1
|
Reshetniak S, Bogaciu CA, Bonn S, Brose N, Cooper BH, D'Este E, Fauth M, Fernández-Busnadiego R, Fiosins M, Fischer A, Georgiev SV, Jakobs S, Klumpp S, Köster S, Lange F, Lipstein N, Macarrón-Palacios V, Milovanovic D, Moser T, Müller M, Opazo F, Outeiro TF, Pape C, Priesemann V, Rehling P, Salditt T, Schlüter O, Simeth N, Steinem C, Tchumatchenko T, Tetzlaff C, Tirard M, Urlaub H, Wichmann C, Wolf F, Rizzoli SO. The synaptic vesicle cluster as a controller of pre- and postsynaptic structure and function. J Physiol 2024. [PMID: 39367860 DOI: 10.1113/jp286400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/11/2024] [Indexed: 10/07/2024] Open
Abstract
The synaptic vesicle cluster (SVC) is an essential component of chemical synapses, which provides neurotransmitter-loaded vesicles during synaptic activity, at the same time as also controlling the local concentrations of numerous exo- and endocytosis cofactors. In addition, the SVC hosts molecules that participate in other aspects of synaptic function, from cytoskeletal components to adhesion proteins, and affects the location and function of organelles such as mitochondria and the endoplasmic reticulum. We argue here that these features extend the functional involvement of the SVC in synapse formation, signalling and plasticity, as well as synapse stabilization and metabolism. We also propose that changes in the size of the SVC coalesce with changes in the postsynaptic compartment, supporting the interplay between pre- and postsynaptic dynamics. Thereby, the SVC could be seen as an 'all-in-one' regulator of synaptic structure and function, which should be investigated in more detail, to reveal molecular mechanisms that control synaptic function and heterogeneity.
Collapse
Affiliation(s)
- Sofiia Reshetniak
- Institute for Neuro- and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
| | - Cristian A Bogaciu
- Institute for Neuro- and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
| | - Stefan Bonn
- Institute of Medical Systems Biology, Center for Molecular Neurobiology Hamburg, Hamburg, Germany
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Benjamin H Cooper
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Elisa D'Este
- Optical Microscopy Facility, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Michael Fauth
- Georg-August-University Göttingen, Faculty of Physics, Institute for the Dynamics of Complex Systems, Friedrich-Hund-Platz 1, Göttingen, Germany
| | - Rubén Fernández-Busnadiego
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Maksims Fiosins
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - André Fischer
- German Center for Neurodegenerative Diseases, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Svilen V Georgiev
- Institute for Neuro- and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
| | - Stefan Jakobs
- Research Group Structure and Dynamics of Mitochondria, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Stefan Klumpp
- Theoretical Biophysics Group, Institute for the Dynamics of Complex Systems, Georg-August University Göttingen, Göttingen, Germany
| | - Sarah Köster
- Institute for X-Ray Physics, Georg-August University Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Felix Lange
- Research Group Structure and Dynamics of Mitochondria, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Noa Lipstein
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | | | - Dragomir Milovanovic
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases, Berlin, Germany
| | - Tobias Moser
- Institute for Auditory Neuroscience, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Marcus Müller
- Institute for Theoretical Physics, Georg-August University Göttingen, Göttingen, Germany
| | - Felipe Opazo
- Institute for Neuro- and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Constantin Pape
- Institute of Computer Science, Georg-August University Göttingen, Göttingen, Germany
| | - Viola Priesemann
- Georg-August-University Göttingen, Faculty of Physics, Institute for the Dynamics of Complex Systems, Friedrich-Hund-Platz 1, Göttingen, Germany
- Max-Planck Institute for Dynamics and Self-Organization, Am Fassberg 17, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Peter Rehling
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Tim Salditt
- Institute for X-Ray Physics, Georg-August University Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Oliver Schlüter
- Clinic for Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Nadja Simeth
- Institute of Organic and Biomolecular Chemistry, Georg-August University Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Claudia Steinem
- Institute of Organic and Biomolecular Chemistry, Georg-August University Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Tatjana Tchumatchenko
- Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical Center, Bonn, Germany
| | - Christian Tetzlaff
- Institute for Neuro- and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
| | - Marilyn Tirard
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Carolin Wichmann
- Institute for Auditory Neuroscience University Medical Center Göttingen, Göttingen, Germany
- Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
| | - Fred Wolf
- Max-Planck-Institute for Dynamics and Self-Organization, 37077 Göttingen and Institute for Dynamics of Biological Networks, Georg-August University Göttingen, Göttingen, Germany
| | - Silvio O Rizzoli
- Institute for Neuro- and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| |
Collapse
|
2
|
Kubat GB, Picone P. Skeletal muscle dysfunction in amyotrophic lateral sclerosis: a mitochondrial perspective and therapeutic approaches. Neurol Sci 2024; 45:4121-4131. [PMID: 38676818 PMCID: PMC11306305 DOI: 10.1007/s10072-024-07508-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/29/2024] [Indexed: 04/29/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive and fatal neuromuscular disease that results in the loss of motor neurons and severe skeletal muscle atrophy. The etiology of ALS is linked to skeletal muscle, which can activate a retrograde signaling cascade that destroys motor neurons. This is why satellite cells and mitochondria play a crucial role in the health and performance of skeletal muscles. This review presents current knowledge on the involvement of mitochondrial dysfunction, skeletal muscle atrophy, muscle satellite cells, and neuromuscular junction (NMJ) in ALS. It also discusses current therapeutic strategies, including exercise, drugs, stem cells, gene therapy, and the prospective use of mitochondrial transplantation as a viable therapeutic strategy.
Collapse
Affiliation(s)
- Gokhan Burcin Kubat
- Department of Mitochondria and Cellular Research, Gulhane Health Sciences Institute, University of Health Sciences, Ankara, Turkey
| | - Pasquale Picone
- Istituto Per La Ricerca E L'Innovazione Biomedica, Consiglio Nazionale Delle Ricerche, Via U. La Malfa 153, 0146, Palermo, Italy.
| |
Collapse
|
3
|
Sung HH, Li H, Huang YC, Ai CL, Hsieh MY, Jan HM, Peng YJ, Lin HY, Yeh CH, Lin SY, Yeh CY, Cheng YJ, Khoo KH, Lin CH, Chien CT. Galectins induced from hemocytes bridge phosphatidylserine and N-glycosylated Drpr/CED-1 receptor during dendrite pruning. Nat Commun 2024; 15:7402. [PMID: 39191750 DOI: 10.1038/s41467-024-51581-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
During neuronal pruning, phagocytes engulf shed cellular debris to avoid inflammation and maintain tissue homeostasis. How phagocytic receptors recognize degenerating neurites had been unclear. Here, we identify two glucosyltransferases Alg8 and Alg10 of the N-glycosylation pathway required for dendrite fragmentation and clearance through genetic screen. The scavenger receptor Draper (Drpr) is N-glycosylated with complex- or hybrid-type N-glycans that interact specifically with galectins. We also identify the galectins Crouching tiger (Ctg) and Hidden dragon (Hdg) that interact with N-glycosylated Drpr and function in dendrite pruning via the Drpr pathway. Ctg and Hdg are required in hemocytes for expression and function, and are induced during dendrite injury to localize to injured dendrites through specific interaction with exposed phosphatidylserine (PS) on the surface membrane of injured dendrites. Thus, the galectins Ctg and Hdg bridge the interaction between PS and N-glycosylated Drpr, leading to the activation of phagocytosis.
Collapse
Affiliation(s)
- Hsin-Ho Sung
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Hsun Li
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Yi-Chun Huang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Chun-Lu Ai
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Ming-Yen Hsieh
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Hau-Ming Jan
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Yu-Ju Peng
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Hsien-Ya Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Chih-Hsuan Yeh
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Shu-Yu Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Chun-Yen Yeh
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Ying-Ju Cheng
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Kay-Hooi Khoo
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Chun-Hung Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Cheng-Ting Chien
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.
- Neuroscience Program of Academia Sinica, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
4
|
Goniotaki D, Tamagnini F, Biasetti L, Rumpf S, Troakes C, Pollack SJ, Ukwesa S, Sun H, Kraev I, Serpell LC, Noble W, Staras K, Hanger DP. Tau-mediated synaptic dysfunction is coupled with HCN channelopathy. Alzheimers Dement 2024; 20:5629-5646. [PMID: 38994745 PMCID: PMC11350046 DOI: 10.1002/alz.14074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/01/2024] [Accepted: 05/25/2024] [Indexed: 07/13/2024]
Abstract
INTRODUCTION In tauopathies, altered tau processing correlates with impairments in synaptic density and function. Changes in hyperpolarization-activated cyclic nucleotide-gated (HCN) channels contribute to disease-associated abnormalities in multiple neurodegenerative diseases. METHODS To investigate the link between tau and HCN channels, we performed histological, biochemical, ultrastructural, and functional analyses of hippocampal tissues from Alzheimer's disease (AD), age-matched controls, Tau35 mice, and/or Tau35 primary hippocampal neurons. RESULTS Expression of specific HCN channels is elevated in post mortem AD hippocampus. Tau35 mice develop progressive abnormalities including increased phosphorylated tau, enhanced HCN channel expression, decreased dendritic branching, reduced synapse density, and vesicle clustering defects. Tau35 primary neurons show increased HCN channel expression enhanced hyperpolarization-induced membrane voltage "sag" and changes in the frequency and kinetics of spontaneous excitatory postsynaptic currents. DISCUSSION Our findings are consistent with a model in which pathological changes in tauopathies impact HCN channels to drive network-wide structural and functional synaptic deficits. HIGHLIGHTS Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are functionally linked to the development of tauopathy. Expression of specific HCN channels is elevated in the hippocampus in Alzheimer's disease and the Tau35 mouse model of tauopathy. Increased expression of HCN channels in Tau35 mice is accompanied by hyperpolarization-induced membrane voltage "sag" demonstrating a detrimental effect of tau abnormalities on HCN channel function. Tau35 expression alters synaptic organization, causing a loosened vesicle clustering phenotype in Tau35 mice.
Collapse
Affiliation(s)
- Despoina Goniotaki
- Department of Basic and Clinical NeuroscienceInstitute of PsychiatryPsychology & NeuroscienceMaurice Wohl Clinical Neuroscience InstituteKing's College LondonLondonUK
| | - Francesco Tamagnini
- Department of PharmacySchool of ChemistryFood and PharmacyUniversity of ReadingReadingUK
| | - Luca Biasetti
- Sussex NeuroscienceSchool of Life SciencesUniversity of SussexBrightonUK
| | - Svenja‐Lotta Rumpf
- Department of Basic and Clinical NeuroscienceInstitute of PsychiatryPsychology & NeuroscienceMaurice Wohl Clinical Neuroscience InstituteKing's College LondonLondonUK
| | - Claire Troakes
- Department of Basic and Clinical NeuroscienceInstitute of PsychiatryPsychology & NeuroscienceMaurice Wohl Clinical Neuroscience InstituteKing's College LondonLondonUK
| | - Saskia J. Pollack
- Department of Basic and Clinical NeuroscienceInstitute of PsychiatryPsychology & NeuroscienceMaurice Wohl Clinical Neuroscience InstituteKing's College LondonLondonUK
| | - Shalom Ukwesa
- Department of Basic and Clinical NeuroscienceInstitute of PsychiatryPsychology & NeuroscienceMaurice Wohl Clinical Neuroscience InstituteKing's College LondonLondonUK
| | - Haoyue Sun
- Department of Basic and Clinical NeuroscienceInstitute of PsychiatryPsychology & NeuroscienceMaurice Wohl Clinical Neuroscience InstituteKing's College LondonLondonUK
| | - Igor Kraev
- Electron Microscopy SuiteSTEM FacultyThe Open UniversityMilton KeynesUK
| | - Louise C. Serpell
- Sussex NeuroscienceSchool of Life SciencesUniversity of SussexBrightonUK
| | - Wendy Noble
- Department of Clinical and Biomedical SciencesUniversity of ExeterExeterUK
| | - Kevin Staras
- Sussex NeuroscienceSchool of Life SciencesUniversity of SussexBrightonUK
| | - Diane P. Hanger
- Department of Basic and Clinical NeuroscienceInstitute of PsychiatryPsychology & NeuroscienceMaurice Wohl Clinical Neuroscience InstituteKing's College LondonLondonUK
| |
Collapse
|
5
|
Akere MT, Zajac KK, Bretz JD, Madhavaram AR, Horton AC, Schiefer IT. Real-Time Analysis of Neuronal Cell Cultures for CNS Drug Discovery. Brain Sci 2024; 14:770. [PMID: 39199464 PMCID: PMC11352746 DOI: 10.3390/brainsci14080770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/23/2024] [Accepted: 07/27/2024] [Indexed: 09/01/2024] Open
Abstract
The ability to screen for agents that can promote the development and/or maintenance of neuronal networks creates opportunities for the discovery of novel agents for the treatment of central nervous system (CNS) disorders. Over the past 10 years, advances in robotics, artificial intelligence, and machine learning have paved the way for the improved implementation of live-cell imaging systems for drug discovery. These instruments have revolutionized our ability to quickly and accurately acquire large standardized datasets when studying complex cellular phenomena in real-time. This is particularly useful in the field of neuroscience because real-time analysis can allow efficient monitoring of the development, maturation, and conservation of neuronal networks by measuring neurite length. Unfortunately, due to the relative infancy of this type of analysis, standard practices for data acquisition and processing are lacking, and there is no standardized format for reporting the vast quantities of data generated by live-cell imaging systems. This paper reviews the current state of live-cell imaging instruments, with a focus on the most commonly used equipment (IncuCyte systems). We provide an in-depth analysis of the experimental conditions reported in publications utilizing these systems, particularly with regard to studying neurite outgrowth. This analysis sheds light on trends and patterns that will enhance the use of live-cell imaging instruments in CNS drug discovery.
Collapse
Affiliation(s)
- Millicent T. Akere
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA; (M.T.A.); (K.K.Z.); (J.D.B.); (A.R.M.); (A.C.H.)
| | - Kelsee K. Zajac
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA; (M.T.A.); (K.K.Z.); (J.D.B.); (A.R.M.); (A.C.H.)
| | - James D. Bretz
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA; (M.T.A.); (K.K.Z.); (J.D.B.); (A.R.M.); (A.C.H.)
| | - Anvitha R. Madhavaram
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA; (M.T.A.); (K.K.Z.); (J.D.B.); (A.R.M.); (A.C.H.)
| | - Austin C. Horton
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA; (M.T.A.); (K.K.Z.); (J.D.B.); (A.R.M.); (A.C.H.)
| | - Isaac T. Schiefer
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA; (M.T.A.); (K.K.Z.); (J.D.B.); (A.R.M.); (A.C.H.)
- Center for Drug Design and Development, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA
| |
Collapse
|
6
|
Xing Y, Shi H, Gao X, Zhu X, Zhang D, Fang L, Wang J, Liu C, Wu D, Wang X, Min W. Walnut-Derived Peptides Alleviate Learning and Memory Impairments in a Mice Model via Inhibition of Microglia Phagocytose Synapses. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38853533 DOI: 10.1021/acs.jafc.4c01201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Microglia phagocytose synapses have an important effect on the pathogenesis of neurological disorders. Here, we investigated the neuroprotective effects of the walnut-derived peptide, TWLPLPR(TW-7), against LPS-induced cognitive deficits in mice and explored the underlying C1q-mediated microglia phagocytose synapses mechanisms in LPS-treated HT22 cells. The MWM showed that TW-7 improved the learning and memory capacity of the LPS-injured mice. Both transmission electron microscopy and immunofluorescence analysis illustrated that synaptic density and morphology were increased while associated with the decreased colocalized synapses with C1q. Immunohistochemistry and immunofluorescence demonstrated that TW-7 effectively reduced the microglia phagocytosis of synapses. Subsequently, overexpression of C1q gene plasmid was used to verify the contribution of the TW-7 via the classical complement pathway-regulated mitochondrial function-mediated microglia phagocytose synapses in LPS-treated HT22 cells. These data suggested that TW-7 improved the learning and memory capability of LPS-induced cognitively impaired mice through a mechanism associated with the classical complement pathway-mediated microglia phagocytose synapse.
Collapse
Affiliation(s)
- Yihang Xing
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Haoyuan Shi
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Xi Gao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Xinyu Zhu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Dingwen Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Li Fang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Ji Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Chunlei Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Dan Wu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Xiyan Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Weihong Min
- College of Food and Health, Zhejiang A&F University, Hangzhou 311300, P. R. China
| |
Collapse
|
7
|
Albert-Gasco H, Smith HL, Alvarez-Castelao B, Swinden D, Halliday M, Janaki-Raman S, Butcher AJ, Mallucci GR. Trazodone rescues dysregulated synaptic and mitochondrial nascent proteomes in prion neurodegeneration. Brain 2024; 147:649-664. [PMID: 37703312 PMCID: PMC10834243 DOI: 10.1093/brain/awad313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/01/2023] [Accepted: 09/01/2023] [Indexed: 09/15/2023] Open
Abstract
The unfolded protein response (UPR) is rapidly gaining momentum as a therapeutic target for protein misfolding neurodegenerative diseases, in which its overactivation results in sustained translational repression leading to synapse loss and neurodegeneration. In mouse models of these disorders, from Alzheimer's to prion disease, modulation of the pathway-including by the licensed drug, trazodone-restores global protein synthesis rates with profound neuroprotective effects. However, the precise nature of the translational impairment, in particular the specific proteins affected in disease, and their response to therapeutic UPR modulation are poorly understood. We used non-canonical amino acid tagging (NCAT) to measure de novo protein synthesis in the brains of prion-diseased mice with and without trazodone treatment, in both whole hippocampus and cell-specifically. During disease the predominant nascent proteome changes occur in synaptic, cytoskeletal and mitochondrial proteins in both hippocampal neurons and astrocytes. Remarkably, trazodone treatment for just 2 weeks largely restored the whole disease nascent proteome in the hippocampus to that of healthy, uninfected mice, predominantly with recovery of proteins involved in synaptic and mitochondrial function. In parallel, trazodone treatment restored the disease-associated decline in synapses and mitochondria and their function to wild-type levels. In conclusion, this study increases our understanding of how translational repression contributes to neurodegeneration through synaptic and mitochondrial toxicity via depletion of key proteins essential for their function. Further, it provides new insights into the neuroprotective mechanisms of trazodone through reversal of this toxicity, relevant for the treatment of neurodegenerative diseases via translational modulation.
Collapse
Affiliation(s)
- Hector Albert-Gasco
- UK Dementia Research Institute and Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0AH, UK
- Cambridge Institute of Science, Altos Labs, Great Abington CB21 6GP, UK
| | - Heather L Smith
- UK Dementia Research Institute and Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0AH, UK
- Cambridge Institute of Science, Altos Labs, Great Abington CB21 6GP, UK
| | - Beatriz Alvarez-Castelao
- Department of Biochemistry and Molecular Biology, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain
- The San Carlos Hospital Health Research Institute, IdISSC, 28040 Madrid, Spain
| | - Dean Swinden
- UK Dementia Research Institute and Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0AH, UK
- Cambridge Institute of Science, Altos Labs, Great Abington CB21 6GP, UK
| | - Mark Halliday
- Cambridge Institute of Science, Altos Labs, Great Abington CB21 6GP, UK
| | | | - Adrian J Butcher
- UK Dementia Research Institute and Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0AH, UK
- Cambridge Institute of Science, Altos Labs, Great Abington CB21 6GP, UK
| | - Giovanna R Mallucci
- UK Dementia Research Institute and Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0AH, UK
- Cambridge Institute of Science, Altos Labs, Great Abington CB21 6GP, UK
| |
Collapse
|
8
|
Pratt MR, Vocadlo DJ. Understanding and exploiting the roles of O-GlcNAc in neurodegenerative diseases. J Biol Chem 2023; 299:105411. [PMID: 37918804 PMCID: PMC10687168 DOI: 10.1016/j.jbc.2023.105411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023] Open
Abstract
O-GlcNAc is a common modification found on nuclear and cytoplasmic proteins. Determining the catalytic mechanism of the enzyme O-GlcNAcase (OGA), which removes O-GlcNAc from proteins, enabled the creation of potent and selective inhibitors of this regulatory enzyme. Such inhibitors have served as important tools in helping to uncover the cellular and organismal physiological roles of this modification. In addition, OGA inhibitors have been important for defining the augmentation of O-GlcNAc as a promising disease-modifying approach to combat several neurodegenerative diseases including both Alzheimer's disease and Parkinson's disease. These studies have led to development and optimization of OGA inhibitors for clinical application. These compounds have been shown to be well tolerated in early clinical studies and are steadily advancing into the clinic. Despite these advances, the mechanisms by which O-GlcNAc protects against these various types of neurodegeneration are a topic of continuing interest since improved insight may enable the creation of more targeted strategies to modulate O-GlcNAc for therapeutic benefit. Relevant pathways on which O-GlcNAc has been found to exert beneficial effects include autophagy, necroptosis, and processing of the amyloid precursor protein. More recently, the development and application of chemical methods enabling the synthesis of homogenous proteins have clarified the biochemical effects of O-GlcNAc on protein aggregation and uncovered new roles for O-GlcNAc in heat shock response. Here, we discuss the features of O-GlcNAc in neurodegenerative diseases, the application of inhibitors to identify the roles of this modification, and the biochemical effects of O-GlcNAc on proteins and pathways associated with neurodegeneration.
Collapse
Affiliation(s)
- Matthew R Pratt
- Department of Chemistry and Department of Biological Sciences, University of Southern California, Los Angeles, California, USA.
| | - David J Vocadlo
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada; Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada.
| |
Collapse
|
9
|
Flores A, Nguyen NM, Pendyala G. Developmental outcomes with perinatal exposure (DOPE) to prescription opioids. NEUROIMMUNE PHARMACOLOGY AND THERAPEUTICS 2023; 2:339-351. [PMID: 38058996 PMCID: PMC10696573 DOI: 10.1515/nipt-2023-0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/07/2023] [Indexed: 12/08/2023]
Abstract
Researchers have found considerable evidence in the past 20 years that perinatal opioid exposure leads to an increased risk of developmental disorders in offspring that persist into adulthood. The use of opioids to treat pain concerning pregnancy, delivery, and postpartum complications has been rising. As a result, communities have reported a 300-400 % increase in Neonatal Opioid Withdrawal Syndrome (NOWS). NOWS represents the initial stage of several behavioral, phenotypic, and synaptic deficits. This review article summarizes the Developmental Outcomes of Perinatal Exposure (DOPE) to prescription opioids. Moreover, we also seek to connect these findings to clinical research that describes DOPE at multiple stages of life. Since specific mechanisms that underlie DOPE remain unclear, this article aims to provide a framework for conceptualizing across all ages and highlight the implications they may have for longevity.
Collapse
Affiliation(s)
- Adrian Flores
- Department of Anesthesiology, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
- Department of Cellular and Integrative Physiology, UNMC, Omaha, NE, USA
| | - Nghi M. Nguyen
- Department of Anesthesiology, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
- Department of Genetics, Cell Biology and Anatomy, UNMC, Omaha, NE, USA
| | - Gurudutt Pendyala
- Department of Anesthesiology, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
- Department of Genetics, Cell Biology and Anatomy, UNMC, Omaha, NE, USA
- Child Health Research Institute, Omaha, NE, USA
- National Strategic Research Institute, UNMC, Omaha, NE, USA
| |
Collapse
|
10
|
Andrade K, Guieysse T, Medani T, Koechlin E, Pantazis D, Dubois B. The dual-path hypothesis for the emergence of anosognosia in Alzheimer's disease. Front Neurol 2023; 14:1239057. [PMID: 38020610 PMCID: PMC10654627 DOI: 10.3389/fneur.2023.1239057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Although neurocognitive models have been proposed to explain anosognosia in Alzheimer's disease (AD), the neural cascade responsible for its origin in the human brain remains unknown. Here, we build on a mechanistic dual-path hypothesis that brings error-monitoring and emotional processing systems as key elements for self-awareness, with distinct impacts on the emergence of anosognosia in AD. Proceeding from the notion of anosognosia as a dimensional syndrome, varying between a lack of concern about one's own deficits (i.e., anosodiaphoria) and a complete lack of awareness of deficits, our hypothesis states that (i) unawareness of deficits would result from primary damage to the error-monitoring system, whereas (ii) anosodiaphoria would more likely result from an imbalance between emotional processing and error-monitoring. In the first case, a synaptic failure in the error-monitoring system, in which the anterior and posterior cingulate cortices play a major role, would have a negative impact on error (or deficits) awareness, preventing patients from becoming aware of their condition. In the second case, an impairment in the emotional processing system, in which the amygdala and the orbitofrontal cortex play a major role, would prevent patients from monitoring the internal milieu for relevant errors (or deficits) and assigning appropriate value to them, thus biasing their impact on the error-monitoring system. Our hypothesis stems on two scientific premises. One comes from preliminary results in AD patients showing a synaptic failure in the error-monitoring system along with a decline of awareness for cognitive difficulties at the time of diagnosis. Another comes from the somatic marker hypothesis, which proposes that emotional signals are critical to adaptive behavior. Further exploration of these premises will be of great interest to illuminate the foundations of self-awareness and improve our knowledge of the underlying paths of anosognosia in AD and other brain disorders.
Collapse
Affiliation(s)
- Katia Andrade
- Institute of Memory and Alzheimer’s Disease (IM2A), Department of Neurology, Assistance Publique-Hôpitaux de Paris (AP-HP), Sorbonne University, Pitié-Salpêtrière Hospital, Paris, France
- Frontlab, Paris Brain Institute (Institut du Cerveau, ICM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Thomas Guieysse
- Institute of Memory and Alzheimer’s Disease (IM2A), Department of Neurology, Assistance Publique-Hôpitaux de Paris (AP-HP), Sorbonne University, Pitié-Salpêtrière Hospital, Paris, France
| | - Takfarinas Medani
- Signal and Image Processing Institute, University of Southern California, Los Angeles, CA, United States
| | - Etienne Koechlin
- École Normale Supérieure, Laboratoire de Neurosciences Cognitives et Computationnelles, Paris, France
| | - Dimitrios Pantazis
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Bruno Dubois
- Institute of Memory and Alzheimer’s Disease (IM2A), Department of Neurology, Assistance Publique-Hôpitaux de Paris (AP-HP), Sorbonne University, Pitié-Salpêtrière Hospital, Paris, France
- Frontlab, Paris Brain Institute (Institut du Cerveau, ICM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| |
Collapse
|
11
|
Gowthami N, Pursotham N, Dey G, Ghose V, Sathe G, Pruthi N, Shukla D, Gayathri N, Santhoshkumar R, Padmanabhan B, Chandramohan V, Mahadevan A, Srinivas Bharath MM. Neuroanatomical zones of human traumatic brain injury reveal significant differences in protein profile and protein oxidation: Implications for secondary injury events. J Neurochem 2023; 167:218-247. [PMID: 37694499 DOI: 10.1111/jnc.15953] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023]
Abstract
Traumatic brain injury (TBI) causes significant neurological deficits and long-term degenerative changes. Primary injury in TBI entails distinct neuroanatomical zones, i.e., contusion (Ct) and pericontusion (PC). Their dynamic expansion could contribute to unpredictable neurological deterioration in patients. Molecular characterization of these zones compared with away from contusion (AC) zone is invaluable for TBI management. Using proteomics-based approach, we were able to distinguish Ct, PC and AC zones in human TBI brains. Ct was associated with structural changes (blood-brain barrier (BBB) disruption, neuroinflammation, axonal injury, demyelination and ferroptosis), while PC was associated with initial events of secondary injury (glutamate excitotoxicity, glial activation, accumulation of cytoskeleton proteins, oxidative stress, endocytosis) and AC displayed mitochondrial dysfunction that could contribute to secondary injury events and trigger long-term degenerative changes. Phosphoproteome analysis in these zones revealed that certain differentially phosphorylated proteins synergistically contribute to the injury events along with the differentially expressed proteins. Non-synaptic mitochondria (ns-mito) was associated with relatively more differentially expressed proteins (DEPs) compared to synaptosomes (Syn), while the latter displayed increased protein oxidation including tryptophan (Trp) oxidation. Proteomic analysis of immunocaptured complex I (CI) from Syn revealed increased Trp oxidation in Ct > PC > AC (vs. control). Oxidized W272 in the ND1 subunit of CI, revealed local conformational changes in ND1 and the neighboring subunits, as indicated by molecular dynamics simulation (MDS). Taken together, neuroanatomical zones in TBI show distinct protein profile and protein oxidation representing different primary and secondary injury events with potential implications for TBI pathology and neurological status of the patients.
Collapse
Affiliation(s)
- Niya Gowthami
- Department of Clinical Psychopharmacology and Neurotoxicology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Nithya Pursotham
- Department of Clinical Psychopharmacology and Neurotoxicology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Gourav Dey
- Proteomics and Bioinformatics Laboratory, Neurobiology Research Center, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
- Institute of Bioinformatics, Bengaluru, India
| | - Vivek Ghose
- Proteomics and Bioinformatics Laboratory, Neurobiology Research Center, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
- Institute of Bioinformatics, Bengaluru, India
| | - Gajanan Sathe
- Proteomics and Bioinformatics Laboratory, Neurobiology Research Center, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
- Institute of Bioinformatics, Bengaluru, India
| | - Nupur Pruthi
- Department of Neurosurgery, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Dhaval Shukla
- Department of Neurosurgery, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Narayanappa Gayathri
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Rashmi Santhoshkumar
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Balasundaram Padmanabhan
- Department of Biophysics, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Vivek Chandramohan
- Department of Biotechnology, Siddaganga Institute of Technology (SIT), Tumakuru, India
| | - Anita Mahadevan
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - M M Srinivas Bharath
- Department of Clinical Psychopharmacology and Neurotoxicology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| |
Collapse
|
12
|
Yang S, Park JH, Lu HC. Axonal energy metabolism, and the effects in aging and neurodegenerative diseases. Mol Neurodegener 2023; 18:49. [PMID: 37475056 PMCID: PMC10357692 DOI: 10.1186/s13024-023-00634-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 06/08/2023] [Indexed: 07/22/2023] Open
Abstract
Human studies consistently identify bioenergetic maladaptations in brains upon aging and neurodegenerative disorders of aging (NDAs), such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and Amyotrophic lateral sclerosis. Glucose is the major brain fuel and glucose hypometabolism has been observed in brain regions vulnerable to aging and NDAs. Many neurodegenerative susceptible regions are in the topological central hub of the brain connectome, linked by densely interconnected long-range axons. Axons, key components of the connectome, have high metabolic needs to support neurotransmission and other essential activities. Long-range axons are particularly vulnerable to injury, neurotoxin exposure, protein stress, lysosomal dysfunction, etc. Axonopathy is often an early sign of neurodegeneration. Recent studies ascribe axonal maintenance failures to local bioenergetic dysregulation. With this review, we aim to stimulate research in exploring metabolically oriented neuroprotection strategies to enhance or normalize bioenergetics in NDA models. Here we start by summarizing evidence from human patients and animal models to reveal the correlation between glucose hypometabolism and connectomic disintegration upon aging/NDAs. To encourage mechanistic investigations on how axonal bioenergetic dysregulation occurs during aging/NDAs, we first review the current literature on axonal bioenergetics in distinct axonal subdomains: axon initial segments, myelinated axonal segments, and axonal arbors harboring pre-synaptic boutons. In each subdomain, we focus on the organization, activity-dependent regulation of the bioenergetic system, and external glial support. Second, we review the mechanisms regulating axonal nicotinamide adenine dinucleotide (NAD+) homeostasis, an essential molecule for energy metabolism processes, including NAD+ biosynthetic, recycling, and consuming pathways. Third, we highlight the innate metabolic vulnerability of the brain connectome and discuss its perturbation during aging and NDAs. As axonal bioenergetic deficits are developing into NDAs, especially in asymptomatic phase, they are likely exaggerated further by impaired NAD+ homeostasis, the high energetic cost of neural network hyperactivity, and glial pathology. Future research in interrogating the causal relationship between metabolic vulnerability, axonopathy, amyloid/tau pathology, and cognitive decline will provide fundamental knowledge for developing therapeutic interventions.
Collapse
Affiliation(s)
- Sen Yang
- The Linda and Jack Gill Center for Biomolecular Sciences, Indiana University, Bloomington, IN, 47405, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, 47405, USA
| | - Jung Hyun Park
- The Linda and Jack Gill Center for Biomolecular Sciences, Indiana University, Bloomington, IN, 47405, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, 47405, USA
| | - Hui-Chen Lu
- The Linda and Jack Gill Center for Biomolecular Sciences, Indiana University, Bloomington, IN, 47405, USA.
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA.
- Program in Neuroscience, Indiana University, Bloomington, IN, 47405, USA.
| |
Collapse
|
13
|
Needs HI, Wilkinson KA, Henley JM, Collinson I. Aggregation-prone Tau impairs mitochondrial import, which affects organelle morphology and neuronal complexity. J Cell Sci 2023; 136:jcs260993. [PMID: 37303235 PMCID: PMC10357015 DOI: 10.1242/jcs.260993] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 06/05/2023] [Indexed: 06/13/2023] Open
Abstract
Mitochondrial protein import is essential for organellar biogenesis, and thereby for the sufficient supply of cytosolic ATP - which is particularly important for cells with high energy demands like neurons. This study explores the prospect of import machinery perturbation as a cause of neurodegeneration instigated by the accumulation of aggregating proteins linked to disease. We found that the aggregation-prone Tau variant (TauP301L) reduces the levels of components of the import machinery of the outer (TOM20, encoded by TOMM20) and inner membrane (TIM23, encoded by TIMM23) while associating with TOM40 (TOMM40). Intriguingly, this interaction affects mitochondrial morphology, but not protein import or respiratory function; raising the prospect of an intrinsic rescue mechanism. Indeed, TauP301L induced the formation of tunnelling nanotubes (TNTs), potentially for the recruitment of healthy mitochondria from neighbouring cells and/or the disposal of mitochondria incapacitated by aggregated Tau. Consistent with this, inhibition of TNT formation (and rescue) reveals Tau-induced import impairment. In primary neuronal cultures, TauP301L induced morphological changes characteristic of neurodegeneration. Interestingly, these effects were mirrored in cells where the import sites were blocked artificially. Our results reveal a link between aggregation-prone Tau and defective mitochondrial import relevant to disease.
Collapse
Affiliation(s)
- Hope I. Needs
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | | | - Jeremy M. Henley
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Ian Collinson
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
14
|
Verma AK, Singh S, Rizvi SI. Therapeutic potential of melatonin and its derivatives in aging and neurodegenerative diseases. Biogerontology 2023; 24:183-206. [PMID: 36550377 DOI: 10.1007/s10522-022-10006-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
Aging is associated with increasing impairments in brain homeostasis and represents the main risk factor across most neurodegenerative disorders. Melatonin, a neuroendocrine hormone that regulates mammalian chronobiology and endocrine functions is well known for its antioxidant potential, exhibiting both cytoprotective and chronobiotic abilities. Age-related decline of melatonin disrupting mitochondrial homeostasis and cytosolic DNA-mediated inflammatory reactions in neurons is a major contributory factor in the emergence of neurological abnormalities. There is scattered literature on the possible use of melatonin against neurodegenerative mechanisms in the aging process and its associated diseases. We have searched PUBMED with many combinations of key words for available literature spanning two decades. Based on the vast number of experimental papers, we hereby review recent advancements concerning the potential impact of melatonin on cellular redox balance and mitochondrial dynamics in the context of neurodegeneration. Next, we discuss a broader explanation of the involvement of disrupted redox homeostasis in the pathophysiology of age-related diseases and its connection to circadian mechanisms. Our effort may result in the discovery of novel therapeutic approaches. Finally, we summarize the current knowledge on molecular and circadian regulatory mechanisms of melatonin to overcome neurodegenerative diseases (NDDs) such as Alzheimer's, Parkinson's, Huntington's disease, and amyotrophic lateral sclerosis, however, these findings need to be confirmed by larger, well-designed clinical trials. This review is also expected to uncover the associated molecular alterations in the aging brain and explain how melatonin-mediated circadian restoration of neuronal homeodynamics may increase healthy lifespan in age-related NDDs.
Collapse
Affiliation(s)
- Avnish Kumar Verma
- Department of Biochemistry, University of Allahabad, Allahabad, 211002, India
| | - Sandeep Singh
- Biological Psychiatry Laboratory, Hadassah Medical Center - Hebrew University, Jerusalem, Israel
| | - Syed Ibrahim Rizvi
- Department of Biochemistry, University of Allahabad, Allahabad, 211002, India.
| |
Collapse
|
15
|
Negro S, Lauria F, Stazi M, Tebaldi T, D’Este G, Pirazzini M, Megighian A, Lessi F, Mazzanti CM, Sales G, Romualdi C, Fillo S, Lista F, Sleigh JN, Tosolini AP, Schiavo G, Viero G, Rigoni M. Hydrogen peroxide induced by nerve injury promotes axon regeneration via connective tissue growth factor. Acta Neuropathol Commun 2022; 10:189. [PMID: 36567321 PMCID: PMC9791753 DOI: 10.1186/s40478-022-01495-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/12/2022] [Indexed: 12/26/2022] Open
Abstract
Regeneration of the neuromuscular junction (NMJ) leverages on extensive exchange of factors released from motor axon terminals (MATs), muscle fibers and perisynaptic Schwann cells (PSCs), among which hydrogen peroxide (H2O2) is a major pro-regenerative signal. To identify critical determinants of NMJ remodeling in response to injury, we performed temporal transcriptional profiling of NMJs from 2 month-old mice during MAT degeneration/regeneration, and cross-referenced the differentially expressed genes with those elicited by H2O2 in SCs. We identified an enrichment in extracellular matrix (ECM) transcripts, including Connective Tissue Growth Factor (Ctgf), which is usually expressed during development. We discovered that Ctgf levels are increased in a Yes-associated protein (YAP)-dependent fashion in response to rapid, local H2O2 signaling generated by stressed mitochondria in the injured sciatic nerve, a finding highlighting the importance of signals triggered by mechanical force to motor nerve repair. Through sequestration of Ctgf or inactivation of H2O2, we delayed the recovery of neuromuscular function by impairing SC migration and, in turn, axon-oriented re-growth. These data indicate that H2O2 and its downstream effector Ctgf are pro-regenerative factors that enable axonal growth, and reveal a striking ECM remodeling process during nerve regeneration upon local H2O2 signaling. Our study identifies key transcriptomic changes at the regenerating NMJ, providing a rich source of pro-regenerative factors with potential for alleviating the consequences of peripheral nerve injuries.
Collapse
Affiliation(s)
- Samuele Negro
- grid.5608.b0000 0004 1757 3470Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy ,grid.5608.b0000 0004 1757 3470U.O.C. Clinica Neurologica, Azienda Ospedale, University of Padua, 35128 Padua, Italy
| | - Fabio Lauria
- grid.419463.d0000 0004 1756 3731Institute of Biophysics, CNR Unit at Trento, 38123 Povo, Italy
| | - Marco Stazi
- grid.5608.b0000 0004 1757 3470Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy
| | - Toma Tebaldi
- grid.11696.390000 0004 1937 0351Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123 Povo, Italy ,grid.47100.320000000419368710Section of Hematology, Department of Internal Medicine, Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT 06520 USA
| | - Giorgia D’Este
- grid.5608.b0000 0004 1757 3470Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy
| | - Marco Pirazzini
- grid.5608.b0000 0004 1757 3470Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy ,grid.5608.b0000 0004 1757 3470Myology Center (CIR-Myo), University of Padua, 35129 Padua, Italy
| | - Aram Megighian
- grid.5608.b0000 0004 1757 3470Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy ,grid.5608.b0000 0004 1757 3470Padua Neuroscience Center, University of Padua, 35131 Padua, Italy
| | - Francesca Lessi
- Laboratory of Genomics, Pisa Science Foundation, 56017 San Giuliano Terme, Italy
| | - Chiara M. Mazzanti
- Laboratory of Genomics, Pisa Science Foundation, 56017 San Giuliano Terme, Italy
| | - Gabriele Sales
- grid.5608.b0000 0004 1757 3470Department of Biology, University of Padua, 35131 Padua, Italy
| | - Chiara Romualdi
- grid.5608.b0000 0004 1757 3470Department of Biology, University of Padua, 35131 Padua, Italy
| | - Silvia Fillo
- grid.470599.60000 0004 1760 920XCenter of Medical and Veterinary Research of the Ministry of Defence, 00184 Rome, Italy
| | - Florigio Lista
- grid.470599.60000 0004 1760 920XCenter of Medical and Veterinary Research of the Ministry of Defence, 00184 Rome, Italy
| | - James N. Sleigh
- grid.83440.3b0000000121901201Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG UK ,grid.83440.3b0000000121901201UCL Queen Square Motor Neuron Disease Centre, University College London, London, WC1N 3BG UK ,grid.83440.3b0000000121901201UK Dementia Research Institute, University College London, London, WC1E 6BT UK
| | - Andrew P. Tosolini
- grid.83440.3b0000000121901201Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG UK ,grid.83440.3b0000000121901201UCL Queen Square Motor Neuron Disease Centre, University College London, London, WC1N 3BG UK
| | - Giampietro Schiavo
- grid.83440.3b0000000121901201Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG UK ,grid.83440.3b0000000121901201UCL Queen Square Motor Neuron Disease Centre, University College London, London, WC1N 3BG UK ,grid.83440.3b0000000121901201UK Dementia Research Institute, University College London, London, WC1E 6BT UK
| | - Gabriella Viero
- grid.419463.d0000 0004 1756 3731Institute of Biophysics, CNR Unit at Trento, 38123 Povo, Italy
| | - Michela Rigoni
- Department of Biomedical Sciences, University of Padua, 35131, Padua, Italy. .,Myology Center (CIR-Myo), University of Padua, 35129, Padua, Italy.
| |
Collapse
|
16
|
Litwa K. Shared mechanisms of neural circuit disruption in tuberous sclerosis across lifespan: Bridging neurodevelopmental and neurodegenerative pathology. Front Genet 2022; 13:997461. [PMID: 36506334 PMCID: PMC9732432 DOI: 10.3389/fgene.2022.997461] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/06/2022] [Indexed: 11/27/2022] Open
Abstract
Tuberous Sclerosis (TS) is a rare genetic disorder manifesting with multiple benign tumors impacting the function of vital organs. In TS patients, dominant negative mutations in TSC1 or TSC2 increase mTORC1 activity. Increased mTORC1 activity drives tumor formation, but also severely impacts central nervous system function, resulting in infantile seizures, intractable epilepsy, and TS-associated neuropsychiatric disorders, including autism, attention deficits, intellectual disability, and mood disorders. More recently, TS has also been linked with frontotemporal dementia. In addition to TS, accumulating evidence implicates increased mTORC1 activity in the pathology of other neurodevelopmental and neurodegenerative disorders. Thus, TS provides a unique disease model to address whether developmental neural circuit abnormalities promote age-related neurodegeneration, while also providing insight into the therapeutic potential of mTORC1 inhibitors for both developing and degenerating neural circuits. In the following review, we explore the ability of both mouse and human brain organoid models to capture TS pathology, elucidate disease mechanisms, and shed light on how neurodevelopmental alterations may later contribute to age-related neurodegeneration.
Collapse
Affiliation(s)
- Karen Litwa
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, United States
| |
Collapse
|
17
|
Gelon PA, Dutchak PA, Sephton CF. Synaptic dysfunction in ALS and FTD: anatomical and molecular changes provide insights into mechanisms of disease. Front Mol Neurosci 2022; 15:1000183. [PMID: 36263379 PMCID: PMC9575515 DOI: 10.3389/fnmol.2022.1000183] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/01/2022] [Indexed: 11/29/2022] Open
Abstract
Synaptic loss is a pathological feature of all neurodegenerative diseases including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). ALS is a disease of the cortical and spinal motor neurons resulting in fatal paralysis due to denervation of muscles. FTD is a form of dementia that primarily affects brain regions controlling cognition, language and behavior. Once classified as two distinct diseases, ALS and FTD are now considered as part of a common disease spectrum based on overlapping clinical, pathological and genetic evidence. At the cellular level, aggregation of common proteins and overlapping gene susceptibilities are shared in both ALS and FTD. Despite the convergence of these two fields of research, the underlying disease mechanisms remain elusive. However, recent discovers from ALS and FTD patient studies and models of ALS/FTD strongly suggests that synaptic dysfunction is an early event in the disease process and a unifying hallmark of these diseases. This review provides a summary of the reported anatomical and cellular changes that occur in cortical and spinal motor neurons in ALS and FTD tissues and models of disease. We also highlight studies that identify changes in the proteome and transcriptome of ALS and FTD models and provide a conceptual overview of the processes that contribute to synaptic dysfunction in these diseases. Due to space limitations and the vast number of publications in the ALS and FTD fields, many articles have not been discussed in this review. As such, this review focuses on the three most common shared mutations in ALS and FTD, the hexanucleuotide repeat expansion within intron 1 of chromosome 9 open reading frame 72 (C9ORF72), transactive response DNA binding protein 43 (TARDBP or TDP-43) and fused in sarcoma (FUS), with the intention of highlighting common pathways that promote synaptic dysfunction in the ALS-FTD disease spectrum.
Collapse
|
18
|
Sanchez Avila A, Henstridge C. Array tomography: 15 years of synaptic analysis. Neuronal Signal 2022; 6:NS20220013. [PMID: 36187224 PMCID: PMC9512143 DOI: 10.1042/ns20220013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 11/25/2022] Open
Abstract
Synapses are minuscule, intricate structures crucial for the correct communication between neurons. In the 125 years since the term synapse was first coined, we have advanced a long way when it comes to our understanding of how they work and what they do. Most of the fundamental discoveries have been invariably linked to advances in technology. However, due to their size, delicate structural integrity and their sheer number, our knowledge of synaptic biology has remained somewhat elusive and their role in neurodegenerative diseases still remains largely unknown. Here, we briefly discuss some of the imaging technologies used to study synapses and focus on the utility of the high-resolution imaging technique array tomography (AT). We introduce the AT technique and highlight some of the ways it is utilised with a particular focus on its power for analysing synaptic composition and pathology in human post-mortem tissue. We also discuss some of the benefits and drawbacks of techniques for imaging synapses and highlight some recent advances in the study of form and function by combining physiology and high-resolution synaptic imaging.
Collapse
Affiliation(s)
- Anna Sanchez Avila
- Euan Macdonald Centre for Motor Neuron Disease, Edinburgh, UK
- Division of Cellular and Systems Medicine, University of Dundee, Dundee, UK
| | - Christopher M. Henstridge
- Euan Macdonald Centre for Motor Neuron Disease, Edinburgh, UK
- Division of Cellular and Systems Medicine, University of Dundee, Dundee, UK
| |
Collapse
|
19
|
An Optimized Comparative Proteomic Approach as a Tool in Neurodegenerative Disease Research. Cells 2022; 11:cells11172653. [PMID: 36078061 PMCID: PMC9454658 DOI: 10.3390/cells11172653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/16/2022] [Accepted: 08/22/2022] [Indexed: 11/25/2022] Open
Abstract
Recent advances in proteomic technologies now allow unparalleled assessment of the molecular composition of a wide range of sample types. However, the application of such technologies and techniques should not be undertaken lightly. Here, we describe why the design of a proteomics experiment itself is only the first step in yielding high-quality, translatable results. Indeed, the effectiveness and/or impact of the majority of contemporary proteomics screens are hindered not by commonly considered technical limitations such as low proteome coverage but rather by insufficient analyses. Proteomic experimentation requires a careful methodological selection to account for variables from sample collection, through to database searches for peptide identification to standardised post-mass spectrometry options directed analysis workflow, which should be adjusted for each study, from determining when and how to filter proteomic data to choosing holistic versus trend-wise analyses for biologically relevant patterns. Finally, we highlight and discuss the difficulties inherent in the modelling and study of the majority of progressive neurodegenerative conditions. We provide evidence (in the context of neurodegenerative research) for the benefit of undertaking a comparative approach through the application of the above considerations in the alignment of publicly available pre-existing data sets to identify potential novel regulators of neuronal stability.
Collapse
|
20
|
Synaptic Effects of Palmitoylethanolamide in Neurodegenerative Disorders. Biomolecules 2022; 12:biom12081161. [PMID: 36009055 PMCID: PMC9405819 DOI: 10.3390/biom12081161] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/03/2022] [Accepted: 08/06/2022] [Indexed: 02/06/2023] Open
Abstract
Increasing evidence strongly supports the key role of neuroinflammation in the pathophysiology of neurodegenerative diseases, such as Alzheimer’s disease, frontotemporal dementia, and amyotrophic lateral sclerosis. Neuroinflammation may alter synaptic transmission contributing to the progression of neurodegeneration, as largely documented in animal models and in patients’ studies. In the last few years, palmitoylethanolamide (PEA), an endogenous lipid mediator, and its new composite, which is a formulation constituted of PEA and the well-recognized antioxidant flavonoid luteolin (Lut) subjected to an ultra-micronization process (co-ultraPEALut), has been identified as a potential therapeutic agent in different disorders by exerting potential beneficial effects on neurodegeneration and neuroinflammation by modulating synaptic transmission. In this review, we will show the potential therapeutic effects of PEA in animal models and in patients affected by neurodegenerative disorders.
Collapse
|
21
|
Wang F, Cai YJ, Ma X, Wang N, Wu ZB, Sun Y, Xu YX, Yang H, Liu TT, Xia Q, Yu Z, Zhu DF. Synaptic loss in a mouse model of euthyroid Hashimoto's thyroiditis: possible involvement of the microglia. BMC Neurosci 2022; 23:25. [PMID: 35468730 PMCID: PMC9036731 DOI: 10.1186/s12868-022-00710-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 04/05/2022] [Indexed: 11/24/2022] Open
Abstract
Background Hashimoto’s thyroiditis (HT) is an autoimmune illness that renders individuals vulnerable to neuropsychopathology even in the euthyroid state, the mechanisms involved remain unclear. We hypothesized that activated microglia might disrupt synapses, resulting in cognitive disturbance in the context of euthyroid HT, and designed the present study to test this hypothesis. Methods Experimental HT model was induced by immunizing NOD mice with thyroglobulin and adjuvant twice. Morris Water Maze was measured to determine mice spatial learning and memory. The synaptic parameters such as the synaptic density, synaptic ultrastructure and synaptic-markers (SYN and PSD95) as well as the interactions of microglia with synapses were also determined. Results HT mice had poorer performance in Morris Water Maze than controls. Concurrently, HT resulted in a significant reduction in synapse density and ultrastructure damage, along with decreased synaptic puncta visualized by immunostaining with synaptophysin and PSD-95. In parallel, frontal activated microglia in euthyroid HT mice showed increased engulfment of PSD95 and EM revealed that the synaptic structures were visible within the microglia. These functional alterations in microglia corresponded to structural increases in their attachment to neuronal perikarya and a reduction in presynaptic terminals covering the neurons. Conclusion Our results provide initial evidence that HT can induce synaptic loss in the euthyroid state with deficits might be attributable to activated microglia, which may underlie the deleterious effects of HT on spatial learning and memory. Supplementary Information The online version contains supplementary material available at 10.1186/s12868-022-00710-2.
Collapse
Affiliation(s)
- Fen Wang
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Yao-Jun Cai
- Department of Endocrinology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Xiao Ma
- Department of Respiratoration, Wuhu Hospital of Traditional Chinese Medicine, Wuhu, 241000, China
| | - Nan Wang
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Zhang-Bi Wu
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Yan Sun
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Yong-Xia Xu
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Hao Yang
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Tian-Tian Liu
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Qin Xia
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Zhen Yu
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China.
| | - De-Fa Zhu
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
22
|
Broadhead MJ, Bonthron C, Waddington J, Smith WV, Lopez MF, Burley S, Valli J, Zhu F, Komiyama NH, Smith C, Grant SGN, Miles GB. Selective vulnerability of tripartite synapses in amyotrophic lateral sclerosis. Acta Neuropathol 2022; 143:471-486. [PMID: 35305541 PMCID: PMC8960590 DOI: 10.1007/s00401-022-02412-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/23/2022] [Accepted: 03/09/2022] [Indexed: 12/12/2022]
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disorder. Separate lines of evidence suggest that synapses and astrocytes play a role in the pathological mechanisms underlying ALS. Given that astrocytes make specialised contacts with some synapses, called tripartite synapses, we hypothesise that tripartite synapses could act as the fulcrum of disease in ALS. To test this hypothesis, we have performed an extensive microscopy-based investigation of synapses and tripartite synapses in the spinal cord of ALS model mice and post-mortem human tissue from ALS cases. We reveal widescale synaptic changes at the early symptomatic stages of the SOD1G93a mouse model. Super-resolution microscopy reveals that large complex postsynaptic structures are lost in ALS mice. Most surprisingly, tripartite synapses are selectively lost, while non-tripartite synapses remain in equal number to healthy controls. Finally, we also observe a similar selective loss of tripartite synapses in human post-mortem ALS spinal cords. From these data we conclude that tripartite synaptopathy is a key hallmark of ALS.
Collapse
|
23
|
Kocurova G, Ricny J, Ovsepian SV. Autoantibodies targeting neuronal proteins as biomarkers for neurodegenerative diseases. Theranostics 2022; 12:3045-3056. [PMID: 35547759 PMCID: PMC9065204 DOI: 10.7150/thno.72126] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/09/2022] [Indexed: 01/08/2023] Open
Abstract
Neurodegenerative diseases (NDDs) are associated with the accumulation of a range of misfolded proteins across the central nervous system and related autoimmune responses, including the generation of antibodies and the activation of immune cells. Both innate and adaptive immunity become mobilized, leading to cellular and humoral effects. The role of humoral immunity in disease onset and progression remains to be elucidated with rising evidence suggestive of positive (protection, repair) and negative (injury, toxicity) outcomes. In this study, we review advances in research of neuron-targeting autoantibodies in the most prevalent NDDs. We discuss their biological origin, molecular diversity and changes in the course of diseases, consider their relevance to the initiation and progression of pathology as well as diagnostic and prognostic significance. It is suggested that the emerging autoimmune aspects of NDDs not only could facilitate the early detection but also might help to elucidate previously unknown facets of pathobiology with relevance to the development of precision medicine.
Collapse
Affiliation(s)
- Gabriela Kocurova
- Experimental Neurobiology Program, National Institute of Mental Health, Klecany, Czech Republic
| | - Jan Ricny
- Experimental Neurobiology Program, National Institute of Mental Health, Klecany, Czech Republic
| | - Saak V. Ovsepian
- Faculty of Science and Engineering, University of Greenwich London, Chatham Maritime, Kent, ME4 4TB, United Kingdom
| |
Collapse
|
24
|
Handley EE, Reale LA, Chuckowree JA, Dyer MS, Barnett GL, Clark CM, Bennett W, Dickson TC, Blizzard CA. Estrogen Enhances Dendrite Spine Function and Recovers Deficits in Neuroplasticity in the prpTDP-43A315T Mouse Model of Amyotrophic Lateral Sclerosis. Mol Neurobiol 2022; 59:2962-2976. [PMID: 35249200 PMCID: PMC9016039 DOI: 10.1007/s12035-022-02742-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 01/09/2022] [Indexed: 10/31/2022]
Abstract
AbstractAmyotrophic lateral sclerosis (ALS) attacks the corticomotor system, with motor cortex function affected early in disease. Younger females have a lower relative risk of succumbing to ALS than males and older females, implicating a role for female sex hormones in disease progression. However, the mechanisms driving this dimorphic incidence are still largely unknown. We endeavoured to determine if estrogen mitigates disease progression and pathogenesis, focussing upon the dendritic spine as a site of action. Using two-photon live imaging we identify, in the prpTDP-43A315T mouse model of ALS, that dendritic spines in the male motor cortex have a reduced capacity for remodelling than their wild-type controls. In contrast, females show higher capacity for remodelling, with peak plasticity corresponding to highest estrogen levels during the estrous cycle. Estrogen manipulation through ovariectomies and estrogen replacement with 17β estradiol in vivo was found to significantly alter spine density and mitigate disease severity. Collectively, these findings reveal that synpatic plasticity is reduced in ALS, which can be amelioriated with estrogen, in conjuction with improved disease outcomes.
Collapse
|
25
|
Gajera CR, Fernandez R, Postupna N, Montine KS, Keene CD, Bendall SC, Montine TJ. Mass Synaptometry: Applying Mass Cytometry to Single Synapse Analysis. Methods Mol Biol 2022; 2417:69-88. [PMID: 35099792 PMCID: PMC8820390 DOI: 10.1007/978-1-0716-1916-2_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Synaptic degeneration is one of the earliest and phenotypically most significant features associated with numerous neurodegenerative conditions, including Alzheimer's and Parkinson's diseases. Synaptic changes are also known to be important in neurocognitive disorders such as schizophrenia and autism spectrum disorders. Several labs, including ours, have demonstrated that conventional (fluorescence-based) flow cytometry of individual synaptosomes is a robust and reproducible method. However, the repertoire of probes needed to assess comprehensively the type of synapse, pathologic proteins (including protein products of risk genes discovered in GWAS), and markers of stress and injury far exceeds what is achievable with conventional flow cytometry. We recently developed a method that applies CyTOF (Cytometry by Time-Of-Flight mass spectrometry) to high-dimensional analysis of individual human synaptosomes, overcoming many of the multiplexing limitations of conventional flow cytometry. We call this new method Mass Synaptometry. Here we describe the preparation of synaptosomes from human and mouse brain, the generation and quality control of the "SynTOF" (Synapse by Time-Of-Flight mass spectrometry) antibody panel, the staining protocol, and CyTOF parameter setup for acquisition, post-acquisition processing, and analysis.
Collapse
Affiliation(s)
- Chandresh R. Gajera
- Department of Pathology, Stanford University Medical Center, Stanford, CA, United States
| | - Rosemary Fernandez
- Department of Pathology, Stanford University Medical Center, Stanford, CA, United States
| | - Nadia Postupna
- Department of Pathology, University of Washington, Seattle, WA, United States
| | - Kathleen S. Montine
- Department of Pathology, Stanford University Medical Center, Stanford, CA, United States
| | - C. Dirk Keene
- Department of Pathology, University of Washington, Seattle, WA, United States
| | - Sean C. Bendall
- Department of Pathology, Stanford University Medical Center, Stanford, CA, United States
| | - Thomas J. Montine
- Department of Pathology, Stanford University Medical Center, Stanford, CA, United States
| |
Collapse
|
26
|
Pathophysiology of neurodegenerative diseases: An interplay among axonal transport failure, oxidative stress, and inflammation? Semin Immunol 2022; 59:101628. [PMID: 35779975 PMCID: PMC9807734 DOI: 10.1016/j.smim.2022.101628] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/09/2022] [Accepted: 06/13/2022] [Indexed: 01/15/2023]
Abstract
Neurodegenerative diseases (NDs) are heterogeneous neurological disorders characterized by a progressive loss of selected neuronal populations. A significant risk factor for most NDs is aging. Considering the constant increase in life expectancy, NDs represent a global public health burden. Axonal transport (AT) is a central cellular process underlying the generation and maintenance of neuronal architecture and connectivity. Deficits in AT appear to be a common thread for most, if not all, NDs. Neuroinflammation has been notoriously difficult to define in relation to NDs. Inflammation is a complex multifactorial process in the CNS, which varies depending on the disease stage. Several lines of evidence suggest that AT defect, axonopathy and neuroinflammation are tightly interlaced. However, whether these impairments play a causative role in NDs or are merely a downstream effect of neuronal degeneration remains unsettled. We still lack reliable information on the temporal relationship between these pathogenic mechanisms, although several findings suggest that they may occur early during ND pathophysiology. This article will review the latest evidence emerging on whether the interplay between AT perturbations and some aspects of CNS inflammation can participate in ND etiology, analyze their potential as therapeutic targets, and the urge to identify early surrogate biomarkers.
Collapse
|
27
|
Maset A, Albanesi M, di Soccio A, Canova M, dal Maschio M, Lodovichi C. Aberrant Patterns of Sensory-Evoked Activity in the Olfactory Bulb of LRRK2 Knockout Mice. Cells 2021; 10:3212. [PMID: 34831434 PMCID: PMC8622670 DOI: 10.3390/cells10113212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 12/13/2022] Open
Abstract
The LRRK2 gene is the major genetic determinant of familiar Parkinson's disease (PD). Leucine-rich repeat kinase 2 (LRRK2) is a multidomain protein involved in several intracellular signaling pathways. A wealth of evidence indicates that LRRK2 is enriched at the presynaptic compartment where it regulates vesicle trafficking and neurotransmitter release. However, whether the role of LRRK2 affects neuronal networks dynamic at systems level remains unknown. Addressing this question is critical to unravel the impact of LRRK2 on brain function. Here, combining behavioral tests, electrophysiological recordings, and functional imaging, we investigated neuronal network dynamics, in vivo, in the olfactory bulb of mice carrying a null mutation in LRRK2 gene (LRRK2 knockout, LRRK2 KO, mice). We found that LRRK2 KO mice exhibit olfactory behavioral deficits. At the circuit level, the lack of LRRK2 expression results in altered gamma rhythms and odorant-evoked activity with significant impairments, while the spontaneous activity exhibited limited alterations. Overall, our data in the olfactory bulb suggest that the multifaced role of LRRK2 has a strong impact at system level when the network is engaged in active sensory processing.
Collapse
Affiliation(s)
- Andrea Maset
- Veneto Institute of Molecular Medicine, Via Orus 2, 35129 Padova, Italy; (A.M.); (M.A.); (A.d.S.)
- Padova Neuroscience Center (PNC), Università degli Studi di Padova Via Orus 2, 35129 Padova, Italy; (M.C.); (M.d.M.)
| | - Marco Albanesi
- Veneto Institute of Molecular Medicine, Via Orus 2, 35129 Padova, Italy; (A.M.); (M.A.); (A.d.S.)
- Padova Neuroscience Center (PNC), Università degli Studi di Padova Via Orus 2, 35129 Padova, Italy; (M.C.); (M.d.M.)
| | - Antonio di Soccio
- Veneto Institute of Molecular Medicine, Via Orus 2, 35129 Padova, Italy; (A.M.); (M.A.); (A.d.S.)
- Padova Neuroscience Center (PNC), Università degli Studi di Padova Via Orus 2, 35129 Padova, Italy; (M.C.); (M.d.M.)
| | - Martina Canova
- Padova Neuroscience Center (PNC), Università degli Studi di Padova Via Orus 2, 35129 Padova, Italy; (M.C.); (M.d.M.)
| | - Marco dal Maschio
- Padova Neuroscience Center (PNC), Università degli Studi di Padova Via Orus 2, 35129 Padova, Italy; (M.C.); (M.d.M.)
- Department of Biomedical Sciences-UNIPD, Università degli Studi di Padova, Via U. Bassi 58B, 35121 Padova, Italy
| | - Claudia Lodovichi
- Veneto Institute of Molecular Medicine, Via Orus 2, 35129 Padova, Italy; (A.M.); (M.A.); (A.d.S.)
- Padova Neuroscience Center (PNC), Università degli Studi di Padova Via Orus 2, 35129 Padova, Italy; (M.C.); (M.d.M.)
- Institute of Neuroscience-CNR, Viale G. Colombo 3, 35121 Padova, Italy
| |
Collapse
|
28
|
Memon AA, Bagley ME, Creed RB, Amara AW, Goldberg MS, McMahon LL. Basal Synaptic Transmission and Long-Term Plasticity at CA3-CA1 Synapses Are Unaffected in Young Adult PINK1-Deficient Rats. Front Neurosci 2021; 15:655901. [PMID: 34483814 PMCID: PMC8414523 DOI: 10.3389/fnins.2021.655901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 06/07/2021] [Indexed: 11/16/2022] Open
Abstract
Loss of function mutations in PARK6, the gene that encodes the protein PTEN-induced kinase 1 (PINK1), cause autosomal recessive familial Parkinson’s disease (PD). While PD is clinically diagnosed by its motor symptoms, recent studies point to the impact of non-motor symptoms, including cognitive dysfunction in the early pre-motor stages of the disease (Aarsland et al., 2004; Chaudhuri and Schapira, 2009). As the hippocampus is a key structure for learning and memory, this study aimed to determine whether synaptic transmission is affected at CA3-CA1 excitatory synapses in PINK1 knockout rats at an age when we recently reported a gain of function at excitatory synapses onto spiny projection neurons in the dorsal striatum (Creed et al., 2020) and when motor symptoms are beginning to appear (Dave et al., 2014). Using extracellular dendritic field excitatory postsynaptic potential recordings at CA3-CA1 synapses in dorsal hippocampus 4-to 5- month old PINK1 KO rats and wild-type littermate controls, we observed no detectable differences in the strength of basal synaptic transmission, paired-pulse facilitation, or long-term potentiation. Our results suggest that loss of PINK1 protein does not cause a general dysfunction of excitatory transmission throughout the brain at this young adult age when excitatory transmission is abnormal in the striatum.
Collapse
Affiliation(s)
- Adeel A Memon
- Department of Neurology, The University of Alabama at Birmingham, Birmingham, AL, United States.,Department of Neuroengineering, School of Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States.,Center for Neurodegeneration and Experimental Therapeutics, The University of Alabama at Birmingham, Birmingham, AL, United States.,Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Micah E Bagley
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Rose B Creed
- Department of Neurology, The University of Alabama at Birmingham, Birmingham, AL, United States.,Center for Neurodegeneration and Experimental Therapeutics, The University of Alabama at Birmingham, Birmingham, AL, United States.,Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Amy W Amara
- Department of Neurology, The University of Alabama at Birmingham, Birmingham, AL, United States.,Center for Neurodegeneration and Experimental Therapeutics, The University of Alabama at Birmingham, Birmingham, AL, United States.,Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Matthew S Goldberg
- Department of Neurology, The University of Alabama at Birmingham, Birmingham, AL, United States.,Center for Neurodegeneration and Experimental Therapeutics, The University of Alabama at Birmingham, Birmingham, AL, United States.,Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Lori L McMahon
- Department of Neurology, The University of Alabama at Birmingham, Birmingham, AL, United States.,Center for Neurodegeneration and Experimental Therapeutics, The University of Alabama at Birmingham, Birmingham, AL, United States.,Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, United States.,Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
29
|
Tsouki F, Williams A. Multifaceted involvement of microglia in gray matter pathology in multiple sclerosis. Stem Cells 2021; 39:993-1007. [PMID: 33754376 DOI: 10.1002/stem.3374] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
In the inflammatory demyelinating neurodegenerative disease multiple sclerosis (MS), there is increasing interest in gray matter pathology, as neuronal loss and cortical atrophy correlate with disability and disease progression, and MS therapeutics fail to significantly slow or stop neurodegeneration. Microglia, the central nervous system (CNS)-resident macrophages, are extensively involved in white matter MS pathology, but are also implicated in gray matter pathology, similar to other neurodegenerative diseases, for which there is synaptic, axonal, and neuronal degeneration. Microglia display regional heterogeneity within the CNS, which reflects their highly plastic nature and their ability to deliver context-dependent responses tailored to the demands of their microenvironment. Therefore, microglial roles in the MS gray matter in part reflect and in part diverge from those in the white matter. The present review summarizes current knowledge of microglial involvement in gray matter changes in MS, in demyelination, synaptic damage, and neurodegeneration, with evidence implicating microglia in pathology, neuroprotection, and repair. As our understanding of microglial physiology and pathophysiology increases, we describe how we are moving toward potential therapeutic applications in MS, harnessing microglia to protect and regenerate the CNS.
Collapse
Affiliation(s)
- Foteini Tsouki
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh, UK
| | - Anna Williams
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh, UK
| |
Collapse
|
30
|
Mechanistic roles for altered O-GlcNAcylation in neurodegenerative disorders. Biochem J 2021; 478:2733-2758. [PMID: 34297044 DOI: 10.1042/bcj20200609] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 01/02/2023]
Abstract
Neurodegenerative diseases such as Alzheimer's and Parkinson's remain highly prevalent and incurable disorders. A major challenge in fully understanding and combating the progression of these diseases is the complexity of the network of processes that lead to progressive neuronal dysfunction and death. An ideal therapeutic avenue is conceivably one that could address many if not all of these multiple misregulated mechanisms. Over the years, chemical intervention for the up-regulation of the endogenous posttranslational modification (PTM) O-GlcNAc has been proposed as a potential strategy to slow down the progression of neurodegeneration. Through the development and application of tools that allow dissection of the mechanistic roles of this PTM, there is now a growing body of evidence that O-GlcNAc influences a variety of important neurodegeneration-pertinent mechanisms, with an overall protective effect. As a PTM that is appended onto numerous proteins that participate in protein quality control and homeostasis, metabolism, bioenergetics, neuronal communication, inflammation, and programmed death, O-GlcNAc has demonstrated beneficence in animal models of neurodegenerative diseases, and its up-regulation is now being pursued in multiple clinical studies.
Collapse
|
31
|
Nishimura AL, Arias N. Synaptopathy Mechanisms in ALS Caused by C9orf72 Repeat Expansion. Front Cell Neurosci 2021; 15:660693. [PMID: 34140881 PMCID: PMC8203826 DOI: 10.3389/fncel.2021.660693] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/03/2021] [Indexed: 12/14/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a complex neurodegenerative disease caused by degeneration of motor neurons (MNs). ALS pathogenic features include accumulation of misfolded proteins, glutamate excitotoxicity, mitochondrial dysfunction at distal axon terminals, and neuronal cytoskeleton changes. Synergies between loss of C9orf72 functions and gain of function by toxic effects of repeat expansions also contribute to C9orf72-mediated pathogenesis. However, the impact of haploinsufficiency of C9orf72 on neurons and in synaptic functions requires further examination. As the motor neurons degenerate, the disease symptoms will lead to neurotransmission deficiencies in the brain, spinal cord, and neuromuscular junction. Altered neuronal excitability, synaptic morphological changes, and C9orf72 protein and DPR localization at the synapses, suggest a potential involvement of C9orf72 at synapses. In this review article, we provide a conceptual framework for assessing the putative involvement of C9orf72 as a synaptopathy, and we explore the underlying and common disease mechanisms with other neurodegenerative diseases. Finally, we reflect on the major challenges of understanding C9orf72-ALS as a synaptopathy focusing on integrating mitochondrial and neuronal cytoskeleton degeneration as biomarkers and potential targets to treat ALS neurodegeneration.
Collapse
Affiliation(s)
- Agnes L Nishimura
- Department of Basic and Clinical Neuroscience, UK Dementia Research Institute, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Natalia Arias
- Department of Basic and Clinical Neuroscience, UK Dementia Research Institute, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,INEUROPA, Instituto de Neurociencias del Principado de Asturias, Oviedo, Spain
| |
Collapse
|
32
|
Lopes CR, Cunha RA, Agostinho P. Astrocytes and Adenosine A 2A Receptors: Active Players in Alzheimer's Disease. Front Neurosci 2021; 15:666710. [PMID: 34054416 PMCID: PMC8155589 DOI: 10.3389/fnins.2021.666710] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/23/2021] [Indexed: 12/17/2022] Open
Abstract
Astrocytes, through their numerous processes, establish a bidirectional communication with neurons that is crucial to regulate synaptic plasticity, the purported neurophysiological basis of memory. This evidence contributed to change the classic “neurocentric” view of Alzheimer’s disease (AD), being astrocytes increasingly considered a key player in this neurodegenerative disease. AD, the most common form of dementia in the elderly, is characterized by a deterioration of memory and of other cognitive functions. Although, early cognitive deficits have been associated with synaptic loss and dysfunction caused by amyloid-β peptides (Aβ), accumulating evidences support a role of astrocytes in AD. Astrocyte atrophy and reactivity occurring at early and later stages of AD, respectively, involve morphological alterations that translate into functional changes. However, the main signals responsible for astrocytic alterations in AD and their impact on synaptic function remain to be defined. One possible candidate is adenosine, which can be formed upon extracellular catabolism of ATP released by astrocytes. Adenosine can act as a homeostatic modulator and also as a neuromodulator at the synaptic level, through the activation of adenosine receptors, mainly of A1R and A2AR subtypes. These receptors are also present in astrocytes, being particularly relevant in pathological conditions, to control the morphofunctional responses of astrocytes. Here, we will focus on the role of A2AR, since they are particularly associated with neurodegeneration and also with memory processes. Furthermore, A2AR levels are increased in the AD brain, namely in astrocytes where they can control key astrocytic functions. Thus, unveiling the role of A2AR in astrocytes function might shed light on novel therapeutic strategies for AD.
Collapse
Affiliation(s)
- Cátia R Lopes
- Center for Neuroscience and Cell Biology, Coimbra, Portugal
| | - Rodrigo A Cunha
- Center for Neuroscience and Cell Biology, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Paula Agostinho
- Center for Neuroscience and Cell Biology, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
33
|
Martinez NW, Gómez FE, Matus S. The Potential Role of Protein Kinase R as a Regulator of Age-Related Neurodegeneration. Front Aging Neurosci 2021; 13:638208. [PMID: 33994991 PMCID: PMC8113420 DOI: 10.3389/fnagi.2021.638208] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 03/10/2021] [Indexed: 01/25/2023] Open
Abstract
There is a growing evidence describing a decline in adaptive homeostasis in aging-related diseases affecting the central nervous system (CNS), many of which are characterized by the appearance of non-native protein aggregates. One signaling pathway that allows cell adaptation is the integrated stress response (ISR), which senses stress stimuli through four kinases. ISR activation promotes translational arrest through the phosphorylation of the eukaryotic translation initiation factor 2 alpha (eIF2α) and the induction of a gene expression program to restore cellular homeostasis. However, depending on the stimulus, ISR can also induce cell death. One of the ISR sensors is the double-stranded RNA-dependent protein kinase [protein kinase R (PKR)], initially described as a viral infection sensor, and now a growing evidence supports a role for PKR on CNS physiology. PKR has been largely involved in the Alzheimer’s disease (AD) pathological process. Here, we reviewed the antecedents supporting the role of PKR on the efficiency of synaptic transmission and cognition. Then, we review PKR’s contribution to AD and discuss the possible participation of PKR as a player in the neurodegenerative process involved in aging-related pathologies affecting the CNS.
Collapse
Affiliation(s)
- Nicolás W Martinez
- Fundación Ciencia & Vida, Santiago, Chile.,Departamento de Ciencias Básicas, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.,Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile.,Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | | | - Soledad Matus
- Fundación Ciencia & Vida, Santiago, Chile.,Departamento de Ciencias Básicas, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.,Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile.,Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| |
Collapse
|
34
|
Neurobehavioral, neurochemical and synaptic plasticity perturbations during postnatal life of rats exposed to chloroquine in-utero. Neurotoxicol Teratol 2021; 86:106982. [PMID: 33845156 DOI: 10.1016/j.ntt.2021.106982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 02/26/2021] [Accepted: 04/06/2021] [Indexed: 11/23/2022]
Abstract
Despite reports that quinoline antimalarials including chloroquine (Chq) exhibit idiosyncratic neuropsychiatric effects even at low doses, the drug continues to be in widespread use during pregnancy. Surprisingly, very few studies have examined the potential neurotoxic action of Chq exposure at different points of gestation or how this phenomenon may affect neurophysiological well-being in later life. We therefore studied behavior, and the expression of specific genes and neurochemicals modulating crucial neural processes in offspring of rats exposed to prophylactic dose of Chq during different stages of gestation. Pregnant rats were injected 5 mg/kg/day (3 times) of Chq either during early- (first week), mid- (second week), late- (third week), or throughout- (all weeks) gestation, while controls received PBS injection. Behavioral characterization of offspring between postnatal days 15-20 in the open field, Y-maze, elevated plus and elevated zero mazes revealed that Chq evoked anxiogenic responses and perturbed spatial memory in rats, although locomotor activity was generally unaltered. In the prefrontal cortex (PFC), hippocampus and cerebellum of rats prenatally exposed to Chq, RT-qPCR analysis revealed decreased mRNA expression of presynaptic marker synaptophysin, which was accompanied by downregulation of postsynaptic marker PSD95. Synaptic marker PICK1 expression was also downregulated in the hippocampus but was unperturbed in the PFC and cerebellum. In addition to recorded SOD downregulation in cortical and hippocampal lysates, induction of oxidative stress in rats prenatally exposed to Chq was corroborated by lipid peroxidation as evinced by increased MDA levels. Offspring of rats infused with Chq at mid-gestation and weekly treatment throughout gestation were particularly susceptible to neurotoxic changes, especially in the hippocampus. Interestingly, Chq did not cause histopathological changes in any of the brain areas. Taken together, our findings causally link intrauterine exposure to Chq with postnatal behavioral impairment and neurotoxic changes in rats.
Collapse
|
35
|
Microglial Pruning: Relevance for Synaptic Dysfunction in Multiple Sclerosis and Related Experimental Models. Cells 2021; 10:cells10030686. [PMID: 33804596 PMCID: PMC8003660 DOI: 10.3390/cells10030686] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/12/2021] [Accepted: 03/17/2021] [Indexed: 12/11/2022] Open
Abstract
Microglia, besides being able to react rapidly to a wide range of environmental changes, are also involved in shaping neuronal wiring. Indeed, they actively participate in the modulation of neuronal function by regulating the elimination (or “pruning”) of weaker synapses in both physiologic and pathologic processes. Mounting evidence supports their crucial role in early synaptic loss, which is emerging as a hallmark of several neurodegenerative diseases, including multiple sclerosis (MS) and its preclinical models. MS is an inflammatory, immune-mediated pathology of the white matter in which demyelinating lesions may cause secondary neuronal death. Nevertheless, primitive grey matter (GM) damage is emerging as an important contributor to patients’ long-term disability, since it has been associated with early and progressive cognitive decline (CD), which seriously worsens the quality of life of MS patients. Widespread synapse loss even in the absence of demyelination, axon degeneration and neuronal death has been demonstrated in different GM structures, thus raising the possibility that synaptic dysfunction could be an early and possibly independent event in the neurodegenerative process associated with MS. This review provides an overview of microglial-dependent synapse elimination in the neuroinflammatory process that underlies MS and its experimental models.
Collapse
|
36
|
Synaptic density in healthy human aging is not influenced by age or sex: a 11C-UCB-J PET study. Neuroimage 2021; 232:117877. [PMID: 33639258 DOI: 10.1016/j.neuroimage.2021.117877] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 01/29/2021] [Accepted: 02/12/2021] [Indexed: 12/29/2022] Open
Abstract
RATIONALE 11C-UCB-J binds to synaptic vesicle glycoprotein 2A, a protein ubiquitously expressed in presynaptic nerve terminals, and can therefore serve as in vivo proxy of synaptic density. There are discrepancies in postmortem data on stability of synaptic density with healthy aging. In this study, healthy aging and sex as potential modifiers of 11C-UCB-J binding were investigated in healthy volunteers over 7 adult decades, assuming that the number of SV2A vesicles per synapse is not influenced by age or sex. METHODS 80 healthy volunteers underwent 11C-UCB-J PET and structural T1 and T2 MR imaging. Grey matter changes with aging were firstly evaluated by voxel-based morphometry (VBM). Parametric 11C-UCB-J standardized uptake value ratio (SUVR) images were calculated using the centrum semiovale as reference tissue. To correct for atrophy-related partial volume effects, a region-based voxel-wise type partial volume correction (PVC) was applied in FreeSurfer. The correlations of 11C-UCB-J binding with age and with sex were investigated by a voxel-based and volume-of-interest (VOI)-based approach, and with and without PVC to assess the contribution of underlying morphology changes upon aging. RESULTS Full results were available for 78 participants (19-85y; 33 M/45 F). VBM grey matter concentration changes with aging were most predominant in the perisylvian and frontal regions. After PVC, no significantly decreased 11C-UCB-J SUVR with aging was found in the voxel-based analysis, whereas the VOI-based analysis showed a slight decrease in the caudate nucleus (-1.7% decrease per decade, p= 0.0025) only. There was no association between sex and 11C-UCB-J SUVR, nor an interaction between aging and sex for this parameter. CONCLUSION In vivo, PET using 11C-UCB-J does not support a cortical decrease of synaptic density with aging, whereas subcortically a small effect with aging in the caudate nucleus was observed. In addition, no association between synaptic density and sex was detected, which allows pooling of datasets of both sexes.
Collapse
|
37
|
Jauhari A, Baranov SV, Suofu Y, Kim J, Singh T, Yablonska S, Li F, Wang X, Oberly P, Minnigh MB, Poloyac SM, Carlisle DL, Friedlander RM. Melatonin inhibits cytosolic mitochondrial DNA-induced neuroinflammatory signaling in accelerated aging and neurodegeneration. J Clin Invest 2021; 130:3124-3136. [PMID: 32182222 DOI: 10.1172/jci135026] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/05/2020] [Indexed: 12/19/2022] Open
Abstract
Chronic inflammation is a pathologic feature of neurodegeneration and aging; however, the mechanism regulating this process is not understood. Melatonin, an endogenous free radical scavenger synthesized by neuronal mitochondria, decreases with aging and neurodegeneration. We proposed that insufficient melatonin levels impair mitochondrial homeostasis, resulting in mitochondrial DNA (mtDNA) release and activation of cytosolic DNA-mediated inflammatory response in neurons. We found increased mitochondrial oxidative stress and decreased mitochondrial membrane potential, with higher mtDNA release in brain and primary cerebro-cortical neurons of melatonin-deficient aralkylamine N-acetyltransferase (AANAT) knockout mice. Cytosolic mtDNA activated the cGAS/STING/IRF3 pathway, stimulating inflammatory cytokine generation. We found that Huntington's disease mice had increased mtDNA release, cGAS activation, and inflammation, all inhibited by exogenous melatonin. Thus, we demonstrated that cytosolic mtDNA activated the inflammatory response in aging and neurodegeneration, a process modulated by melatonin. Furthermore, our data suggest that AANAT knockout mice are a model of accelerated aging.
Collapse
Affiliation(s)
| | | | | | - Jinho Kim
- Department of Neurological Surgery and
| | | | | | - Fang Li
- Department of Neurological Surgery and
| | | | - Patrick Oberly
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - M Beth Minnigh
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Samuel M Poloyac
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | |
Collapse
|
38
|
Chen F, Chen H, Chen Y, Wei W, Sun Y, Zhang L, Cui L, Wang Y. Dysfunction of the SNARE complex in neurological and psychiatric disorders. Pharmacol Res 2021; 165:105469. [PMID: 33524541 DOI: 10.1016/j.phrs.2021.105469] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/30/2020] [Accepted: 01/24/2021] [Indexed: 02/07/2023]
Abstract
The communication between neurons constitutes the basis of all neural activities, and synaptic vesicle exocytosis is the fundamental biological event that mediates most communication between neurons in the central nervous system. The SNARE complex is the core component of the protein machinery that facilitates the fusion of synaptic vesicles with presynaptic terminals and thereby the release of neurotransmitters. In synapses, each release event is dependent on the assembly of the SNARE complex. In recent years, basic research on the SNARE complex has provided a clearer understanding of the mechanism underlying the formation of the SNARE complex and its role in vesicle formation. Emerging evidence indicates that abnormal expression or dysfunction of the SNARE complex in synapse physiology might contribute to abnormal neurotransmission and ultimately to synaptic dysfunction. Clinical research using postmortem tissues suggests that SNARE complex dysfunction is correlated with various neurological diseases, and some basic research has also confirmed the important role of the SNARE complex in the pathology of these diseases. Genetic and pharmacogenetic studies suggest that the SNARE complex and individual proteins might represent important molecular targets in neurological disease. In this review, we summarize the recent progress toward understanding the SNARE complex in regulating membrane fusion events and provide an update of the recent discoveries from clinical and basic research on the SNARE complex in neurodegenerative, neuropsychiatric, and neurodevelopmental diseases.
Collapse
Affiliation(s)
- Feng Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Huiyi Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yanting Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Wenyan Wei
- Department of Gerontology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yuanhong Sun
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Lu Zhang
- The First Clinical College, Guangdong Medical University, Zhanjiang, China
| | - Lili Cui
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
| | - Yan Wang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China; Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiao tong University, Xi'an, China.
| |
Collapse
|
39
|
de Jongh R, Spijkers XM, Pasteuning-Vuhman S, Vulto P, Pasterkamp RJ. Neuromuscular junction-on-a-chip: ALS disease modeling and read-out development in microfluidic devices. J Neurochem 2021; 157:393-412. [PMID: 33382092 DOI: 10.1111/jnc.15289] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 12/24/2020] [Accepted: 12/28/2020] [Indexed: 12/21/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal and progressive neurodegenerative disease affecting upper and lower motor neurons with no cure available. Clinical and animal studies reveal that the neuromuscular junction (NMJ), a synaptic connection between motor neurons and skeletal muscle fibers, is highly vulnerable in ALS and suggest that NMJ defects may occur at the early stages of the disease. However, mechanistic insight into how NMJ dysfunction relates to the onset and progression of ALS is incomplete, which hampers therapy development. This is, in part, caused by a lack of robust in vitro models. The ability to combine microfluidic and induced pluripotent stem cell (iPSC) technologies has opened up new avenues for studying molecular and cellular ALS phenotypes in vitro. Microfluidic devices offer several advantages over traditional culture approaches when modeling the NMJ, such as the spatial separation of different cell types and increased control over the cellular microenvironment. Moreover, they are compatible with 3D cell culture, which enhances NMJ functionality and maturity. Here, we review how microfluidic technology is currently being employed to develop more reliable in vitro NMJ models. To validate and phenotype such models, various morphological and functional read-outs have been developed. We describe and discuss the relevance of these read-outs and specifically illustrate how these read-outs have enhanced our understanding of NMJ pathology in ALS. Finally, we share our view on potential future directions and challenges.
Collapse
Affiliation(s)
- Rianne de Jongh
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Xandor M Spijkers
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands.,Mimetas B.V., Organ-on-a-chip Company, Leiden, The Netherlands
| | - Svetlana Pasteuning-Vuhman
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Paul Vulto
- Mimetas B.V., Organ-on-a-chip Company, Leiden, The Netherlands
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
40
|
Van Hook MJ, Monaco C, Bierlein ER, Smith JC. Neuronal and Synaptic Plasticity in the Visual Thalamus in Mouse Models of Glaucoma. Front Cell Neurosci 2021; 14:626056. [PMID: 33584206 PMCID: PMC7873902 DOI: 10.3389/fncel.2020.626056] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 12/21/2020] [Indexed: 11/20/2022] Open
Abstract
Homeostatic plasticity plays important role in regulating synaptic and intrinsic neuronal function to stabilize output following perturbations to circuit activity. In glaucoma, a neurodegenerative disease of the visual system commonly associated with elevated intraocular pressure (IOP), the early disease is associated with altered synaptic inputs to retinal ganglion cells (RGCs), changes in RGC intrinsic excitability, and deficits in optic nerve transport and energy metabolism. These early functional changes can precede RGC degeneration and are likely to alter RGC outputs to their target structures in the brain and thereby trigger homeostatic changes in synaptic and neuronal properties in those brain regions. In this study, we sought to determine whether and how neuronal and synaptic function is altered in the dorsal lateral geniculate nucleus (dLGN), an important RGC projection target in the thalamus, and how functional changes related to IOP. We accomplished this using patch-clamp recordings from thalamocortical (TC) relay neurons in the dLGN in two established mouse models of glaucoma—the DBA/2J (D2) genetic mouse model and an inducible glaucoma model with intracameral microbead injections to elevate IOP. We found that the intrinsic excitability of TC neurons was enhanced in D2 mice and these functional changes were mirrored in recordings of TC neurons from microbead-injected mice. Notably, many neuronal properties were correlated with IOP in older D2 mice, when IOP rises. The frequency of miniature excitatory synaptic currents (mEPSCs) was reduced in 9-month-old D2 mice, and vGlut2 staining of RGC synaptic terminals was reduced in an IOP-dependent manner. These data suggest that glaucoma-associated changes to neuronal excitability and synaptic inputs in the dLGN might represent a combination of both stabilizing/homeostatic plasticity and pathological dysfunction.
Collapse
Affiliation(s)
- Matthew J Van Hook
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE, United States.,Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Corrine Monaco
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States.,Department of Obstetrics and Gynecology, Olson Center for Women's Health, University of Nebraska Medical Center, Omaha, NE, United States
| | - Elizabeth R Bierlein
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE, United States.,Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Jennie C Smith
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
41
|
Saal KA, Warth Pérez Arias C, Roser AE, Christoph Koch J, Bähr M, Rizzoli SO, Lingor P. Rho-kinase inhibition by fasudil modulates pre-synaptic vesicle dynamics. J Neurochem 2021; 157:1052-1068. [PMID: 33341946 DOI: 10.1111/jnc.15274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 11/18/2020] [Accepted: 12/13/2020] [Indexed: 11/30/2022]
Abstract
The Rho kinase (ROCK) signaling pathway is an attractive therapeutic target in neurodegeneration since it has been linked to the prevention of neuronal death and neurite regeneration. The isoquinoline derivative fasudil is a potent ROCK inhibitor, which is already approved for chronic clinical treatment in humans. However, the effects of chronic fasudil treatments on neuronal function are still unknown. We analyzed here chronic fasudil treatment in primary rat hippocampal cultures. Neurons were stimulated with 20 Hz field stimulation and we investigated pre-synaptic mechanisms and parameters regulating synaptic transmission after fasudil treatment by super resolution stimulated emission depletion (STED) microscopy, live-cell fluorescence imaging, and western blotting. Fasudil did not affect basic synaptic function or the amount of several synaptic proteins, but it altered the chronic dynamics of the synaptic vesicles. Fasudil reduced the proportion of the actively recycling vesicles, and shortened the vesicle lifetime, resulting overall in a reduction of the synaptic response upon stimulation. We conclude that fasudil does not alter synaptic structure, accelerates vesicle turnover, and decreases the number of released vesicles. This broadens the known spectrum of effects of this drug, and suggests new potential clinical uses.
Collapse
Affiliation(s)
- Kim Ann Saal
- Department of Neurophysiology, University Medical Center Göttingen, Göttingen, Germany.,Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Carmina Warth Pérez Arias
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany.,DFG Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Anna-Elisa Roser
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration (BIN), Göttingen, Germany
| | - Jan Christoph Koch
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Mathias Bähr
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration (BIN), Göttingen, Germany
| | - Silvio O Rizzoli
- Department of Neurophysiology, University Medical Center Göttingen, Göttingen, Germany.,DFG Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Paul Lingor
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany.,DFG Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration (BIN), Göttingen, Germany.,Department of Neurology, Rechts der Isar Hospital of the Technical University Munich, Munich, Germany
| |
Collapse
|
42
|
Regional Brain Recovery from Acute Synaptic Injury in Simian Immunodeficiency Virus-Infected Rhesus Macaques Associates with Heme Oxygenase Isoform Expression. J Virol 2020; 94:JVI.01102-20. [PMID: 32669339 PMCID: PMC7495379 DOI: 10.1128/jvi.01102-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/10/2020] [Indexed: 12/21/2022] Open
Abstract
Brain injury induced by acute simian (or human) immunodeficiency virus infection may persist or spontaneously resolve in different brain regions. Identifying the host factor(s) that promotes spontaneous recovery from such injury may reveal targets for therapeutic drug strategies for promoting recovery from acute neuronal injury. The gradual recovery from such injury observed in many, but not all, brain regions in the rhesus macaque model is consistent with the possible existence of a therapeutic window of opportunity for intervening to promote recovery, even in those regions not showing spontaneous recovery. In persons living with human immunodeficiency virus infection, such neuroprotective treatments could ultimately be considered as adjuncts to the initiation of antiretroviral drug therapy. Brain injury occurs within days in simian immunodeficiency virus (SIV) or human immunodeficiency virus (HIV) infection, and some recovery may occur within weeks. Inflammation and oxidative stress associate with such injury, but what drives recovery is unknown. Chronic HIV infection associates with reduced brain frontal cortex expression of the antioxidant/anti-inflammatory enzyme heme oxygenase-1 (HO-1) and increased neuroinflammation in individuals with cognitive impairment. We hypothesized that acute regional brain injury and recovery associate with differences in regional brain HO-1 expression. Using SIV-infected rhesus macaques, we analyzed multiple brain regions through acute and chronic infection (90 days postinfection [dpi]) and quantified viral (SIV gag RNA), synaptic (PSD-95; synaptophysin), axonal (neurofilament/neurofilament light chain [NFL]), inflammatory, and antioxidant (enzymes, including heme oxygenase isoforms [HO-1, HO-2]) markers. PSD-95 was reduced in the brainstem, basal ganglia, neocortex, and cerebellum within 13 dpi, indicating acute synaptic injury throughout the brain. All areas except the brainstem recovered. Unchanged NFL was consistent with no acute axonal injury. SIV RNA expression was highest in the brainstem throughout infection, and it associated with neuroinflammation. Surprisingly, during the synaptic injury and recovery phases, HO-2, and not HO-1, progressively decreased in the brainstem. Thus, acute SIV synaptic injury occurs throughout the brain, with spontaneous recovery in regions other than the brainstem. Within the brainstem, the high SIV load and inflammation, along with reduction of HO-2, may impair recovery. In other brain regions, stable HO-2 expression, with or without increasing HO-1, may promote recovery. Our data support roles for heme oxygenase isoforms in modulating recovery from synaptic injury in SIV infection and suggest their therapeutic targeting for promoting neuronal recovery. IMPORTANCE Brain injury induced by acute simian (or human) immunodeficiency virus infection may persist or spontaneously resolve in different brain regions. Identifying the host factor(s) that promotes spontaneous recovery from such injury may reveal targets for therapeutic drug strategies for promoting recovery from acute neuronal injury. The gradual recovery from such injury observed in many, but not all, brain regions in the rhesus macaque model is consistent with the possible existence of a therapeutic window of opportunity for intervening to promote recovery, even in those regions not showing spontaneous recovery. In persons living with human immunodeficiency virus infection, such neuroprotective treatments could ultimately be considered as adjuncts to the initiation of antiretroviral drug therapy.
Collapse
|
43
|
Santana E, de los Reyes T, Casas-Tintó S. Small heat shock proteins determine synapse number and neuronal activity during development. PLoS One 2020; 15:e0233231. [PMID: 32437379 PMCID: PMC7241713 DOI: 10.1371/journal.pone.0233231] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/30/2020] [Indexed: 01/31/2023] Open
Abstract
Environmental changes cause stress, Reactive Oxygen Species and unfolded protein accumulation which hamper synaptic activity and trigger cell death. Heat shock proteins (HSPs) assist protein refolding to maintain proteostasis and cellular integrity. Mechanisms regulating the activity of HSPs include transcription factors and posttranslational modifications that ensure a rapid response. HSPs preserve synaptic function in the nervous system upon environmental insults or pathological factors and contribute to the coupling between environmental cues and neuron control of development. We have performed a biased screening in Drosophila melanogaster searching for synaptogenic modulators among HSPs during development. We explore the role of two small-HSPs (sHSPs), sHSP23 and sHSP26 in synaptogenesis and neuronal activity. Both sHSPs immunoprecipitate together and the equilibrium between both chaperones is required for neuronal development and activity. The molecular mechanism controlling HSP23 and HSP26 accumulation in neurons relies on a novel gene (CG1561), which we name Pinkman (pkm). We propose that sHSPs and Pkm are targets to modulate the impact of stress in neurons and to prevent synapse loss.
Collapse
|
44
|
Saeidikhoo S, Ezi S, Khatmi A, Aghajanpour F, Soltani R, Abdollahifar MA, Jahanian A, Aliaghaei A. Effect of Sertoli Cell Transplantation on Reducing Neuroinflammation-Induced Necroptosis and Improving Motor Coordination in the Rat Model of Cerebellar Ataxia Induced by 3-Acetylpyridine. J Mol Neurosci 2020; 70:1153-1163. [DOI: 10.1007/s12031-020-01522-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 02/28/2020] [Indexed: 01/16/2023]
|
45
|
Werneburg S, Jung J, Kunjamma RB, Ha SK, Luciano NJ, Willis CM, Gao G, Biscola NP, Havton LA, Crocker SJ, Popko B, Reich DS, Schafer DP. Targeted Complement Inhibition at Synapses Prevents Microglial Synaptic Engulfment and Synapse Loss in Demyelinating Disease. Immunity 2020; 52:167-182.e7. [PMID: 31883839 PMCID: PMC6996144 DOI: 10.1016/j.immuni.2019.12.004] [Citation(s) in RCA: 256] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 10/30/2019] [Accepted: 12/11/2019] [Indexed: 02/07/2023]
Abstract
Multiple sclerosis (MS) is a demyelinating, autoimmune disease of the central nervous system. While work has focused on myelin and axon loss in MS, less is known about mechanisms underlying synaptic changes. Using postmortem human MS tissue, a preclinical nonhuman primate model of MS, and two rodent models of demyelinating disease, we investigated synapse changes in the visual system. Similar to other neurodegenerative diseases, microglial synaptic engulfment and profound synapse loss were observed. In mice, synapse loss occurred independently of local demyelination and neuronal degeneration but coincided with gliosis and increased complement component C3, but not C1q, at synapses. Viral overexpression of the complement inhibitor Crry at C3-bound synapses decreased microglial engulfment of synapses and protected visual function. These results indicate that microglia eliminate synapses through the alternative complement cascade in demyelinating disease and identify a strategy to prevent synapse loss that may be broadly applicable to other neurodegenerative diseases. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Sebastian Werneburg
- Department of Neurobiology, Brudnik Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Jonathan Jung
- Department of Neurobiology, Brudnik Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Rejani B Kunjamma
- Department of Neurology, University of Chicago, Chicago, IL 60637, USA
| | - Seung-Kwon Ha
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicholas J Luciano
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cory M Willis
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT 06032, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA; Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA 01605, USA; Department of Microbiologic and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Natalia P Biscola
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Leif A Havton
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Stephen J Crocker
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT 06032, USA
| | - Brian Popko
- Department of Neurology, University of Chicago, Chicago, IL 60637, USA
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dorothy P Schafer
- Department of Neurobiology, Brudnik Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
46
|
Preparation of Organotypic Hippocampal Slice Cultures for the Study of CNS Disease and Damage. Methods Mol Biol 2020; 2143:133-144. [PMID: 32524477 DOI: 10.1007/978-1-0716-0585-1_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Organotypic hippocampal slice cultures (OHSCs) retain in vivo-like neuronal architecture, synaptic connections, and resident cell populations but gain in vitro advantages of accessibility to experimental manipulation and observation. This chapter describes how to prepare OHSCs from neonatal mice to study mechanisms of neuronal damage, including synapse loss and quantifying Aβ-containing axonal swellings from Alzheimer's disease transgenic mice.
Collapse
|
47
|
Freer R, Sormanni P, Ciryam P, Rammner B, Rizzoli SO, Dobson CM, Vendruscolo M. Supersaturated proteins are enriched at synapses and underlie cell and tissue vulnerability in Alzheimer's disease. Heliyon 2019; 5:e02589. [PMID: 31768427 PMCID: PMC6872855 DOI: 10.1016/j.heliyon.2019.e02589] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/21/2019] [Accepted: 10/02/2019] [Indexed: 11/17/2022] Open
Abstract
Neurodegenerative disorders progress across the brain in characteristic spatio-temporal patterns. A better understanding of the factors underlying the specific cell and tissue vulnerability responsible for such patterns could help identify the molecular origins of these conditions. To investigate these factors, based on the observation that neurodegenerative disorders are closely associated with the presence of aberrant protein deposits, we made the hypothesis that the vulnerability of cells and tissues is associated to the overall levels of supersaturated proteins, which are those most metastable against aggregation. By analyzing single-cell transcriptomic and subcellular proteomics data on healthy brains of ages much younger than those typical of disease onset, we found that the most supersaturated proteins are enriched in cells and tissues that succumb first to neurodegeneration. Then, by focusing the analysis on a metastable subproteome specific to Alzheimer's disease, we show that it is possible to recapitulate the pattern of disease progression using data from healthy brains. We found that this metastable subproteome is significantly enriched for synaptic processes and mitochondrial energy metabolism, thus rendering the synaptic environment dangerous for aggregation. The present identification of protein supersaturation as a signature of cell and tissue vulnerability in neurodegenerative disorders could facilitate the search for effective treatments by providing clearer points of intervention.
Collapse
Affiliation(s)
- Rosie Freer
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Pietro Sormanni
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Prajwal Ciryam
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.,Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA
| | - Burkhard Rammner
- Department of Neuro - and Sensory Physiology, University of Göttingen Medical Center, 37073, Göttingen, Germany
| | - Silvio O Rizzoli
- Department of Neuro - and Sensory Physiology, University of Göttingen Medical Center, 37073, Göttingen, Germany
| | | | | |
Collapse
|
48
|
Stanojlovic M, Pallais JP, Lee MK, Kotz CM. Pharmacological and chemogenetic orexin/hypocretin intervention ameliorates Hipp-dependent memory impairment in the A53T mice model of Parkinson's disease. Mol Brain 2019; 12:87. [PMID: 31666100 PMCID: PMC6822428 DOI: 10.1186/s13041-019-0514-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/18/2019] [Indexed: 01/01/2023] Open
Abstract
Parkinson's disease (PD), classically defined as a progressive motor disorder accompanied with dopaminergic neuron loss and presence of Lewy bodies, is the second most common neurodegenerative disease. PD also has various non-classical symptoms, including cognitive impairments. In addition, inflammation and astrogliosis are recognized as an integral part of PD pathology. The hippocampus (Hipp) is a brain region involved in cognition and memory, and the neuropeptide orexin has been shown to enhance learning and memory. Previous studies show impairments in Hipp-dependent memory in a transgenic mouse model of Parkinson's disease (A53T mice), and we hypothesized that increasing orexin tone will reverse this. To test this, we subjected 3, 5, and 7-month old A53T mice to a Barnes maze and a contextual object recognition test to determine Hipp dependent memory. Inflammation and astrogliosis markers in the Hipp were assessed by immuno-fluorescence densitometry. The data show that early cognitive impairment is coupled with an increase in expression of inflammatory and astrogliosis markers. Next, in two separate experiments, mice were given intra-hippocampal injections of orexin or chemogenetic viral injections of an orexin neuron specific Designer Receptor Exclusively Activated by Designer Drug (DREADD). For the pharmacological approach mice were intracranially treated with orexin A, whereas the chemogenetic approach utilized clozapine N-oxide (CNO). Both pharmacological orexin A intervention as well as chemogenetic activation of orexin neurons ameliorated Hipp-dependent early memory impairment observed in A53T mice. This study implicates orexin in PD-associated cognitive impairment and suggests that exogenous orexin treatment and/or manipulation of endogenous orexin levels may be a potential strategy for addressing early cognitive loss in PD.
Collapse
Affiliation(s)
- Milos Stanojlovic
- Integrative Biology and Physiology, University of Minnesota, 2231 6th St SE, Minneapolis, MN, 55455, USA.
| | - Jean Pierre Pallais
- Integrative Biology and Physiology, University of Minnesota, 2231 6th St SE, Minneapolis, MN, 55455, USA
| | - Michael K Lee
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Institute for Translational Neuroscience (ITN), University of Minnesota, Minneapolis, MN, USA
| | - Catherine M Kotz
- Integrative Biology and Physiology, University of Minnesota, 2231 6th St SE, Minneapolis, MN, 55455, USA
- Minneapolis VA Health Care System, GRECC, Minneapolis, MN, USA
| |
Collapse
|
49
|
Bawari S, Tewari D, Argüelles S, Sah AN, Nabavi SF, Xu S, Vacca RA, Nabavi SM, Shirooie S. Targeting BDNF signaling by natural products: Novel synaptic repair therapeutics for neurodegeneration and behavior disorders. Pharmacol Res 2019; 148:104458. [DOI: 10.1016/j.phrs.2019.104458] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/13/2019] [Accepted: 09/15/2019] [Indexed: 12/12/2022]
|
50
|
Gabrych DR, Lau VZ, Niwa S, Silverman MA. Going Too Far Is the Same as Falling Short †: Kinesin-3 Family Members in Hereditary Spastic Paraplegia. Front Cell Neurosci 2019; 13:419. [PMID: 31616253 PMCID: PMC6775250 DOI: 10.3389/fncel.2019.00419] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/02/2019] [Indexed: 01/18/2023] Open
Abstract
Proper intracellular trafficking is essential for neuronal development and function, and when any aspect of this process is dysregulated, the resulting "transportopathy" causes neurological disorders. Hereditary spastic paraplegias (HSPs) are a family of such diseases attributed to over 80 spastic gait genes (SPG), specifically characterized by lower extremity spasticity and weakness. Multiple genes in the trafficking pathway such as those relating to microtubule structure and function and organelle biogenesis are representative disease loci. Microtubule motor proteins, or kinesins, are also causal in HSP, specifically mutations in Kinesin-I/KIF5A (SPG10) and two kinesin-3 family members; KIF1A (SPG30) and KIF1C (SPG58). KIF1A is a motor enriched in neurons, and involved in the anterograde transport of a variety of vesicles that contribute to pre- and post-synaptic assembly, autophagic processes, and neuron survival. KIF1C is ubiquitously expressed and, in addition to anterograde cargo transport, also functions in retrograde transport between the Golgi and the endoplasmic reticulum. Only a handful of KIF1C cargos have been identified; however, many have crucial roles such as neuronal differentiation, outgrowth, plasticity and survival. HSP-related kinesin-3 mutants are characterized mainly as loss-of-function resulting in deficits in motility, regulation, and cargo binding. Gain-of-function mutants are also seen, and are characterized by increased microtubule-on rates and hypermotility. Both sets of mutations ultimately result in misdelivery of critical cargos within the neuron. This likely leads to deleterious cell biological cascades that likely underlie or contribute to HSP clinical pathology and ultimately, symptomology. Due to the paucity of histopathological or cell biological data assessing perturbations in cargo localization, it has been difficult to positively link these mutations to the outcomes seen in HSPs. Ultimately, the goal of this review is to encourage future academic and clinical efforts to focus on "transportopathies" through a cargo-centric lens.
Collapse
Affiliation(s)
- Dominik R Gabrych
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Victor Z Lau
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Shinsuke Niwa
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Japan
| | - Michael A Silverman
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada.,Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|