1
|
Wang BH, Qi MY, Yang Z, He GL, Meng SY. Growth differentiation factor-15 as a biomarker for intensive care unit-acquired weakness: a meta-analysis. Front Med (Lausanne) 2025; 12:1486361. [PMID: 39950128 PMCID: PMC11821601 DOI: 10.3389/fmed.2025.1486361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 01/13/2025] [Indexed: 02/16/2025] Open
Abstract
Background Growth differentiation factor-15 (GDF-15) may be a potential biomarker for intensive care unit-acquired weakness (ICU-AW). In this study, we aimed to quantitative analysis the levels of GDF-15 in patients with ICU-AW and in non-ICU-AW, and then to determine its potential diagnostic utility. Methods Two researchers separately conducted a systematic search of the relevant studies up to May 2023 in various literature databases (PubMed, Cochrane, Web of Science, Embase, and CINAHL). Studies were selected according to the inclusion and exclusion criteria, and quality evaluation of the included studies was conducted by using QUADAS-2 provided by Review Manager 5.3. The software packages Meta Disc (C1.4) and Stata17.0 were used for the meta-analysis. The data were combined with fixed-effects model, and the summary receiver operating characteristic curve was drawn to evaluate the overall diagnostic accuracy of GDF-15. Results We identified 6 eligible studies comprising 401 patients with ICU-AW. The sensitivity, specificity, diagnostic odds ratio (DOR), and area under the curve (AUC) for the discriminative performance of GDF-15 as a diagnostic biomarker were 0.82 (95% confidence interval (CI):0.78-0.86), 0.83 (95% CI: 0.61-0.88), 21.39 (95% CI: 13.36-34.24), and 0.88 (95% CI: 0.85-0.91), respectively. Conclusion GDF-15 is a candidate biomarker in diagnosing of ICU-AW from non-ICU-AW.
Collapse
Affiliation(s)
- Bing-Han Wang
- Department of Critical Care Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital/Shenzhen Nanshan People’s Hospital, Shenzhen, China
| | - Meng-Ying Qi
- Department of Critical Care Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital/Shenzhen Nanshan People’s Hospital, Shenzhen, China
| | - Zheng Yang
- Department of Critical Care Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital/Shenzhen Nanshan People’s Hospital, Shenzhen, China
| | - Gui-Lan He
- Department of Nursing, Huazhong University of Science and Technology Union Shenzhen Hospital/Shenzhen Nanshan People’s Hospital, Shenzhen, China
| | - Si-Ya Meng
- Department of Critical Care Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital/Shenzhen Nanshan People’s Hospital, Shenzhen, China
| |
Collapse
|
2
|
Chaudhuri RH. The role of amino acids in skeletal muscle health and sarcopenia: A narrative review. J Biomed Res 2024; 38:1-14. [PMID: 39433511 DOI: 10.7555/jbr.38.20240167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024] Open
Abstract
The skeletal muscle is the largest organ present inside the body and is responsible for mechanical activities like maintaining posture, movement, respiratory function, and support for the health and functioning of other systems of the body. Skeletal muscle atrophy is a condition associated with a reduction in muscle size, strength, and activity, which leads to an increased dependency on movement, an increased risk of falls, and a reduced quality of life. Various conditions like osteoarthritis, osteoporosis, and fractures are directly associated with an increased muscle atrophy. Additionally, numerous risk factors, like aging, malnutrition, physical inactivity, and certain disease conditions, through distinct pathways negatively affect skeletal muscle health and lead to muscle atrophy. Among the various determinants of the overall muscle health, the rate of muscle protein synthesis and degradation is an important parameter that eventually alters the fate of overall muscle health. In conditions of excessive skeletal muscle atrophy, including sarcopenia, the rate of muscle protein degradation usually exceeds the rate of protein synthesis. The availability of amino acids in the systemic circulation is a crucial step for muscle protein synthesis. The current review aimed to consolidate the existing evidence of amino acids, highlight their mechanisms of action, and assess their roles and effectiveness in enhancing skeletal muscle health.
Collapse
Affiliation(s)
- Ramendu Hom Chaudhuri
- Department of Orthopaedics, Sri Aurobindo Seva Kendra, Jodhpur Park, Kolkata, West Bengal 700068, India
| |
Collapse
|
3
|
Damanti S, Senini E, De Lorenzo R, Merolla A, Santoro S, Festorazzi C, Messina M, Vitali G, Sciorati C, Rovere-Querini P. Acute Sarcopenia: Mechanisms and Management. Nutrients 2024; 16:3428. [PMID: 39458423 PMCID: PMC11510680 DOI: 10.3390/nu16203428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/27/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Acute sarcopenia refers to the swift decline in muscle function and mass following acute events such as illness, surgery, trauma, or burns that presents significant challenges in hospitalized older adults. METHODS narrative review to describe the mechanisms and management of acute sarcopenia. RESULTS The prevalence of acute sarcopenia ranges from 28% to 69%, likely underdiagnosed due to the absence of muscle mass and function assessments in most clinical settings. Systemic inflammation, immune-endocrine dysregulation, and anabolic resistance are identified as key pathophysiological factors. Interventions include early mobilization, resistance exercise, neuromuscular electrical stimulation, and nutritional strategies such as protein supplementation, leucine, β-hydroxy-β-methyl-butyrate, omega-3 fatty acids, and creatine monohydrate. Pharmaceuticals show variable efficacy. CONCLUSIONS Future research should prioritize serial monitoring of muscle parameters, identification of predictive biomarkers, and the involvement of multidisciplinary teams from hospital admission to address sarcopenia. Early and targeted interventions are crucial to improve outcomes and prevent long-term disability associated with acute sarcopenia.
Collapse
Affiliation(s)
- Sarah Damanti
- Internal Medicine Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (S.D.); (G.V.); (P.R.-Q.)
- Division of Immunology, Transplantation and Infectious Diseases, Vita-Salute San Raffaele University, 20100 Milan, Italy; (E.S.); (R.D.L.); (A.M.); (S.S.); (C.F.); (M.M.)
| | - Eleonora Senini
- Division of Immunology, Transplantation and Infectious Diseases, Vita-Salute San Raffaele University, 20100 Milan, Italy; (E.S.); (R.D.L.); (A.M.); (S.S.); (C.F.); (M.M.)
| | - Rebecca De Lorenzo
- Division of Immunology, Transplantation and Infectious Diseases, Vita-Salute San Raffaele University, 20100 Milan, Italy; (E.S.); (R.D.L.); (A.M.); (S.S.); (C.F.); (M.M.)
| | - Aurora Merolla
- Division of Immunology, Transplantation and Infectious Diseases, Vita-Salute San Raffaele University, 20100 Milan, Italy; (E.S.); (R.D.L.); (A.M.); (S.S.); (C.F.); (M.M.)
| | - Simona Santoro
- Division of Immunology, Transplantation and Infectious Diseases, Vita-Salute San Raffaele University, 20100 Milan, Italy; (E.S.); (R.D.L.); (A.M.); (S.S.); (C.F.); (M.M.)
| | - Costanza Festorazzi
- Division of Immunology, Transplantation and Infectious Diseases, Vita-Salute San Raffaele University, 20100 Milan, Italy; (E.S.); (R.D.L.); (A.M.); (S.S.); (C.F.); (M.M.)
| | - Marco Messina
- Division of Immunology, Transplantation and Infectious Diseases, Vita-Salute San Raffaele University, 20100 Milan, Italy; (E.S.); (R.D.L.); (A.M.); (S.S.); (C.F.); (M.M.)
| | - Giordano Vitali
- Internal Medicine Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (S.D.); (G.V.); (P.R.-Q.)
| | - Clara Sciorati
- Division of Immunology, Transplantation and Infectious Diseases, Vita-Salute San Raffaele University, 20100 Milan, Italy; (E.S.); (R.D.L.); (A.M.); (S.S.); (C.F.); (M.M.)
| | - Patrizia Rovere-Querini
- Internal Medicine Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (S.D.); (G.V.); (P.R.-Q.)
- Division of Immunology, Transplantation and Infectious Diseases, Vita-Salute San Raffaele University, 20100 Milan, Italy; (E.S.); (R.D.L.); (A.M.); (S.S.); (C.F.); (M.M.)
| |
Collapse
|
4
|
Sagawe JS, Loake VIP, Openshaw PJM, Kemp P, Culley FJ. Aging enhances pro-atrogenic gene expression and skeletal muscle loss following respiratory syncytial virus infection. GeroScience 2024:10.1007/s11357-024-01370-2. [PMID: 39354240 DOI: 10.1007/s11357-024-01370-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/25/2024] [Indexed: 10/03/2024] Open
Abstract
Aging and many age-related health conditions are associated with skeletal muscle loss. Furthermore, older adults are more susceptible to severe respiratory infections, which can in turn lead to muscle wasting. The mechanisms by which respiratory viral infection can impact skeletal muscle in older adults are not well understood. We determined the effects of acute infection with respiratory syncytial virus (RSV) on the lung and skeletal muscle of aged mice. RSV infection caused more severe disease in aged mice with enhanced weight loss, reduced feeding, higher viral load, and greater airway inflammation. Aged but not young mice showed decreased leg muscle weight at the peak of illness and decreased size of leg muscle fibers. Aged mice increased muscle-specific expression of atrophy-promoting enzymes (Atrogin-1 and MuRF-1) and failed to increase the rate of muscle protein synthesis during RSV infection. In aged mice, the changes in Atrogin-1 and MuRF-1 gene expression in skeletal muscle correlated with IL-6 levels in the lungs. These findings indicate that RSV infection of aged mice provides a model for studying the diverse adverse systemic consequences of respiratory viral infections on health and wellbeing in older adults.
Collapse
Affiliation(s)
- J Sophie Sagawe
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, St Mary's Campus, Norfolk Place, London, W2 1PG, UK
| | - Verity I P Loake
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, St Mary's Campus, Norfolk Place, London, W2 1PG, UK
| | - Peter J M Openshaw
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, St Mary's Campus, Norfolk Place, London, W2 1PG, UK
| | - Paul Kemp
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, St Mary's Campus, Norfolk Place, London, W2 1PG, UK
| | - Fiona J Culley
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, St Mary's Campus, Norfolk Place, London, W2 1PG, UK.
| |
Collapse
|
5
|
Kanazawa Y, Saito S, Okubo S, Matsuoka T, Hirota S, Yokoyama S, Tezuka M, Takei Y, Tsuchiya G, Konishi T, Ogata K, Shibasaki I, Nakajima T, Fukuda H. Safety and Effectiveness of Acceleration Training as Cardiac Rehabilitation Immediately After Open Heart Surgery - A Pilot Study. Circ J 2024; 88:1432-1439. [PMID: 39010218 DOI: 10.1253/circj.cj-24-0352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
BACKGROUND We examined the safety and efficacy of acceleration training (AT) in patients immediately after cardiac surgery. METHODS AND RESULTS This randomized controlled study included patients who underwent open-heart surgery using cardiopulmonary bypass. Of these patients, 31 received regular cardiac rehabilitation (CR) and 39 received AT in addition to regular CR (AT group). AT was provided using a vibration platform (Power Plate®Pro7TMand Power plate®personal; Performance Health System, Chicago, IL, USA). The AT group performed 5 static resistance training sessions: squats, wide stance squats, toe stands, banded squats, and front lunges. Each vibration session lasted 30 s. We evaluated the short physical performance battery, anterior mid-thigh thickness, maximum voluntary isometric contraction of the knee extensors, and serum intercellular adhesion molecule (ICAM-1) and vascular cell adhesion molecule (VCAM-1) concentrations as indicators of endothelial function. The observation period was during hospitalization and lasted approximately 20 days. No adverse events occurred during AT. Ultrasound revealed a significantly lower reduction in muscle mass at discharge in the AT group. No significant differences were observed in ICAM-1 and VCAM-1 concentrations between the 2 groups preoperatively, postoperatively, or at discharge. CONCLUSIONS AT is considered safe and effective for patients immediately after open-heart surgery. AT, along with regular CR, may prevent skeletal muscle mass loss, muscle weakness, and physical function loss immediately after open-heart surgery.
Collapse
Affiliation(s)
- Yuta Kanazawa
- Department of Cardiac and Vascular Surgery, School of Medicine, Dokkyo Medical University
| | - Shunsuke Saito
- Division of Cardiovascular Surgery, Department of Surgery, Osaka University
| | - Shohei Okubo
- Department of Cardiac and Vascular Surgery, School of Medicine, Dokkyo Medical University
| | - Taiki Matsuoka
- Department of Cardiac and Vascular Surgery, School of Medicine, Dokkyo Medical University
| | - Shotaro Hirota
- Department of Cardiac and Vascular Surgery, School of Medicine, Dokkyo Medical University
| | - Shohei Yokoyama
- Department of Cardiac and Vascular Surgery, School of Medicine, Dokkyo Medical University
| | - Masahiro Tezuka
- Department of Cardiac and Vascular Surgery, School of Medicine, Dokkyo Medical University
| | - Yusuke Takei
- Department of Cardiac and Vascular Surgery, School of Medicine, Dokkyo Medical University
| | - Go Tsuchiya
- Department of Cardiac and Vascular Surgery, School of Medicine, Dokkyo Medical University
| | - Taisuke Konishi
- Department of Cardiac and Vascular Surgery, School of Medicine, Dokkyo Medical University
| | - Koji Ogata
- Department of Cardiac and Vascular Surgery, School of Medicine, Dokkyo Medical University
| | - Ikuko Shibasaki
- Department of Cardiac and Vascular Surgery, School of Medicine, Dokkyo Medical University
| | | | - Hirotsugu Fukuda
- Department of Cardiac and Vascular Surgery, School of Medicine, Dokkyo Medical University
| |
Collapse
|
6
|
Nielsen RL, Bornæs O, Iversen E, Strejby Christensen LW, Kallemose T, Jawad B, Rasmussen HH, Munk T, Lund TM, Andersen O, Houlind MB, Leegaard Andersen A, Tavenier J. Growth differentiation factor 15 (GDF15) levels are associated with malnutrition in acutely admitted older adults. Clin Nutr 2024; 43:1685-1693. [PMID: 38879915 DOI: 10.1016/j.clnu.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/01/2024] [Accepted: 06/04/2024] [Indexed: 06/18/2024]
Abstract
BACKGROUND AND AIMS The aging process is often accompanied by high risk of malnutrition and elevated levels of growth differentiation factor 15 (GDF15). GDF15 is an increasingly recognized biomarker for regulation of metabolism, but few studies have investigated the connection between GDF15 and malnutrition in older age and how it relates to other features of aging such as decreased appetite and physical function. Therefore, we investigated the associations between GDF15 levels and nutritional status, appetite, and physical function in acutely admitted older adults. METHODS Plasma GDF15 levels were measured using immunoassays in 302 older adults (≥65 years) admitted to the emergency department (ED). Nutritional status was evaluated with the Mini Nutritional Assessment Short-Form (MNA®-SF), appetite was evaluated with the Simplified Nutritional Appetite Questionnaire (SNAQ), and physical function was evaluated with handgrip strength (HGS), 30-s chair stand test (30s-RSS), and gait speed (GS). Associations between GDF15 and each outcome was determined by logistic regression adjusted for age, sex, and C-reactive protein (CRP). RESULTS Each doubling in plasma GDF15 level was associated with an adjusted odds ratio (OR) (95% confidence interval) of 1.59 (1.10-2.29, P = 0.01) for risk of malnutrition compared to normal nutrition and 1.19 (0.85-1.69, P = 0.3)) for malnutrition compared to risk of malnutrition. Each doubling in GDF15 was associated with an adjusted OR of 1.63 (1.21-2.23)) for having poor appetite, 1.46 (1.07-1.99) for having low HGS, 1.74 (1.23-2.51) for having low 30s-RSS, and 1.99 (1.39-2.94) for having low GS. CONCLUSION Among older adults admitted to the ED, higher GDF15 levels were significantly associated with malnutrition, poor appetite, and low physical function independent of age, sex, and CRP.
Collapse
Affiliation(s)
- Rikke Lundsgaard Nielsen
- Department of Clinical Research, Copenhagen University Hospital Amager and Hvidovre, Kettegaard Allé 30, 2650 Hvidovre, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark.
| | - Olivia Bornæs
- Department of Clinical Research, Copenhagen University Hospital Amager and Hvidovre, Kettegaard Allé 30, 2650 Hvidovre, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark.
| | - Esben Iversen
- Department of Clinical Research, Copenhagen University Hospital Amager and Hvidovre, Kettegaard Allé 30, 2650 Hvidovre, Denmark.
| | - Louise Westberg Strejby Christensen
- Department of Clinical Research, Copenhagen University Hospital Amager and Hvidovre, Kettegaard Allé 30, 2650 Hvidovre, Denmark; The Capital Region Pharmacy, Marielundvej 25, 2730 Herlev, Denmark.
| | - Thomas Kallemose
- Department of Clinical Research, Copenhagen University Hospital Amager and Hvidovre, Kettegaard Allé 30, 2650 Hvidovre, Denmark.
| | - Baker Jawad
- Department of Clinical Research, Copenhagen University Hospital Amager and Hvidovre, Kettegaard Allé 30, 2650 Hvidovre, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark.
| | - Henrik Højgaard Rasmussen
- Center for Nutrition and Intestinal Failure, Aalborg University Hospital, Aalborg University, 9220 Aalborg, Denmark; The Dietitians and Nutritional Research Unit, EATEN, Copenhagen University Hospital-Herlev and Gentofte, 2100 Copenhagen, Denmark.
| | - Tina Munk
- The Dietitians and Nutritional Research Unit, EATEN, Copenhagen University Hospital-Herlev and Gentofte, 2100 Copenhagen, Denmark.
| | - Trine Meldgaard Lund
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark.
| | - Ove Andersen
- Department of Clinical Research, Copenhagen University Hospital Amager and Hvidovre, Kettegaard Allé 30, 2650 Hvidovre, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark; Emergency Department, Copenhagen University Hospital Amager and Hvidovre, 2650 Hvidovre, Denmark.
| | - Morten Baltzer Houlind
- Department of Clinical Research, Copenhagen University Hospital Amager and Hvidovre, Kettegaard Allé 30, 2650 Hvidovre, Denmark; The Capital Region Pharmacy, Marielundvej 25, 2730 Herlev, Denmark; Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark.
| | - Aino Leegaard Andersen
- Department of Clinical Research, Copenhagen University Hospital Amager and Hvidovre, Kettegaard Allé 30, 2650 Hvidovre, Denmark.
| | - Juliette Tavenier
- Department of Clinical Research, Copenhagen University Hospital Amager and Hvidovre, Kettegaard Allé 30, 2650 Hvidovre, Denmark.
| |
Collapse
|
7
|
Nakajima T, Fukuda T, Shibasaki I, Obi S, Sakuma M, Abe S, Fukuda H, Toyoda S, Nakajima T. Pathophysiological roles of the serum acylcarnitine level and acylcarnitine/free carnitine ratio in patients with cardiovascular diseases. IJC HEART & VASCULATURE 2024; 51:101386. [PMID: 38515869 PMCID: PMC10955663 DOI: 10.1016/j.ijcha.2024.101386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/06/2024] [Accepted: 03/09/2024] [Indexed: 03/23/2024]
Abstract
Introduction L-carnitine exerts protective effects, such as maintaining mitochondrial functions and decreasing reactive oxygen species, while acylcarnitine (AC) is linked to the development of heart failure and atherosclerosis. Hypothesis Serum carnitines play important pathophysiological roles in cardiovascular diseases. Methods Pre-operative biochemical data were obtained from 117 patients (71 men, average age 69.9 years) who underwent surgery for cardiovascular diseases. Measurements included pre-operative biochemical data including estimated glomerular filtration rate (eGFR), physical functions, skeletal muscle mass index (SMI) measured by bioelectrical impedance analysis, anterior thigh muscle thickness (MTh) measured by ultrasound, and routine echocardiography. Carnitine components were measured with the enzyme cycling method. Muscle wasting was diagnosed based on the Asian Working Group for Sarcopenia criteria. Results Plasma brain natriuretic peptide (BNP) level was correlated with serum free carnitine (FC) and AC level, and the acylcarnitine/free carnitine ratio (AC/FC). AC/FC was elevated with stage of chronic kidney disease. In multivariate analysis, log (eGFR) and log (BNP) were extracted as independent factors to define log (serum AC) (eGFR: β = 0.258, p = 0.008; BNP: β = 0.273, p = 0.011), even if corrected for age, sex and body mass index. AC/FC was negatively correlated with hand-grip strength (r = -0.387, p = 0.006), SMI (r = -0.314, p = 0.012), and anterior thigh MTh (r = -0.340, p = 0.014) in men. Conclusions A significant association between serum AC level and AC/FC, and chronic kidney disease and heart failure exists in patients with cardiovascular diseases who have undergone cardiovascular surgery. Skeletal muscle loss and muscle wasting are also linked to the elevation of serum AC level and AC/FC.
Collapse
Affiliation(s)
- Takafumi Nakajima
- Department of Cardiovascular Medicine, School of Medicine, Dokkyo Medical University, Shimotsuga-gun, Tochigi, Japan
| | - Taira Fukuda
- Department of Liberal Arts and Sciences, Kanagawa University of Human Services, Yokosuka, Kanagawa, Japan
| | - Ikuko Shibasaki
- Department of Cardiovascular Surgery, School of Medicine, Dokkyo Medical University, Shimotsuga-gun, Tochigi, Japan
| | - Syotaro Obi
- Department of Cardiovascular Medicine, School of Medicine, Dokkyo Medical University, Shimotsuga-gun, Tochigi, Japan
| | - Masashi Sakuma
- Department of Cardiovascular Medicine, School of Medicine, Dokkyo Medical University, Shimotsuga-gun, Tochigi, Japan
| | - Shichiro Abe
- Department of Cardiovascular Medicine, School of Medicine, Dokkyo Medical University, Shimotsuga-gun, Tochigi, Japan
| | - Hirotsugu Fukuda
- Department of Cardiovascular Surgery, School of Medicine, Dokkyo Medical University, Shimotsuga-gun, Tochigi, Japan
| | - Shigeru Toyoda
- Department of Cardiovascular Medicine, School of Medicine, Dokkyo Medical University, Shimotsuga-gun, Tochigi, Japan
| | - Toshiaki Nakajima
- Department of Cardiovascular Medicine, School of Medicine, Dokkyo Medical University, Shimotsuga-gun, Tochigi, Japan
| |
Collapse
|
8
|
Rezaei S, Eslami R, Tartibian B. The effects of TRX suspension training on sarcopenic biomarkers and functional abilities in elderlies with sarcopenia: a controlled clinical trial. BMC Sports Sci Med Rehabil 2024; 16:58. [PMID: 38409184 PMCID: PMC10898163 DOI: 10.1186/s13102-024-00849-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 02/14/2024] [Indexed: 02/28/2024]
Abstract
BACKGROUND Sarcopenia is an age-related progressive loss of muscle mass and strength that can be modulated by resistance training. This study aimed to investigate the effects of TRX Suspension Training (TST) on serum levels of neuromuscular and growth factors and functional indices in elderly men with sarcopenia, an age-related condition characterized by progressive muscle mass and strength loss. METHODS Nineteen sarcopenic elderly men (age = 74.87 ± 4.58 years) were randomly assigned into two groups, the TST group (n = 10) and the control group (n = 9). Serum concentrations of regulatory muscle markers, anthropometric and body composition indices, and functional tests were evaluated at baseline and after 8 weeks. The training protocol consisted of eight weeks of TRX exercises, with three weekly sessions. RESULTS After 8 weeks of training, growth factors such as Follistatin (FST) (P = 0.001), 22 kDa C-terminal agrin fragment (CAF) (P = 0.031), and growth differentiation factor 15 (GDF15) (P = 0.049) increased significantly in the training group in comparison to the control group and Myostatin (MSTN) (P = 0.002) had a significant decrease. However, there was no significant difference in ASMM/m2 (P = 0.527), SMM/m2 (P = 0.621), or Body fat mass (P = 0.433) within or between groups. In addition, the TRX Suspension Training had a significant effect on the functional tests and improved gait speed (P = 0.037), chair stand (P = 0.016), and TUG (P = 0.016) as well as Handgrip strength (P = 0.035). CONCLUSION Our findings highlight the efficacy of TRX Suspension Training in enhancing the serum levels of muscle growth factors and functional capacities among elderly individuals with sarcopenia. Therefore, considering the ongoing COVID-19 pandemic, this protocol can prove beneficial for this demographic group. TRIAL REGISTRY Iranian Registry of Clinical Trials identifier: IRCT20230727058944N1, prospectively registered 20-09-2023, https://en.irct.ir/trial/71635.
Collapse
Affiliation(s)
- Sohrab Rezaei
- Exercise Physiology Department, Faculty of Sport Science, Allameh Tabataba'i University, Tehran, Iran
| | - Rasoul Eslami
- Exercise Physiology Department, Faculty of Sport Science, Allameh Tabataba'i University, Tehran, Iran.
| | - Bakhtyar Tartibian
- Exercise Physiology Department, Faculty of Sport Science, Allameh Tabataba'i University, Tehran, Iran
| |
Collapse
|
9
|
Buitrago NDC, Gallego DT, Pérez MCF, Cardona CAQ, Botero CC. Assessment of quadriceps muscle mass by ultrasound in the postoperative period of cardiac surgery. Ultrasound J 2024; 16:8. [PMID: 38345655 PMCID: PMC10861409 DOI: 10.1186/s13089-023-00348-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/16/2023] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND Patients undergoing cardiac surgery are exposed to many factors that activate catabolic and inflammatory pathways, which affect skeletal muscle and are, therefore, related to unfavorable hospital outcomes. Given the limited information on the behavior of muscle mass in critically ill patients, the objective of this study was to evaluate the impact on quantitative and qualitative measurements of quadriceps muscle mass using ultrasound after cardiac surgery. To accomplish this, a prospective, descriptive, and correlational study was conducted at a tertiary care hospital. Quadriceps muscle mass was evaluated via ultrasound in 31 adult patients in the postoperative period of cardiac surgery, with daily follow-up until postoperative day 7, as well as an assessment of associations with negative outcomes at 28 days. RESULTS A 16% reduction in the cross-sectional area of the rectus femoris was found (95% CI 4.2-3.5 cm2; p 0.002), as well as a 24% reduction in the pennation angle of the rectus femoris (95% CI 11.1-8.4 degrees; p: 0.025). However, changes in the thickness of the rectus femoris, vastus internus, vastus lateralis, the length of the fascicle of the vastus lateralis, the pennation angle of the vastus lateralis, the sarcopenia index, and the Hekmat score were not statistically significant. There was no significant association between quadriceps muscle mass measurements and Intensive Care Unit (ICU) length stay or 28-day mortality. CONCLUSIONS Patients in the postoperative period of cardiac surgery evaluated by ultrasound exhibit both quantitative and qualitative changes in quadriceps muscle mass. A significant reduction in muscle mass is observed but this is not associated with unfavorable outcomes.
Collapse
Affiliation(s)
- Nestor David Caicedo Buitrago
- Unidad de Cuidados Intensivos, E.S.E. Hospital Departamental Universitario de Caldas Santa Sofía, Manizales, Colombia.
- Unidad de Cuidados Intensivos, Clínica San Marcel, Manizales, Colombia.
- Facultad de Ciencias de la Salud, Especialización en Medicina Crítica y Cuidado Intensivo, Universidad de Manizales, Manizales, Colombia.
| | - Diana Trejos Gallego
- Unidad de Cuidados Intensivos, E.S.E. Hospital Departamental Universitario de Caldas Santa Sofía, Manizales, Colombia
- Facultad de Ciencias de la Salud, Especialización en Medicina Crítica y Cuidado Intensivo, Universidad de Manizales, Manizales, Colombia
| | - Maria Cristina Florián Pérez
- Unidad de Cuidados Intensivos, E.S.E. Hospital Departamental Universitario de Caldas Santa Sofía, Manizales, Colombia
- Facultad de Ciencias de la Salud, Especialización en Medicina Crítica y Cuidado Intensivo, Universidad de Manizales, Manizales, Colombia
| | | | | |
Collapse
|
10
|
Guzmán-David CA, Ruiz-Ávila HA, Camargo-Rojas DA, Gómez-Alegría CJ, Hernández-Álvarez ED. Ultrasound assessment of muscle mass and correlation with clinical outcomes in critically ill patients: a prospective observational study. J Ultrasound 2023; 26:879-889. [PMID: 37783892 PMCID: PMC10632208 DOI: 10.1007/s40477-023-00823-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/07/2023] [Indexed: 10/04/2023] Open
Abstract
PURPOSE Muscular atrophy implies structural and functional alterations related to muscular force production and movement. This condition has been reported to be the main reason for generalized muscle weakness; it reflects the severity of the disease and can have a profound impact on short- and long-term clinical outcomes. The purpose of this study was to determine whether muscle atrophy ultrasound parameters early predict muscle weakness, morbidity, or 28-days mortality. METHODS This was a prospective, observational single center cohort study. Ultrasound was used to determine the cross-sectional area and muscle thickness of the rectus femoris on the first and third day of ICU stay. The main outcome was the incidence of significant muscle atrophy (≥ 10%). RESULTS Ultrasound measurements were made in 31 patients, 58% (18/31) of which showed significant muscle atrophy. The relative loss of muscle mass per day was 1.78 at 5% per day. The presence of muscle atrophy presents increased risk for limb muscle weakness and handgrip weakness. The 28-days mortality rate was similar in both subgroups. CONCLUSION The presence of muscle atrophy presents an increased clinical risk for the development of limb ICUAW and handgrip, although these observations were not statistically significant. The results could be used to plan future studies on this topic.
Collapse
Affiliation(s)
- Cristian Arvey Guzmán-David
- Master's in Physiology, Faculty of Medicine, Universidad Nacional de Colombia, Bogotá, D.C., Colombia.
- Intensive Care Unit, Hospital Universitario Nacional de Colombia, Bogotá, Colombia.
- Intensive Care Research Group, Universidad Nacional de Colombia (GICI-UN), Bogotá, Colombia.
- Kinesiotherapy Deepening Research Group, Universidad Nacional de Colombia, Bogotá, Colombia.
| | - Héctor Andrés Ruiz-Ávila
- Intensive Care Unit, Hospital Universitario Nacional de Colombia, Bogotá, Colombia
- Intensive Care Research Group, Universidad Nacional de Colombia (GICI-UN), Bogotá, Colombia
| | - Diana Alexandra Camargo-Rojas
- Department of Human Body Movement, Faculty of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
- Health and Development Research Group, Kinesiology, Universidad Nacional de Colombia, Bogotá, Colombia
| | | | - Edgar Debray Hernández-Álvarez
- Kinesiotherapy Deepening Research Group, Universidad Nacional de Colombia, Bogotá, Colombia
- Department of Human Body Movement, Faculty of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
11
|
Rajagopal K, Vijayan D, Thomas SM. Association of SOFA Score with Severity of Muscle Wasting in Critically Ill Patients: A Prospective Observational Study. Indian J Crit Care Med 2023; 27:743-747. [PMID: 37908434 PMCID: PMC10613861 DOI: 10.5005/jp-journals-10071-24540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 08/21/2023] [Indexed: 11/02/2023] Open
Abstract
Background Muscle wasting is a frequent complication in critically ill patients. This study aimed to evaluate whether muscle wasting occurs in these patients and its association with the severity of the disease. Materials and methods This was a prospective, observational study including 50 patients admitted to the multidisciplinary ICU of a tertiary care hospital. Using a linear ultrasound probe, the thickness of the rectus femoris was measured on day 1 of admission and repeated at the same point on day 7. Sequential organ failure assessment (SOFA) scores were calculated daily during the study period. The highest SOFA score during this period was recorded. The mean difference in the thickness of the rectus femoris between day 1 and day 7 was used to predict the occurrence of muscle wasting and the correlation between this difference and the highest SOFA score was analyzed. Results The mean thickness of the rectus femoris on day 1 was 1.32 + 0.06 cm and on day 7 was 1.16 + 0.08 cm. The mean difference was found to be 0.16 cm (p < 0.01). There was a statistically significant difference in the thickness of the rectus femoris between day 1 and day 7. It was found to have a positive correlation with the highest SOFA score r = 0.886 (p < 0.01). Conclusion This study demonstrates that there is significant muscle wasting in critically ill patients and this positively correlates with the severity of illness. Our study also highlights the role of bedside ultrasound in detecting muscle wasting. How to cite this article Rajagopal K, Vijayan D, Thomas SM. Association of SOFA Score with Severity of Muscle Wasting in Critically Ill Patients: A Prospective Observational Study. Indian J Crit Care Med 2023;27(10):743-747.
Collapse
Affiliation(s)
- Kiran Rajagopal
- Department of Critical Care, Sree Gokulam Medical College & Research Foundation, Nellanad, Kerala, India
| | - Deepak Vijayan
- Department of Critical Care, KIMS HEALTH, Thiruvananthapuram, Kerala, India
| | - Sujith M Thomas
- Department of Critical Care, St. Gregorios Medical Mission Multi-specialty, Hospital, Parumala, Kerala, India
| |
Collapse
|
12
|
Hogenbirk RNM, Hentzen JEKR, van der Plas WY, Campmans-Kuijpers MJE, Kruijff S, Klaase JM. Surgery-Related Muscle Loss after Pancreatic Resection and Its Association with Postoperative Nutritional Intake. Cancers (Basel) 2023; 15:cancers15030969. [PMID: 36765926 PMCID: PMC9913550 DOI: 10.3390/cancers15030969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/28/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
To study the occurrence of surgery-related muscle loss (SRML) and its association with in-hospital nutritional intake, we conducted a prospective observational cohort study including patients who underwent pancreatic surgery because of (suspected) malignant diseases. Muscle diameter was measured by using bedside ultrasound 1 day prior to surgery and 7 days postoperatively. Clinically relevant SRML was defined as ≥10% muscle diameter loss in minimally one arm and leg muscle within 1 week after surgery. Protein and caloric intake was measured by nutritional diaries. The primary endpoint included the number of patients with SRML. Secondary endpoints included the association between SRML and postoperative nutritional intake. Of the 63 included patients (60.3% men; age 67.1 ± 10.2 years), a total of 24 patients (38.1%) showed SRML. No differences were observed in severe complication rate or length of hospital stay between patients with and without SRML. During the first postoperative week, patients with clinically relevant SRML experienced more days without any nutritional intake compared with the non-SRML group (1 [0-4] versus 0 [0-1] days, p = 0.007). Significantly lower nutritional intake was found in the SRML group at postoperative days 2, 3 and 5 (p < 0.05). Since this study shows that SRML occurred in 38.1% of the patients and most of the patients failed to reach internationally set nutritional goals, it is suggested that more awareness concerning direct postoperative nutritional intake is needed in our surgical community.
Collapse
Affiliation(s)
- Rianne N. M. Hogenbirk
- Department of Surgery, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
- Correspondence:
| | - Judith E. K. R. Hentzen
- Department of Surgery, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Willemijn Y. van der Plas
- Department of Surgery, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
- Department of Surgery, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands
| | - Marjo J. E. Campmans-Kuijpers
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Schelto Kruijff
- Department of Surgery, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Joost M. Klaase
- Department of Surgery, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
13
|
Incidence of muscle wasting in the critically ill: a prospective observational cohort study. Sci Rep 2023; 13:742. [PMID: 36639540 PMCID: PMC9839699 DOI: 10.1038/s41598-023-28071-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 01/12/2023] [Indexed: 01/15/2023] Open
Abstract
Loss of muscle mass occurs rapidly during critical illness and negatively affects quality of life. The incidence of clinically significant muscle wasting in critically ill patients is unclear. This study aimed to assess the incidence of and identify predictors for clinically significant loss of muscle mass in this patient population. This was a single-center observational study. We used ultrasound to determine the rectus femoris cross-sectional area (RFcsa) on the first and seventh day of ICU stay. The primary outcome was the incidence of significant muscle wasting. We used a logistic regression model to determine significant predictors for muscle wasting. Ultrasound measurements were completed in 104 patients. Sixty-two of these patients (59.6%) showed ≥ 10% decreases in RFcsa. We did not identify any predictor for significant muscle wasting, however, age was of borderline significance (p = 0.0528). The 28-day mortality rate was higher in patients with significant wasting, but this difference was not statistically significant (30.6% versus 16.7%; p = 0.165). Clinically significant muscle wasting was frequent in our cohort of patients. Patient age was identified as a predictor of borderline significance for muscle wasting. The results could be used to plan future studies on this topic.Trial registration: ClinicalTrials.gov NCT03865095, date of registration: 06/03/2019.
Collapse
|
14
|
Takino K, Kameshima M, Asai C, Kawamura I, Tomita S, Sato H, Hirakawa A, Yamada S. Neuromuscular electrical stimulation after cardiovascular surgery mitigates muscle weakness in older individuals with diabetes. Ann Phys Rehabil Med 2022; 66:101659. [PMID: 35272065 DOI: 10.1016/j.rehab.2022.101659] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/18/2022] [Accepted: 01/25/2022] [Indexed: 12/03/2022]
Abstract
BACKGROUND Cardiovascular surgery leads to postsurgical muscle weakness, probably because of muscle proteolysis and peripheral nerve dysfunction, which are augmented by aging and diabetes mellitus. OBJECTIVE We examined the effect of neuromuscular electrical stimulation (NMES) on postsurgical muscle weakness in older individuals with diabetes mellitus. METHODS We conducted a multicentre, randomized, controlled trial, and screened consecutive patients with diabetes who underwent cardiovascular surgery for eligibility (age ≥ 65 years). Those included were randomly assigned to the NMES or the sham group. The primary outcome was the percent change in isometric knee extension strength (%ΔIKES) from preoperative to postoperative day 7. Secondary outcomes were the percent change in usual (%ΔUWS), maximum walking speed (%ΔMWS), and grip strength (%ΔGS). A statistician who was blinded to group allocation used intention-to-treat analysis (student t test). RESULTS Of 1151 participants screened for eligibility, 180 (NMES, n = 90; sham, n = 90) were included in the primary analysis. %ΔIKES was significantly lower in the NMES than sham group (NMES: mean -2%, 95% confidence interval [CI] -6 to 1; sham: -13%, 95% CI -17 to -9, p < 0.001). Among the secondary outcomes, %ΔMWS was significantly lower and %ΔUWS and %ΔGS were lower, although not significantly, in the NMES than sham group. CONCLUSIONS A short course of NMES (< 1 week) mitigated postsurgical muscle weakness and functional decline in older persons with diabetes mellitus. NMES could be recommended as a part of postsurgical rehabilitation in older people with diabetes mellitus, especially those with a low functional reserve.
Collapse
Affiliation(s)
- Koya Takino
- Department of Cardiac Rehabilitation, Gifu Heart Center, 4-14-4, Yabuta-minami, Gifu, Japan; Program in Physical and Occupational Therapy, Nagoya University Graduate School of Medicine, Japan
| | - Masataka Kameshima
- Department of Cardiac Rehabilitation, Nagoya Heart Center, 1-1-11, Sunadabashi, higasi-ku, Nagoya, Japan
| | - Chikako Asai
- Department of Cardiac Rehabilitation, Toyohashi Heart Center, 1-21, Gobudori, Oyamacho, Toyohasi, Japan
| | - Itta Kawamura
- Department of Cardiology, Gifu Heart Center, 4-14-4, Yabuta-minami, Gifu, Japan
| | - Shinji Tomita
- Department of Cardiovascular Surgery, Gifu Heart Center, 4-14-4, Yabuta-minami, Gifu, Japan
| | - Hiroyuki Sato
- Division of Biostatistics and Data Science, Clinical Research Center, Tokyo Medical and Dental University Hospital of Medicine, 1-5-45 Yushima, Bunkyo-ku, Tokyo, Japan
| | - Akihiro Hirakawa
- Division of Biostatistics and Data Science, Clinical Research Center, Tokyo Medical and Dental University Hospital of Medicine, 1-5-45 Yushima, Bunkyo-ku, Tokyo, Japan
| | - Sumio Yamada
- Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, 1-1-20 Daiko-Minami, Higashi-ku, Nagoya, Japan.
| |
Collapse
|
15
|
Shrestha A, Dani M, Kemp P, Fertleman M. Acute Sarcopenia after Elective and Emergency Surgery. Aging Dis 2022; 13:1759-1769. [PMID: 36465176 PMCID: PMC9662269 DOI: 10.14336/ad.2022.0404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/04/2022] [Indexed: 04/12/2024] Open
Abstract
Sarcopenia is an increasingly recognised condition of loss of muscle mass and function. The European Working Group on Sarcopenia in Older People 2 (EWSOP2) updated their definition in 2018, emphasising the importance of low muscle strength in diagnosis. Acute sarcopenia has been arbitrarily defined as sarcopenia lasting less than 6 months. This review highlights the pathophysiology involved in muscle wasting following surgery, focussing on hormonal factors, inflammation, microRNAs, and oxidative stress. Biomarkers such as GDF-15, IGF-1 and various microRNAs may predict post-surgical muscle loss. The impact of existing sarcopenia on various types of surgery and incident muscle wasting following surgery is also described. The gaps in research found include the need for longitudinal studies looking in changes in muscle strength and quantity following surgery. Further work is needed to examine if biomarkers are replicated in other surgery to consolidate existing theories on the pathophysiology of muscle wasting.
Collapse
Affiliation(s)
- Alvin Shrestha
- Cutrale Perioperative and Ageing group, Imperial College London, London SW7 2BX, United Kingdom
| | - Melanie Dani
- Cutrale Perioperative and Ageing group, Imperial College London, London SW7 2BX, United Kingdom
| | - Paul Kemp
- National Lung and Health Institute, Imperial College London, London SW7 2BX, United Kingdom
| | - Michael Fertleman
- Cutrale Perioperative and Ageing group, Imperial College London, London SW7 2BX, United Kingdom
| |
Collapse
|
16
|
Stavrou G, Tzikos G, Menni AE, Chatziantoniou G, Vouchara A, Fyntanidou B, Grosomanidis V, Kotzampassi K. Endothelial Damage and Muscle Wasting in Cardiac Surgery Patients. Cureus 2022; 14:e30534. [PMID: 36415406 PMCID: PMC9675898 DOI: 10.7759/cureus.30534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
This is a post-hoc analysis to assess the effect of anesthesia, surgical trauma, and extracorporeal circuit on endothelial integrity, microvascular permeability, and extracellular fluid balance, as well as on skeletal muscle catabolism, in patients undergoing elective cardiac surgery. We included 127 well-nourished patients undergoing “on-pump” elective cardiac surgery. One day prior to surgery (D0) and again on postoperative day 7 (POD7), body mass index, body composition assessment, hand-grip strength (HGS), and mid-upper arm muscle circumference (MAMC) were measured. Patients were assigned to early recovery (ER) and late recovery (LR) groups, depending on the duration of ICU stay (cut-off 48 hours). The magnitude of change (Δ) in all parameters studied was assessed in ER versus LR groups, regarding (i) epithelial tissue dysfunction (Δ-Extra-Cellular Water percentage (Δ-ECW%), Δ-Phase Angle (Δ-PhA)), (ii) skeletal muscle mass catabolism (Δ-Skeletal muscle mass reduction%, Δ-Hand Grip Strength (Δ-HGS) and Δ-Mid Upper-Arm Muscle Circumference (Δ-MAMC)). Baseline measurements were similar in both groups. A significant difference was observed in all Δ-parameters studied (Δ-ECW%, Δ-PhA and muscle catabolism, Δ-HGS, Δ-MAMC), the worse results being correlated to the LR group. The results raise the issue that patients with early recovery may silently have pathological conditions, continuing even on the day of discharge - further research should be planned.
Collapse
|
17
|
Casey P, Alasmar M, McLaughlin J, Ang Y, McPhee J, Heire P, Sultan J. The current use of ultrasound to measure skeletal muscle and its ability to predict clinical outcomes: a systematic review. J Cachexia Sarcopenia Muscle 2022; 13:2298-2309. [PMID: 35851996 PMCID: PMC9530572 DOI: 10.1002/jcsm.13041] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/21/2022] [Accepted: 06/25/2022] [Indexed: 11/06/2022] Open
Abstract
Quantification and monitoring of lean body mass is an important component of nutrition assessment to determine nutrition status and muscle loss. The negative impact of reduced muscle mass and muscle function is increasingly evident across acute and chronic disease states but is particularly pronounced in patients with cancer. Ultrasound is emerging as a promising tool to directly measure skeletal muscle mass and quality. Unlike other ionizing imaging techniques, ultrasound can be used repeatedly at the bedside and may compliment nutritional risk assessment. This review aims to describe the current use of skeletal muscle ultrasound (SMUS) to measure muscle mass and quality in patients with acute and chronic clinical conditions and its ability to predict functional capacity, severity of malnutrition, hospital admission, and survival. Databases were searched from their inception to August 2021 for full-text articles in English. Relevant articles were included if SMUS was investigated in acute or chronic clinical contexts and correlated with a defined clinical outcome measure. Data were synthesized for narrative review due to heterogeneity between studies. This review analysed 37 studies (3100 patients), which met the inclusion criteria. Most studies (n = 22) were conducted in critical care. The clinical outcomes investigated included functional status at discharge (intensive care unit-acquired weakness), nutritional status, and length of stay. SMUS was also utilized in chronic conditions such as chronic obstructive pulmonary disease, chronic heart failure, and chronic renal failure to predict hospital readmission and disease severity. Only two studies investigated the use of SMUS in patients with cancer. Of the 37 studies, 28 (76%) found that SMUS (cross-sectional area, muscle thickness, and echointensity) showed significant associations with functional capacity, length of stay, readmission, and survival. There was significant heterogeneity in terms of ultrasound technique and outcome measurement across the included studies. This review highlights that SMUS continues to gain momentum as a potential tool for skeletal muscle assessment and predicting clinically important outcomes. Further work is required to standardize the technique in nutritionally vulnerable patients, such as those with cancer, before SMUS can be widely adopted as a bedside prognostic tool.
Collapse
Affiliation(s)
- Patrick Casey
- Department of Oesophagogastric SurgerySalford Royal NHS Foundation TrustSalfordUK
- Division of Diabetes, Endocrinology and Gastroenterology, Manchester Academic Health Sciences Centre, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - Mohamed Alasmar
- Department of Oesophagogastric SurgerySalford Royal NHS Foundation TrustSalfordUK
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - John McLaughlin
- Division of Diabetes, Endocrinology and Gastroenterology, Manchester Academic Health Sciences Centre, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
- Department of GastroenterologySalford Royal NHS Foundation TrustSalfordUK
| | - Yeng Ang
- Division of Diabetes, Endocrinology and Gastroenterology, Manchester Academic Health Sciences Centre, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
- Department of GastroenterologySalford Royal NHS Foundation TrustSalfordUK
| | - Jamie McPhee
- Manchester Metropolitan University Institute of SportManchesterUK
- Department of Musculoskeletal RadiologySalford Royal NHS Foundation TrustSalfordUK
| | - Priam Heire
- Department of Sport and Exercise Sciences, Musculoskeletal Science and Sports Medicine Research Centre, Faculty of Science and EngineeringManchester Metropolitan UniversityManchesterUK
| | - Javed Sultan
- Department of Oesophagogastric SurgerySalford Royal NHS Foundation TrustSalfordUK
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| |
Collapse
|
18
|
Nishikawa R, Fukuda T, Haruyama A, Shibasaki I, Yamaguchi S, Arikawa T, Obi S, Amano H, Yagi H, Sakuma M, Abe S, Fukuda H, Toyoda S, Nakajima T. Association between serum GDF-15, myostatin, and sarcopenia in cardiovascular surgery patients. IJC HEART & VASCULATURE 2022; 42:101114. [PMID: 36071948 PMCID: PMC9442355 DOI: 10.1016/j.ijcha.2022.101114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/11/2022] [Accepted: 08/24/2022] [Indexed: 11/26/2022]
Abstract
Background Myostatin is a negative regulator of skeletal muscle mass. On the other hand, growth differentiation factor (GDF)-15 is associated with lower muscle strength and muscle mass. We investigated the relationship between serum GDF-15, myostatin, and sarcopenia in patients receiving cardiovascular surgery through a ROC curve and a multivariate regression analysis. Methods Skeletal muscle mass index (SMI) by bioelectrical impedance analysis, hand-grip strength, knee extension strength, and walking speed were measured. Preoperative serum GDF-15 and myostatin levels were determined by ELISA. The sarcopenia index could be expressed as: −0.0042 × [myostatin] + 0.0007 × [GDF-15] + 0.0890 × age + 1.4030 × sex − 0.2679 × body mass index (BMI) − 2.1186. A ROC curve was plotted to identify the optimal cutoff level of the sarcopenia index to detect sarcopenia. Results 120 patients receiving cardiovascular surgery were included in the study. SMI, hand-grip strength, knee extension strength, and walking speed inversely correlated with GDF-15, but positively correlated with myostatin. In the multivariate stepwise regression analysis, SMI was a determinant of myostatin, and both GDF-15 and myostatin were determinants of SMI and muscle thickness, even after adjustment for age, sex, and BMI. A ROC curve showed that the sarcopenia index was a determinant of sarcopenia (cutoff value −1.0634, area under the curve 0.901, sensitivity 96.9%, specificity 70.9%). Conclusion GDF-15 and myostatin are associated with skeletal muscle volume in patients receiving cardiovascular surgery, but these associations are different. The sarcopenia index calculated from GDF-15 and myostatin levels may be a biomarker of sarcopenia.
Collapse
|
19
|
Chhetri I, Hunt JEA, Mendis JR, Forni LG, Kirk-Bayley J, White I, Cooper J, Somasundaram K, Shah N, Patterson SD, Puthucheary ZA, Montgomery HE, Creagh-Brown BC. Safety and Feasibility Assessment of Repetitive Vascular Occlusion Stimulus (RVOS) Application to Multi-Organ Failure Critically Ill Patients: A Pilot Randomised Controlled Trial. J Clin Med 2022; 11:3938. [PMID: 35887701 PMCID: PMC9316533 DOI: 10.3390/jcm11143938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 11/17/2022] Open
Abstract
Muscle wasting is implicated in the pathogenesis of intensive care unit acquired weakness (ICU-AW), affecting 40% of patients and causing long-term physical disability. A repetitive vascular occlusion stimulus (RVOS) limits muscle atrophy in healthy and orthopaedic subjects, thus, we explored its application to ICU patients. Adult multi-organ failure patients received standard care +/- twice daily RVOS {4 cycles of 5 min tourniquet inflation to 50 mmHg supra-systolic blood pressure, and 5 min complete deflation} for 10 days. Serious adverse events (SAEs), tolerability, feasibility, acceptability, and exploratory outcomes of the rectus femoris cross-sectional area (RFCSA), echogenicity, clinical outcomes, and blood biomarkers were assessed. Only 12 of the intended 32 participants were recruited. RVOS sessions (76.1%) were delivered to five participants and two could not tolerate it. No SAEs occurred; 75% of participants and 82% of clinical staff strongly agreed or agreed that RVOS is an acceptable treatment. RFCSA fell significantly and echogenicity increased in controls (n = 5) and intervention subjects (n = 4). The intervention group was associated with less frequent acute kidney injury (AKI), a greater decrease in the total sequential organ failure assessment score (SOFA) score, and increased insulin-like growth factor-1 (IGF-1), and reduced syndecan-1, interleukin-4 (IL-4) and Tumor necrosis factor receptor type II (TNF-RII) levels. RVOS application appears safe and acceptable, but protocol modifications are required to improve tolerability and recruitment. There were signals of possible clinical benefit relating to RVOS application.
Collapse
Affiliation(s)
- Ismita Chhetri
- Intensive Care Unit, Royal Surrey County Hospital, NHS Foundation Trust, Guildford GU2 7XX, UK; (I.C.); (L.G.F.); (J.K.-B.)
- Faculty of Health and Medical Sciences, School of Biosciences & Medicine, University of Surrey, Guildford GU2 7XH, UK; (J.E.A.H.); (J.R.M.)
- Centre for Perinatal Neuroscience, Department of Brain Sciences, Imperial College London, London SW7 2BX, UK
| | - Julie E. A. Hunt
- Faculty of Health and Medical Sciences, School of Biosciences & Medicine, University of Surrey, Guildford GU2 7XH, UK; (J.E.A.H.); (J.R.M.)
| | - Jeewaka R. Mendis
- Faculty of Health and Medical Sciences, School of Biosciences & Medicine, University of Surrey, Guildford GU2 7XH, UK; (J.E.A.H.); (J.R.M.)
| | - Lui G. Forni
- Intensive Care Unit, Royal Surrey County Hospital, NHS Foundation Trust, Guildford GU2 7XX, UK; (I.C.); (L.G.F.); (J.K.-B.)
- Faculty of Health and Medical Sciences, School of Biosciences & Medicine, University of Surrey, Guildford GU2 7XH, UK; (J.E.A.H.); (J.R.M.)
| | - Justin Kirk-Bayley
- Intensive Care Unit, Royal Surrey County Hospital, NHS Foundation Trust, Guildford GU2 7XX, UK; (I.C.); (L.G.F.); (J.K.-B.)
| | - Ian White
- Intensive Care Unit, Ashford and St Peter’s Hospitals NHS Foundation Trust, Chertsey KT16 0PZ, UK; (I.W.); (J.C.); (K.S.); (N.S.)
| | - Jonathan Cooper
- Intensive Care Unit, Ashford and St Peter’s Hospitals NHS Foundation Trust, Chertsey KT16 0PZ, UK; (I.W.); (J.C.); (K.S.); (N.S.)
| | - Karthik Somasundaram
- Intensive Care Unit, Ashford and St Peter’s Hospitals NHS Foundation Trust, Chertsey KT16 0PZ, UK; (I.W.); (J.C.); (K.S.); (N.S.)
| | - Nikunj Shah
- Intensive Care Unit, Ashford and St Peter’s Hospitals NHS Foundation Trust, Chertsey KT16 0PZ, UK; (I.W.); (J.C.); (K.S.); (N.S.)
| | - Stephen D. Patterson
- Faculty of Sport, Allied Health & Performance Sciences, St Mary’s University, London TW1 4SX, UK;
| | - Zudin A. Puthucheary
- William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London E1 4NS, UK;
- Institute for Sport, Exercise and Health, University College London, London W1T 7HA, UK
- Centre for Human Health and Performance, Department of Medicine, University College London, London W1T 7HA, UK;
- Intensive Care Unit, Royal Free London NHS Foundation Trust, London NW3 2QG, UK
- Centre for Human and Applied Physiological Sciences, King’s College London, London WC2R 2LS, UK
| | - Hugh E. Montgomery
- Centre for Human Health and Performance, Department of Medicine, University College London, London W1T 7HA, UK;
| | - Benedict C. Creagh-Brown
- Intensive Care Unit, Royal Surrey County Hospital, NHS Foundation Trust, Guildford GU2 7XX, UK; (I.C.); (L.G.F.); (J.K.-B.)
- Faculty of Health and Medical Sciences, School of Biosciences & Medicine, University of Surrey, Guildford GU2 7XH, UK; (J.E.A.H.); (J.R.M.)
| |
Collapse
|
20
|
Cancer- and cardiac-induced cachexia: same fate through different inflammatory mediators? Inflamm Res 2022; 71:771-783. [PMID: 35680678 DOI: 10.1007/s00011-022-01586-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 05/04/2022] [Accepted: 05/09/2022] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Inflammation is widely recognized as the driving force of cachexia induced by chronic diseases; however, therapies targeting inflammation do not always reverse cachexia. Thus, whether inflammation per se plays an important role in the clinical course of cachectic patients is still a matter of debate. AIMS To give new insights into cachexia's pathogenesis and diagnosis, we performed a comprehensive literature search on the contribution of inflammatory markers to this syndrome, focusing on the noncommunicable diseases cancer and cardiovascular diseases. METHODS A systematic review was performed in PubMed using the keywords ("cancer" OR "cardiac" cachexia AND "human" OR "patient" AND "plasma" or "serum"). A total of 744 studies were retrieved and, from these, 206 were selected for full-text screening. In the end, 98 papers focusing on circulating biomarkers of cachexia were identified, which resulted in a list of 113 different mediators. RESULTS Data collected from the literature highlight the contribution of interleukin-6 (IL-6) and C-reactive protein (CRP) to cachexia, independently of the underlying condition. Despite not being specific, once the diagnosis of cachexia is established, CRP might help to monitor the effectiveness of anti-cachexia therapies. In cardiac diseases, B-type natriuretic peptide (BNP), renin, and obestatin might be putative markers of body wasting, whereas in cancer, growth differentiation factor (GDF) 15, transforming growth factor (TGF)-β1 and vascular endothelial growth factor (VEGF) C seem to be better markers of this syndrome. Independently of the circulating mediators, NF-κB and JAK/STAT signaling pathways play a key role in bridging inflammation with muscle wasting; however, therapies targeting these pathways were not proven effective for all cachectic patients. CONCLUSION The critical and integrative analysis performed herein will certainly feed future research focused on the better comprehension of cachexia pathogenesis toward the improvement of its diagnosis and the development of personalized therapies targeting specific cachexia phenotypes.
Collapse
|
21
|
Yamamoto H, Takeshima F, Haraguchi M, Akazawa Y, Matsushima K, Kitayama M, Ogihara K, Tabuchi M, Hashiguchi K, Yamaguchi N, Miyaaki H, Kondo H, Nakao K. High serum concentrations of growth differentiation factor-15 and their association with Crohn's disease and a low skeletal muscle index. Sci Rep 2022; 12:6591. [PMID: 35449185 PMCID: PMC9023473 DOI: 10.1038/s41598-022-10587-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 04/05/2022] [Indexed: 12/26/2022] Open
Abstract
Sarcopenia comprises a low skeletal muscle index (SMI) and low muscle strength (MS) or low physical function. Many sarcopenia biomarkers have been reported. With Crohn’s disease (CD), a low SMI is predictive of intestinal complications. Therefore, many CD studies have reported that sarcopenia is defined by SMI alone. This study investigated the sarcopenia frequency by assessing the SMI and MS of Japanese patients with CD and biomarkers predicting a low SMI. We evaluated the SMI using a bioelectrical impedance analysis, handgrip strength, and C-reactive protein, albumin, interleukin-6, tumor necrosis factor-α, growth differentiation factor (GDF)-8, and GDF-15 levels as biomarker candidates for 78 CD patients at our hospital. Sarcopenia and a low SMI were observed in 7.7% and 42.3% of the patients, respectively. There was a significant difference in the GDF-15 levels of the low SMI group and normal group according to the multivariate analysis (P = 0.028; odds ratio [OR], 1.001; 95% confidence interval [CI] 1.000–1.002). When evaluated by sex, males exhibited a negative correlation between the GDF-15 level and SMI (Pearson’s r = − 0.414; P = 0.0031), and the multivariate analysis indicated a significant difference in the GDF-15 levels (P = 0.011; OR, 1.001; 95% CI 1.000–1.002). GDF-15 levels may indicate a low SMI with CD.
Collapse
Affiliation(s)
- Hiroyuki Yamamoto
- Department of Gastroenterology and Hepatology, Graduate School of Biomedical Science, Nagasaki University, 1-7-1 Sakamoto, Nagasaki City, Nagasaki, 852-8501, Japan.
| | - Fuminao Takeshima
- Department of Gastroenterology and Hepatology, Graduate School of Biomedical Science, Nagasaki University, 1-7-1 Sakamoto, Nagasaki City, Nagasaki, 852-8501, Japan.,Department of Internal Medicine, Nagasaki Prefecture Goto Central Hospital, Nagasaki, Japan
| | - Masafumi Haraguchi
- Department of Gastroenterology and Hepatology, Graduate School of Biomedical Science, Nagasaki University, 1-7-1 Sakamoto, Nagasaki City, Nagasaki, 852-8501, Japan
| | - Yuko Akazawa
- Department of Gastroenterology and Hepatology, Graduate School of Biomedical Science, Nagasaki University, 1-7-1 Sakamoto, Nagasaki City, Nagasaki, 852-8501, Japan.,Department of Tumor and Diagnostic Pathology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Kayoko Matsushima
- Department of Gastroenterology and Hepatology, Graduate School of Biomedical Science, Nagasaki University, 1-7-1 Sakamoto, Nagasaki City, Nagasaki, 852-8501, Japan
| | - Moto Kitayama
- Department of Gastroenterology and Hepatology, Graduate School of Biomedical Science, Nagasaki University, 1-7-1 Sakamoto, Nagasaki City, Nagasaki, 852-8501, Japan
| | - Kumi Ogihara
- Department of Gastroenterology and Hepatology, Graduate School of Biomedical Science, Nagasaki University, 1-7-1 Sakamoto, Nagasaki City, Nagasaki, 852-8501, Japan
| | - Maiko Tabuchi
- Department of Gastroenterology and Hepatology, Graduate School of Biomedical Science, Nagasaki University, 1-7-1 Sakamoto, Nagasaki City, Nagasaki, 852-8501, Japan
| | | | - Naoyuki Yamaguchi
- Department of Endoscopy, Nagasaki University Hospital, Nagasaki, Japan
| | - Hisamitsu Miyaaki
- Department of Gastroenterology and Hepatology, Graduate School of Biomedical Science, Nagasaki University, 1-7-1 Sakamoto, Nagasaki City, Nagasaki, 852-8501, Japan
| | - Hisayoshi Kondo
- Biostatistics Section, Division of Scientific Data Registry, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Kazuhiko Nakao
- Department of Gastroenterology and Hepatology, Graduate School of Biomedical Science, Nagasaki University, 1-7-1 Sakamoto, Nagasaki City, Nagasaki, 852-8501, Japan
| |
Collapse
|
22
|
Conte M, Giuliani C, Chiariello A, Iannuzzi V, Franceschi C, Salvioli S. GDF15, an emerging key player in human aging. Ageing Res Rev 2022; 75:101569. [PMID: 35051643 DOI: 10.1016/j.arr.2022.101569] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/14/2022] [Indexed: 12/20/2022]
Abstract
Growth differentiation factor 15 (GDF15) is recently emerging not only as a stress-related mitokine, but also as a key player in the aging process, being one of the most up-regulated protein with age and associated with a variety of age-related diseases (ARDs). Many data indicate that GDF15 has protective roles in several tissues during different stress and aging, thus playing a beneficial role in apparent contrast with the observed association with many ARDs. A possible detrimental role for this protein is then hypothesized to emerge with age. Therefore, GDF15 can be considered as a pleiotropic factor with beneficial activities that can turn detrimental in old age possibly when it is chronically elevated. In this review, we summarize the current knowledge on the biology of GDF15 during aging. We also propose GDF15 as a part of a dormancy program, where it may play a role as a mediator of defense processes aimed to protect from inflammatory damage and other stresses, according to the life history theory.
Collapse
Affiliation(s)
- Maria Conte
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy; Interdepartmental Centre "Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate)", University of Bologna, Bologna, Italy.
| | - Cristina Giuliani
- Interdepartmental Centre "Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate)", University of Bologna, Bologna, Italy; Laboratory of Molecular Anthropology & Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Antonio Chiariello
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Vincenzo Iannuzzi
- Laboratory of Molecular Anthropology & Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Claudio Franceschi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy; Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky University, Nizhniy Novgorod, Russia
| | - Stefano Salvioli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy; Interdepartmental Centre "Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate)", University of Bologna, Bologna, Italy
| |
Collapse
|
23
|
Cerqueira TCF, de Cerqueira Neto ML, Cacau LDAP, de Araújo Filho AA, Oliveira GU, da Silva Júnior WM, Carvalho VO, de Mendonça JT, de Santana Filho VJ. Effect of neuromuscular electrical stimulation on functional exercise capacity in patients undergoing cardiac surgery: A randomized clinical trial. Clin Rehabil 2021; 36:789-800. [PMID: 34971331 DOI: 10.1177/02692155211070945] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To evaluate the effects of neuromuscular electrical stimulation on functional capacity of patients in the immediate postoperative period of cardiac surgery. DESIGN A prospective, randomized controlled trial. SETTING A cardiac surgery specialist hospital in Aracaju, Sergipe, Brazil. Subjects: Patients in the postoperative period of cardiac surgery. INTERVENTION The control group received the conventional physiotherapy and the intervention group received neuromuscular electrical stimulation of the rectus femoris and gastrocnemius muscles bilaterally, applied for 60 min, twice a day for up to 10 sessions per patient, in the immediate postoperative period until postoperative day 5. MAIN MEASURES The primary outcome was the distance walked, which was evaluated using the 6-min walk test on postoperative day 5. Secondary outcomes were gait speed, lactate levels, muscle strength, electromyographic activity of the rectus femoris and Functional Independence Measure, some of them evaluated on preoperative and postoperative period. RESULTS Of 132 eligible patients, 88 patients were included and randomly allocated in two groups, and 45 patients were included in the analysis. No significant difference was found on the distance walked (p = 0.650) between patients allocated in intervention group (239.06 ± 88.55) and control group (254.43 ± 116.67) as well as gait speed (p = 0.363), lactate levels (p = 0.302), knee extensor strength (p = 0.117), handgrip strength (p = 0.882), global muscle strength (p = 0.104), electromyographic activity (p = 0.179) and Functional Independence Measure (p = 0.059). CONCLUSIONS Although the effects are still uncertain, the use of neuromuscular electrical stimulation carried out in five days didn't present any benefit on functional capacity of patients in the immediate postoperative period of cardiac surgery.
Collapse
|
24
|
Alcazar J, Frandsen U, Prokhorova T, Kamper RS, Haddock B, Aagaard P, Suetta C. Changes in systemic GDF15 across the adult lifespan and their impact on maximal muscle power: the Copenhagen Sarcopenia Study. J Cachexia Sarcopenia Muscle 2021; 12:1418-1427. [PMID: 34617415 PMCID: PMC8718085 DOI: 10.1002/jcsm.12823] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/14/2021] [Accepted: 09/07/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Although growth differentiation factor 15 (GDF15) is known to increase with disease and is associated with low physical performance, the role of GDF15 in normal ageing is still not fully understood. Specifically, the influence of circulating GDF15 on impairments in maximal muscle power (a major contributor to functional limitations) and the underlying components has not been investigated. METHODS Data from 1305 healthy women and men aged 20 to 93 years from The Copenhagen Sarcopenia Study were analysed. Circulating levels of GDF15 and markers of inflammation (tumor necrosis factor-alpha, interleukin-6, and high-sensitivity C-reactive protein) were measured by ELISA (R&D Systems) and multiplex bead-based immunoassays (Bio-Rad). Relative (normalized to body mass), allometric (normalized to height squared), and specific (normalized to leg muscle mass) muscle power were assessed by the Nottingham power rig [leg extension power (LEP)] and the 30 s sit-to-stand (STS) muscle power test. Total body fat, visceral fat, and leg lean mass were assessed by dual energy X-ray absorptiometry. Leg skeletal muscle index was measured as leg lean mass normalized to body height squared. RESULTS Systemic levels of GDF15 increased progressively as a function of age in women (1.1 ± 0.4 pg·mL-1 ·year-1 ) and men (3.3 ± 0.6 pg·mL-1 ·year-1 ) (both P < 0.05). Notably, GDF15 increased at a faster rate from the age of 65 years in women (11.5 ± 1.2 pg·mL-1 ·year-1 , P < 0.05) and 70 years in men (19.3 ± 2.3 pg·mL-1 ·year-1 , P < 0.05), resulting in higher GDF15 levels in men compared with women above the age of 65 years (P < 0.05). Independently of age and circulatory markers of inflammation, GDF15 was negatively correlated to relative STS power (P < 0.05) but not LEP, in both women and men. These findings were mainly explained by negative associations of GDF15 with specific STS power in women and men (both P < 0.05). CONCLUSIONS A J-shaped relationship between age and systemic GDF15 was observed, with men at older age showing steeper increases and elevated GDF15 levels compared with women. Importantly, circulating GDF15 was independently and negatively associated with relative STS power, supporting the potential role of GDF15 as a sensitive biomarker of frailty in older people.
Collapse
Affiliation(s)
- Julian Alcazar
- GENUD Toledo Research Group, Universidad de Castilla-La Mancha, Toledo, Spain.,CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain.,CopenAge - Copenhagen Center for Clinical Age Research, University of Copenhagen, Copenhagen, Denmark
| | - Ulrik Frandsen
- Institute of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Tatyana Prokhorova
- Institute of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Rikke S Kamper
- CopenAge - Copenhagen Center for Clinical Age Research, University of Copenhagen, Copenhagen, Denmark.,Geriatric Research Unit, Department of Geriatric and Palliative Medicine, Bispebjerg-Frederiksberg University Hospital, Copenhagen, Denmark
| | - Bryan Haddock
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet University Hospital, Copenhagen, Denmark
| | - Per Aagaard
- Institute of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Charlotte Suetta
- CopenAge - Copenhagen Center for Clinical Age Research, University of Copenhagen, Copenhagen, Denmark.,Geriatric Research Unit, Department of Geriatric and Palliative Medicine, Bispebjerg-Frederiksberg University Hospital, Copenhagen, Denmark.,Geriatric Research Unit, Department of Internal Medicine, Herlev-Gentofte University Hospital, Copenhagen, Denmark
| |
Collapse
|
25
|
Zhang X, Peng Y, Zhong F, Li S, Huang X, Huang Q, Chen L, Lin Y. Effects of neuromuscular electrical stimulation on functional capacity and quality of life among patients after cardiac surgery: A systematic review and meta-analysis. J Cardiol 2021; 79:291-298. [PMID: 34657773 DOI: 10.1016/j.jjcc.2021.09.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/03/2021] [Accepted: 09/09/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Neuromuscular electrical stimulation (NMES) is a possible adjunctive therapy applied to cardiac surgery patients to improve physical function, but the results are still controversial. A systematic review and meta-analysis was conducted to investigate the effects of NMES on functional capacity and quality of life (QoL) in cardiac surgery patients. METHODS The following databases PubMed, Embase, Medicine, CINAHL, and the Cochrane Central Register of Controlled Trials were searched for the English language from inception up to March 2021. A systematic targeted literature search evaluating the effects of NMES on physical function and QoL in cardiac surgery patients. The effect size of NMES was presented as the mean difference (MD)/standardized mean difference (SMD) and its 95% confidence interval using fixed/random effect models according to heterogeneity. Two reviewers independently screened and appraised each study by using the Cochrane Risk of Bias Tool. RESULTS Six studies were included involving 400 cardiac surgery patients. The meta-analysis showed that NMES had effect on knee extensor strength (SMD=1.68; p=0.05), but had no effects on 6-minute walking distance (MD=44.08; p=0.22), walking speed (MD=0.05; p=0.24), grip strength (MD=3.01; p=0.39), or QoL (SMD=0.53; p=0.19). CONCLUSIONS NMES use in cardiac surgery patients is limited by low to moderate quality. Existing evidence shows that NMES is safe and effective for improving knee extensor strength.
Collapse
Affiliation(s)
- Xu Zhang
- School of Nursing, Fujian Medical University, Fuzhou, China
| | - Yanchun Peng
- Department of Cardiac Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Fuxiu Zhong
- Department of Nursing, Fujian Medical University Union Hospital, Fuzhou, China
| | - Sailan Li
- Department of Cardiac Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xizhen Huang
- Department of Cardiac Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Qubo Huang
- Department of Cardiac Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Liangwan Chen
- Department of Cardiac Surgery, Fujian Medical University Union Hospital, Fuzhou, China; Fujian Heart Medicine Research Center, Fuzhou, China.
| | - Yanjuan Lin
- Department of Nursing, Fujian Medical University Union Hospital, Fuzhou, China; Fujian Heart Medicine Research Center, Fuzhou, China.
| |
Collapse
|
26
|
Nakanishi N, Takashima T, Oto J. Muscle atrophy in critically ill patients : a review of its cause, evaluation, and prevention. THE JOURNAL OF MEDICAL INVESTIGATION 2021; 67:1-10. [PMID: 32378591 DOI: 10.2152/jmi.67.1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Critically ill patients exhibit prominent muscle atrophy, which occurs rapidly after ICU admission and leads to poor clinical outcomes. The extent of atrophy differs among muscles as follows: upper limb: 0.7%-2.4% per day, lower limb: 1.2%-3.0% per day, and diaphragm 1.1%-10.9% per day. This atrophy is caused by numerous risk factors such as inflammation, immobilization, nutrition, hyperglycemia, medication, and mechanical ventilation. Muscle atrophy should be monitored noninvasively by ultrasound at the bedside. Ultrasound can assess muscle mass in most patients, although physical assessment is limited to almost half of all critically ill patients due to impaired consciousness. Important strategies to prevent muscle atrophy are physical therapy and electrical muscular stimulation. Electrical muscular stimulation is especially effective for patients with limited physical therapy. Regarding diaphragm atrophy, mechanical ventilation should be adjusted to maintain spontaneous breathing and titrate inspiratory pressure. However, the sufficient timing and amount of nutritional intervention remain unclear. Further investigation is necessary to prevent muscle atrophy and improve long-term outcomes. J. Med. Invest. 67 : 1-10, February, 2020.
Collapse
Affiliation(s)
- Nobuto Nakanishi
- Emergency and Critical Care Medicine, Tokushima University Hospital, 2-50-1 Kuramoto, Tokushima 770-8503, Japan
| | - Takuya Takashima
- Emergency and Critical Care Medicine, Tokushima University Hospital, 2-50-1 Kuramoto, Tokushima 770-8503, Japan
| | - Jun Oto
- Emergency and Disaster Medicine, Tokushima University Hospital, 2-50-1 Kuramoto, Tokushima 770-8503, Japan
| |
Collapse
|
27
|
Distinct roles of UVRAG and EGFR signaling in skeletal muscle homeostasis. Mol Metab 2021; 47:101185. [PMID: 33561544 PMCID: PMC7921879 DOI: 10.1016/j.molmet.2021.101185] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 11/20/2022] Open
Abstract
Objective Autophagy is a physiological self-eating process that can promote cell survival or activate cell death in eukaryotic cells. In skeletal muscle, it is important for maintaining muscle mass and function that is critical to sustain mobility and regulate metabolism. The UV radiation resistance-associated gene (UVRAG) regulates the early stages of autophagy and autophagosome maturation and plays a key role in endosomal trafficking. This study investigated the essential in vivo role of UVRAG in skeletal muscle biology. Methods To determine the role of UVRAG in skeletal muscle in vivo, we generated muscle-specific UVRAG knockout mice using the Cre-loxP system driven by Myf6 promoter that is exclusively expressed in skeletal muscle. Myf6-Cre+ UVRAGfl/fl (M-UVRAG−/−) mice were compared to littermate Myf6-Cre+ UVRAG+/+ (M-UVRAG+/+) controls under basal conditions on a normal chow diet. Body composition, muscle function, and mitochondria morphology were assessed in muscles of the WT and KO mice at 24 weeks of age. Results M-UVRAG−/− mice developed accelerated sarcopenia and impaired muscle function compared to M-UVRAG+/+ littermates at 24 weeks of age. Interestingly, these mice displayed improved glucose tolerance and increased energy expenditure likely related to upregulated Fgf21, a marker of muscle dysfunction. Skeletal muscle of the M-UVRAG−/− mice showed altered mitochondrial morphology with increased mitochondrial fission and EGFR accumulation reflecting defects in endosomal trafficking. To determine whether increased EGFR signaling had a causal role in muscle dysfunction, the mice were treated with an EGFR inhibitor, gefitinib, which partially restored markers of muscle and mitochondrial deregulation. Conversely, constitutively active EGFR transgenic expression in UVRAG-deficient muscle led to further detrimental effects with non-overlapping distinct defects in muscle function, with EGFR activation affecting the muscle fiber type whereas UVRAG deficiency impaired mitochondrial homeostasis. Conclusions Our results show that both UVRAG and EGFR signaling are critical for maintaining muscle mass and function with distinct mechanisms in the differentiation pathway. Deletion of UVRAG in skeletal muscle accelerates muscle wasting with aging. UVRAG in skeletal muscle regulates mitochondrial dynamics and function. UVRAG deletion leads to EGFR accumulation in skeletal muscle. Constitutively active EGFR contributes to muscle fiber type determination.
Collapse
|
28
|
Ogawa H, Nakajima T, Shibasaki I, Nasuno T, Kaneda H, Katayanagi S, Ishizaka H, Mizushima Y, Uematsu A, Yasuda T, Yagi H, Toyoda S, Hortobágyi T, Mizushima T, Inoue T, Fukuda H. Low-Intensity Resistance Training with Moderate Blood Flow Restriction Appears Safe and Increases Skeletal Muscle Strength and Size in Cardiovascular Surgery Patients: A Pilot Study. J Clin Med 2021; 10:547. [PMID: 33540756 PMCID: PMC7867301 DOI: 10.3390/jcm10030547] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/23/2021] [Accepted: 01/28/2021] [Indexed: 11/16/2022] Open
Abstract
We examined the safety and the effects of low-intensity resistance training (RT) with moderate blood flow restriction (KAATSU RT) on muscle strength and size in patients early after cardiac surgery. Cardiac patients (age 69.6 ± 12.6 years, n = 21, M = 18) were randomly assigned to the control (n = 10) and the KAATSU RT group (n = 11). All patients had received a standard aerobic cardiac rehabilitation program. The KAATSU RT group additionally executed low-intensity leg extension and leg press exercises with moderate blood flow restriction twice a week for 3 months. RT-intensity and volume were increased gradually. We evaluated the anterior mid-thigh thickness (MTH), skeletal muscle mass index (SMI), handgrip strength, knee extensor strength, and walking speed at baseline, 5-7 days after cardiac surgery, and after 3 months. A physician monitored the electrocardiogram, rate of perceived exertion, and the color of the lower limbs during KAATSU RT. Creatine phosphokinase (CPK) and D-dimer were measured at baseline and after 3 months. There were no side effects during KAATSU RT. CPK and D-dimer were normal after 3 months. MTH, SMI, walking speed, and knee extensor strength increased after 3 months with KAATSU RT compared with baseline. Relatively low vs. high physical functioning patients tended to increase physical function more after 3 months with KAATSU RT. Low-intensity KAATSU RT as an adjuvant to standard cardiac rehabilitation can safely increase skeletal muscle strength and size in cardiovascular surgery patients.
Collapse
Affiliation(s)
- Hironaga Ogawa
- Department of Cardiovascular Surgery, School of Medicine, Dokkyo Medical University, Shimotsuga-gun, Tochigi 321-0293, Japan; (H.O.); (I.S.); (H.F.)
| | - Toshiaki Nakajima
- Department of Cardiovascular Medicine, School of Medicine, Dokkyo Medical University, Shimotsuga-gun, Tochigi 321-0293, Japan; (T.N.); (H.K.); (H.Y.); (S.T.); (T.I.)
- Department of Medical KAATSU Training, Dokkyo Medical University, Shimotsuga-gun, Tochigi 321-0293, Japan
| | - Ikuko Shibasaki
- Department of Cardiovascular Surgery, School of Medicine, Dokkyo Medical University, Shimotsuga-gun, Tochigi 321-0293, Japan; (H.O.); (I.S.); (H.F.)
| | - Takahisa Nasuno
- Department of Cardiovascular Medicine, School of Medicine, Dokkyo Medical University, Shimotsuga-gun, Tochigi 321-0293, Japan; (T.N.); (H.K.); (H.Y.); (S.T.); (T.I.)
| | - Hiroyuki Kaneda
- Department of Cardiovascular Medicine, School of Medicine, Dokkyo Medical University, Shimotsuga-gun, Tochigi 321-0293, Japan; (T.N.); (H.K.); (H.Y.); (S.T.); (T.I.)
| | - Satoshi Katayanagi
- Department of Rehabilitation, Dokkyo Medical University Hospital, Shimotsuga-gun, Tochigi 321-0293, Japan; (S.K.); (H.I.); (Y.M.); (T.M.)
| | - Hayato Ishizaka
- Department of Rehabilitation, Dokkyo Medical University Hospital, Shimotsuga-gun, Tochigi 321-0293, Japan; (S.K.); (H.I.); (Y.M.); (T.M.)
| | - Yuta Mizushima
- Department of Rehabilitation, Dokkyo Medical University Hospital, Shimotsuga-gun, Tochigi 321-0293, Japan; (S.K.); (H.I.); (Y.M.); (T.M.)
| | - Azusa Uematsu
- Department of Health and Sport Sciences, Premedical Sciences, Dokkyo Medical University, Shimotsuga-gun, Tochigi 321-0293, Japan;
| | - Tomohiro Yasuda
- School of Nursing, Seirei Christopher University, Hamamatsu, Shizuoka 433-8558, Japan;
| | - Hiroshi Yagi
- Department of Cardiovascular Medicine, School of Medicine, Dokkyo Medical University, Shimotsuga-gun, Tochigi 321-0293, Japan; (T.N.); (H.K.); (H.Y.); (S.T.); (T.I.)
| | - Shigeru Toyoda
- Department of Cardiovascular Medicine, School of Medicine, Dokkyo Medical University, Shimotsuga-gun, Tochigi 321-0293, Japan; (T.N.); (H.K.); (H.Y.); (S.T.); (T.I.)
| | - Tibor Hortobágyi
- University Medical Center Groningen, University of Groningen, Groningen, 9713 GZ Groningen, The Netherlands;
| | - Takashi Mizushima
- Department of Rehabilitation, Dokkyo Medical University Hospital, Shimotsuga-gun, Tochigi 321-0293, Japan; (S.K.); (H.I.); (Y.M.); (T.M.)
| | - Teruo Inoue
- Department of Cardiovascular Medicine, School of Medicine, Dokkyo Medical University, Shimotsuga-gun, Tochigi 321-0293, Japan; (T.N.); (H.K.); (H.Y.); (S.T.); (T.I.)
| | - Hirotsugu Fukuda
- Department of Cardiovascular Surgery, School of Medicine, Dokkyo Medical University, Shimotsuga-gun, Tochigi 321-0293, Japan; (H.O.); (I.S.); (H.F.)
| |
Collapse
|
29
|
dos Santos TD, Pereira SN, Portela LOC, Pereira MB, Pasqualoto AS, da Silveira AF, Martins de Albuquerque I. Influence of inspiratory muscle strength on exercise capacity before and after cardiac rehabilitation. INTERNATIONAL JOURNAL OF THERAPY AND REHABILITATION 2021. [DOI: 10.12968/ijtr.2020.0027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Background/Aims Coronary artery bypass grafting is a complex procedure that triggers a series of clinical and functional complications. The reduction of inspiratory muscle strength that persists during the late postoperative period has been suggested as an important determinant of functional capacity after coronary artery bypass grafting. The aim of this study was to investigate whether inspiratory muscle strength, functional capacity and quality of life are determinants of exercise capacity before and after a short-term phase II cardiac rehabilitation programme in patients who have had coronary artery bypass graft surgery. Methods A prospective quasi-experimental study was undertaken with 20 patients who had recevied coronary artery bypass surgery. All patients completed a short-term, moderate-to-high intensity inspiratory muscle training programme, followed by aerobic and resistance exercise, two times a week for 12 weeks, totalling 24 sessions, under the direct supervision of a physical therapist. Results Pre-intervention, peak oxygen consumption (peak VO2) was associated with maximum inspiratory pressure (β=0.037; 95% confidence interval 0.01–0.06; P=0.002). Post-intervention, peak VO2 was associated with maximum inspiratory pressure (β=0.03; 95% confidence interval 0.007–0.053; P=0.014) and the 6-Minute Walk Test (β=0.007; 95% confidence interval, 0.001–0.013; P=0.024). Conclusions Inspiratory muscle strength influences exercise capacity before and after a short-term cardiac rehabilitation programme in patients who have had coronary artery bypass graft surgery.
Collapse
Affiliation(s)
- Tamires Daros dos Santos
- Human Communication Disorders Graduate Program, Universidade Federal de Santa Maria, Rio Grande do Sul, Brazil
| | - Sergio Nunes Pereira
- Empresa Brasileira de Serviços Hospitalares, Cardiology Service of Hospital Universitário de Santa Maria, Rio Grande do Sul, Brazil
| | - Luiz Osório Cruz Portela
- Laboratory of Performance in Simulated Environment, Department of Collective Sports, Universidade Federal de Santa Maria, Rio Grande do Sul, Brazil
| | - Marisa Bastos Pereira
- Empresa Brasileira de Serviços Hospitalares, Hospital Universitário de Santa Maria, Rio Grande do Sul, Brazil
| | - Adriane Schmidt Pasqualoto
- Human Communication Disorders Graduate Program, Universidade Federal de Santa Maria, Rio Grande do Sul, Brazil
| | - Aron Ferreira da Silveira
- Human Communication Disorders Graduate Program, Universidade Federal de Santa Maria, Rio Grande do Sul, Brazil
| | - Isabella Martins de Albuquerque
- Functional Rehabilitation Graduate Program, Department of Physiotherapy and Rehabilitation, Universidade Federal de Santa Maria, Rio Grande do Sul, Brazil
| |
Collapse
|
30
|
Yazawa H, Fukuda T, Kaneda H, Waku R, Sakuma M, Matsumoto A, Toyoda S, Abe S, Nakamura F, Inoue T, Nakajima T. Association of serum growth differentiation factor-15 with eGFR and hemoglobin in healthy older females. IJC HEART & VASCULATURE 2020; 31:100651. [PMID: 33134478 PMCID: PMC7585132 DOI: 10.1016/j.ijcha.2020.100651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/20/2020] [Accepted: 09/28/2020] [Indexed: 11/18/2022]
Abstract
Purpose Anemia and sarcopenia associated with renal dysfunction caused by cytokine imbalance can contribute to decreased quality of life for older individuals. Growth differentiation factor-15 (GDF-15) is associated with renal dysfunction, although whether it is related to anemia or sarcopenia is unclear. In this study we examined the association of GDF-15 with renal function, hemoglobin and sarcopenia in healthy community-dwelling older females in Japan. Methods A total of 66 healthy older community-dwelling females (age: 75.8 ± 6.2 years) were enrolled for this study. Skeletal muscle mass index was determined by bioelectrical impedance analysis. Hand-grip strength and walking speed were also assessed. Serum GDF-15 concentration was determined by enzyme-linked immunosorbent assay and both hemoglobin (Hb) level and estimated glomerular filtration rate (eGFR) were measured. Results Serum GDF-15 levels positively correlated with age but negatively correlated with eGFR and walking speed. In multiple regression analysis, eGFR and hemoglobin (Hb) were independent variables to predict serum GDF-15 levels, even after adjusting for age and body mass index (eGFR: β = −0.423, p < 0.001; Hb: β = −0.363, p = 0.004). Serum GDF-15 level was an independent variable to predict eGFR and Hb. Conclusions Both Hb and eGFR are predictors for serum GDF-15 concentration in healthy older females. In these community-dwelling older females, renal dysfunction via GDF-15 may be accompanied by anemia, but not sarcopenia.
Collapse
|
31
|
Intensive Care Unit-Acquired Weakness: Not just Another Muscle Atrophying Condition. Int J Mol Sci 2020; 21:ijms21217840. [PMID: 33105809 PMCID: PMC7660068 DOI: 10.3390/ijms21217840] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/18/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023] Open
Abstract
Intensive care unit-acquired weakness (ICUAW) occurs in critically ill patients stemming from the critical illness itself, and results in sustained disability long after the ICU stay. Weakness can be attributed to muscle wasting, impaired contractility, neuropathy, and major pathways associated with muscle protein degradation such as the ubiquitin proteasome system and dysregulated autophagy. Furthermore, it is characterized by the preferential loss of myosin, a distinct feature of the condition. While many risk factors for ICUAW have been identified, effective interventions to offset these changes remain elusive. In addition, our understanding of the mechanisms underlying the long-term, sustained weakness observed in a subset of patients after discharge is minimal. Herein, we discuss the various proposed pathways involved in the pathophysiology of ICUAW, with a focus on the mechanisms underpinning skeletal muscle wasting and impaired contractility, and the animal models used to study them. Furthermore, we will explore the contributions of inflammation, steroid use, and paralysis to the development of ICUAW and how it pertains to those with the corona virus disease of 2019 (COVID-19). We then elaborate on interventions tested as a means to offset these decrements in muscle function that occur as a result of critical illness, and we propose new strategies to explore the molecular mechanisms of ICUAW, including serum-related biomarkers and 3D human skeletal muscle culture models.
Collapse
|
32
|
Sumin AN, Oleinik PA, Bezdenezhnykh AV, Ivanova AV. Neuromuscular electrical stimulation in early rehabilitation of patients with postoperative complications after cardiovascular surgery: A randomized controlled trial. Medicine (Baltimore) 2020; 99:e22769. [PMID: 33080746 PMCID: PMC7572009 DOI: 10.1097/md.0000000000022769] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND To evaluate the effectiveness of neuromuscular electrical stimulation (NMES) in early rehabilitation of patients with postoperative complications after cardiovascular surgery. METHODS 37 patients (25 men and 12 women) aged 45 to 70 years with postoperative complications after cardiovascular surgery were included in the study. Eighteen patients underwent NMES daily since postoperative day 3 until discharge in addition to standard rehabilitation program (NMES group), and 19 patients underwent standard rehabilitation program only (non-NMES group). The primary outcome was the knee extensors strength at discharge in NMES group and in control. Secondary outcomes were the handgrip strength, knee flexor strength, and cross-sectional area (CSA) of the quadriceps femoris in groups at discharge. RESULTS Baseline characteristics were not different between the groups. Knee extensors strength at discharge was significantly higher in the NMES group (28.1 [23.8; 36.2] kg on the right and 27.45 [22.3; 33.1] kg on the left) than in the non-NMES group (22.3 [20.1; 27.1] and 22.5 [20.1; 25.9] kg, respectively; P < .001). Handgrip strength, knee flexor strength, quadriceps CSA, and 6 minute walk distance at discharge in the groups had no significant difference. CONCLUSIONS This pilot study shows a beneficial effect of NMES on muscle strength in patients with complications after cardiovascular surgery. The use of NMES showed no effect on strength of non-stimulated muscle, quadriceps CSA, and distance of 6-minute walk test at discharge.Further blind randomized controlled trials should be performed with emphasis on the effectiveness of NEMS in increasing muscle strength and structure in these patients.
Collapse
|
33
|
Kemp PR, Paul R, Hinken AC, Neil D, Russell A, Griffiths MJ. Metabolic profiling shows pre-existing mitochondrial dysfunction contributes to muscle loss in a model of ICU-acquired weakness. J Cachexia Sarcopenia Muscle 2020; 11:1321-1335. [PMID: 32677363 PMCID: PMC7567140 DOI: 10.1002/jcsm.12597] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 05/01/2020] [Accepted: 05/27/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Surgery can lead to significant muscle loss, which increases recovery time and associates with increased mortality. Muscle loss is not uniform, with some patients losing significant muscle mass and others losing relatively little, and is likely to be accompanied by marked changes in circulating metabolites and proteins. Determining these changes may help understand the variability and identify novel therapeutic approaches or markers of muscle wasting. METHODS To determine the association between muscle loss and circulating metabolites, we studied 20 male patients (median age, 70.5, interquartile range, 62.5-75) undergoing aortic surgery. Muscle mass was determined before and 7 days after surgery and blood samples were taken before surgery, and 1, 3, and 7 days after surgery. The circulating metabolome and proteome were determined using commercial services (Metabolon and SomaLogic). RESULTS Ten patients lost more than 10% of the cross-sectional area of the rectus femoris (RFCSA ) and were defined as wasting. Metabolomic analysis showed that 557 circulating metabolites were altered following surgery (q < 0.05) in the whole cohort and 104 differed between wasting and non-wasting patients (q < 0.05). Weighted genome co-expression network analysis, identified clusters of metabolites, both before and after surgery, that associated with muscle mass and function (r = -0.72, p = 6 × 10-4 with RFCSA on Day 0, P = 3 × 10-4 with RFCSA on Day 7 and r = -0.73, P = 5 × 10-4 with hand-grip strength on Day 7). These clusters were mainly composed of acyl carnitines and dicarboxylates indicating that pre-existing mitochondrial dysfunction contributes to muscle loss following surgery. Surgery elevated cortisol to the same extent in wasting and non-wasting patients, but the cortisol:cortisone ratio was higher in the wasting patients (Day 3 P = 0.043 and Day 7 P = 0.016). Wasting patients also showed a greater increase in circulating nucleotides 3 days after surgery. Comparison of the metabolome with inflammatory markers identified by SOMAscan® showed that pre-surgical mitochondrial dysfunction was associated with growth differentiation factor 15 (GDF-15) (r = 0.79, P = 2 × 10-4 ) and that GDF-15, interleukin (IL)-8), C-C motif chemokine 23 (CCL-23), and IL-15 receptor subunit alpha (IL-15RA) contributed to metabolic changes in response to surgery. CONCLUSIONS We show that pre-existing mitochondrial dysfunction and reduced cortisol inactivation contribute to muscle loss following surgery. The data also implicate GDF-15 and IL-15RA in mitochondrial dysfunction.
Collapse
Affiliation(s)
- Paul R Kemp
- Cardiovascular and Respiratory Interface Section, National Heart and Lung Institute, Imperial College London, South Kensington Campus, London, UK
| | - Richard Paul
- Cardiovascular and Respiratory Interface Section, National Heart and Lung Institute, Imperial College London, South Kensington Campus, London, UK.,Department of Intensive Care, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Aaron C Hinken
- Muscle Metabolism Discovery Performance Unit, GlaxoSmithKline, Inc, Collegeville, PA, USA
| | - David Neil
- Muscle Metabolism Discovery Performance Unit, GlaxoSmithKline, Inc, Collegeville, PA, USA
| | - Alan Russell
- Muscle Metabolism Discovery Performance Unit, GlaxoSmithKline, Inc, Collegeville, PA, USA.,Edgewise Therapeutics, Boulder, CO, USA
| | - Mark J Griffiths
- Cardiovascular and Respiratory Interface Section, National Heart and Lung Institute, Imperial College London, South Kensington Campus, London, UK
| |
Collapse
|
34
|
Physical Exercise and Myokines: Relationships with Sarcopenia and Cardiovascular Complications. Int J Mol Sci 2020; 21:ijms21103607. [PMID: 32443765 PMCID: PMC7279354 DOI: 10.3390/ijms21103607] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/14/2020] [Accepted: 05/19/2020] [Indexed: 12/11/2022] Open
Abstract
Skeletal muscle is capable of secreting different factors in order to communicate with other tissues. These mediators, the myokines, show potentially far-reaching effects on non-muscle tissues and can provide a molecular interaction between muscle and body physiology. Sarcopenia is a chronic degenerative neuromuscular disease closely related to cardiomyopathy and chronic heart failure, which influences the production and release of myokines. Our objective was to explore the relationship between myokines, sarcopenia, and cardiovascular diseases (CVD). The autocrine, paracrine, and endocrine actions of myokines include regulation of energy expenditure, insulin sensitivity, lipolysis, free fatty acid oxidation, adipocyte browning, glycogenolysis, glycogenesis, and general metabolism. A sedentary lifestyle accelerates the aging process and is a risk factor for developing sarcopenia, metabolic syndrome, and CVD. Increased adipose tissue resulting from the decrease in muscle mass in patients with sarcopenia may also be involved in the pathology of CVD. Myokines are protagonists in the complex condition of sarcopenia, which is associated with adverse clinical outcomes in patients with CVD. The discovery of new pathways and the link between myokines and CVD remain a cornerstone toward multifaceted interventions and perhaps the minimization of the damage resulting from muscle loss induced by factors such as atherosclerosis.
Collapse
|
35
|
Verhamme FM, Freeman CM, Brusselle GG, Bracke KR, Curtis JL. GDF-15 in Pulmonary and Critical Care Medicine. Am J Respir Cell Mol Biol 2020; 60:621-628. [PMID: 30633545 DOI: 10.1165/rcmb.2018-0379tr] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
GDF-15 (growth differentiation factor 15) acts both as a stress-induced cytokine with diverse actions at different body sites and as a cell-autonomous regulator linked to cellular senescence and apoptosis. For multiple reasons, this divergent transforming growth factor-β molecular superfamily member should be better known to pulmonary researchers and clinicians. In ambulatory individuals, GDF-15 concentrations in peripheral blood are an established predictive biomarker of all-cause mortality and of adverse cardiovascular events. Concentrations upon admission of critically ill patients (without or with sepsis) correlate with organ dysfunction and independently predict short- and long-term mortality risk. GDF-15 is a major downstream mediator of p53 activation, but it can also be induced independently of p53, notably by nonsteroidal antiinflammatory agents. GDF-15 blood concentrations are markedly elevated in adults and children with pulmonary hypertension. Concentrations are also increased in chronic obstructive pulmonary disease, in which they contribute to mucus hypersecretion, airway epithelial cell senescence, and impaired antiviral defenses, which together with murine data support a role for GDF-15 in chronic obstructive pulmonary disease pathogenesis and progression. This review summarizes biological and clinical data on GDF-15 relevant to pulmonary and critical care medicine. We highlight the recent discovery of a central nervous system receptor for GDF-15, GFRAL (glial cell line-derived neurotrophic factor family receptor-α-like), an important advance with potential for novel treatments for obesity and cachexia. We also describe limitations and controversies in the existing literature, and we delineate research questions that must be addressed to determine whether GDF-15 can be therapeutically manipulated in other clinical settings.
Collapse
Affiliation(s)
- Fien M Verhamme
- 1 Department of Respiratory Medicine, Laboratory for Translational Research in Obstructive Pulmonary Diseases, Ghent University Hospital, Ghent, Belgium
| | - Christine M Freeman
- 2 Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, and.,3 Graduate Program in Immunology, University of Michigan Medical School, Ann Arbor, Michigan.,4 VA Ann Arbor Healthcare System, Ann Arbor, Michigan; and
| | - Guy G Brusselle
- 1 Department of Respiratory Medicine, Laboratory for Translational Research in Obstructive Pulmonary Diseases, Ghent University Hospital, Ghent, Belgium.,5 Department of Epidemiology and.,6 Department of Respiratory Medicine, Erasmus Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Ken R Bracke
- 1 Department of Respiratory Medicine, Laboratory for Translational Research in Obstructive Pulmonary Diseases, Ghent University Hospital, Ghent, Belgium
| | - Jeffrey L Curtis
- 2 Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, and.,3 Graduate Program in Immunology, University of Michigan Medical School, Ann Arbor, Michigan.,4 VA Ann Arbor Healthcare System, Ann Arbor, Michigan; and
| |
Collapse
|
36
|
Weinel LM, Summers MJ, Chapple LA. Ultrasonography to measure quadriceps muscle in critically ill patients: A literature review of reported methodologies. Anaesth Intensive Care 2019; 47:423-434. [DOI: 10.1177/0310057x19875152] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Muscle wasting in the intensive care unit (ICU) is common and may impair functional recovery. Ultrasonography (US) presents a modern solution to quantify skeletal muscle size and monitor muscle wasting. However, no standardised methodology for the conduct of ultrasound-derived quadriceps muscle layer thickness or cross-sectional area in this population exists. The aim of this study was to compare methodologies reported for the measurement of quadriceps muscle layer thickness (MLT) and cross-sectional area (CSA) using US in critically ill patients. Databases PubMed, Ovid, Embase, and CINAHL were searched for original research publications that reported US-derived quadriceps MLT and/or CSA conducted in critically ill adult patients. Data were extracted from eligible studies on parameters relating to US measurement including anatomical location, patient positioning, operator technique and image analysis. It was identified that there was a clear lack of reported detail and substantial differences in the reported methodology used for all parameters. A standardised protocol and minimum reporting standards for US-derived measurement of quadriceps muscle size in ICU is required to allow for consistent measurement techniques and hence interpretation of results.
Collapse
Affiliation(s)
- Luke M Weinel
- Department of Critical Care Services, Royal Adelaide Hospital, Adelaide, Australia
- Discipline of Acute Care Medicine, University of Adelaide, Adelaide, Australia
| | - Matthew J Summers
- Department of Critical Care Services, Royal Adelaide Hospital, Adelaide, Australia
- Discipline of Acute Care Medicine, University of Adelaide, Adelaide, Australia
| | - Lee-Anne Chapple
- Department of Critical Care Services, Royal Adelaide Hospital, Adelaide, Australia
- Discipline of Acute Care Medicine, University of Adelaide, Adelaide, Australia
| |
Collapse
|
37
|
Nakajima T, Shibasaki I, Sawaguchi T, Haruyama A, Kaneda H, Nakajima T, Hasegawa T, Arikawa T, Obi S, Sakuma M, Ogawa H, Toyoda S, Nakamura F, Abe S, Fukuda H, Inoue T. Growth Differentiation Factor-15 (GDF-15) is a Biomarker of Muscle Wasting and Renal Dysfunction in Preoperative Cardiovascular Surgery Patients. J Clin Med 2019; 8:jcm8101576. [PMID: 31581569 PMCID: PMC6832285 DOI: 10.3390/jcm8101576] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 09/22/2019] [Accepted: 09/25/2019] [Indexed: 12/12/2022] Open
Abstract
Frailty and sarcopenia increase the risk of complications and mortality when invasive treatment such as cardiac surgery is performed. Growth differentiation factor-15 (GDF-15) involves various pathophysiological conditions including renal dysfunction, heart failure and cachexia. We investigated the pathophysiological roles of preoperative GDF-15 levels in cardiovascular surgery patients. Preoperative skeletal muscle index (SMI) determined by bioelectrical impedance analysis, hand-grip strength, 4 m gait speed, and anterior thigh muscle thickness (TMth) measured by echocardiography were assessed in 72 patients (average age 69.9 years) who underwent cardiovascular surgery. The preoperative serum GDF-15 concentration was determined by enzyme-linked immunosorbent assay. Circulating GDF-15 level was correlated with age, brain natriuretic peptide, and estimated glomerular filtration rate (eGFR). It was also negatively correlated with SMI, hand-grip strength, and anterior TMth. In multivariate analysis, eGFR and anterior TMth were the independent determinants of GDF-15 concentration even after adjusting for age, sex, and body mass index. Alternatively, the GDF-15 level was an independent determinant of eGFR and anterior TMth. We concluded that preoperative GDF-15 levels reflect muscle wasting as well as renal dysfunction in preoperative cardiovascular surgery patients. GDF-15 may be a novel biomarker for identify high-risk patients with muscle wasting and renal dysfunction before cardiovascular surgery.
Collapse
Affiliation(s)
- Toshiaki Nakajima
- Department of Cardiovascular Medicine, School of Medicine, Dokkyo Medical University, Shimotsuga-gun, Tochigi 321-0293, Japan.
| | - Ikuko Shibasaki
- Department of Cardiovascular Surgery, School of Medicine, Dokkyo Medical University, Shimotsuga-gun, Tochigi 321-0293, Japan.
| | - Tatsuya Sawaguchi
- Department of Cardiovascular Medicine, School of Medicine, Dokkyo Medical University, Shimotsuga-gun, Tochigi 321-0293, Japan.
| | - Akiko Haruyama
- Department of Cardiovascular Medicine, School of Medicine, Dokkyo Medical University, Shimotsuga-gun, Tochigi 321-0293, Japan.
| | - Hiroyuki Kaneda
- Department of Cardiovascular Medicine, School of Medicine, Dokkyo Medical University, Shimotsuga-gun, Tochigi 321-0293, Japan.
| | - Takafumi Nakajima
- Department of Cardiovascular Medicine, School of Medicine, Dokkyo Medical University, Shimotsuga-gun, Tochigi 321-0293, Japan.
| | - Takaaki Hasegawa
- Department of Cardiovascular Medicine, School of Medicine, Dokkyo Medical University, Shimotsuga-gun, Tochigi 321-0293, Japan.
| | - Takuo Arikawa
- Department of Cardiovascular Medicine, School of Medicine, Dokkyo Medical University, Shimotsuga-gun, Tochigi 321-0293, Japan.
| | - Syotaro Obi
- Department of Cardiovascular Medicine, School of Medicine, Dokkyo Medical University, Shimotsuga-gun, Tochigi 321-0293, Japan.
| | - Masashi Sakuma
- Department of Cardiovascular Medicine, School of Medicine, Dokkyo Medical University, Shimotsuga-gun, Tochigi 321-0293, Japan.
| | - Hironaga Ogawa
- Department of Cardiovascular Surgery, School of Medicine, Dokkyo Medical University, Shimotsuga-gun, Tochigi 321-0293, Japan.
| | - Shigeru Toyoda
- Department of Cardiovascular Medicine, School of Medicine, Dokkyo Medical University, Shimotsuga-gun, Tochigi 321-0293, Japan.
| | - Fumitaka Nakamura
- Third Department of Internal Medicine, Teikyo University, Chiba Medical Center, Ichihara, Chiba 299-0111, Japan.
| | - Shichiro Abe
- Department of Cardiovascular Medicine, School of Medicine, Dokkyo Medical University, Shimotsuga-gun, Tochigi 321-0293, Japan.
| | - Hirotsugu Fukuda
- Department of Cardiovascular Surgery, School of Medicine, Dokkyo Medical University, Shimotsuga-gun, Tochigi 321-0293, Japan.
| | - Teruo Inoue
- Department of Cardiovascular Medicine, School of Medicine, Dokkyo Medical University, Shimotsuga-gun, Tochigi 321-0293, Japan.
| |
Collapse
|
38
|
Rosenberg BJ, Hirano M, Quinzii CM, Colantuoni E, Needham DM, Lederer DJ, Baldwin MR. Growth differentiation factor-15 as a biomarker of strength and recovery in survivors of acute respiratory failure. Thorax 2019; 74:1099-1101. [PMID: 31534031 DOI: 10.1136/thoraxjnl-2019-213621] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/08/2019] [Accepted: 08/31/2019] [Indexed: 01/31/2023]
Abstract
Muscle mitochondrial dysfunction is implicated in intensive care unit-acquired weakness, but there is no serum biomarker of muscle mitochondrial function for critical illness survivors. Higher serum growth differentiation factor-15 (GDF-15) is a biomarker of inherited mitochondrial myopathy disease and is associated with mortality in several age-related diseases. Among 142 older (age ≥ 65 years) survivors of acute respiratory failure, we found that higher serum GDF-15 measured during the week prior to hospital discharge was cross-sectionally associated with weaker diaphragm, limb and hand-grip strength, and longitudinally associated with lower rates of functional recovery over 6 months, independent of age, sex, pre-existing disability, comorbidity, frailty, Acute Physiology and Chronic Health Evaluation II scores and concurrent interleukin-6 levels.
Collapse
Affiliation(s)
- Brian J Rosenberg
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care, Columbia University, New York, New York, USA
| | - Michio Hirano
- Department of Neurology, Division of Neuromuscular Disorders, Columbia University, New York, NY, United States
| | - Catarina M Quinzii
- Department of Neurology, Division of Neuromuscular Disorders, Columbia University, New York, NY, United States
| | - Elizabeth Colantuoni
- Outcomes After Critical Illness and Surgery (OACIS) Group, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Biostatistics, Johns Hopkins University - Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Dale M Needham
- Outcomes After Critical Illness and Surgery (OACIS) Group, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - David J Lederer
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care, Columbia University, New York, New York, USA
| | - Matthew R Baldwin
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care, Columbia University, New York, New York, USA
| |
Collapse
|
39
|
Piccirillo R. Exercise-Induced Myokines With Therapeutic Potential for Muscle Wasting. Front Physiol 2019; 10:287. [PMID: 30984014 PMCID: PMC6449478 DOI: 10.3389/fphys.2019.00287] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/04/2019] [Indexed: 12/26/2022] Open
Abstract
Skeletal muscle is a highly vascularized tissue that can secrete proteins called myokines. These muscle-secreted factors exert biological functions in muscle itself (autocrine effect) or on short- or long-distant organs (paracrine/endocrine effects) and control processes such as metabolism, angiogenesis, or inflammation. Widely differing diseases ranging from genetic myopathies to cancers are emerging as causing dysregulated secretion of myokines from skeletal muscles. Myokines are also involved in the control of muscle size and may be important to be restored to normal levels to alleviate muscle wasting in various conditions, such as cancer, untreated diabetes, chronic obstructive pulmonary disease, aging, or heart failure. Interestingly, many myokines are induced by exercise (muscle-derived exerkines) and some even by specific types of physical activity, but more studies are needed on this issue. Most exercise-induced myokines travel throughout the body by means of extracellular vesicles. Restoring myokines by physical activity may be added to the list of mechanisms by which exercise exerts preventative or curative effects against a large number of diseases, including the deleterious muscle wasting they may cause. Extending our understanding about which myokines could be usefully restored in certain diseases might help in prescribing more tailored exercise or myokine-based drugs.
Collapse
Affiliation(s)
- Rosanna Piccirillo
- Department of Neurosciences, Mario Negri Institute for Pharmacological Research IRCCS, Milan, Italy
| |
Collapse
|
40
|
Garfield BE, Crosby A, Shao D, Yang P, Read C, Sawiak S, Moore S, Parfitt L, Harries C, Rice M, Paul R, Ormiston ML, Morrell NW, Polkey MI, Wort SJ, Kemp PR. Growth/differentiation factor 15 causes TGFβ-activated kinase 1-dependent muscle atrophy in pulmonary arterial hypertension. Thorax 2019; 74:164-176. [PMID: 30554141 PMCID: PMC6467240 DOI: 10.1136/thoraxjnl-2017-211440] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 09/24/2018] [Accepted: 10/01/2018] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Skeletal muscle dysfunction is a clinically important complication of pulmonary arterial hypertension (PAH). Growth/differentiation factor 15 (GDF-15), a prognostic marker in PAH, has been associated with muscle loss in other conditions. We aimed to define the associations of GDF-15 and muscle wasting in PAH, to assess its utility as a biomarker of muscle loss and to investigate its downstream signalling pathway as a therapeutic target. METHODS GDF-15 levels and measures of muscle size and strength were analysed in the monocrotaline (MCT) rat, Sugen/hypoxia mouse and in 30 patients with PAH. In C2C12 myotubes the downstream targets of GDF-15 were identified. The pathway elucidated was then antagonised in vivo. RESULTS Circulating GDF-15 levels correlated with tibialis anterior (TA) muscle fibre diameter in the MCT rat (Pearson r=-0.61, p=0.003). In patients with PAH, plasma GDF-15 levels of <564 pg/L predicted those with preserved muscle strength with a sensitivity and specificity of ≥80%. In vitro GDF-15 stimulated an increase in phosphorylation of TGFβ-activated kinase 1 (TAK1). Antagonising TAK1, with 5(Z)-7-oxozeaenol, in vitro and in vivo led to an increase in fibre diameter and a reduction in mRNA expression of atrogin-1 in both C2C12 cells and in the TA of animals who continued to grow. Circulating GDF-15 levels were also reduced in those animals which responded to treatment. CONCLUSIONS Circulating GDF-15 is a biomarker of muscle loss in PAH that is responsive to treatment. TAK1 inhibition shows promise as a method by which muscle atrophy may be directly prevented in PAH. TRIAL REGISTRATION NUMBER NCT01847716; Results.
Collapse
Affiliation(s)
- Benjamin E Garfield
- National Heart and Lung Institute, Imperial College London, London, UK
- National Pulmonary Hypertension Service, Royal Brompton Hospital, London, UK
| | - Alexi Crosby
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Dongmin Shao
- National Heart and Lung Institute, Imperial College London, London, UK
- National Pulmonary Hypertension Service, Royal Brompton Hospital, London, UK
| | - Peiran Yang
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Cai Read
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Steven Sawiak
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Stephen Moore
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Lisa Parfitt
- National Pulmonary Hypertension Service, Royal Brompton Hospital, London, UK
| | - Carl Harries
- National Pulmonary Hypertension Service, Royal Brompton Hospital, London, UK
| | - Martin Rice
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Richard Paul
- NIHR Respiratory Biomedical Research Unit at the Royal Brompton and Harefield NHS Foundation Trust and Imperial College London, London, UK
| | - Mark L Ormiston
- Departments of Biomedical and Molecular Sciences, Medicine and Surgery, Queen's University, Kingston, Ontario, Canada
| | - Nicholas W Morrell
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Michael I Polkey
- NIHR Respiratory Biomedical Research Unit at the Royal Brompton and Harefield NHS Foundation Trust and Imperial College London, London, UK
| | - Stephen John Wort
- National Heart and Lung Institute, Imperial College London, London, UK
- National Pulmonary Hypertension Service, Royal Brompton Hospital, London, UK
| | - Paul R Kemp
- National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
41
|
Tocotrienol-Rich Fraction (TRF) Treatment Promotes Proliferation Capacity of Stress-Induced Premature Senescence Myoblasts and Modulates the Renewal of Satellite Cells: Microarray Analysis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9141343. [PMID: 30774750 PMCID: PMC6350575 DOI: 10.1155/2019/9141343] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/18/2018] [Accepted: 11/12/2018] [Indexed: 12/17/2022]
Abstract
Human skeletal muscle is a vital organ involved in movement and force generation. It suffers from deterioration in mass, strength, and regenerative capacity in sarcopenia. Skeletal muscle satellite cells are involved in the regeneration process in response to muscle loss. Tocotrienol, an isomer of vitamin E, was reported to have a protective effect on cellular aging. This research is aimed at determining the modulation of tocotrienol-rich fraction (TRF) on the gene expressions of stress-induced premature senescence (SIPS) human skeletal muscle myoblasts (CHQ5B). CHQ5B cells were divided into three groups, i.e., untreated young control, SIPS control (treated with 1 mM hydrogen peroxide), and TRF-posttreated groups (24 hours of 50 μg/mL TRF treatment after SIPS induction). The differential gene expressions were assessed using microarray, GSEA, and KEGG pathway analysis. Results showed that TRF treatment significantly regulated the gene expressions, i.e., p53 (RRM2B, SESN1), ErbB (EREG, SHC1, and SHC3), and FoxO (MSTN, SMAD3) signalling pathways in the SIPS myoblasts compared to the SIPS control group (p < 0.05). TRF treatment modulated the proliferation capacity of SIPS myoblasts through regulation of ErbB (upregulation of expression of EREG, SHC1, and SHC3) and FoxO (downregulation of expression of MSTN and SMAD3) and maintaining the renewal of satellite cells through p53 signalling (upregulation of RRM2B and SESN1), MRF, cell cycle, and Wnt signalling pathways.
Collapse
|
42
|
Kemp PR, Griffiths M, Polkey MI. Muscle wasting in the presence of disease, why is it so variable? Biol Rev Camb Philos Soc 2018; 94:1038-1055. [PMID: 30588725 DOI: 10.1111/brv.12489] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 11/22/2018] [Accepted: 11/27/2018] [Indexed: 12/16/2022]
Abstract
Skeletal muscle wasting is a common clinical feature of many chronic diseases and also occurs in response to single acute events. The accompanying loss of strength can lead to significant disability, increased care needs and have profound negative effects on quality of life. As muscle is the most abundant source of amino acids in the body, it appears to function as a buffer for fuel and substrates that can be used to repair damage elsewhere and to feed the immune system. In essence, the fundamentals of muscle wasting are simple: less muscle is made than is broken down. However, although well-described mechanisms modulate muscle protein turnover, significant individual differences in the amount of muscle lost in the presence of a given severity of disease complicate the understanding of underlying mechanisms and suggest that individuals have different sensitivities to signals for muscle loss. Furthermore, the rate at which muscle protein is turned over under normal conditions means that clinically significant muscle loss can occur with changes in the rate of protein synthesis and/or breakdown that are too small to be measurable. Consequently, the changes in expression of factors regulating muscle turnover required to cause a decline in muscle mass are small and, except in cases of rapid wasting, there is no consistent pattern of change in the expression of factors that regulate muscle mass. MicroRNAs are fine tuners of cell phenotype and are therefore ideally suited to cause the subtle changes in proteome required to tilt the balance between synthesis and degradation in a way that causes clinically significant wasting. Herein we present a model in which muscle loss as a consequence of disease in non-muscle tissue is modulated by a set of microRNAs, the muscle expression of which is associated with severity of disease in the non-muscle tissue. These microRNAs alter fundamental biological processes including the synthesis of ribosomes and mitochondria leading to reduced protein synthesis and increased protein breakdown, thereby freeing amino acids from the muscle. We argue that the variability in muscle loss observed in the human population arises from at least two sources. The first is from pre-existing or disease-induced variation in the expression of microRNAs controlling the sensitivity of muscle to the atrophic signal and the second is from the expression of microRNAs from imprinted loci (i.e. only expressed from the maternally or paternally inherited allele) and may control the rate of myonuclear recruitment. In the absence of disease, these factors do not correlate with muscle mass, since there is no challenge to the established balance. However, in the presence of such a challenge, these microRNAs determine the rate of decline for a given disease severity. Together these mechanisms provide novel insight into the loss of muscle mass and its variation in the human population. The involvement of imprinted loci also suggests that genes that regulate early development also contribute to the ability of individuals to resist muscle loss in response to disease.
Collapse
Affiliation(s)
- Paul R Kemp
- National Heart & Lung Institute, Imperial College London, South Kensington Campus, London, SW7 2AZ, U.K
| | - Mark Griffiths
- National Heart & Lung Institute, Imperial College London, South Kensington Campus, London, SW7 2AZ, U.K
| | - Michael I Polkey
- National Institute for Health Research Respiratory Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust and Imperial College London, Sydney Street, London SW3 6NP, U.K
| |
Collapse
|
43
|
Kitamura H, Yamada S, Adachi T, Shibata K, Tamaki M, Okawa Y, Usui A. Effect of Perioperative Neuromuscular Electrical Stimulation in Patients Undergoing Cardiovascular Surgery: A Pilot Randomized Controlled Trial. Semin Thorac Cardiovasc Surg 2018; 31:361-367. [PMID: 30395965 DOI: 10.1053/j.semtcvs.2018.10.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 10/30/2018] [Indexed: 11/11/2022]
Abstract
A randomized, controlled trial was conducted to examine the effects of perioperative neuromuscular electrical stimulation on muscle proteolysis and physical function using blinded assessment of physical function. Consecutive patients undergoing cardiovascular surgery were screened for eligibility as study subjects. Participants were randomly assigned to receive either neuromuscular electrical stimulation or the usual postoperative mobilization program. The intervention group received neuromuscular electrical stimulation on bilateral legs 8 times before and after surgery. The primary outcomes were the mean 3-methylhistidine concentration corrected for urinary creatinine content from baseline to postoperative day 6, and knee extensor isometric muscle strength on postoperative day 7. Secondary outcomes were usual walking speed and grip strength. Physical therapists blinded to patient allocation performed measurements of physical function. Of 498 consecutive patients screened for eligibility, 119 participants (intervention group, n = 60; control group, n = 59) were enrolled. In the overall subjects, there were no differences in any outcomes between the intervention and control groups. The results demonstrated no significant effects of neuromuscular electrical stimulation on muscle proteolysis and physical function after cardiovascular surgery, suggesting the need to explore indications for neuromuscular electrical stimulation and to clarify the effects in terms of the dose-response relationship.
Collapse
Affiliation(s)
- Hideki Kitamura
- Department of Cardiovascular Surgery, Nagoya Heart Center, Nagoya, Japan
| | - Sumio Yamada
- Department of Health Science, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Takuji Adachi
- Program in Physical and Occupational Therapy, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kenichi Shibata
- Program in Physical and Occupational Therapy, Nagoya University Graduate School of Medicine, Nagoya, Japan; Department of Cardiac Rehabilitation, Nagoya Heart Center, Nagoya, Japan
| | - Mototsugu Tamaki
- Department of Cardiovascular Surgery, Nagoya Heart Center, Nagoya, Japan
| | - Yasuhide Okawa
- Department of Cardiovascular Surgery, Nagoya Heart Center, Nagoya, Japan
| | - Akihiko Usui
- Department of Cardiac Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
44
|
Fontes Cerqueira TC, de Cerqueira Neto ML, Cacau LDAP, Oliveira GU, da Silva Júnior WM, Carvalho VO, de Mendonça JT, de Santana Filho VJ. Ambulation capacity and functional outcome in patients undergoing neuromuscular electrical stimulation after cardiac valve surgery: A randomised clinical trial. Medicine (Baltimore) 2018; 97:e13012. [PMID: 30431575 PMCID: PMC6257613 DOI: 10.1097/md.0000000000013012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Early mobilization and physical exercise are considered fundamental components in cardiovascular surgery rehabilitation; however, occasionally they are inadequate for inhibiting functional decline. Neuromuscular electrical stimulation (NMES) is a promising tool in cardiovascular rehabilitation; however, to date, no randomized clinical trial has measured the effects of NMES on functional capacity and quality of life in patients who undergo routine cardiac surgery with a short intensive care unit (ICU) stay. Therefore, we aimed to investigate the effects of NMES on walking ability, muscle strength, functional independence, and quality of life in cardiac valve surgery patients in the immediate postoperative period. METHODS A randomized, parallel, controlled, 2-arm clinical trial with assessor blinding was conducted. Fifty-nine adult patients in the preoperative period after cardiac valve reconstruction and/or replacement were randomly assigned to a control or intervention group. The intervention group underwent NMES in the quadriceps and gastrocnemius, bilaterally, for 60 minutes, for up to 10 sessions. The primary outcome was ambulation ability, assessed through the Six-Minute Walk Test and Walking Speed Test at postoperative day 5 (5PO). Secondary outcomes were muscular strength (assessed through the Medical Research Council scale), functional independence measure (assessed through the Functional Independence Measurement Questionnaire), and quality of life (assessed through the Nottingham Health Profile) at baseline (preoperative) and at postoperative days 3 and 5. RESULTS The baseline characteristics were similar in both groups, except for body mass index. There was no statistically significant difference, with a small effect size, between both groups regarding the distance walked (95% CI, -64.87 to 65.97) and walking speed (95% CI, -0.55 to 0.57). There was a statistically significant difference in upper-limb muscle strength loss and decline in mobility at postoperative day 3, which had a tendency to recover to initial values at 5PO, in both groups. No significant between-group difference was noted for muscle strength, functional independence, and quality of life. CONCLUSIONS The use of NMES had no effect on walking ability, strength, quality of life, or functional outcome in the postoperative period for patients that underwent regular valve replacement.
Collapse
|
45
|
Abstract
With the emerging interest in documenting and understanding muscle atrophy and function in critically ill patients and survivors, ultrasonography has transformational potential for measurement of muscle quantity and quality. We discuss the importance of quantifying skeletal muscle in the intensive care unit setting. We also identify the merits and limitations of various modalities that are capable of accurately and precisely measuring muscularity. Ultrasound is emerging as a potentially powerful tool for skeletal muscle quantification; however, there are key challenges that need to be addressed in future work to ensure useful interpretation and comparability of results across diverse observational and interventional studies. Ultrasound presents several methodological challenges, and ultimately muscle quantification combined with metabolic, nutritional, and functional markers will allow optimal patient assessment and prognosis. Moving forward, we recommend that publications include greater detail on landmarking, repeated measures, identification of muscle that was not assessable, and reproducible protocols to more effectively compare results across different studies.
Collapse
|
46
|
Koo BK, Um SH, Seo DS, Joo SK, Bae JM, Park JH, Chang MS, Kim JH, Lee J, Jeong WI, Kim W. Growth differentiation factor 15 predicts advanced fibrosis in biopsy-proven non-alcoholic fatty liver disease. Liver Int 2018; 38:695-705. [PMID: 28898507 DOI: 10.1111/liv.13587] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 09/05/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS We explored whether growth differentiation factor 15 (GDF15) affects the histological severity of non-alcoholic fatty liver disease (NAFLD) independent of insulin resistance. METHODS In a biopsy-proven NAFLD cohort, we measured serum GDF15 levels using enzyme-linked immunosorbent assays. RESULTS Among 190 subjects (mean age, 53 ± 14 years; men, 52.1%), 72 (men, 65.3%) and 78 (men, 44.9%) were diagnosed with biopsy-proven non-alcoholic fatty liver (NAFL) and non-alcoholic steatohepatitis (NASH) respectively. GDF15 levels were significantly higher in NASH patients than in controls (P = .010) or NAFL patients (P = .001). Subjects with advanced fibrosis (≥F3) also showed higher GDF15 levels compared to the others (F0-2; P < .001). Among NAFLD patients, the highest quartile of GDF15 levels was significantly associated with a risk of advanced fibrosis even after adjustment for age, gender, body mass index, smoking status, hypertension, diabetes, aspartate aminotransferase, platelet, albumin, insulin resistance and low skeletal muscle mass (odds ratio, 4.27; 95% confidence interval, 1.04-17.63), but not with NASH risk. GDF15 levels showed a significant positive correlation with liver stiffness (Spearman's ρ, .525; P < .001). Palmitate treatment increased the GDF15 mRNA expression level significantly in Kupffer cells, but not in hepatocytes. In LX-2 cells, GDF15 treatment resulted in enhanced expression of α-smooth muscle actin and collagen I, as well as phosphorylation of SMAD2 and SMAD3. CONCLUSIONS Our findings suggest that GDF15 may serve as a novel biomarker of advanced fibrosis in NAFLD, thereby indicating the need for urgent anti-fibrotic pharmacotherapy.
Collapse
Affiliation(s)
- Bo Kyung Koo
- Division of Endocrinology, Department of Internal Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Sung Hee Um
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Gyeonggi-do, Korea.,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Samsung Medical Center, Sungkyunkwan University, Seoul, Korea
| | - Dong Soo Seo
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Gyeonggi-do, Korea
| | - Sae Kyung Joo
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Jeong Mo Bae
- Department of Pathology, Seoul Metropolitan Government Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Jeong Hwan Park
- Department of Pathology, Seoul Metropolitan Government Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Mee Soo Chang
- Department of Pathology, Seoul Metropolitan Government Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Jung Ho Kim
- Department of Pathology, Seoul Metropolitan Government Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Jieun Lee
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Won-Il Jeong
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Won Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
47
|
Connolly B, Maddocks M, MacBean V, Bernal W, Hart N, Hopkins P, Rafferty GF. Nonvolitional assessment of tibialis anterior force and architecture during critical illness. Muscle Nerve 2018; 57:964-972. [PMID: 29266337 DOI: 10.1002/mus.26049] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 12/02/2017] [Accepted: 12/10/2017] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Contemporaneous measures of muscle architecture and force have not previously been conducted during critical illness to examine their relationship with intensive care unit (ICU)-acquired weakness. METHODS Ankle dorsiflexor muscle force (ADMF) with high-frequency electrical peroneal nerve stimulation and skeletal muscle architecture via ultrasound were measured in 21 adult, critically ill patients, 16 at ICU admission. RESULTS Thirteen patients were measured on 2 occasions. Among these, 10 who were measured at ICU admission demonstrated muscle weakness. Despite significant reductions in tibialis anterior (Δ = -88.5 ± 78.8 mm2 , P = 0.002) and rectus femoris (Δ = -126.1 ± 129.1 mm2 , P = 0.006) cross-sectional areas between occasions, ADMF did not change (100-HZ ankle dorsiflexor force 9.8 [IQR, 8.0-14.4] kg vs. 8.6 (IQR, 6.7-19.2) kg, P = 0.9). DISCUSSION Muscle weakness was evident at ICU admission. No additional decrements were observed 7 days later despite significant reductions in muscle size. These data suggest that not all ICU weakness is truly "acquired" and questions our understanding of muscle function during critical illness. Muscle Nerve 57: 964-972, 2018.
Collapse
Affiliation(s)
- Bronwen Connolly
- King's College London, Division of Asthma, Allergy and Lung Biology, Department of Respiratory Medicine, UK
| | - Matthew Maddocks
- King's College London, Department of Palliative Care, Cicely Saunders Institute, UK
| | - Victoria MacBean
- King's College London, Division of Asthma, Allergy and Lung Biology, Department of Respiratory Medicine, UK
| | - William Bernal
- Institute of Liver Studies, King's College Hospital, London, UK
| | - Nicholas Hart
- Lane Fox Respiratory Unit, Guy's & St.Thomas' NHS Foundation Trust, London, UK
| | - Philip Hopkins
- Department of Critical Care, King's College Hospital, London, UK
| | - Gerrard F Rafferty
- King's College London, Division of Asthma, Allergy and Lung Biology, Department of Respiratory Medicine, UK
| |
Collapse
|
48
|
Paul R, Lee J, Donaldson AV, Connolly M, Sharif M, Natanek SA, Rosendahl U, Polkey MI, Griffiths M, Kemp PR. miR-422a suppresses SMAD4 protein expression and promotes resistance to muscle loss. J Cachexia Sarcopenia Muscle 2018; 9:119-128. [PMID: 28984049 PMCID: PMC5803610 DOI: 10.1002/jcsm.12236] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 07/21/2017] [Accepted: 08/03/2017] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Loss of muscle mass and strength are important sequelae of chronic disease, but the response of individuals is remarkably variable, suggesting important genetic and epigenetic modulators of muscle homeostasis. Such factors are likely to modify the activity of pathways that regulate wasting, but to date, few such factors have been identified. METHODS The effect of miR-422a on SMAD4 expression and transforming growth factor (TGF)-β signalling were determined by western blotting and luciferase assay. miRNA expression was determined by qPCR in plasma and muscle biopsy samples from a cross-sectional study of patients with chronic obstructive pulmonary disease (COPD) and a longitudinal study of patients undergoing aortic surgery, who were subsequently admitted to the intensive care unit (ICU). RESULTS miR-422a was identified, by a screen, as a microRNA that was present in the plasma of patients with COPD and negatively associated with muscle strength as well as being readily detectable in the muscle of patients. In vitro, miR-422a suppressed SMAD4 expression and inhibited TGF-beta and bone morphogenetic protein-dependent luciferase activity in muscle cells. In male patients with COPD and those undergoing aortic surgery and on the ICU, a model of ICU-associated muscle weakness, quadriceps expression of miR-422a was positively associated with muscle strength (maximal voluntary contraction r = 0.59, P < 0.001 and r = 0.51, P = 0.004, for COPD and aortic surgery, respectively). Furthermore, pre-surgery levels of miR-422a were inversely associated with the amount of muscle that would be lost in the first post-operative week (r = -0.57, P < 0.001). CONCLUSIONS These data suggest that differences in miR-422a expression contribute to the susceptibility to muscle wasting associated with chronic and acute disease and that at least part of this activity may be mediated by reduced TGF-beta signalling in skeletal muscle.
Collapse
Affiliation(s)
- Richard Paul
- Molecular Medicine Section, National Heart & Lung Institute, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.,National Institute for Health Research Respiratory Biomedical Research Unit at Royal Brompton and Harefield NHS Foundation Trust and Imperial College, London, SW3 6NP, UK
| | - Jen Lee
- Molecular Medicine Section, National Heart & Lung Institute, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Anna V Donaldson
- Molecular Medicine Section, National Heart & Lung Institute, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.,National Institute for Health Research Respiratory Biomedical Research Unit at Royal Brompton and Harefield NHS Foundation Trust and Imperial College, London, SW3 6NP, UK
| | - Martin Connolly
- Molecular Medicine Section, National Heart & Lung Institute, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Mohammad Sharif
- Molecular Medicine Section, National Heart & Lung Institute, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Samantha Amanda Natanek
- Molecular Medicine Section, National Heart & Lung Institute, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Ulrich Rosendahl
- Department of Cardiothoracic Surgery, Royal Brompton and Harefield NHS Foundation Trust, London, SW3 6NP, UK
| | - Michael I Polkey
- National Institute for Health Research Respiratory Biomedical Research Unit at Royal Brompton and Harefield NHS Foundation Trust and Imperial College, London, SW3 6NP, UK
| | - Mark Griffiths
- Inflammation, Regeneration and Development, National Heart and Lung Institute, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Paul R Kemp
- Molecular Medicine Section, National Heart & Lung Institute, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| |
Collapse
|
49
|
Band MM, Sumukadas D, Struthers AD, Avenell A, Donnan PT, Kemp PR, Smith KT, Hume CL, Hapca A, Witham MD. Leucine and ACE inhibitors as therapies for sarcopenia (LACE trial): study protocol for a randomised controlled trial. Trials 2018; 19:6. [PMID: 29301558 PMCID: PMC5753568 DOI: 10.1186/s13063-017-2390-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 12/07/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Sarcopenia (the age-related loss of muscle mass and function) is a major contributor to loss of mobility, falls, loss of independence, morbidity and mortality in older people. Although resistance training is effective in preventing and reversing sarcopenia, many older people are sedentary and either cannot or do not want to exercise. This trial examines the efficacy of supplementation with the amino acid leucine and/or angiotensin converting enzyme inhibition to potentially improve muscle mass and function in people with sarcopenia. Promising preliminary data exist from small studies for both interventions, but neither has yet been tested in adequately powered randomised trials in patients with sarcopenia. METHODS Leucine and ACE inhibitors in sarcopenia (LACE) is a multicentre, masked, placebo-controlled, 2 × 2 factorial randomised trial evaluating the efficacy of leucine and perindopril (angiotensin converting enzyme inhibitor (ACEi)) in patients with sarcopenia. The trial will recruit 440 patients from primary and secondary care services across the UK. Male and female patients aged 70 years and over with sarcopenia as defined by the European Working Group on Sarcopenia (based on low total skeletal muscle mass on bioimpedance analysis and either low gait speed or low handgrip strength) will be eligible for participation. Participants will be excluded if they have a contraindication to, or are already taking, an ACEi, angiotensin receptor blocker or leucine. The primary clinical outcome for the trial is the between-group difference in the Short Physical Performance Battery score at all points between baseline and 12 months. Secondary outcomes include appendicular muscle mass measured using dual-energy X-ray absorptiometry, muscle strength, activities of daily living, quality of life, activity using pedometer step counts and falls. Participants, clinical teams, outcomes assessors and trial analysts are masked to treatment allocation. A panel of biomarkers including microRNAs, neurohormones, genetic polymorphisms and markers of inflammation relevant to muscle pathophysiology will be measured to explore predictors of response and further elucidate mechanisms underlying sarcopenia. Participants will receive a total of 12 months of either perindopril or placebo and either leucine or placebo. DISCUSSION The results will provide the first robust test of the overall clinical and cost-effectiveness of these novel therapies for older patients with sarcopenia. TRIAL REGISTRATION ISRCTN, ISRCTN90094835 . Registered on 18 February 2015.
Collapse
Affiliation(s)
- Margaret M. Band
- Tayside Clinical Trials Unit, University of Dundee/NHS Tayside, Dundee, UK
| | - Deepa Sumukadas
- Division of Molecular and Clinical Medicine, University of Dundee, Dundee, UK
| | - Allan D. Struthers
- Division of Molecular and Clinical Medicine, University of Dundee, Dundee, UK
| | - Alison Avenell
- Health Services Research Unit, University of Aberdeen, Aberdeen, UK
| | - Peter T. Donnan
- Tayside Clinical Trials Unit, University of Dundee/NHS Tayside, Dundee, UK
- Population Health Sciences Division, University of Dundee, Dundee, UK
| | - Paul R. Kemp
- Molecular Medicine, National Heart and Lung Institute, Imperial College, London, UK
| | - Karen T. Smith
- Tayside Clinical Trials Unit, University of Dundee/NHS Tayside, Dundee, UK
| | - Cheryl L. Hume
- Tayside Clinical Trials Unit, University of Dundee/NHS Tayside, Dundee, UK
| | - Adrian Hapca
- Tayside Clinical Trials Unit, University of Dundee/NHS Tayside, Dundee, UK
- Population Health Sciences Division, University of Dundee, Dundee, UK
| | - Miles D. Witham
- Tayside Clinical Trials Unit, University of Dundee/NHS Tayside, Dundee, UK
- Division of Molecular and Clinical Medicine, University of Dundee, Dundee, UK
- School of Medicine, University of Dundee, Ninewells Hospital, Dundee, DD1 9SY UK
| |
Collapse
|
50
|
Garros RF, Paul R, Connolly M, Lewis A, Garfield BE, Natanek SA, Bloch S, Mouly V, Griffiths MJ, Polkey MI, Kemp PR. MicroRNA-542 Promotes Mitochondrial Dysfunction and SMAD Activity and Is Elevated in Intensive Care Unit-acquired Weakness. Am J Respir Crit Care Med 2017; 196:1422-1433. [PMID: 28809518 DOI: 10.1164/rccm.201701-0101oc] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
RATIONALE Loss of skeletal muscle mass and function is a common consequence of critical illness and a range of chronic diseases, but the mechanisms by which this occurs are unclear. OBJECTIVES To identify microRNAs (miRNAs) that were increased in the quadriceps of patients with muscle wasting and to determine the molecular pathways by which they contributed to muscle dysfunction. METHODS miRNA-542-3p/5p (miR-542-3p/5p) were quantified in the quadriceps of patients with chronic obstructive pulmonary disease and intensive care unit-acquired weakness (ICUAW). The effect of miR-542-3p/5p was determined on mitochondrial function and transforming growth factor-β signaling in vitro and in vivo. MEASUREMENTS AND MAIN RESULTS miR-542-3p/5p were elevated in patients with chronic obstructive pulmonary disease but more markedly in patients with ICUAW. In vitro, miR-542-3p suppressed the expression of the mitochondrial ribosomal protein MRPS10 and reduced 12S ribosomal RNA (rRNA) expression, suggesting mitochondrial ribosomal stress. miR-542-5p increased nuclear phospho-SMAD2/3 and suppressed expression of SMAD7, SMURF1, and PPP2CA, proteins that inhibit or reduce SMAD2/3 phosphorylation, suggesting that miR-542-5p increased transforming growth factor-β signaling. In mice, miR-542 overexpression caused muscle wasting, and reduced mitochondrial function, 12S rRNA expression, and SMAD7 expression, consistent with the effects of the miRNAs in vitro. Similarly, in patients with ICUAW, the expression of 12S rRNA and of the inhibitors of SMAD2/3 phosphorylation were reduced, indicative of mitochondrial ribosomal stress and increased transforming growth factor-β signaling. In patients undergoing aortic surgery, preoperative levels of miR-542-3p/5p were positively correlated with muscle loss after surgery. CONCLUSIONS Elevated miR-542-3p/5p may cause muscle atrophy in intensive care unit patients through the promotion of mitochondrial dysfunction and activation of SMAD2/3 phosphorylation.
Collapse
Affiliation(s)
| | - Richard Paul
- 1 Molecular Medicine Section and.,2 National Institute for Health Research Respiratory Biomedical Research Unit at Royal Brompton and Harefield NHS Foundation Trust and Imperial College London, London, United Kingdom; and
| | | | | | | | | | - Susannah Bloch
- 1 Molecular Medicine Section and.,2 National Institute for Health Research Respiratory Biomedical Research Unit at Royal Brompton and Harefield NHS Foundation Trust and Imperial College London, London, United Kingdom; and
| | - Vincent Mouly
- 3 Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Paris, France
| | - Mark J Griffiths
- 4 Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College, South Kensington Campus, London, United Kingdom
| | - Michael I Polkey
- 2 National Institute for Health Research Respiratory Biomedical Research Unit at Royal Brompton and Harefield NHS Foundation Trust and Imperial College London, London, United Kingdom; and
| | | |
Collapse
|