1
|
Jiang M, Incarnato D, Modderman R, Lazaro AA, Jonkers IH, Bianchi F, van den Bogaart G. Low butyrate concentrations exert anti-inflammatory and high concentrations exert pro-inflammatory effects on macrophages. J Nutr Biochem 2025:109962. [PMID: 40381959 DOI: 10.1016/j.jnutbio.2025.109962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 05/12/2025] [Accepted: 05/14/2025] [Indexed: 05/20/2025]
Abstract
Butyrate is a four-carbon short-chain fatty acid produced from microbial fermentation of dietary fibers present at high millimolar concentrations in the colonic lumen. However, in an intact epithelium, macrophages residing in the lamina propria are exposed to only micromolar butyrate concentrations. Current studies show anti-inflammatory properties of butyrate and suggest that it might have therapeutic applications in inflammatory bowel disease and colonic cancer. We now show that the effect of butyrate on human macrophages is strongly concentration dependent: 0.1 mM butyrate suppresses LPS-induced production of the pro-inflammatory cytokine tumor necrosis factor (TNF)-α. Experiments with siRNA knockdown and small molecule inhibitors suggest that this is mediated by a mechanism involving PPAR-γ signaling, whereas we observed no or only a minor effect of histone acetylation. In contrast, 10 mM butyrate promotes macrophage cell death, does not inhibit LPS-induced production of TNF-α, and promotes production of IL-1β, while production of anti-inflammatory IL-10 is reduced in a mechanism involving G protein-coupled receptors, the lipid transporter CD36, and the kinase SRC. We propose that butyrate is a signaling molecule for intestinal integrity, since intestinal disruption exposes macrophages to high butyrate concentrations.
Collapse
Affiliation(s)
- Muwei Jiang
- Department of Molecular Immunology and Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Danny Incarnato
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Rutger Modderman
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Aina Altimira Lazaro
- Department of Molecular Immunology and Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Iris H Jonkers
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Frans Bianchi
- Department of Molecular Immunology and Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Geert van den Bogaart
- Department of Molecular Immunology and Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
2
|
Karim MR, Iqbal S, Mohammad S, Morshed MN, Haque MA, Mathiyalagan R, Yang DC, Kim YJ, Song JH, Yang DU. Butyrate's (a short-chain fatty acid) microbial synthesis, absorption, and preventive roles against colorectal and lung cancer. Arch Microbiol 2024; 206:137. [PMID: 38436734 DOI: 10.1007/s00203-024-03834-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/28/2023] [Accepted: 01/04/2024] [Indexed: 03/05/2024]
Abstract
Butyrate, a short-chain fatty acid (SCFA) produced by bacterial fermentation of fiber in the colon, is a source of energy for colonocytes. Butyrate is essential for improving gastrointestinal (GI) health since it helps colonocyte function, reduces inflammation, preserves the gut barrier, and fosters a balanced microbiome. Human colonic butyrate producers are Gram-positive firmicutes, which are phylogenetically varied. The two most prevalent subgroups are associated with Eubacterium rectale/Roseburia spp. and Faecalibacterium prausnitzii. Now, the mechanism for the production of butyrate from microbes is a very vital topic to know. In the present study, we discuss the genes encoding the core of the butyrate synthesis pathway and also discuss the butyryl-CoA:acetate CoA-transferase, instead of butyrate kinase, which usually appears to be the enzyme that completes the process. Recently, butyrate-producing microbes have been genetically modified by researchers to increase butyrate synthesis from microbes. The activity of butyrate as a histone deacetylase inhibitor (HDACi) has led to several clinical trials to assess its effectiveness as a potential cancer treatment. Among various significant roles, butyrate is the main energy source for intestinal epithelial cells, which helps maintain colonic homeostasis. Moreover, people with non-small-cell lung cancer (NSCLC) have distinct gut microbiota from healthy adults and frequently have dysbiosis of the butyrate-producing bacteria in their guts. So, with an emphasis on colon and lung cancer, this review also discusses how the microbiome is crucial in preventing the progression of certain cancers through butyrate production. Further studies should be performed to investigate the underlying mechanisms of how these specific butyrate-producing bacteria can control both colon and lung cancer progression and prognosis.
Collapse
Affiliation(s)
- Md Rezaul Karim
- Department of Biopharmaceutical Biotechnology, College of Life Science, Kyung Hee University, Yongin-Si, 17104, Gyeonggi-Do, Korea
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, 7003, Bangladesh
| | - Safia Iqbal
- Department of Biopharmaceutical Biotechnology, College of Life Science, Kyung Hee University, Yongin-Si, 17104, Gyeonggi-Do, Korea
- Department of Microbiology, Varendra Institute of Biosciences, Affiliated University of Rajshahi, Natore, 6400, Rajshahi, Bangladesh
| | - Shahnawaz Mohammad
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-Si, 17104, Gyeonggi-Do, Korea
| | - Md Niaj Morshed
- Department of Biopharmaceutical Biotechnology, College of Life Science, Kyung Hee University, Yongin-Si, 17104, Gyeonggi-Do, Korea
| | - Md Anwarul Haque
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, 7003, Bangladesh
| | - Ramya Mathiyalagan
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-Si, 17104, Gyeonggi-Do, Korea
| | - Deok Chun Yang
- Department of Biopharmaceutical Biotechnology, College of Life Science, Kyung Hee University, Yongin-Si, 17104, Gyeonggi-Do, Korea
- Hanbangbio Inc., Yongin-Si, 17104, Gyeonggi-Do, Republic of Korea
| | - Yeon Ju Kim
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-Si, 17104, Gyeonggi-Do, Korea
| | - Joong Hyun Song
- Department of Veterinary International Medicine, College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Korea.
| | - Dong Uk Yang
- Department of Biopharmaceutical Biotechnology, College of Life Science, Kyung Hee University, Yongin-Si, 17104, Gyeonggi-Do, Korea.
- AIBIOME, 6, Jeonmin-Ro 30Beon-Gil, Yuseong-Gu, Daejeon, Republic of Korea.
| |
Collapse
|
3
|
Borewicz K, Brück WM. Supplemented Infant Formula and Human Breast Milk Show Similar Patterns in Modulating Infant Microbiota Composition and Function In Vitro. Int J Mol Sci 2024; 25:1806. [PMID: 38339084 PMCID: PMC10855883 DOI: 10.3390/ijms25031806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/10/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
The gut microbiota of healthy breastfed infants is often dominated by bifidobacteria. In an effort to mimic the microbiota of breastfed infants, modern formulas are fortified with bioactive and bifidogenic ingredients. These ingredients promote the optimal health and development of infants as well as the development of the infant microbiota. Here, we used INFOGEST and an in vitro batch fermentation model to investigate the gut health-promoting effects of a commercial infant formula supplemented with a blend containing docosahexaenoic acid (DHA) (20 mg/100 kcal), polydextrose and galactooligosaccharides (PDX/GOS) (4 g/L, 1:1 ratio), milk fat globule membrane (MFGM) (5 g/L), lactoferrin (0.6 g/L), and Bifidobacterium animalis subsp. lactis, BB-12 (BB-12) (106 CFU/g). Using fecal inoculates from three healthy infants, we assessed microbiota changes, the bifidogenic effect, and the short-chain fatty acid (SCFA) production of the supplemented test formula and compared those with data obtained from an unsupplemented base formula and from the breast milk control. Our results show that even after INFOGEST digestion of the formula, the supplemented formula can still maintain its bioactivity and modulate infants' microbiota composition, promote faster bifidobacterial growth, and stimulate production of SCFAs. Thus, it may be concluded that the test formula containing a bioactive blend promotes infant gut microbiota and SCFA profile to something similar, but not identical to those of breastfed infants.
Collapse
Affiliation(s)
- Klaudyna Borewicz
- Mead Johnson B.V., Middenkampweg 2, 6545 CJ Nijmegen, The Netherlands;
| | - Wolfram Manuel Brück
- Institute for Life Technologies, University of Applied Sciences Western Switzerland Valais-Wallis, 1950 Sion, Switzerland
| |
Collapse
|
4
|
He Y, Ling Y, Zhang Z, Mertens RT, Cao Q, Xu X, Guo K, Shi Q, Zhang X, Huo L, Wang K, Guo H, Shen W, Shen M, Feng W, Xiao P. Butyrate reverses ferroptosis resistance in colorectal cancer by inducing c-Fos-dependent xCT suppression. Redox Biol 2023; 65:102822. [PMID: 37494767 PMCID: PMC10388208 DOI: 10.1016/j.redox.2023.102822] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/28/2023] Open
Abstract
Ferroptosis has emerged to be a promising approach in cancer therapies; however, colorectal cancer (CRC) is relatively insensitive to ferroptosis. Exactly how the gut microenvironment impacts the ferroptotic sensitivity of CRC remains unknown. Herein, by performing metabolomics, we discovered that butyrate concentrations were significantly decreased in CRC patients. Butyrate supplementation sensitized CRC mice to ferroptosis induction, showing great in vivo translatability. Particularly, butyrate treatment reduced ferroptotic resistance of cancer stem cells. Mechanistically, butyrate inhibited xCT expression and xCT-dependent glutathione synthesis. Moreover, we identified c-Fos as a novel xCT suppressor, and further elucidated that butyrate induced c-Fos expression via disrupting class I HDAC activity. In CRC patients, butyrate negatively correlated with tumor xCT expression and positively correlated with c-Fos expression. Finally, butyrate was found to boost the pro-ferroptotic function of oxaliplatin (OXA). Immunohistochemistry data showed that OXA non-responders exhibited higher xCT expression compared to OXA responders. Hence, butyrate supplementation is a promising approach to break the ferroptosis resistance in CRC.
Collapse
Affiliation(s)
- Ying He
- Central Laboratory, The First Affiliated Hospital of Huzhou University, Huzhou, 313000, China; Huzhou Key Laboratory of Translational Medicine, The First People's Hospital of Huzhou, Huzhou, 313000, China
| | - Yuhang Ling
- Central Laboratory, The First Affiliated Hospital of Huzhou University, Huzhou, 313000, China; Huzhou Key Laboratory of Translational Medicine, The First People's Hospital of Huzhou, Huzhou, 313000, China
| | - Zhiyong Zhang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | | | - Qian Cao
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China; Inflammatory Bowel Disease Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Xutao Xu
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Ke Guo
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Qian Shi
- Central Laboratory, The First Affiliated Hospital of Huzhou University, Huzhou, 313000, China; Huzhou Key Laboratory of Translational Medicine, The First People's Hospital of Huzhou, Huzhou, 313000, China
| | - Xilin Zhang
- Central Laboratory, The First Affiliated Hospital of Huzhou University, Huzhou, 313000, China; Huzhou Key Laboratory of Translational Medicine, The First People's Hospital of Huzhou, Huzhou, 313000, China
| | - Lixia Huo
- Central Laboratory, The First Affiliated Hospital of Huzhou University, Huzhou, 313000, China; Huzhou Key Laboratory of Translational Medicine, The First People's Hospital of Huzhou, Huzhou, 313000, China
| | - Kan Wang
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Huihui Guo
- Central Laboratory, The First Affiliated Hospital of Huzhou University, Huzhou, 313000, China; Huzhou Key Laboratory of Translational Medicine, The First People's Hospital of Huzhou, Huzhou, 313000, China
| | - Weiyun Shen
- Central Laboratory, The First Affiliated Hospital of Huzhou University, Huzhou, 313000, China; Huzhou Key Laboratory of Translational Medicine, The First People's Hospital of Huzhou, Huzhou, 313000, China
| | - Manlu Shen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Wenming Feng
- Central Laboratory, The First Affiliated Hospital of Huzhou University, Huzhou, 313000, China; Huzhou Key Laboratory of Translational Medicine, The First People's Hospital of Huzhou, Huzhou, 313000, China.
| | - Peng Xiao
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China; Inflammatory Bowel Disease Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China; Institute of Immunology, Zhejiang University School of Medicine, 310058, Hangzhou, China; The Key Laboratory for Immunity and Inflammatory Diseases of Zhejiang Province, Hangzhou, 310058, China.
| |
Collapse
|
5
|
Zhang Y, Chen R, Zhang D, Qi S, Liu Y. Metabolite interactions between host and microbiota during health and disease: Which feeds the other? Biomed Pharmacother 2023; 160:114295. [PMID: 36709600 DOI: 10.1016/j.biopha.2023.114295] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/20/2023] [Accepted: 01/20/2023] [Indexed: 01/30/2023] Open
Abstract
Metabolites produced by the host and microbiota play a crucial role in how human bodies develop and remain healthy. Most of these metabolites are produced by microbiota and hosts in the digestive tract. Metabolites in the gut have important roles in energy metabolism, cellular communication, and host immunity, among other physiological activities. Although numerous host metabolites, such as free fatty acids, amino acids, and vitamins, are found in the intestine, metabolites generated by gut microbiota are equally vital for intestinal homeostasis. Furthermore, microbiota in the gut is the sole source of some metabolites, including short-chain fatty acids (SCFAs). Metabolites produced by microbiota, such as neurotransmitters and hormones, may modulate and significantly affect host metabolism. The gut microbiota is becoming recognized as a second endocrine system. A variety of chronic inflammatory disorders have been linked to aberrant host-microbiota interplays, but the precise mechanisms underpinning these disturbances and how they might lead to diseases remain to be fully elucidated. Microbiome-modulated metabolites are promising targets for new drug discovery due to their endocrine function in various complex disorders. In humans, metabolotherapy for the prevention or treatment of various disorders will be possible if we better understand the metabolic preferences of bacteria and the host in specific tissues and organs. Better disease treatments may be possible with the help of novel complementary therapies that target host or bacterial metabolism. The metabolites, their physiological consequences, and functional mechanisms of the host-microbiota interplays will be highlighted, summarized, and discussed in this overview.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Anethesiology, China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China.
| | - Rui Chen
- Department of Pediatrics, China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China.
| | - DuoDuo Zhang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin Province 130021, People's Republic of China.
| | - Shuang Qi
- Department of Anethesiology, China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China.
| | - Yan Liu
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China.
| |
Collapse
|
6
|
Mirzaei R, Dehkhodaie E, Bouzari B, Rahimi M, Gholestani A, Hosseini-Fard SR, Keyvani H, Teimoori A, Karampoor S. Dual role of microbiota-derived short-chain fatty acids on host and pathogen. Biomed Pharmacother 2022; 145:112352. [PMID: 34840032 DOI: 10.1016/j.biopha.2021.112352] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
A growing body of documents shows microbiota produce metabolites such as short-chain fatty acids (SCFAs) as crucial executors of diet-based microbial influence the host and bacterial pathogens. The production of SCFAs depends on the metabolic activity of intestinal microflora and is also affected by dietary changes. SCFAs play important roles in maintaining colonic health as an energy source, as a regulator of gene expression and cell differentiation, and as an anti-inflammatory agent. Additionally, the regulated expression of virulence genes is critical for successful infection by an intestinal pathogen. Bacteria rely on sensing environmental signals to find preferable niches and reach the infectious state. This review will present data supporting the diverse functional roles of microbiota-derived butyrate, propionate, and acetate on host cellular activities such as immune modulation, energy metabolism, nervous system, inflammation, cellular differentiation, and anti-tumor effects, among others. On the other hand, we will discuss and summarize data about the role of these SCFAs on the virulence factor of bacterial pathogens. In this regard, receptors and signaling routes for SCFAs metabolites in host and pathogens will be introduced.
Collapse
Affiliation(s)
- Rasoul Mirzaei
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| | - Elahe Dehkhodaie
- Department of Biology, Science and Research Branch, Islamic Azad University Tehran, Iran
| | - Behnaz Bouzari
- Department of Pathology, Firouzgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mandana Rahimi
- Department of Pathology, School of Medicine, Hasheminejad Kidney Center, Iran University of Medical Sciences, Tehran, Iran
| | - Abolfazl Gholestani
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Reza Hosseini-Fard
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Keyvani
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Ali Teimoori
- Department of Virology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Shahi SK, Ali S, Jaime CM, Guseva NV, Mangalam AK. HLA Class II Polymorphisms Modulate Gut Microbiota and Experimental Autoimmune Encephalomyelitis Phenotype. Immunohorizons 2021; 5:627-646. [PMID: 34380664 PMCID: PMC8728531 DOI: 10.4049/immunohorizons.2100024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/20/2021] [Indexed: 11/19/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease of the CNS in which the interaction between genetic and environmental factors plays an important role in disease pathogenesis. Although environmental factors account for 70% of disease risk, the exact environmental factors associated with MS are unknown. Recently, gut microbiota has emerged as a potential missing environmental factor linked with the pathobiology of MS. Yet, how genetic factors, such as HLA class II gene(s), interact with gut microbiota and influence MS is unclear. In the current study, we investigated whether HLA class II genes that regulate experimental autoimmune encephalomyelitis (EAE) and MS susceptibility also influence gut microbiota. Previously, we have shown that HLA-DR3 transgenic mice lacking endogenous mouse class II genes (AE-KO) were susceptible to myelin proteolipid protein (91-110)-induced EAE, an animal model of MS, whereas AE-KO.HLA-DQ8 transgenic mice were resistant. Surprisingly, HLA-DR3.DQ8 double transgenic mice showed higher disease prevalence and severity compared with HLA-DR3 mice. Gut microbiota analysis showed that HLA-DR3, HLA-DQ8, and HLA-DR3.DQ8 double transgenic mice microbiota are compositionally different from AE-KO mice. Within HLA class II transgenic mice, the microbiota of HLA-DQ8 mice were more similar to HLA-DR3.DQ8 than HLA-DR3. As the presence of DQ8 on an HLA-DR3 background increases disease severity, our data suggests that HLA-DQ8-specific microbiota may contribute to disease severity in HLA-DR3.DQ8 mice. Altogether, our study provides evidence that the HLA-DR and -DQ genes linked to specific gut microbiota contribute to EAE susceptibility or resistance in a transgenic animal model of MS.
Collapse
Affiliation(s)
| | - Soham Ali
- Department of Pathology, University of Iowa, Iowa City, IA
- Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA
| | | | | | - Ashutosh K Mangalam
- Department of Pathology, University of Iowa, Iowa City, IA;
- Graduate Program in Immunology, University of Iowa, Iowa City, IA; and
- Graduate Program in Molecular Medicine, University of Iowa, Iowa City, IA
| |
Collapse
|
8
|
Dionizio A, Uyghurturk DA, Melo CGS, Sabino-Arias IT, Araujo TT, Ventura TMS, Perles JVCM, Zanoni JN, Den Besten P, Buzalaf MAR. Intestinal changes associated with fluoride exposure in rats: Integrative morphological, proteomic and microbiome analyses. CHEMOSPHERE 2021; 273:129607. [PMID: 33508686 PMCID: PMC8076095 DOI: 10.1016/j.chemosphere.2021.129607] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/14/2020] [Accepted: 01/06/2021] [Indexed: 05/10/2023]
Abstract
Gastrointestinal signs and symptoms are the first signs of toxicity due to exposure to fluoride (F). This suggests the possibility that lower levels of subchronic F exposure may affect the gut. The aim of this study was to evaluate changes in the morphology, proteome and microbiome of the ileum of rats, after subchronic exposure to F. Male rats ingested water with 0, 10, or 50 mgF/L for thirty days. Treatment with F, regardless of the dose, significantly decreased the density of HuC/D-IR neurons, whereas CGRP-IR and SP-IR varicosities were significantly increased compared to the control group. Increased VIP-IR varicosities were significantly increased only in the group treated with 50 mgF/L. A significant increase in thickness of the tunica muscularis, as well as in the total thickness of the ileum wall was observed at both F doses when compared to controls. In proteomics analysis, myosin isoforms were increased, and Gastrotopin was decreased in F-exposed mice. In the microbiome metagenomics analysis, Class Clostridia was significantly reduced upon exposure to 10 mgF/L. At the higher F dose of 50 mg/L, genus Ureaplasma was significantly reduced in comparison with controls. Morphological and proteomics alterations induced by F were marked by changes associated with inflammation, and alterations in the gut microbiome. Further studies are needed to determine whether F exposure increases inflammation with secondary effects of the gut microbiome, and/or whether primary effects of F on the gut microbiome enhance changes associated with inflammation.
Collapse
Affiliation(s)
- Aline Dionizio
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - Dawud Abduweli Uyghurturk
- Department of Orofacial Sciences, School of Dentistry, University of California, San Francisco, San Francisco, USA
| | | | | | - Tamara Teodoro Araujo
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | | | | | | | - Pamela Den Besten
- Department of Orofacial Sciences, School of Dentistry, University of California, San Francisco, San Francisco, USA.
| | | |
Collapse
|
9
|
Levine M, Lohinai ZM. Resolving the Contradictory Functions of Lysine Decarboxylase and Butyrate in Periodontal and Intestinal Diseases. J Clin Med 2021; 10:jcm10112360. [PMID: 34072136 PMCID: PMC8198195 DOI: 10.3390/jcm10112360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 05/14/2021] [Indexed: 11/16/2022] Open
Abstract
Periodontal disease is a common, bacterially mediated health problem worldwide. Mastication (chewing) repeatedly traumatizes the gingiva and periodontium, causing traces of inflammatory exudate, gingival crevicular fluid (GCF), to appear in crevices between the teeth and gingiva. Inadequate tooth cleaning causes a dentally adherent microbial biofilm composed of commensal salivary bacteria to appear around these crevices where many bacteria grow better on GCF than in saliva. We reported that lysine decarboxylase (Ldc) from Eikenella corrodens depletes the GCF of lysine by converting it to cadaverine and carbon dioxide. Lysine is an amino acid essential for the integrity and continuous renewal of dentally attached epithelium acting as a barrier to microbial products. Unless removed regularly by oral hygiene, bacterial products invade the lysine-deprived dental attachment where they stimulate inflammation that enhances GCF exudation. Cadaverine increases and supports the development of a butyrate-producing microbiome that utilizes the increased GCF substrates to slowly destroy the periodontium (dysbiosis). A long-standing paradox is that acid-induced Ldc and butyrate production support a commensal (probiotic) microbiome in the intestine. Here, we describe how the different physiologies of the respective tissues explain how the different Ldc and butyrate functions impact the progression and control of these two chronic diseases.
Collapse
Affiliation(s)
- Martin Levine
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Correspondence:
| | - Zsolt M. Lohinai
- Department of Conservative Dentistry, Semmelweis University, H-1088 Budapest, Hungary;
| |
Collapse
|
10
|
Coppola S, Avagliano C, Calignano A, Berni Canani R. The Protective Role of Butyrate against Obesity and Obesity-Related Diseases. Molecules 2021; 26:molecules26030682. [PMID: 33525625 PMCID: PMC7865491 DOI: 10.3390/molecules26030682] [Citation(s) in RCA: 148] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/21/2021] [Accepted: 01/25/2021] [Indexed: 12/14/2022] Open
Abstract
Worldwide obesity is a public health concern that has reached pandemic levels. Obesity is the major predisposing factor to comorbidities, including type 2 diabetes, cardiovascular diseases, dyslipidemia, and non-alcoholic fatty liver disease. The common forms of obesity are multifactorial and derive from a complex interplay of environmental changes and the individual genetic predisposition. Increasing evidence suggest a pivotal role played by alterations of gut microbiota (GM) that could represent the causative link between environmental factors and onset of obesity. The beneficial effects of GM are mainly mediated by the secretion of various metabolites. Short-chain fatty acids (SCFAs) acetate, propionate and butyrate are small organic metabolites produced by fermentation of dietary fibers and resistant starch with vast beneficial effects in energy metabolism, intestinal homeostasis and immune responses regulation. An aberrant production of SCFAs has emerged in obesity and metabolic diseases. Among SCFAs, butyrate emerged because it might have a potential in alleviating obesity and related comorbidities. Here we reviewed the preclinical and clinical data that contribute to explain the role of butyrate in this context, highlighting its crucial contribute in the diet-GM-host health axis.
Collapse
Affiliation(s)
- Serena Coppola
- Department of Translational Medical Science, University of Naples Federico II, 80131 Naples, Italy;
- ImmunoNutriton Lab at CEINGE Advanced Biotechnologies, University of Naples Federico II, 80131 Naples, Italy
| | - Carmen Avagliano
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (C.A.); (A.C.)
| | - Antonio Calignano
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (C.A.); (A.C.)
| | - Roberto Berni Canani
- Department of Translational Medical Science, University of Naples Federico II, 80131 Naples, Italy;
- ImmunoNutriton Lab at CEINGE Advanced Biotechnologies, University of Naples Federico II, 80131 Naples, Italy
- European Laboratory for the Investigation of Food Induced Diseases (ELFID), University of Naples Federico II, 80131 Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, 80131 Naples, Italy
- Correspondence: ; Tel.: +39-081-7462680
| |
Collapse
|
11
|
How Dysregulated Ion Channels and Transporters Take a Hand in Esophageal, Liver, and Colorectal Cancer. Rev Physiol Biochem Pharmacol 2020; 181:129-222. [PMID: 32875386 DOI: 10.1007/112_2020_41] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Over the last two decades, the understanding of how dysregulated ion channels and transporters are involved in carcinogenesis and tumor growth and progression, including invasiveness and metastasis, has been increasing exponentially. The present review specifies virtually all ion channels and transporters whose faulty expression or regulation contributes to esophageal, hepatocellular, and colorectal cancer. The variety reaches from Ca2+, K+, Na+, and Cl- channels over divalent metal transporters, Na+ or Cl- coupled Ca2+, HCO3- and H+ exchangers to monocarboxylate carriers and organic anion and cation transporters. In several cases, the underlying mechanisms by which these ion channels/transporters are interwoven with malignancies have been fully or at least partially unveiled. Ca2+, Akt/NF-κB, and Ca2+- or pH-dependent Wnt/β-catenin signaling emerge as cross points through which ion channels/transporters interfere with gene expression, modulate cell proliferation, trigger epithelial-to-mesenchymal transition, and promote cell motility and metastasis. Also miRs, lncRNAs, and DNA methylation represent potential links between the misexpression of genes encoding for ion channels/transporters, their malfunctioning, and cancer. The knowledge of all these molecular interactions has provided the basis for therapeutic strategies and approaches, some of which will be broached in this review.
Collapse
|
12
|
Abstract
In recent years, the importance of the gut microbiota in human health has been revealed and many publications have highlighted its role as a key component of human physiology. Owing to the use of modern sequencing approaches, the characterisation of the microbiome in healthy individuals and in disease has demonstrated a disturbance of the microbiota, or dysbiosis, associated with pathological conditions. The microbiota establishes a symbiotic crosstalk with their host: commensal microbes benefit from the nutrient-rich environment provided by the gut and the microbiota produces hundreds of proteins and metabolites that modulate key functions of the host, including nutrient processing, maintenance of energy homoeostasis and immune system development. Many bacteria-derived metabolites originate from dietary sources. Among them, an important role has been attributed to the metabolites derived from the bacterial fermentation of dietary fibres, namely SCFA linking host nutrition to intestinal homoeostasis maintenance. SCFA are important fuels for intestinal epithelial cells (IEC) and regulate IEC functions through different mechanisms to modulate their proliferation, differentiation as well as functions of subpopulations such as enteroendocrine cells, to impact gut motility and to strengthen the gut barrier functions as well as host metabolism. Recent findings show that SCFA, and in particular butyrate, also have important intestinal and immuno-modulatory functions. In this review, we discuss the mechanisms and the impact of SCFA on gut functions and host immunity and consequently on human health.
Collapse
|
13
|
Zhang T, Yang Y, Liang Y, Jiao X, Zhao C. Beneficial Effect of Intestinal Fermentation of Natural Polysaccharides. Nutrients 2018; 10:E1055. [PMID: 30096921 PMCID: PMC6116026 DOI: 10.3390/nu10081055] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 07/27/2018] [Accepted: 08/07/2018] [Indexed: 12/11/2022] Open
Abstract
With the rapid development of modern society, many chronic diseases are increasing including diabetes, obesity, cardiovascular diseases, etc., which further cause an increased death rate worldwide. A high caloric diet with reduced natural polysaccharides, typically indigestible polysaccharides, is considered a health risk factor. With solid evidence accumulating that indigestible polysaccharides can effectively prevent and/or ameliorate symptoms of many chronic diseases, we give a narrative review of many natural polysaccharides extracted from various food resources which mainly contribute their health beneficial functions via intestinal fermentation.
Collapse
Affiliation(s)
- Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, Jilin, China.
| | - Yang Yang
- College of Food Science and Engineering, Jilin University, Changchun 130062, Jilin, China.
| | - Yuan Liang
- College of Food Science and Engineering, Jilin University, Changchun 130062, Jilin, China.
| | - Xu Jiao
- College of Food Science and Engineering, Jilin University, Changchun 130062, Jilin, China.
| | - Changhui Zhao
- College of Food Science and Engineering, Jilin University, Changchun 130062, Jilin, China.
| |
Collapse
|
14
|
Kohoutova D, Pejchal J, Bures J. Mitotic and apoptotic activity in colorectal neoplasia. BMC Gastroenterol 2018; 18:65. [PMID: 29776402 PMCID: PMC5960157 DOI: 10.1186/s12876-018-0786-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 04/24/2018] [Indexed: 12/20/2022] Open
Abstract
Background Colorectal cancer (CRC) is third most commonly diagnosed cancer worldwide. The aim of the prospective study was to evaluate mitosis and apoptosis of epithelial cells at each stage of colorectal neoplasia. Methods A total of 61 persons were enrolled into the study: 18 patients with non-advanced colorectal adenoma (non-a-A), 13 patients with advanced colorectal adenoma (a-A), 13 patients with CRC and 17 controls: individuals with normal findings on colonoscopy. Biopsy samples were taken from pathology (patients) and healthy mucosa (patients and healthy controls). Samples were formalin-fixed paraffin-embedded and stained with haematoxylin-eosin. Mitotic and apoptotic activity were evaluated in lower and upper part of the crypts and in the superficial compartment. Apoptotic activity was also assessed using detection of activated caspase-3. Results In controls, mitotic activity was present in lower part of crypts, accompanied with low apoptotic activity. Mitotic and apoptotic activity decreased (to almost zero) in upper part of crypts. In superficial compartment, increase in apoptotic activity was observed. Transformation of healthy mucosa into non-a-A was associated with significant increase of mitotic activity in lower and upper part of the crypts and with significant increase of apoptotic activity in all three compartments; p < 0.05. Transformation of non-a-A into a-A did not lead to any further significant increase in apoptotic activity, but was related to significant increase in mitotic activity in upper part of crypts and superficial compartment. A significant decrease in apoptotic activity was detected in all three comparments of CRC samples compared to a-A; p < 0.05. No differences in mitotic and apoptotic activity between biopsies in healthy controls and biopsy samples from healthy mucosa in patients with colorectal neoplasia were observed. Detection of activated caspase-3 confirmed the above findings in apoptotic activity. Conclusions Significant dysregulation of mitosis and apoptosis during the progression of colorectal neoplasia, corresponding with histology, was confirmed. In patients with sporadic colorectal neoplasia, healthy mucosa does not display different mitotic and apoptotic activity compared to mucosa in healthy controls and therefore adequate endoscopic/surgical removal of colorectal neoplasia is sufficient.
Collapse
Affiliation(s)
- Darina Kohoutova
- Charles University, Faculty of Medicine in Hradec Kralove, University Hospital Hradec Kralove, 2nd Department of Internal Medicine - Gastroenterology, Sokolska 581, 500 05, Hradec Kralove, Czech Republic.
| | - Jaroslav Pejchal
- University of Defence, Faculty of Military Health Sciences, Hradec Kralove, Czech Republic
| | - Jan Bures
- Charles University, Faculty of Medicine in Hradec Kralove, University Hospital Hradec Kralove, 2nd Department of Internal Medicine - Gastroenterology, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| |
Collapse
|
15
|
Ghonimy A, Zhang DM, Farouk MH, Wang Q. The Impact of Carnitine on Dietary Fiber and Gut Bacteria Metabolism and Their Mutual Interaction in Monogastrics. Int J Mol Sci 2018; 19:1008. [PMID: 29597260 PMCID: PMC5979481 DOI: 10.3390/ijms19041008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/06/2018] [Accepted: 03/21/2018] [Indexed: 12/20/2022] Open
Abstract
Carnitine has vital roles in the endogenous metabolism of short chain fatty acids. It can protect and support gut microbial species, and some dietary fibers can reduce the available iron involved in the bioactivity of carnitine. There is also an antagonistic relationship between high microbial populations and carnitine bioavailability. This review shows the interactions between carnitine and gut microbial composition. It also elucidates the role of carnitine bacterial metabolism, mitochondrial function, fiber fermentability, and short chain fatty acids (SCFAs).
Collapse
Affiliation(s)
- Abdallah Ghonimy
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.
| | - Dong Ming Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.
- Tonghua Normal University, Tonghua 134000, China.
| | - Mohammed Hamdy Farouk
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.
- Department of Animal Production, Faculty of Agriculture, Al-Azhar University, Cairo 11884, Egypt.
| | - Qiuju Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
16
|
Gotoh A, Nara M, Sugiyama Y, Sakanaka M, Yachi H, Kitakata A, Nakagawa A, Minami H, Okuda S, Katoh T, Katayama T, Kurihara S. Use of Gifu Anaerobic Medium for culturing 32 dominant species of human gut microbes and its evaluation based on short-chain fatty acids fermentation profiles. Biosci Biotechnol Biochem 2017; 81:2009-2017. [PMID: 28782454 DOI: 10.1080/09168451.2017.1359486] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Recently, a "human gut microbial gene catalogue," which ranks the dominance of microbe genus/species in human fecal samples, was published. Most of the bacteria ranked in the catalog are currently publicly available; however, the growth media recommended by the distributors vary among species, hampering physiological comparisons among the bacteria. To address this problem, we evaluated Gifu anaerobic medium (GAM) as a standard medium. Forty-four publicly available species of the top 56 species listed in the "human gut microbial gene catalogue" were cultured in GAM, and out of these, 32 (72%) were successfully cultured. Short-chain fatty acids from the bacterial culture supernatants were then quantified, and bacterial metabolic pathways were predicted based on in silico genomic sequence analysis. Our system provides a useful platform for assessing growth properties and analyzing metabolites of dominant human gut bacteria grown in GAM and supplemented with compounds of interest.
Collapse
Affiliation(s)
- Aina Gotoh
- a Research Institute for Bioresources and Biotechnology , Ishikawa Prefectural University , Nonoichi , Japan.,b Graduate School of Biostudies , Kyoto University , Kyoto , Japan
| | - Misaki Nara
- a Research Institute for Bioresources and Biotechnology , Ishikawa Prefectural University , Nonoichi , Japan
| | - Yuta Sugiyama
- a Research Institute for Bioresources and Biotechnology , Ishikawa Prefectural University , Nonoichi , Japan
| | - Mikiyasu Sakanaka
- a Research Institute for Bioresources and Biotechnology , Ishikawa Prefectural University , Nonoichi , Japan
| | - Hiroyuki Yachi
- a Research Institute for Bioresources and Biotechnology , Ishikawa Prefectural University , Nonoichi , Japan
| | - Aya Kitakata
- a Research Institute for Bioresources and Biotechnology , Ishikawa Prefectural University , Nonoichi , Japan
| | - Akira Nakagawa
- a Research Institute for Bioresources and Biotechnology , Ishikawa Prefectural University , Nonoichi , Japan
| | - Hiromichi Minami
- a Research Institute for Bioresources and Biotechnology , Ishikawa Prefectural University , Nonoichi , Japan
| | - Shujiro Okuda
- c Graduate School of Medical and Dental Sciences , Niigata University , Niigata , Japan
| | - Toshihiko Katoh
- b Graduate School of Biostudies , Kyoto University , Kyoto , Japan
| | - Takane Katayama
- a Research Institute for Bioresources and Biotechnology , Ishikawa Prefectural University , Nonoichi , Japan.,b Graduate School of Biostudies , Kyoto University , Kyoto , Japan
| | - Shin Kurihara
- a Research Institute for Bioresources and Biotechnology , Ishikawa Prefectural University , Nonoichi , Japan
| |
Collapse
|
17
|
Beamish EL, Johnson J, Shaw EJ, Scott NA, Bhowmick A, Rigby RJ. Loop ileostomy-mediated fecal stream diversion is associated with microbial dysbiosis. Gut Microbes 2017; 8. [PMID: 28622070 PMCID: PMC5628638 DOI: 10.1080/19490976.2017.1339003] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Loop ileostomy is an effective procedure to protect downstream intestinal anastomoses. Ileostomy reversal surgery is often performed within 12 months of formation but is associated with substantial morbidity due to severe post-surgical complications. Distal ileum is deprived of enteral nutrition and rendered inactive, often becoming atrophied and fibrotic. This study aimed to investigate the microbial and morphological changes that occur in the defunctioned ileum following loop ileostomy-mediated fecal stream diversion. Functional and defunctioned ileal resection tissue was obtained at the time of loop-ileostomy closure. Intrapatient comparisons, including histological assessment of morphology and epithelial cell proliferation, were performed on paired samples using the functional limb as control. Mucosal-associated microflora was quantified via determination of 16S rRNA gene copy number using qPCR analysis. DGGE with Sanger sequencing and qPCR methods profiled microflora to genus and phylum level, respectively. Reduced villous height and proliferation confirmed atrophy of the defunctioned ileum. DGGE analysis revealed that the microflora within defunctioned ileum is less diverse and convergence between defunctioned microbiota profiles was observed. Candidate Genera, notably Clostridia and Streptococcus, reduced in relative terms in defunctioned ileum. We conclude that Ileostomy-associated nutrient deprivation results in dysbiosis and impaired intestinal renewal in the defunctioned ileum. Altered host-microbial interactions at the mucosal surface likely contribute to the deterioration in homeostasis and thus may underpin numerous postoperative complications. Strategies to sustain the microflora before reanastomosis should be investigated.
Collapse
Affiliation(s)
- Emma L. Beamish
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster, UK
| | - Judith Johnson
- Lancashire Teaching Hospitals NHS Foundation Trust, Preston, UK
| | - Elisabeth J. Shaw
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster, UK
| | - Nigel A. Scott
- Lancashire Teaching Hospitals NHS Foundation Trust, Preston, UK
| | - Arnab Bhowmick
- Lancashire Teaching Hospitals NHS Foundation Trust, Preston, UK
| | - Rachael J. Rigby
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster, UK,CONTACT Dr Rachael J. Rigby Faculty of Health and Medicine, Furness College, Lancaster University, Lancaster, LA1 4YG, United Kingdom
| |
Collapse
|
18
|
Effect of water flow and chemical environment on microbiota growth and composition in the human colon. Proc Natl Acad Sci U S A 2017; 114:6438-6443. [PMID: 28588144 DOI: 10.1073/pnas.1619598114] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The human gut harbors a dynamic microbial community whose composition bears great importance for the health of the host. Here, we investigate how colonic physiology impacts bacterial growth, which ultimately dictates microbiota composition. Combining measurements of bacterial physiology with analysis of published data on human physiology into a quantitative, comprehensive modeling framework, we show how water flow in the colon, in concert with other physiological factors, determine the abundances of the major bacterial phyla. Mechanistically, our model shows that local pH values in the lumen, which differentially affect the growth of different bacteria, drive changes in microbiota composition. It identifies key factors influencing the delicate regulation of colonic pH, including epithelial water absorption, nutrient inflow, and luminal buffering capacity, and generates testable predictions on their effects. Our findings show that a predictive and mechanistic understanding of microbial ecology in the gut is possible. Such predictive understanding is needed for the rational design of intervention strategies to actively control the microbiota.
Collapse
|
19
|
Bussche JV, Hemeryck LY, Van Hecke T, Kuhnle GGC, Pasmans F, Moore SA, Van de Wiele T, De Smet S, Vanhaecke L. O6-carboxymethylguanine DNA adduct formation and lipid peroxidation upon in vitro gastrointestinal digestion of haem-rich meat. Mol Nutr Food Res 2014; 58:1883-96. [DOI: 10.1002/mnfr.201400078] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 04/15/2014] [Accepted: 05/14/2014] [Indexed: 02/06/2023]
Affiliation(s)
- Julie Vanden Bussche
- Laboratory of Chemical Analysis; Department of Veterinary Public Health and Food Safety; Faculty of Veterinary Medicine; Ghent University; Merelbeke Belgium
| | - Lieselot Y. Hemeryck
- Laboratory of Chemical Analysis; Department of Veterinary Public Health and Food Safety; Faculty of Veterinary Medicine; Ghent University; Merelbeke Belgium
| | - Thomas Van Hecke
- Laboratory of Animal Nutrition and Animal Product Quality; Department of Animal Production; Faculty of Bioscience Engineering, Ghent University; Melle Belgium
| | - Gunter G. C. Kuhnle
- Department of Food and Nutritional Sciences; University of Reading; Reading UK
- Department of Public Health and Primary Care; MRC Centre for Nutritional Epidemiology in Cancer Prevention & Survival; University of Cambridge; Cambridge UK
| | - Frank Pasmans
- Faculty of Veterinary Medicine; Department of Pathology, Bacteriology and Poultry Diseases; Ghent University; Merelbeke Belgium
| | - Sharon A. Moore
- School of Pharmacy and Biomolecular Sciences; Liverpool John Moores University; Liverpool UK
| | - Tom Van de Wiele
- Laboratory of Microbial Ecology and Technology; Department of Biochemical and Microbial Technology; Faculty of Bioscience Engineering; Ghent University; Ghent Belgium
| | - Stefaan De Smet
- Laboratory of Animal Nutrition and Animal Product Quality; Department of Animal Production; Faculty of Bioscience Engineering, Ghent University; Melle Belgium
| | - Lynn Vanhaecke
- Laboratory of Chemical Analysis; Department of Veterinary Public Health and Food Safety; Faculty of Veterinary Medicine; Ghent University; Merelbeke Belgium
| |
Collapse
|
20
|
Commensal Clostridia: leading players in the maintenance of gut homeostasis. Gut Pathog 2013; 5:23. [PMID: 23941657 PMCID: PMC3751348 DOI: 10.1186/1757-4749-5-23] [Citation(s) in RCA: 543] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 08/01/2013] [Indexed: 02/08/2023] Open
Abstract
The gastrointestinal tract is a complex and dynamic network where an intricate and mutualistic symbiosis modulates the relationship between the host and the microbiota in order to establish and ensure gut homeostasis. Commensal Clostridia consist of gram-positive, rod-shaped bacteria in the phylum Firmicutes and make up a substantial part of the total bacteria in the gut microbiota. They start to colonize the intestine of breastfed infants during the first month of life and populate a specific region in the intestinal mucosa in close relationship with intestinal cells. This position allows them to participate as crucial factors in modulating physiologic, metabolic and immune processes in the gut during the entire lifespan, by interacting with the other resident microbe populations, but also by providing specific and essential functions. This review focus on what is currently known regarding the role of commensal Clostridia in the maintenance of overall gut function, as well as touch on their potential contribution in the unfavorable alteration of microbiota composition (dysbiosis) that has been implicated in several gastrointestinal disorders. Commensal Clostridia are strongly involved in the maintenance of overall gut function. This leads to important translational implications in regard to the prevention and treatment of dysbiosis, to drug efficacy and toxicity, and to the development of therapies that may modulate the composition of the microflora, capitalizing on the key role of commensal Clostridia, with the end goal of promoting gut health.
Collapse
|
21
|
Donohoe DR, Collins LB, Wali A, Bigler R, Sun W, Bultman SJ. The Warburg effect dictates the mechanism of butyrate-mediated histone acetylation and cell proliferation. Mol Cell 2012; 48:612-26. [PMID: 23063526 DOI: 10.1016/j.molcel.2012.08.033] [Citation(s) in RCA: 653] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 06/15/2012] [Accepted: 08/27/2012] [Indexed: 12/13/2022]
Abstract
Widespread changes in gene expression drive tumorigenesis, yet our knowledge of how aberrant epigenomic and transcriptome profiles arise in cancer cells is poorly understood. Here, we demonstrate that metabolic transformation plays an important role. Butyrate is the primary energy source of normal colonocytes and is metabolized to acetyl-CoA, which was shown to be important not only for energetics but also for HAT activity. Due to the Warburg effect, cancerous colonocytes rely on glucose as their primary energy source, so butyrate accumulated and functioned as an HDAC inhibitor. Although both mechanisms increased histone acetylation, different target genes were upregulated. Consequently, butyrate stimulated the proliferation of normal colonocytes and cancerous colonocytes when the Warburg effect was prevented from occurring, whereas it inhibited the proliferation of cancerous colonocytes undergoing the Warburg effect. These findings link a common metabolite to epigenetic mechanisms that are differentially utilized by normal and cancerous cells because of their inherent metabolic differences.
Collapse
Affiliation(s)
- Dallas R Donohoe
- Department of Genetics and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | |
Collapse
|
22
|
Russell WR, Gratz SW, Duncan SH, Holtrop G, Ince J, Scobbie L, Duncan G, Johnstone AM, Lobley GE, Wallace RJ, Duthie GG, Flint HJ. High-protein, reduced-carbohydrate weight-loss diets promote metabolite profiles likely to be detrimental to colonic health. Am J Clin Nutr 2011; 93:1062-72. [PMID: 21389180 DOI: 10.3945/ajcn.110.002188] [Citation(s) in RCA: 534] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Diets that are high in protein but reduced in carbohydrate contents provide a common approach for achieving weight loss in obese humans. However, the effect of such diets on microbiota-derived metabolites that influence colonic health has not been established. OBJECTIVE We designed this study to assess the effect of diets with reduced carbohydrate and increased protein contents on metabolites considered to influence long-term colonic health, in particular the risk of colorectal disease. DESIGN We provided 17 obese men with a defined weight-maintenance diet (85 g protein, 116 g fat, and 360 g carbohydrate/d) for 7 d followed by 4 wk each of a high-protein and moderate-carbohydrate (HPMC; 139 g protein, 82 g fat, and 181 g carbohydrate/d) diet and a high-protein and low-carbohydrate (HPLC; 137 g protein, 143 g fat, and 22 g carbohydrate/d) diet in a crossover design. Fecal samples were analyzed to determine concentrations of phenolic metabolites, short-chain fatty acids, and nitrogenous compounds of dietary and microbial origin. RESULTS Compared with the maintenance diet, the HPMC and HPLC diets resulted in increased proportions of branched-chain fatty acids and concentrations of phenylacetic acid and N-nitroso compounds. The HPLC diet also decreased the proportion of butyrate in fecal short-chain fatty acid concentrations, which was concomitant with a reduction in the Roseburia/Eubacterium rectale group of bacteria, and greatly reduced concentrations of fiber-derived, antioxidant phenolic acids such as ferulate and its derivatives. CONCLUSIONS After 4 wk, weight-loss diets that were high in protein but reduced in total carbohydrates and fiber resulted in a significant decrease in fecal cancer-protective metabolites and increased concentrations of hazardous metabolites. Long-term adherence to such diets may increase risk of colonic disease.
Collapse
Affiliation(s)
- Wendy R Russell
- Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
|
24
|
Predominant role of host genetics in controlling the composition of gut microbiota. PLoS One 2008; 3:e3064. [PMID: 18725973 PMCID: PMC2516932 DOI: 10.1371/journal.pone.0003064] [Citation(s) in RCA: 215] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Accepted: 08/03/2008] [Indexed: 02/07/2023] Open
Abstract
Background The human gastrointestinal tract is inhabited by a very diverse symbiotic microbiota, the composition of which depends on host genetics and the environment. Several studies suggested that the host genetics may influence the composition of gut microbiota but no genes involved in host control were proposed. We investigated the effects of the wild type and mutated alleles of the gene, which encodes the protein called pyrin, one of the regulators of innate immunity, on the composition of gut commensal bacteria. Mutations in MEFV lead to the autoinflammatory disorder, familial Mediterranean fever (FMF, MIM249100), which is characterized by recurrent self-resolving attacks of fever and polyserositis, with no clinical signs of disease in remission. Methodology/Principal Findings A total of 19 FMF patients and eight healthy individuals were genotyped for mutations in the MEFV gene and gut bacterial diversity was assessed by sequencing 16S rRNA gene libraries and FISH analysis. These analyses demonstrated significant changes in bacterial community structure in FMF characterized by depletion of total numbers of bacteria, loss of diversity, and major shifts in bacterial populations within the Bacteroidetes, Firmicutes and Proteobacteria phyla in attack. In remission with no clinical signs of disease, bacterial diversity values were comparable with control but still, the bacterial composition was substantially deviant from the norm. Discriminant function analyses of gut bacterial diversity revealed highly specific, well-separated and distinct grouping, which depended on the allele carrier status of the host. Conclusions/Significance This is the first report that clearly establishes the link between the host genotype and the corresponding shifts in the gut microbiota (the latter confirmed by two independent techniques). It suggests that the host genetics is a key factor in host-microbe interaction determining a specific profile of commensal microbiota in the human gut.
Collapse
|
25
|
Oumouna-Benachour K, Oumouna M, Zerfaoui M, Hans C, Fallon K, Boulares AH. Intrinsic resistance to apoptosis of colon epithelial cells is a potential determining factor in the susceptibility of the A/J mouse strain to dimethylhydrazine-induced colon tumorigenesis. Mol Carcinog 2007; 46:993-1002. [PMID: 17538954 DOI: 10.1002/mc.20351] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alterations in the delicate balance between cell proliferation and cell death disrupt colon homeostasis and serve as determining factors in colon tumorigenesis. The two mouse strains, AKR/J (resistant) and A/J (susceptible), have been widely used as models for dimethylhydrazine-induced colon tumorigenesis. This study examined whether the differential susceptibilities of the two mouse strains to the tumorigenic effect of dimethylhydrazine were associated with intrinsic differences in the apoptotic machinery of the colon epithelial cells. While acute exposure to dimethylhydrazine caused massive apoptosis of colon epithelial cells in AKR/J mice, the effect was considerably less in A/J mice. Apoptosis in AKR/J mice occurred not only in the luminal side of the mucosa but also deep in the colonic crypts. In addition, this apoptosis appeared to involve caspase-3. The increased sensitivity of AKR/J to dimethylhydrazine was associated with a persistent expression of tumor necrosis factor (TNF) but not of its receptors. After establishing a new method for isolating primary colon epithelial cells, we determined that cells derived from A/J mice were substantially more resistant to apoptosis in response to dimethylhydrazine or to a combination of TNF, cyclohexamide, and butyrate compared to cells from AKR/J mice. These results strongly suggest that a higher intrinsic resistance to apoptosis of colon epithelial cells may be an important determinant of predisposition to colon tumorigenesis in the A/J mouse strain.
Collapse
Affiliation(s)
- Karine Oumouna-Benachour
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | | | | | | | |
Collapse
|
26
|
de Graaf AA, Venema K. Gaining insight into microbial physiology in the large intestine: a special role for stable isotopes. Adv Microb Physiol 2007; 53:73-168. [PMID: 17707144 DOI: 10.1016/s0065-2911(07)53002-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The importance of the human large intestine for nutrition, health, and disease, is becoming increasingly realized. There are numerous indications of a distinct role for the gut in such important issues as immune disorders and obesity-linked diseases. Research on this long-neglected organ, which is colonized by a myriad of bacteria, is a rapidly growing field that is currently providing fascinating new insights into the processes going on in the colon, and their relevance for the human host. This review aims to give an overview of studies dealing with the physiology of the intestinal microbiota as it functions within and in interaction with the host, with a special focus on approaches involving stable isotopes. We have included general aspects of gut microbial life as well as aspects specifically relating to genomic, proteomic, and metabolomic studies. A special emphasis is further laid on reviewing relevant methods and applications of stable isotope-aided metabolic flux analysis (MFA). We argue that linking MFA with the '-omics' technologies using innovative modeling approaches is the way to go to establish a truly integrative and interdisciplinary approach. Systems biology thus actualized will provide key insights into the metabolic regulations involved in microbe-host mutualism and their relevance for health and disease.
Collapse
Affiliation(s)
- Albert A de Graaf
- Wageningen Center for Food Sciences, PO Box 557, 6700 AN Wageningen, The Netherlands
| | | |
Collapse
|
27
|
Abstract
Knowledge of the composition of the colonic microbiota is important for our understanding of how the balance of these microbes is influenced by diet and the environment, and which bacterial groups are important in maintaining gut health or promoting disease. Molecular methodologies have advanced our understanding of the composition and diversity of the colonic microbiota. Importantly, however, it is the continued isolation of bacterial representatives of key groups that offers the best opportunity to conduct detailed metabolic and functional studies. This also permits bacterial genome sequencing which will accelerate the linkage to functionality. Obtaining new human colonic bacterial isolates can be challenging, because most of these are strict anaerobes and many have rather exact nutritional and physical requirements. Despite this many new species are being isolated and described that occupy distinct niches in the colonic microbial community. This review focuses on these under-studied yet important gut anaerobes.
Collapse
Affiliation(s)
- S H Duncan
- Rowett Research Institute, Microbial Ecology Group, Aberdeen, UK.
| | | | | |
Collapse
|
28
|
Duncan SH, Belenguer A, Holtrop G, Johnstone AM, Flint HJ, Lobley GE. Reduced dietary intake of carbohydrates by obese subjects results in decreased concentrations of butyrate and butyrate-producing bacteria in feces. Appl Environ Microbiol 2006; 73:1073-8. [PMID: 17189447 PMCID: PMC1828662 DOI: 10.1128/aem.02340-06] [Citation(s) in RCA: 770] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Weight loss diets for humans that are based on a high intake of protein but low intake of fermentable carbohydrate may alter microbial activity and bacterial populations in the large intestine and thus impact on gut health. In this study, 19 healthy, obese (body mass index range, 30 to 42) volunteers were given in succession three different diets: maintenance (M) for 3 days (399 g carbohydrate/day) and then high protein/medium (164 g/day) carbohydrate (HPMC) and high protein/low (24 g/day) carbohydrate (HPLC) each for 4 weeks. Stool samples were collected at the end of each dietary regimen. Total fecal short-chain fatty acids were 114 mM, 74 mM, and 56 mM (P < 0.001) for M, HPMC, and HPLC diets, respectively, and there was a disproportionate reduction in fecal butyrate (18 mM, 9 mM, and 4 mM, respectively; P < 0.001) with decreasing carbohydrate. Major groups of fecal bacteria were monitored using nine 16S rRNA-targeted fluorescence in situ hybridization probes, relative to counts obtained with the broad probe Eub338. No significant change was seen in the relative counts of the bacteroides (Bac303) (mean, 29.6%) or the clostridial cluster XIVa (Erec482, 23.3%), cluster IX (Prop853, 9.3%), or cluster IV (Fprau645, 11.6%; Rbro730 plus Rfla729, 9.3%) groups. In contrast, the Roseburia spp. and Eubacterium rectale subgroup of cluster XIVa (11%, 8%, and 3% for M, HPMC, and HPLC, respectively; P < 0.001) and bifidobacteria (4%, 2.1%, and 1.9%, respectively; P = 0.026) decreased as carbohydrate intake decreased. The abundance of butyrate-producing bacteria related to Roseburia spp. and E. rectale correlated well with the decline in fecal butyrate.
Collapse
Affiliation(s)
- Sylvia H Duncan
- Microbial Ecology Group, Rowett Research Institute, Greenburn Road, Bucksburn, Aberdeen AB21 9SB, UK
| | | | | | | | | | | |
Collapse
|
29
|
Chassard C, Bernalier-Donadille A. H2 and acetate transfers during xylan fermentation between a butyrate-producing xylanolytic species and hydrogenotrophic microorganisms from the human gut. FEMS Microbiol Lett 2006; 254:116-22. [PMID: 16451188 DOI: 10.1111/j.1574-6968.2005.00016.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The aim of this work was to investigate in vitro interrelationships during xylan fermentation between an H2 and butyrate-producing xylanolytic species recently isolated in our laboratory from human faeces and identified as Roseburia intestinalis and the H2-utilizing acetogen Ruminococcus hydrogenotrophicus or the methanogen Methanobrevibacter smithii. H2 transfer between M. smithii or Ru. hydrogenotrophicus and the xylanolytic species was evidenced, confirming the great potential of these H2-consuming microorganisms to reutilize fermentative H2 during fibre fermentation in the gut. In addition, acetate transfer was demonstrated between the xylanolytic Roseburia sp. and the acetogenic species, both metabolites transfers leading to butyric fermentation of oat xylan without production of H2.
Collapse
Affiliation(s)
- Christophe Chassard
- Unité de Microbiologie, INRA, Centre de Recherches de Clermont-Ferrand/Theix, Saint Genès Champanelle, France
| | | |
Collapse
|
30
|
Glei M, Hofmann T, Küster K, Hollmann J, Lindhauer MG, Pool-Zobel BL. Both wheat (Triticum aestivum) bran arabinoxylans and gut flora-mediated fermentation products protect human colon cells from genotoxic activities of 4-hydroxynonenal and hydrogen peroxide. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2006; 54:2088-95. [PMID: 16536580 DOI: 10.1021/jf052768e] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Dietary fibers are fermented by the gut flora to yield short chain fatty acids (SCFAs), which inhibit the growth of tumor cells, induce glutathione S-transferases (GSTs), and protect cells from the genotoxic activity of 4-hydroxynonenal (HNE). Here, we investigated effects of wheat bran-derived arabinoxylans and fermentation products on these parameters of chemoprevention. Newly isolated water extractable (WeAx) and alkali extractable arabinoxylans (AeAx) were fermented under anaerobic conditions with human feces. Resulting fermentation supernatants (FSs) were analyzed for SCFAs and used to treat HT29 colon cancer cells. Cell growth, cytotoxicity, antigenotoxicity against hydrogen peroxide (H2O2) or HNE, and GST activity were determined. Nonfermented WeAx decreased H2O2-induced DNA damage by 64%, thus demonstrating chemoprotective properties by this nonfermented wheat bran fiber. The fermentation of WeAx and AeAx resulted in 3-fold increases of SCFA, but all FSs (including the control without arabinoxylans) inhibited the growth of the HT29 cells, reduced the genotoxicity of HNE, and enhanced the activity of GSTs (FS WeAx, 2-fold; FS AeAx, 1.7-fold; and control FS, 1.4-fold), which detoxify HNE. Thus, increases in SCFAs were not reflected by enhanced functional effects. The conclusion is that fermentation mixtures contain modulatory compounds that arise from the feces and might add to the effectiveness of SCFAs.
Collapse
Affiliation(s)
- Michael Glei
- Department of Nutritional Toxicology, Institute for Nutritional Sciences, Friedrich Schiller University Jena, Dornburger Strasse 25, 07743 Jena, Germany.
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
Butyrate, the four-carbon fatty acid, is formed in the human colon by bacterial fermentation of carbohydrates (including dietary fiber), and putatively suppresses colorectal cancer (CRC). Butyrate has diverse and apparently paradoxical effects on cellular proliferation, apoptosis and differentiation that may be either pro-neoplastic or anti-neoplastic, depending upon factors such as the level of exposure, availability of other metabolic substrate and the intracellular milieu. In humans, the relationship between luminal butyrate exposure and CRC has been examined only indirectly in case-control studies, by measuring fecal butyrate concentrations, although this may not accurately reflect effective butyrate exposure during carcinogenesis. Perhaps not surprisingly, results of these investigations have been mutually contradictory. The direct effect of butyrate on tumorigenesis has been assessed in a number of in vivo animal models, which have also yielded conflicting results. In part, this may be explained by methodological differences in the amount and route of butyrate administration, which are likely to significantly influence delivery of butyrate to the distal colon. Nonetheless, there appears to be some evidence that delivery of an adequate amount of butyrate to the appropriate site protects against early tumorigenic events. Future study of the relationship between butyrate and CRC in humans needs to focus on risk stratification and the development of feasible strategies for butyrate delivery.
Collapse
Affiliation(s)
- Shomik Sengupta
- Monash University Department of Medicine and Department of Gastroenterology, Box Hill Hospital, Box Hill, Victoria, Australia
| | | | | |
Collapse
|
32
|
Shim S, Williams I, Verstegen M. Effects of dietary fructo-oligosaccharide on villous height and disaccharidase activity of the small intestine, pH, VFA and ammonia concentrations in the large intestine of weaned pigs. ACTA AGR SCAND A-AN 2005. [DOI: 10.1080/09064700500307201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
33
|
Place RF, Noonan EJ, Giardina C. HDAC inhibition prevents NF-kappa B activation by suppressing proteasome activity: down-regulation of proteasome subunit expression stabilizes I kappa B alpha. Biochem Pharmacol 2005; 70:394-406. [PMID: 15950952 DOI: 10.1016/j.bcp.2005.04.030] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2005] [Revised: 04/27/2005] [Accepted: 04/27/2005] [Indexed: 01/19/2023]
Abstract
The short chain fatty acid (SCFA) butyrate (BA) and other histone deacetylase (HDAC) inhibitors can rapidly induce cell cycle arrest and differentation of colon cancer cell lines. We found that butyrate and the specific HDAC inhibitor trichostatin A (TSA) can reprogram the NF-(kappa)B response in colon cancer cells. Specifically, TNF-alpha activation is suppressed in butyrate-differentiated cells, whereas IL-1beta activation is largely unaffected. To gain insight into the relationship between butyrate-induced differentiation and NF-(kappa)B regulation, we determined the impact of butyrate on proteasome activity and subunit expression. Interestingly, butyrate and TSA reduced the cellular proteasome activity in colon cancer cell lines. The drop in proteasome activity results from the reduced expression of the catalytic beta-type subunits of the proteasome at both the protein and mRNA level. The selective impact of HDAC inhibitors on TNF-alpha-induced NF-(kappa)B activation appears to relate to the fact that the TNF-alpha-induced activation of NF-(kappa)B is mediated by the proteasome, whereas NF-kappaB activation by IL-1beta is largely proteasome-independent. These findings indicate that cellular differentation status and/or proliferative capacity can significantly impact proteasome activity and selectively alter NF-(kappa)B responses in colon cancer cells. This information may be useful for the further development and targeting of HDAC inhibitors as anti-neoplastic and anti-inflammatory agents.
Collapse
Affiliation(s)
- Robert F Place
- Department of Molecular and Cellular Biology, University of Connecticut, 91 North Eagleville Road, U-3125, Storrs, CT 06269-3125, USA
| | | | | |
Collapse
|
34
|
Walker AW, Duncan SH, McWilliam Leitch EC, Child MW, Flint HJ. pH and peptide supply can radically alter bacterial populations and short-chain fatty acid ratios within microbial communities from the human colon. Appl Environ Microbiol 2005; 71:3692-700. [PMID: 16000778 PMCID: PMC1169066 DOI: 10.1128/aem.71.7.3692-3700.2005] [Citation(s) in RCA: 551] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2004] [Accepted: 01/31/2005] [Indexed: 02/07/2023] Open
Abstract
The effects of changes in the gut environment upon the human colonic microbiota are poorly understood. The response of human fecal microbial communities from two donors to alterations in pH (5.5 or 6.5) and peptides (0.6 or 0.1%) was studied here in anaerobic continuous cultures supplied with a mixed carbohydrate source. Final butyrate concentrations were markedly higher at pH 5.5 (0.6% peptide mean, 24.9 mM; 0.1% peptide mean, 13.8 mM) than at pH 6.5 (0.6% peptide mean, 5.3 mM; 0.1% peptide mean, 7.6 mM). At pH 5.5 and 0.6% peptide input, a high butyrate production coincided with decreasing acetate concentrations. The highest propionate concentrations (mean, 20.6 mM) occurred at pH 6.5 and 0.6% peptide input. In parallel, major bacterial groups were monitored by using fluorescence in situ hybridization with a panel of specific 16S rRNA probes. Bacteroides levels increased from ca. 20 to 75% of total eubacteria after a shift from pH 5.5 to 6.5, at 0.6% peptide, coinciding with high propionate formation. Conversely, populations of the butyrate-producing Roseburia group were highest (11 to 19%) at pH 5.5 but fell at pH 6.5, a finding that correlates with butyrate formation. When tested in batch culture, three Bacteroides species grew well at pH 6.7 but poorly at pH 5.5, which is consistent with the behavior observed for the mixed community. Two Roseburia isolates grew equally well at pH 6.7 and 5.5. These findings suggest that a lowering of pH resulting from substrate fermentation in the colon may boost butyrate production and populations of butyrate-producing bacteria, while at the same time curtailing the growth of Bacteroides spp.
Collapse
Affiliation(s)
- Alan W Walker
- Microbial Genetics Group, Rowett Research Institute, Greenburn Rd., Bucksburn, Aberdeen AB21 9SB, United Kingdom
| | | | | | | | | |
Collapse
|
35
|
Hope ME, Hold GL, Kain R, El-Omar EM. Sporadic colorectal cancer â role of the commensal microbiota. FEMS Microbiol Lett 2005; 244:1-7. [PMID: 15727814 DOI: 10.1016/j.femsle.2005.01.029] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2004] [Revised: 01/14/2005] [Accepted: 01/17/2005] [Indexed: 12/23/2022] Open
Abstract
There are vast numbers of bacteria present within the human colon that are essential for the host's well being in terms of nutrition and mucosal immunity. While certain members of the colonic microbiota have been shown to promote the host's health there are also numerous studies that have implicated other members of the colonic microbiota in the development of colorectal cancer, a prominent malignancy within the western world. In this review we consider the evidence for the role of bacteria in colorectal cancer from molecular and animal model studies. We focus on some of the mechanisms by which the colonic microbiota drives the progression towards colorectal malignancy including generation of reactive metabolites and carcinogens, alterations in host carbohydrate expression and induction of chronic mucosal inflammation.
Collapse
Affiliation(s)
- Mairi E Hope
- GI Research Group, Department of Medicine and Therapeutics, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | | | | | | |
Collapse
|
36
|
Kojima M, Wakai K, Tokudome S, Suzuki K, Tamakoshi K, Watanabe Y, Kawado M, Hashimoto S, Hayakawa N, Ozasa K, Toyoshima H, Suzuki S, Ito Y, Tamakoshi A. Serum levels of polyunsaturated fatty acids and risk of colorectal cancer: a prospective study. Am J Epidemiol 2005; 161:462-71. [PMID: 15718482 DOI: 10.1093/aje/kwi066] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
To examine the relation between serum fatty acids and risk of colorectal cancer, the authors conducted a nested case-control study of 169 colorectal cancer cases and 481 controls matched by age and enrollment area as part of the Japan Collaborative Cohort Study. Serum samples were donated by subjects at baseline (between 1988 and 1990) and were stored at -80 degrees C until 2002. Serum fatty acid levels were measured by using gas chromatography and were expressed as the weight percentage of total lipids. Conditional logistic regression analyses adjusted for lifestyle factors revealed that total omega-3 polyunsaturated fatty acids (odds ratio = 0.24, 95% confidence interval: 0.08, 0.76), alpha-linolenic acid (odds ratio = 0.39, 95% confidence interval: 0.16, 0.91), docosapentaenoic acid (odds ratio = 0.30, 95% confidence interval: 0.11, 0.80), and docosahexaenoic acid (odds ratio = 0.23, 95% confidence interval: 0.07, 0.76) all showed a significantly decreased risk for the highest versus the lowest quartile levels for colorectal cancer in men. For women, a weak negative association was observed between docosapentaenoic acid and colorectal cancer risk, although it was not statistically significant. No adverse effects of high serum levels of omega-6 polyunsaturated fatty acids on colorectal cancer risk were detected.
Collapse
Affiliation(s)
- Masayo Kojima
- Department of Health Promotion and Preventive Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Entamoeba parasites multiply as trophozoites in the layer of mucus that overlies the colonic epithelium. In response to stimuli that are not understood, trophozoites stop multiplying and differentiate into cysts that are released to infect another host. In the colon, Entamoeba trophozoites are exposed to the large variety of biochemicals that are carried into or are produced within this organ. The normal bacterial population of the colon releases large amounts of short-chain fatty acids (SCFAs). These compounds have effects on the growth, differentiation and repair of the colonic epithelium that correlate with de-creased activity of a Class I/II histone deacetylase (HDAC). We found that the formation of cysts, but not the growth of trophozoite-stage Entamoeba invadens parasites, was inhibited by physiologic concentrations of SCFAs. Variable levels of cyst formation did occur if SCFA concentrations were lowered. Specific inhibitors of Class I/II-type HDACs also prevented encystation, and trophozoites exposed to these compounds had increased levels of acetylation of histone H4 and other nuclear proteins. These results suggest that production of the infectious cyst stage of Entamoeba parasites is regulated in part by the levels of SCFAs made by the bacterial population of the colon.
Collapse
Affiliation(s)
- Jennifer Byers
- Medical and Molecular Parasitology, New York University School of Medicine, New York, NY 10010, USA
| | | | | |
Collapse
|
38
|
Uesaka T, Kageyama N. Cdx2 homeodomain protein regulates the expression of MOK, a member of the mitogen-activated protein kinase superfamily, in the intestinal epithelial cells. FEBS Lett 2004; 573:147-54. [PMID: 15327990 DOI: 10.1016/j.febslet.2004.07.070] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2004] [Accepted: 07/28/2004] [Indexed: 01/08/2023]
Abstract
Regulatory protein kinases are involved in various cellular processes such as proliferation, differentiation, and apoptosis. Using cDNA differential display, we identified MOK, a member of the mitogen-activated protein kinase superfamily, as one of the genes induced by a caudal-related homeobox transcription factor, Cdx2. Analysis of the 5'-flanking region of the MOK gene led to the identification of primary Cdx2 responsive element, and an electrophoretic mobility shift assay indicated that Cdx2 binds to that element. The interaction of Cdx2 with the MOK promoter region was further confirmed in vivo by chromatin immunoprecipitation assays. The expression of MOK mRNA and protein was limited to the crypt epithelial cells of the mouse intestine. We also determined the MOK activity associated with the growth arrest and induction of differentiation by sodium butyrate or Cdx2 expression in the human colon cancer cell line HT-29. Taken together, these data indicate that MOK is a direct target gene for Cdx2, and that MOK may be involved in growth arrest and differentiation in the intestinal epithelium.
Collapse
Affiliation(s)
- Toshihiro Uesaka
- Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan.
| | | |
Collapse
|
39
|
Klampfer L, Huang J, Sasazuki T, Shirasawa S, Augenlicht L. Oncogenic Ras Promotes Butyrate-induced Apoptosis through Inhibition of Gelsolin Expression. J Biol Chem 2004; 279:36680-8. [PMID: 15213223 DOI: 10.1074/jbc.m405197200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation of Ras promotes oncogenesis by altering a multiple of cellular processes, such as cell cycle progression, differentiation, and apoptosis. Oncogenic Ras can either promote or inhibit apoptosis, depending on the cell type and the nature of the apoptotic stimuli. The response of normal and transformed colonic epithelial cells to the short chain fatty acid butyrate, a physiological regulator of epithelial cell maturation, is also divergent: normal epithelial cells proliferate, and transformed cells undergo apoptosis in response to butyrate. To investigate the role of k-ras mutations in butyrate-induced apoptosis, we utilized HCT116 cells, which harbor an oncogenic k-ras mutation and two isogenic clones with targeted inactivation of the mutant k-ras allele, Hkh2, and Hke-3. We demonstrated that the targeted deletion of the mutant k-ras allele is sufficient to protect epithelial cells from butyrate-induced apoptosis. Consistent with this, we showed that apigenin, a dietary flavonoid that has been shown to inhibit Ras signaling and to reverse transformation of cancer cell lines, prevented butyrate-induced apoptosis in HCT116 cells. To investigate the mechanism whereby activated k-ras sensitizes colonic cells to butyrate, we performed a genome-wide analysis of Ras target genes in the isogenic cell lines HCT116, Hkh2, and Hke-3. The gene exhibiting the greatest down-regulation by the activating k-ras mutation was gelsolin, an actin-binding protein whose expression is frequently reduced or absent in colorectal cancer cell lines and primary tumors. We demonstrated that silencing of gelsolin expression by small interfering RNA sensitized cells to butyrate-induced apoptosis through amplification of the activation of caspase-9 and caspase-7. These data therefore demonstrate that gelsolin protects cells from butyrate-induced apoptosis and suggest that Ras promotes apoptosis, at least in part, through its ability to down-regulate the expression of gelsolin.
Collapse
Affiliation(s)
- Lidija Klampfer
- Department of Oncology, Albert Einstein Cancer Center, Montefiore Medical Center, 111 E. 210th Street, Bronx, NY 10467, USA.
| | | | | | | | | |
Collapse
|
40
|
Duncan SH, Holtrop G, Lobley GE, Calder AG, Stewart CS, Flint HJ. Contribution of acetate to butyrate formation by human faecal bacteria. Br J Nutr 2004; 91:915-23. [PMID: 15182395 DOI: 10.1079/bjn20041150] [Citation(s) in RCA: 330] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Acetate is normally regarded as an endproduct of anaerobic fermentation, but butyrate-producing bacteria found in the human colon can be net utilisers of acetate. The butyrate formed provides a fuel for epithelial cells of the large intestine and influences colonic health. [1-(13)C]Acetate was used to investigate the contribution of exogenous acetate to butyrate formation. Faecalibacterium prausnitzii and Roseburia spp. grown in the presence of 60 mm-acetate and 10 mm-glucose derived 85-90 % butyrate-C from external acetate. This was due to rapid interchange between extracellular acetate and intracellular acetyl-CoA, plus net acetate uptake. In contrast, a Coprococcus-related strain that is a net acetate producer derived only 28 % butyrate-C from external acetate. Different carbohydrate-derived energy sources affected butyrate formation by mixed human faecal bacteria growing in continuous or batch cultures. The ranking order of butyrate production rates was amylopectin > oat xylan > shredded wheat > inulin > pectin (continuous cultures), and inulin > amylopectin > oat xylan > shredded wheat > pectin (batch cultures). The contribution of external acetate to butyrate formation in these experiments ranged from 56 (pectin) to 90 % (xylan) in continuous cultures, and from 72 to 91 % in the batch cultures. This is consistent with a major role for bacteria related to F. prausnitzii and Roseburia spp. in butyrate formation from a range of substrates that are fermented in the large intestine. Variations in the dominant metabolic type of butyrate producer between individuals or with variations in diet are not ruled out, however, and could influence butyrate supply in the large intestine.
Collapse
Affiliation(s)
- Sylvia H Duncan
- Gut Microbiology and Immunology Division, Rowett Research Institute, Aberdeen, UK
| | | | | | | | | | | |
Collapse
|
41
|
Flint HJ. Polysaccharide Breakdown by Anaerobic Microorganisms Inhabiting the Mammalian Gut. ADVANCES IN APPLIED MICROBIOLOGY 2004; 56:89-120. [PMID: 15566977 DOI: 10.1016/s0065-2164(04)56003-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Harry J Flint
- Microbial Genetics Group Rowett Research Institute Bucksburn, Aberdeen, AB21 9SB, United Kingdom.
| |
Collapse
|
42
|
Germann A, Dihlmann S, Hergenhahn M, Doeberitz MVK, Koesters R. Expression profiling of CC531 colon carcinoma cells reveals similar regulation of beta-catenin target genes by both butyrate and aspirin. Int J Cancer 2003; 106:187-97. [PMID: 12800193 DOI: 10.1002/ijc.11215] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The CC531 cell line has been widely used to study different aspects of tumor growth and metastasis and provides an excellent experimental platform to develop novel antitumor strategies. To characterize the CC531 model at the molecular level, we screened for mutations in genes covering important signal-transduction pathways that are known to play major roles during colon carcinogenesis, the wnt and the ki-ras signaling pathways. We found both a prototypic beta-catenin (Ctnnb1) mutation (Thr(41)Ile) and a ki-ras (G12D) mutation, providing unambiguous evidence for the constitutive activation of these pathways in CC531 cells. We further established comprehensive gene expression profiles of CC531 cells and investigated the molecular response to 2 antitumor drugs, butyrate and aspirin. Using oligonucleotide microarrays, we screened the expression levels of 7,700 genes and identified a total of 398 genes whose expression was significantly changed upon treatment with butyrate. When using aspirin, 121 genes were significantly altered. Interestingly, 36 genes were regulated by both butyrate and aspirin and 35 of them were regulated in the same direction. We found 7 differentially expressed genes, cyclin D1, cyclin E, c-myc, Fosl1, c-fos, Cd44 and follistatin, which are known targets of the beta-catenin and/or the ras pathway. In all cases, butyrate and aspirin reversed the changes in expression normally found in response to active signaling of these oncogenic pathways. The microarray data are available (http://ncbi.nlm.nih.gov/geo/).
Collapse
Affiliation(s)
- Anja Germann
- Division of Molecular Pathology, Department of Pathology, University Hospital of Heidelberg, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
43
|
Abstract
Inducible p53-independent regulation of the cyclin-dependent kinase inhibitor p21(Waf1) transcription is mediated through its proximal GC-rich sites. Prior studies have shown that Sp1, Sp3 and the histone acetyltransferase coactivator p300 are components of the complexes that bind to these sites. Although Sp1 and Sp3 collaborate with p300, a direct interaction between Sp1 and p300 does not occur. Zinc-finger binding protein-89 (ZBP-89, also known as BFCOL1, BERF-1 and ZNF-148) is a Krüppel-type zinc-finger transcription factor that binds to the same GC-rich sequences as Sp1. We sought to determine whether ZBP-89 is a target of p300 during butyrate induction of p21(Waf1). This review summarizes the evidence that supports a crucial role for ZBP-89 in butyrate regulation of p21(Waf1). Adenovirus-mediated expression of ZBP-89 in HT-29 cells reveals that ZBP-89 potentiates butyrate induction of endogenous p21(Waf1) gene expression. DNA-protein interaction assays demonstrate that Sp1, Sp3 and ZBP-89 bind the p21(Waf1) promoter at -245 to -215. Coprecipitation assays reveal that p300 preferentially binds to the N-terminus of ZBP-89. ZBP-89 also induces p21(Waf1) through stabilization of p53. Although ZBP-89 binds mutant and wild-type p53, only wild-type p53 is stabilized. Moreover, mutant p53 shifts the subnuclear location of ZBP-89 to the nuclear periphery, which is a domain rich in heterochromatin. This finding led to the conclusion that mutant p53 exerts a dominant negative effect on ZBP-89. We propose that gene silencing by mutant p53 might be mediated by sequestering ZBP-89 within heterochromatin regions at the nuclear periphery. Overall, ZBP-89 is a butyrate-regulated coactivator of p53 and is able to induce p21(Waf1) gene expression through both p53-dependent and -independent mechanisms to inhibit cell growth.
Collapse
Affiliation(s)
- Juanita L Merchant
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | |
Collapse
|
44
|
McIntosh GH, Noakes M, Royle PJ, Foster PR. Whole-grain rye and wheat foods and markers of bowel health in overweight middle-aged men. Am J Clin Nutr 2003; 77:967-74. [PMID: 12663299 DOI: 10.1093/ajcn/77.4.967] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Whole-grain cereal foods including rye have been identified as providing significant health benefits that do not occur when refined-cereal foods are ingested. OBJECTIVES Foods (90 g) containing whole-grain rye flour and whole-grain wheat flour were compared with low-fiber refined-cereal foods for their effects on markers of bowel health and the metabolic markers insulin and glucose. DESIGN Three 4-wk interventions were undertaken in a randomized crossover design with 28 overweight men aged 40-65 y who had no history of bowel disease. Against a background intake of 14 g dietary fiber (DF), the men were fed low-fiber cereal grain foods providing 5 g DF for a total of 19 g DF/d. High-fiber wheat foods provided 18 g DF, and high-fiber rye foods provided 18 g DF, both giving a total of 32 g DF/d. Fecal samples (48-h) and fasting and postprandial blood samples were collected at the end of each period and assayed. RESULTS Both high-fiber rye and wheat foods increased fecal output by 33-36% (P = 0.004) and reduced fecal beta-glucuronidase activity by 29% (P = 0.027). Postprandial plasma insulin was decreased by 46-49% (P = 0.0001) and postprandial plasma glucose by 16-19% (P = 0.0005). Rye foods were associated with significantly (P = 0.0001) increased plasma enterolactone (47% and 71%) and fecal butyrate (26% and 36%), relative to wheat and low-fiber options, respectively. CONCLUSIONS High-fiber rye and wheat food consumption improved several markers of bowel and metabolic health relative to that of low-fiber food. Fiber from rye appears more effective than that from wheat in overall improvement of biomarkers of bowel health.
Collapse
Affiliation(s)
- Graeme H McIntosh
- Commonwealth Scientific & Industrial Research Organisation Health Sciences and Nutrition, Adelaide, Australia.
| | | | | | | |
Collapse
|
45
|
Pryde SE, Duncan SH, Hold GL, Stewart CS, Flint HJ. The microbiology of butyrate formation in the human colon. FEMS Microbiol Lett 2002; 217:133-9. [PMID: 12480096 DOI: 10.1111/j.1574-6968.2002.tb11467.x] [Citation(s) in RCA: 955] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Butyrate arising from microbial fermentation is important for the energy metabolism and normal development of colonic epithelial cells and has a mainly protective role in relation to colonic disease. While certain dietary substrates such as resistant starch appear to be butyrogenic in the colon, it is not known to what extent these stimulate butyrate production directly, e.g. by promoting amylolytic species, or indirectly, e.g. through cross-feeding of fermentation products. Cultural and molecular studies indicate that the most numerous butyrate-producing bacteria found in human faeces are highly oxygen-sensitive anaerobes belonging to the Clostridial clusters IV and XIVa. These include many previously undescribed species related to Eubacterium, Roseburia, Faecalibacterium and Coprococcus whose distribution and metabolic characteristics are under investigation. A better understanding of the microbial ecology of colonic butyrate-producing bacteria will help to explain the influence of diet upon butyrate supply, and to suggest new approaches for optimising microbial activity in the large intestine.
Collapse
Affiliation(s)
- Susan E Pryde
- Rowett Research Institute, Greenburn Road, Bucksburn, Aberdeen AB21 9SB, UK
| | | | | | | | | |
Collapse
|
46
|
Duncan SH, Barcenilla A, Stewart CS, Pryde SE, Flint HJ. Acetate utilization and butyryl coenzyme A (CoA):acetate-CoA transferase in butyrate-producing bacteria from the human large intestine. Appl Environ Microbiol 2002; 68:5186-90. [PMID: 12324374 PMCID: PMC126392 DOI: 10.1128/aem.68.10.5186-5190.2002] [Citation(s) in RCA: 504] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2002] [Accepted: 06/26/2002] [Indexed: 12/19/2022] Open
Abstract
Seven strains of Roseburia sp., Faecalibacterium prausnitzii, and Coprococcus sp. from the human gut that produce high levels of butyric acid in vitro were studied with respect to key butyrate pathway enzymes and fermentation patterns. Strains of Roseburia sp. and F. prausnitzii possessed butyryl coenzyme A (CoA):acetate-CoA transferase and acetate kinase activities, but butyrate kinase activity was not detectable either in growing or in stationary-phase cultures. Although unable to use acetate as a sole source of energy, these strains showed net utilization of acetate during growth on glucose. In contrast, Coprococcus sp. strain L2-50 is a net producer of acetate and possessed detectable butyrate kinase, acetate kinase, and butyryl-CoA:acetate-CoA transferase activities. These results demonstrate that different functionally distinct groups of butyrate-producing bacteria are present in the human large intestine.
Collapse
Affiliation(s)
- Sylvia H Duncan
- Division of Gut Microbiology and Immunology, Rowett Research Institute Bucksburn, Aberdeen AB21 9SB, United Kingdom.
| | | | | | | | | |
Collapse
|
47
|
Yin L, Laevsky G, Giardina C. Butyrate suppression of colonocyte NF-kappa B activation and cellular proteasome activity. J Biol Chem 2001; 276:44641-6. [PMID: 11572859 DOI: 10.1074/jbc.m105170200] [Citation(s) in RCA: 214] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Butyrate is derived from the microbial metabolism of dietary fiber in the colon where it plays an important role in linking colonocyte turnover and differentiation to luminal content. In addition, butyrate appears to have both anti-inflammatory and cancer chemopreventive activities. Using confocal microscopy and cell fractionation studies, butyrate pretreatment of a human colon cell line (HT-29 cells) inhibited the tumor necrosis factor-alpha (TNF-alpha)-induced nuclear translocation of the proinflammatory transcription factor NF-kappaB. Butyrate inhibited NF-kappaB DNA binding within 30 min of TNF-alpha stimulation, consistent with an inhibition of nuclear translocation. IkappaB.NF-kappaB complexes extracted from butyrate-treated cells were relatively resistant to in vitro dissociation by deoxycholate, suggesting a change in cellular IkappaB composition. Butyrate treatment increased p100 expression, an IkappaB that was not degraded upon TNF-alpha treatment. Butyrate also reduced the extent of TNF-alpha-induced IkappaB-alpha degradation and enhanced the presence of ubiquitin-conjugated IkappaB-alpha. The suppression of IkappaB-alpha degradation corresponded with a reduction in cellular proteasome activity as determined by in vitro proteasome assays and the increased presence of ubiquitin-conjugated proteins. The butyrate suppression of IkappaB-alpha degradation and proteasome activity may derive from its ability to inhibit histone deacetylases since the specific deacetylase inhibitor trichostatin A had similar effects. These results suggest a potential mechanism for the anti-inflammatory activity of butyrate and demonstrate the interplay between short chain fatty acids and cellular proteasome activity.
Collapse
Affiliation(s)
- L Yin
- Department of Molecular and Cellular Biology, University of Connecticut, Storrs, Connecticut 06269, USA
| | | | | |
Collapse
|
48
|
Ferguson LR, Tasman-Jones C, Englyst H, Harris PJ. Comparative effects of three resistant starch preparations on transit time and short-chain fatty acid production in rats. Nutr Cancer 2001; 36:230-7. [PMID: 10890035 DOI: 10.1207/s15327914nc3602_13] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
A high-fiber diet may protect against colon cancer because of the butyrate generated in the colon by bacterial fermentation of nonstarch polysaccharides. Butryrate can reverse neoplastic changes, at least in vitro, and resistant starch (RS) represents a source of butyrate in vivo. We examined the effects of replacing normal maize starch in the diet of rats with three preparations of RS on the amounts of starch, butyrate, and other short-chain fatty acids in the cecum. We examined the effects on fecal bulking and transit time, which have been suggested to protect against colon cancer. The RS preparations that we tested were potato starch, high-amylose maize starch, and an alpha-amylase-treated high-amylose maize starch. All had major effects on fecal weight and on the weight of the cecum but only slightly shortened transit times. All increased the amount of starch reaching the cecum and increased short-chain fatty acid production in the cecum; potato starch had the greatest effect and high-amylose maize starch the least. Potato starch, unlike high-amylose maize starch, enhanced the proportion of butyrate. Thus there were marked differences among sources of RS, even though these were all classified as RS2. The significance for colon cancer is discussed.
Collapse
Affiliation(s)
- L R Ferguson
- Auckland Cancer Society Research Centre, Faculty of Medicine and Health Science, University of Auckland, New Zealand
| | | | | | | |
Collapse
|
49
|
|
50
|
|