1
|
Lee MSS, North CM, Choudhuri I, Biswas SK, Fleisch AF, Farooque A, Bao D, Afroz S, Mow S, Husain N, Islam F, Mostofa MG, Biswas PP, Ludwig DS, Digumarthy SR, Hug C, Quamruzzaman Q, Christiani DC, Mazumdar M. Arsenic exposure is associated with elevated sweat chloride concentration and airflow obstruction among adults in Bangladesh: A cross-sectional study. PLoS One 2025; 20:e0311711. [PMID: 40333927 PMCID: PMC12057939 DOI: 10.1371/journal.pone.0311711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 03/16/2025] [Indexed: 05/09/2025] Open
Abstract
Arsenic is associated with lung disease and experimental models suggest that arsenic-induced degradation of the chloride channel CFTR (cystic fibrosis transmembrane conductance regulator) is a mechanism of arsenic toxicity. We examined associations between arsenic exposure, sweat chloride concentration (measure of CFTR function), and pulmonary function among 269 adults in Bangladesh. Participants with sweat chloride ≥ 60 mmol/L had higher arsenic exposures than those with sweat chloride < 60 mmol/L (water: median 77.5 µg/L versus 34.0 µg/L, p = 0.025; toenails: median 4.8 µg/g versus 3.7 µg/g, p = 0.024). In linear regression models, a one-unit µg/g increment in toenail arsenic was associated with a 0.59 mmol/L higher sweat chloride concentration, p < 0.001. Among the entire study population, after adjusting for covariates including age, sex, smoking, education, and height, toenail arsenic concentration was associated with increased odds of airway obstruction (OR: 1.97, 95%: 1.06, 3.67, p = 0.03); however, sweat chloride concentration did not mediate this association. Our findings suggest that sweat chloride concentration may serve as novel biomarker for arsenic exposure, warranting further investigation in diverse populations, and that arsenic likely acts on the lung through mechanisms other than inducing CFTR dysfunction. Alternative mechanisms by which environmental arsenic exposure may lead to obstructive lung disease, such as arsenic-induced direct lung injury and/or increase lung proteinase activity, require additional exploration in future work.
Collapse
Affiliation(s)
- Mi-Sun S. Lee
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Crystal M. North
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Irada Choudhuri
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Subrata K. Biswas
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, United States of America
| | - Abby F. Fleisch
- Center for Interdisciplinary Population Health Research, MaineHealth, Portland, Maine, United States of America
- Pediatric Endocrinology and Diabetes, Maine Medical Center, Portland, Maine, United States of America
| | - Afifah Farooque
- Department of Neurology, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Diane Bao
- Department of Neurology, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Sakila Afroz
- Dhaka Community Hospital Trust, Dhaka Bangladesh
| | - Sadia Mow
- Dhaka Community Hospital Trust, Dhaka Bangladesh
| | | | - Fuadul Islam
- Dhaka Community Hospital Trust, Dhaka Bangladesh
| | | | - Partha Pratim Biswas
- Department of Biochemistry, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - David S. Ludwig
- New Balance Obesity Prevention Center, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Subba R. Digumarthy
- Thoracic Imaging and Intervention Division, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Christopher Hug
- Consultant, Brookline, Massachusetts, United States of America,
| | | | - David C. Christiani
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Maitreyi Mazumdar
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Department of Neurology, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| |
Collapse
|
2
|
Vera-Espíndola F, Jeison D, Gentina JC, Muñoz J, González E. Reviewing arsenic biomineralization: An upcoming strategy for mining wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176538. [PMID: 39343396 DOI: 10.1016/j.scitotenv.2024.176538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/11/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
Human activities are the main cause of arsenic contamination in the environment and water resources, being the mining industry an important source of arsenic contamination because this element is released into the environment in solid, liquid, and gaseous wastes. Currently, several physical and chemical processes could be used for the removal of arsenic in water, but these alternatives depend on the concentration of arsenic. At low concentrations (nanograms or micrograms per liter) arsenic can be removed by membrane technologies. When arsenic is at high concentrations (milligrams or grams per liter), treatment options are reduced to inefficient processes of high economic cost and poor chemical stability of the precipitate, returning consequently arsenic into the environment. Biomineralization is a biological process where microorganisms induce the formation of minerals. This bioprocess has gained interest in recent years for the removal of contaminants from liquid effluents. This review details the harmful effects of arsenic on the health and exposes the relevance of arsenic contamination related to mining activity, whose effluents contain high concentration of arsenic. It also describes and analyzes advances in arsenic treatment strategies through biomineralization using microorganisms, such as sulfate-reducing bacteria, iron- and manganese-oxidizing microorganisms, and ureolytic microorganisms, detailing aspects of effectiveness, applicability, chemical stability of biominerals and future perspectives in their industrial application. To our knowledge, there are no previous reports compiling, analyzing, and explaining in detail the biomineralization of arsenic as a single element. The importance of this review is to deliver in a summarized and systematized way the main aspects and perspectives on the application of microorganisms to remove toxic elements, such as arsenic, from effluents.
Collapse
Affiliation(s)
- Fernando Vera-Espíndola
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso 2362803, Chile.
| | - David Jeison
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso 2362803, Chile
| | - Juan Carlos Gentina
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso 2362803, Chile
| | - Jesús Muñoz
- Departamento de Ingeniería Química y de Materiales, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Av. Complutense s/n, 28040 Madrid, Spain
| | - Ernesto González
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso 2362803, Chile; Departamento de Ingeniería Química y de Materiales, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Av. Complutense s/n, 28040 Madrid, Spain
| |
Collapse
|
3
|
Wang CW, Chen SC, Hung CH, Kuo CH. Arsenic exposure was associated with lung fibrotic changes in individuals living near a petrochemical complex. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:111498-111510. [PMID: 37814049 DOI: 10.1007/s11356-023-29952-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/14/2023] [Indexed: 10/11/2023]
Abstract
Individuals residing near petrochemical complexes have been found to have increasing the risk of respiratory distress and diseases. On visit 1 in 2016, all participants underwent urinary arsenic measurement and low-dose computed tomography (LDCT). The same participants had LDCT performed at visit 2 in 2018. Our study revealed that individuals with lung fibrotic changes had significantly higher levels of urinary arsenic compared to the non-lung fibrotic changes group. Moreover, we found that participants with urinary arsenic levels in the highest sextile (> 209.7 μg/g creatinine) had a significantly increased risk of lung fibrotic changes in both visit 1 (OR = 1.87; 95% CI= 1.16-3.02; P = 0.010) and visit 2 (OR = 1.74; 95% CI = 1.06-2.84; P = 0.028) compared to those in the lowest sextile (≤ 41.4 μg/g creatinine). We also observed a significantly increasing trend across urinary arsenic sextile in both visits (Ptrend = 0.015 in visit 1 and Ptrend = 0.026 in visit 2). Furthermore, participants with urinary arsenic levels in the highest sextile had a significantly increased risk of lung fibrotic positive to positive (OR = 2.18; 95% CI: 1.24, 3.82; P = 0.007) compared to the lowest sextile (reference category: lung fibrotic negative to negative). Our findings provide support for the hypothesis that arsenic exposure is significantly associated with an increased risk of lung fibrotic changes. It is advisable to reduce the levels of arsenic exposure for those residing near such petrochemical complexes.
Collapse
Affiliation(s)
- Chih-Wen Wang
- Division of Hepatobiliary, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Szu-Chia Chen
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Hsing Hung
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Department of Pediatrics, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, 482, Shan-Ming Rd., Hsiao-Kang Dist., 812, Kaohsiung, Taiwan.
| | - Chao-Hung Kuo
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
4
|
Wang CW, Chen SC, Wu DW, Lin HH, Chen HC, Hung CH, Kuo CH. Arsenic exposure associated with lung interstitial changes in non-smoking individuals living near a petrochemical complex: A repeated cross-sectional study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121844. [PMID: 37230174 DOI: 10.1016/j.envpol.2023.121844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023]
Abstract
Arsenic exposure is associated with airway inflammation and decreased lung function tests. Whether arsenic exposure associated with lung interstitial changes remains unknown. We conducted this population-based study in southern Taiwan during 2016 and 2018. Our study recruited individuals aged over 20 years, residing in the vicinity of a petrochemical complex and with no history of cigarette smoking. In both the 2016 and 2018 cross-sectional studies, we conducted chest low-dose computed tomography (LDCT) scans, as well as urinary arsenic and blood biochemistry analyses. Lung interstitial changes included lung fibrotic changes that were defined as the presence of curvilinear or linear densities, fine lines, or plate opacity in specific lobes; additionally, other interstitial changes were defined as the presence of ground-glass opacity (GGO) or bronchiectasis on the LDCT images. In both cross-sectional studies conducted in 2016 and 2018, participants with lung fibrotic changes exhibited a statistically significant increase in the mean urinary arsenic concentrations compared to those without fibrotic changes (geometric mean = 100.1 vs. 82.8 μg/g creatinine, p < 0.001 for cross-sectional study 2016, and geometric mean = 105.6 vs. 71.0 μg/g creatinine, p < 0.001 for cross-sectional study 2018). After controlling for age, gender, body mass index, platelet counts, hypertension, aspartate aminotransferase, cholesterol, HbA1c, and educational levels, we observed a significant positive association between a unit increase in log urinary arsenic concentrations and the risk of lung fibrotic changes in both cross-sectional study 2016 (odds ratio [OR] = 1.40, 95% confidence interval [CI] = 1.04-1.90, p = 0.028) and cross-sectional study 2018 (OR = 3.03, 95% CI = 1.38-6.63, p = 0.006). Our study did not find a significant association between arsenic exposure and bronchiectasis or GGO. It is imperative for the government to take significant measures to reduce arsenic exposure levels among individuals living near petrochemical complexes.
Collapse
Affiliation(s)
- Chih-Wen Wang
- Division of Hepatobiliary, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Szu-Chia Chen
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Da-Wei Wu
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hung-Hsun Lin
- Department of Laboratory Technology, Kaohsiung Municipal Siaogang Hospital, Kaohsiung, Taiwan
| | - Huang-Chi Chen
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Hsing Hung
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Pediatrics, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Chao-Hung Kuo
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
5
|
Niemann D, Akinjobi Z, Jeon S, Rahman HH. Arsenic exposure and prevalence of human papillomavirus in the US male population. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:1263-1275. [PMID: 35915301 DOI: 10.1007/s11356-022-22306-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Arsenic is a known carcinogen and is naturally available in earth's crust. Inorganic arsenic is an environmental pollutant with immunosuppressive properties. Human papillomavirus (HPV) is considered one of the most common sexually transmitted diseases in the United States. HPV is linked to several types of cancers in males, including oral, anal, and penile cancer. However, limited information is available on the effect of arsenic on HPV in males. The purpose of this study was to examine the association of urinary arsenic species (speciated and total) and the prevalence of HPV infection in the male population. HPV prevalence in males was analyzed using the 2013-2014 and 2015-2016 National Health and Nutrition Examination Survey (NHANES) dataset. Logistic regression analysis was used to examine associations of seven types of urinary arsenic species (arsenous acid, arsenic acid, arsenobetaine, arsenocholine, dimethylarsinic acid (DMA), monomethylarsonic acid (MMA), total arsenic acid) with HPV risk for male participants aged 18-59 years (N = 1516). Demographic characteristics were included in the logistic regression model for each arsenic variable. All statistical analyses were conducted by using the software R (version 4.2.0). Increasing DMA was positively associated with the prevalence of low-risk HPV (odds ratio (OR): 1.075, 95% confidence interval (CI): 1.025, 1.128) in addition to the sum of total toxic arsenic species (TUA1) including arsenous acid, arsenic acid, DMA, and MMA (OR: 1.068, 95% CI: 1.022, 1.116). High-risk HPV strains were found to be positively associated with arsenic acid (OR: 1.806, 95% CI: 1.134, 2.876) and total arsenic minus the sum of the two organic arsenic species arsenobetaine and arsenocholine (TUA2) at quartile 3 (Q3) level (OR: 1.523, 95% CI: 1.102, 2.103). The logistic regression models also showed that race and marital status were significant factors related to high-risk HPV. Our study reported that DMA and TUA1 are associated with low-risk HPV and arsenic acid is associated with high-risk HPV infections in males. Future research is required to confirm or refute this finding.
Collapse
Affiliation(s)
- Danielle Niemann
- Burrell College of Osteopathic Medicine, 3501 Arrowhead Dr, Las Cruces, NM, 88003, USA
| | - Zainab Akinjobi
- Department of Economics, Applied Statistics & International Business, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Soyoung Jeon
- Department of Economics, Applied Statistics & International Business, New Mexico State University, Las Cruces, NM, 88003, USA
| | | |
Collapse
|
6
|
Hung CH, Hsu HY, Chiou HYC, Tsai ML, You HL, Lin YC, Liao WT, Lin YC. Arsenic Induces M2 Macrophage Polarization and Shifts M1/M2 Cytokine Production via Mitophagy. Int J Mol Sci 2022; 23:ijms232213879. [PMID: 36430358 PMCID: PMC9693596 DOI: 10.3390/ijms232213879] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
Arsenic is an environmental factor associated with epithelial-mesenchymal transition (EMT). Since macrophages play a crucial role in regulating EMT, we studied the effects of arsenic on macrophage polarization. We first determined the arsenic concentrations to be used by cell viability assays in conjunction with previous studies. In our results, arsenic treatment increased the alternatively activated (M2) macrophage markers, including arginase 1 (ARG-1) gene expression, chemokine (C-C motif) ligand 16 (CCL16), transforming growth factor-β1 (TGF-β1), and the cluster of differentiation 206 (CD206) surface marker. Arsenic-treated macrophages promoted A549 lung epithelial cell invasion and migration in a cell co-culture model and a 3D gel cell co-culture model, confirming that arsenic treatment promoted EMT in lung epithelial cells. We confirmed that arsenic induced autophagy/mitophagy by microtubule-associated protein 1 light-chain 3-II (LC3 II) and phosphor-Parkin (p-Parkin) protein markers. The autophagy inhibitor chloroquine (CQ) recovered the expression of the inducible nitric oxide synthase (iNOS) gene in arsenic-treated M1 macrophages, which represents a confirmation that arsenic indeed induced the repolarization of classically activated (M1) macrophage to M2 macrophages through the autophagy/mitophagy pathway. Next, we verified that arsenic increased M2 cell markers in mouse blood and lungs. This study suggests that mitophagy is involved in the arsenic-induced M1 macrophage switch to an M2-like phenotype.
Collapse
Affiliation(s)
- Chih-Hsing Hung
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Pediatrics, Kaohsiung Municipal Siaogang Hospital, Kaohsiung 812, Taiwan
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Pediatrics, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Hua-Yu Hsu
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Hsin-Ying Clair Chiou
- Teaching and Research Center, Kaohsiung Municipal Siaogang Hospital, Kaohsiung 812, Taiwan
| | - Mei-Lan Tsai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Huey-Ling You
- Department of Laboratory Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Yu-Chih Lin
- Division of General Internal Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Humanities and Education, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Wei-Ting Liao
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Medical University, Kaohsiung 807, Taiwan
- Correspondence: (W.-T.L.); (Y.-C.L.)
| | - Yi-Ching Lin
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Medical University, Kaohsiung 807, Taiwan
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Doctoral Degree Program in Toxicology, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Laboratory Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: (W.-T.L.); (Y.-C.L.)
| |
Collapse
|
7
|
Signes-Pastor AJ, Díaz-Coto S, Martinez-Camblor P, Carey M, Soler-Blasco R, García-Villarino M, Fernández-Somoano A, Julvez J, Carrasco P, Lertxundi A, Santa Marina L, Casas M, Meharg AA, Karagas MR, Vioque-Lopez J. Arsenic exposure and respiratory outcomes during childhood in the INMA study. PLoS One 2022; 17:e0274215. [PMID: 36083997 PMCID: PMC9462567 DOI: 10.1371/journal.pone.0274215] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/20/2022] [Indexed: 11/25/2022] Open
Abstract
Ingested inorganic arsenic (iAs) is a human carcinogen that is also linked to other adverse health effects, such as respiratory outcomes. Yet, among populations consuming low-arsenic drinking water, the impact of iAs exposure on childhood respiratory health is still uncertain. For a Spanish child study cohort (INfancia y Medio Ambiente—INMA), low-arsenic drinking water is usually available and ingestion of iAs from food is considered the major source of exposure. Here, we explored the association between iAs exposure and children’s respiratory outcomes assessed at 4 and 7 years of age (n = 400). The summation of 4-year-old children’s urinary iAs, monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA) was used as a biomarker of iAs exposure (∑As) (median of 4.92 μg/L). Children’s occurrence of asthma, eczema, sneeze, wheeze, and medication for asthma and wheeze at each assessment time point (i.e., 4- and 7-year) was assessed with maternal interviewer-led questionnaires. Crude and adjusted Poisson regression models using Generalized Estimating Equation (GEE) were performed to account for the association between natural logarithm transformed (ln) urinary ∑As in μg/L at 4 years and repeated assessments of respiratory symptoms at 4 and 7 years of age. The covariates included in the models were child sex, maternal smoking status, maternal level of education, sub-cohort, and children’s consumption of vegetables, fruits, and fish/seafood. The GEE—splines function using Poisson regression showed an increased trend of the overall expected counts of respiratory symptoms with high urinary ∑As. The adjusted expected counts (95% confidence intervals) at ln-transformed urinary ∑As 1.57 (average concentration) and 4.00 (99th percentile concentration) were 0.63 (0.36, 1.10) and 1.33 (0.61, 2.89), respectively. These exploratory findings suggest that even relatively low-iAs exposure levels, relevant to the Spanish and other populations, may relate to an increased number of respiratory symptoms during childhood.
Collapse
Affiliation(s)
- Antonio J. Signes-Pastor
- Unidad de Epidemiología de la Nutrición, Universidad Miguel Hernández, Alicante, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
- * E-mail:
| | - Susana Díaz-Coto
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, United States of America
| | - Pablo Martinez-Camblor
- Biomedical Data Science Department, Geisel School of Medicine, Dartmouth College, Lebanon, NH, United States of America
| | - Manus Carey
- Institute for Global Food Security, School of Biological Sciences Building, Queen’s University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Raquel Soler-Blasco
- Epidemiology and Environmental Health Joint Research Unit, FISABIO−Universitat Jaume I−Universitat de València, Valencia, Spain
| | - Miguel García-Villarino
- CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Unit of Molecular Cancer Epidemiology, University Institute of Oncology of the Principality of Asturias (IUOPA)–Department of Medicine, University of Oviedo, Oviedo, Asturias, Spain
- Institute of Health Research of the Principality of Asturias (ISPA), Oviedo, Spain
| | - Ana Fernández-Somoano
- CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Unit of Molecular Cancer Epidemiology, University Institute of Oncology of the Principality of Asturias (IUOPA)–Department of Medicine, University of Oviedo, Oviedo, Asturias, Spain
- Institute of Health Research of the Principality of Asturias (ISPA), Oviedo, Spain
| | - Jordi Julvez
- CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Institut d’Investigació Sanitària Pere Virgili, Hospital Universitari Sant Joan de Reus, Reus, Spain
- ISGlobal- Instituto de Salud Global de Barcelona-Campus MAR, Parc de Recerca Biomèdica de Barcelona (PRBB), Barcelona, Spain
| | - Paula Carrasco
- Epidemiology and Environmental Health Joint Research Unit, FISABIO−Universitat Jaume I−Universitat de València, Valencia, Spain
- Department of Medicine, Universitat Jaume I, Castellón de la Plana, Spain
| | - Aitana Lertxundi
- CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Preventive Medicine and Public Health, UPV/EHU, Leioa, Basque Country, Spain
- Health Research Instititue, Biodonostia, Donostia-San Sebastian, Spain
| | - Loreto Santa Marina
- CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Health Research Instititue, Biodonostia, Donostia-San Sebastian, Spain
- Department of Health of the Basque Government, Public Health Division of Gipuzkoa, Donostia-San Sebastián, Spain
| | - Maribel Casas
- ISGlobal- Instituto de Salud Global de Barcelona-Campus MAR, Parc de Recerca Biomèdica de Barcelona (PRBB), Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Andrew A. Meharg
- Institute for Global Food Security, School of Biological Sciences Building, Queen’s University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Margaret R. Karagas
- Biomedical Data Science Department, Geisel School of Medicine, Dartmouth College, Lebanon, NH, United States of America
| | - Jesús Vioque-Lopez
- Unidad de Epidemiología de la Nutrición, Universidad Miguel Hernández, Alicante, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| |
Collapse
|
8
|
Gandhi D, Bhandari S, Mishra S, Tiwari RR, Rajasekaran S. Non-malignant respiratory illness associated with exposure to arsenic compounds in the environment. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 94:103922. [PMID: 35779705 DOI: 10.1016/j.etap.2022.103922] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 06/22/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Arsenic (As), a toxic metalloid, primarily originates from both natural and anthropogenic activities. Reports suggested that millions of people globally exposed to high levels of naturally occurring As compounds via inhalation and ingestion. There is evidence that As is a well-known lung carcinogen. However, there has been relatively little evidence suggesting its non-malignant lung effects. This review comprehensively summarises current experimental and clinical studies implicating the association of As exposure and the development of several non-malignant lung diseases. Experimental studies provided evidence that As exposure induces redox imbalance, apoptosis, inflammatory response, epithelial-to-mesenchymal transition (EMT), and affected normal lung development through alteration of the components of intracellular signaling cascades. In addition, we also discuss the sources and possible mechanisms of As influx and efflux in the lung. Finally, current experimental studies on treatment strategies using phytochemicals and our perspective on future research with As are also discussed.
Collapse
Affiliation(s)
- Deepa Gandhi
- Department of Biochemistry, ICMR-National Institute for Research in Environmental, Health, Bhopal, Madhya Pradesh, India
| | - Sneha Bhandari
- Department of Biochemistry, ICMR-National Institute for Research in Environmental, Health, Bhopal, Madhya Pradesh, India
| | - Sehal Mishra
- Department of Biochemistry, ICMR-National Institute for Research in Environmental, Health, Bhopal, Madhya Pradesh, India
| | - Rajnarayan R Tiwari
- Department of Biochemistry, ICMR-National Institute for Research in Environmental, Health, Bhopal, Madhya Pradesh, India
| | - Subbiah Rajasekaran
- Department of Biochemistry, ICMR-National Institute for Research in Environmental, Health, Bhopal, Madhya Pradesh, India.
| |
Collapse
|
9
|
Intervention Study of Dictyophora Polysaccharides on Arsenic-Induced Liver Fibrosis in SD Rats. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7509620. [PMID: 35402611 PMCID: PMC8986371 DOI: 10.1155/2022/7509620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/13/2022] [Accepted: 03/16/2022] [Indexed: 12/12/2022]
Abstract
Long-term arsenic (As) exposure can cause liver injury, hepatic cirrhosis, and cancer. Meanwhile, Dictyophora polysaccharides (DIP) have excellent antioxidation, anti-inflammation, and immune protection effects. There are currently few reports on the protection effects of DIP on As-induced hepatotoxicity and its pharmacological value. Therefore, this study was aimed at elucidating the protection of DIP on As-induced hepatotoxicity and exploring its preventive role in antifibrosis. In our study, the SD rat As poisoning model was established by the feeding method to explore the influence of As exposure on liver fibrosis. Then, DIP treatment was applied to the rats with As-induced liver fibrosis, and the changes of serum biochemical indexes and liver tissue pathology were observed. And the expression of fibrosis-related proteins TGF-β1, CTGF, and α-SMA levels was then determined to explore the DIP intervention function. The results demonstrated that through reduced pathological changes of hepatic and increased serum AST, ALT, TP, ALB, and A/G levels, DIP ameliorated liver fibrosis induced by As as reflected. And the administration of DIP decreased the concentration of HA, LN, PCIII, CIV, TBIL, and DBIL. In addition, the synthesis of TGF-β1 inhibited by DIP might regulate the expression of CTGF and decrease the proliferation of fibrinogen and fibroblasts, which reduced the synthesis of fibroblasts to transform into myofibroblasts. And a decrease of myofibroblasts downregulated the expression of α-SMA, which affected the synthesis and precipitation of ECM and alleviated the liver fibrosis caused by exposure to As. In conclusion, based on the pathological changes of liver tissue, serum biochemical indexes, and related protein expression, DIP can improve the As-induced liver fibrosis in rats and has strong medicinal value.
Collapse
|
10
|
Herrera AS, Beeraka NM, Sinelnikov MY, Nikolenko VN, Giller DB, Solis LFT, Mikhaleva LM, Somasundaram SG, Kirkland CE, Aliev G. The Beneficial Effects of QIAPI 1® against Pentavalent Arsenic-Induced Lung Toxicity a Hypothetical Model for SARS CoV2-Induced Lung Toxicity. Curr Pharm Biotechnol 2021; 23:307-315. [PMID: 33845734 DOI: 10.2174/1389201022666210412142230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 01/12/2021] [Accepted: 02/16/2021] [Indexed: 11/22/2022]
Abstract
Exposure to environmental toxicants such as Arsenic (As) can result in As-induced alterations in immune regulators. Consequently, people who are more prone to viral infections like influenza A or B, H1N1, SARS CoV (Severe Acute Respiratory Syndrome Coronavirus), and SARS CoV2 may develop susceptibility to immune responses in their lungs because our previous reports delineated the ability of QIAPI 1®, a melanin precursor, to dissociate water molecules with simultaneous therapeutic efficacy against central nervous system (CNS) diseases, retinopathy, and As-induced renal toxicity. Given the commonalities of lung pathology of SARS CoV and As-induced toxicity, the aim of this study is to decipher the efficacy of QIAPI 1® against pentavalent As-induced lung toxicity by examining the pulmonary pathology. Hematoxylin & Eosin (H&E) staining was used for ascertaining the lung pathology in Wistar rat models. Animals were divided into 3 groups: control group, group treated with pentavalent As, and a group treated with pentavalent As and QIAPI 1®. There were no significant changes in lung histopathology in the control group as indicated by intact morphology. As-treated group revealed damage to the histoarchitecture with pulmonary edema, interstitial fibrosis, diffuse alveolar damage, Bronchiolitis obliterans organizing pneumonia (BOOP)-lesions, formation of hyaline membrane, multinucleated giant pneumocytes, atypical pneumocytes, inflammatory cell infiltration, and interstitial edema. The group treated with As and QIAPI 1® significantly associated with mitigated histological signs of lung inflammation induced by Arsenic. Therefore, QIAPI 1® can be recommended as antagonistic to As-induced lung toxicity. In conclusion, this model could be preferred as a hypothetical model to examine the efficacy of QIAPI 1® in SARS CoV2-induced pulmonary damage. Future studies are warranted to delineate the efficacy of QIAPI 1® against SARS CoV and SARS CoV2 lung pathology.
Collapse
Affiliation(s)
| | - Narasimha M Beeraka
- Center of Excellence in Molecular Biology and Regenerative Medicine, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research, Mysore - 570 015, Karnataka. India
| | - Mikhail Y Sinelnikov
- Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, bld. 2, Moscow, 119991. Russian Federation
| | - Vladimir N Nikolenko
- Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, bld. 2, Moscow, 119991. Russian Federation
| | - Dimitry B Giller
- Department of Phthisiopulmonology, Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, bld. 2, Moscow, 119991. Russian Federation
| | | | - Liudmila M Mikhaleva
- Research Institute of Human Morphology, 3 Tsyurupy Street, Moscow, 117418. Russian Federation
| | - Siva G Somasundaram
- Department of Biological Sciences, Salem University, Salem, WV. United States
| | - Cecil E Kirkland
- Department of Biological Sciences, Salem University, Salem, WV. United States
| | - Gjumrakch Aliev
- Research Institute of Human Morphology, 3 Tsyurupy Street, Moscow, 117418. Russian Federation
| |
Collapse
|
11
|
Khan MA, Hira-Smith M, Ahmed SI, Yunus M, Hasan SMT, Liaw J, Balmes J, Raqib R, Yuan Y, Kalman D, Roh T, Steinmaus C, Smith AH. Prospective cohort study of respiratory effects at ages 14 to 26 following early life exposure to arsenic in drinking water. Environ Epidemiol 2020; 4:e089. [PMID: 32337474 PMCID: PMC7147401 DOI: 10.1097/ee9.0000000000000089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 02/07/2020] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND We previously reported chronic respiratory effects in children who were then 7-17 years of age in Matlab, Bangladesh. One group of children had been exposed to high concentrations of arsenic in drinking water in utero and early childhood (average 436 µg/L), and the other group of children were never known to have been exposed to >10 µg/L. The exposed children, both males and females, had marked increases in chronic respiratory symptoms. METHODS The current study involves a further follow-up of these children now 14-26 years of age with 463 located and agreeing to participate. They were interviewed for respiratory symptoms and lung function was measured. Data were collected on smoking, body mass index (BMI), and number of rooms in the house as a measure of socioeconomic status. RESULTS Respiratory effects were still present in males but not females. In the high exposure group (>400 µg/L in early life) the odds ratio (OR) among male participants for dry cough in the last 12 months was 2.36 (95% confidence interval [CI] = 1.21, 4.63, P = 0.006) and for asthma OR = 2.51 (95% CI = 1.19, 5.29, P = 0.008). Forced vital capacity (FVC) was reduced in males in the early life high-exposure group compared with those never exposed (-95ml, P = 0.04), but not in female participants. CONCLUSIONS By the age range 14-26, there was little remaining evidence of chronic respiratory effects in females but pronounced effects persisted in males. Mechanisms for the marked male female differences warrant further investigation along with further follow-up to see if respiratory effects continue in males.
Collapse
Affiliation(s)
- Md Alfazal Khan
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Meera Hira-Smith
- Arsenic Health Effects Research Program, School of Public Health, University of California, Berkeley, California
| | - Syed Imran Ahmed
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Mohammad Yunus
- Maternal and Child Health Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - S. M. Tafsir Hasan
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Jane Liaw
- Arsenic Health Effects Research Program, School of Public Health, University of California, Berkeley, California
| | - John Balmes
- Arsenic Health Effects Research Program, School of Public Health, University of California, Berkeley, California
- Department of Medicine, University of California, San Francisco, California
| | - Rubhana Raqib
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Yan Yuan
- Arsenic Health Effects Research Program, School of Public Health, University of California, Berkeley, California
| | - David Kalman
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington
| | - Taehyun Roh
- Arsenic Health Effects Research Program, School of Public Health, University of California, Berkeley, California
| | - Craig Steinmaus
- Arsenic Health Effects Research Program, School of Public Health, University of California, Berkeley, California
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, California
| | - Allan H. Smith
- Arsenic Health Effects Research Program, School of Public Health, University of California, Berkeley, California
| |
Collapse
|
12
|
Powers M, Sanchez TR, Welty TK, Cole SA, Oelsner EC, Yeh F, Turner J, O'Leary M, Brown RH, O'Donnell M, Lederer D, Navas-Acien A. Lung Function and Respiratory Symptoms after Tuberculosis in an American Indian Population. The Strong Heart Study. Ann Am Thorac Soc 2020; 17:38-48. [PMID: 31553638 PMCID: PMC6944345 DOI: 10.1513/annalsats.201904-281oc] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 09/24/2019] [Indexed: 11/20/2022] Open
Abstract
Rationale: Permanent lung function impairment after active tuberculosis infection is relatively common. It remains unclear which spirometric pattern is most prevalent after tuberculosis.Objectives: Our objective was to elucidate the impact of active tuberculosis survival on lung health in the Strong Heart Study (SHS), a population of American Indians historically highly impacted by tuberculosis. As arsenic exposure has also been related to lung function in the SHS, we also assessed the joint effect between arsenic exposure and past active tuberculosis.Methods: The SHS is an ongoing population-based, prospective study of cardiovascular disease and its risk factors in American Indian adults. This study uses tuberculosis data and spirometry data from the Visit 2 examination (1993-1995). Prior active tuberculosis was ascertained by a review of medical records. Forced vital capacity (FVC), forced expiratory volume in 1 second (FEV1), and FEV1/FVC were measured by spirometry. An additional analysis was conducted to evaluate the potential association between active tuberculosis and arsenic exposure.Results: A history of active tuberculosis was associated with reduced percent predicted FVC and FEV1, an increased odds of airflow obstruction (odds ratio = 1.45, 95% confidence interval = 1.08-1.95), and spirometric restrictive pattern (odds ratio = 1.73, 95% confidence interval = 1.24-2.40). These associations persisted after adjustment for diabetes and other risk factors, including smoking. We also observed the presence of cough, phlegm, and exertional dyspnea after a history of active tuberculosis. In the additional analysis, increasing urinary arsenic concentrations were associated with decreasing lung function in those with a history of active tuberculosis, but a reduced odds of active tuberculosis was found with elevated arsenic.Conclusions: Our findings support existing knowledge that a history of active tuberculosis is a risk factor for long-term respiratory impairment. Arsenic exposure, although inversely associated with prior active tuberculosis, was associated with a further decrease in lung function among those with a prior active tuberculosis history. The possible interaction between arsenic and tuberculosis, as well as the reduced odds of tuberculosis associated with arsenic exposure, warrants further investigation, as many populations at risk of developing active tuberculosis are also exposed to arsenic-contaminated water.
Collapse
Affiliation(s)
- Martha Powers
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Tiffany R Sanchez
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York
| | | | | | | | - Fawn Yeh
- Center for American Indian Health Research, University of Oklahoma Health Sciences Center, College of Public Health, Oklahoma City, Oklahoma
| | - Joanne Turner
- Texas Biomedical Research Institute, San Antonio, Texas
| | - Marcia O'Leary
- Missouri Breaks Industries Research, Inc., Eagle Butte, South Dakota
| | - Robert H Brown
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Max O'Donnell
- Division of Pulmonary, Allergy, and Critical Care Medicine, Columbia University Irving Medical Center, New York, New York
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, New York
| | - David Lederer
- Department of Medicine, and
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, New York
| | - Ana Navas-Acien
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York
| |
Collapse
|
13
|
Sanchez TR, Oelsner EC, Lederer DJ, Lo Cascio CM, Jones MR, Grau-Perez M, Francesconi KA, Goessler W, Perzanowski MS, Barr RG, Navas-Acien A. Rice Consumption and Subclinical Lung Disease in US Adults: Observational Evidence From the Multi-Ethnic Study of Atherosclerosis. Am J Epidemiol 2019; 188:1655-1665. [PMID: 31145426 DOI: 10.1093/aje/kwz137] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 05/22/2019] [Accepted: 05/24/2019] [Indexed: 01/17/2023] Open
Abstract
Rice accumulates arsenic, an established lung toxicant. Little is known about the association of rice consumption with arsenic-related health effects, particularly interstitial lung disease. Between 2000 and 2002, 6,814 white, black, Hispanic, and Chinese adults from 6 US cities were enrolled in the Multi-Ethnic Study of Atherosclerosis. We included 2,250 participants who had spirometry data, 2,557 with full-lung computed tomography (CT) scans, and 5,710 with cardiac CT scans. Rice consumption and 310 participants with urinary arsenic were assessed at baseline. Spirometry and full-lung CT-derived measures of total lung capacity and high attenuation area (HAA), and interstitial lung abnormalities were measured at examination 5. Cardiac CT-derived HAA was measured at 1-3 visits. Twelve percent of participants reported eating at least 1 serving of rice daily. Comparing data between that group with those who ate less than 1 serving weekly, the mean difference for forced vital capacity was -102 (95% confidence interval (CI): -198, -7) mL, and for forced expiratory volume in 1 second was -90 (95% CI: -170, -11) mL after adjustment for demographics, anthropometrics, dietary factors, and smoking. The cross-sectional adjusted percent difference for total lung capacity was -1.33% (95% CI: -4.29, 1.72) and for cardiac-based HAA was 3.66% (95% CI: 1.22, 6.15). Sensitivity analyses for urinary arsenic were consistent with rice findings. Daily rice consumption was associated with reduced lung function and greater cardiac-based HAA.
Collapse
|
14
|
Sanchez TR, Powers M, Perzanowski M, George CM, Graziano JH, Navas-Acien A. A Meta-analysis of Arsenic Exposure and Lung Function: Is There Evidence of Restrictive or Obstructive Lung Disease? Curr Environ Health Rep 2019; 5:244-254. [PMID: 29637476 DOI: 10.1007/s40572-018-0192-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Hundreds of millions of people worldwide are exposed to arsenic via contaminated water. The goal of this study was to identify whether arsenic-associated lung function deficits resemble obstructive- or restrictive-like lung disease, in order to help illuminate a mechanistic pathway and identify at-risk populations. RECENT FINDINGS We recently published a qualitative systematic review outlining the body of research on arsenic and non-malignant respiratory outcomes. Evidence from several populations, at different life stages, and at different levels of exposure showed consistent associations of arsenic exposure with chronic lung disease mortality, respiratory symptoms, and lower lung function levels. The published review, however, only conducted a broad qualitative description of the published studies without considering specific spirometry patterns, without conducting a meta-analysis, and without evaluating the dose-response relationship. We searched PubMed and Embase for studies on environmental arsenic exposure and lung function. We performed a meta-analysis using inverse-variance-weighted random effects models to summarize adjusted effect estimates for arsenic and forced expiratory volume in one second (FEV1), forced vital capacity (FVC), and FEV1/FVC ratio. Across nine studies, median water arsenic levels ranged from 23 to 860 μg/L. The pooled estimated mean difference (MD) comparing the highest category of arsenic exposure (ranging from > 11 to > 800 μg/L) versus the lowest (ranging from < 10 to < 100 μg/L) for each study for FEV1 was - 42 mL (95% confidence interval (CI) - 70, - 16) and for FVC was - 50 mL (95% CI - 63, - 37). Three studies reported effect estimates for FEV1/FVC, for which there was no evidence of an association; the pooled estimated MD was 0.01 (95% CI - 0.005, 0.024). This review supports that arsenic is associated with restrictive impairments based on inverse associations between arsenic and FEV1 and FVC, but not with FEV1/FVC. Future studies should confirm whether low-level arsenic exposure is a restrictive lung disease risk factor in order to identify at-risk populations in the USA.
Collapse
Affiliation(s)
- Tiffany R Sanchez
- Department of Environmental Health Sciences, Columbia University, 722 W 168 ST, Suite 1105, New York, NY, 10032, USA.
| | - Martha Powers
- Department of Environmental Health and Engineering, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Matthew Perzanowski
- Department of Environmental Health Sciences, Columbia University, 722 W 168 ST, Suite 1105, New York, NY, 10032, USA
| | - Christine M George
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Joseph H Graziano
- Department of Environmental Health Sciences, Columbia University, 722 W 168 ST, Suite 1105, New York, NY, 10032, USA
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Columbia University, 722 W 168 ST, Suite 1105, New York, NY, 10032, USA
| |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW The incidence of pulmonary fibrosis is increasing worldwide and may, in part, be due to occupational and environmental exposures. Secondary fibrotic interstitial lung diseases may be mistaken for idiopathic pulmonary fibrosis with important implications for both disease management and prognosis. The purposes of this review are to shed light on possible underlying causes of interstitial pulmonary fibrosis and to encourage dialogue on the importance of acquiring a thorough patient history of occupational and environmental exposures. RECENT FINDINGS A recent appreciation for various occupational and environmental metals inducing both antigen-specific immune reactions in the lung and nonspecific "innate" immune system responses has emerged and with it a growing awareness of the potential hazards to the lung caused by low-level metal exposures. Advancements in the contrast and quality of high-resolution CT scans and identification of histopathological patterns of interstitial pulmonary fibrosis have improved clinical diagnostics. Moreover, recent findings indicate specific hotspots of pulmonary fibrosis within the USA. Increased prevalence of lung disease in these areas appears to be linked to occupational/environmental metal exposure and ethnic susceptibility/vulnerability. A systematic overview of possible occupational and environmental metals causing interstitial pulmonary fibrosis and a detailed evaluation of vulnerable/susceptible populations may facilitate a broader understanding of potential underlying causes and highlight risks of disease predisposition.
Collapse
Affiliation(s)
- Nour Assad
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - Akshay Sood
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA.,Miners' Colfax Medical Center, Raton, NM, 87740, USA
| | - Matthew J Campen
- Department of Pharmaceutical Sciences, University of New Mexico-Health Sciences Center, MSC09 5360, 1 University of New Mexico, Albuquerque, NM, 87131, USA
| | - Katherine E Zychowski
- Department of Pharmaceutical Sciences, University of New Mexico-Health Sciences Center, MSC09 5360, 1 University of New Mexico, Albuquerque, NM, 87131, USA.
| |
Collapse
|
16
|
Tsuji JS, Chang ET, Gentry PR, Clewell HJ, Boffetta P, Cohen SM. Dose-response for assessing the cancer risk of inorganic arsenic in drinking water: the scientific basis for use of a threshold approach. Crit Rev Toxicol 2019; 49:36-84. [DOI: 10.1080/10408444.2019.1573804] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | - Ellen T. Chang
- Exponent, Inc., Menlo Park, CA and Stanford Cancer Institute, Stanford, CA, USA
| | | | | | - Paolo Boffetta
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Samuel M. Cohen
- Havlik-Wall Professor of Oncology, Department of Pathology and Microbiology and the Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
17
|
Liu S, Chen Y, Ren Y, Zhou J, Ren J, Lee I, Bao X. A tRNA-derived RNA Fragment Plays an Important Role in the Mechanism of Arsenite -induced Cellular Responses. Sci Rep 2018; 8:16838. [PMID: 30442959 PMCID: PMC6237853 DOI: 10.1038/s41598-018-34899-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 10/24/2018] [Indexed: 12/20/2022] Open
Abstract
Chronic exposure to environmental heavy metals is a worldwide health concern. It is acknowledged to be an important cause of lower respiratory tract damage in children. However, the molecular mechanisms underlying the heavy metal-induced cellular stress/toxicity are not completely understood. Small non-coding RNAs (sncRNAs), such as microRNAs (miRNA) and more recently identified tRNA-derived RNA fragments (tRFs), are critical to the posttranscriptional control of genes. We used deep sequencing to investigate whether cellular sncRNA profiles are changed by environmental heavy metals. We found that the treatment of arsenite, an important groundwater heavy metal, leads to abundant production of tRFs, that are ~30 nucleotides (nts) long and most of which correspond to the 5'-end of mature tRNAs. It is unlikely for these tRFs to be random degradation by-products, as the type of induced tRFs is heavy metal-dependent. Three most inducible tRFs and their roles in arsenite-induced cellular responses were then investigated. We identified that p65, an important transcription factor belonging to NF-κB family and also a key factor controlling inflammatory gene expression, is a regulated target of a tRF derived from 5'-end of mature tRNA encoding AlaCGC (tRF5-AlaCGC). tRF5-AlaCGC activates p65, subsequently leading to enhanced secretion of IL-8 in arsenite response. In this study, we also identified that endonuclease Dicer and angiogenin temporally control the induction of tRF5-AlaCGC, providing an insight into the control of tRF biogenesis and subsequently the prevention of cellular damage.
Collapse
Affiliation(s)
- Shengxuan Liu
- Department of Pediatrics, TongJi Hospital, TongJi Medical College, Huazhong University of Science and Technology, Huazhong, China
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA
| | - Yu Chen
- Department of Pediatrics, TongJi Hospital, TongJi Medical College, Huazhong University of Science and Technology, Huazhong, China
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA
| | - Yuping Ren
- Department of Pediatrics, TongJi Hospital, TongJi Medical College, Huazhong University of Science and Technology, Huazhong, China
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA
| | - Jiehua Zhou
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA
| | - Junping Ren
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA
| | | | - Xiaoyong Bao
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA.
- Sealy Center for Environmental Toxicology, University of Texas Medical Branch, Galveston, TX, USA.
- Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, TX, USA.
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX, USA.
- Institute for Human Infections & Immunity, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
18
|
Bhowmick S, Pramanik S, Singh P, Mondal P, Chatterjee D, Nriagu J. Arsenic in groundwater of West Bengal, India: A review of human health risks and assessment of possible intervention options. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 612:148-169. [PMID: 28850835 DOI: 10.1016/j.scitotenv.2017.08.216] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/15/2017] [Accepted: 08/20/2017] [Indexed: 05/03/2023]
Abstract
This paper reviews how active research in West Bengal has unmasked the endemic arsenism that has detrimental effects on the health of millions of people and their offspring. It documents how the pathways of exposure to this toxin/poison have been greatly expanded through intensive application of groundwater in agriculture in the region within the Green Revolution framework. A goal of this paper is to compare and contrast the similarities and differences in arsenic occurrence in West Bengal with those of other parts of the world and assess the unique socio-cultural factors that determine the risks of exposure to arsenic in local groundwater. Successful intervention options are also critically reviewed with emphasis on integrative strategies that ensure safe water to the population, proper nutrition, and effective ways to reduce the transfer of arsenic from soil to crops. While no universal model may be suited for the vast areas of the world affected with by natural contamination of groundwater with arsenic, we have emphasized community-specific sustainable options that can be adapted. Disseminating scientifically correct information among the population coupled with increased community level participation and education are recognized as necessary adjuncts for an engineering intervention to be successful and sustainable.
Collapse
Affiliation(s)
- Subhamoy Bhowmick
- Kolkata Zonal Center, CSIR-National Environmental Engineering Research Institute (NEERI), Kolkata, West Bengal 700107, India.
| | - Sreemanta Pramanik
- Kolkata Zonal Center, CSIR-National Environmental Engineering Research Institute (NEERI), Kolkata, West Bengal 700107, India
| | - Payel Singh
- Kolkata Zonal Center, CSIR-National Environmental Engineering Research Institute (NEERI), Kolkata, West Bengal 700107, India
| | - Priyanka Mondal
- Ceramic Membrane Division, CSIR-Central Glass and Ceramic Research Institute (CGCRI), Raja S.C. Mullick Road, Kolkata 700032, India
| | - Debashis Chatterjee
- Department of Chemistry, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India
| | - Jerome Nriagu
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, 109 Observatory Street, Ann Arbor, MI 48109-2029, USA
| |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW Arsenic, a known carcinogen and developmental toxicant, is a major threat to global health. While the contribution of arsenic exposure to chronic diseases and adverse pregnancy and birth outcomes is recognized, its ability to impair critical functions of humoral and cell-mediated immunity-including the specific mechanisms in humans-is not well understood. Arsenic has been shown to increase risk of infectious diseases that have significant health implications during pregnancy and early life. Here, we review the latest research on the mechanisms of arsenic-related immune response alterations that could underlie arsenic-associated increased risk of infection during the vulnerable periods of pregnancy and early life. RECENT FINDINGS The latest evidence points to alteration of antibody production and transplacental transfer as well as failure of T helper cells to produce IL-2 and proliferate. Critical areas for future research include the effects of arsenic exposure during pregnancy and early life on immune responses to natural infection and the immunogenicity and efficacy of vaccines.
Collapse
|
20
|
Henderson MW, Madenspacher JH, Whitehead GS, Thomas SY, Aloor JJ, Gowdy KM, Fessler MB. Effects of Orally Ingested Arsenic on Respiratory Epithelial Permeability to Bacteria and Small Molecules in Mice. ENVIRONMENTAL HEALTH PERSPECTIVES 2017; 125:097024. [PMID: 28960179 PMCID: PMC5915208 DOI: 10.1289/ehp1878] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 08/14/2017] [Accepted: 08/16/2017] [Indexed: 05/27/2023]
Abstract
BACKGROUND Arsenic exposure via drinking water impacts millions of people worldwide. Although arsenic has been associated epidemiologically with increased lung infections, the identity of the lung cell types targeted by peroral arsenic and the associated immune mechanisms remain poorly defined. OBJECTIVES We aimed to determine the impact of peroral arsenic on pulmonary antibacterial host defense. METHODS Female C57BL/6 mice were administered drinking water with 0, 250 ppb, or 25 ppm sodium arsenite for 5 wk and then challenged intratracheally with Klebsiella pneumoniae, Streptococcus pneumoniae, or lipopolysaccharide. Bacterial clearance and immune responses were profiled. RESULTS Arsenic had no effect on bacterial clearance in the lung or on the intrapulmonary innate immune response to bacteria or lipopolysaccharide, as assessed by neutrophil recruitment to, and cytokine induction in, the airspace. Alveolar macrophage TNFα production was unaltered. By contrast, arsenic-exposed mice had significantly reduced plasma TNFα in response to systemic lipopolysaccharide challenge, together suggesting that the local airway innate immune response may be relatively preserved from arsenic intoxication. Despite intact intrapulmonary bacterial clearance during pneumonia, arsenic-exposed mice suffered dramatically increased bacterial dissemination to the bloodstream. Mechanistically, this was linked to increased respiratory epithelial permeability, as revealed by intratracheal FITC-dextran tracking, serum Club Cell protein 16 measurement, and other approaches. Consistent with barrier disruption at the alveolar level, arsenic-exposed mice had evidence for alveolar epithelial type 1 cell injury. CONCLUSIONS Peroral arsenic has little effect on local airway immune responses to bacteria but compromises respiratory epithelial barrier integrity, increasing systemic translocation of inhaled pathogens and small molecules. https://doi.org/10.1289/EHP1878.
Collapse
Affiliation(s)
- Michael W Henderson
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, U.S. Department of Health and Human Services , Research Triangle Park, North Carolina, USA
| | - Jennifer H Madenspacher
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, U.S. Department of Health and Human Services , Research Triangle Park, North Carolina, USA
| | - Gregory S Whitehead
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, U.S. Department of Health and Human Services , Research Triangle Park, North Carolina, USA
| | - Seddon Y Thomas
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, U.S. Department of Health and Human Services , Research Triangle Park, North Carolina, USA
| | - Jim J Aloor
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, U.S. Department of Health and Human Services , Research Triangle Park, North Carolina, USA
| | - Kymberly M Gowdy
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University , Greenville, North Carolina, USA
| | - Michael B Fessler
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, U.S. Department of Health and Human Services , Research Triangle Park, North Carolina, USA
| |
Collapse
|
21
|
Ergün R, Evcik E, Ergün D, Ergan B, Özkan E, Gündüz Ö. High-Resolution Computed Tomography and Pulmonary Function Findings of Occupational Arsenic Exposure in Workers. Balkan Med J 2017; 34:263-268. [PMID: 28443582 PMCID: PMC5450867 DOI: 10.4274/balkanmedj.2016.0795] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Background: The number of studies where non-malignant pulmonary diseases are evaluated after occupational arsenic exposure is very few. Aims: To investigate the effects of occupational arsenic exposure on the lung by high-resolution computed tomography and pulmonary function tests. Study Design: Retrospective cross-sectional study. Methods: In this study, 256 workers with suspected respiratory occupational arsenic exposure were included, with an average age of 32.9±7.8 years and an average of 3.5±2.7 working years. Hair and urinary arsenic levels were analysed. High-resolution computed tomography and pulmonary function tests were done. Results: In workers with occupational arsenic exposure, high-resolution computed tomography showed 18.8% pulmonary involvement. In pulmonary involvement, pulmonary nodule was the most frequently seen lesion (64.5%). The other findings of pulmonary involvement were 18.8% diffuse interstitial lung disease, 12.5% bronchiectasis, and 27.1% bullae-emphysema. The mean age of patients with pulmonary involvement was higher and as they smoked more. The pulmonary involvement was 5.2 times higher in patients with skin lesions because of arsenic. Diffusing capacity of lung for carbon monoxide was significantly lower in patients with pulmonary involvement. Conclusion: Besides lung cancer, chronic occupational inhalation of arsenic exposure may cause non-malignant pulmonary findings such as bronchiectasis, pulmonary nodules and diffuse interstitial lung disease. So, in order to detect pulmonary involvement in the early stages, workers who experience occupational arsenic exposure should be followed by diffusion test and high-resolution computed tomography.
Collapse
Affiliation(s)
- Recai Ergün
- Clinic of Chest Diseases, Dışkapı Yıldırım Beyazıt Training and Research Hospital, Ankara, Turkey
| | - Ender Evcik
- Clinic of Radiology, Ankara Occupational Diseases Hospital, Ankara, Turkey
| | - Dilek Ergün
- Clinic of Chest Diseases, Ankara Occupational Diseases Hospital, Ankara, Turkey
| | - Begüm Ergan
- Department of Chest Diseases, Dokuz Eylül University School of Medicine, İzmir, Turkey
| | - Esin Özkan
- Clinic of Biochemistry, Ankara Occupational Diseases Hospital, Ankara, Turkey
| | - Özge Gündüz
- Department of Dermatology, Ufuk University School of Medicine, Ankara, Turkey
| |
Collapse
|
22
|
Ahmed S, Akhtar E, Roy A, von Ehrenstein OS, Vahter M, Wagatsuma Y, Raqib R. Arsenic exposure alters lung function and airway inflammation in children: A cohort study in rural Bangladesh. ENVIRONMENT INTERNATIONAL 2017; 101:108-116. [PMID: 28159392 DOI: 10.1016/j.envint.2017.01.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 01/18/2017] [Accepted: 01/18/2017] [Indexed: 05/19/2023]
Abstract
Exposure to arsenic has been associated with increased risk of reduced lung function in adults, but the adverse impacts in early life are unclear. We aim to examine whether prenatal and childhood arsenic exposure is associated with reduced lung function and increased airway inflammation in school-aged children. Children born in the MINIMat cohort in rural Bangladesh were evaluated at 9years of age (n=540). Arsenic exposure was assessed in urine (U-As) that was collected from mothers during early pregnancy and their children aged 4.5 and 9years. In the 9-year-old children, lung function was assessed using spirometry and airway inflammation was assessed by the NIOX MINO system. C-reactive protein (CRP) and Clara cell secretory protein (CC16) concentrations were measured in plasma by immunoassays. The U-As concentrations in 9-year-old children were lower (median 53μg/l) compared to their mothers (median 76μg/l). Maternal U-As (log2 transformed) was inversely associated with forced vital capacity (FVC) and forced expiratory volume at 1s (FEV1) (β=-12; 95% CI: -22, -1.5; p=0.031 and β=-12; 95% CI: -22, -1.9; p=0.023, respectively) in all children, and the associations were stronger in boys and among children with adequate height and weight, as well as among those whose mothers had higher percentages of methylarsonic acid (MMA) and lower percentages of dimethylarsinic acid (DMA). U-As (log2 transformed) at 4.5 and 9years was positively associated with fractional exhaled nitric oxide (FENO) concentrations in boys (β=0.89; 95% CI: 0.13, 1.66; p=0.022 and β=0.88; 95% CI: 0.16, 1.61; p=0.017, respectively) but not in girls. Increased CC16 concentrations were associated with higher lung function indices. In conclusion, our findings suggest that prenatal arsenic exposure is related to impaired lung function, while childhood exposure may increase airway inflammation, particularly in boys.
Collapse
Affiliation(s)
- Sultan Ahmed
- Infectious Diseases Division, icddr,b, Dhaka 1212, Bangladesh
| | - Evana Akhtar
- Infectious Diseases Division, icddr,b, Dhaka 1212, Bangladesh
| | - Adity Roy
- Infectious Diseases Division, icddr,b, Dhaka 1212, Bangladesh
| | - Ondine S von Ehrenstein
- Departments of Community Health Sciences and Epidemiology, Fielding School of Public Health, University of California Los Angeles, CA 90095, USA
| | - Marie Vahter
- Institute of Environmental Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Yukiko Wagatsuma
- Department of Clinical Trial and Clinical Epidemiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Rubhana Raqib
- Infectious Diseases Division, icddr,b, Dhaka 1212, Bangladesh.
| |
Collapse
|
23
|
Hsu LI, Cheng YW, Chen CJ, Wu MM, Hsu KH, Chiou HY, Lee CH. Cumulative arsenic exposure is associated with fungal infections: Two cohort studies based on southwestern and northeastern basins in Taiwan. ENVIRONMENT INTERNATIONAL 2016; 96:173-179. [PMID: 27693976 DOI: 10.1016/j.envint.2016.08.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/16/2016] [Accepted: 08/19/2016] [Indexed: 06/06/2023]
Abstract
Long-term arsenic exposure results in atherosclerosis and cancers, along with aberrant immune responses. Animal-based and epidemiological studies indicate that arsenic exposure increases susceptibility to viral and bacterial infections. This study aimed to assess whether arsenic exposure is associated with the development of fungal infection, which is substantially attributed to as a cause of aberrant immunity. Based on two well-established cohorts from two basins in southwestern (SW; high arsenic area) and northeastern (NE; low arsenic area) Taiwan (n=297 and 2738, respectively), the arsenic exposure in well water was estimated using HPLC-ICP-MS. Fungal infections were defined via clinical and mycological assessments (PCR of fungal 18S rRNA) of nail samples. Individuals in SW cohort with cumulative arsenic exposure >10,000μg/L∗years had a higher risk of developing fungal infections (OR=1.57, 95% CI=1.08-1.92) after adjusting for diabetes and occupation. In NE cohort, female sex, alcohol consumption, and chronic kidney diseases were associated with toenail infections. In contrast, fingernail infections (OR=1.33, 95% CI=1.05-1.68) were highly associated with arsenic exposure in a dose-dependent manner. We are the first to report palmar and plantar hyperkeratosis upon low arsenic exposure in 3.9% and 6.7% individuals, respectively. This is the first large-scale study showing arsenic exposure is associated with fungal infections in a dose-dependent manner.
Collapse
Affiliation(s)
- Ling-I Hsu
- Laboratory for Epidemiology, Department of Health Care Management, and Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Wen Cheng
- Department of Dermatology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chien-Jen Chen
- Genomic Research Center, Academia Sinica, Taipei, Taiwan
| | - Meei-Maan Wu
- School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan
| | - Kuang-Hung Hsu
- Laboratory for Epidemiology, Department of Health Care Management, and Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan; Department of Urology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Hung-Yi Chiou
- School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan
| | - Chih-Hung Lee
- Department of Dermatology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| |
Collapse
|
24
|
Das S, Mandal R, Rabidas VN, Verma N, Pandey K, Ghosh AK, Kesari S, Kumar A, Purkait B, Lal CS, Das P. Chronic Arsenic Exposure and Risk of Post Kala-azar Dermal Leishmaniasis Development in India: A Retrospective Cohort Study. PLoS Negl Trop Dis 2016; 10:e0005060. [PMID: 27776123 PMCID: PMC5077161 DOI: 10.1371/journal.pntd.0005060] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 09/21/2016] [Indexed: 11/20/2022] Open
Abstract
Background Visceral leishmaniasis (VL), with the squeal of Post-kala-azar dermal leishmaniasis (PKDL), is a global threat for health. Studies have shown sodium stibogluconate (SSG) resistance in VL patients with chronic arsenic exposure. Here, we assessed the association between arsenic exposure and risk of developing PKDL in treated VL patients. Methods In this retrospective study, PKDL patients (n = 139), earlier treated with SSG or any other drug during VL, were selected from the study cohort. Trained physicians, unaware of arsenic exposure, interviewed them and collected relevant data in a questionnaire format. All probable water sources were identified around the patient’s house and water was collected for evaluation of arsenic concentration. A GIS-based village-level digital database of PKDL cases and arsenic concentration in groundwater was developed and individual point location of PKDL cases were overlaid on an integrated GIS map. We used multivariate logistic regression analysis to assess odds ratios (ORs) for association between arsenic exposure and PKDL development. Results Out of the 429 water samples tested, 403 had arsenic content of over 10 μg/L, with highest level of 432 μg/L among the seven study villages. Multivariate adjusted ORs for risk of PKDL development in comparison of arsenic concentrations of 10.1–200 μg/L and 200.1–432.0 μg/L were 1.85 (1.13–3.03) and 2.31 (1.39–3.8) respectively. Interestingly, similar results were found for daily dose of arsenic and total arsenic concentration in urine sample of the individual. The multivariate-adjusted OR for comparison of high baseline arsenic exposure to low baseline arsenic exposure of the individuals in the study cohort was 1.66 (95% CI 1.02–2.7; p = 0.04). Conclusion Our findings indicate the need to consider environmental factors, like long time arsenic exposure, as an additional influence on treated VL patients towards risk of PKDL development in Bihar. Post-kala-azar dermal leishmaniasis (PKDL) is a sequela of visceral leishmaniasis (VL) that appears after patients have apparently been cured of visceral leishmaniasis; even been reported in patients without a history of VL. Previous clinical and epidemiological data ascertains the main risk factor associated with the development of PKDL is previous treatment for VL with antimonials (SSG); however, PKDL also occurs after treatment with other drugs like paromomycin, miltefosine etc. Here, in light of the risk of arsenic-associated dermal manifestations, we hypothesized that the long term exposure to groundwater arsenic acts as an additional risk factor for development of PKDL in patients treated for VL with SSG or other drugs. Using a cohort, we retrospectively assessed the risk of arsenic in development of PKDL in treated VL patients. Our findings support a significant association and prompts parasites might persist successfully in individuals over-exposed to arsenic and may exhibit features of dermatotropism leading to development of PKDL after treatment for VL. Further research is needed to dissect the mechanistic role of arsenic on VL, as well as PKDL development.
Collapse
Affiliation(s)
- Sushmita Das
- Department of Microbiology, All-India Institute of Medical Sciences, Patna, Bihar, India
- * E-mail: (SD); (PD)
| | - Rakesh Mandal
- Department of Vector Biology, Rajendra Memorial Research Institute of Medical Sciences, Indian Council of Medical Research (I.C.M.R.), Patna, Bihar, India
| | - Vidya Nand Rabidas
- Department of Clinical Medicine, Rajendra Memorial Research Institute of Medical Sciences, Indian Council of Medical Research (I.C.M.R.), Patna, Bihar, India
| | - Neena Verma
- Department of Pathology, Rajendra Memorial Research Institute of Medical Sciences, Indian Council of Medical Research (I.C.M.R.), Patna, Bihar, India
| | - Krishna Pandey
- Department of Clinical Medicine, Rajendra Memorial Research Institute of Medical Sciences, Indian Council of Medical Research (I.C.M.R.), Patna, Bihar, India
| | - Ashok Kumar Ghosh
- Department of Environment and Water Management, A.N. College, Patna, Bihar, India
| | - Sreekant Kesari
- Department of Vector Biology, Rajendra Memorial Research Institute of Medical Sciences, Indian Council of Medical Research (I.C.M.R.), Patna, Bihar, India
| | - Ashish Kumar
- Department of Pathology, Rajendra Memorial Research Institute of Medical Sciences, Indian Council of Medical Research (I.C.M.R.), Patna, Bihar, India
| | - Bidyut Purkait
- Department of Pathology, Rajendra Memorial Research Institute of Medical Sciences, Indian Council of Medical Research (I.C.M.R.), Patna, Bihar, India
| | - Chandra Sekhar Lal
- Department of Clinical Medicine, Rajendra Memorial Research Institute of Medical Sciences, Indian Council of Medical Research (I.C.M.R.), Patna, Bihar, India
| | - Pradeep Das
- Department of Pathology, Rajendra Memorial Research Institute of Medical Sciences, Indian Council of Medical Research (I.C.M.R.), Patna, Bihar, India
- * E-mail: (SD); (PD)
| |
Collapse
|
25
|
Farzan SF, Li Z, Korrick SA, Spiegelman D, Enelow R, Nadeau K, Baker E, Karagas MR. Infant Infections and Respiratory Symptoms in Relation to in Utero Arsenic Exposure in a U.S. Cohort. ENVIRONMENTAL HEALTH PERSPECTIVES 2016; 124:840-7. [PMID: 26359651 PMCID: PMC4892909 DOI: 10.1289/ehp.1409282] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 09/04/2015] [Indexed: 05/19/2023]
Abstract
BACKGROUND Arsenic has been linked to disrupted immune function and greater infection susceptibility in highly exposed populations. Well arsenic levels above the U.S. EPA limit occur in our U.S. study area and are of particular concern for pregnant women and infants. OBJECTIVES We investigated whether in utero arsenic exposure affects the risk of infections and respiratory symptoms over the first year of life. METHODS We prospectively obtained information on infant infections and symptoms, including their duration and treatment (n = 412) at 4, 8, and 12 months using a parental telephone survey. Using generalized estimating equation models adjusted for potential confounders, we evaluated the association between maternal pregnancy urinary arsenic and infant infections and symptoms over the first year. RESULTS Each doubling of maternal urinary arsenic was related to increases in the total number of infections requiring prescription medication in the first year [relative risk (RR) = 1.1; 95% CI: 1.0, 1.2]. Urinary arsenic was related specifically to respiratory symptoms (difficulty breathing, wheezing, and cough) lasting ≥ 2 days or requiring prescription medication (RR = 1.1; 95% CI: 1.0, 1.2; and RR = 1.2; 95% CI: 1.0, 1.5, respectively), and wheezing lasting ≥ 2 days, resulting in a doctor visit or prescription medication treatment (RR = 1.3; 95% CI: 1.0, 1.7; RR = 1.3; 95% CI: 1.0, 1.8, and RR = 1.5; 95% CI: 1.0, 2.2, respectively). Associations also were observed with diarrhea (RR = 1.4; 95% CI: 1.1, 1.9) and fever resulting in a doctor visit (RR = 1.2; 95% CI: 1.0, 1.5). CONCLUSIONS In utero arsenic exposure was associated with a higher risk of infection during the first year of life in our study population, particularly infections requiring medical treatment, and with diarrhea and respiratory symptoms. CITATION Farzan SF, Li Z, Korrick SA, Spiegelman D, Enelow R, Nadeau K, Baker E, Karagas MR. 2016. Infant infections and respiratory symptoms in relation to in utero arsenic exposure in a U.S. COHORT Environ Health Perspect 124:840-847; http://dx.doi.org/10.1289/ehp.1409282.
Collapse
Affiliation(s)
- Shohreh F. Farzan
- Children’s Environmental Health and Disease Prevention Research Center at Dartmouth, Hanover, New Hampshire, USA
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Zhigang Li
- Children’s Environmental Health and Disease Prevention Research Center at Dartmouth, Hanover, New Hampshire, USA
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Susan A. Korrick
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Donna Spiegelman
- Department of Biostatistics, and
- Department of Epidemiology, Global Health and Nutrition, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Richard Enelow
- Children’s Environmental Health and Disease Prevention Research Center at Dartmouth, Hanover, New Hampshire, USA
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Kari Nadeau
- Division of Immunology and Allergy, Stanford Medical School and Lucile Packard Children’s Hospital, Stanford, California, USA
| | - Emily Baker
- Department of Obstetrics and Gynecology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Margaret R. Karagas
- Children’s Environmental Health and Disease Prevention Research Center at Dartmouth, Hanover, New Hampshire, USA
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
- Address correspondence to M.R. Karagas, Department of Epidemiology, Geisel School of Medicine, One Medical Center Dr., 7927 Rubin, Lebanon, NH 03756 USA. Telephone: (603) 653-9010. E-mail:
| |
Collapse
|
26
|
Sanchez TR, Perzanowski M, Graziano JH. Inorganic arsenic and respiratory health, from early life exposure to sex-specific effects: A systematic review. ENVIRONMENTAL RESEARCH 2016; 147:537-55. [PMID: 26891939 PMCID: PMC4821752 DOI: 10.1016/j.envres.2016.02.009] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 02/04/2016] [Accepted: 02/05/2016] [Indexed: 05/04/2023]
Abstract
This systematic review synthesizes the diverse body of epidemiologic research accrued on inorganic arsenic exposure and respiratory health effects. Twenty-nine articles were identified that examined the relationship between inorganic arsenic exposure and respiratory outcomes (i.e. lung function, symptoms, acute respiratory infections, chronic non-malignant lung diseases, and non-malignant lung disease mortality). There was strong evidence of a general association between arsenic and non-malignant respiratory illness, including consistent evidence on lung function impairment, acute respiratory tract infections, respiratory symptoms, and non-malignant lung disease mortality. Overall, early life exposure (i.e. in utero and/or early-childhood) had a marked effect throughout the lifespan. This review also identified some research gaps, including limited evidence at lower levels of exposure (water arsenic <100μg/L), mixed evidence of sex differences, and some uncertainty on arsenic and any single non-malignant respiratory disease or pathological process. Common limitations, including potential publication bias; non-comparability of outcome measures across included articles; incomplete exposure histories; and limited confounder control attenuated the cumulative strength of the evidence as it relates to US populations. This systematic review provides a comprehensive assessment of the epidemiologic evidence and should be used to guide future research on arsenic's detrimental effects on respiratory health.
Collapse
Affiliation(s)
- Tiffany R Sanchez
- Department of Environmental Health Sciences, Columbia University, 722 West 168th Street, New York, NY 10032, USA.
| | - Matthew Perzanowski
- Department of Environmental Health Sciences, Columbia University, 722 West 168th Street, New York, NY 10032, USA.
| | - Joseph H Graziano
- Department of Environmental Health Sciences, Columbia University, 722 West 168th Street, New York, NY 10032, USA.
| |
Collapse
|
27
|
Chen AYY, Olsen T. Chromated copper arsenate-treated wood: a potential source of arsenic exposure and toxicity in dermatology. Int J Womens Dermatol 2016; 2:28-30. [PMID: 28491998 PMCID: PMC5412102 DOI: 10.1016/j.ijwd.2016.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 01/12/2016] [Accepted: 01/12/2016] [Indexed: 10/25/2022] Open
Abstract
Arsenic-contaminated drinking water presents a serious health hazard in certain geographic locations around the world. Chromated copper arsenate, a pesticide and preservative that was used to pressure treat residential lumber in the United States beginning in the 1940s and was banned by the Environmental Protection Agency in 2003, poses a potential source of arsenic exposure and toxicity. In this study, we review the clinical manifestations of arsenic intoxication with the focus on dermatologic manifestations. Dermatologists should be aware that although chromated copper arsenate-treated wood for residential use was banned in 2003, the exposure risk remains. Long-term follow up is necessary to detect arsenic induced cutaneous and visceral malignancy in patients with history of arsenic exposure.
Collapse
Affiliation(s)
- Amy Yuntzu-Yen Chen
- Department of Dermatology, University of Connecticut School of Medicine, Canton, CT
| | - Thomas Olsen
- Dermatopathology Laboratory of Central States, Dayton, OH
| |
Collapse
|
28
|
Arsenic Exposure and Immunotoxicity: a Review Including the Possible Influence of Age and Sex. Curr Environ Health Rep 2016; 3:1-12. [DOI: 10.1007/s40572-016-0082-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
29
|
Bailey KA, Smith AH, Tokar EJ, Graziano JH, Kim KW, Navasumrit P, Ruchirawat M, Thiantanawat A, Suk WA, Fry RC. Mechanisms Underlying Latent Disease Risk Associated with Early-Life Arsenic Exposure: Current Research Trends and Scientific Gaps. ENVIRONMENTAL HEALTH PERSPECTIVES 2016; 124:170-5. [PMID: 26115410 PMCID: PMC4749078 DOI: 10.1289/ehp.1409360] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 06/23/2015] [Indexed: 05/04/2023]
Abstract
BACKGROUND Millions of individuals worldwide, particularly those living in rural and developing areas, are exposed to harmful levels of inorganic arsenic (iAs) in their drinking water. Inorganic As exposure during key developmental periods is associated with a variety of adverse health effects, including those that are evident in adulthood. There is considerable interest in identifying the molecular mechanisms that relate early-life iAs exposure to the development of these latent diseases, particularly in relationship to cancer. OBJECTIVES This work summarizes research on the molecular mechanisms that underlie the increased risk of cancer development in adulthood that is associated with early-life iAs exposure. DISCUSSION Epigenetic reprogramming that imparts functional changes in gene expression, the development of cancer stem cells, and immunomodulation are plausible underlying mechanisms by which early-life iAs exposure elicits latent carcinogenic effects. CONCLUSIONS Evidence is mounting that relates early-life iAs exposure and cancer development later in life. Future research should include animal studies that address mechanistic hypotheses and studies of human populations that integrate early-life exposure, molecular alterations, and latent disease outcomes.
Collapse
Affiliation(s)
- Kathryn A. Bailey
- Department of Environmental Sciences and Engineering, UNC Gillings School of Global Public Health, Chapel Hill, North Carolina, USA
| | - Allan H. Smith
- Arsenic Health Effects Research Program, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Erik J. Tokar
- National Toxicology Program, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | - Joseph H. Graziano
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York, USA
| | - Kyoung-Woong Kim
- School of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Panida Navasumrit
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Bangkok, Thailand
| | - Mathuros Ruchirawat
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Bangkok, Thailand
| | - Apinya Thiantanawat
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Bangkok, Thailand
| | - William A. Suk
- Superfund Research Program, NIEHS, NIH, DHHS, Research Triangle Park, North Carolina, USA
| | - Rebecca C. Fry
- Department of Environmental Sciences and Engineering, UNC Gillings School of Global Public Health, Chapel Hill, North Carolina, USA
- Address correspondence to R.C. Fry, Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, 135 Dauer Dr., CB 7431, University of North Carolina, Chapel Hill, NC 27599-7295 USA. Telephone: (919) 843-6864. E-mail:
| |
Collapse
|
30
|
Chang AB, Oppenheimer JJ, Weinberger M, Weir K, Rubin BK, Irwin RS. Use of Management Pathways or Algorithms in Children With Chronic Cough: Systematic Reviews. Chest 2016; 149:106-19. [PMID: 26356242 DOI: 10.1378/chest.15-1403] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 07/13/2015] [Accepted: 08/06/2015] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND Use of appropriate cough pathways or algorithms may reduce the morbidity of chronic cough, lead to earlier diagnosis of chronic underlying illness, and reduce unnecessary costs and medications. We undertook three systematic reviews to examine three related key questions (KQ): In children aged ?14 years with chronic cough (> 4 weeks' duration), KQ1, do cough management protocols (or algorithms) improve clinical outcomes? KQ2, should the cough management or testing algorithm differ depending on the duration and/or severity? KQ3, should the cough management or testing algorithm differ depending on the associated characteristics of the cough and clinical history? METHODS We used the CHEST expert cough panel's protocol. Two authors screened searches and selected and extracted data. Only systematic reviews, randomized controlled trials (RCTs), and cohort studies published in English were included. RESULTS Data were presented in Preferred Reporting Items for Systematic Reviews and Meta-analyses flowcharts and summary tabulated. Nine studies were included in KQ1 (RCT = 1; cohort studies = 7) and eight in KQ3 (RCT = 2; cohort = 6), but none in KQ2. CONCLUSIONS There is high-quality evidence that in children aged ?14 years with chronic cough (> 4 weeks' duration), the use of cough management protocols (or algorithms) improves clinical outcomes and cough management or the testing algorithm should differ depending on the associated characteristics of the cough and clinical history. It remains uncertain whether the management or testing algorithm should depend on the duration or severity of chronic cough. Pending new data, chronic cough in children should be defined as > 4 weeks' duration and children should be systematically evaluated with treatment targeted to the underlying cause irrespective of the cough severity.
Collapse
Affiliation(s)
- Anne B Chang
- Menzies School of Health Research; and Respiratory Deptartment, Lady Cilento Children's Hospital, Queensland University of Technology, Queensland, Australia.
| | - John J Oppenheimer
- Division of Allergy and Immunology, UMDNJ-New Jersey Medical School, Cedar Knolls, NJ
| | - Miles Weinberger
- Pediatric Allergy, Immunology, and Pulmonology Division, University of Iowa Children's Hospital, Iowa City, IA
| | - Kelly Weir
- Speech Pathology Deptartment, Lady Cilento Children's Hospital, Brisbane, Australia
| | - Bruce K Rubin
- Children's Hospital of Richmond at Virginia Commonwealth University, Richmond, VA
| | - Richard S Irwin
- Division of Pulmonary, Allergy & Critical Care Medicine, UMass Memorial Medical Center, Worcester, MA
| |
Collapse
|
31
|
George CM, Brooks WA, Graziano JH, Nonyane BAS, Hossain L, Goswami D, Zaman K, Yunus M, Khan AF, Jahan Y, Ahmed D, Slavkovich V, Higdon M, Deloria-Knoll M, O' Brien KL. Arsenic exposure is associated with pediatric pneumonia in rural Bangladesh: a case control study. Environ Health 2015; 14:83. [PMID: 26497043 PMCID: PMC4619558 DOI: 10.1186/s12940-015-0069-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 10/05/2015] [Indexed: 05/04/2023]
Abstract
BACKGROUND Pneumonia is the leading cause of death for children under 5 years of age globally, making research on modifiable risk factors for childhood pneumonia important for reducing this disease burden. Millions of children globally are exposed to elevated levels of arsenic in drinking water. However, there is limited data on the association between arsenic exposure and respiratory infections, particularly among pediatric populations. METHODS This case control study of 153 pneumonia cases and 296 controls 28 days to 59 months of age in rural Bangladesh is the first to assess whether arsenic exposure is a risk factor for pneumonia in a pediatric population. Cases had physician diagnosed World Health Organization defined severe or very severe pneumonia. Urine collected during hospitalization (hospital admission time point) and 30 days later (convalescent time point) from cases and a single specimen from community controls was tested for urinary arsenic by graphite furnace atomic absorption. RESULTS The odds for pneumonia was nearly double for children with urinary arsenic concentrations higher than the first quartile (≥6 μg/L) at the hospital admission time point (Odd Ratio (OR):1.88 (95% Confidence Interval (CI): 1.01, 3.53)), after adjustment for urinary creatinine, weight for height, breastfeeding, paternal education, age, and number of people in the household. This was consistent with findings at the convalescent time point where the adjusted OR for children with urinary arsenic concentrations greater than the first quartile (≥6 μg/L) was 2.32 (95% CI: 1.33, 4.02). CONCLUSION We observed a nearly two times higher odds of pneumonia for children with creatinine adjusted urinary arsenic concentrations greater than the first quartile (≥6 μg/L) at the hospital admission time point. This novel finding suggests that low to moderate arsenic exposure may be a risk factor for pneumonia in children under 5 years of age.
Collapse
Affiliation(s)
- Christine Marie George
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
- Department of International Health, Program in Global Disease Epidemiology and Control, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Room E5535, Baltimore, MD, 21205-2103, USA.
| | - W Abdullah Brooks
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh.
| | - Joseph H Graziano
- Department of Environmental Health, Mailman School of Public Health, Columbia University, New York, NY, USA.
| | - Bareng A S Nonyane
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Lokman Hossain
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh.
| | - Doli Goswami
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh.
| | - Khalequzzaman Zaman
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh.
| | - Mohammad Yunus
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh.
| | - Al Fazal Khan
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh.
| | - Yasmin Jahan
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh.
| | - Dilruba Ahmed
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh.
| | - Vesna Slavkovich
- Department of Environmental Health, Mailman School of Public Health, Columbia University, New York, NY, USA.
| | - Melissa Higdon
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Maria Deloria-Knoll
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Katherine L O' Brien
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
32
|
Steinmaus C, Castriota F, Ferreccio C, Smith AH, Yuan Y, Liaw J, Acevedo J, Pérez L, Meza R, Calcagno S, Uauy R, Smith MT. Obesity and excess weight in early adulthood and high risks of arsenic-related cancer in later life. ENVIRONMENTAL RESEARCH 2015; 142:594-601. [PMID: 26301739 PMCID: PMC4664040 DOI: 10.1016/j.envres.2015.07.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/27/2015] [Accepted: 07/29/2015] [Indexed: 05/16/2023]
Abstract
BACKGROUND Elevated body mass index (BMI) is a risk factor for cardiovascular disease, diabetes, cancer, and other diseases. Inflammation or oxidative stress induced by high BMI may explain some of these effects. Millions of people drink arsenic-contaminated water worldwide, and ingested arsenic has also been associated with inflammation, oxidative stress, and cancer. OBJECTIVES To assess the unique situation of people living in northern Chile exposed to high arsenic concentrations in drinking water and investigate interactions between arsenic and BMI, and associations with lung and bladder cancer risks. METHODS Information on self-reported body mass index (BMI) at various life stages, smoking, diet, and lifetime arsenic exposure was collected from 532 cancer cases and 634 population-based controls. RESULTS In subjects with BMIs <90th percentile in early adulthood (27.7 and 28.6 kg/m(2) in males and females, respectively), odds ratios (OR) for lung and bladder cancer combined for arsenic concentrations of <100, 100-800 and >800 µg/L were 1.00, 1.64 (95% CI, 1.19-2.27), and 3.12 (2.30-4.22). In subjects with BMIs ≥90th percentile in early adulthood, the corresponding ORs were higher: 1.00, 1.84 (0.75-4.52), and 9.37 (2.88-30.53), respectively (synergy index=4.05, 95% CI, 1.27-12.88). Arsenic-related cancer ORs >20 were seen in those with elevated BMIs in both early adulthood and in later life. Adjustments for smoking, diet, and other factors had little impact. CONCLUSION These findings provide novel preliminary evidence supporting the notion that environmentally-related cancer risks may be markedly increased in people with elevated BMIs, especially in those with an elevated BMI in early-life.
Collapse
Affiliation(s)
- Craig Steinmaus
- Arsenic Health Effects Research Program, School of Public Health, University of California, 50 University Hall, MC7360, Berkeley, CA 94720-7360, USA; Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, USA.
| | - Felicia Castriota
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York City, USA
| | - Catterina Ferreccio
- Departamento de Salud Pública, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Allan H Smith
- Arsenic Health Effects Research Program, School of Public Health, University of California, 50 University Hall, MC7360, Berkeley, CA 94720-7360, USA
| | - Yan Yuan
- Arsenic Health Effects Research Program, School of Public Health, University of California, 50 University Hall, MC7360, Berkeley, CA 94720-7360, USA
| | - Jane Liaw
- Arsenic Health Effects Research Program, School of Public Health, University of California, 50 University Hall, MC7360, Berkeley, CA 94720-7360, USA
| | - Johanna Acevedo
- Departamento de Salud Pública, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Liliana Pérez
- Departamento de Salud Pública, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | - Ricardo Uauy
- London School of Hygiene and Tropical Medicine, University of London, London, United Kingdom; Instituto de Nutrición y Technología de los Alimentos, Universidad de Chile, Santiago, Chile
| | - Martyn T Smith
- Environmental Health Sciences Division, School of Public Health, University of California, Berkeley, USA
| |
Collapse
|
33
|
Olivas-Calderón E, Recio-Vega R, Gandolfi AJ, Lantz RC, González-Cortes T, Gonzalez-De Alba C, Froines JR, Espinosa-Fematt JA. Lung inflammation biomarkers and lung function in children chronically exposed to arsenic. Toxicol Appl Pharmacol 2015; 287:161-167. [PMID: 26048584 PMCID: PMC4751871 DOI: 10.1016/j.taap.2015.06.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 05/28/2015] [Accepted: 06/01/2015] [Indexed: 01/11/2023]
Abstract
Evidence suggests that exposure to arsenic in drinking water during early childhood or in utero has been associated with an increase in respiratory symptoms or diseases in the adulthood, however only a few studies have been carried out during those sensitive windows of exposure. Recently our group demonstrated that the exposure to arsenic during early childhood or in utero in children was associated with impairment in the lung function and suggested that this adverse effect could be due to a chronic inflammation response to the metalloid. Therefore, we designed this cross-sectional study in a cohort of children associating lung inflammatory biomarkers and lung function with urinary As levels. A total of 275 healthy children were partitioned into four study groups according with their arsenic urinary levels. Inflammation biomarkers were measured in sputum by ELISA and the lung function was evaluated by spirometry. Fifty eight percent of the studied children were found to have a restrictive spirometric pattern. In the two highest exposed groups, the soluble receptor for advanced glycation end products' (sRAGE) sputum level was significantly lower and matrix metalloproteinase-9 (MMP-9) concentration was higher. When the biomarkers were correlated to the urinary arsenic species, negative associations were found between dimethylarsinic (DMA), monomethylarsonic percentage (%MMA) and dimethylarsinic percentage (%DMA) with sRAGE and positive associations between %DMA with MMP-9 and with the MMP-9/tissue inhibitor of metalloproteinase (TIMP-1) ratio. In conclusion, chronic arsenic exposure of children negatively correlates with sRAGE, and positively correlated with MMP-9 and MMP-9/TIMP-1 levels, and increases the frequency of an abnormal spirometric pattern. Arsenic-induced alterations in inflammatory biomarkers may contribute to the development of restrictive lung diseases.
Collapse
Affiliation(s)
- Edgar Olivas-Calderón
- Department of Environmental Health, Biomedical Research Center, School of Medicine, University of Coahuila, Torreon, Coahuila, Mexico; School of Medicine, University Juarez of Durango, Gomez Palacio, Durango, Mexico.
| | - Rogelio Recio-Vega
- Department of Environmental Health, Biomedical Research Center, School of Medicine, University of Coahuila, Torreon, Coahuila, Mexico.
| | - A Jay Gandolfi
- Southwest Environmental Health Science Center, University of Arizona, Tucson, AZ, USA; Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA.
| | - R Clark Lantz
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA; Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA.
| | - Tania González-Cortes
- Department of Environmental Health, Biomedical Research Center, School of Medicine, University of Coahuila, Torreon, Coahuila, Mexico.
| | - Cesar Gonzalez-De Alba
- Department of Environmental Health, Biomedical Research Center, School of Medicine, University of Coahuila, Torreon, Coahuila, Mexico.
| | - John R Froines
- Center for Environmental and Occupational Health, School of Public Health, University of California at Los Angeles, Los Angeles, CA, USA.
| | | |
Collapse
|
34
|
Keshavarzi B, Seradj A, Akbari Z, Moore F, Shahraki AR, Pourjafar M. Chronic arsenic toxicity in sheep of Kurdistan province, western Iran. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2015; 69:44-53. [PMID: 25943488 DOI: 10.1007/s00244-015-0157-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 04/15/2015] [Indexed: 06/04/2023]
Abstract
After the detection of arsenic (As) toxicity in sheep from Ebrahim-abad and Babanazar villages in Kurdistan province, the concentration of this element in drinking water, cultivated soil, alfalfa hay, wool, and blood samples was evaluated. Total As concentrations ranged from 119 to 310 μg/L in drinking water, 46.70-819.20 mg/kg in soil 1.90-6.90 mg/kg in vegetation 1.56-10.79 mg/kg in sheep's wool, and 86.30-656 μg/L in blood samples. These very high As contents, in all parts of the biogeochemical cycle, exceed the recommended normal range for this element compared with a control area. Results indicate that As has moved through all compartments of the biogeochemical cycle by way of direct or indirect pathways. The present investigation illustrated decreased packed cell volume and hemoglobin in sheep from the As-contaminated zone. It was concluded that sheep from the contaminated areas suffer from anemia. Chronic As exposure of the liver was determined by liver function tests. For this purpose, blood aspartate transaminase (AST) and alanine transaminase (ALT) were measured. The results show that serum ALT and AST activities are increased significantly (p < 0.01) in the sheep population exposed to As in the contaminated zone. Moreover, chronic As exposure causes injury to hepatocytes and damages the liver.
Collapse
Affiliation(s)
- Behnam Keshavarzi
- Department of Earth Sciences, College of Sciences, Shiraz University, 71454, Shiraz, Iran,
| | | | | | | | | | | |
Collapse
|
35
|
Argos M. Arsenic Exposure and Epigenetic Alterations: Recent Findings Based on the Illumina 450K DNA Methylation Array. Curr Environ Health Rep 2015; 2:137-44. [PMID: 26231363 PMCID: PMC4522705 DOI: 10.1007/s40572-015-0052-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Arsenic is a major public health concern worldwide. While it is an established carcinogen and associated with a number of other adverse health outcomes, the molecular mechanisms underlying arsenic toxicity are not completely clarified. There is mounting evidence from human studies suggesting that arsenic exposure is associated with epigenetic alterations, including DNA methylation. In this review, we summarize several recent human studies that have evaluated arsenic exposure using the Illumina HumanMethylation 450K BeadChip, which interrogates more than 485,000 methylation sites across the genome. Many of these studies have observed novel regions of the genome associated with arsenic exposure. However, few studies have evaluated the biological and functional relevance of these DNA methylation changes, which are still needed. We emphasize the need for future studies to replicate the identified DNA methylation signals as well as assess whether these markers are associated with risk of arsenic-related diseases.
Collapse
Affiliation(s)
- Maria Argos
- Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois at Chicago, 1603 West Taylor Street, MC923, Chicago, IL, 60612, USA,
| |
Collapse
|
36
|
Recio-Vega R, Gonzalez-Cortes T, Olivas-Calderon E, Lantz RC, Gandolfi AJ, Gonzalez-De Alba C. In utero and early childhood exposure to arsenic decreases lung function in children. J Appl Toxicol 2015; 35:358-66. [PMID: 25131850 PMCID: PMC4750377 DOI: 10.1002/jat.3023] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 03/12/2014] [Accepted: 04/03/2014] [Indexed: 12/21/2022]
Abstract
The lung is a target organ for adverse health outcomes following exposure to As. Several studies have reported a high prevalence of respiratory symptoms and diseases in subjects highly exposed to As through drinking water; however, most studies to date has been performed in exposed adults, with little information on respiratory effects in children. The objective of the study was to evaluate the association between urinary levels of As and its metabolites with lung function in children exposed in utero and in early childhood to high As levels through drinking water. A total of 358 healthy children were included in our study. Individual exposure was assessed based on urinary concentration of inorganic As. Lung function was assessed by spirometry. Participants were exposed since pregnancy until early childhood to an average water As concentration of 152.13 µg l⁻¹. The mean urinary As level registered in the studied subjects was 141.2 µg l⁻¹ and only 16.7% had a urinary concentration below the national concern level. Forced vital capacity was significantly decreased in the studied population and it was negatively associated with the percentage of inorganic As. More than 57% of the subjects had a restrictive spirometric pattern. The urinary As level was higher in those children with restrictive lung patterns when compared with the levels registered in subjects with normal spirometric patterns. Exposure to As through drinking water during in utero and early life was associated with a decrease in forced vital capacity and with a restrictive spirometric pattern in the children evaluated.
Collapse
Affiliation(s)
- Rogelio Recio-Vega
- Department of Environmental Health, Biomedical Research Center, School of Medicine, University of Coahuila, Torreón, Coahuila, Mexico
| | - Tania Gonzalez-Cortes
- Department of Environmental Health, Biomedical Research Center, School of Medicine, University of Coahuila, Torreón, Coahuila, Mexico
| | - Edgar Olivas-Calderon
- Department of Environmental Health, Biomedical Research Center, School of Medicine, University of Coahuila, Torreón, Coahuila, Mexico
| | - R. Clark Lantz
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, United States of America
- Southwest Environmental Health Science Center, University of Arizona, Tucson, Arizona, United States of America
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona, United States of America
| | - A. Jay Gandolfi
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, United States of America
- Southwest Environmental Health Science Center, University of Arizona, Tucson, Arizona, United States of America
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona, United States of America
| | - Cesar Gonzalez-De Alba
- Department of Environmental Health, Biomedical Research Center, School of Medicine, University of Coahuila, Torreón, Coahuila, Mexico
| |
Collapse
|
37
|
Pal A, Sen S, Basuthakur S, Tripathi SK. Chronic arsenicosis with varied pulmonary involvement – A case series. EGYPTIAN JOURNAL OF CHEST DISEASES AND TUBERCULOSIS 2015. [DOI: 10.1016/j.ejcdt.2014.11.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
38
|
Steinmaus C, Ferreccio C, Yuan Y, Acevedo J, González F, Perez L, Cortés S, Balmes JR, Liaw J, Smith AH. Elevated lung cancer in younger adults and low concentrations of arsenic in water. Am J Epidemiol 2014; 180:1082-7. [PMID: 25371173 DOI: 10.1093/aje/kwu238] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Arsenic concentrations greater than 100 µg/L in drinking water are a known cause of cancer, but the risks associated with lower concentrations are less well understood. The unusual geology and good information on past exposure found in northern Chile are key advantages for investigating the potential long-term effects of arsenic. We performed a case-control study of lung cancer from 2007 to 2010 in areas of northern Chile that had a wide range of arsenic concentrations in drinking water. Previously, we reported evidence of elevated cancer risks at arsenic concentrations greater than 100 µg/L. In the present study, we restricted analyses to the 92 cases and 288 population-based controls who were exposed to concentrations less than 100 µg/L. After adjustment for age, sex, and smoking behavior, these exposures from 40 or more years ago resulted in odds ratios for lung cancer of 1.00, 1.43 (90% confidence interval: 0.82, 2.52), and 2.01 (90% confidence interval: 1.14, 3.52) for increasing tertiles of arsenic exposure, respectively (P for trend = 0.02). Mean arsenic water concentrations in these tertiles were 6.5, 23.0, and 58.6 µg/L. For subjects younger than 65 years of age, the corresponding odds ratios were 1.00, 1.62 (90% confidence interval: 0.67, 3.90), and 3.41 (90% confidence interval: 1.51, 7.70). Adjustments for occupation, fruit and vegetable intake, and socioeconomic status had little impact on the results. These findings provide new evidence that arsenic water concentrations less than 100 µg/L are associated with higher risks of lung cancer.
Collapse
|
39
|
Pinto B, Goyal P, Flora SJS, Gill KD, Singh S. Chronic arsenic poisoning following ayurvedic medication. J Med Toxicol 2014; 10:395-398. [PMID: 24696169 PMCID: PMC4252284 DOI: 10.1007/s13181-014-0389-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Ayurveda, Indian traditional system of medicine, is practiced commonly in South East Asia and in many parts of the world. Many ayurvedic drugs contain heavy metals and may lead to metal toxicity. Of these, chronic lead poisoning is the most common. Chronic arsenic poisoning following the use of ayurvedic medication, though reported, is rare. CASE REPORTS We describe three patients who presented with features of chronic arsenic poisoning following prolonged ayurvedic medication use. The diagnosis of chronic arsenic poisoning was confirmed by high arsenic levels in the blood, urine, hair, and nails in all the three patients and in ayurvedic drug in two patients. The ayurvedic medication was discontinued and treatment with D-penicillamine started. At 6 months after treatment, blood arsenic levels returned to normal with clinical recovery in all of them. CONCLUSION Arsenic poisoning following ayurvedic medication is much less common than lead poisoning, though mineral ayurvedic medicines may lead to it. We used D-penicillamine as chelator and all of them recovered. Whether withdrawal of medication alone or D-penicillamine also played a role in recovery is unclear and needs to be assessed.
Collapse
Affiliation(s)
- Benzeeta Pinto
- />Department of Internal Medicine, Nehru Hospital, Postgraduate Institute of Medical Education and Research, 4th Floor, Block F, Room 16, Chandigarh, 160012 India
| | - Palvi Goyal
- />Department of Internal Medicine, Nehru Hospital, Postgraduate Institute of Medical Education and Research, 4th Floor, Block F, Room 16, Chandigarh, 160012 India
| | - S. J. S. Flora
- />Department of Pharmacology and Toxicology, Defence Research Development Organisation, Gwalior, India
| | - K. D. Gill
- />Department of Biochemistry, Post graduate Institute of Medical Education and Research, Chandigarh, 160012 India
| | - Surjit Singh
- />Department of Internal Medicine, Nehru Hospital, Postgraduate Institute of Medical Education and Research, 4th Floor, Block F, Room 16, Chandigarh, 160012 India
| |
Collapse
|
40
|
Huang L, Wu H, van der Kuijp TJ. The health effects of exposure to arsenic-contaminated drinking water: a review by global geographical distribution. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2014; 25:432-452. [PMID: 25365079 DOI: 10.1080/09603123.2014.958139] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Chronic arsenic exposure through drinking water has been a vigorously studied and debated subject. However, the existing literature does not allow for a thorough examination of the potential regional discrepancies that may arise among arsenic-related health outcomes. The purpose of this article is to provide an updated review of the literature on arsenic exposure and commonly discussed health effects according to global geographical distribution. This geographically segmented approach helps uncover the discrepancies in the health effects of arsenic. For instance, women are more susceptible than men to a few types of cancer in Taiwan, but not in other countries. Although skin cancer and arsenic exposure correlations have been discovered in Chile, Argentina, the United States, and Taiwan, no evident association was found in mainland China. We then propose several globally applicable recommendations to prevent and treat the further spread of arsenic poisoning and suggestions of future study designs and decision-making.
Collapse
Affiliation(s)
- Lei Huang
- a State Key Laboratory of Pollution Control & Resource Reuse , School of the Environment, Nanjing University , Nanjing , China
| | | | | |
Collapse
|
41
|
Das D, Bindhani B, Mukherjee B, Saha H, Biswas P, Dutta K, Prasad P, Sinha D, Ray MR. Chronic low-level arsenic exposure reduces lung function in male population without skin lesions. Int J Public Health 2014; 59:655-63. [PMID: 24879317 DOI: 10.1007/s00038-014-0567-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 05/02/2014] [Accepted: 05/08/2014] [Indexed: 10/25/2022] Open
Abstract
OBJECTIVES The respiratory effects of chronic low-level arsenic exposure from groundwater have been investigated in West Bengal, India. METHODS The participants (834 non-smoking adult males) were subdivided in two groups: an arsenic-exposed group (n = 446, mean age 35.3 years) drinking arsenic-contaminated groundwater (11-50 μg/L) and a control group of 388 age-matched men drinking water containing <10 μg/L of arsenic. Arsenic in water samples was measured by atomic absorption spectroscopy. The prevalence of respiratory symptoms was documented by structured, validated questionnaire. Pulmonary function test (PFT) was assessed by portable spirometer. RESULTS Compared with control, the arsenic-exposed subjects had higher prevalence of upper and lower respiratory symptoms, dyspnea, asthma, eye irritation and headache. Besides, 20.6% of arsenic-exposed subjects had lung function deficits (predominantly restrictive and combined types) compared with 13.6% of control (p < 0.05). A positive association was observed between arsenic concentration in drinking water and the prevalence of respiratory symptoms, while a negative association existed between arsenic level and spirometric parameters. CONCLUSIONS The findings suggest that even low-level arsenic exposure has deleterious respiratory effects.
Collapse
Affiliation(s)
- Debangshu Das
- Department of Experimental Hematology, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, 700 026, India
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
White AG, Watts GS, Lu Z, Meza-Montenegro MM, Lutz EA, Harber P, Burgess JL. Environmental arsenic exposure and microbiota in induced sputum. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2014; 11:2299-313. [PMID: 24566055 PMCID: PMC3945600 DOI: 10.3390/ijerph110202299] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 02/12/2014] [Accepted: 02/13/2014] [Indexed: 01/06/2023]
Abstract
Arsenic exposure from drinking water is associated with adverse respiratory outcomes, but it is unknown whether arsenic affects pulmonary microbiota. This exploratory study assessed the effect of exposure to arsenic in drinking water on bacterial diversity in the respiratory tract of non-smokers. Induced sputum was collected from 10 subjects with moderate mean household water arsenic concentration (21.1 ± 6.4 ppb) and 10 subjects with low household water arsenic (2.4 ± 0.8 ppb). To assess microbiota in sputum, the V6 hypervariable region amplicons of bacterial 16s rRNA genes were sequenced using the Ion Torrent Personal Genome Machine. Microbial community differences between arsenic exposure groups were evaluated using QIIME and Metastats. A total of 3,920,441 sequence reads, ranging from 37,935 to 508,787 per sample for 316 chips after QIIME quality filtering, were taxonomically classified into 142 individual genera and five phyla. Firmicutes (22%), Proteobacteria (17%) and Bacteriodetes (12%) were the main phyla in all samples, with Neisseriaceae (15%), Prevotellaceae (12%) and Veillonellacea (7%) being most common at the genus level. Some genera, including Gemella, Lactobacillales, Streptococcus, Neisseria and Pasteurellaceae were elevated in the moderate arsenic exposure group, while Rothia, Prevotella, Prevotellaceae Fusobacterium and Neisseriaceae were decreased, although none of these differences was statistically significant. Future studies with more participants and a greater range of arsenic exposure are needed to further elucidate the effects of drinking water arsenic consumption on respiratory microbiota.
Collapse
Affiliation(s)
- Allison G White
- Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson 85724, USA.
| | - George S Watts
- Department of Pharmacology and University of Arizona Cancer Center, Tucson, AZ 85724, USA.
| | - Zhenqiang Lu
- Statistical Consulting Laboratory, University of Arizona, Tucson, AZ 85712, USA.
| | - Maria M Meza-Montenegro
- Department of Biotechnology and Food Sciences, Instituto Technologico de Sonora, Sonora 85000, Mexico.
| | - Eric A Lutz
- Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson 85724, USA.
| | - Philip Harber
- Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson 85724, USA.
| | - Jefferey L Burgess
- Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson 85724, USA.
| |
Collapse
|
43
|
Melak D, Ferreccio C, Kalman D, Parra R, Acevedo J, Pérez L, Cortés S, Smith AH, Yuan Y, Liaw J, Steinmaus C. Arsenic methylation and lung and bladder cancer in a case-control study in northern Chile. Toxicol Appl Pharmacol 2014; 274:225-31. [PMID: 24296302 PMCID: PMC4344188 DOI: 10.1016/j.taap.2013.11.014] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 11/16/2013] [Accepted: 11/20/2013] [Indexed: 01/08/2023]
Abstract
In humans, ingested inorganic arsenic is metabolized to monomethylarsenic (MMA) then to dimethylarsenic (DMA), although this process is not complete in most people. The trivalent form of MMA is highly toxic in vitro and previous studies have identified associations between the proportion of urinary arsenic as MMA (%MMA) and several arsenic-related diseases. To date, however, relatively little is known about its role in lung cancer, the most common cause of arsenic-related death, or about its impacts on people drinking water with lower arsenic concentrations (e.g., <200μg/L). In this study, urinary arsenic metabolites were measured in 94 lung and 117 bladder cancer cases and 347 population-based controls from areas in northern Chile with a wide range of drinking water arsenic concentrations. Lung cancer odds ratios adjusted for age, sex, and smoking by increasing tertiles of %MMA were 1.00, 1.91 (95% confidence interval (CI), 0.99-3.67), and 3.26 (1.76-6.04) (p-trend <0.001). Corresponding odds ratios for bladder cancer were 1.00, 1.81 (1.06-3.11), and 2.02 (1.15-3.54) (p-trend <0.001). In analyses confined to subjects only with arsenic water concentrations <200μg/L (median=60μg/L), lung and bladder cancer odds ratios for subjects in the upper tertile of %MMA compared to subjects in the lower two tertiles were 2.48 (1.08-5.68) and 2.37 (1.01-5.57), respectively. Overall, these findings provide evidence that inter-individual differences in arsenic metabolism may be an important risk factor for arsenic-related lung cancer, and may play a role in cancer risks among people exposed to relatively low arsenic water concentrations.
Collapse
Affiliation(s)
- Dawit Melak
- Global Health Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Catterina Ferreccio
- Escuela de Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - David Kalman
- School of Public Health and Community Medicine, University of Washington, Seattle, WA, USA
| | - Roxana Parra
- Hospital Regional de Antofagasta, Antofagasta, Chile
| | - Johanna Acevedo
- Escuela de Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Liliana Pérez
- Escuela de Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Sandra Cortés
- Escuela de Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Allan H Smith
- Arsenic Health Effects Research Group, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Yan Yuan
- Arsenic Health Effects Research Group, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Jane Liaw
- Arsenic Health Effects Research Group, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Craig Steinmaus
- Arsenic Health Effects Research Group, School of Public Health, University of California, Berkeley, Berkeley, CA, USA; Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA.
| |
Collapse
|
44
|
Bhattacharyya P, Sen P, Ghosh A, Saha C, Bhattacharya PP, Das A, Majumdar K, Mazumder DG. Chronic lung disease and detection of pulmonary artery dilatation in high resolution computerized tomography of chest in chronic arsenic exposure. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2014; 49:1453-1461. [PMID: 25137533 DOI: 10.1080/10934529.2014.937157] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Lung affection in chronic arsenicosis developing from chronic ingestion of arsenic contaminated groundwater has been known but little is known on its effect on pulmonary arterial system. A cross sectional study was carried out at two geographically similar areas and demographically similar populations with or without evidence of chronic arsenic exposure in West Bengal, India. The willing participants in both the groups with chronic respiratory symptoms were evaluated with High Resolution Computerized Tomography (HRCT) of Chest. Evaluation of High Resolution Computerized Tomography of chest followed clinical assessment of lung disease in194 and 196 subjects from the arsenic exposed and unexposed people; the former had a higher prevalence of cough OR(Odds Ratio) 3.23 (95% CI(Confidence Interval): 1.72-6.07) and shortness of breath OR1.76 (95% CI: 0.84-3.71), respectively. The arsenic exposed individuals showed higher score for bronchiectasis [mean ± SD(Standard Deviation)] as 2.41 ± 2.32 vs. 1.22 ± 1.48 (P <0.001), pulmonary artery branch dilatation (PAD) as 2.48 ± 2.33 vs. 0.78 ± 1.56, (P <0.001) and pulmonary trunk dilatation as 0.26 ± 0.45 vs. nil. Age-adjusted prevalence odds ratio (POR) for Pulmonary Artery Dilatation Found in HRCT comparing those exposed to arsenic (Group 1) to unexposed participants (Group 2) was found to be 6.98 (CI: 2.26-16.48). There was a strong dose-response relationship between the PAD (Pulmonary Artery Dilatation) and cumulative arsenic exposure. Pulmonary trunk and branch dilatation in chronic arsenicosis is a frequent abnormality seen in HRCT Chest of arsenicosis patients. The significance of such finding needs further investigation.
Collapse
|
45
|
Arsenic compromises conducting airway epithelial barrier properties in primary mouse and immortalized human cell cultures. PLoS One 2013; 8:e82970. [PMID: 24349408 PMCID: PMC3857810 DOI: 10.1371/journal.pone.0082970] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 11/08/2013] [Indexed: 12/31/2022] Open
Abstract
Arsenic is a lung toxicant that can lead to respiratory illness through inhalation and ingestion, although the most common exposure is through contaminated drinking water. Lung effects reported from arsenic exposure include lung cancer and obstructive lung disease, as well as reductions in lung function and immune response. As part of their role in innate immune function, airway epithelial cells provide a barrier that protects underlying tissue from inhaled particulates, pathogens, and toxicants frequently found in inspired air. We evaluated the effects of a five-day exposure to environmentally relevant levels of arsenic {<4μM [~300 μg/L (ppb)] as NaAsO2} on airway epithelial barrier function and structure. In a primary mouse tracheal epithelial (MTE) cell model we found that both micromolar (3.9 μM) and submicromolar (0.8 μM) arsenic concentrations reduced transepithelial resistance, a measure of barrier function. Immunofluorescent staining of arsenic-treated MTE cells showed altered patterns of localization of the transmembrane tight junction proteins claudin (Cl) Cl-1, Cl-4, Cl-7 and occludin at cell-cell contacts when compared with untreated controls. To better quantify arsenic-induced changes in tight junction transmembrane proteins we conducted arsenic exposure experiments with an immortalized human bronchial epithelial cell line (16HBE14o-). We found that arsenic exposure significantly increased the protein expression of Cl-4 and occludin as well as the mRNA levels of Cl-4 and Cl-7 in these cells. Additionally, arsenic exposure resulted in altered phosphorylation of occludin. In summary, exposure to environmentally relevant levels of arsenic can alter both the function and structure of airway epithelial barrier constituents. These changes likely contribute to the observed arsenic-induced loss in basic innate immune defense and increased infection in the airway.
Collapse
|
46
|
Parvez F, Chen Y, Yunus M, Olopade C, Segers S, Slavkovich V, Argos M, Hasan R, Ahmed A, Islam T, Akter MM, Graziano JH, Ahsan H. Arsenic exposure and impaired lung function. Findings from a large population-based prospective cohort study. Am J Respir Crit Care Med 2013; 188:813-9. [PMID: 23848239 DOI: 10.1164/rccm.201212-2282oc] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Exposure to arsenic through drinking water has been linked to respiratory symptoms, obstructive lung diseases, and mortality from respiratory diseases. Limited evidence for the deleterious effects on lung function exists among individuals exposed to a high dose of arsenic. OBJECTIVES To determine the deleterious effects on lung function that exist among individuals exposed to a high dose of arsenic. METHODS In 950 individuals who presented with any respiratory symptom among a population-based cohort of 20,033 adults, we evaluated the association between arsenic exposure, measured by well water and urinary arsenic concentrations measured at baseline, and post-bronchodilator-administered pulmonary function assessed during follow-up. MEASUREMENTS AND MAIN RESULTS For every one SD increase in baseline water arsenic exposure, we observed a lower level of FEV1 (-46.5 ml; P < 0.0005) and FVC (-53.1 ml; P < 0.01) in regression models adjusted for age, sex, body mass index, smoking, socioeconomic status, betel nut use, and arsenical skin lesions status. Similar inverse relationships were observed between baseline urinary arsenic and FEV1 (-48.3 ml; P < 0.005) and FVC (-55.2 ml; P < 0.01) in adjusted models. Our analyses also demonstrated a dose-related decrease in lung function with increasing levels of baseline water and urinary arsenic. This association remained significant in never-smokers and individuals without skin lesions, and was stronger in male smokers. Among male smokers and individuals with skin lesions, every one SD increase in water arsenic was related to a significant reduction of FEV1 (-74.4 ml, P < 0.01; and -116.1 ml, P < 0.05) and FVC (-72.8 ml, P = 0.02; and -146.9 ml, P = 0.004), respectively. CONCLUSIONS This large population-based study confirms that arsenic exposure is associated with impaired lung function and the deleterious effect is evident at low- to moderate-dose range.
Collapse
Affiliation(s)
- Faruque Parvez
- 1 Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Ramsey KA, Foong RE, Sly PD, Larcombe AN, Zosky GR. Early life arsenic exposure and acute and long-term responses to influenza A infection in mice. ENVIRONMENTAL HEALTH PERSPECTIVES 2013; 121:1187-93. [PMID: 23968752 PMCID: PMC3801203 DOI: 10.1289/ehp.1306748] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 07/23/2013] [Indexed: 05/04/2023]
Abstract
BACKGROUND Arsenic is a significant global environmental health problem. Exposure to arsenic in early life has been shown to increase the rate of respiratory infections during infancy, reduce childhood lung function, and increase the rates of bronchiectasis in early adulthood. OBJECTIVE We aimed to determine if early life exposure to arsenic exacerbates the response to early life influenza infection in mice. METHODS C57BL/6 mice were exposed to arsenic in utero and throughout postnatal life. At 1 week of age, a subgroup of mice were infected with influenza A. We then assessed the acute and long-term effects of arsenic exposure on viral clearance, inflammation, lung structure, and lung function. RESULTS Early life arsenic exposure reduced the clearance of and exacerbated the inflammatory response to influenza A, and resulted in acute and long-term changes in lung mechanics and airway structure. CONCLUSIONS Increased susceptibility to respiratory infections combined with exaggerated inflammatory responses throughout early life may contribute to the development of bronchiectasis in arsenic-exposed populations.
Collapse
Affiliation(s)
- Kathryn A Ramsey
- Division of Clinical Sciences, Telethon Institute for Child Health Research, Subiaco, Western Australia, Australia
| | | | | | | | | |
Collapse
|
48
|
Abstract
Exposure to arsenic (As) is a global public health problem because of its association with various cancers and numerous other pathological effects, and millions of people worldwide are exposed to As on a regular basis. Increasing lines of evidence indicate that As may adversely affect the immune system, but its specific effects on immune function are poorly understood. Therefore, we conducted a literature search of non-cancer immune-related effects associated with As exposure and summarized the known immunotoxicological effects of As in humans, animals and in vitro models. Overall, the data show that chronic exposure to As has the potential to impair vital immune responses which could lead to increased risk of infections and chronic diseases, including various cancers. Although animal and in vitro models provide some insight into potential mechanisms of the As-related immunotoxicity observed in human populations, further investigation, particularly in humans, is needed to better understand the relationship between As exposure and the development of disease.
Collapse
Affiliation(s)
- Nygerma L Dangleben
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Christine F Skibola
- Department of Epidemiology, School of Public Health, University of Alabama, Birmingham, AL 35294, USA
| | - Martyn T Smith
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
49
|
Smith AH, Yunus M, Khan AF, Ercumen A, Yuan Y, Smith MH, Liaw J, Balmes J, von Ehrenstein O, Raqib R, Kalman D, Alam DS, Streatfield PK, Steinmaus C. Chronic respiratory symptoms in children following in utero and early life exposure to arsenic in drinking water in Bangladesh. Int J Epidemiol 2013; 42:1077-86. [PMID: 24062297 PMCID: PMC3781005 DOI: 10.1093/ije/dyt120] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2013] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Arsenic exposure via drinking water increases the risk of chronic respiratory disease in adults. However, information on pulmonary health effects in children after early life exposure is limited. METHODS This population-based cohort study set in rural Matlab, Bangladesh, assessed lung function and respiratory symptoms of 650 children aged 7-17 years. Children with in utero and early life arsenic exposure were compared with children exposed to less than 10 µg/l in utero and throughout childhood. Because most children drank the same water as their mother had drunk during pregnancy, we could not assess only in utero or only childhood exposure. RESULTS Children exposed in utero to more than 500 µg/l of arsenic were more than eight times more likely to report wheezing when not having a cold [odds ratio (OR) = 8.41, 95% confidence interval (CI): 1.66-42.6, P < 0.01] and more than three times more likely to report shortness of breath when walking on level ground (OR = 3.86, 95% CI: 1.09-13.7, P = 0.02) and when walking fast or climbing (OR = 3.19, 95% CI: 1.22-8.32, P < 0.01]. However, there was little evidence of reduced lung function in either exposure category. CONCLUSIONS Children with high in utero and early life arsenic exposure had marked increases in several chronic respiratory symptoms, which could be due to in utero exposure or to early life exposure, or to both. Our findings suggest that arsenic in water has early pulmonary effects and that respiratory symptoms are a better marker of early life arsenic toxicity than changes in lung function measured by spirometry.
Collapse
Affiliation(s)
- Allan H Smith
- Arsenic Health Effects Research Program, School of Public Health, University of California, Berkeley, CA, USA, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh, Department of Medicine, University of California, San Francisco, CA, USA, Department of Community Health Sciences, Fielding School of Public Health, University of California, Los Angeles, CA, USA, Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA and Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Mohammad Yunus
- Arsenic Health Effects Research Program, School of Public Health, University of California, Berkeley, CA, USA, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh, Department of Medicine, University of California, San Francisco, CA, USA, Department of Community Health Sciences, Fielding School of Public Health, University of California, Los Angeles, CA, USA, Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA and Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Al Fazal Khan
- Arsenic Health Effects Research Program, School of Public Health, University of California, Berkeley, CA, USA, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh, Department of Medicine, University of California, San Francisco, CA, USA, Department of Community Health Sciences, Fielding School of Public Health, University of California, Los Angeles, CA, USA, Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA and Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Ayse Ercumen
- Arsenic Health Effects Research Program, School of Public Health, University of California, Berkeley, CA, USA, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh, Department of Medicine, University of California, San Francisco, CA, USA, Department of Community Health Sciences, Fielding School of Public Health, University of California, Los Angeles, CA, USA, Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA and Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Yan Yuan
- Arsenic Health Effects Research Program, School of Public Health, University of California, Berkeley, CA, USA, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh, Department of Medicine, University of California, San Francisco, CA, USA, Department of Community Health Sciences, Fielding School of Public Health, University of California, Los Angeles, CA, USA, Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA and Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Meera Hira Smith
- Arsenic Health Effects Research Program, School of Public Health, University of California, Berkeley, CA, USA, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh, Department of Medicine, University of California, San Francisco, CA, USA, Department of Community Health Sciences, Fielding School of Public Health, University of California, Los Angeles, CA, USA, Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA and Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Jane Liaw
- Arsenic Health Effects Research Program, School of Public Health, University of California, Berkeley, CA, USA, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh, Department of Medicine, University of California, San Francisco, CA, USA, Department of Community Health Sciences, Fielding School of Public Health, University of California, Los Angeles, CA, USA, Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA and Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - John Balmes
- Arsenic Health Effects Research Program, School of Public Health, University of California, Berkeley, CA, USA, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh, Department of Medicine, University of California, San Francisco, CA, USA, Department of Community Health Sciences, Fielding School of Public Health, University of California, Los Angeles, CA, USA, Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA and Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Ondine von Ehrenstein
- Arsenic Health Effects Research Program, School of Public Health, University of California, Berkeley, CA, USA, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh, Department of Medicine, University of California, San Francisco, CA, USA, Department of Community Health Sciences, Fielding School of Public Health, University of California, Los Angeles, CA, USA, Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA and Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Rubhana Raqib
- Arsenic Health Effects Research Program, School of Public Health, University of California, Berkeley, CA, USA, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh, Department of Medicine, University of California, San Francisco, CA, USA, Department of Community Health Sciences, Fielding School of Public Health, University of California, Los Angeles, CA, USA, Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA and Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - David Kalman
- Arsenic Health Effects Research Program, School of Public Health, University of California, Berkeley, CA, USA, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh, Department of Medicine, University of California, San Francisco, CA, USA, Department of Community Health Sciences, Fielding School of Public Health, University of California, Los Angeles, CA, USA, Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA and Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Dewan S Alam
- Arsenic Health Effects Research Program, School of Public Health, University of California, Berkeley, CA, USA, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh, Department of Medicine, University of California, San Francisco, CA, USA, Department of Community Health Sciences, Fielding School of Public Health, University of California, Los Angeles, CA, USA, Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA and Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Peter K Streatfield
- Arsenic Health Effects Research Program, School of Public Health, University of California, Berkeley, CA, USA, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh, Department of Medicine, University of California, San Francisco, CA, USA, Department of Community Health Sciences, Fielding School of Public Health, University of California, Los Angeles, CA, USA, Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA and Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Craig Steinmaus
- Arsenic Health Effects Research Program, School of Public Health, University of California, Berkeley, CA, USA, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh, Department of Medicine, University of California, San Francisco, CA, USA, Department of Community Health Sciences, Fielding School of Public Health, University of California, Los Angeles, CA, USA, Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA and Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| |
Collapse
|
50
|
Von Ehrenstein OS, Jenny AM, Basu A, Smith KR, Hira-Smith M, Smith AH. Capacity Building in Environmental Health Research in India and Nepal. INTERNATIONAL JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HEALTH 2013; 12:300-6. [PMID: 17168216 DOI: 10.1179/oeh.2006.12.4.300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
The Fogarty International Training and Research Program in Environmental and Occupational Health at UC Berkeley concentrates on two major environmental health issues in the Indian subcontinent: arsenic in drinking water in West Bengal, India, and indoor air pollution in India and Nepal. Local trainees and researchers have had the opportunity to work on related research. Concerning arsenic in drinking water, projects included studies of skin lesions, pulmonary effects, reproductive outcomes, and child development, as well as mitigation approaches to reduce exposures. Activities in the indoor air pollution project have emphasized quantifying exposures to smoke from cooking and heating as well as their associations with tuberculosis and eye disease. Training has focused on developing skills necessary to address these problems. The training emphasizes in-country mentoring of trainees related to their research projects, and intensive short courses at partner institutions. The focus of capacity building in environmental health research in countries in economic and environmental transition should be on country-based research projects with embedded training efforts.
Collapse
|