on changes in LBM in previously sedentary or trained (non-elite) individuals. Changes in body weight and fat mass, and protocol adherence were assessed as a secondary objective. This review followed the preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines. MEDLINE, CINAHL, PubMed and SportDiscus databases were searched for articles investigating IF, combined with resistance training that reported measures of body composition. Eight studies met the eligibility criteria. LBM was generally maintained, while one study reported a significant increase in LBM. Body fat mass or percentage was significantly reduced in five of eight studies. Results suggest that IF paired with resistance training generally maintains LBM, and can also promote fat loss. Future research should examine longer-term effects of various forms of IF combined with resistance training compared to traditional forms of energy restriction. Prospero registration CRD42018103867.
Collapse
|
40
|
Effects of high versus standard essential amino acid intakes on whole-body protein turnover and mixed muscle protein synthesis during energy deficit: A randomized, crossover study. Clin Nutr 2020; 40:767-777. [PMID: 32768315 DOI: 10.1016/j.clnu.2020.07.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/07/2020] [Accepted: 07/10/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND & AIMS Consuming 0.10-0.14 g essential amino acids (EAA)/kg/dose (0.25-0.30 g protein/kg/dose) maximally stimulates muscle protein synthesis (MPS) during energy balance. Whether consuming EAA beyond that amount enhances MPS and whole-body anabolism following energy deficit is unknown. The aims of this study were to determine the effects of standard and high EAA ingestion on mixed MPS and whole-body protein turnover following energy deficit. DESIGN Nineteen males (mean ± SD; 23 ± 5 y; 25.4 ± 2.7 kg/m2) completed a randomized, double-blind crossover study consisting of two, 5-d energy deficits (-30 ± 4% of total energy requirements), separated by 14-d. Following each energy deficit, mixed MPS and whole-body protein synthesis (PS), breakdown (PB), and net balance (NET) were determined at rest and post-resistance exercise (RE) using primed, constant L-[2H5]-phenylalanine and L-[2H2]-tyrosine infusions. Beverages providing standard (0.1 g/kg, 7.87 ± 0.87 g) or high (0.3 g/kg, 23.5 ± 2.54 g) EAA were consumed post-RE. Circulating EAA were measured. RESULTS Postabsorptive mixed MPS (%/h) at rest was not different (P = 0.67) between treatments. Independent of EAA, postprandial mixed MPS at rest (standard EAA, 0.055 ± 0.01; high EAA, 0.061 ± 0.02) and post-RE (standard EAA, 0.055 ± 0.01; high EAA, 0.065 ± 0.02) were greater than postabsorptive mixed MPS at rest (P = 0.02 and P = 0.01, respectively). Change in (Δ postabsorptive) whole-body (g/180 min) PS and PB was greater for high than standard EAA [mean treatment difference (95% CI), 3.4 (2.3, 4.4); P = 0.001 and -15.6 (-17.8, -13.5); P = 0.001, respectively]. NET was more positive for high than standard EAA [19.0 (17.3, 20.7); P = 0.001]. EAA concentrations were greater in high than standard EAA (P = 0.001). CONCLUSIONS These data demonstrate that high compared to standard EAA ingestion enhances whole-body protein status during underfeeding. However, the effects of consuming high and standard EAA on mixed MPS are the same during energy deficit. CLINICAL TRIAL REGISTRY NCT03372928, https://clinicaltrials.gov.
Collapse
|
41
|
Hudson JL, Bergia RE, Campbell WW. Protein Distribution and Muscle-Related Outcomes: Does the Evidence Support the Concept? Nutrients 2020; 12:E1441. [PMID: 32429355 PMCID: PMC7285146 DOI: 10.3390/nu12051441] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 12/15/2022] Open
Abstract
There is a shift in thinking about dietary protein requirements from daily requirements to individual meal requirements. Per meal, stimulation of muscle protein synthesis has a saturable dose relationship with the quantity of dietary protein consumed. Protein intake above the saturable dose does not further contribute to the synthetic response; the "excess" amino acids are predominantly oxidized. Given that daily dietary protein intake is finite, finding protein distribution patterns that both reduce amino acid oxidation and maximize their contribution towards protein synthesis (in theory improving net balance) could be "optimal" and is of practical scientific interest to promote beneficial changes in skeletal muscle-related outcomes. This article reviews both observational and randomized controlled trial research on the protein distribution concept. The current evidence on the efficacy of consuming an "optimal" protein distribution to favorably influence skeletal muscle-related changes is limited and inconsistent. The effect of protein distribution cannot be sufficiently disentangled from the effect of protein quantity. Consuming a more balanced protein distribution may be a practical way for adults with marginal or inadequate protein intakes (<0.80 g·kg-1·d-1) to achieve a moderately higher total protein intake. However, for adults already consuming 0.8-1.3 g·kg-1·d-1, the preponderance of evidence supports that consuming at least one meal that contains sufficient protein quantity to maximally stimulate muscle protein synthesis, independent of daily distribution, is helpful to promote skeletal muscle health.
Collapse
Affiliation(s)
- Joshua L. Hudson
- Department of Nutrition Science, Purdue University, 700 W State St, West Lafayette, IN 47907, USA; (R.E.B.III); (W.W.C.)
- Department of Pediatrics, University of Arkansas for Medical Sciences, 4301 W Markham St, Little Rock, AR 72205, USA
- Arkansas Children’s Nutrition Center, 15 Children’s Way, Little Rock, AR 72202, USA
| | - Robert E. Bergia
- Department of Nutrition Science, Purdue University, 700 W State St, West Lafayette, IN 47907, USA; (R.E.B.III); (W.W.C.)
| | - Wayne W. Campbell
- Department of Nutrition Science, Purdue University, 700 W State St, West Lafayette, IN 47907, USA; (R.E.B.III); (W.W.C.)
| |
Collapse
|
42
|
Øfsteng SJ, Garthe I, Jøsok Ø, Knox S, Helkala K, Knox B, Ellefsen S, Rønnestad BR. No effect of increasing protein intake during military exercise with severe energy deficit on body composition and performance. Scand J Med Sci Sports 2020; 30:865-877. [DOI: 10.1111/sms.13634] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 01/31/2020] [Accepted: 02/04/2020] [Indexed: 12/21/2022]
Affiliation(s)
| | - Ina Garthe
- Norwegian Olympic Sport Center Oslo Norway
| | - Øyvind Jøsok
- Inland Norway University of Applied Sciences Lillehammer Norway
- Norwegian Defence Cyber Academy Lillehammer Norway
| | - Silje Knox
- Norwegian Defence Cyber Academy Lillehammer Norway
| | | | - Ben Knox
- Norwegian Defence Cyber Academy Lillehammer Norway
| | - Stian Ellefsen
- Inland Norway University of Applied Sciences Lillehammer Norway
- Innlandet Hospital Trust Brumunddal Norway
| | | |
Collapse
|
43
|
Oikawa SY, Bahniwal R, Holloway TM, Lim C, McLeod JC, McGlory C, Baker SK, Phillips SM. Potato Protein Isolate Stimulates Muscle Protein Synthesis at Rest and with Resistance Exercise in Young Women. Nutrients 2020; 12:nu12051235. [PMID: 32349353 PMCID: PMC7281992 DOI: 10.3390/nu12051235] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/15/2020] [Accepted: 04/23/2020] [Indexed: 12/22/2022] Open
Abstract
Skeletal muscle myofibrillar protein synthesis (MPS) increases in response to protein feeding and to resistance exercise (RE), where each stimuli acts synergistically when combined. The efficacy of plant proteins such as potato protein (PP) isolate to stimulate MPS is unknown. We aimed to determine the effects of PP ingestion on daily MPS with and without RE in healthy women. In a single blind, parallel-group design, 24 young women (21 ± 3 years, n = 12/group) consumed a weight-maintaining baseline diet containing 0.8 g/kg/d of protein before being randomized to consume either 25 g of PP twice daily (1.6 g/kg/d total protein) or a control diet (CON) (0.8 g/kg/d total protein) for 2 wks. Unilateral RE (~30% of maximal strength to failure) was performed thrice weekly with the opposite limb serving as a non-exercised control (Rest). MPS was measured by deuterated water ingestion at baseline, following supplementation (Rest), and following supplementation + RE (Exercise). Ingestion of PP stimulated MPS by 0.14 ± 0.09 %/d at Rest, and by 0.32 ± 0.14 %/d in the Exercise limb. MPS was significantly elevated by 0.20 ± 0.11 %/d in the Exercise limb in CON (p = 0.008). Consuming PP to increase protein intake to levels twice the recommended dietary allowance for protein augmented rates of MPS. Performance of RE stimulated MPS regardless of protein intake. PP is a high-quality, plant-based protein supplement that augments MPS at rest and following RE in healthy young women.
Collapse
Affiliation(s)
- Sara Y. Oikawa
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4L8, Canada; (S.Y.O.); (R.B.); (C.L.); (J.C.M.)
| | - Ravninder Bahniwal
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4L8, Canada; (S.Y.O.); (R.B.); (C.L.); (J.C.M.)
| | - Tanya M. Holloway
- Faculty of Applied Health & Community Studies, Sheridan College, Brampton, ON L6Y 5H9, Canada;
| | - Changhyun Lim
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4L8, Canada; (S.Y.O.); (R.B.); (C.L.); (J.C.M.)
| | - Jonathan C. McLeod
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4L8, Canada; (S.Y.O.); (R.B.); (C.L.); (J.C.M.)
| | - Chris McGlory
- School of Kinesiology and Health Studies, Queens University, Kingston, ON K7L 3N6, Canada;
| | - Steven K. Baker
- Department of Neurology, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada;
| | - Stuart M. Phillips
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4L8, Canada; (S.Y.O.); (R.B.); (C.L.); (J.C.M.)
- Correspondence: ; Tel.: +1-(905)-525-9140 (ext. 24465)
| |
Collapse
|
44
|
Caloric restriction induces anabolic resistance to resistance exercise. Eur J Appl Physiol 2020; 120:1155-1164. [PMID: 32236752 PMCID: PMC8233264 DOI: 10.1007/s00421-020-04354-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 03/21/2020] [Indexed: 12/21/2022]
Abstract
Purpose Weight loss can result in the loss of muscle mass and bone mineral density. Resistance exercise is commonly prescribed to attenuate these effects. However, the anabolic endocrine response to resistance exercise during caloric restriction has not been characterized. Methods Participants underwent 3-day conditions of caloric restriction (15 kcal kg FFM−1) with post-exercise carbohydrate (CRC) and with post-exercise protein (CRP), and an energy balance control (40 kcal kg FFM−1) with post-exercise carbohydrate (CON). Serial blood draws were taken following five sets of five repetitions of the barbell back squat exercise on day 3 of each condition. Results In CRC and CRP, respectively, growth hormone peaked at 2.6 ± 0.4 and 2.5 ± 0.9 times the peak concentrations observed during CON. Despite this, insulin-like growth factor-1 concentrations declined 18.3 ± 3.4% in CRC and 27.2 ± 3.8% in CRP, which was greater than the 7.6 ± 3.6% decline in CON, over the subsequent 24 h. Sclerostin increased over the first 2 days of each intervention by 19.2 ± 5.6% in CRC, 21.8 ± 6.2% in CRP and 13.4 ± 5.9% in CON, but following the resistance exercise bout, these increases were attenuated and no longer significant. Conclusion During caloric restriction, there is considerable endocrine anabolic resistance to a single bout of resistance exercise which persists in the presence of post-exercise whey protein supplementation. Alternative strategies to restore the sensitivity of insulin-like growth factor-1 to growth hormone need to be explored. Electronic supplementary material The online version of this article (10.1007/s00421-020-04354-0) contains supplementary material, which is available to authorized users.
Collapse
|
45
|
Saner NJ, Lee MJC, Pitchford NW, Kuang J, Roach GD, Garnham A, Stokes T, Phillips SM, Bishop DJ, Bartlett JD. The effect of sleep restriction, with or without high-intensity interval exercise, on myofibrillar protein synthesis in healthy young men. J Physiol 2020; 598:1523-1536. [PMID: 32078168 PMCID: PMC7217042 DOI: 10.1113/jp278828] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 01/16/2020] [Indexed: 12/23/2022] Open
Abstract
Key points Sleep restriction has previously been associated with the loss of muscle mass in both human and animal models. The rate of myofibrillar protein synthesis (MyoPS) is a key variable in regulating skeletal muscle mass and can be increased by performing high‐intensity interval exercise (HIIE), although the effect of sleep restriction on MyoPS is unknown. In the present study, we demonstrate that participants undergoing a sleep restriction protocol (five nights, with 4 h in bed each night) had lower rates of skeletal muscle MyoPS; however, rates of MyoPS were maintained at control levels by performing HIIE during this period. Our data suggest that the lower rates of MyoPS in the sleep restriction group may contribute to the detrimental effects of sleep loss on muscle mass and that HIIE may be used as an intervention to counteract these effects.
Abstract The present study aimed to investigate the effect of sleep restriction, with or without high‐intensity interval exercise (HIIE), on the potential mechanisms underpinning previously‐reported sleep‐loss‐induced reductions to muscle mass. Twenty‐four healthy, young men underwent a protocol consisting of two nights of controlled baseline sleep and a five‐night intervention period. Participants were allocated into one of three parallel groups, matched for age, V˙O2peak, body mass index and habitual sleep duration; a normal sleep (NS) group [8 h time in bed (TIB) each night], a sleep restriction (SR) group (4 h TIB each night), and a sleep restriction and exercise group (SR+EX, 4 h TIB each night, with three sessions of HIIE). Deuterium oxide was ingested prior to commencing the study and muscle biopsies obtained pre‐ and post‐intervention were used to assess myofibrillar protein synthesis (MyoPS) and molecular markers of protein synthesis and degradation signalling pathways. MyoPS was lower in the SR group [fractional synthetic rate (% day–1), mean ± SD, 1.24 ± 0.21] compared to both the NS (1.53 ± 0.09) and SR+EX groups (1.61 ± 0.14) (P < 0.05). However, there were no changes in the purported regulators of protein synthesis (i.e. p‐AKTser473 and p‐mTORser2448) and degradation (i.e. Foxo1/3 mRNA and LC3 protein) in any group. These data suggest that MyoPS is acutely reduced by sleep restriction, although MyoPS can be maintained by performing HIIE. These findings may explain the sleep‐loss‐induced reductions in muscle mass previously reported and also highlight the potential therapeutic benefit of HIIE to maintain myofibrillar remodelling in this context. Sleep restriction has previously been associated with the loss of muscle mass in both human and animal models. The rate of myofibrillar protein synthesis (MyoPS) is a key variable in regulating skeletal muscle mass and can be increased by performing high‐intensity interval exercise (HIIE), although the effect of sleep restriction on MyoPS is unknown. In the present study, we demonstrate that participants undergoing a sleep restriction protocol (five nights, with 4 h in bed each night) had lower rates of skeletal muscle MyoPS; however, rates of MyoPS were maintained at control levels by performing HIIE during this period. Our data suggest that the lower rates of MyoPS in the sleep restriction group may contribute to the detrimental effects of sleep loss on muscle mass and that HIIE may be used as an intervention to counteract these effects.
Collapse
Affiliation(s)
- Nicholas J Saner
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Matthew J-C Lee
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Nathan W Pitchford
- Institute for Health and Sport, Victoria University, Melbourne, Australia.,Sport Performance Optimisation Research Team, School of Human Life Sciences, University of Tasmania, Launceston, Australia
| | - Jujiao Kuang
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Gregory D Roach
- Appleton Institute for Behavioural Science, Central Queensland University, Adelaide, Australia
| | - Andrew Garnham
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Tanner Stokes
- Department of Kinesiology, McMaster University, Hamilton, Canada
| | | | - David J Bishop
- Institute for Health and Sport, Victoria University, Melbourne, Australia.,School of Medical & Health Sciences, Edith Cowan University, Joondalup, Australia
| | | |
Collapse
|
46
|
Intermittent Energy Restriction Attenuates the Loss of Fat Free Mass in Resistance Trained Individuals. A Randomized Controlled Trial. J Funct Morphol Kinesiol 2020; 5:jfmk5010019. [PMID: 33467235 PMCID: PMC7739314 DOI: 10.3390/jfmk5010019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/03/2020] [Accepted: 03/05/2020] [Indexed: 11/26/2022] Open
Abstract
There is a lack of research into how lean, resistance trained (RT) individuals respond to intermittent energy restricted diets. Therefore, we investigated body composition changes in RT-individuals during continuous energy restriction or intermittent restriction. A total of 27 males and females (25 ± 6.1 years; 169 ± 9.4 cm; 80 ± 15.6 kg) were randomized to a ~25% caloric restricted diet Refeed (RF; n = 13) or Continuous group (CN; n = 14) in conjunction with 4-days/week resistance training for 7-weeks. RF implemented two consecutive days of elevated carbohydrate (CHO) intake, followed by 5-days of caloric restriction each week. CN adhered to a continuous 7-week caloric restriction. Body mass (BM), fat mass (FM), fat-free mass (FFM), dry fat-free mass (dFFM), and resting metabolic rate (RMR) were assessed pre/post-diet. Both groups significantly reduced BM (RF: baseline = 76.4 ± 15.6 kg, post-diet = 73.2 ± 13.8 kg, Δ3.2 kg; CN: baseline = 83.1 ± 15.4 kg, post-diet = 79.5 ± 15 kg, Δ3.6 kg) and FM (RF: baseline = 16.3 ± 4 kg, post-diet = 13.5 ± 3.6 kg, Δ2.8 kg; CN: baseline = 16.7 ± 4.5 kg, post-diet = 14.4 ± 4.9 kg, Δ2.3 kg) with no differences between groups. FFM (RF: baseline = 60.1 ± 13.8 kg, post-diet = 59.7 ± 13.0 kg, 0.4 kg; CN: baseline = 66.4 ± 15.2 kg, post-diet = 65.1 ± 15.2 kg, Δ1.3 kg p = 0.006), dFFM (RF: baseline = 18.7 ± 5.0 kg, post-diet = 18.5 ± 4.5 kg, Δ0.2 kg; CN: baseline =21.9 ± 5.7 kg, post-diet = 20.0 ± 5.7 kg, Δ1.9 kg), and RMR (RF: baseline = 1703 ± 294, post-diet = 1665 ± 270, Δ38 kcals; CN: baseline = 1867 ± 342, post-diet = 1789 ± 409, Δ78 kcals) were better maintained in the RF group. A 2-day carbohydrate refeed preserves FFM, dryFFM, and RMR during energy restriction compared to continuous energy restriction in RT-individuals.
Collapse
|
47
|
Oikawa SY, Kamal MJ, Webb EK, McGlory C, Baker SK, Phillips SM. Whey protein but not collagen peptides stimulate acute and longer-term muscle protein synthesis with and without resistance exercise in healthy older women: a randomized controlled trial. Am J Clin Nutr 2020; 111:708-718. [PMID: 31919527 PMCID: PMC7049534 DOI: 10.1093/ajcn/nqz332] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Aging appears to attenuate the response of skeletal muscle protein synthesis (MPS) to anabolic stimuli such as protein ingestion (and the ensuing hyperaminoacidemia) and resistance exercise (RE). OBJECTIVES The purpose of this study was to determine the effects of protein quality on feeding- and feeding plus RE-induced increases of acute and longer-term MPS after ingestion of whey protein (WP) and collagen protein (CP). METHODS In a double-blind parallel-group design, 22 healthy older women (mean ± SD age: 69 ± 3 y, n = 11/group) were randomly assigned to consume a 30-g supplement of either WP or CP twice daily for 6 d. Participants performed unilateral RE twice during the 6-d period to determine the acute (via [13C6]-phenylalanine infusion) and longer-term (ingestion of deuterated water) MPS responses, the primary outcome measures. RESULTS Acutely, WP increased MPS by a mean ± SD 0.017 ± 0.008%/h in the feeding-only leg (Rest) and 0.032 ± 0.012%/h in the feeding plus exercise leg (Exercise) (both P < 0.01), whereas CP increased MPS only in Exercise (0.012 ± 0.013%/h) (P < 0.01) and MPS was greater in WP than CP in both the Rest and Exercise legs (P = 0.02). Longer-term MPS increased by 0.063 ± 0.059%/d in Rest and 0.173 ± 0.104%/d in Exercise (P < 0.0001) with WP; however, MPS was not significantly elevated above baseline in Rest (0.011 ± 0.042%/d) or Exercise (0.020 ± 0.034%/d) with CP. Longer-term MPS was greater in WP than in CP in both Rest and Exercise (P < 0.001). CONCLUSIONS Supplementation with WP elicited greater increases in both acute and longer-term MPS than CP supplementation, which is suggestive that WP is a more effective supplement to support skeletal muscle retention in older women than CP.This trial was registered at clinicaltrials.gov as NCT03281434.
Collapse
Affiliation(s)
- Sara Y Oikawa
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Michael J Kamal
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Erin K Webb
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Chris McGlory
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Steven K Baker
- Department of Neurology, Michael G DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Stuart M Phillips
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada,Address correspondence to SMP (e-mail: )
| |
Collapse
|
48
|
Exercise Mitigates the Loss of Muscle Mass by Attenuating the Activation of Autophagy during Severe Energy Deficit. Nutrients 2019; 11:nu11112824. [PMID: 31752260 PMCID: PMC6893734 DOI: 10.3390/nu11112824] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 10/30/2019] [Accepted: 11/14/2019] [Indexed: 01/07/2023] Open
Abstract
The loss of skeletal muscle mass with energy deficit is thought to be due to protein breakdown by the autophagy-lysosome and the ubiquitin-proteasome systems. We studied the main signaling pathways through which exercise can attenuate the loss of muscle mass during severe energy deficit (5500 kcal/day). Overweight men followed four days of caloric restriction (3.2 kcal/kg body weight day) and prolonged exercise (45 min of one-arm cranking and 8 h walking/day), and three days of control diet and restricted exercise, with an intra-subject design including biopsies from muscles submitted to distinct exercise volumes. Gene expression and signaling data indicate that the main catabolic pathway activated during severe energy deficit in skeletal muscle is the autophagy-lysosome pathway, without apparent activation of the ubiquitin-proteasome pathway. Markers of autophagy induction and flux were reduced by exercise primarily in the muscle submitted to an exceptional exercise volume. Changes in signaling are associated with those in circulating cortisol, testosterone, cortisol/testosterone ratio, insulin, BCAA, and leucine. We conclude that exercise mitigates the loss of muscle mass by attenuating autophagy activation, blunting the phosphorylation of AMPK/ULK1/Beclin1, and leading to p62/SQSTM1 accumulation. This includes the possibility of inhibiting autophagy as a mechanism to counteract muscle loss in humans under severe energy deficit.
Collapse
|
49
|
Moore DR. Maximizing Post-exercise Anabolism: The Case for Relative Protein Intakes. Front Nutr 2019; 6:147. [PMID: 31552263 PMCID: PMC6746967 DOI: 10.3389/fnut.2019.00147] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 08/23/2019] [Indexed: 01/03/2023] Open
Abstract
Maximizing the post-exercise increase in muscle protein synthesis, especially of the contractile myofibrillar protein fraction, is essential to facilitate effective muscle remodeling, and enhance hypertrophic gains with resistance training. MPS is the primary regulated variable influencing muscle net balance with dietary amino acid ingestion representing the single most important nutritional variable enhancing post-exercise rates of muscle protein synthesis. Dose-response studies in average (i.e., ~80 kg) males have reported an absolute 20 g dose of high quality, rapidly digested protein maximizes mixed, and myofibrillar protein synthetic rates. However, it is unclear if these absolute protein intakes can be viewed in a “one size fits all” solution. Re-analysis of published literature in young adults suggests a relative single meal intake of ~0.31 g/kg of rapidly digested, high quality protein (i.e., whey) should be considered as a nutritional guideline for individuals of average body composition aiming to maximize post-exercise myofibrillar protein synthesis while minimizing irreversible amino acid oxidative catabolism that occurs with excessive intakes of this macronutrient. This muscle-specific bolus intake is lower than that reported to maximize whole body anabolism (i.e., ≥0.5 g/kg). Review of the available literature suggests that potential confounders such as the co-ingestion of carbohydrate, sex, and amount of active muscle mass do not represent significant barriers to the translation of this objectively determined relative protein intake. Additional research is warranted to elucidate the effective dose for proteins with suboptimal amino acid compositions (e.g., plant-based), and/or slower digestion rates as well as whether recommendations are appreciably affected by other physiological conditions such endurance exercise, high habitual daily protein ingestion, aging, obesity, and/or periods of chronic negative energy balance.
Collapse
Affiliation(s)
- Daniel R Moore
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
50
|
Abstract
Ketogenic diet (KD) is a nutritional regimen characterized by a high-fat and an adequate protein content and a very low carbohydrate level (less than 20 g per day or 5% of total daily energy intake). The insufficient level of carbohydrates forces the body to primarily use fat instead of sugar as a fuel source. Due to its characteristic, KD has often been used to treat metabolic disorders, obesity, cardiovascular disease, and type 2 diabetes. Skeletal muscle constitutes 40% of total body mass and is one of the major sites of glucose disposal. KD is a well-defined approach to induce weight loss, with its role in muscle adaptation and muscle hypertrophy less understood. Considering this lack of knowledge, the aim of this review was to examine the scientific evidence about the effects of KD on muscle hypertrophy. We first described the mechanisms of muscle hypertrophy per se, and secondly, we discussed the characteristics and the metabolic function of KD. Ultimately, we provided the potential mechanism that could explain the influence of KD on skeletal muscle hypertrophy.
Collapse
|