1
|
Acevedo JM, Kahn LG, Pierce KA, Carrasco A, Rosenberg MS, Trasande L. Temporal and geographic variability of bisphenol levels in humans: A systematic review and meta-analysis of international biomonitoring data. ENVIRONMENTAL RESEARCH 2025; 264:120341. [PMID: 39522874 DOI: 10.1016/j.envres.2024.120341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/30/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
INTRODUCTION Bisphenols are endocrine-disrupting chemicals known to contribute to chronic disease across the lifespan. With increased awareness of their health effects, changes in regulation and health behaviors have contributed to reductions in urinary bisphenol A (BPA) levels in the United States, Canada, and Europe. However, global trends in bisphenols outside these regions, especially bisphenol S (BPS) exposure, have been less studied. AIM We examine trends in urinary BPA and BPS concentration in non-occupationally exposed populations, where representative data at a country level is unavailable. METHODS We systematically reviewed studies published between 2000 and 2023 that included urinary bisphenol concentrations. We examined BPA and BPS concentration changes by sampling year, controlling for region, age, and pregnancy status, with and without a quadratic term and geometric mean, via mixed-effects meta-regression models with a random intercept and sensitivity analysis. We identified heterogeneity using Cochran's Q-statistic, I2 index, and funnel plots. RESULTS The final analytic sample consisted of 164 studies. We observed positive non-linear associations between time and BPA concentration internationally (beta: 0.02 ng/mL/year2, 95% CI: [0.01, 0.03]) and in Eastern and Pacific Asia (beta: 0.03 ng/mL/year2, 95% CI: [0.02, 0.05]). We also observed non-linear associations of time with both BPA and BPS concentrations in the Middle East and South Asia (beta: 0.13 ng/mL/year2, 95% CI: [0.01, 0.25] and beta: 0.29 ng/mL/year2, 95% CI: [-0.50, -0.08], respectively). In the sensitivity analyses excluding studies with geometric or arithmetic mean values, each displayed significant shifts from the main findings with some consistent outcomes occurring internationally and/or in specific regions. Heterogeneity was high across studies, suggesting possible bias in our estimations. CONCLUSIONS Our findings provide evidence for concern about increasing population exposure to BPA and BPS. Further studies estimating attributable disease burden and costs at regional and global levels are warranted to show these chemicals' impact on population health and economies.
Collapse
Affiliation(s)
- Jonathan M Acevedo
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY, USA.
| | - Linda G Kahn
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY, USA; Department of Population Health, New York University Grossman School of Medicine, New York, NY, USA
| | - Kristyn A Pierce
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY, USA
| | - Anna Carrasco
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY, USA
| | | | - Leonardo Trasande
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY, USA; Department of Population Health, New York University Grossman School of Medicine, New York, NY, USA; Wagner School of Public Service, New York University, New York, NY, USA
| |
Collapse
|
2
|
Koushki M, Doustimotlagh AH, Amiri-Dashatan N, Farahani M, Chiti H, Vanda R, Aramesh S. Impact of bisphenol A exposure on the risk of gestational diabetes: a meta-analysis of observational studies. J Diabetes Metab Disord 2024; 23:2173-2182. [PMID: 39610499 PMCID: PMC11599497 DOI: 10.1007/s40200-024-01485-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 08/03/2024] [Indexed: 11/30/2024]
Abstract
Purpose A growing number of evidence have assessed the association between bisphenol A (BPA) as an endocrine-disrupting agent and the risk of gestational diabetes (GDM). This meta-analysis aimed to reassess the data on the association of BPA levels in women with GDM compared to the control. Methods A comprehensive literature search was conducted in Medline, Embase, Scopus, and Web of Science to extract relevant published studies up to May 2024. 12 articles were included in the meta-analysis. DerSimonian and Liard random-effects model was used to estimate the pooled odds ratio (OR). Sensitivity analysis was conducted to assess the robustness of the pooled results by removing each study from the pooled effect size. Subgroup analyses were performed depending on the subgroups of gestational age, GDM trimester, BMI, study design and geographical area. Results The results showed that there was no significant association between circulating and urinary BPA concentrations with the risk of GDM (OR: 0.79; 95% CI 0.60-1.04; P = 0.095). No significant heterogeneity was found among the studies. Using Begg's correlation (P = 0.95) and Egger's linear regression (P = 0.86) tests, no publication bias was observed. The sensitivity analysis shows that our findings were completely robust and stable. Meta-regression indicated a significant association between BPA levels and study design and geometric mean as an index of the risk of GDM. Conclusion The present meta-analysis demonstrates exposure to BPA was associated with a reduced risk of GDM. Further studies are needed for obtain the reliable results. Graphical Abstract
Collapse
Affiliation(s)
- Mehdi Koushki
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Amir Hossein Doustimotlagh
- Department of Clinical Biochemistry, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Nasrin Amiri-Dashatan
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Masoumeh Farahani
- Proteomics Research Center, System Biology Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Chiti
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Razieh Vanda
- Department of Obstetrics and Gynecology, Imam Sajad Hospital, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Shahintaj Aramesh
- Department of Obstetrics and Gynecology, Imam Sajad Hospital, Yasuj University of Medical Sciences, Yasuj, Iran
| |
Collapse
|
3
|
Soomro MH, England-Mason G, Reardon AJF, Liu J, MacDonald AM, Kinniburgh DW, Martin JW, Dewey D. Maternal exposure to bisphenols, phthalates, perfluoroalkyl acids, and trace elements and their associations with gestational diabetes mellitus in the APrON cohort. Reprod Toxicol 2024; 127:108612. [PMID: 38782143 DOI: 10.1016/j.reprotox.2024.108612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 05/08/2024] [Accepted: 05/18/2024] [Indexed: 05/25/2024]
Abstract
The increasing global prevalence of gestational diabetes mellitus (GDM) has been hypothesized to be associated with maternal exposure to environmental chemicals. Here, among 420 women participating in the Alberta Pregnancy Outcomes and Nutrition (APrON) cohort study, we examined associations between GDM and second trimester blood or urine concentrations of endocrine disrupting chemicals (EDCs): bisphenol-A (BPA), bisphenol-S (BPS), twelve phthalate metabolites, eight perfluoroalkyl acids (PFAAs), and eleven trace elements. Fifteen (3.57%) of the women were diagnosed with GDM, and associations between the environmental chemical exposures and GDM diagnosis were examined using multiple logistic and LASSO regression analyses in single- and multi-chemical exposure models, respectively. In single chemical exposure models, BPA and mercury were associated with increased odds of GDM, while a significant inverse association was observed for zinc. Double-LASSO regression analysis selected mercury (AOR: 1.51, CI: 1.12-2.02), zinc (AOR: 0.017, CI: 0.0005-0.56), and perfluoroundecanoic acid (PFUnA), a PFAAs, (AOR: 0.43, CI: 0.19-0.94) as the best predictors of GDM. The combined data for this Canadian cohort suggest that second trimester blood mercury was a robust predictor of GDM diagnosis, whereas blood zinc and PFUnA were protective factors. Research into mechanisms that underlie the associations between mercury, zinc, PFUnA, and the development of GDM is needed.
Collapse
Affiliation(s)
- Munawar Hussain Soomro
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Gillian England-Mason
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Anthony J F Reardon
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Jiaying Liu
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Amy M MacDonald
- Alberta Centre for Toxicology, University of Calgary, Calgary, Alberta, Canada
| | - David W Kinniburgh
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada; Alberta Centre for Toxicology, University of Calgary, Calgary, Alberta, Canada
| | - Jonathan W Martin
- Science for Life Laboratory, Department of Analytical Chemistry and Environmental Sciences, Stockholm University, Stockholm, Sweden
| | - Deborah Dewey
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
4
|
Lv Y, Jia Z, Wang Y, Huang Y, Li C, Chen X, Xia W, Liu H, Xu S, Li Y. Prenatal EDC exposure, DNA Methylation, and early childhood growth: A prospective birth cohort study. ENVIRONMENT INTERNATIONAL 2024; 190:108872. [PMID: 38986426 DOI: 10.1016/j.envint.2024.108872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND Exposure to endocrine-disrupting chemicals (EDCs) has been found to be associated with growth and developmental abnormalities in children. However, the potential mechanisms by which exposure to EDCs during pregnancy increases the risk of obesity in children remain unclear. OBJECTIVE We aimed to explore associations between prenatal EDC exposure and the body mass index (BMI) of children at age two, and to further explore the potential impact of DNA methylation (DNAm). METHOD This study included 285 mother-child pairs from a birth cohort conducted in Wuhan, China. The BMI of each child was assessed at around 24 months of age. The concentrations of sixteen EDCs at the 1st, 2nd, and 3rd trimesters were measured using ultra-high performance liquid chromatography coupled to a triple quadrupole mass spectrometer. The research utilized general linear models, weighted quantile sum regression, and Bayesian Kernel Machine Regression to assess the association between prenatal EDC exposure and childhood BMI z-scores (BMIz). Cord blood DNAm was measured using the Human Methylation EPIC BeadChip array. An epigenome-wide DNAm association study related to BMIz was performed using robust linear models. Mediation analysis was then applied to explore potential mediators of DNAm. RESULTS Urinary concentrations of seven EDCs were positively associated with BMIz in the 1st trimester, which remained significant in the WQS model. A total of 641 differential DNAm positions were associated with elevated BMIz. Twelve CpG positions (annotated to DUXA, TMEM132C, SEC13, ID4, GRM4, C2CD2, PRAC1&PRAC2, TSPAN6 and DNAH10) mediated the associations between urine BP-3/BPS/MEP/TCS and elevated BMIz (P < 0.05). CONCLUSION Our results revealed that prenatal exposure to EDCs was associated with a higher risk of childhood obesity, with specific DNAm acting as a partial mediator.
Collapse
Affiliation(s)
- Yiqing Lv
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zhenxian Jia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yin Wang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yizhao Huang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Chengxi Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xiaomei Chen
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Hongxiu Liu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Shunqing Xu
- School of Environmental Science and Engineering, Hainan University, China
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
5
|
Xiao T, Huang Z, Zheng C, Quach B, Zhu Y, Li F, Liang W, Baker J, Reichetzeder C, Hocher B, Yang Y. Associations of bisphenol A exposure with metabolic syndrome and its components: A systematic review and meta-analysis. Obes Rev 2024; 25:e13738. [PMID: 38491337 DOI: 10.1111/obr.13738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 01/21/2024] [Accepted: 02/13/2024] [Indexed: 03/18/2024]
Abstract
Mounting evidence shows that bisphenol A (BPA) is associated with metabolic risk factors. The aim of this study was to review related epidemiologic studies and conduct a meta-analysis to quantitatively estimate the association between BPA and metabolic syndrome. Four electronic databases were systematically searched to identify suitable articles. A total of 47 published studies were finally included. Two studies involved metabolic syndrome. Of the 17, 17, 14, and 13 studies on the relationship between BPA with abdominal obesity, blood pressure, fasting plasma glucose, and dyslipidemia, 10, 6, 3, and 4 studies were included in the meta-analysis, respectively. The results showed that the risk of abdominal obesity increased with the increase of BPA exposure, especially in the group with higher BPA exposure levels (Quartile 2 vs. Quartile 1, pooled OR = 1.16, 95%CI: 1.01, 1.33; Q3 vs. Q1, pooled OR = 1.31, 95%CI: 1.13, 1.51; Q4 vs. Q1, pooled OR = 1.40, 95%CI: 1.21, 1.61). However, there was no significant correlation between BPA exposure and metabolic syndrome components including hypertension, abnormal fasting plasma glucose, and dyslipidemia. The present study found that BPA exposure is significantly associated with a higher risk of abdominal obesity. However, the relationship between BPA with metabolic syndrome and its other components needs further longitudinal studies to verify.
Collapse
Affiliation(s)
- Tianli Xiao
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
- The Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, China
| | - Zehua Huang
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
- The Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, China
| | - Chanjuan Zheng
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
- The Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, China
| | - Binh Quach
- Centre for Health and Exercise Science Research, Hong Kong Baptist University, Hong Kong, China
| | - Yulian Zhu
- Hunan Prevention and Treatment Institute for Occupational Diseases, Changsha, China
| | - Feifei Li
- Centre for Health and Exercise Science Research, Hong Kong Baptist University, Hong Kong, China
- Department of Sport, Physical Education and Health, Hong Kong Baptist University, Hong Kong, China
| | - Wei Liang
- School of Physical Education, Shenzhen University, Shenzhen, China
| | - Julien Baker
- Centre for Health and Exercise Science Research, Hong Kong Baptist University, Hong Kong, China
- Department of Sport, Physical Education and Health, Hong Kong Baptist University, Hong Kong, China
| | - Christoph Reichetzeder
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
- HMU - Health and Medical University, Potsdam, Germany
| | - Berthold Hocher
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
- Institute of Medical Diagnostics, IMD, Berlin, Germany
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, China
| | - Yide Yang
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
- The Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, China
| |
Collapse
|
6
|
Kang JH, Asai D, Toita R. Bisphenol A (BPA) and Cardiovascular or Cardiometabolic Diseases. J Xenobiot 2023; 13:775-810. [PMID: 38132710 PMCID: PMC10745077 DOI: 10.3390/jox13040049] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
Bisphenol A (BPA; 4,4'-isopropylidenediphenol) is a well-known endocrine disruptor. Most human exposure to BPA occurs through the consumption of BPA-contaminated foods. Cardiovascular or cardiometabolic diseases such as diabetes, obesity, hypertension, acute kidney disease, chronic kidney disease, and heart failure are the leading causes of death worldwide. Positive associations have been reported between blood or urinary BPA levels and cardiovascular or cardiometabolic diseases. BPA also induces disorders or dysfunctions in the tissues associated with these diseases through various cell signaling pathways. This review highlights the literature elucidating the relationship between BPA and various cardiovascular or cardiometabolic diseases and the potential mechanisms underlying BPA-mediated disorders or dysfunctions in tissues such as blood vessels, skeletal muscle, adipose tissue, liver, pancreas, kidney, and heart that are associated with these diseases.
Collapse
Affiliation(s)
- Jeong-Hun Kang
- National Cerebral and Cardiovascular Center Research Institute, 6-1 Shinmachi, Kishibe, Osaka 564-8565, Japan
| | - Daisuke Asai
- Laboratory of Microbiology, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Tokyo 194-8543, Japan;
| | - Riki Toita
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Osaka 563-8577, Japan;
- AIST-Osaka University Advanced Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), 2-1 Yamadaoka, Osaka 565-0871, Japan
| |
Collapse
|
7
|
Wang X, Luo ZC, Du O, Zhang HJ, Fan P, Ma R, Chen Y, Wang W, Zhang J, Ouyang F. The association between maternal urinary Bisphenol A levels and neurodevelopment at age 2 years in Chinese boys and girls: A prospective cohort study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115413. [PMID: 37651794 DOI: 10.1016/j.ecoenv.2023.115413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/02/2023]
Abstract
The impact of maternal exposure to Bisphenol A on child cognitive development as well as its sex dimorphism remains uncertain. This study used data of 215 mothers and their children from a birth cohort in Shanghai. Urinary BPA were measured in spot urine samples of mothers at late pregnancy and children at age 2 years. Cognitive development was evaluated by Ages & Stages Questionnaires, Third Edition (ASQ-3) at age 2 years. Urinary BPA was detectable in 98.9% of mothers (geometric mean, GM: 2.6 μg/g. creatinine) and 99.8% children (GM: 3.4 μg/g. creatinine). Relative to the low and medium BPA tertiles, high tertile of maternal urinary BPA concentrations were associated with 4.8 points lower (95% CI: -8.3, -1.2) in gross motor and 3.7 points lower (95% CI: -7.4, -0.1) in problem-solving domain in girls only, with adjustment for maternal age, maternal education, pre-pregnancy BMI, passive smoking during pregnancy, parity, delivery mode, birth-weight for gestational age, child age at ASQ-3 test. This negative association remained with additional adjustment for child urinary BPA concentrations at age 2 years. No association was observed in boys. These results suggested the sex-dimorphism on the associations of maternal BPA exposure with gross motor and problem-solving domains in children at age 2 years. This study also indicated that optimal early child development should start with a healthy BPA-free "in utero" environment.
Collapse
Affiliation(s)
- Xia Wang
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Neonatology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhong-Cheng Luo
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Obstetrics and Gynecology, Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Institute of Health Policy, Management and Evaluation, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Ouyang Du
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Electrical and Systems Engineering, McKelvey School of Engineering at Washington University in St. Louis, USA
| | - Hui-Juan Zhang
- Department of Pathology, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Pianpian Fan
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui Ma
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanzhi Chen
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiye Wang
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Zhang
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fengxiu Ouyang
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
8
|
Yao X, Geng S, Zhu L, Jiang H, Wen J. Environmental pollutants exposure and gestational diabetes mellitus: Evidence from epidemiological and experimental studies. CHEMOSPHERE 2023; 332:138866. [PMID: 37164202 DOI: 10.1016/j.chemosphere.2023.138866] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/05/2023] [Accepted: 05/05/2023] [Indexed: 05/12/2023]
Abstract
Except for known sociodemographic factors, long-term exposure to environmental pollutants has been shown to contribute to the development of gestational diabetes mellitus (GDM), but the conclusions remain controversial. To provide a comprehensive overview of the association between environmental pollutants and GDM, we performed a systematic review and meta-analysis. Several electronic databases (PubMed, Embase, Web of Science, Medline and Cochrane) were searched for related epidemiological and experimental studies up to September 2022. For epidemiological studies, a meta-analysis was carried out to appraise the effect of environmental pollutants, including polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), per- and polyfluoroalkyl substances (PFASs), phenols, phthalates (PAEs), polybrominated diphenyl ethers (PBDEs) and parabens exposure on GDM. Moreover, we also summarized possible biological mechanisms linking pollution exposure and GDM based on the included experimental studies. A total of 80 articles were enrolled, including 38 epidemiological studies and 42 experimental studies. Meta-analysis results showed that exposure to PAEs [OR (95%CI) = 1.07 (1.00, 1.14)], PFASs [OR (95%CI) = 1.10 (1.01, 1.19)], as well as PCBs [OR (95%CI) = 1.18 (1.02, 1.36)] and PBDEs [OR (95%CI) = 1.33 (1.17, 1.50)] significantly increased the risk of GDM, but no significant effects were found for phenols, OCPs, and parabens. In addition, experimental studies suggested that the potential biological mechanisms of environmental pollutants contributing to GDM may involve insulin resistance, β-cell dysfunction, neurohormonal dysfunction, inflammation, oxidative stress, epigenetic modification, and alterations in gut microbiome. In conclusion, long-term environmental pollutants exposure may induce the development of GDM, and there may be a synergistic effect between the homologs. However, studies conducted on the direct biological link between environmental pollutants and GDM were few. More prospective studies and high-quality in vivo and in vitro experiments were needed to investigate the specific effects and mechanisms.
Collapse
Affiliation(s)
- Xiaodie Yao
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, 210004, PR China
| | - Shijie Geng
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, 210004, PR China
| | - Lijun Zhu
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, 210004, PR China
| | - Hua Jiang
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, 210004, PR China.
| | - Juan Wen
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, 210004, PR China.
| |
Collapse
|
9
|
Lambré C, Barat Baviera JM, Bolognesi C, Chesson A, Cocconcelli PS, Crebelli R, Gott DM, Grob K, Lampi E, Mengelers M, Mortensen A, Rivière G, Silano (until 21 December 2020†) V, Steffensen I, Tlustos C, Vernis L, Zorn H, Batke M, Bignami M, Corsini E, FitzGerald R, Gundert‐Remy U, Halldorsson T, Hart A, Ntzani E, Scanziani E, Schroeder H, Ulbrich B, Waalkens‐Berendsen D, Woelfle D, Al Harraq Z, Baert K, Carfì M, Castoldi AF, Croera C, Van Loveren H. Re-evaluation of the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs. EFSA J 2023; 21:e06857. [PMID: 37089179 PMCID: PMC10113887 DOI: 10.2903/j.efsa.2023.6857] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
In 2015, EFSA established a temporary tolerable daily intake (t-TDI) for BPA of 4 μg/kg body weight (bw) per day. In 2016, the European Commission mandated EFSA to re-evaluate the risks to public health from the presence of BPA in foodstuffs and to establish a tolerable daily intake (TDI). For this re-evaluation, a pre-established protocol was used that had undergone public consultation. The CEP Panel concluded that it is Unlikely to Very Unlikely that BPA presents a genotoxic hazard through a direct mechanism. Taking into consideration the evidence from animal data and support from human observational studies, the immune system was identified as most sensitive to BPA exposure. An effect on Th17 cells in mice was identified as the critical effect; these cells are pivotal in cellular immune mechanisms and involved in the development of inflammatory conditions, including autoimmunity and lung inflammation. A reference point (RP) of 8.2 ng/kg bw per day, expressed as human equivalent dose, was identified for the critical effect. Uncertainty analysis assessed a probability of 57-73% that the lowest estimated Benchmark Dose (BMD) for other health effects was below the RP based on Th17 cells. In view of this, the CEP Panel judged that an additional uncertainty factor (UF) of 2 was needed for establishing the TDI. Applying an overall UF of 50 to the RP, a TDI of 0.2 ng BPA/kg bw per day was established. Comparison of this TDI with the dietary exposure estimates from the 2015 EFSA opinion showed that both the mean and the 95th percentile dietary exposures in all age groups exceeded the TDI by two to three orders of magnitude. Even considering the uncertainty in the exposure assessment, the exceedance being so large, the CEP Panel concluded that there is a health concern from dietary BPA exposure.
Collapse
|
10
|
Tang P, Liang J, Liao Q, Huang H, Guo X, Lin M, Liu B, Wei B, Zeng X, Liu S, Huang D, Qiu X. Associations of bisphenol exposure with the risk of gestational diabetes mellitus: a nested case-control study in Guangxi, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:25170-25180. [PMID: 34837624 DOI: 10.1007/s11356-021-17794-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
A growing number of epidemiologic studies have estimated the associations between endocrine-disrupting chemicals and gestational diabetes mellitus (GDM). However, reports on the association between bisphenol A (BPA) substitutes and GDM are limited. This investigation aimed to explore the associations of maternal serum BPA, bisphenol B (BPB), bisphenol F (BPF), bisphenol S (BPS), and tetrabromobisphenol A (TBBPA) with the risk of GDM. A nested case-control study was performed among 500 pregnant women. In conditional logistic regression models, the OR for BPS was significantly increased in the medium exposure groups (OR = 1.77; 95% CI: 1.01, 3.13) compared with the reference group, while BPA (OR: 0.38, 95%CI: 0.29, 0.50) and TBBPA (OR: 0.67, 95%CI: 0.54, 0.85) were negatively associated with the risk of GDM. In the Bayesian kernel machine regression (BKMR) analysis, the joint effect of bisphenols was positively associated with the risk of GDM. BPS showed positively relationship, while BPA and TBBPA showed negatively relationship, respectively. The quantile g-computation revealed a statistically significant and negative joint effect of the five bisphenols on the risk of GDM (OR: 0.57; 95% CI: 0.46, 0.72) with BPA (70.2%), TBBPA (21.3%), and BPB (8.5%) had positive contribution to the overall effect. These findings suggested that BPS had a positive effect on the risk of GDM, while BPA and TBBPA had negative effect on the risk of GDM. Moreover, exposure to the mixture of the five bisphenols was negatively associated with the risk of GDM.
Collapse
Affiliation(s)
- Peng Tang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Jun Liang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Qian Liao
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Huishen Huang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Xiaojing Guo
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Mengrui Lin
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Bihu Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Bincai Wei
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Xiaoyun Zeng
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Shun Liu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, China.
| | - Dongping Huang
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, China.
| | - Xiaoqiang Qiu
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, China.
| |
Collapse
|
11
|
Lv Z, Tang Z, Huang S, Hu X, Peng C, Chen Y, Liu G, Chen Y, Cao T, Hou C, Wei X, Ke Y, Zou X, Zeng H, Guo Y. In vivo hypoglycemic effects of bisphenol F exposure in high-fat diet mice. CHEMOSPHERE 2023; 311:137066. [PMID: 36328321 DOI: 10.1016/j.chemosphere.2022.137066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Bisphenol F (BPF) is a widely used bisphenol A (BPA) substitute plastic additive that has attracted increasing public concerns due to its potential toxic effects on animal and human health. Although previous studies have indicated that BPF might have harmful effects on metabolic homeostasis, the systematic effects of BPF on glucose disorders remain controversial. In this study, mice fed a normal chow diet (ND) and high-fat diet (HFD) were administered BPF at a dose of 100 μg/kg of body weight, and glucose metabolism was monitored after both short- and long-term treatment. Little change in glucose metabolism was observed in BPF-treated ND mice, but improved glucose metabolism was observed in BPF-treated HFD mice. Consistently, BPF treatment led to increased insulin signalling in the skeletal muscle of HFD mice. Additionally, liver metabolite levels also revealed increased carbohydrate digestion and improved TCA cycle progression in BPF-treated HFD mice. Our results demonstrate that sustained BPF exposure at an environmentally relevant dosage may substantially improve glucose metabolism and enhance insulin sensitivity in mice fed a high-fat diet.
Collapse
Affiliation(s)
- Ziquan Lv
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Zhi Tang
- Department of Environmental and Occupational Health, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Suli Huang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Xiaoxiao Hu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Changfeng Peng
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Yuhua Chen
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Guangnan Liu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Ying Chen
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Tingting Cao
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Cuilan Hou
- Department of Cardiology, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, 200062, China
| | - Xinyi Wei
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Yuebin Ke
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Xuan Zou
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Huaicai Zeng
- School of Public Health, Guilin Medical University, Guilin, 541000, China.
| | - Yajie Guo
- The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033, China.
| |
Collapse
|
12
|
Zhu Y, Hedderson MM, Calafat AM, Alexeeff SE, Feng J, Quesenberry CP, Ferrara A. Urinary Phenols in Early to Midpregnancy and Risk of Gestational Diabetes Mellitus: A Longitudinal Study in a Multiracial Cohort. Diabetes 2022; 71:2539-2551. [PMID: 36227336 PMCID: PMC9750951 DOI: 10.2337/db22-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 09/20/2022] [Indexed: 01/11/2023]
Abstract
Environmental phenols are ubiquitous endocrine disruptors and putatively diabetogenic. However, data during pregnancy are scant. We investigated the prospective associations between pregnancy phenol concentrations and gestational diabetes mellitus (GDM) risk. In a nested matched case-control study of 111 individuals with GDM and 222 individuals without GDM within the prospective PETALS cohort, urinary bisphenol A (BPA), BPA substitutes (bisphenol F and bisphenol S [BPS]), benzophenone-3, and triclosan were quantified during the first and second trimesters. Cumulative concentrations across the two times were calculated using the area under the curve (AUC). Multivariable conditional logistic regression examined the association of individual phenols with GDM risk. We conducted mixture analysis using Bayesian kernel machine regression. We a priori examined effect modification by Asian/Pacific Islander (A/PI) race/ethnicity resulting from the case-control matching and highest GDM prevalence among A/PIs. Overall, first-trimester urinary BPS was positively associated with increased risk of GDM (adjusted odds ratio comparing highest vs. lowest tertile [aORT3 vs. T1] 2.12 [95% CI 1.00-4.50]). We identified associations among non-A/Ps, who had higher phenol concentrations than A/PIs. Among non-A/PIs, first-trimester BPA, BPS, and triclosan were positively associated with GDM risk (aORT3 vs. T1 2.91 [95% CI 1.05-8.02], 4.60 [1.55-13.70], and 2.88 [1.11-7.45], respectively). Triclosan in the second trimester and AUC were positively associated with GDM risk among non-A/PIs (P < 0.05). In mixture analysis, triclosan was significantly associated with GDM risk. Urinary BPS among all and BPA, BPS, and triclosan among non-A/PIs were associated with GDM risk. Pregnant individuals should be aware of these phenols' potential adverse health effects.
Collapse
Affiliation(s)
- Yeyi Zhu
- Division of Research, Kaiser Permanente Northern California, Oakland, CA
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA
| | | | - Antonia M. Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA
| | - Stacey E. Alexeeff
- Division of Research, Kaiser Permanente Northern California, Oakland, CA
| | - Juanran Feng
- Division of Research, Kaiser Permanente Northern California, Oakland, CA
| | | | - Assiamira Ferrara
- Division of Research, Kaiser Permanente Northern California, Oakland, CA
| |
Collapse
|
13
|
Chen WJ, Robledo C, Davis EM, Goodman JR, Xu C, Hwang J, Janitz AE, Garwe T, Calafat AM, Peck JD. Assessing urinary phenol and paraben mixtures in pregnant women with and without gestational diabetes mellitus: A case-control study. ENVIRONMENTAL RESEARCH 2022; 214:113897. [PMID: 35839910 PMCID: PMC9514543 DOI: 10.1016/j.envres.2022.113897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/17/2022] [Accepted: 07/10/2022] [Indexed: 05/11/2023]
Abstract
Prior studies have identified the associations between environmental phenol and paraben exposures and increased risk of gestational diabetes mellitus (GDM), but no study addressed these exposures as mixtures. As methods have emerged to better assess exposures to multiple chemicals, our study aimed to apply Bayesian kernel machine regression (BKMR) to evaluate the association between phenol and paraben mixtures and GDM. This study included 64 GDM cases and 237 obstetric patient controls from the University of Oklahoma Medical Center. Mid-pregnancy spot urine samples were collected to quantify concentrations of bisphenol A (BPA), benzophenone-3, triclosan, 2,4-dichlorophenol, 2,5-dichlorophenol, butylparaben, methylparaben, and propylparaben. Multivariable logistic regression was used to evaluate the associations between individual chemical biomarkers and GDM while controlling for confounding. We used probit implementation of BKMR with hierarchical variable selection to estimate the mean difference in GDM probability for each component of the phenol and paraben mixtures while controlling for the correlation among the chemical biomarkers. When analyzing individual chemicals using logistic regression, benzophenone-3 was positively associated with GDM [adjusted odds ratio (aOR) per interquartile range (IQR) = 1.54, 95% confidence interval (CI) 1.15, 2.08], while BPA was negatively associated with GDM (aOR 0.61, 95% CI 0.37, 0.99). In probit-BKMR analysis, an increase in z-score transformed log urinary concentrations of benzophenone-3 from the 10th to 90th percentile was associated with an increase in the estimated difference in the probability of GDM (0.67, 95% Credible Interval 0.04, 1.30), holding other chemicals fixed at their medians. No associations were identified between other chemical biomarkers and GDM in the BKMR analyses. We observed that the association of BPA and GDM was attenuated when accounting for correlated phenols and parabens, suggesting the importance of addressing chemical mixtures in perinatal environmental exposure studies. Additional prospective investigations will increase the understanding of the relationship between benzophenone-3 exposure and GDM development.
Collapse
Affiliation(s)
- Wei-Jen Chen
- Department of Biostatistics and Epidemiology, Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX, USA.
| | - Candace Robledo
- Department of Population Health and Biostatistics, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Erin M Davis
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY, USA
| | - Jean R Goodman
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Missouri, Columbia, MO, USA
| | - Chao Xu
- Department of Biostatistics and Epidemiology, Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jooyeon Hwang
- Department of Occupational and Environmental Health, Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Amanda E Janitz
- Department of Biostatistics and Epidemiology, Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Tabitha Garwe
- Department of Biostatistics and Epidemiology, Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Antonia M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jennifer D Peck
- Department of Biostatistics and Epidemiology, Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
14
|
Eberle C, Stichling S. Environmental health influences in pregnancy and risk of gestational diabetes mellitus: a systematic review. BMC Public Health 2022; 22:1572. [PMID: 35982427 PMCID: PMC9389831 DOI: 10.1186/s12889-022-13965-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 06/27/2022] [Indexed: 11/10/2022] Open
Abstract
Background Gestational diabetes mellitus (GDM) is one of the most common pregnancy complications globally. Environmental risk factors may lead to increased glucose levels and GDM, which in turn may affect not only the health of the mother but assuming hypotheses of "fetal programming", also the health of the offspring. In addition to traditional GDM risk factors, the evidence is growing that environmental influences might affect the development of GDM. We conducted a systematic review analyzing the association between several environmental health risk factors in pregnancy, including climate factors, chemicals and metals, and GDM. Methods We performed a systematic literature search in Medline (PubMed), EMBASE, CINAHL, Cochrane Library and Web of Science Core Collection databases for research articles published until March 2021. Epidemiological human and animal model studies that examined GDM as an outcome and / or glycemic outcomes and at least one environmental risk factor for GDM were included. Results Of n = 91 studies, we classified n = 28 air pollution, n = 18 persistent organic pollutants (POP), n = 11 arsenic, n = 9 phthalate n = 8 bisphenol A (BPA), n = 8 seasonality, n = 6 cadmium and n = 5 ambient temperature studies. In total, we identified two animal model studies. Whilst we found clear evidence for an association between GDM and air pollution, ambient temperature, season, cadmium, arsenic, POPs and phthalates, the findings regarding phenols were rather inconsistent. There were clear associations between adverse glycemic outcomes and air pollution, ambient temperature, season, POPs, phenols, and phthalates. Findings regarding cadmium and arsenic were heterogeneous (n = 2 publications in each case). Conclusions Environmental risk factors are important to consider in the management and prevention of GDM. In view of mechanisms of fetal programming, the environmental risk factors investigated may impair the health of mother and offspring in the short and long term. Further research is needed. Supplementary Information The online version contains supplementary material available at 10.1186/s12889-022-13965-5.
Collapse
Affiliation(s)
- Claudia Eberle
- Medicine With Specialization in Internal Medicine and General Medicine, Hochschule Fulda, University of Applied Sciences, Leipziger Strasse 123, 36037, Fulda, Germany.
| | - Stefanie Stichling
- Medicine With Specialization in Internal Medicine and General Medicine, Hochschule Fulda, University of Applied Sciences, Leipziger Strasse 123, 36037, Fulda, Germany
| |
Collapse
|
15
|
Huo Y, Wan Y, Huang Q, Wang A, Mahai G, He Z, Xu S, Xia W. Pentachlorophenol exposure in early pregnancy and gestational diabetes mellitus: A nested case-control study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 831:154889. [PMID: 35364152 DOI: 10.1016/j.scitotenv.2022.154889] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/12/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
Pentachlorophenol (PCP) is an endocrine-disrupting chemical that is ubiquitously found in the environment. Few studies have reported PCP exposure in pregnant women and its association with gestational diabetes mellitus (GDM). This nested case-control study aimed to determine the concentration of urinary PCP in early pregnancy and explore the association between PCP exposure and GDM risk. This study included 293 GDM cases and 586 non-GDM controls matched by fetal sex and maternal age from a birth cohort in Wuhan, China. PCP concentrations in spot urine samples collected between 8 and 16 weeks of gestation were measured by ultra-performance liquid chromatography-tandem mass spectrometry. Conditional logistic regression was used to assess the association between PCP exposure and the odds ratio of GDM. The median concentrations of specific gravity-adjusted PCP in controls and cases were 0.70 and 0.80 ng/mL, respectively, with no significant differences (P > 0.05). The multivariate-adjusted odds ratios (ORs) (95% confidence intervals) for GDM across quartiles of urinary PCP were 1 (reference), 1.63 (1.06-2.50), 1.70 (1.11-2.61), and 1.35 (0.87-2.08), respectively, showing a potential "inverted-U" shaped association. In addition, PCP levels and maternal age or fetal sex had significant interactions with GDM risk (both P for interaction < 0.05). Among older women and those carrying female fetuses, the ORs of GDM risk were higher. This study suggests that pregnant women in central China are widely exposed to PCP, and this is the first time to report that PCP exposure may increase the risk of GDM (with potential effect modifications by maternal age and fetal sex). The association observed is in agreement with PCP's "inverted-U" anti-estrogenic effect in vivo; thus, such an effect in humans at environmentally relevant doses should be studied further.
Collapse
Affiliation(s)
- Yitao Huo
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Yanjian Wan
- Institute of Environmental Health, Wuhan Centers for Disease Control & Prevention, Wuhan, Hubei 430015, PR China.
| | - Qingzhu Huang
- Institute of Environmental Health, Wuhan Centers for Disease Control & Prevention, Wuhan, Hubei 430015, PR China.
| | - Aizhen Wang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Gaga Mahai
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Zhenyu He
- Institute of Environmental Health, Wuhan Centers for Disease Control & Prevention, Wuhan, Hubei 430015, PR China.
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| |
Collapse
|
16
|
Moreno-Gómez-Toledano R, Vélez-Vélez E, Arenas MI, Saura M, Bosch RJ. Association between urinary concentrations of bisphenol A substitutes and diabetes in adults. World J Diabetes 2022; 13:521-531. [PMID: 36051427 PMCID: PMC9329846 DOI: 10.4239/wjd.v13.i7.521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/26/2022] [Accepted: 06/22/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Due to new restrictions on the use of bisphenol A (BPA), industries are beginning to replace it with derived molecules such as bisphenol S and F (BPS and BPF). There is extensive evidence in the academic literature on the potential health effects of BPA, which is known to be a diabetogenic molecule. However, there are few publications related to new compounds derived from BPA. AIM To perform an epidemiological study of urinary BPS and BPF in the American National Health and Nutrition Examination Survey (NHANES) cohort, and analyze their possible relationship with diabetes mellitus. METHODS NHANES datasets from 2013 to 2016 were used due to the urinary BPF and BPS availability. Data from 3658 adults were analyzed to perform regression analysis exploring the possible relationship between BPA-derived compounds and diabetes. RESULTS Descriptive statistics, linear regression modeling, and logistic regression analysis revealed a significant relationship between urinary BPS, but not BPF, and diabetes risk. Additionally, a relationship was observed between both compounds and hypertension and a slight relationship between BPF and dyslipidemia. CONCLUSION In the present study, a strong relationship between urinary BPS, not BPF, and diabetes risk has been determined. BPA substitute molecules do not exempt the population from potential health risks.
Collapse
Affiliation(s)
| | - Esperanza Vélez-Vélez
- Fundación Jiménez Díaz School of Nursing, Jiménez Díaz Foundation, Autonomous University of Madrid, Madrid 28040, Spain
| | - María I Arenas
- Universidad de Alcalá, Department of Biomedicine and Biotechnology,Alcalá de Henares 28871, Spain
| | - Marta Saura
- Universidad de Alcalá, Department of Biological Systems/Physiology Unit, Alcalá de Henares 28871, Spain
- Centro de Investigación en Red de Enfermedades Cardiovasculares, Instituto Ramón y Cajal de Investigación Sanitaria, Madrid 28034, Spain
| | - Ricardo J Bosch
- Universidad de Alcalá, Department of Biological Systems/Physiology Unit, Alcalá de Henares 28871, Spain
| |
Collapse
|
17
|
Protective effects of polyphenols against endocrine disrupting chemicals. Food Sci Biotechnol 2022; 31:905-934. [DOI: 10.1007/s10068-022-01105-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/24/2022] [Accepted: 05/16/2022] [Indexed: 11/04/2022] Open
|
18
|
Zhang WX, Zeng XX, Chen Q, Yu K, Zheng H, Yu XG, Zhang YJ, Zhang J, Huang HY, Huang LS. Prenatal environmental antibiotics and fetal and postnatal growth: A biomonitoring-based prospective study in Eastern China. CHEMOSPHERE 2022; 288:132657. [PMID: 34699881 DOI: 10.1016/j.chemosphere.2021.132657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
Thus far, the effect of environmental antibiotics exposure to offspring's growth remains unclear. Here we aimed to evaluate whether and to what extent environmental antibiotics exposure is associated with fetal and postnatal growth. A total of 735 pregnant women and their full-term offspring from the Shanghai Obesity Birth Cohort were involved in the study. Maternal urine specimen was collected during the third trimester, and urinary concentration of fifteen environmental antibiotics was measured by liquid chromatography-tandem mass spectrometry and enzymatic method. Children were followed at birth, 12, 24 and 60 months, and growth parameters of the weight and height of children were recorded. Linear regression model was applied, and it was found that maternal veterinary antibiotic (VA) concentration was negatively associated with birth weight and ponderal index [per natural-logarithm (ln)-unit: adjusted β (95% confidence interval, CI) = - 42.1 (- 74.0, - 10.3) for birth weight, -0.11 (- 0.19, - 0.02) for birth weight z-score, and - 0.03 (- 0.05, - 0.002) for ponderal index]. Regarding specific VA, each ln-unit increment of florfenicol concentrations was likely to be associate with 39.7 g (95%CI: - 69.3, - 10.1) reduced birth weight, 0.10 (95%CI: - 0.18, - 0.02) reduced birth weight z-score, and 0.02 g/cm3 (95%CI: - 0.04, - 0.00) reduced ponderal index. Ciprofloxacin, a preferred-as-veterinary antibiotic, showed a similar dose-response relationship with neonatal anthropometric parameters to florfenicol. However, these adverse effects diminished as children grew up to 12-, 24- and 60-month-old. Larger prospective cohort studies and animal experiments are warranted to verify the hypothesis that environmental antibiotics exposure in early life, even at low doses, may cause fetal growth restriction.
Collapse
Affiliation(s)
- Wei-Xi Zhang
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xin-Xin Zeng
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Infectious Diseases, Xinhua Children's Hospital, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Chen
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kan Yu
- Department of Infectious Diseases, Xinhua Children's Hospital, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hang Zheng
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Infectious Diseases, Xinhua Children's Hospital, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Gang Yu
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong-Jun Zhang
- Department of Neonatology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Zhang
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - He-Yu Huang
- Department of Infectious Diseases, Xinhua Children's Hospital, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Li-Su Huang
- Department of Infectious Diseases, Xinhua Children's Hospital, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
19
|
Lorigo M, Cairrao E. Fetoplacental vasculature as a model to study human cardiovascular endocrine disruption. Mol Aspects Med 2021; 87:101054. [PMID: 34839931 DOI: 10.1016/j.mam.2021.101054] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 10/15/2021] [Accepted: 11/18/2021] [Indexed: 12/11/2022]
Abstract
Increasing evidence has associated the exposure of endocrine-disrupting chemicals (EDCs) with the cardiovascular (CV) system. This exposure is particularly problematic in a sensitive window of development, pregnancy. Pregnancy exposome can affect the overall health of the pregnancy by dramatic changes in vascular physiology and endocrine activity, increasing maternal susceptibility. Moreover, fetoplacental vascular function is generally altered, increasing the risk of developing pregnancy complications (including cardiovascular diseases, CVD) and predisposing the foetus to adverse health risks later in life. Thus, our review summarizes the existing literature on exposures to EDCs during pregnancy and adverse maternal health outcomes, focusing on the human placenta, vein, and umbilical artery associated with pregnancy complications. The purpose of this review is to highlight the role of fetoplacental vasculature as a model for the study of human cardiovascular endocrine disruption. Therefore, we emphasize that the placenta, together with the umbilical arteries and veins, allows a better characterization of the pregnant woman's exposome. Consequently, it contributes to the protection of the mother and foetus against CV disorders in life.
Collapse
Affiliation(s)
- Margarida Lorigo
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506, Covilhã, Portugal; FCS - UBI, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Elisa Cairrao
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506, Covilhã, Portugal; FCS - UBI, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.
| |
Collapse
|
20
|
Taheri E, Riahi R, Rafiei N, Fatehizadeh A, Iqbal HMN, Hosseini SM. Bisphenol A exposure and abnormal glucose tolerance during pregnancy: systematic review and meta-analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:62105-62115. [PMID: 34590231 DOI: 10.1007/s11356-021-16691-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/20/2021] [Indexed: 02/08/2023]
Abstract
In the present work, a systematic review and meta-analysis were performed to examine the probable relation between maternal exposure to bisphenol A (BPA), as estrogen-disrupting compounds, and gestational diabetes mellitus (GDM), and impaired glucose tolerance (IGT). We comprehensively searched three electronic databases to retrieve published studies on maternal exposure to BPA and GDM/IGT, through February 2021. Cochran's Q test and I2 statistics were employed for testing heterogeneity across studies. DerSimonian and Liard random-effects model was used to determine the pooled estimates. Otherwise, the fixed-effects model with inverse-variance weights was applied. Sensitivity analysis was performed to determine the robustness of the results by excluding each study from the pooled estimate. The potential publication bias was examined using Begg's and Egger's tests. The pooled odds ratio did not show BPA exposure to be a significant risk factor for GDM (OR = 0.90, 95% CI = 0.62-1.33, I2: 50.7%). Also, no significant association was observed between BPA exposure and risk of IGT (OR = 0.93, 95% CI = 0.40-2.18, I2: 11.5%). Based on the findings of this study, no association was found between exposure to BPA during pregnancy and the risk of GDM/IGT. Albeit no heterogeneity was found between studies.
Collapse
Affiliation(s)
- Ensiyeh Taheri
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Roya Riahi
- Department of Biostatistics & Epidemiology, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
- Student Research Committee, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nasim Rafiei
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
- Student Research Committee, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Fatehizadeh
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, 64849, Monterrey, Mexico.
| | - Sayed Mohsen Hosseini
- Department of Biostatistics & Epidemiology, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
21
|
A Systematic Review of Bisphenol A from Dietary and Non-Dietary Sources during Pregnancy and Its Possible Connection with Fetal Growth Restriction: Investigating Its Potential Effects and the Window of Fetal Vulnerability. Nutrients 2021; 13:nu13072426. [PMID: 34371934 PMCID: PMC8308698 DOI: 10.3390/nu13072426] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 12/28/2022] Open
Abstract
Bisphenol A (BPA), a ubiquitous endocrine-disrupting chemical (EDC), is increasingly hypothesized to be a factor contributing to changes in fetal growth velocity. BPA exposure may be environmental, occupational, and/or dietary, with canned foods and plastic bottles contributing significantly. Our systematic review aims to evaluate the current literature and to investigate the role of BPA in abnormal fetal growth patterns. A search was conducted in the PubMed and Cochrane databases. A total of 25 articles met the eligibility criteria and were included in this systematic review. Eleven of them failed to show a clear relationship between BPA and abnormal fetal growth. The majority of the remaining studies (9/14) found an inverse association of BPA with indicators of fetal growth, whereas three studies suggested increased fetal growth, and two studies produced contradictory findings. Of note, both of the studies that collected a sample (amniotic fluid) directly reflecting BPA concentration in the fetus during the first half of pregnancy revealed an inverse association with birth weight. In conclusion, there is mounting evidence that combined exposure to BPA from dietary and non-dietary sources during pregnancy may contribute to abnormal fetal growth; a tendency towards fetal growth restriction was shown, especially when exposure occurs during the first half.
Collapse
|
22
|
Guzylack-Piriou L, Ménard S. Early Life Exposure to Food Contaminants and Social Stress as Risk Factor for Metabolic Disorders Occurrence?-An Overview. Biomolecules 2021; 11:687. [PMID: 34063694 PMCID: PMC8147825 DOI: 10.3390/biom11050687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 12/20/2022] Open
Abstract
The global prevalence of obesity has been increasing in recent years and is now the major public health challenge worldwide. While the risks of developing metabolic disorders (MD) including obesity and type 2 diabetes (T2D) have been historically thought to be essentially driven by increased caloric intake and lack of exercise, this is insufficient to account for the observed changes in disease trends. Based on human epidemiological and pre-clinical experimental studies, this overview questioned the role of non-nutritional components as contributors to the epidemic of MD with a special emphasis on food contaminants and social stress. This overview examines the impact of early life adverse events (ELAE) focusing on exposures to food contaminants or social stress on weight gain and T2D occurrence in the offspring and explores potential mechanisms leading to MD in adulthood. Indeed, summing up data on both ELAE models in parallel allowed us to identify common patterns that appear worthwhile to study in MD etiology. This overview provides some evidence of a link between ELAE-induced intestinal barrier disruption, inflammation, epigenetic modifications, and the occurrence of MD. This overview sums up evidence that MD could have developmental origins and that ELAE are risk factors for MD at adulthood independently of nutritional status.
Collapse
Affiliation(s)
| | - Sandrine Ménard
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, 31024 Toulouse, France;
| |
Collapse
|
23
|
Feng BY, Peng Y, Liang J, Wu L, Jiang QJ, Liu S, Zeng XY, Huang DP, Qiu XQ, Li H. Risk Factors for Adverse Pregnancy Outcomes among Zhuang Ethnic Pregnant Women: A Cohort Study in Guangxi, China. Curr Med Sci 2021; 41:219-227. [PMID: 33877538 DOI: 10.1007/s11596-021-2339-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/22/2021] [Indexed: 10/21/2022]
Abstract
Risk factors for adverse pregnancy outcomes among Zhuang ethnic pregnant women are unclear. This study analyzed the incidence and risk factors related to preterm birth (PB), low birth weight (LBW) and macrosomia in Zhuang population. We conducted a prospective cohort study of 9965 Zhuang pregnancy women in Guangxi, China. Information on mothers and newborns was obtained by using questionnaires and referring to medical records. Multivariate logistic regression analyses were used to evaluate the association between related factors and adverse pregnancy outcomes. Our results showed that the incidence of PB, LBW and macrosomia in Zhuang people was 5.55%, 5.64% and 2.19%, respectively. Maternal age ≥36 years (OR=2.22, 95% CI: 1.51-3.27) was related to a higher incidence of PB. Those with pre-pregnancy body mass index (BMI) <18.5 kg/m2 (OR=1.91, 95% CI: 1.45-2.51), and had a female fetus (OR=1.74, 95% CI: 1.36-2.23) were more likely to have LBW infants. Maternal age between 31 and 35 years (OR=1.76, 95% CI: 1.03-2.99) and pre-pregnancy overweight or obesity (OR=1.79, 95% CI: 1.15-2.80) were associated with a higher risk of macrosomia. The protective factors of macrosomia were maternal pre-pregnancy BMI <18.5 kg/m2 (OR=0.30, 95% CI: 0.15-0.60) and female fetus (OR=0.41, 95% CI: 0.28-0.59). Our study provided a reference for maternal and childcare administration among Zhuang population.
Collapse
Affiliation(s)
- Bao-Ying Feng
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Yang Peng
- Department of Environmental and Occupational Health, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Jun Liang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Li Wu
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Qun-Jiao Jiang
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Shun Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Xiao-Yun Zeng
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Dong-Ping Huang
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Xiao-Qiang Qiu
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Han Li
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
24
|
Salazar-Petres ER, Sferruzzi-Perri AN. Pregnancy-induced changes in β-cell function: what are the key players? J Physiol 2021; 600:1089-1117. [PMID: 33704799 DOI: 10.1113/jp281082] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/17/2021] [Indexed: 12/11/2022] Open
Abstract
Maternal metabolic adaptations during pregnancy ensure appropriate nutrient supply to the developing fetus. This is facilitated by reductions in maternal peripheral insulin sensitivity, which enables glucose to be available in the maternal circulation for transfer to the fetus for growth. To balance this process and avoid excessive hyperglycaemia and glucose intolerance in the mother during pregnancy, maternal pancreatic β-cells undergo remarkable changes in their function including increasing their proliferation and glucose-stimulated insulin secretion. In this review we examine how placental and maternal hormones work cooperatively to activate several signalling pathways, transcription factors and epigenetic regulators to drive adaptations in β-cell function during pregnancy. We also explore how adverse maternal environmental conditions, including malnutrition, obesity, circadian rhythm disruption and environmental pollutants, may impact the endocrine and molecular mechanisms controlling β-cell adaptations during pregnancy. The available data from human and experimental animal studies highlight the need to better understand how maternal β-cells integrate the various environmental, metabolic and endocrine cues and thereby determine appropriate β-cell adaptation during gestation. In doing so, these studies may identify targetable pathways that could be used to prevent not only the development of pregnancy complications like gestational diabetes that impact maternal and fetal wellbeing, but also more generally the pathogenesis of other metabolic conditions like type 2 diabetes.
Collapse
Affiliation(s)
- Esteban Roberto Salazar-Petres
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| | - Amanda Nancy Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| |
Collapse
|
25
|
Yang J, Wang H, Du H, Xu L, Liu S, Yi J, Chen Y, Jiang Q, He G. Serum Bisphenol A, glucose homeostasis, and gestational diabetes mellitus in Chinese pregnant women: a prospective study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:12546-12554. [PMID: 33083951 DOI: 10.1007/s11356-020-11263-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/14/2020] [Indexed: 06/11/2023]
Abstract
Lab studies have suggested that exposure to Bisphenol A (BPA) could disturb glucose homeostasis, but epidemiologic studies are limited and show inconsistent results for pregnant women. For this, 535 pregnant women were selected from a pregnant women cohort established in Tangshan City in North China between 2013 and 2014. Serum concentrations of BPA were measured in the early term of pregnancy, and fasting glucose and insulin levels were repeatedly measured in each of three terms of pregnancy (early, middle, and late). Gestational diabetes mellitus (GDM) were examined by Oral Glucose Tolerance Test (OGTT) in the middle and late terms of pregnancy. BPA was detected in 97.5% of pregnant women with a median of 6.50 ng/ml. Natural log-transformed BPA (Ln BPA) was positively associated with fasting glucose level (β (95% CI): 0.038 (0.015~0.061)), fasting insulin level (0.195 (0.069~0.321)), and homeostasis model insulin resistance index (HOMA-IR) (0.226 (0.087~0.364)) in the middle term of pregnancy by multiple linear regression model after adjusting for potential confounders. After serum BPA levels were divided into three groups (low, middle, and high), BPA showed a positive dose-response relationship with blood glucose, insulin, and HOMA-IR in the middle term of pregnancy. Increased BPA concentration tended to increase the RR of GDM although not statistically significant (risk ratio: 2.51 (95% CI: 0.68~9.30) for high vs low tertile of BPA concentrations). These findings suggested that exposure to BPA might affect glucose homeostasis and the middle term of pregnancy was a potentially sensitive period.
Collapse
Affiliation(s)
- Jiaqi Yang
- School of Public Health/Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, No. 130 Dong'an Road, Shanghai, 200032, China
| | - Hexing Wang
- School of Public Health/Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, No. 130 Dong'an Road, Shanghai, 200032, China
| | - Hongyi Du
- Institute of Reproductive and Child Health, School of Public Health, Peking University Health Science Center, Beijing, 100083, China
| | - Linji Xu
- Maternal and Child Health Care Hospital, Tangshan Municipality, No. 14 South Jianshe Road, Tangshan, 063000, Hebei Province, China
| | - Shuping Liu
- Maternal and Child Health Care Hospital, Tangshan Municipality, No. 14 South Jianshe Road, Tangshan, 063000, Hebei Province, China
| | - Jianping Yi
- Maternal and Child Health Care Hospital, Tangshan Municipality, No. 14 South Jianshe Road, Tangshan, 063000, Hebei Province, China
| | - Yue Chen
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1G 5Z3, Canada
| | - Qingwu Jiang
- School of Public Health/Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, No. 130 Dong'an Road, Shanghai, 200032, China
| | - Gengsheng He
- School of Public Health/Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, No. 130 Dong'an Road, Shanghai, 200032, China.
| |
Collapse
|
26
|
Hou Y, Li S, Xia L, Yang Q, Zhang L, Zhang X, Liu H, Huo R, Cao G, Huang C, Tian X, Sun L, Cao D, Zhang M, Zhang Q, Tang N. Associations of urinary phenolic environmental estrogens exposure with blood glucose levels and gestational diabetes mellitus in Chinese pregnant women. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142085. [PMID: 32898782 DOI: 10.1016/j.scitotenv.2020.142085] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/24/2020] [Accepted: 08/28/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Endocrine-disrupting chemicals (EDCs) are considered to be related to diabetes, but studies of the association between phenolic EDCs and gestational diabetes mellitus (GDM) are limited. OBJECTIVES To assess associations of maternal urinary bisphenol A (BPA), nonylphenol (NP), and 2-tert-octylphenol (2-t-OP) with GDM occurrence. METHODS A cross-sectional study was performed among 390 Chinese women at 24-28 weeks of gestation. GDM was diagnosed with a 2-h 75-g oral glucose tolerance test (OGTT). BPA, NP, and 2-t-OP concentrations were determined in urine samples. Linear and logistic regression tests evaluated associations of BPA, NP, and 2-t-OP with blood glucose levels and GDM prevalence. RESULTS The 2-t-OP concentrations in GDM patients were significantly higher than in non-GDM women with median values of 2.23 μg/g Cr and 1.79 μg/g Cr, respectively. No significant difference was observed in BPA and NP. Urinary 2-t-OP was positively associated with blood glucose levels after adjustment for several confounding factors and urinary BPA and NP. Higher 2-t-OP levels were associated with higher odds of GDM (OR: 5.78; 95% CI: 2.04, 16.37), whereas higher NP levels were associated with lower odds (OR: 0.22; 95% CI: 0.05, 0.85) in the adjusted models. In addition, compared to the first quartile of 2-t-OP, the adjusted odds ratios (ORs) and 95% confidence intervals (95% CIs) for GDM in the second, third, and fourth quartiles were 2.81 (1.23, 6.42), 3.01 (1.30, 6.93), and 5.49 (2.24, 13.46), respectively. CONCLUSION Our study indicates that, for the first time to our knowledge, exposure to 2-t-OP is associated with a higher risk of GDM. However, higher NP exposure is associated with lower GDM risk. Further studies are necessary to affirm the associations of 2-t-OP and NP with GDM, and to elucidate the causality of these findings.
Collapse
Affiliation(s)
- Yaxing Hou
- Department of Occupational and Environmental Health, Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Shuying Li
- Department of Endocrinology, Tianjin Xiqing Hospital, Tianjin, China
| | - Liting Xia
- Department of Occupational and Environmental Health, Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Qiaoyun Yang
- Department of Occupational and Environmental Health, Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Liwen Zhang
- Department of Occupational and Environmental Health, Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Xumei Zhang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Huihuan Liu
- Beichen District Women's and Children's Health Center, Tianjin, China
| | - Ran Huo
- Beichen District Women's and Children's Health Center, Tianjin, China
| | - Guanghan Cao
- Beichen District Women's and Children's Health Center, Tianjin, China
| | - Chunyun Huang
- Beichen District Women's and Children's Health Center, Tianjin, China
| | - Xiubiao Tian
- Department of Endocrinology, Tianjin Xiqing Hospital, Tianjin, China
| | - Lirong Sun
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Deqing Cao
- Central Laboratory of Preventive Medicine, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Ming Zhang
- Tianjin Centers for Disease Control and Prevention, Tianjin, China
| | - Qiang Zhang
- Department of Occupational and Environmental Health, Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, China.
| | - Naijun Tang
- Department of Occupational and Environmental Health, Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, China
| |
Collapse
|
27
|
Ouyang F, Zhang GH, Du K, Shen L, Ma R, Wang X, Wang X, Zhang J. Maternal prenatal urinary bisphenol A level and child cardio-metabolic risk factors: A prospective cohort study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:115008. [PMID: 32574892 PMCID: PMC7456779 DOI: 10.1016/j.envpol.2020.115008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 06/07/2020] [Accepted: 06/08/2020] [Indexed: 05/11/2023]
Abstract
Exposure to endocrine disrupting chemicals during the first 1000 days of life may have long-lasting adverse effects on cardio-metabolic risk in later life. This study aimed to examine the associations between maternal prenatal Bisphenol A (BPA) exposure and child cardio-metabolic risk factors at age 2 years in a prospective cohort. During 2012-2013, 218 pregnant women were enrolled at late pregnancy from Shanghai, China. Urinary BPA concentration was measured in prenatal and child 2-year spot urine samples, and classified into high, medium and low tertiles. Child adiposity anthropometric measurements, random morning plasma glucose, serum insulin, and lipids (high-density lipoprotein, low-density lipoprotein, cholesterol, triglyceride), systolic (SBP) and diastolic blood pressure (DBP) were measured. Linear regression was used to evaluate the associations between prenatal BPA and each of the cardio-metabolic risk factors in boys and girls, respectively, adjusting for pertinent prenatal, perinatal and postnatal factors. BPA was detectable (>0.1 μg/L) in 98.2% of mothers prenatally and 99.4% of children at age 2 years. Compared to those with low prenatal BPA, mean SBP was 7.0 (95%CI: 2.9-11.2) mmHg higher, and DBP was 4.4 (95%CI: 1.2-7.5) mmHg higher in girls with high prenatal BPA levels, but these associations were not found in boys. In boys, medium maternal prenatal BPA level was associated with 0.36 (95% CI: 0.04-0.68) mmol/L higher plasma glucose. No associations were found between prenatal BPA and child BMI, skinfold thicknesses, serum lipids, or insulin in either girls or boys. There were no associations between concurrent child urinary BPA and cardio-metabolic risk factors. These results support that BPA exposure during prenatal period, susceptible time for fetal development, may be associated with increase in child BP and plasma glucose in a sex-specific manner. Further independent cohort studies are needed to confirm the findings.
Collapse
Affiliation(s)
- Fengxiu Ouyang
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Guang-Hui Zhang
- Department of Clinical Laboratory Test, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kun Du
- Department of Clinical Laboratory Test, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lixiao Shen
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui Ma
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xia Wang
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaobin Wang
- Center on the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins University Bloomberg School of Public Health, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jun Zhang
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
28
|
Li J, Ji Z, Luo X, Li Y, Yuan P, Long J, Shen N, Lu Q, Zeng Q, Zhong R, Shen Y, Cheng L. Urinary bisphenol A and its interaction with ESR1 genetic polymorphism associated with non-small cell lung cancer: findings from a case-control study in Chinese population. CHEMOSPHERE 2020; 254:126835. [PMID: 32348927 DOI: 10.1016/j.chemosphere.2020.126835] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/07/2020] [Accepted: 04/16/2020] [Indexed: 06/11/2023]
Abstract
Bisphenol A (BPA), a well-known endocrine disruptor, was reported to promote migration and invasion of lung cancer cells, but findings in human study is absent. A case-control study in Chinese population was conducted to evaluate the association between BPA exposure and non-small cell lung cancer (NSCLC), and explore the interaction between BPA exposure and estrogen-related genetic polymorphism on NSCLC. BPA concentrations were measured in urine samples using an UHPLC-MS method and rs2046210 in estrogen receptor α (ESR1) gene was genotyped by TaqMan genotyping system. Logistic regression was performed to estimate odds ratios (OR) and 95% confidence intervals (95% CI) for the association analyses. As a result, 615 NSCLC cases and 615 healthy controls were enrolled from Wuhan, central China. The mean age was 58.0 (SD: 7.9) years old for controls and 59.2 (SD: 8.8) years old for cancer cases. The creatinine-adjusted BPA levels were significantly higher in NSCLC cases than that in healthy controls (median: 0.97 vs 0.73 μg/L, P < 0.001). Exposure to high levels of BPA was significantly associated with NSCLC (adjusted OR = 1.91, 95%CI: 1.39-2.62, P < 0.001 for the highest quartile). We also observed a shallow concave dose-response relationship about the overall association between BPA and NSCLC. Moreover, interaction analyses showed that BPA exposure interacted multiplicatively with rs2046210, with a marginal P value (P = 0.049), to contribute to NSCLC. In conclusion, exposure to high levels BPA may be associated with NSCLC and the relationship may be modified by genetic polymorphism in ESR1.
Collapse
Affiliation(s)
- Jiaoyuan Li
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi Ji
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xia Luo
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Li
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peihong Yuan
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jieyi Long
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Na Shen
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Lu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiang Zeng
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rong Zhong
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Shen
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Liming Cheng
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
29
|
Akash MSH, Sabir S, Rehman K. Bisphenol A-induced metabolic disorders: From exposure to mechanism of action. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 77:103373. [PMID: 32200274 DOI: 10.1016/j.etap.2020.103373] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/10/2020] [Accepted: 03/12/2020] [Indexed: 06/10/2023]
Abstract
Bisphenol A (BPA) is considered as ubiquitous xenooestrogen and an endocrine disrupting chemical which has deleterious effects on endocrine functions. Human populations are continuously exposed to BPA as it is abundant in daily life. It has been found to be associated with wide range of metabolic disorders notably type 2 diabetes mellitus (DM). Numerous epidemiological studies have been conducted to find its role in development of DM. Experimental studies have found that BPA exposure is associated with pathogenesis of DM and also considered as a risk factor for gestational diabetes. Being a lipophilic compound, BPA is preferably accumulated in adipose tissues where it alters the production of adipokines that play important roles in insulin resistance. BPA induces apoptosis by caspase activation after mitochondrial damage and it impairs insulin signaling pathways by altering associated ion channel activity especially potassium channels. Perinatal exposure of BPA makes offspring more susceptible to develop DM in early years. Epigenetic modifications are the key mechanisms for BPA-induced metabolic re-programming, where BPA alters the expression of DNA methyltransferases involved in methylation of various genes. In this way, DNA methyltransferase controls the expression of numerous genes including genes important for insulin secretion and signaling. Furthermore, BPA induces histone modifications and alters miRNA expression. In this article, we have briefly described the sources of BPA exposure to human being and summarized the evidence from epidemiological studies linking DM with BPA exposure. Additionally, we have also highlighted the potential molecular pathways for BPA-induced DM.
Collapse
Affiliation(s)
| | - Shakila Sabir
- Department of Pharmaceutical Chemistry, Government College University Faisalabad, Pakistan
| | - Kanwal Rehman
- Department of Pharmacy, University Agriculture, Faisalabad, Pakistan.
| |
Collapse
|
30
|
Rolfo A, Nuzzo AM, De Amicis R, Moretti L, Bertoli S, Leone A. Fetal-Maternal Exposure to Endocrine Disruptors: Correlation with Diet Intake and Pregnancy Outcomes. Nutrients 2020; 12:E1744. [PMID: 32545151 PMCID: PMC7353272 DOI: 10.3390/nu12061744] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/25/2020] [Accepted: 06/07/2020] [Indexed: 02/06/2023] Open
Abstract
Endocrine-disrupting chemicals (EDCs) are exogenous substances able to mimic or to interfere with the endocrine system, thus altering key biological processes such as organ development, reproduction, immunity, metabolism and behavior. High concentrations of EDCs are found in several everyday products including plastic bottles and food containers and they could be easily absorbed by dietary intake. In recent years, considerable interest has been raised regarding the biological effects of EDCs, particularly Bisphenol A (BPA) and phthalates, on human pregnancy and fetal development. Several evidence obtained on in vitro and animal models as well as by epidemiologic and population studies strongly indicated that endocrine disruptors could negatively impact fetal and placental health by interfering with the embryonic developing epigenome, thus establishing disease paths into adulthood. Moreover, EDCs could cause and/or contribute to the onset of severe gestational conditions as Preeclampsia (PE), Fetal Growth Restriction (FGR) and gestational diabetes in pregnancy, as well as obesity, diabetes and cardiovascular complications in reproductive age. Therefore, despite contrasting data being present in the literature, endocrine disruptors must be considered as a therapeutic target. Future actions aimed at reducing or eliminating EDC exposure during the perinatal period are mandatory to guarantee pregnancy success and preserve fetal and adult health.
Collapse
Affiliation(s)
- Alessandro Rolfo
- Department of Surgical Sciences, University of Turin, Via Ventimiglia 3, 10126 Turin, Italy; (A.M.N.); (L.M.)
| | - Anna Maria Nuzzo
- Department of Surgical Sciences, University of Turin, Via Ventimiglia 3, 10126 Turin, Italy; (A.M.N.); (L.M.)
| | - Ramona De Amicis
- International Center for the Assessment of Nutritional Status (ICANS), Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Sandro Botticelli 21, 20133 Milan, Italy; (R.D.A.); (S.B.); (A.L.)
| | - Laura Moretti
- Department of Surgical Sciences, University of Turin, Via Ventimiglia 3, 10126 Turin, Italy; (A.M.N.); (L.M.)
| | - Simona Bertoli
- International Center for the Assessment of Nutritional Status (ICANS), Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Sandro Botticelli 21, 20133 Milan, Italy; (R.D.A.); (S.B.); (A.L.)
- Istituto Auxologico Italiano, IRCCS, Lab of Nutrition and Obesity Research, 20145 Milan, Italy
| | - Alessandro Leone
- International Center for the Assessment of Nutritional Status (ICANS), Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Sandro Botticelli 21, 20133 Milan, Italy; (R.D.A.); (S.B.); (A.L.)
| |
Collapse
|
31
|
Salamanca-Fernández E, Iribarne-Durán LM, Rodríguez-Barranco M, Vela-Soria F, Olea N, Sánchez-Pérez MJ, Arrebola JP. Historical exposure to non-persistent environmental pollutants and risk of type 2 diabetes in a Spanish sub-cohort from the European Prospective Investigation into Cancer and Nutrition study. ENVIRONMENTAL RESEARCH 2020; 185:109383. [PMID: 32224340 DOI: 10.1016/j.envres.2020.109383] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/03/2020] [Accepted: 03/10/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Environmental factors are believed to account for a substantial burden of type 2 diabetes mellitus (T2DM). Non-persistent environmental pollutants (npEPs) are a group of widely-used chemicals identified as endocrine/metabolic disrupting chemicals and obesogens. The aim of this study was to analyse the potential associations of serum levels of three groups of npEPs with the risk of incident T2DM. METHODS This is a longitudinal study within a sub-sample of Granada EPIC-Spain cohort (n = 670). We quantified serum concentrations of 7 npEPs: four parabens (Methylparaben (MP) ethylparaben (EP), propylparaben (PP) and butilparaben (BP); two benzophenones: Benzophenone 1 (BP1), Benzophenone 3 (BP3); and Bisphenol A (BPA). Exposure was assessed by means of chemical analyses of serum samples collected at recruitment, and information on potential confounders was gathered by using validated questionnaires at baseline. Follow-up was performed by review of patients' clinical records. Cox Proportional Hazards Models were used for the statistical analyses. RESULTS Median follow-up time was 23 years. There were 182 (27%) incident T2DM diagnoses in our sub-cohort. MP was the most frequently detected npEP, 88.42% samples above the limit of detection, and BP showed the lowest percentage of detection (19.21%). Those individuals within the fourth PP quartile (0.53-9.24 ng/ml) showed a statistically significant increased risk of T2DM (HR = 1.668 p = 0.012), while BP1 concentrations showed an inverse non-significant trend with the risk. CONCLUSIONS We evidenced a potential contribution of npEP exposure on T2DM, but no clear trend was observed. However, limitations in relation to exposure estimation might influence our findings and further research is warranted to confirm our results.
Collapse
Affiliation(s)
- E Salamanca-Fernández
- Andalusian School of Public Health (EASP), Granada, Spain; Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain
| | | | - M Rodríguez-Barranco
- Andalusian School of Public Health (EASP), Granada, Spain; Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain; CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - F Vela-Soria
- Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain
| | - N Olea
- Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain; CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain; Department of Radiology, School of Medicine, University of Granada, Granada, Spain
| | - M J Sánchez-Pérez
- Andalusian School of Public Health (EASP), Granada, Spain; Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain; CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - J P Arrebola
- Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain; CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain; Department of Preventive Medicine and Public Health, University of Granada, Granada, Spain.
| |
Collapse
|
32
|
Wang X, Tang N, Nakayama SF, Fan P, Liu Z, Zhang J, Ouyang F. Maternal urinary bisphenol A concentration and thyroid hormone levels of Chinese mothers and newborns by maternal body mass index. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:10939-10949. [PMID: 31953761 DOI: 10.1007/s11356-020-07705-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 01/09/2020] [Indexed: 06/10/2023]
Abstract
Animal studies indicated that bisphenol A (BPA) exposure during pregnancy may disrupt thyroid function which is critical for fetal development. However, few epidemiological studies have examined this topic and the results were inconsistent. We aimed to evaluate whether prenatal BPA exposure is associated with thyroid hormone levels in Chinese mothers and newborns with stratification by maternal body mass index (BMI). BPA concentration were measured in urine samples collected from 555 women at late pregnancy. Maternal serum free thyroxin (FT4), thyroid-stimulating hormone (TSH) and thyroid peroxidase antibody (TPO-Ab) concentrations at the third trimester were abstracted from medical records. Cord serum-free triiodothyronine (FT3), FT4, TSH, and TPO-Ab levels were measured in 398 newborns. Prenatal urinary BPA was detected in 98.5% of mothers with a geometric mean of 1.32 ng/mL (95% CI 1.17-1.49 ng/mL). With each 10-fold increase in BPA concentrations, maternal log10_(TSH) mIU/L was 0.10 lowered (95% CI - 0.20, - 0.005, p < 0.05) among pre-pregnancy BMI > 23 kg/m2, with adjustment for maternal age, maternal education, gestation diabetes mellitus (GDM), husband smoking during pregnancy, parity, and gestational age at thyroid parameters measured, but no association was observed in pre-pregnancy BMI < 18.5, or 18.5-22.9 kg/m2 stratum. No BPA-associated changes were observed in maternal FT4 level or odds of positive TPO-Ab in all BMI stratum. Also, no associations were observed between prenatal urinary BPA concentration and cord serum FT4, FT3, TSH levels, and odds of positive TPO-Ab in both male and female newborns among pre-pregnancy BMI < 18.5, 18.5-22.9 or > 23 kg/m2 stratum. In this study, prenatal urinary BPA concentration was associated with lower maternal TSH among women with overweight, but not associated with other maternal thyroid parameters or cord serum thyroid parameters across maternal BMI categories. More research on pregnant women and newborns cohort with BPA exposure are warranted.
Collapse
Affiliation(s)
- Xia Wang
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kong Jiang Road, Shanghai, 200092, China
- Department of Neonatology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kong Jiang Road, Shanghai, 200092, China
| | - Ning Tang
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kong Jiang Road, Shanghai, 200092, China
| | - Shoji F Nakayama
- Exposure Dynamics Research Section, Centre for Health and Environmental Risk Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Pianpian Fan
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kong Jiang Road, Shanghai, 200092, China
| | - Zhiwei Liu
- Department of Neonatology, International Peace Maternal and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, 910 Heng Shan Road, Shanghai, 200030, China
| | - Jun Zhang
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kong Jiang Road, Shanghai, 200092, China
| | - Fengxiu Ouyang
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kong Jiang Road, Shanghai, 200092, China.
| |
Collapse
|
33
|
Filardi T, Panimolle F, Lenzi A, Morano S. Bisphenol A and Phthalates in Diet: An Emerging Link with Pregnancy Complications. Nutrients 2020; 12:nu12020525. [PMID: 32092855 PMCID: PMC7071371 DOI: 10.3390/nu12020525] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 12/11/2022] Open
Abstract
Endocrine-disrupting chemicals (EDCs) are exogenous substances that are able to interfere with hormone action, likely contributing to the development of several endocrine and metabolic diseases. Among them, Bisphenol A (BPA) and phthalates contaminate food and water and have been largely studied as obesogenic agents. They might contribute to weight gain, insulin resistance and pancreatic β-cell dysfunction in pregnancy, potentially playing a role in the development of pregnancy complications, such as gestational diabetes mellitus (GDM), and adverse outcomes. Pregnancy and childhood are sensitive windows of susceptibility, and, although with not univocal results, preclinical and clinical studies have suggested that exposure to BPA and phthalates at these stages of life might have an impact on the development of metabolic diseases even many years later. The molecular mechanisms underlying this association are largely unknown, but adipocyte and pancreatic β-cell dysfunction are suspected to be involved. Remarkably, transgenerational damage has been observed, which might be explained by epigenetic changes. Further research is needed to address knowledge gaps and to provide preventive measure to limit health risks connected with exposure to EDCs.
Collapse
|
34
|
Martínez-Ibarra A, Martínez-Razo LD, Vázquez-Martínez ER, Martínez-Cruz N, Flores-Ramírez R, García-Gómez E, López-López M, Ortega-González C, Camacho-Arroyo I, Cerbón M. Unhealthy Levels of Phthalates and Bisphenol A in Mexican Pregnant Women with Gestational Diabetes and Its Association to Altered Expression of miRNAs Involved with Metabolic Disease. Int J Mol Sci 2019; 20:ijms20133343. [PMID: 31284700 PMCID: PMC6650872 DOI: 10.3390/ijms20133343] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 02/06/2023] Open
Abstract
Several studies indicate that bisphenol A (BPA) and phthalates may have a role in the development of metabolic diseases using different molecular pathways, including epigenetic regulatory mechanisms. However, it is unclear whether exposure to these chemicals modifies serum levels of miRNAs associated with gestational diabetes mellitus (GDM) risk. In the present study, we evaluated the serum levels of miRNAs associated with GDM (miR-9-5p, miR-16-5p, miR-29a-3p and miR-330-3p) and urinary levels of phthalate metabolites (mono-n-butyl phthalate (MBP), mono-isobutyl phthalate (MiBP), mono-benzyl phthalate (MBzP) and mono(2-ethyl hexyl) phthalate (MEHP)) and bisphenol A in GDM patients and women without GDM during the second trimester of gestation. We observed higher levels of miR-9-5p, miR-29a-3p and miR-330-3p in sera of patients with GDM compared to non-diabetic subjects. Phthalates were detected in 97–100% of urine samples, while BPA only in 40%. Urinary MEHP and BPA concentrations were remarkably higher in both study groups compared to previously reported data. Unadjusted MEHP levels and adjusted BPA levels were higher in non-diabetics than in GDM patients (p = 0.03, p = 0.02). We found positive correlations between adjusted urinary MBzP levels and miR-16-5p expression levels (p < 0.05), adjusted MEHP concentrations and miR-29a-3p expression levels (p < 0.05). We also found negative correlations between unadjusted and adjusted MBP concentrations and miR-29a-3p expression levels (p < 0.0001, p < 0.05), unadjusted MiBP concentrations and miR-29a-3p expression levels (p < 0.01). Urinary MEHP levels reflect a striking exposure to di(2-ethylhexyl) phthalate (DEHP) in pregnant Mexican women. This study highlights the need for a regulatory strategy in the manufacture of several items containing endocrine disruptors in order to avoid involuntary ingestion of these compounds in the Mexican population.
Collapse
Affiliation(s)
- Alejandra Martínez-Ibarra
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Ciudad de México 04960, México
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes" - Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 11000, México
| | - Luis Daniel Martínez-Razo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes" - Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 11000, México
| | - Edgar Ricardo Vázquez-Martínez
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes" - Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 11000, México
| | - Nayeli Martínez-Cruz
- Coordinación del Servicio de Endocrinología, Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes", Ciudad de México 11000, México
| | - Rogelio Flores-Ramírez
- Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78210, México
| | - Elizabeth García-Gómez
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes" - Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 11000, México
| | - Marisol López-López
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Ciudad de México 04960, México
| | - Carlos Ortega-González
- Coordinación del Servicio de Endocrinología, Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes", Ciudad de México 11000, México
| | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes" - Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 11000, México
| | - Marco Cerbón
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes" - Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 11000, México.
| |
Collapse
|
35
|
Kamai EM, McElrath TF, Ferguson KK. Fetal growth in environmental epidemiology: mechanisms, limitations, and a review of associations with biomarkers of non-persistent chemical exposures during pregnancy. Environ Health 2019; 18:43. [PMID: 31068204 PMCID: PMC6505101 DOI: 10.1186/s12940-019-0480-8] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 04/16/2019] [Indexed: 05/18/2023]
Abstract
BACKGROUND Non-persistent chemicals, such as phthalates, environmental phenols, organophosphate pesticides, and others, are challenging to study because of their ubiquity in the environment, diverse exposure routes, and high temporal variability of biomarkers. Nonetheless, there is interest in understanding how gestational exposure to these chemicals may affect fetal growth, as perturbations to normal fetal growth are related to a plethora of adverse health outcomes in childhood and adulthood. METHODS The purpose of this review is to describe the state of the science on this topic. We searched PubMed for studies that included both 1) biomarkers of non-persistent chemicals collected during pregnancy and 2) fetal growth outcomes measured at birth (e.g., birth weight) or by ultrasound in utero (e.g., estimated fetal weight). RESULTS The bulk of the literature we found uses biomarkers measured at a single time point in pregnancy and birth weight as the primary measure of fetal growth. There is a small, but growing, body of research that uses ultrasound measures to assess fetal growth during pregnancy. In addition to summarizing the findings of the publications we identified, we describe inconsistencies in methodology, areas for improvement, and gaps in existing knowledge that can be targeted for improvement in future work. This literature is characterized by variability in methodology, likely contributing to the inconsistency of results reported. We further discuss maternal, placental, and fetal pathways by which these classes of chemicals may affect fetal growth. CONCLUSIONS To improve understanding of how everyday chemical exposures affect fetal growth, and ultimately lifelong health outcomes, mechanisms of toxicant action should be considered alongside improved study designs for future hypothesis-driven research.
Collapse
Affiliation(s)
- Elizabeth M. Kamai
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 135 Dauer Drive, 2101 McGavran-Greenberg Hall, CB #7435, Chapel Hill, NC 27599 USA
| | - Thomas F. McElrath
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115 USA
| | - Kelly K. Ferguson
- Epidemiology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, 111 TW Alexander Drive, Research Triangle Park, NC 27709 USA
| |
Collapse
|
36
|
Li L, Ying Y, Zhang C, Wang W, Li Y, Feng Y, Liang J, Song H, Wang Y. Bisphenol A exposure and risk of thyroid nodules in Chinese women: A case-control study. ENVIRONMENT INTERNATIONAL 2019; 126:321-328. [PMID: 30825751 DOI: 10.1016/j.envint.2019.02.026] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/27/2019] [Accepted: 02/10/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Thyroid nodules (TNs) are highly prevalent worldwide and have a pattern of female predominance. Bisphenol A (BPA) is an endocrine disruptor that can lead to adverse effects in human health. However, epidemiologic studies revealing the association between BPA exposure and TNs are limited and the results are inconsistent. We aimed to examine the association between urinary BPA and TNs in women who are more susceptible to TNs. METHODS We conducted a case-control study with 1416 women aged 18 years or older (705 cases, 711 controls). All participants underwent thyroid ultrasonography. Urinary total BPA (free and conjugated) concentration was quantified using the HPLC-MS/MS. We analyzed the association between urinary BPA concentration and the risk of TNs using crude and multivariable logistic regression models. Participants were further stratified into thyroid autoantibody positive group (at least one positive) and thyroid autoantibody negative group (both negative) according to the thyroglobulin antibody (TGAb) and thyroid peroxidase antibody (TPOAb) levels, and restricted cubic spline regression was also applied to determine the possible nonlinear relationship between urinary BPA and TNs. RESULTS Compared with women in the first quartile, the odds of TNs was 72% (adjusted OR = 1.72, 95% CI: 1.25 to 2.35) higher for those in the second quartile, 54% (adjusted OR = 1.54, 95% CI: 1.12 to 2.12) higher for those in the third quartile, and 108% (adjusted OR = 2.08, 95% CI: 1.50 to 2.90) higher for those in the fourth quartile after adjusting for age, BMI, education, HDL-C, LDL-C, triglyceride, total cholesterol, urinary iodine, TGAb and TPOAb. When the study population was stratified into thyroid autoantibody positive group and thyroid autoantibody negative group, we found that only in the positive group, the association was significant in model 1 (crude OR = 2.80; 95% CI = 1.90 to 4.12), model 2 (adjusted OR = 2.84; 95% CI = 1.91 to 4.22), model 3 (adjusted OR = 4.01; 95% CI = 2.57 to 6.27) and model 4 (adjusted OR = 3.71; 95% CI = 2.36 to 5.83). Multivariable-adjusted restricted cubic spline analysis demonstrated a similar result that in the thyroid autoantibody positive group, the association between urinary BPA and TNs risk was near linear (P-overall <0.001; P-non-linear = 0.054). CONCLUSION In Chinese women, higher urinary BPA concentration was associated with increased risk of TNs only in those with positive thyroid autoantibodies. Moreover, this association was near linear, indicating that any rise in BPA exposure was associated with elevated TNs risk.
Collapse
Affiliation(s)
- Lu Li
- The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai 200011, China
| | - Yingxia Ying
- The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai 200011, China
| | - Changrun Zhang
- The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai 200011, China
| | - Wei Wang
- School of Public Health, Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai 200025, China
| | - Yan Li
- School of Public Health, Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai 200025, China
| | - Yan Feng
- School of Public Health, Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai 200025, China
| | - Jun Liang
- Department of Endocrinology, the Central Hospital of Xuzhou, Affiliated Hospital of Southeast University, Xuzhou 221009, Jiangsu Province, China
| | - Huaidong Song
- The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai 200011, China.
| | - Yan Wang
- The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai 200011, China; School of Public Health, Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai 200025, China.
| |
Collapse
|
37
|
Zhang W, Xia W, Liu W, Li X, Hu J, Zhang B, Xu S, Zhou Y, Li J, Cai Z, Li Y. Exposure to Bisphenol a Substitutes and Gestational Diabetes Mellitus: A Prospective Cohort Study in China. Front Endocrinol (Lausanne) 2019; 10:262. [PMID: 31114544 PMCID: PMC6503732 DOI: 10.3389/fendo.2019.00262] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 04/08/2019] [Indexed: 01/13/2023] Open
Abstract
Background: The association of bisphenol A (BPA) and gestational diabetes mellitus (GDM) has been investigated in only a small number of studies, and research on the associations between BPA substitutes and GDM is scarce. Objective: We aimed to investigate the associations of four bisphenols [bisphenol A (BPA), bisphenol S (BPS), bisphenol F (BPF), and bisphenol AF (BPAF)] levels in urine sample with the risk of gestational diabetes mellitus (GDM) and plasma glucose levels. Methods: A total of 1,841 pregnant women from a cohort study were recruited at their first prenatal examination between 2013 and 2015 in Wuhan, China. Concentrations of four bisphenols (BPA, BPS, BPF, BPAF) were measured in first-trimester urine samples using Ultra-high performance liquid chromatography system coupled to a Triple Quadrupole mass spectrometer (UHPLC-TQMS). An oral glucose tolerance test (OGTT) was performed at 24-28 gestational weeks and GDM was diagnosed post hoc using International Association of Diabetes and Pregnancy Study Groups criteria. We used multivariable logistic regression models to examine the associations of urinary bisphenols with the risk of GDM, and multiple linear regression models to determine the associations between bisphenols exposure and plasma glucose levels. Results: Urinary BPAF was associated with increased odds of GDM among women with normal pre-pregnancy BMI [adjusted odds ratio (aOR) = 1.70 (95% CI: 1.08, 2.67) for the highest group compared to the lowest group], and the association remained significant after additional adjustment for other bisphenols [aOR = 1.68 (95% CI: 1.03, 2.72)]. No significant associations were observed for other bisphenols and GDM. Consistent with the result of GDM, women in the highest BPAF category had a mean of 0.05 mmol/L (95% CI: 0.01, 0.09) higher fasting plasma glucose (FPG) levels than women in the lowest category. For BPA and plasma glucose, non-linear associations were observed between urinary BPA and FPG and the sum of the PG z-score among women who were overweight (p for non-linear association < 0.05). We also found that the per-unit increase in natural log transformed specific gravity adjusted BPS [ln (SG-adj BPS)] was associated with a 0.03 mmol/L (95% CI: 0.01, 0.04) increase in FPG levels and the associations might be modified by fetal sex (p for interaction < 0.05). Among women with female fetus, a per-unit increase in ln (SG-adj BPS) was associated with a 0.04 mmol/L (95% CI: 0.02, 0.06) increase in FPG, a 0.11 mmol/L (95% CI: 0.04, 0.17) increase in 1 h-PG and a 0.19 mmol/L (95% CI: 0.08, 0.30) increase in the sum of PG z-score. Conclusions: Our results provide evidence that BPAF and BPS might be potential risk factors of GDM, which require to be studied further.
Collapse
Affiliation(s)
- Wenxin Zhang
- Key Laboratory of Environment and Health (HUST), Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Xia
- Key Laboratory of Environment and Health (HUST), Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenyu Liu
- Key Laboratory of Environment and Health (HUST), Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinping Li
- Key Laboratory of Environment and Health (HUST), Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Hu
- Key Laboratory of Environment and Health (HUST), Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bin Zhang
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shunqing Xu
- Key Laboratory of Environment and Health (HUST), Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanqiu Zhou
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Jiufeng Li
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
- *Correspondence: Zongwei Cai
| | - Yuanyuan Li
- Key Laboratory of Environment and Health (HUST), Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Yuanyuan Li
| |
Collapse
|
38
|
Li AJ, Xue J, Lin S, Al-Malki AL, Al-Ghamdi MA, Kumosani TA, Kannan K. Urinary concentrations of environmental phenols and their association with type 2 diabetes in a population in Jeddah, Saudi Arabia. ENVIRONMENTAL RESEARCH 2018; 166:544-552. [PMID: 29960220 DOI: 10.1016/j.envres.2018.06.040] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/11/2018] [Accepted: 06/19/2018] [Indexed: 06/08/2023]
Abstract
A few epidemiologic studies suggest that exposure to bisphenol A (BPA) is associated with type 2 diabetes mellitus (T2DM). However, little is known about association between other phenolic endocrine disrupting chemicals (EDCs) and T2DM. In this case-control study, we measured urinary concentrations of 23 phenolic EDCs in 101 individuals from Jeddah, Saudi Arabia, to examine the association of parabens, antimicrobials, bisphenols, benzophenones and bisphenol A diglycidyl ethers with T2DM. Urine samples were collected from 54 T2DM cases and 47 non-diabetic individuals (controls), aged 28-68 years old, during 2015-2016. Unconditional logistic regression was performed to estimate odd ratios (ORs) for the association between diabetes and EDC exposures after adjusting for confounders including age, gender, nationality, smoking status and occupation. Age from 40 to 59 years (OR 5.56, 95% CI 2.20-14.0) and smoking status (OR 2.92, 95% CI 1.25-6.79) showed significant positive associations with T2DM. After adjusting for potential confounders, we found that T2DM cases had high urinary levels of parabens (i.e., methyl- (MeP), ethyl- (EtP), propyl- (PrP) and 4-hydroxy benzoic acid (4-HB)), bisphenols (i.e., bisphenols A (BPA) and F (BPF)), and benzophenone (i.e., 4-hydroxybenzophenone (4-OH-BP)) relative to the controls. Individuals in the 4th quartile for urinary concentrations of MeP, EtP, PrP, 4-HB and BPF and in the 3rd quartile for BPA and 4-OH-BP showed over a 6-fold increase in the odds of having diabetes compared with those in the first quartile. Overall, our study shows that urinary levels of multiple phenolic EDCs were associated with increased risk for diabetes. Further prospective studies are required to verify these associations.
Collapse
Affiliation(s)
- Adela Jing Li
- Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY 12201-0509, United States
| | - Jingchuan Xue
- Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY 12201-0509, United States
| | - Shao Lin
- Department of Environmental Health Sciences, and Department of Epidemiology, School of Public Health, State University of New York at Albany, Empire State Plaza, P.O. Box 509, Albany, NY 12201-0509, United States
| | - Abdulrahman Labeed Al-Malki
- Biochemistry Department, Faculty of Science, Bioactive Natural Products Research Group, and Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Maryam A Al-Ghamdi
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Taha A Kumosani
- Biochemistry Department, Faculty of Science, and Production of Bioproducts for Industrial Applications Research Group and Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY 12201-0509, United States; Department of Environmental Health Sciences, and Department of Epidemiology, School of Public Health, State University of New York at Albany, Empire State Plaza, P.O. Box 509, Albany, NY 12201-0509, United States; Biochemistry Department, Faculty of Science, and Production of Bioproducts for Industrial Applications Research Group and Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
39
|
Shu X, Tang S, Peng C, Gao R, Yang S, Luo T, Cheng Q, Wang Y, Wang Z, Zhen Q, Hu J, Li Q. Bisphenol A is not associated with a 5-year incidence of type 2 diabetes: a prospective nested case-control study. Acta Diabetol 2018; 55:369-375. [PMID: 29387940 DOI: 10.1007/s00592-018-1104-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 01/10/2018] [Indexed: 01/02/2023]
Abstract
AIMS The relationship between bisphenol A (BPA) and diabetes remains controversial. This study aims to investigate whether serum BPA level could predict the 5-year incidence of type 2 diabetes (T2D). METHODS A nested case-control study was performed among Chinese who participated in the environment, inflammation and metabolic diseases study (2008-2013). Of the 3510 subjects who were free of diabetes, 232 subjects developed diabetes during the 5-year follow-up. Cases and controls were matched for age and gender by a ratio of 1:1. Homoeostasis model assessment was used to estimate basal β-cell function (HOMA-β) and insulin resistance (HOMA-IR). Participants were stratified into tertiles based on low, median and high baseline serum BPA levels. Regression models were used to analyze the relationship between serum BPA concentration and the incidence of T2D. RESULTS At baseline, no significant difference in serum BPA concentration was observed between patients with T2D and controls [1.3 (0.3, 3.7) vs. 1.6 (0.4, 3.9) μmol/L, P = 0.199]; serum BPA concentration was positively associated with fasting plasma glucose (r = 0.27, P < 0.001); however, neither HOMA-β nor HOMA-IR correlated with serum BPA concentration. During the follow-up, baseline BPA levels could not predict the 5-year T2D incidence, whether or not adjusted for the potential confounders such as body mass index and blood pressure. [Low BPA tertile was the reference, OR 0.66 (95% CI 0.30, 1.44) for median, OR 0.93 (95% CI 0.41, 2.13) for high.] CONCLUSION: BPA is not associated with a 5-year T2D incidence. These data do not support previous cross-sectional study that BPA exerted a detrimental effect on glucose metabolism.
Collapse
Affiliation(s)
- Xiaoyu Shu
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Youyi Street Yuanjiagang, Yuzhong District, Chongqing, China
- Department of Endocrinology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Siying Tang
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Youyi Street Yuanjiagang, Yuzhong District, Chongqing, China
| | - Chuan Peng
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Youyi Street Yuanjiagang, Yuzhong District, Chongqing, China
| | - Rufei Gao
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Youyi Street Yuanjiagang, Yuzhong District, Chongqing, China
| | - Shumin Yang
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Youyi Street Yuanjiagang, Yuzhong District, Chongqing, China
| | - Ting Luo
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Youyi Street Yuanjiagang, Yuzhong District, Chongqing, China
| | - Qingfeng Cheng
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Youyi Street Yuanjiagang, Yuzhong District, Chongqing, China
| | - Yue Wang
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Youyi Street Yuanjiagang, Yuzhong District, Chongqing, China
| | - Zhihong Wang
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Youyi Street Yuanjiagang, Yuzhong District, Chongqing, China
| | - Qianna Zhen
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Youyi Street Yuanjiagang, Yuzhong District, Chongqing, China
| | - Jinbo Hu
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Youyi Street Yuanjiagang, Yuzhong District, Chongqing, China.
| | - Qifu Li
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Youyi Street Yuanjiagang, Yuzhong District, Chongqing, China.
| |
Collapse
|