1
|
Nunes RS, Freitas Mariano KC, Pieretti JC, Dos Reis RA, Seabra AB. Innovative nitric oxide-releasing nanomaterials: Current progress, trends, challenges, and perspectives in cardiovascular therapies. Nitric Oxide 2025; 156:67-81. [PMID: 40139304 DOI: 10.1016/j.niox.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/23/2025] [Accepted: 03/23/2025] [Indexed: 03/29/2025]
Abstract
Cardiovascular diseases remain the leading cause of death worldwide, imposing a substantial impact on healthcare systems due to high morbidity, mortality, and associated economic costs. Nitric oxide (NO), a key signaling molecule in the cardiovascular system, plays a critical role in regulating vascular homeostasis, angiogenesis, and inflammation. Despite its therapeutic potential, direct NO delivery in the cardiovascular system is limited by its reactivity, short half-life, and poor bioavailability. The development of NO-releasing nanomaterials addresses these challenges by enabling controlled, targeted, and sustained NO delivery, mitigating systemic toxicity and improving therapeutic outcomes. This review provides a comprehensive overview of recent advancements in the design, functionalization, and application of NO-releasing nanomaterials for cardiovascular therapies. Key topics include the use of in vitro and in vivo models to evaluate efficacy in conditions such as myocardial ischemia-reperfusion injury, thrombosis, and atherosclerosis, as well as the role of stimuli-responsive systems and hybrid nanomaterials in enhancing delivery precision. Advances in nanotechnology, such as stimuli-responsive systems and hybrid functionalized nanomaterials for targeted delivery, have enhanced the precision and effectiveness of NO therapeutic effects for treating a wide spectrum of cardiovascular conditions. However, challenges like scalable production, biocompatibility, and integration with existing therapies remain. Future research should focus on interdisciplinary approaches to optimize these materials for clinical translation, ensuring accessibility and addressing the global problem of cardiovascular diseases.
Collapse
Affiliation(s)
- Renan S Nunes
- Center for Natural and Human Sciences, Federal University of ABC (UFABC), 09210-580, Santo André, SP, Brazil.
| | - Kelli C Freitas Mariano
- Center for Natural and Human Sciences, Federal University of ABC (UFABC), 09210-580, Santo André, SP, Brazil
| | - Joana C Pieretti
- Center for Natural and Human Sciences, Federal University of ABC (UFABC), 09210-580, Santo André, SP, Brazil
| | - Roberta A Dos Reis
- Center for Natural and Human Sciences, Federal University of ABC (UFABC), 09210-580, Santo André, SP, Brazil
| | - Amedea B Seabra
- Center for Natural and Human Sciences, Federal University of ABC (UFABC), 09210-580, Santo André, SP, Brazil.
| |
Collapse
|
2
|
Palanichamy C, Nayak Ammunje D, Pavadai P, Ram Kumar Pandian S, Theivendren P, Kabilan SJ, Babkiewicz E, Maszczyk P, Kunjiappan S. Mimosa pudica Linn. extract improves aphrodisiac performance in diabetes-induced male Wister rats. J Biomol Struct Dyn 2025; 43:1621-1640. [PMID: 38088340 DOI: 10.1080/07391102.2023.2292302] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/25/2023] [Indexed: 01/04/2025]
Abstract
Male sexual dysfunction is considered one of the major consequences of diabetes mellitus. The medicinal plant, Mimosa pudica Linn. is believed to have numerous therapeutic effects, including anti-diabetic, anti-obesity, aphrodisiac, and a sexual behaviour-enhancing properties. In the present study, the significant effect of ethanolic extract of M. pudica L. to scavenge excessive free radicals and alleviate the deleterious effects of alloxan-induced diabetes on the male sexual system of rats was demonstrated. The rats treated with the M. pudica L. extract recovered their body weight, the weight of their reproductive organs, the characteristics of the sperm and the histocellular arrangement of the testes. In addition, significant levels of hormones (testosterone, follicle-stimulating hormone and luteinising hormone) increased in both serum and testicular homogenates of male diabetic rats treated with M. pudica L. extract. Further, antioxidant enzymes, SOD, CAT, GSH, and GPx levels are increased, and oxidative stress markers MDA and ROS are reduced in both serum and testicular homogenates of M. pudica L. extract treated male rats. Furthermore, an in silico molecular docking study was performed to predict high potential compounds of M. pudica L. extract against the PDE5 receptor. Two bioactive compounds, namely 3-Dibenzofuranamine (-11.1 kcal × mol-1), Stigmasta-7,16-dien-3-ol (-10.4 kcal × mol-1) showed the highest binding affinities with PDE5 enzyme, much higher than the reference drug sildenafil (-9.9 kcal × mol-1). According to these findings, bioactive compounds rich in ethanolic extract of M. pudica L. have significant aphrodisiac performance in diabetic rats.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Chandrasekar Palanichamy
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, India
| | - Damodar Nayak Ammunje
- Department of Pharmacology, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bengaluru, India
| | - Parasuraman Pavadai
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bengaluru, India
| | | | | | | | - Ewa Babkiewicz
- Department of Hydrobiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
- Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Piotr Maszczyk
- Department of Hydrobiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Selvaraj Kunjiappan
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, India
| |
Collapse
|
3
|
Calandrino A, Vinci F, Battaglini M, Caruggi S, Andreato C, Montobbio C, Vannati M, Minghetti D, Brigati G, Ramenghi LA. Increase in methemoglobin fraction due to the use of glyceryl trinitrate patches in preterm infants: a case report and literature review. Front Pediatr 2025; 13:1505233. [PMID: 40013111 PMCID: PMC11860868 DOI: 10.3389/fped.2025.1505233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/27/2025] [Indexed: 02/28/2025] Open
Abstract
Background Oxidized heme iron forms methemoglobin (MeHb), impairing the oxygen-binding capability of hemoglobin molecules. Nitric oxide (NO) obtained from glyceryl trinitrate (GTN) patches can cause MeHb formation during limb ischemia topical treatment. This case reports a preterm infant treated with multiple GTN patches who developed elevated MeHb levels, a potential therapy complication. Case presentation A preterm female newborn (25 + 4 weeks, 560 g) was delivered by cesarean due to maternal HELLP syndrome and intubated for respiratory distress. After developing ischemia in her right hand and foot, GTN patches were applied, but therapy caused a peak in methemoglobin (MeHb) levels, prompting patch removal. MeHb levels normalized after 18 h, and after adjusting therapy, ischemia resolved successfully. Discussion We report the case of a premature IUGR infant who developed elevated methaemoglobin (MeHb) levels during topical GTN therapy for catheter-related extremity ischemia. While GTN is effective for neonatal ischemia, its dosing, and safety lack consistent guidelines. Elevated MeHb levels, noted in similar cases here reviewed, can impair oxygen exchange, especially in vulnerable preterm infants with immature skin and reduced enzyme activity. Conclusion This case highlights the need for careful MeHb monitoring and a multidisciplinary approach to manage ischemia safely in neonates undergoing GTN therapy.
Collapse
Affiliation(s)
- Andrea Calandrino
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Mother and Child Health, School of Medical and Pharmaceuticals, University of Genoa, Genoa, Italy
- Neonatal Intensive Care Unit, Department of Maternal and Neonatal Health, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Francesco Vinci
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Mother and Child Health, School of Medical and Pharmaceuticals, University of Genoa, Genoa, Italy
- Neonatal Intensive Care Unit, Department of Maternal and Neonatal Health, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Marcella Battaglini
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Mother and Child Health, School of Medical and Pharmaceuticals, University of Genoa, Genoa, Italy
- Neonatal Intensive Care Unit, Department of Maternal and Neonatal Health, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Samuele Caruggi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Mother and Child Health, School of Medical and Pharmaceuticals, University of Genoa, Genoa, Italy
- Neonatal Intensive Care Unit, Department of Maternal and Neonatal Health, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Chiara Andreato
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Mother and Child Health, School of Medical and Pharmaceuticals, University of Genoa, Genoa, Italy
- Neonatal Intensive Care Unit, Department of Maternal and Neonatal Health, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Carolina Montobbio
- Neonatal Intensive Care Unit, Department of Maternal and Neonatal Health, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Marianna Vannati
- Neonatal Intensive Care Unit, Department of Maternal and Neonatal Health, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Diego Minghetti
- Neonatal Intensive Care Unit, Department of Maternal and Neonatal Health, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Giorgia Brigati
- Neonatal Intensive Care Unit, Department of Maternal and Neonatal Health, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Luca Antonio Ramenghi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Mother and Child Health, School of Medical and Pharmaceuticals, University of Genoa, Genoa, Italy
- Neonatal Intensive Care Unit, Department of Maternal and Neonatal Health, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| |
Collapse
|
4
|
Gawrys O, Kala P, Sadowski J, Melenovský V, Sandner P, Červenka L. Soluble guanylyl cyclase stimulators and activators: Promising drugs for the treatment of hypertension? Eur J Pharmacol 2025; 987:177175. [PMID: 39645219 DOI: 10.1016/j.ejphar.2024.177175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/21/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
Nitric oxide (NO)-stimulated cyclic guanosine monophosphate (cGMP) is a key regulator of cardiovascular health, as NO-cGMP signalling is impaired in diseases like pulmonary hypertension, heart failure and chronic kidney disease. The development of NO-independent sGC stimulators and activators provide a novel therapeutic option to restore altered NO signalling. sGC stimulators have been already approved for the treatment of pulmonary arterial hypertension (PAH), chronic thromboembolic pulmonary hypertension (CTEPH), and chronic heart failure (HFrEF), while sGC activators are currently in phase-2 clinical trials for CKD. The best characterized effect of increased cGMP via the NO-sGC-cGMP pathway is vasodilation. However, to date, none of the sGC agonists are in development for hypertension (HTN). According to WHO, the global prevalence of uncontrolled HTN continues to rise, contributing significantly to cardiovascular mortality. While there are effective antihypertensive treatments, many patients require multiple drugs, and some remain resistant to all therapies. Thus, in addition to improved diagnosis and lifestyle changes, new pharmacological strategies remain in high demand. In this review we explore the potential of sGC stimulators and activators as novel antihypertensive agents, starting with the overview of NO-sGC-cGMP signalling, followed by potential mechanisms by which the increase in cGMP may regulate vascular tone and BP. These effects may encompass not only acute vasodilation, but also mid-term and chronic effects, such as the regulation of salt and water balance, as well as mitigation of vascular ageing and remodelling. The main section summarizes the preclinical and clinical evidence supporting the BP-lowering efficacy of sGC agonists.
Collapse
Affiliation(s)
- Olga Gawrys
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
| | - Petr Kala
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic; Department of Cardiology, Motol University Hospital and Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Janusz Sadowski
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Vojtěch Melenovský
- Department of Cardiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Peter Sandner
- Bayer AG, Pharmaceuticals, Drug Discovery, Pharma Research Centre, 42113, Wuppertal, Germany; Hannover Medical School, Institute of Pharmacology, 30625, Hannover, Germany
| | - Luděk Červenka
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic; First Department of Internal Medicine, Cardiology, Olomouc University Hospital and Palacký University, Olomouc, Czech Republic
| |
Collapse
|
5
|
Virkkunen V, Kero K, Koivisto M, Niiranen T, Heinonen O, Stenholm S, Polo‐Kantola P. Associations between arterial health and sexual function in women aged 60-64 years. Acta Obstet Gynecol Scand 2024; 103:1132-1141. [PMID: 38482868 PMCID: PMC11103145 DOI: 10.1111/aogs.14826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 02/22/2024] [Accepted: 02/24/2024] [Indexed: 05/21/2024]
Abstract
INTRODUCTION Female sexual dysfunction is very common, but its determinants remain under-investigated. Vasculogenic impairments are suggested to be related to female sexual dysfunction, but previous literature regarding the association is scarce. This study aims to study the association between arterial health and female sexual function in women in their 60s. MATERIAL AND METHODS The sample for this cross-sectional study comprised 117 women (aged 60-64 years) who participated in the Finnish Retirement and Aging study. Arterial health was measured according to the participants' pulse wave velocity, ankle-brachial index, blood pressure, and pulse pressure. Sexual function was measured using the Female Sexual Function Index, which resulted in a total score and six sub-scores. Associations were examined using multivariable regression analyses, which were adjusted for age, relationship happiness, systemic menopausal hormone therapy and/or local estrogen, smoking, alcohol risk use, body mass index, and depressive symptoms. RESULTS Higher diastolic blood pressure was associated with a higher total Female Sexual Function Index score (β = 0.24, 95% confidence interval [CI] 0.07-0.41) and with higher desire (β = 0.02, 95% CI 0.01-0.04), arousal (β = 0.04, 95% CI 0.01-0.08), lubrication (β = 0.04, 95% CI 0.002-0.08), satisfaction (β = 0.03, 95% CI 0.003-0.05), and pain (β = 0.06, 95% CI 0.02-0.10) sub-scores. Also, higher ankle-brachial index was associated with higher satisfaction sub-score (β = 2.10, 95% CI 0.44-3.73) and lower pulse pressure was associated with higher orgasm sub-score (β = 0.03, 95% CI 0.0002-0.06). Other associations between ankle-brachial index and Female Sexual Function Index scores were statistically insignificant, but considering the magnitude the findings may imply clinical significance. Systolic blood pressure and pulse wave velocity were not associated with sexual function. CONCLUSIONS This study suggested a plausible association between higher diastolic blood pressure and female sexual function, but considering clinical significance our findings suggest an association between higher ankle-brachial index and good sexual function in women in their 60s.
Collapse
Affiliation(s)
- Viivi Virkkunen
- Department of Obstetrics and GynecologyTurku University Hospital and University of TurkuTurkuFinland
| | - Katja Kero
- Department of Obstetrics and GynecologyTurku University Hospital and University of TurkuTurkuFinland
| | - Mari Koivisto
- Department of BiostatisticsUniversity of TurkuTurkuFinland
| | - Teemu Niiranen
- Department of Internal MedicineTurku University Hospital, University of TurkuTurkuFinland
- Department of Public Health SolutionsFinnish Institute for Health and WelfareHelsinkiFinland
| | - Olli Heinonen
- Paavo Nurmi Center & Unit for Health and Physical ActivityUniversity of TurkuTurkuFinland
| | - Sari Stenholm
- Department of Public HealthTurku University Hospital, University of TurkuTurkuFinland
- Center for Population Health ResearchTurku University Hospital, University of TurkuTurkuFinland
- Research ServicesTurku University Hospital and University of TurkuTurkuFinland
| | - Päivi Polo‐Kantola
- Department of Obstetrics and GynecologyTurku University Hospital and University of TurkuTurkuFinland
| |
Collapse
|
6
|
Liu FT, Zhai SM, Gao DF, Yang SH, Zhao BX, Lin ZM. A highly sensitive ratiometric fluorescent probe for detecting HSO 3-/SO 32- and viscosity change based on FRET/TICT mechanism. Anal Chim Acta 2024; 1305:342588. [PMID: 38677842 DOI: 10.1016/j.aca.2024.342588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/26/2024] [Accepted: 04/07/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND Sulfur dioxide (SO2) is a significant gas signaling molecule in organisms, and viscosity is a crucial parameter of the cellular microenvironment. They are both involved in regulating many physiological processes in the human body. However, abnormalities in SO2 and viscosity levels are associated with various diseases, such as cardiovascular disease, lung cancer, respiratory diseases, neurological disorders, diabetes and Alzheimer's disease. Hence, it is essential to explore novel and efficient fluorescent probes for simultaneously monitoring SO2 and viscosity in organisms. RESULTS We selected quinolinium salt with good stability, high fluorescence intensity, good solubility and low cytotoxicity as the fluorophore and developed a highly sensitive ratiometric probe QQD to identify SO2 and viscosity changes based on Förster resonance energy transfer/twisted intramolecular charge transfer (FRET/TICT) mechanism. Excitingly, compared with other probes for SO2 detection, QQD not only identified HSO3-/SO32- with a large Stokes shift (218 nm), low detection limit (1.87 μM), good selectivity, high energy transfer efficiency (92 %) and wide recognition range (1.87-200 μM), but also identified viscosity with a 26-fold fluorescence enhancement and good linearity. Crucially, QQD was applied to detect HSO3-/SO32- and viscosity in actual water and food samples. In addition, QQD had low toxicity and good photostability for imaging HSO3-/SO32- and viscosity in cells. These results confirmed the feasibility and reliability of QQD for HSO3-/SO32- and viscosity imaging and environmental detection. SIGNIFICANCE We reported a unique ratiometric probe QQD for detecting HSO3-/SO32- and viscosity based on the quinolinium skeleton. In addition to detecting HSO3-/SO32- and viscosity change in actual water and food samples, QQD could also monitor the variations of HSO3-/SO32- and viscosity in cells, which provided an experimental basis for further exploration of the role of SO2 derivatives and viscosity in biological systems.
Collapse
Affiliation(s)
- Feng-Ting Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, PR China
| | - Shu-Mei Zhai
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, PR China.
| | - Dong-Fang Gao
- Institute of Medical Sciences, The Second Hospital of Shandong University, Jinan, 250033, PR China
| | - Shu-Hao Yang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, PR China
| | - Bao-Xiang Zhao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, PR China
| | - Zhao-Min Lin
- Institute of Medical Sciences, The Second Hospital of Shandong University, Jinan, 250033, PR China.
| |
Collapse
|
7
|
Zhou Y, Gu J, Li J, Zhang H, Wang M, Li Y, Wang T, Wang J, Shi R. Obacunone, a Promising Phytochemical Triterpenoid: Research Progress on Its Pharmacological Activity and Mechanism. Molecules 2024; 29:1791. [PMID: 38675611 PMCID: PMC11054759 DOI: 10.3390/molecules29081791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/04/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Obacunone, a natural triterpenoid, is an active component of the herbs Dictamnus dasycarpus Turcz. and Phellodendron amurense Rupr, and an indicator of the herbs' quality. Owing to its multiple health benefits, several studies have investigated the multi-targeting potential action mechanisms of obacunone. To summarize recent developments on the pharmacological actions of obacunone and focus on the underlying molecular mechanisms and signaling networks, we searched PubMed, Europe PMC, Wiley Online Library, Web of Science, Google Scholar, Wanfang Medical Network, and China National Knowledge Infrastructure for articles published prior to March 2024. Existing research indicates obacunone has great potential to become a promising therapeutic option against tumors, fibrotic diseases, bone and cholesterol metabolism diseases, and infections of pathogenic microorganisms, among others. The paper contributes to providing up-to-date references for further research and clinical applications of obacunone.
Collapse
Affiliation(s)
- Yuyang Zhou
- Science and Technology Experimental Center, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.Z.); (J.L.); (H.Z.); (M.W.); (J.W.)
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science Center, College of Medicine, Memphis, TN 38163, USA
| | - Jifeng Gu
- Shanghai Key Laboratory of Bioactive Small Molecules, Fudan University, Shanghai 200032, China;
- Department of Pharmacy, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Jiahui Li
- Science and Technology Experimental Center, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.Z.); (J.L.); (H.Z.); (M.W.); (J.W.)
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Huishan Zhang
- Science and Technology Experimental Center, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.Z.); (J.L.); (H.Z.); (M.W.); (J.W.)
| | - Mei Wang
- Science and Technology Experimental Center, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.Z.); (J.L.); (H.Z.); (M.W.); (J.W.)
| | - Yuanyuan Li
- Department of Pharmacology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.L.); (T.W.)
| | - Tianming Wang
- Department of Pharmacology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.L.); (T.W.)
| | - Jiajie Wang
- Science and Technology Experimental Center, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.Z.); (J.L.); (H.Z.); (M.W.); (J.W.)
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200021, China
| | - Rong Shi
- Science and Technology Experimental Center, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.Z.); (J.L.); (H.Z.); (M.W.); (J.W.)
| |
Collapse
|
8
|
Andrianov VV, Kulchitsky VA, Yafarova GG, Bazan LV, Bogodvid TK, Deryabina IB, Muranova LN, Silantyeva DI, Arslanov AI, Paveliev MN, Fedorova EV, Filipovich TA, Nagibov AV, Gainutdinov KL. Investigation of NO Role in Neural Tissue in Brain and Spinal Cord Injury. Molecules 2023; 28:7359. [PMID: 37959778 PMCID: PMC10650517 DOI: 10.3390/molecules28217359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Nitric oxide (NO) production in injured and intact brain regions was compared by EPR spectroscopy in a model of brain and spinal cord injury in Wistar rats. The precentral gyrus of the brain was injured, followed by the spinal cord at the level of the first lumbar vertebra. Seven days after brain injury, a reduction in NO content of 84% in injured brain regions and 66% in intact brain regions was found. The difference in NO production in injured and uninjured brain regions persisted 7 days after injury. The copper content in the brain remained unchanged one week after modeling of brain and spinal cord injury. The data obtained in the experiments help to explain the problems in the therapy of patients with combined brain injury.
Collapse
Affiliation(s)
- Viacheslav V. Andrianov
- Zavoisky Physical-Technical Institute of the Russian Academy of Sciences, 420000 Kazan, Russia; (V.V.A.); (G.G.Y.); (L.V.B.)
- Department of Human and Animals, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420000 Kazan, Russia; (T.K.B.); (I.B.D.); (L.N.M.); (D.I.S.); (A.I.A.)
| | - Vladimir A. Kulchitsky
- Brain Center, Institute of Physiology, National Academy of Sciences, 220012 Minsk, Belarus; (V.A.K.); (E.V.F.); (T.A.F.); (A.V.N.)
| | - Guzel G. Yafarova
- Zavoisky Physical-Technical Institute of the Russian Academy of Sciences, 420000 Kazan, Russia; (V.V.A.); (G.G.Y.); (L.V.B.)
- Department of Human and Animals, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420000 Kazan, Russia; (T.K.B.); (I.B.D.); (L.N.M.); (D.I.S.); (A.I.A.)
| | - Leah V. Bazan
- Zavoisky Physical-Technical Institute of the Russian Academy of Sciences, 420000 Kazan, Russia; (V.V.A.); (G.G.Y.); (L.V.B.)
| | - Tatiana K. Bogodvid
- Department of Human and Animals, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420000 Kazan, Russia; (T.K.B.); (I.B.D.); (L.N.M.); (D.I.S.); (A.I.A.)
- Department of Biomedical Sciences, Volga Region State University of Physical Culture, Sport and Tourism, 420000 Kazan, Russia
| | - Irina B. Deryabina
- Department of Human and Animals, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420000 Kazan, Russia; (T.K.B.); (I.B.D.); (L.N.M.); (D.I.S.); (A.I.A.)
| | - Lyudmila N. Muranova
- Department of Human and Animals, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420000 Kazan, Russia; (T.K.B.); (I.B.D.); (L.N.M.); (D.I.S.); (A.I.A.)
| | - Dinara I. Silantyeva
- Department of Human and Animals, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420000 Kazan, Russia; (T.K.B.); (I.B.D.); (L.N.M.); (D.I.S.); (A.I.A.)
| | - Almaz I. Arslanov
- Department of Human and Animals, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420000 Kazan, Russia; (T.K.B.); (I.B.D.); (L.N.M.); (D.I.S.); (A.I.A.)
| | | | - Ekaterina V. Fedorova
- Brain Center, Institute of Physiology, National Academy of Sciences, 220012 Minsk, Belarus; (V.A.K.); (E.V.F.); (T.A.F.); (A.V.N.)
| | - Tatiana A. Filipovich
- Brain Center, Institute of Physiology, National Academy of Sciences, 220012 Minsk, Belarus; (V.A.K.); (E.V.F.); (T.A.F.); (A.V.N.)
| | - Aleksei V. Nagibov
- Brain Center, Institute of Physiology, National Academy of Sciences, 220012 Minsk, Belarus; (V.A.K.); (E.V.F.); (T.A.F.); (A.V.N.)
| | - Khalil L. Gainutdinov
- Zavoisky Physical-Technical Institute of the Russian Academy of Sciences, 420000 Kazan, Russia; (V.V.A.); (G.G.Y.); (L.V.B.)
- Department of Human and Animals, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420000 Kazan, Russia; (T.K.B.); (I.B.D.); (L.N.M.); (D.I.S.); (A.I.A.)
| |
Collapse
|
9
|
Toprak K, Kaplangöray M, Memioglu T, İnanır M, Biçer A, Demirbağ R, Erdoğdu H. The Relationship Between Nitrate-Induced Headache and -Blood Viscosity: An Observational Prospective Study. J Cardiovasc Pharmacol 2023; 82:162-168. [PMID: 37314267 DOI: 10.1097/fjc.0000000000001443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 05/27/2023] [Indexed: 06/15/2023]
Abstract
ABSTRACT Nitrates are one of the most prescribed medications in the treatment of angina pectoris today. Headache is the most common side effect of nitrates, and there is limited prospective data on the determinants of this effect. Our aim in this study is to open a foresight window for clinicians in clinical practice by explaining the possible relationship between nitrate-induced headache and whole-blood viscosity (WBV). After coronary revascularization treatment, 869 patients with angina who were prescribed nitrate preparations were divided into groups according to the development of headache or not and categorized according to the 4-grade scale level. Those who had no headache during nitrate use were graded as grade 0, those who felt mild headache were grade 1, those who felt moderate headache were grade 2, and those who described severe headache were graded as grade 3. The groups were compared according to WBV values. A total of 869 participants were included in the study. Most patients (82.1%) experienced some level of headache. Headache severity correlated with both WBV at high shear rate (r = 0.657; P < 0.001) and WBV at low shear rate (r = 0.687; P < 0.001). In multivariate analysis, WBV was determined as an independent predictor of headache experience. WBV predicted nitrate-induced headache with 75% sensitivity and 75% specificity at high shear rate and 77% sensitivity and 77% specificity at low shear rate. WBV seems to be one of the major determinants for nitrate-induced headache. WBV may be a guide for initiating alternative antianginal drugs without prescribing nitrates to the patient to increase patient compliance.
Collapse
Affiliation(s)
- Kenan Toprak
- Department of Cardiology, Faculty of Medicine, Harran University, Sanliurfa, Turkey
| | - Mustafa Kaplangöray
- Cardiology Department, Faculty of Medicine, Şeyh Edebali University, Bilecik, Turkey
| | - Tolga Memioglu
- Cardiology Department, Medical Faculty, Bolu Abant Izzet Baysal University, Bolu, Turkey; and
| | - Mehmet İnanır
- Cardiology Department, Medical Faculty, Bolu Abant Izzet Baysal University, Bolu, Turkey; and
| | - Asuman Biçer
- Department of Cardiology, Faculty of Medicine, Harran University, Sanliurfa, Turkey
| | - Recep Demirbağ
- Department of Cardiology, Faculty of Medicine, Harran University, Sanliurfa, Turkey
| | - Hamza Erdoğdu
- Department of Biostatistics, Faculty of Medicine, Harran University, Sanliurfa, Turkey
| |
Collapse
|
10
|
Cheung MC, Lee TL, Sze SL, Chan AS. Photobiomodulation improves frontal lobe cognitive functions and mental health of older adults with non-amnestic mild cognitive impairment: Case studies. Front Psychol 2023; 13:1095111. [PMID: 36704674 PMCID: PMC9871821 DOI: 10.3389/fpsyg.2022.1095111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023] Open
Abstract
Introduction This study investigated the effects of transcranial photobiomodulation (tPBM) on improving the frontal lobe cognitive functions and mental health of older adults. Methods Three older adults with mild cognitive impairment (MCI) of the non-amnestic type received 18-session tPBM stimulation for 9 weeks and were assessed with neuropsychological tests of memory and executive functions and standardized questionnaires on depressive and anxiety symptoms, global cognitive functions, and daily functioning abilities before and after tPBM stimulation. Results At baseline, their intrusion and/or perseveration errors in a verbal memory test and a fluency test, as measures of the frontal lobe cognitive functions, were in the borderline to severely impaired range at baseline. After tPBM stimulation, the three older adults showed various levels of improvement in their frontal lobe cognitive functions. One older adult's intrusion and perseveration errors improved from the <1st-2nd percentile (moderately to severely impaired range) to the 41st-69th percentile (average range), another older adult's intrusion errors improved from the 11th percentile to the 83rd percentile, and the third older adult's intrusion errors improved from the 5th percentile to the 56th percentile. Moreover, improvements in their anxiety and/or depressive symptoms were also observed. One older adult's depressive and anxiety symptoms improved from the severe range at baseline to the mild range after the intervention. The other two older adults' depressive symptoms improved from the mild range at baseline to the normal range after the intervention. Discussion These findings provide preliminary support for the potential of tPBM to improve the frontal lobe cognitive functions and mental health of older adults with MCI. Given the small sample size of only three older adults and the absence of a placebo control group, larger randomized controlled studies are needed to confirm its potential.
Collapse
Affiliation(s)
- Mei-Chun Cheung
- Department of Social Work, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China,Research Center for Neuropsychological Well-Being, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Tsz-Lok Lee
- Research Center for Neuropsychological Well-Being, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China,Neuropsychology Laboratory, Department of Psychology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Sophia L. Sze
- Research Center for Neuropsychological Well-Being, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China,Neuropsychology Laboratory, Department of Psychology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Agnes S. Chan
- Research Center for Neuropsychological Well-Being, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China,Neuropsychology Laboratory, Department of Psychology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China,*Correspondence: Agnes S. Chan, ✉
| |
Collapse
|
11
|
Chigogidze M, Mantskava M, Sanikidze T, Pagava Z, Urdulashvili T, Tsimakuridze M, Momtselidze N, Sharashidze N. Study of blood rheological parameters and NO in coronary artery disease patients with and without collaterals. Clin Hemorheol Microcirc 2023; 84:193-203. [PMID: 37066905 DOI: 10.3233/ch-231745] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
BACKGROUND In coronary artery disease (CAD), an alternative way of improvement of blood circulation in the ischemic area of the myocardium is coronary collateral circulation. Our study aimed to investigate the rheological parameters of blood and nitric oxide (NO) content in patients with various degrees of collateral development and the likelihood of the influence of blood fluidity on collateral angiogenesis. METHODS We studied patients with stable CAD who underwent elective coronary angiography and a control group with the same mean age. We investigated patients with different degrees of developing collaterals and those without them. In studied patients, the blood plasma viscosity, aggregability, and deformability of erythrocytes, as the main indicators of blood rheology. We recorded content of stable metabolic end products of nitric oxide (NOx). RESULTS Results of the studies showed that in the blood of studied patients with CAD erythrocyte aggregation was increased and NO content decreased compared to the control level; NO content was as lower, as less was the number of developed collaterals was recorded. CONCLUSION In this work, the role of the aggregation ability of erythrocytes and the endothelial origin of NO in the direct and feedback regulatory mechanism of angiogenesis in patients with CAD are discussed.
Collapse
Affiliation(s)
- Maia Chigogidze
- Faculty of Medicine, Ivane Javakhishvili Tbilisi State University. Tbilisi, Georgia
| | - Maia Mantskava
- Laboratory of Rheology and Diagnosti Analytical Services, Ivane Beritashvili Center of Experimental Biomedicine, Tbilisi, Georgia
- Department of Clinical Research, Multidisciplinary Science High School, Tbilisi, Georgia
| | - Tamar Sanikidze
- Department of Physics, Biophysics, Biomechanics and IT Technologies, Tbilisi State Medical University, Tbilisi, Georgia
| | - Zurab Pagava
- Department of Cardiopulmonary, Bokhua Memorial Cardiovascular Clinic, Tbilisi, Georgia
| | - Tamar Urdulashvili
- Laboratory of Rheology and Diagnosti Analytical Services, Ivane Beritashvili Center of Experimental Biomedicine, Tbilisi, Georgia
- Department of Clinical Research, Multidisciplinary Science High School, Tbilisi, Georgia
| | - Marina Tsimakuridze
- Department of Nutrition, Aging Medicine, Environmental and Occupational Health, Tbilisi State Medical University, Tbilisi, Georgia
| | - Nana Momtselidze
- Laboratory of Rheology and Diagnosti Analytical Services, Ivane Beritashvili Center of Experimental Biomedicine, Tbilisi, Georgia
- Department of Medicine, UNIK-Kutaisi University, Kutaisi, Georgia
| | - Nino Sharashidze
- Faculty of Medicine, Ivane Javakhishvili Tbilisi State University. Tbilisi, Georgia
| |
Collapse
|
12
|
Suvorava T, Metry S, Pick S, Kojda G. Alterations in endothelial nitric oxide synthase activity and their relevance to blood pressure. Biochem Pharmacol 2022; 205:115256. [DOI: 10.1016/j.bcp.2022.115256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 12/15/2022]
|
13
|
Kondengadan SM, Bansal S, Yang C, Liu D, Fultz Z, Wang B. Click chemistry and drug delivery: A bird’s-eye view. Acta Pharm Sin B 2022; 13:1990-2016. [DOI: 10.1016/j.apsb.2022.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/12/2022] [Accepted: 10/12/2022] [Indexed: 11/01/2022] Open
|
14
|
Pereira SS, Yeldo B, Aladangady N. Methaemoglobinaemia associated with use of glyceryl trinitrate patches in an extremely preterm infant. J Paediatr Child Health 2022; 58:1862-1863. [PMID: 35474378 PMCID: PMC9790526 DOI: 10.1111/jpc.15996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/11/2022] [Indexed: 12/30/2022]
Affiliation(s)
- Sujith S. Pereira
- Neonatal UnitHomerton University Hospital, Homerton Healthcare NHS Foundation TrustLondonUnited Kingdom,Centre for Genomics and Child Health, Blizard Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUnited Kingdom
| | - Beena Yeldo
- Neonatal UnitHomerton University Hospital, Homerton Healthcare NHS Foundation TrustLondonUnited Kingdom
| | - Narendra Aladangady
- Neonatal UnitHomerton University Hospital, Homerton Healthcare NHS Foundation TrustLondonUnited Kingdom,Centre for Genomics and Child Health, Blizard Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUnited Kingdom
| |
Collapse
|
15
|
Emami Kazemabad MJ, Asgari Toni S, Tizro N, Dadkhah PA, Amani H, Akhavan Rezayat S, Sheikh Z, Mohammadi M, Alijanzadeh D, Alimohammadi F, Shahrokhi M, Erabi G, Noroozi M, Karimi MA, Honari S, Deravi N. Pharmacotherapeutic potential of pomegranate in age-related neurological disorders. Front Aging Neurosci 2022; 14:955735. [PMID: 36118710 PMCID: PMC9476556 DOI: 10.3389/fnagi.2022.955735] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/13/2022] [Indexed: 11/24/2022] Open
Abstract
Age-related neurological disorders [AND] include neurodegenerative diseases [NDDs] such as Alzheimer's disease [AD] and Parkinson's disease [PD], which are the most prevalent types of dementia in the elderly. It also includes other illnesses such as migraine and epilepsy. ANDs are multifactorial, but aging is their major risk factor. The most frequent and vital pathological features of AND are oxidative stress, inflammation, and accumulation of misfolded proteins. As AND brain damage is a significant public health burden and its incidence is increasing, much has been done to overcome it. Pomegranate (Punica granatum L.) is one of the polyphenol-rich fruits that is widely mentioned in medical folklore. Pomegranate is commonly used to treat common disorders such as diarrhea, abdominal pain, wound healing, bleeding, dysentery, acidosis, microbial infections, infectious and noninfectious respiratory diseases, and neurological disorders. In the current review article, we aimed to summarize the data on the pharmacotherapeutic potentials of pomegranate in ANDs.
Collapse
Affiliation(s)
| | - Sara Asgari Toni
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Tizro
- School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Parisa Alsadat Dadkhah
- Student Research Committee, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hanieh Amani
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shima Akhavan Rezayat
- Student Research Committee, Faculty of Medicine, Islamic Azad University of Mashhad, Mashhad, Iran
| | - Zahra Sheikh
- Student Research Committee, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Mohammad Mohammadi
- Student Research Committee, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Dorsa Alijanzadeh
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farnoosh Alimohammadi
- Student Research Committee, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Gisou Erabi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Masoud Noroozi
- Department of Biomedical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
| | - Mohammad Amin Karimi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Honari
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Niloofar Deravi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Zhou SW, Wang J, Chen SY, Ren KF, Wang YX, Ji J. The substrate stiffness at physiological range significantly modulates vascular cell behavior. Colloids Surf B Biointerfaces 2022; 214:112483. [PMID: 35366576 DOI: 10.1016/j.colsurfb.2022.112483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/15/2022] [Accepted: 03/23/2022] [Indexed: 10/18/2022]
Abstract
Changes in the stiffness of the cellular microenvironment are involved in many pathological processes of blood vessels. Substrate stiffness has been shown to have extensive effects on vascular endothelial cells (VECs) and vascular smooth muscle cells (VSMCs). However, the material stiffness of most previously reported in-vitro models is ranging from ~100 kPa to the magnitude of MPa, which does not match the mechanical properties of natural vascular tissue (10-100 kPa). Herein, we constructed hydrogel substrates with the stiffness of 18-86 kPa to explore the effect of physiological stiffness on vascular cells. Our findings show that, with the increase of stiffness at the physiological range, the cell adhesion and proliferation behaviors of VECs and VSMCs are significantly enhanced. On the soft substrate, VECs express more nitric oxide (NO), and VSMCs tend to maintain a healthy contraction phenotype. More importantly, we find that the number of differentially expressed genes in cells cultured between 18 kPa and 86 kPa substrates (560 in VECs, 243 in VSMCs) is significantly higher than that between 86 kPa and 333 kPa (137 in VECs, 172 in VSMCs), indicating that a small increase in stiffness within the physiological range have a higher impact on vascular cell behaviors. Overall, our results expanded the exploration of how stiffness affects the behavior of vascular cells at the physiological range.
Collapse
Affiliation(s)
- Sheng-Wen Zhou
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jing Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Sheng-Yu Chen
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China
| | - Ke-Feng Ren
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China; Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China.
| | - You-Xiang Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jian Ji
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China; Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China
| |
Collapse
|
17
|
Liu FT, Li N, Chen YS, Yu HY, Miao JY, Zhao BX. A quinoline-coumarin near-infrared ratiometric fluorescent probe for detection of sulfur dioxide derivatives. Anal Chim Acta 2022; 1211:339908. [DOI: 10.1016/j.aca.2022.339908] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/24/2022] [Accepted: 05/02/2022] [Indexed: 02/07/2023]
|
18
|
Tocantins C, Diniz MS, Grilo LF, Pereira SP. The birth of cardiac disease: Mechanisms linking gestational diabetes mellitus and early onset of cardiovascular disease in offspring. WIREs Mech Dis 2022; 14:e1555. [PMID: 35304833 DOI: 10.1002/wsbm.1555] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 02/10/2022] [Accepted: 03/09/2022] [Indexed: 12/12/2022]
Abstract
Cardiovascular disease (CVD) is the biggest killer worldwide, composing a major economic burden for health care systems. Obesity and diabetes are dual epidemics on the rise and major risk factors predisposing for CVD. Increased obesity- and diabetes-related incidence is now observed among children, adolescents, and young adults. Gestational diabetes mellitus (GDM) is the most common metabolic pregnancy disorder, and its prevalence is rapidly increasing. During pregnancies complicated by GDM, the offspring are exposed to a compromised intrauterine environment characterized by hyperglycemic periods. Unfavorable in utero conditions at critical periods of fetal cardiac development can produce developmental adaptations that remodel the cardiovascular system in a way that can contribute to adult-onset of heart disease due to the programming during fetal life. Epidemiological studies have reported increased cardiovascular complications among GDM-descendants, highlighting the urgent need to investigate and understand the mechanisms modulated during fetal development of in utero GDM-exposed offspring that predispose an individual to increased CVD during life. In this manuscript, we overview previous studies in this area and gather evidence linking GDM and CVD development in the offspring, providing new insights on novel mechanisms contributing to offspring CVD programming by GDM, from the role of maternal-fetal interactions to their impact on fetal cardiovascular development, how the perpetuation of cardiac programming is maintained in postnatal life, and advance the intergenerational implications contributing to increased CVD premature origin. Understanding the perpetuation of CVD can be the first step to manage and reverse this leading cause of morbidity and mortality. This article is categorized under: Reproductive System Diseases > Molecular and Cellular Physiology Cardiovascular Diseases > Molecular and Cellular Physiology Metabolic Diseases > Genetics/Genomics/Epigenetics.
Collapse
Affiliation(s)
- Carolina Tocantins
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Mariana S Diniz
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Luís F Grilo
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,PhD Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - Susana P Pereira
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,Laboratory of Metabolism and Exercise (LametEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sport, University of Porto, Porto, Portugal
| |
Collapse
|
19
|
Alimoradi H, Thomas A, Lyth DDB, Barzegar-Fallah A, Matikonda SS, Gamble AB, Giles GI. SMA-BmobaSNO: an intelligent photoresponsive nitric oxide releasing polymer for drug nanoencapsulation and targeted delivery. NANOTECHNOLOGY 2022; 33:195101. [PMID: 35078165 DOI: 10.1088/1361-6528/ac4eb0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Nitric oxide (NO) is an important biological signalling molecule that acts to vasodilate blood vessels and change the permeability of the blood vessel wall. Due to these cardiovascular actions, co-administering NO with a therapeutic could enhance drug uptake. However current NO donors are not suitable for targeted drug delivery as they systemically release NO. To overcome this limitation we report the development of a smart polymer, SMA-BmobaSNO, designed to release NO in response to a photostimulus. The polymer's NO releasing functionality is an S-nitrosothiol group that, at 10 mg ml-1, is highly resistant to both thermal (t1/216 d) and metabolic (t1/232 h) decomposition, but rapidly brakes down under photoactivation (2700 W m-2, halogen source) to release NO (t1/225 min). Photoresponsive NO release from SMA-BmobaSNO was confirmed in a cardiovascular preparation, where irradiation resulted in a 12-fold decrease in vasorelaxation EC50(from 5.2μM to 420 nM). To demonstrate the polymer's utility for drug delivery we then used SMA-BmobaSNO to fabricate a nanoparticle containing the probe Nile Red (NR). The resulting SMA-BmobaSNO-NR nanoparticle exhibited spherical morphology (180 nm diameter) and sustained NR release (≈20% over 5 d). Targeted delivery was characterised in an abdominal preparation, where photoactivation (450 W m-2) caused localized increases in vasodilation and blood vessel permeability, resulting in a 3-fold increase in NR uptake into photoactivated tissue. Nanoparticles fabricated from SMA-BmobaSNO therefore display highly photoresponsive NO release and can apply the Trojan Horse paradigm by using endogenous NO signalling pathways to smuggle a therapeutic cargo into target tissue.
Collapse
Affiliation(s)
- Houman Alimoradi
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Ansa Thomas
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Daniel D B Lyth
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | | | | | - Allan B Gamble
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - Gregory I Giles
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
20
|
Cavalcanti ALDM, Rocha PKL, Zhuge Z, Paulo LL, Mendes-Júnior LDG, Brandão MCR, Athayde-Filho PF, Lundberg JO, Weitzberg E, Carlström M, Braga VDA, Montenegro MF. Cardiovascular characterization of the novel organic mononitrate NDIBP in rats. Nitric Oxide 2022; 119:50-60. [PMID: 34958954 DOI: 10.1016/j.niox.2021.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 11/17/2022]
Abstract
Organic nitrates are widely used to restore endogenous nitric oxide (NO) levels reduced by endothelial nitric oxide synthase dysfunction. However, these drugs are associated with undesirable side effects, including tolerance. This study aims to investigate the cardiovascular effects of the new organic nitrate 1,3-diisobutoxypropan-2-yl nitrate (NDIBP). Specifically, we assessed its effects on blood pressure, vascular reactivity, acute toxicity, and the ability to induce tolerance. In vitro and ex vivo techniques showed that NDIBP released NO both in a cell-free system and in isolated mesenteric arteries preparations through a process catalyzed by xanthine oxidoreductase. NDIBP also evoked endothelium-independent vasorelaxation, which was significantly attenuated by 2-phenyl-4,4,5,5,-tetramethylimidazoline-1-oxyl 3-oxide (PTIO, 300 μM), a nitric oxide scavenger; 1-H-[1,2,4] oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ, 10 μM), a soluble guanylyl cyclase inhibitor; tetraethylammonium (TEA, 3 mM), a potassium channel blocker; febuxostat (500 nM), a xanthine oxidase inhibitor; and proadifen (10 μM), an inhibitor of cytochrome P450 enzyme. Furthermore, this organic nitrate did not induce tolerance in isolated vessels and presented low toxicity following acute oral administration. In vivo changes on cardiovascular parameters were assessed using normotensive and renovascular hypertensive rats. NDIBP evoked a reduction of blood pressure that was significantly higher in hypertensive animals. Our results suggest that NDIBP acts as a NO donor, inducing blood pressure reduction without having the undesirable effects of tolerance. Those effects seem to be mediated by activation of NO-sGC-cGMP pathway and positive modulation of K+ channels in vascular smooth muscle.
Collapse
Affiliation(s)
| | - Patrícia Keytth Lins Rocha
- Biotechnology Center, Federal University of Paraíba, Cidade Universitária, 58051970, João Pessoa, PB, Brazil
| | - Zhengbing Zhuge
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Luciano Leite Paulo
- Biotechnology Center, Federal University of Paraíba, Cidade Universitária, 58051970, João Pessoa, PB, Brazil
| | | | | | - Petrônio F Athayde-Filho
- Department of Chemistry, Federal University of Paraíba, Cidade Universitária, 58059900, João Pessoa, PB, Brazil
| | - Jon O Lundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Eddie Weitzberg
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Mattias Carlström
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Valdir de Andrade Braga
- Biotechnology Center, Federal University of Paraíba, Cidade Universitária, 58051970, João Pessoa, PB, Brazil.
| | - Marcelo F Montenegro
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 65, Stockholm, Sweden
| |
Collapse
|
21
|
Woolston E, Tang Y, Azizi S, Kando I, Chamley L, Stone P, Chen Q. Comparison of the effects on maternal endothelial cell activation: an in vitro study of anti-hypertensive drugs clinically used in pre-eclampsia. J Hum Hypertens 2022; 36:192-200. [PMID: 33686209 DOI: 10.1038/s41371-021-00497-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 01/20/2021] [Accepted: 01/27/2021] [Indexed: 02/06/2023]
Abstract
Endothelial cell dysfunction in pregnancy, which can be induced by placental factors, is the fundamental component of the pathogenesis of pre-eclampsia. The dysfunctional vascular endothelium disrupts the balance of vasodilatory and vasoconstrictive factors, resulting in increasing blood pressure. There is currently no effective treatment for pre-eclampsia and effective control of hypertension may reduce neonatal morbidity and mortality by prolonging gestation, especially in cases of early onset disease. To date methyldopa, labetalol, nifedipine and metoprolol are recommended for controlling blood pressure in pre-eclampsia. All of these drugs have different mechanisms of action. In this in vitro study we investigated whether different types of anti-hypertensive drugs could have different effects on improving maternal endothelial cell dysfunction. Endothelial cells (HMEC-1) were exposed to phorbol-12-myristate-13-acetate (PMA) or pre-eclamptic sera or extracellular vesicles (EVs) derived from pre-eclamptic placentae, in the presence of each of the studied anti-hypertensive drugs (methyldopa, labetalol, nifedipine and metoprolol) or placebo for 24 h. Endothelial cell-surface adhesion molecule (ICAM-1) and monocyte adhesion were measured. The expression of cell-face ICAM-1 by HMEC-1 cells and THP-1 monocyte adherent to HMEC-1 that were exposed to three separate well-known activators of endothelial cells in the presence of four anti-hypertensive drugs was significantly reduced regardless of the dose. However, the effect on the reduction of ICAM-1 expression and monocyte adhesion was not significantly different between the four medications. Our data suggest that the beneficial effect on improving endothelial cell function by these commonly prescribed anti-hypertensive drugs is seemingly independent of the anti-hypertensive mechanisms of the medication.
Collapse
Affiliation(s)
- Esther Woolston
- Department of Obstetrics and Gynaecology, The University of Auckland, Auckland, New Zealand
| | - Yunhui Tang
- The Hospital of Obstetrics and Gynaecology, Fudan University, Shanghai, China. .,National Women's Health, Auckland City Hospital, Auckland, New Zealand.
| | - Sonia Azizi
- National Women's Health, Auckland City Hospital, Auckland, New Zealand
| | - Ian Kando
- National Women's Health, Auckland City Hospital, Auckland, New Zealand
| | - Larry Chamley
- Department of Obstetrics and Gynaecology, The University of Auckland, Auckland, New Zealand
| | - Peter Stone
- Department of Obstetrics and Gynaecology, The University of Auckland, Auckland, New Zealand
| | - Qi Chen
- Department of Obstetrics and Gynaecology, The University of Auckland, Auckland, New Zealand.,The Hospital of Obstetrics and Gynaecology, Fudan University, Shanghai, China
| |
Collapse
|
22
|
Zhong Y, Zhang Z, Chen X. Inhibition of miR-21 improves pulmonary vascular responses in bronchopulmonary dysplasia by targeting the DDAH1/ADMA/NO pathway. Open Med (Wars) 2022; 17:1949-1964. [PMID: 36561848 PMCID: PMC9743197 DOI: 10.1515/med-2022-0584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 09/07/2022] [Accepted: 10/02/2022] [Indexed: 12/14/2022] Open
Abstract
miR-21 has been confirmed to be overexpressed in neonatal rat lungs with hyperoxia-mediated bronchopulmonary dysplasia (BPD). The specific function of miR-21 in BPD is still unclear. We established the hyperoxia-induced BPD rat model in vivo and the hyperoxia-induced pulmonary microvascular endothelial cells (PMVECs) model in vitro. Transwell assay was utilized to detect the migratory capability of PMVECs. Tube formation assay was utilized to measure angiogenesis ability. ELISA was utilized to test nitric oxide (NO) production and the intracellular and extracellular Asymmetric Dimethylarginine (ADMA) concentration. Furthermore, the interaction between miR-21 and dimethylarginine dimethylaminohydrolase 1 (DDAH1) was evaluated using luciferase reporter assay. We found that miR-21 expression in PMVECs was increased by hyperoxia stimulation. Inhibition of miR-21 improved the migratory and angiogenic activities of PMVECs and overexpression of miR-21 exerted the opposite effects. Furthermore, knockdown of miR-21 increased NO production and decreased intracellular and extracellular ADMA concentration in hyperoxia-treated PMVECs. Next we proved that miR-21 could bind to DDAH1 and negatively regulate its expression. Rescues assays showed that DDAH1 knockdown reversed the effects of miR-21 depletion on hyperoxia-mediated PMVEC functions, NO production, and ADMA concentration. Importantly, miR-21 downregulation restored alveolarization and vascular density in BPD rats. This study demonstrates that inhibition of miR-21 improves pulmonary vascular responses in BPD by targeting the DDAH1/ADMA/NO pathway.
Collapse
Affiliation(s)
- Ying Zhong
- Department of Child Health Care, The First Affiliated Hospital of Nanjing Medical University, 368 Jiangdong North Road, Nanjing 210036, Jiangsu, China
| | - Zhiqun Zhang
- Department of Neonatology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
| | - Xiaoqing Chen
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210036, Jiangsu, China
| |
Collapse
|
23
|
Lee HM, Choi JW, Choi MS. Role of Nitric Oxide and Protein S-Nitrosylation in Ischemia-Reperfusion Injury. Antioxidants (Basel) 2021; 11:57. [PMID: 35052559 PMCID: PMC8772765 DOI: 10.3390/antiox11010057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/06/2021] [Accepted: 12/24/2021] [Indexed: 12/19/2022] Open
Abstract
Ischemia-reperfusion injury (IRI) is a process in which damage is induced in hypoxic tissue when oxygen supply is resumed after ischemia. During IRI, restoration of reduced nitric oxide (NO) levels may alleviate reperfusion injury in ischemic organs. The protective mechanism of NO is due to anti-inflammatory effects, antioxidant effects, and the regulation of cell signaling pathways. On the other hand, it is generally known that S-nitrosylation (SNO) mediates the detrimental or protective effect of NO depending on the action of the nitrosylated target protein, and this is also applied in the IRI process. In this review, the effect of each change of NO and SNO during the IRI process was investigated.
Collapse
Affiliation(s)
- Hyang-Mi Lee
- College of Pharmacy, Dongduk Women’s University, Seoul 02748, Korea;
| | - Ji Woong Choi
- College of Pharmacy, Gachon University, Incheon 21936, Korea
| | - Min Sik Choi
- Laboratory of Pharmacology, College of Pharmacy, Dongduk Women’s University, Seoul 02748, Korea
| |
Collapse
|
24
|
Wang T, Zhu G, Qin L, Wang Q, She C, Xu D, Hu W, Luo K, Lei Y, Gong Y, Ghosh A, Ma D, Ding CL, Wang BY, Guo Y, Ma SS, Hattori M, Takagi Y, Ara K, Higuchi K, Li X, He L, Bai W, Ishida K, Li ST. Kininogen-Nitric Oxide Signaling at Nearby Nonexcited Acupoints after Long-Term Stimulation. JID INNOVATIONS 2021; 1:100038. [PMID: 34909734 PMCID: PMC8659396 DOI: 10.1016/j.xjidi.2021.100038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 11/26/2022] Open
Abstract
Acupuncture treatment is based on acupoint stimulation; however, the biological basis is not understood. We stimulated one acupoint with catgut embedding for 8 weeks and then used isobaric tags for relative and absolute quantitation to screen proteins with altered expression in adjacent acupoints of Sprague Dawley rats. We found that kininogen expression was significantly upregulated in the stimulated and the nonstimulated adjacent acupoints along the same meridian. The enhanced kininogen expression was meridian dependent and was most apparent among small vessels in the subcutaneous layer. Enhanced signals of nitric oxide synthases, cGMP-dependent protein kinase, and myosin light chain were also observed at the nonstimulated adjacent acupoints along the same meridian. These findings uncover biological changes at acupoints and suggest the critical role of the kininogen–nitric oxide signaling pathway in acupoint activation.
Collapse
Affiliation(s)
- Ting Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China.,Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China.,Kao China Research and Development Center, Shanghai, China
| | - Geng Zhu
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China.,Department of Biomedical Engineering, School of Medical Instrument, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Liyue Qin
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China.,Kao China Research and Development Center, Shanghai, China
| | - Qian Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Chen She
- Kao China Research and Development Center, Shanghai, China
| | - Dongsheng Xu
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Weiwei Hu
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Kenghuo Luo
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Ying Lei
- Kao China Research and Development Center, Shanghai, China
| | - Yanling Gong
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Arijit Ghosh
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Dongni Ma
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Chun-Lei Ding
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Bu-Yi Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Yang Guo
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Shou-Shan Ma
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | | | - Yutaka Takagi
- Kao China Research and Development Center, Shanghai, China
| | - Katsutoshi Ara
- Kao China Research and Development Center, Shanghai, China
| | | | - Xingwang Li
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Lin He
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Wanzhu Bai
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Koichi Ishida
- Kao China Research and Development Center, Shanghai, China
| | - Sheng-Tian Li
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China.,Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
25
|
Freitag L, Lindenbauer L, Oppel M, González L. A Density Matrix Renormalization Group Study of the Low-Lying Excited States of a Molybdenum Carbonyl-Nitrosyl Complex. Chemphyschem 2021; 22:2371-2377. [PMID: 34495578 PMCID: PMC9292996 DOI: 10.1002/cphc.202100549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/06/2021] [Indexed: 11/07/2022]
Abstract
A density matrix renormalization group-self consistent field (DMRG-SCF) study has been carried out to calculate the low-lying excited states of CpMo(CO)2 NO, a molybdenum complex containing NO and CO ligands. In order to automatically select an appropriate active space, a novel procedure employing the maximum single-orbital entropy for several states has been introduced and shown to be efficient and easy-to-implement when several electronic states are simultaneously considered. The analysis of the resulting natural transition orbitals and charge-transfer numbers shows that the lowest five excited electronic states are excitation into metal-NO antibonding orbitals, which offer the possibility for nitric oxide (NO) photorelease after excitation with visible light. Higher excited states are metal-centered excitations with contributions of metal-CO antibonding orbitals, which may serve as a gateway for carbon monoxide (CO) delivery. Time-dependent density functional theory calculations done for comparison, show that the state characters agree remarkably well with those from DMRG-SCF, while excitation energies are 0.4-1.0 eV red-shifted with respect to the DMRG-SCF ones.
Collapse
Affiliation(s)
- Leon Freitag
- Institute of Theoretical ChemistryFaculty of ChemistryUniversity of ViennaWähringer Str. 171090ViennaAustria
| | - Leopold Lindenbauer
- Institute of Theoretical ChemistryFaculty of ChemistryUniversity of ViennaWähringer Str. 171090ViennaAustria
| | - Markus Oppel
- Institute of Theoretical ChemistryFaculty of ChemistryUniversity of ViennaWähringer Str. 171090ViennaAustria
| | - Leticia González
- Institute of Theoretical ChemistryFaculty of ChemistryUniversity of ViennaWähringer Str. 171090ViennaAustria
- Vienna Research Platform on Accelerating Photoreaction DiscoveryUniversity of ViennaWähringer Str. 171090ViennaAustria
| |
Collapse
|
26
|
Kolbert Z, Lindermayr C. Computational prediction of NO-dependent posttranslational modifications in plants: Current status and perspectives. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:851-861. [PMID: 34536898 DOI: 10.1016/j.plaphy.2021.09.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/04/2021] [Accepted: 09/08/2021] [Indexed: 05/11/2023]
Abstract
The perception and transduction of nitric oxide (NO) signal is achieved by NO-dependent posttranslational modifications (PTMs) among which S-nitrosation and tyrosine nitration has biological significance. In plants, 100-1000 S-nitrosated and tyrosine nitrated proteins have been identified so far by mass spectrometry. The determination of NO-modified protein targets/amino acid residues is often methodologically challenging. In the past decade, the growing demand for the knowledge of S-nitrosated or tyrosine nitrated sites has motivated the introduction of bioinformatics tools. For predicting S-nitrosation seven computational tools have been developed (GPS-SNO, SNOSite, iSNO-PseACC, iSNO-AAPAir, PSNO, PreSNO, RecSNO). Four predictors have been developed for indicating tyrosine nitration sites (GPS-YNO2, iNitro-Tyr, PredNTS, iNitroY-Deep), and one tool (DeepNitro) predicts both NO-dependent PTMs. The advantage of these computational tools is the fast provision of large amount of information. In this review, the available software tools have been tested on plant proteins in which S-nitrosated or tyrosine nitrated sites have been experimentally identified. The predictors showed distinct performance and there were differences from the experimental results partly due to the fact that the three-dimensional protein structure is not taken into account by the computational tools. Nevertheless, the predictors excellently establish experiments, and it is suggested to apply all available tools on target proteins and compare their results. In the future, computational prediction must be developed further to improve the precision with which S-nitrosation/tyrosine nitration-sites are identified.
Collapse
Affiliation(s)
- Zsuzsanna Kolbert
- Department of Plant Biology, University of Szeged, Közép fasor 52, 6726, Szeged, Hungary.
| | - Christian Lindermayr
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstr. 1, D-85764, Oberschleißheim, München, Germany.
| |
Collapse
|
27
|
Minhas R, Bansal Y. Inhibition of iNOS by Benzimidazole Derivatives: Synthesis, Docking, and Biological Evaluations. Med Chem 2021; 18:602-615. [PMID: 34579637 DOI: 10.2174/1573406417666210927123137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/17/2021] [Accepted: 08/31/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Inducible nitric Oxide Synthase (iNOS) plays a key role in the progression of inflammatory diseases by accelerating the production of NO, which makes it an intriguing target to treat inflammation in complex diseases. Therefore, the search is on to develop molecules as selective iNOS inhibitors. OBJECTIVE The present work was aimed to design, synthesize and evaluate benzimidazole-coumarin coupled molecules as anti-iNOS agents through in silico and pharmacological studies. METHODS A critical study of literature reports on iNOS inhibitors led to the selection of a (un)substituted coumarin nucleus, 2-aminobenzimidazole, and a 4-atom linker as important structural components for iNOS inhibition. Two series of compounds (7-16 and 17-26) were designed and synthesized by coupling these components. The compounds were subjected to docking using iNOS (1QW4) and nNOS (1QW6) as targets. All compounds were evaluated for NO and iNOS inhibitory activities in vitro. The selected compound was finally evaluated for anti-inflammatory activity in vivo using the carrageenan-induced rat paw edema model. RESULTS All compounds showed moderate to good inhibition of NO and iNOS in vitro. Compound 12 was the most potent inhibitor of NO and iNOS. Hence, it was evaluated in vivo for toxicity and anti-inflammatory activity. It was found to be safe in acute toxicity studies, and effective in reducing the rat paw edema significantly. Its anti-inflammatory behaviour was similar to that of aminoguanidine, which is a selective iNOS inhibitor. CONCLUSION The newly synthesized benzimidazole-coumarin hybrids may serve as potential leads for the development of novel anti-iNOS agents.
Collapse
Affiliation(s)
- Richa Minhas
- Department of Pharmaceutical Sciences and Drug Research Punjabi University, Patiala. India
| | - Yogita Bansal
- Department of Pharmaceutical Sciences and Drug Research Punjabi University, Patiala. India
| |
Collapse
|
28
|
Danolić MJ, Perković D, Petrić M, Barišić I, Gugo K, Božić J. Adropin Serum Levels in Patients with Primary Sjögren's Syndrome. Biomolecules 2021; 11:biom11091296. [PMID: 34572509 PMCID: PMC8466460 DOI: 10.3390/biom11091296] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/25/2021] [Accepted: 08/28/2021] [Indexed: 12/20/2022] Open
Abstract
Primary Sjögren’s syndrome (pSS) patients have higher prevalence of endothelial dysfunction and premature atherosclerosis. Recent studies investigated adropin, a secretory protein that can regulate lipid metabolism and insulin resistance and protect endothelial cells’ function and that has an anti-inflammatory effect. The aim of this study was to determine adropin levels in pSS patients compared to healthy controls. Additional goals were exploring the correlation between adropin and several metabolic and immunological parameters in pSS, including disease specific antibodies, EULAR Sjögren’s Syndrome Disease Activity Index (ESSDAI), and Sjögren’s Syndrome Disease Damage Index (SSDDI). This research included 52 pSS patients and 52 healthy controls. pSS patients have significantly higher adropin levels compared to the control group (3.76 ± 0.68 vs. 3.14 ± 0.69 ng/mL, p < 0.001). Correlation analysis showed that adropin levels in pSS patients have positive correlation with high-density lipoprotein (HDL) (r = 0.290, p = 0.036) and anti SSA/Ro52 antibodies (r = 0.307, p = 0.026) and negative correlation with SSDDI (r = −0.401, p = 0.003). Multivariant linear regression showed that adropin levels are independently associated with HDL (β ± SE, 0.903 ± 0.283, p = 0.002) and SSDDI (β ± SE, −0.202 ± 0.073, p = 0.008). Our findings imply that adropin could be involved in the pathophysiology of pSS, yet it remains to be elucidated in future studies whether adropin has a protective or detrimental role in this setting.
Collapse
Affiliation(s)
| | - Dijana Perković
- Department of Internal Medicine, Division of Clinical Immunology and Rheumatology, University Hospital of Split, 21000 Split, Croatia; (D.P.); (M.P.)
| | - Marin Petrić
- Department of Internal Medicine, Division of Clinical Immunology and Rheumatology, University Hospital of Split, 21000 Split, Croatia; (D.P.); (M.P.)
| | - Igor Barišić
- Department of Diagnostic and Interventional Radiology, University Hospital of Split, 21000 Split, Croatia;
| | - Katarina Gugo
- Department of Medical Laboratory Diagnostics, University Hospital of Split, 21000 Split, Croatia;
| | - Joško Božić
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia;
| |
Collapse
|
29
|
Luo ZW, Ahn JH, Chae TU, Choi SY, Park SY, Choi Y, Kim J, Prabowo CPS, Lee JA, Yang D, Han T, Xu H, Lee SY. Metabolic Engineering of
Escherichia
coli. Metab Eng 2021. [DOI: 10.1002/9783527823468.ch11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
30
|
Jin MH, Chen DQ, Jin YH, Han YH, Sun HN, Kwon T. Hispidin inhibits LPS-induced nitric oxide production in BV-2 microglial cells via ROS-dependent MAPK signaling. Exp Ther Med 2021; 22:970. [PMID: 34335912 PMCID: PMC8290425 DOI: 10.3892/etm.2021.10402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/04/2021] [Indexed: 01/21/2023] Open
Abstract
Neuroinflammation is associated with many neurodegenerative diseases. Abnormal activation of microglial cells in the central nervous system (CNS) is a major characteristic of neuroinflammation. Nitric oxide (NO) free radicals are produced by activated microglia and prolonged presence of large quantities of NO in the CNS can lead to neuroinflammation and disease. Hispidin is a polyphenol derived from Phellinus linteus (a valuable medicinal mushroom) with strong antioxidant, anticancer and antidiabetic properties. A previous study demonstrated that hispidin significantly inhibited NO production via lipopolysaccharide (LPS)-induced RAW264.7 macrophages. Therefore, the present study used MTT assay was used to detect the effect of hispdin on cell viability. Griess reagent analysis was used to measure NO production. Reverse transcription-semi quantitative PCR and western blotting were used to evaluate the effects of hispdin on iNOS mRNA and MAPK/ERK/JNK protein levels. Fluorescence microscopy and flow cytometry were used to detect the effects of hispdin on the production of ROS and phagocytosis of cells. The present results indicated that hispidin could significantly inhibit the increase of NO production and iNOS expression in BV-2 microglial cells stimulated by LPS. The inhibitory effect of hispidin on NO production was similar to that of S-methylisothiourea sulfate, an iNOS inhibitor. Signaling studies demonstrated that hispidin markedly suppresses LPS-induced mitogen activated protein kinases and JAK1/STAT3 activation, although not the NF-κB signaling pathway. The present observations in LPS-stimulated BV-2 microglial cells indicated that hispidin might serve as a therapeutic candidate for the treatment of NO-induced neuroinflammation and, potentially, as a novel iNOS inhibitor.
Collapse
Affiliation(s)
- Mei-Hua Jin
- Stem Cell Therapy and Regenerative Biology Laboratory, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Dong-Qin Chen
- Stem Cell Therapy and Regenerative Biology Laboratory, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Ying-Hua Jin
- Library of Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Ying-Hao Han
- Stem Cell Therapy and Regenerative Biology Laboratory, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Hu-Nan Sun
- Stem Cell Therapy and Regenerative Biology Laboratory, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Taeho Kwon
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Jeonbuk 56216, Republic of Korea
| |
Collapse
|
31
|
Mir JM, Maurya RC, Khan MW. NO, CO and H2S based pharmaceuticals in the mission of vision (eye health): a comprehensive review. REV INORG CHEM 2021. [DOI: 10.1515/revic-2021-0009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Abstract
A set of well defined signaling molecules responsible for normal functioning of human physiology including nitric oxide along with carbon monoxide and hydrogen sulphide are referred as “gasotransmitters”. Due to their involvement in almost every system of a human body, the care of highly sensitive organs using these molecules as drugs represents highly fascinating area of research. In connection with these interesting aspects, the applied aspects of these gaseous molecules in maintaining healthy eye and vision have been targeted in this review. Several examples of eye-droppers including NORMs like latanoprost and nipradiol, CORMs like CORM-3 and CORM-A1, and Hydrogen sulfide releasing system like GYY4137 have been discussed in this context. Therefore the relation of these trio-gasotransmitters with the ophthalmic homeostasis on one hand, and de-infecting role on the other hand has been mainly highlighted. Some molecular systems capable of mimicking gasotransmitter action have also been introduced in connection with the titled theme.
Collapse
Affiliation(s)
- Jan Mohammad Mir
- Coordination, Bioinorganic and Computational Chemistry Laboratory, Department of P.G. Studies and Research in Chemistry and Pharmacy , Rani Durgavati University , Jabalpur , M.P. , India
- Department of Chemistry , Islamic University of Science and Technology , Awantipora , J&K 192122 , India
| | - Ram Charitra Maurya
- Coordination, Bioinorganic and Computational Chemistry Laboratory, Department of P.G. Studies and Research in Chemistry and Pharmacy , Rani Durgavati University , Jabalpur , M.P. , India
| | - Mohd Washid Khan
- Coordination, Bioinorganic and Computational Chemistry Laboratory, Department of P.G. Studies and Research in Chemistry and Pharmacy , Rani Durgavati University , Jabalpur , M.P. , India
| |
Collapse
|
32
|
Ultrafast dynamics of heme distortion in the O 2-sensor of a thermophilic anaerobe bacterium. Commun Chem 2021; 4:31. [PMID: 36697566 PMCID: PMC9814294 DOI: 10.1038/s42004-021-00471-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 02/05/2021] [Indexed: 01/28/2023] Open
Abstract
Heme-Nitric oxide and Oxygen binding protein domains (H-NOX) are found in signaling pathways of both prokaryotes and eukaryotes and share sequence homology with soluble guanylate cyclase, the mammalian NO receptor. In bacteria, H-NOX is associated with kinase or methyl accepting chemotaxis domains. In the O2-sensor of the strict anaerobe Caldanaerobacter tengcongensis (Ct H-NOX) the heme appears highly distorted after O2 binding, but the role of heme distortion in allosteric transitions was not yet evidenced. Here, we measure the dynamics of the heme distortion triggered by the dissociation of diatomics from Ct H-NOX using transient electronic absorption spectroscopy in the picosecond to millisecond time range. We obtained a spectroscopic signature of the heme flattening upon O2 dissociation. The heme distortion is immediately (<1 ps) released after O2 dissociation to produce a relaxed state. This heme conformational change occurs with different proportions depending on diatomics as follows: CO < NO < O2. Our time-resolved data demonstrate that the primary structural event of allostery is the heme distortion in the Ct H-NOX sensor, contrastingly with hemoglobin and the human NO receptor, in which the primary structural events are respectively the motion of the proximal histidine and the rupture of the iron-histidine bond.
Collapse
|
33
|
Chan AY, Choi EH, Yuki I, Suzuki S, Golshani K, Chen JW, Hsu FP. Cerebral vasospasm after subarachnoid hemorrhage: Developing treatments. BRAIN HEMORRHAGES 2021. [DOI: 10.1016/j.hest.2020.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
34
|
Somade OT, Ajayi BO, Adeyi OE, Adeshina AA, Adekoya MO, Abdulhameed RO. Oxidative stress-mediated induction of pulmonary oncogenes, inflammatory, and apoptotic markers following time-course exposure to ethylene glycol monomethyl ether in rats. Metabol Open 2021; 9:100075. [PMID: 33409483 PMCID: PMC7773962 DOI: 10.1016/j.metop.2020.100075] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/16/2020] [Accepted: 12/12/2020] [Indexed: 12/16/2022] Open
Abstract
Ethylene glycol monomethyl ether (EGME) has been used in many products usually handled by humans including inks, paints, polishes, brake fluids and so on. This present study therefore, investigated its effect on lung, in a time-course study in male Wistar rats. Animals were orally administered 50 mg/kg body weight of EGME for a period of 7, 14, and 21 days. Following 7 days of oral exposure to EGME, activities of GPx and SOD were significantly increased, as well as levels of K-Ras, c-Myc, p53, caspase-3, TNF-α and, IL-6, while NO level and GST activity were significantly reduced compared with control. At the end of 14 days exposure, GSH level was significantly decreased, while levels of K-Ras, c-Myc, p53, caspase-3, TNF-α, IL-6, NO and the activities of SOD and GPx were significantly elevated with respect to control. After 21 days of EGME administration, levels of Bcl-2, IL-10, GSH and NO as well as GST activity were significantly decreased, while levels of K-Ras, c-Myc, p53, Bax, caspase-3, IL-6, IL-1β, TNF-α, as well as GPx, CAT, and SOD activities were significantly elevated compared with control. Lung histopathology revealed chronic disseminated alveolar inflammation, bronchiolitis, severe alveolar and bronchi hyperplasia, severe disseminated inflammation, thrombosis, and thickened vessels as a result of EGME exposures. Exposures to EGME could trigger lung damage via the disorganization of the antioxidant system, eliciting the up-regulation of inflammatory, apoptotic, and oncogenic markers in rats.
Collapse
Key Words
- Apoptosis
- Bax, Bcl-2 associated X
- Bcl-2, B-cell lymphoma 2
- CAT, catalase
- Ethylene glycol monomethyl ether
- GPx, glutathione peroxidase
- GSH, reduced glutathione
- GST, glutathione S-transferase
- Histopathology
- IL-1β, interleukin-1 beta
- IL-6, interleukin-6
- Inflammation
- K-Ras, Kirsten rat sarcoma viral oncogene
- Lung
- MDA, malondialdehyde
- NO, nitric oxide
- Oncogenes
- Oxidative stress
- SOD, superoxide dismutase
- TNF-α, tumor necrosis factor alpha
- c-myc, myelocytomatosis
- p53, tumor suppressor protein
Collapse
Affiliation(s)
- Oluwatobi T. Somade
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - Babajide O. Ajayi
- Department of Chemical Sciences, Faculty of Natural Sciences, Ajayi Crowther University, Oyo, Nigeria
| | - Olubisi E. Adeyi
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | | | - Mary O. Adekoya
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - Ridwan O. Abdulhameed
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| |
Collapse
|
35
|
Oteiza PI, Fraga CG, Galleano M. Linking biomarkers of oxidative stress and disease with flavonoid consumption: From experimental models to humans. Redox Biol 2021; 42:101914. [PMID: 33750648 PMCID: PMC8113027 DOI: 10.1016/j.redox.2021.101914] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/09/2021] [Accepted: 02/18/2021] [Indexed: 02/07/2023] Open
Abstract
Identification of the links among flavonoid consumption, mitigation of oxidative stress and improvement of disease in humans has significantly advanced in the last decades. This review used (−)-epicatechin (EC) as an example of dietary flavonoids, and inflammation, endothelial dysfunction/hypertension and insulin resistance/diabetes as paradigms of human disease. In these pathologies, oxidative stress is part of their development and/or their perpetuation. Evidence from both, rodent studies and characterization of mechanisms in cell cultures are encouraging and mostly support indirect antioxidant actions of EC and EC metabolites in endothelial dysfunction and insulin resistance. Human studies also show beneficial effects of EC on these pathologies based on biomarkers of disease. However, there is limited available information on oxidative stress biomarkers and flavonoid consumption to allow establishing conclusive associations. The evolving discovery of metabolites that could serve as reliable markers of intake of specific flavonoids constitutes a powerful tool to link flavonoid consumption to disease and prevention of oxidative stress in human populations. Flavonoid’s metabolism and concentration determine their antioxidant mechanisms. Except for the GI tract, flavonoids are relevant indirect antioxidants in organs and tissues. Flavonoid's health effects are not always linked to biomarkers of oxidative stress. (‒)-Epicatechin mitigates the redox deregulation involved in hypertension/T2D pathogenesis. More human studies will strength links among flavonoids, oxidative stress, and disease.
Collapse
Affiliation(s)
- Patricia I Oteiza
- Department of Nutrition, University of California, Davis, USA; Department of Environmental Toxicology, University of California, Davis, USA.
| | - Cesar G Fraga
- Department of Nutrition, University of California, Davis, USA; Fisicoquímica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Bioquímica y Medicina Molecular (IBIMOL), Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Monica Galleano
- Fisicoquímica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Bioquímica y Medicina Molecular (IBIMOL), Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina.
| |
Collapse
|
36
|
Hegazy MM, Sakr AEAM, Abd El-Aziz AH, Swelum AA. Effect of adding different concentrations of L-arginine to Tris-yolk extender on the quality of sub-fertile ejaculates in buffalo. Trop Anim Health Prod 2021; 53:103. [PMID: 33417110 DOI: 10.1007/s11250-020-02499-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 12/03/2020] [Indexed: 11/28/2022]
Abstract
To investigate the effect of supplementation of L-arginine (AR) on sub-fertile buffalo-bulls' ejaculates, 25 ejaculates of poor motility (40 to 55%) were collected by artificial vagina from 5 buffalo-bulls and extended with Tris-yolk extender (1:10) supplemented with different concentrations of AR (0, 3, 4, 5, and 6 mM). Semen was cooled gradually to 4 °C within 2 h and incubated at 4 °C for additional 2 h. Incubated semen samples were evaluated by computer-assisted semen analysis. Results showed that addition of 5 mM AR increased (P < 0.05) total sperm motility and rapid progressive motility percentages, while decreased (P < 0.05) non-motile sperm and static sperm percentages compared with AR-free (control) extender. Increasing the AR level to 6 mM increased (P < 0.05) the percentages of sperm progressive motility and rapid and slow progressive motilities, while decreased (P < 0.05) the non-progressive sperm motility percentages compared with AR-free extender. Supplementation of 5 mM AR improved (P < 0.05) sperm straight linear, curve linear, and average path velocities (36 ± 0.13, 20.6 ± 5.3, and 33.2 ± 8.5, respectively) in comparing with control and other AR treatments. Addition of AR (5 and 6 mM) improved (P < 0.05) the percentages of vitality (89.8 ± 1.9 and 80.0 ± 3.4, respectively), normality (44.3 ± 3.6 and 44.8 ± 1.5, respectively), and functional sperm (20.4 ± 8.6 and 21.0 ± 0.61, respectively), and decreased abnormal neck and tail percentages compared with AR-free extender. All AR levels decreased (P < 0.05) the abnormal neck and tail percentages. Addition of all AR levels had no significant (P > 0.05) effect on the activity of aspartate aminotransferase, alanine aminotransferase, and lactate dehydrogenase in semen extender. Supplementation of Tris-yolk extender with L-arginine (5 or 6 mM) can improve sperm motility, velocity, vitality, and functional sperm and can decrease tail and neck abnormalities of sub-fertile buffalo ejaculate after 4 h incubation at cool temperature.
Collapse
Affiliation(s)
- Mohamed M Hegazy
- Agricultural Research Center, Animal Production Research Institute, Dokki, Egypt
| | - Abd El-Aziz M Sakr
- Agricultural Research Center, Animal Production Research Institute, Dokki, Egypt
| | - Ayman H Abd El-Aziz
- Animal Husbandry and Animal Wealth Development Department, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Ayman A Swelum
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Sharkia, 44519, Egypt. .,Department of Animal production, College of Food and Agriculture Sciences, King Saud University, P. O. Box 2460, Riyadh, 11451, Saudi Arabia.
| |
Collapse
|
37
|
Cialoni D, Brizzolari A, Samaja M, Bosco G, Paganini M, Pieri M, Lancellotti V, Marroni A. Nitric Oxide and Oxidative Stress Changes at Depth in Breath-Hold Diving. Front Physiol 2021; 11:609642. [PMID: 33488400 PMCID: PMC7818785 DOI: 10.3389/fphys.2020.609642] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/01/2020] [Indexed: 12/14/2022] Open
Abstract
Background Several mechanisms allow humans to resist the extreme conditions encountered during breath-hold diving. Available nitric oxide (NO) is one of the major contributors to such complex adaptations at depth and oxidative stress is one of the major collateral effects of diving. Due to technical difficulties, these biomarkers have not so far been studied in vivo while at depth. The aim of this study is to investigate nitrate and nitrite (NOx) concentration, total antioxidant capacity (TAC) and lipid peroxidation (TBARS) before, during, and after repetitive breath-hold dives in healthy volunteers. Materials and Methods Blood plasma, obtained from 14 expert breath-hold divers, was tested for differences in NOx, TAC, and TBARS between pre-dive, bottom, surface, 30 and 60 min post-dive samples. Results We observed a statistically significant increase of NOx plasma concentration in the “bottom blood draw” as compared to the pre-dive condition while we did not find any difference in the following samples We found a statistically significant decrease in TAC at the bottom but the value returned to normality immediately after reaching the surface. We did not find any statistically significant difference in TBARS. Discussion The increased plasma NOx values found at the bottom were not observed at surface and post dive sampling (T0, T30, T60), showing a very rapid return to the pre-dive values. Also TAC values returned to pre- diving levels immediately after the end of hyperbaric exposure, probably as a consequence of the activation of endogenous antioxidant defenses. TBARS did not show any difference during the protocol.
Collapse
Affiliation(s)
- Danilo Cialoni
- Environmental Physiology and Medicine Laboratory, Department of Biomedical Sciences, University of Padova, Padova, Italy.,Divers Alert Network (DAN) Europe Research Division, Roseto degli Abruzzi, Italy.,Apnea Academy Research, Padova, Italy
| | - Andrea Brizzolari
- Divers Alert Network (DAN) Europe Research Division, Roseto degli Abruzzi, Italy.,Department of Health Sciences, Università degli Studi of Milan, Milan, Italy
| | - Michele Samaja
- Department of Health Sciences, Università degli Studi of Milan, Milan, Italy
| | - Gerardo Bosco
- Environmental Physiology and Medicine Laboratory, Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Matteo Paganini
- Environmental Physiology and Medicine Laboratory, Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Massimo Pieri
- Divers Alert Network (DAN) Europe Research Division, Roseto degli Abruzzi, Italy
| | - Valentina Lancellotti
- Cardiothoracic and Vascular Department, Azienda Ospedaliero-Universitaria Pisana (AOUP), Pisa, Italy
| | - Alessandro Marroni
- Divers Alert Network (DAN) Europe Research Division, Roseto degli Abruzzi, Italy
| |
Collapse
|
38
|
Alsharabasy AM, Pandit A, Farràs P. Recent Advances in the Design and Sensing Applications of Hemin/Coordination Polymer-Based Nanocomposites. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2003883. [PMID: 33217074 DOI: 10.1002/adma.202003883] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 09/10/2020] [Indexed: 06/11/2023]
Abstract
The fabrication of biomimetic catalysts as substituents for enzymes is of critical interest in the field due to the problems associated with the extraction, purification, and storage of enzymes in sensing applications. Of these mimetics, hemin/coordination polymer-based nanocomposites, mainly hemin/metal-organic frameworks (MOF), have been developed for various biosensing applications because of the unique properties of each component, while trying to mimic the normal biological functions of heme within the protein milieu of enzymes. This critical review first discusses the different catalytic functions of heme in the body in the form of enzyme/protein structures. The properties of hemin dimerization are then elucidated with the supposed models of hemin oxidation. After that, the progress in the fabrication of hemin/MOF nanocomposites for the sensing of diverse biological molecules is discussed. Finally, the challenges in developing this type of composites are examined as well as possible proposals for future directions to enhance the sensing performance in this field further.
Collapse
Affiliation(s)
- Amir M Alsharabasy
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway, H91W2TY, Ireland
| | - Abhay Pandit
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway, H91W2TY, Ireland
| | - Pau Farràs
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway, H91W2TY, Ireland
- School of Chemistry, Ryan Institute, National University of Ireland Galway, Galway, H91CF50, Ireland
| |
Collapse
|
39
|
Role of L-Arginine in Nitric Oxide Synthesis and Health in Humans. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1332:167-187. [PMID: 34251644 DOI: 10.1007/978-3-030-74180-8_10] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
As a functional amino acid (AA), L-arginine (Arg) serves not only as a building block of protein but also as an essential substrate for the synthesis of nitric oxide (NO), creatine, polyamines, homoarginine, and agmatine in mammals (including humans). NO (a major vasodilator) increases blood flow to tissues. Arg and its metabolites play important roles in metabolism and physiology. Arg is required to maintain the urea cycle in the active state to detoxify ammonia. This AA also activates cellular mechanistic target of rapamycin (MTOR) and focal adhesion kinase cell signaling pathways in mammals, thereby stimulating protein synthesis, inhibiting autophagy and proteolysis, enhancing cell migration and wound healing, promoting spermatogenesis and sperm quality, improving conceptus survival and growth, and augmenting the production of milk proteins. Although Arg is formed de novo from glutamine/glutamate and proline in humans, these synthetic pathways do not provide sufficient Arg in infants or adults. Thus, humans and other animals do have dietary needs of Arg for optimal growth, development, lactation, and fertility. Much evidence shows that oral administration of Arg within the physiological range can confer health benefits to both men and women by increasing NO synthesis and thus blood flow in tissues (e.g., skeletal muscle and the corpora cavernosa of the penis). NO is a vasodilator, a neurotransmitter, a regulator of nutrient metabolism, and a killer of bacteria, fungi, parasites, and viruses [including coronaviruses, such as SARS-CoV and SARS-CoV-2 (the virus causing COVID-19). Thus, Arg supplementation can enhance immunity, anti-infectious, and anti-oxidative responses, fertility, wound healing, ammonia detoxification, nutrient digestion and absorption, lean tissue mass, and brown adipose tissue development; ameliorate metabolic syndromes (including dyslipidemia, obesity, diabetes, and hypertension); and treat individuals with erectile dysfunction, sickle cell disease, muscular dystrophy, and pre-eclampsia.
Collapse
|
40
|
Petrova ON, Lamarre I, Fasani F, Grillon C, Negrerie M. Soluble Guanylate Cyclase Inhibitors Discovered among Natural Compounds. JOURNAL OF NATURAL PRODUCTS 2020; 83:3642-3651. [PMID: 33290062 DOI: 10.1021/acs.jnatprod.0c00854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Soluble guanylate cyclase (sGC) is the human receptor of nitric oxide (NO) in numerous kinds of cells and produces the second messenger 3',5'-cyclic guanosine monophosphate (cGMP) upon NO binding to its heme. sGC is involved in many cell signaling pathways both under healthy conditions and under pathological conditions, such as angiogenesis associated with tumor growth. Addressing the selective inhibition of the NO/cGMP pathway is a strategy worthwhile to be investigated for slowing down tumoral angiogenesis or for curing vasoplegia. However, sGC inhibitors are lacking investigation. We have explored a chemical library of various natural compounds and have discovered inhibitors of sGC. The selected compounds were evaluated for their inhibition of purified sGC in vitro and sGC in endothelial cells. Six natural compounds, from various organisms, have IC50 in the range 0.2-1.5 μM for inhibiting the NO-activated synthesis of cGMP by sGC, and selected compounds exhibit a quantified antiangiogenic activity using an endothelial cell line. These sGC inhibitors can be used directly as tools to investigate angiogenesis and cell signaling or as templates for drug design.
Collapse
Affiliation(s)
- Olga N Petrova
- Laboratoire d'Optique et Biosciences, INSERM U1182, Ecole Polytechnique, Palaiseau, France
| | - Isabelle Lamarre
- Laboratoire d'Optique et Biosciences, INSERM U1182, Ecole Polytechnique, Palaiseau, France
| | - Fabienne Fasani
- Centre de Biophysique Moléculaire, UPR4301 CNRS, Orléans, France
| | | | - Michel Negrerie
- Laboratoire d'Optique et Biosciences, INSERM U1182, Ecole Polytechnique, Palaiseau, France
| |
Collapse
|
41
|
Nkpaa KW, Owoeye O, Amadi BA, Adedara IA, Abolaji AO, Wegwu MO, Farombi EO. Ethanol exacerbates manganese-induced oxidative/nitrosative stress, pro-inflammatory cytokines, nuclear factor-κB activation, and apoptosis induction in rat cerebellar cortex. J Biochem Mol Toxicol 2020; 35:e22681. [PMID: 33314588 DOI: 10.1002/jbt.22681] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/20/2020] [Accepted: 11/26/2020] [Indexed: 11/06/2022]
Abstract
Manganese (Mn) exposure is causing public health concerns as well as heavy alcohol consumption. This study investigates the mechanisms of neurotoxicity associated with Mn and ethanol (EtOH) exposure in the rat cerebellar cortex. Experimental animals received 30 mg/kg of Mn alone, 5 g/kg of EtOH alone, co-exposed with 30 mg/kg of Mn and 1.25 or 5 g/kg EtOH, while control animals received water by oral gavage for 35 days. Subsequently, alterations in the neuronal morphology of the cerebellar cortex, oxidative/nitrosative stress, acetylcholinesterase (AChE) activity, neuro-inflammation and protein expression of p53, BAX, caspase-3, and BCL-2 were investigated. The results indicate that Mn alone and EtOH alone induce neuronal alterations in the cerebellar cortex, decrease glutathione level and antioxidant enzyme activities, along with an increase in AChE activity, lipid peroxidation, and hydrogen peroxide generation. Mn alone and EtOH alone also increased neuro-inflammatory markers, namely nitric oxide, myeloperoxidase activity, interleukin-1β, tumor necrosis factor-α, and nuclear factor-κB (NF-κB) levels in the cerebellar cortex. Immunohistochemistry analysis further revealed that exposure of Mn alone and EtOH alone increases the protein expression of cyclooxygenase-2, BAX, p53, and caspase-3 and decrease BCL-2 in the rat cerebellar cortex. Furthermore, the results indicated that Mn co-exposure with EtOH at 1.25 and 5 g/kg EtOH significantly (p ≤ .05) increases the toxicity in the cerebellum when compared with the toxicity of Mn or EtOH alone. Taken together, co-exposure of Mn and EtOH exacerbates neuronal alterations, oxidative/nitrosative stress, AChE activity, pro-inflammatory cytokines, NF-κB signal transcription, and apoptosis induction in the rat cerebellar cortex.
Collapse
Affiliation(s)
- Kpobari W Nkpaa
- Environmental Toxicology Unit, Department of Biochemistry, Faculty of Science, University of Port Harcourt, Choba, Rivers State, Nigeria
| | - Olatunde Owoeye
- Department of Anatomy, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Benjamin A Amadi
- Environmental Toxicology Unit, Department of Biochemistry, Faculty of Science, University of Port Harcourt, Choba, Rivers State, Nigeria
| | - Isaac A Adedara
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Amos O Abolaji
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Matthew O Wegwu
- Environmental Toxicology Unit, Department of Biochemistry, Faculty of Science, University of Port Harcourt, Choba, Rivers State, Nigeria
| | - Ebenezer O Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
42
|
Advances in inorganic-based colloidal nanovehicles functionalized for nitric oxide delivery. Colloids Surf B Biointerfaces 2020; 199:111508. [PMID: 33340932 DOI: 10.1016/j.colsurfb.2020.111508] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/12/2020] [Accepted: 11/30/2020] [Indexed: 01/25/2023]
Abstract
Nitric oxide (NO) is an important pharmaceutical agent of considerable therapeutic interest ascribed to its vasodilative, tumoricidal and antibacterial effects. Rapid development of functional nanomaterials has provided opportunities for us to achieve controllable exogenous delivery of NO. In the current review, a variety of functionalized colloidal nanovehicles that have been developed to date for nitric oxide delivery are reported. Specifically, we focus on inorganic nanomaterials such as semiconductor quantum dots, silica nanoparticles, upconversion nanomaterials, carbon/graphene nanodots, gold nanoparticles, iron oxide nanoparticles as the functional or/and supporting materials to carry NO donors. N-diazeniumdiolates, S-nitrosothiols, nitrosyl metal complexes and organic nitrates as main types of NO donors have their own unique properties and molecular structures. Conjugating the NO donors of different forms with appropriate nanomaterials results in NO delivery nanovehicles capable of releasing NO in a dose-controllable or/and on-demand manner. We also consider the therapeutic applications of those NO delivery nanovehicles, especially their applications for cancer therapy. In the end, we discuss possible future directions for developing exogenous NO delivery systems with more desired structure and improved performance. This review aims to offer the readers an overall view of the advances in functionalized colloidal nanovehicles for NO delivery. It will be attractive to scientists and researchers in the areas of material science, nanotechnology, biomedical engineering, chemical biology, etc.
Collapse
|
43
|
Kamperidis N, Kamperidis V, Zegkos T, Kostourou I, Nikolaidou O, Arebi N, Karvounis H. Atherosclerosis and Inflammatory Bowel Disease-Shared Pathogenesis and Implications for Treatment. Angiology 2020; 72:303-314. [PMID: 33601945 DOI: 10.1177/0003319720974552] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Atherosclerosis and inflammatory bowel disease (IBD) are often regarded as 2 distinct entities. The commonest manifestation of atherosclerosis is ischemic heart disease (IHD), and an association between IHD and IBD has been reported. Atherosclerosis and IBD share common pathophysiological mechanisms in terms of their genetics, immunology, and contributing environmental factors. Factors associated with atherosclerosis are implicated in the development of IBD and vice versa. Therefore, treatments targeting the common pathophysiology pathways may be effective in both conditions. The current review considers the pathophysiological pathways that are shared between the 2 conditions and discusses the implications for treatment and research.
Collapse
Affiliation(s)
- Nikolaos Kamperidis
- 3749St Mark's Hospital, Harrow, London, United Kingdom.,* Nikolaos Kamperidis and Vasileios Kamperidis are sharing first authorship
| | - Vasileios Kamperidis
- 1st Cardiology Department, 37788AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece.,* Nikolaos Kamperidis and Vasileios Kamperidis are sharing first authorship
| | - Thomas Zegkos
- 1st Cardiology Department, 37788AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Olga Nikolaidou
- Radiology Department, Pananikolaou General Hospital, Thessaloniki, Greece
| | - Naila Arebi
- 3749St Mark's Hospital, Harrow, London, United Kingdom
| | - Haralambos Karvounis
- 1st Cardiology Department, 37788AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
44
|
Somade OT, Ajayi BO, Olunaike OE, Jimoh LA. Hepatic oxidative stress, up-regulation of pro-inflammatory cytokines, apoptotic and oncogenic markers following 2-methoxyethanol administrations in rats. Biochem Biophys Rep 2020; 24:100806. [PMID: 32913901 PMCID: PMC7472863 DOI: 10.1016/j.bbrep.2020.100806] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 08/18/2020] [Accepted: 08/18/2020] [Indexed: 01/29/2023] Open
Abstract
2-methoxyethanol (2-ME) is an organic solvent widely used in the manufacture of brake fluids, paints, resins, varnish, nail polish, acetate cellulose, wood coloring, and as a plasticizer in plastics manufacturing. We therefore, investigated its effect on the liver, in a time-course study in male Wistar rats. Animals were orally administered 50 mg/kg body weight of 2-ME for a period of 7, 14, and 21 days. Following 7 days of administration of 2-ME, there was a significant increase in the level of Bax, c-Myc, K-Ras, TNF-α, IL-1β, IL-6, MDA and GPx activity, while the levels of Bcl-2, NO and GSH were significantly reduced compared with control. At the end of 14 days exposure, Bcl-2, and GSH levels, as well as GST activity, were significantly decreased, while levels of Bax, c-Myc, K-Ras, caspase-3, TNF-α, IL-1β, IL-6, MDA and NO were significantly increased compared with control. After 21 days of 2-ME administration, Bcl-2, IL-10, and GSH levels, as well as SOD and GST activities, were significantly decreased, while levels of Bax, c-Myc, K-Ras, caspase-3, p53, TNF-α, IL-1β, IL-6, MDA and NO were significantly increased compared with control. Lastly, liver histopathology confirmed and corroborated the biochemical findings reported above. We therefore, advised that exposures to 2-ME should be strictly avoided as it could trigger hepatic damage through the disorganization of the antioxidant system, up-regulation of inflammatory, apoptotic, and oncogenic markers in rats.
Collapse
Key Words
- 2-methoxyethanol
- Apoptosis
- Bax, Bcl-2 associated X
- Bcl-2, B-cell lymphoma 2
- CAT, catalase
- GPx, glutathione peroxidase
- GSH, reduced glutathione
- GST, glutathione S-transferase
- IL-10, interleukin 10
- IL-1β, interleukin-1 beta
- IL-6, interleukin-6
- Inflammation
- K-Ras, Kirsten rat sarcoma viral oncogene
- Liver
- MDA, malondialdehyde
- NO, nitric oxide
- Oncogenes
- Oxidative stress
- SOD, superoxide dismutase
- TNF-α, tumor necrosis factor alpha
- c-Myc, myelocytomatosis
- p53, tumor suppressor protein
Collapse
Affiliation(s)
- Oluwatobi T. Somade
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - Babajide O. Ajayi
- Department of Chemical Sciences, Faculty of Natural Sciences, Ajayi Crowther University, Oyo, Nigeria
| | - Oyinkansola E. Olunaike
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - Latifah A. Jimoh
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| |
Collapse
|
45
|
López V, Uribe E, Moraga FA. Activation of arginase II by asymmetric dimethylarginine and homocysteine in hypertensive rats induced by hypoxia: a new model of nitric oxide synthesis regulation in hypertensive processes? Hypertens Res 2020; 44:263-275. [PMID: 33149269 DOI: 10.1038/s41440-020-00574-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 07/10/2020] [Accepted: 08/11/2020] [Indexed: 11/09/2022]
Abstract
In recent years, the increase in blood pressure at high altitudes has become an interesting topic among high-altitude researchers. In our animal studies using Wistar rats, we observed the existence of two rat populations that exhibit differential physiological responses during hypoxic exposure. These rats were classified as hypoxia-induced hypertensive rats and nonhypertensive rats. A decrease in nitric oxide levels was reported in different hypertension models associated with increased concentrations of asymmetric dimethylarginine (ADMA) and homocysteine, and we recently described an increase in arginase type II expression under hypoxia. ADMA and homocysteine decrease nitric oxide (NO) bioavailability; however, whether ADMA and homocysteine have a regulatory effect on arginase activity and therefore regulate another NO synthesis pathway is unknown. Therefore, the aim of this study was to measure basal ADMA and homocysteine levels in hypoxia-induced hypertensive rats and evaluate their effect on arginase II activity. Our results indicate that hypoxia-induced hypertensive rats presented lower nitric oxide concentrations than nonhypertensive rats, associated with higher concentrations of homocysteine and ADMA. Hypoxia-induced hypertensive rats also presented lower dimethylarginine dimethylaminohydrolase-2 and cystathionine β-synthase levels, which could explain the high ADMA and homocysteine levels. In addition, we observed that both homocysteine and ADMA had a significant effect on arginase II activation in the hypertensive rats. Therefore, we suggest that ADMA and homocysteine have dual regulatory effects on NO synthesis. The former has an inhibitory effect on eNOS, and the latter has a secondary activating effect on arginase II. We propose that arginase II is activated by AMDA and homocysteine in hypoxia-induced hypertensive rats.
Collapse
Affiliation(s)
- Vasthi López
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| | - Elena Uribe
- Departamento de Bioquímica, Facultad de Ciencias Biológicas, Universidad de Concepción. Barrio Universitario s/n, Concepción, Chile
| | - Fernando A Moraga
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile.
| |
Collapse
|
46
|
Hallak J, Teixeira TA, Bernardes FS, Carneiro F, Duarte SAS, Pariz JR, Esteves SC, Kallas E, Saldiva PHN. SARS-CoV-2 and its relationship with the genitourinary tract: Implications for male reproductive health in the context of COVID-19 pandemic. Andrology 2020; 9:73-79. [PMID: 32869939 DOI: 10.1111/andr.12896] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND The current outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, named coronavirus disease 19 (COVID-19), is not the first well-known spillover of an animal originated virus to infect humans. However, one of the few to make such a fast jump in a powerful evolutionary shortcut. The incredible pattern of aggressiveness worldwide since the beginning of the outbreak is that up to 20% of those infected need hospitalization and 5% evolve to critical conditions, not limited to respiratory-related issues, but rather to systemic involvement. OBJECTIVE This study aims to summarize the current knowledge about the effects of SARS-CoV-2 infection on the male genitourinary tract. MATERIALS AND METHODS A narrative review was carried out to identify articles on the SARS-CoV-2 infection on the male genitourinary system. RESULTS Considerations were made about the molecular characteristics of SARS-CoV-2 and immune response to coronavirus. We discussed the influence of the virus on the urinary system, potential mechanisms of COVID-19- related acute kidney injury (AKI), and the role of cytokine release syndrome on the renal pathophysiology of the disease. In the male reproductive tract, it was discussed the testis' vulnerability to SARS-CoV-2 invasion and the possible adverse effects on its function and the seminal findings of COVID-19. DISCUSSION AND CONCLUSION During the COVID-19 pandemic, an international coordinated scientific effort must arise to understand the role of the urogenital system in the SARS-CoV-2 infection in the clinical setting.
Collapse
Affiliation(s)
- Jorge Hallak
- Androscience, Science and Innovation Center in Andrology and High-Complex Clinical and Andrology Research Laboratory, São Paulo, Brazil.,Division of Urology, University of São Paulo, São Paulo, Brazil.,Reproductive Toxicology Unit, Department of Pathology, University of São Paulo, São Paulo, Brazil
| | - Thiago A Teixeira
- Androscience, Science and Innovation Center in Andrology and High-Complex Clinical and Andrology Research Laboratory, São Paulo, Brazil.,Division of Urology, University of São Paulo, São Paulo, Brazil.,Men's Health Study Group, Institute for Advanced Studies, University of São Paulo, São Paulo, Brazil.,Division of Urology, School of Medicine, Federal University of Amapá, Amapá, Brazil
| | - Felipe S Bernardes
- Androscience, Science and Innovation Center in Andrology and High-Complex Clinical and Andrology Research Laboratory, São Paulo, Brazil.,Division of Urology, University of São Paulo, São Paulo, Brazil.,Men's Health Study Group, Institute for Advanced Studies, University of São Paulo, São Paulo, Brazil.,Men's Health Study Group, Institute for Advanced Studies, University of São Paulo, São Paulo, Brazil
| | - Felipe Carneiro
- Androscience, Science and Innovation Center in Andrology and High-Complex Clinical and Andrology Research Laboratory, São Paulo, Brazil.,Men's Health Study Group, Institute for Advanced Studies, University of São Paulo, São Paulo, Brazil.,Men's Health Study Group, Institute for Advanced Studies, University of São Paulo, São Paulo, Brazil.,Department of Radiology, University of São Paulo, São Paulo, Brazil
| | - Sergio A S Duarte
- Androscience, Science and Innovation Center in Andrology and High-Complex Clinical and Andrology Research Laboratory, São Paulo, Brazil.,Division of Urology, University of São Paulo, São Paulo, Brazil
| | - Juliana R Pariz
- Androscience, Science and Innovation Center in Andrology and High-Complex Clinical and Andrology Research Laboratory, São Paulo, Brazil.,Division of Urology, University of São Paulo, São Paulo, Brazil.,Men's Health Study Group, Institute for Advanced Studies, University of São Paulo, São Paulo, Brazil
| | - Sandro C Esteves
- Department of Surgery (Division of Urology), University of Campinas (UNICAMP), Campinas, Brazil.,Androfert, Andrology and Human Reproduction Clinic, Campinas, Brazil.,Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Esper Kallas
- Department of Infectious and Parasitic Diseases, University of São Paulo, São Paulo, Brazil
| | - Paulo H N Saldiva
- Reproductive Toxicology Unit, Department of Pathology, University of São Paulo, São Paulo, Brazil.,Men's Health Study Group, Institute for Advanced Studies, University of São Paulo, São Paulo, Brazil.,Men's Health Study Group, Institute for Advanced Studies, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
47
|
Somade OT, Ajayi BO, Adeyi OE, Adeshina AA, James AS, Ayodele PF. Ethylene glycol monomethyl ether-induced testicular oxidative stress and time-dependent up-regulation of apoptotic, pro-inflammatory, and oncogenic markers in rats. Metabol Open 2020; 7:100051. [PMID: 32924002 PMCID: PMC7451700 DOI: 10.1016/j.metop.2020.100051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/08/2020] [Accepted: 08/08/2020] [Indexed: 12/19/2022] Open
Abstract
Ethylene glycol monomethyl ether (EGME) is a major component of paints, lacquers, inks, and automobile brake fluids. As a result, exposures to humans are inevitable. We therefore, investigated in this study, its effect on testicular cells in a time-course manner in male Wistar rats. Animals were orally administered 50 mg/kg body weight of EGME for duration of 7, 14, and 21 days. Following 7 days of the administration, levels of NO and GSH were significantly reduced, while levels of c-Myc, K-Ras, caspase-3, IL-6, TNF-α, and IL-1β were significantly increased compared with control. At the end of 14 days exposure, GPx, and SOD activities, as well as IL-10 level were significantly decreased, while levels of c-Myc, K-Ras, p53, Bax, caspase-3, IL-6, TNF-α, IL-1β, and GST activity were significantly elevated compared with control. After 21 days of EGME administration, Bcl-2, IL-10, and NO levels were significantly decreased, while levels of c-Myc, K-Ras, p53, Bax, caspase-3, IL-6, TNF-α, IL-1β, MDA and GST activity were significantly increased compared with control. After 7, 14, and 21 days of EGME administrations, testis histopathology showed severe loss of seminiferous tubules, the seminiferous epithelium revealed very few spermatocytes, spermatids, spermatogonia, spermatozoa, and Sertoli cells, while the interstitial tissue is eroded, with scanty abnormal Leydig cells, compared with the control that appeared normal. We therefore, concluded that EGME-induced testicular toxicity as a result of EGME administration could be via the disorganization of the endogenous antioxidant systems as well as up-regulation of pro-inflammatory, apoptotic and oncogenic mediators in rats.
Collapse
Key Words
- Apoptosis
- Bax, Bcl-2 associated X
- Bcl-2, B-cell lymphoma 2
- CAT, catalase
- Ethylene glycol monomethyl ether
- GPx, glutathione peroxidase
- GSH, reduced glutathione
- GST, glutathione S-transferase
- Histopathology
- IL-1β, interleukin-1 beta
- IL-6, interleukin-6
- Inflammation
- K-Ras, Kirsten rat sarcoma viral oncogene
- MDA, malondialdehyde
- NO, nitric oxide
- Oncogenes
- Oxidative stress
- SOD, superoxide dismutase
- TNF-α, tumor necrosis factor alpha
- Testis
- c-Myc, myelocytomatosis
- p53, tumor suppressor protein
Collapse
Affiliation(s)
- Oluwatobi T Somade
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - Babajide O Ajayi
- Department of Chemical Sciences, Faculty of Natural Sciences, Ajayi Crowther University, Oyo, Nigeria
| | - Olubisi E Adeyi
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | | | - Adewale S James
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - Peter F Ayodele
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| |
Collapse
|
48
|
Effects of phosphodiesterase type 5 inhibitors on choroid and ocular vasculature: a literature review. Int J Retina Vitreous 2020; 6:38. [PMID: 32782824 PMCID: PMC7412824 DOI: 10.1186/s40942-020-00241-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/29/2020] [Indexed: 11/10/2022] Open
Abstract
To provide information on the effects of phosphodiesterase type 5 (PDE5) inhibitors on choroidal vessels and central serous chorioretinopathy (CSC) and possible implications for development of exudative age-related macular degeneration (AMD). Two independent investigators conducted a qualitative review of PubMed to identify studies on the choroidal effect of PDE5 inhibitors in June 2019. The search used key words that included PDE5 inhibitors, sildenafil, tadalafil, vardenafil, choroid, choroidal flow, choroidal vessels, choroidal thickness, CSC, AMD or a combination. Only studies which assessed choroidal findings were included. Many ocular diseases are related to changes in choroidal thickness and perfusion. Patients with AMD, who have decreased choroidal perfusion, may manifest more severely diminished choroidal ability to deliver oxygen and other metabolites to the retina, leading to growth of neovascular tissue. As a result of this engorgement of the choroidal vasculature, some patients may have leakage across the retinal pigment epithelium (RPE) and accumulation of subretinal fluid, resulting in CSC. Transient visual symptoms, i.e., changes in color perception and increased light sensitivity, are well-known adverse effects, but there have been rare reports of vision-threatening ocular complications in users of PDE5 inhibitors, such as nonarteritic anterior ischemic optic neuropathy and cilioretinal artery occlusion. The choroid is a vascular tissue analogous in many respects to the corpus cavernosum, and PDE5 inhibitors may increase the choroidal thickness and perfusion. While it is intuitively obvious that thickness of the choroid alone does not guarantee better choriocapillaris oxygenation, it is a reasonable step towards ameliorating ischemia. These drugs have numerous physiologic effects on the choroid related to blood flow, such as clinical consequences in CSC and AMD.
Collapse
|
49
|
Zhou Y, Gaucher C, Fries I, Hobekkaya MA, Martin C, Leonard C, Deschamps F, Sapin-Minet A, Parent M. Challenging development of storable particles for oral delivery of a physiological nitric oxide donor. Nitric Oxide 2020; 104-105:1-10. [PMID: 32771473 DOI: 10.1016/j.niox.2020.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/28/2020] [Accepted: 08/03/2020] [Indexed: 12/31/2022]
Abstract
Nitric oxide (NO) deficiency is often associated with several acute and chronic diseases. NO donors and especially S-nitrosothiols such as S-nitrosoglutathione (GSNO) have been identified as promising therapeutic agents. Although their permeability through the intestinal barrier have recently be proved, suitable drug delivery systems have to be designed for their oral administration. This is especially challenging due to the physico-chemical features of these drugs: high hydrophilicity and high lability. In this paper, three types of particles were prepared with an Eudragit® polymer: nanoparticles and microparticles obtained with a water-in-oil-in-water emulsion/evaporation process versus microparticles obtained with a solid-in-oil-in-water emulsion/evaporation process. They had a similar encapsulation efficiency (around 30%), and could be freeze-dried then be stored at least one month without modification of their critical attributes (size and GSNO content). However, microparticles had a slightly slower in vitro release of GSNO than nanoparticles, and were able to boost by a factor of two the drug intestinal permeability (Caco-2 model). Altogether, this study brings new data about GSNO intestinal permeability and three ready-to-use formulations suitable for further preclinical studies with oral administration.
Collapse
Affiliation(s)
- Yi Zhou
- Université de Lorraine, CITHEFOR, F-54000, Nancy, France
| | | | - Isabelle Fries
- Université de Lorraine, CITHEFOR, F-54000, Nancy, France
| | | | | | - Clément Leonard
- StaniPharm, 5 Rue Jacques Monod, BP 10, 54250, Champigneulles, France
| | - Frantz Deschamps
- StaniPharm, 5 Rue Jacques Monod, BP 10, 54250, Champigneulles, France
| | | | | |
Collapse
|
50
|
The Efficacy of Tai Chi and Qigong Exercises on Blood Pressure and Blood Levels of Nitric Oxide and Endothelin-1 in Patients with Essential Hypertension: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:3267971. [PMID: 32802122 PMCID: PMC7414352 DOI: 10.1155/2020/3267971] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/09/2020] [Indexed: 12/12/2022]
Abstract
Objective Tai Chi and Qigong are the two similar traditional Chinese wellness exercises. A strong body of published clinical randomized controlled trials (RCTs) has investigated the health benefits of Tai Chi and Qigong exercises (TCQE) in patients with essential hypertension (EH). This is the first meta-analysis to evaluate the efficacy of TCQE on blood pressure (BP) and blood levels of nitric oxide (NO) and endothelin-1 (ET-1) in EH patients and explore the potential antihypertensive mechanism of TCQE. Methods We conducted a literature retrieval for Chinese and English studies in seven databases from their respective inceptions until January 14, 2020. All RCTs examining clinical efficacy of TCQE for EH patients were considered. The major therapeutic outcomes of TCQE were changes in the blood levels of NO, ET-1, and BP in EH patients. Methodological quality of the included RCTs was detected via The Cochrane Risk of Bias tool. We evaluated the data reported and performed the meta-analysis by Review Manager 5.3 software. Results 9 RCTs involving 516 EH patients were included. The intervention duration lasted from 1.5 months to 6 months. The results of comprehensive analysis showed that compared with control interventions, experimental interventions were more effective in reducing the systolic blood pressure and the diastolic blood pressure and contributed higher blood levels of NO and lower blood levels of ET-1. Conclusions TCQE could be an effective complementary and alternative therapy for EH. The lower BP in EH patients who practice TCQE may have some connection with exercise-related increased blood NO levels and decreased blood ET-1 levels. However, further research is needed to make clear the efficacy of TCQE in management of EH and the mechanism of lowering BP in TCQE.
Collapse
|