1
|
Ryan PH, Wolfe C, Parsons A, Brokamp C, Turner A, Haynes E. Participant engagement to develop report-back materials for personal air monitoring. J Clin Transl Sci 2023; 7:e76. [PMID: 37008611 PMCID: PMC10052429 DOI: 10.1017/cts.2023.30] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/08/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
Background Studies that measure environmental exposures in biological samples frequently provide participants their results. In contrast, studies using personal air monitors do not typically provide participants their monitoring results. The objective of this study was to engage adolescents who completed personal air sampling and their caregivers to develop understandable and actionable report-back documents containing the results of their personal air sampling. Methods Adolescents and their caregivers who previously completed personal air sampling participated in focus groups to guide the development of report-back materials. We conducted thematic analyses of focus group data to guide the design of the report-back document and convened experts in community engagement, reporting study results, and human subjects research to provide feedback. Final revisions to the report-back document were made based on follow-up focus group feedback. Results Focus groups identified critical components of an air-monitoring report-back document to include an overview of the pollutant being measured, a comparison of individual personal sampling data to the overall study population, a guide to interpreting results, visualization of individual data, and additional information on pollution sources, health risks, and exposure reduction strategies. Participants also indicated their desire to receive study results in an electronic and interactive format. The final report-back document was electronic and included background information, participants' results presented using interactive maps and figures, and additional material regarding pollution sources. Conclusion Studies using personal air monitoring technology should provide research participants their results in an understandable and meaningful way to empower participants with increased knowledge to guide exposure reduction strategies.
Collapse
Affiliation(s)
- Patrick H. Ryan
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
- Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Chris Wolfe
- Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Allison Parsons
- Division of Critical Care Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Rescue Agency, San Diego, CA, USA
| | - Cole Brokamp
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
- Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Ashley Turner
- Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Erin Haynes
- Department of Epidemiology, University of Kentucky, College of Public Health, Lexington, KY, USA
| |
Collapse
|
2
|
Zeng X, Tian G, Zhu J, Yang F, Zhang R, Li H, An Z, Li J, Song J, Jiang J, Liu D, Wu W. Air pollution associated acute respiratory inflammation and modification by GSTM1 and GSTT1 gene polymorphisms: a panel study of healthy undergraduates. Environ Health 2023; 22:14. [PMID: 36703205 PMCID: PMC9881318 DOI: 10.1186/s12940-022-00954-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 12/28/2022] [Indexed: 06/18/2023]
Abstract
Epidemiological evidence has linked air pollution with adverse respiratory outcomes, but the mechanisms underlying susceptibility to air pollution remain unclear. This study aimed to investigate the role of glutathione S-transferase (GST) polymorphism in the association between air pollution and lung function levels. A total of 75 healthy young volunteers aged 18-20 years old were recruited for six follow-up visits and examinations. Spirometry was conducted to obtain lung function parameters such as forced vital capacity (FVC), and forced expiratory volume in 1 s (FEV1). Nasal fluid concentrations of interleukin-6 (IL-6), interleukin-8 (IL-8), tumor necrosis factor-α (TNF-α), and 8-epi-prostaglandin F2α (8-epi-PGF2a) were measured using ELISA kits. Linear mixed-effect models were used to evaluate the association of air pollutants with respiratory outcomes. Additionally, polymorphisms of glutathione S-transferase mu 1 (GSTM1) and glutathione S-transferase theta 1 (GSTT1) were estimated to explore its role in the association between air pollutants and lung function. We found that short-term exposure to atmospheric particulates such as PM2.5 and PM10 can cause an increase in nasal biomarkers of inflammation, oxidative stress, and lung function, while air gaseous pollutant exposure is linked with decreased lung function, except for CO. Stratification analyses showed that an increase in nasal inflammatory cytokines caused by exposure to atmospheric particulates is more obvious in subjects with GSTM1-sufficient (GSTM1+) than GSTM1-null (GSTM1-), while elevated lung function levels due to air particles are more significant in subjects with the genotype of GSTM1- when compared to GSTM1+. As for air gaseous pollutants, decreased lung function levels caused by O3, SO2, and NO2 exposure is more manifest in subjects with the genotype of GSTM1- compared to GSTM1+. Taken together, short-term exposure to air pollutants is associated with alterations in nasal biomarkers and lung function levels in young healthy adults, and susceptible genotypes play an important mediation role in the association between exposure to air pollutants and inflammation, oxidative stress, and lung function levels.
Collapse
Affiliation(s)
- Xiang Zeng
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, Henan, 453003, China
- School of Public Health, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310053, Zhejiang Province, China
| | - Ge Tian
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, Henan, 453003, China
| | - Jingfang Zhu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, Henan, 453003, China
| | - Fuyun Yang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, Henan, 453003, China
| | - Rui Zhang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, Henan, 453003, China
| | - Huijun Li
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, Henan, 453003, China
| | - Zhen An
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, Henan, 453003, China
| | - Juan Li
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, Henan, 453003, China
| | - Jie Song
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, Henan, 453003, China
| | - Jing Jiang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, Henan, 453003, China
| | - Dongling Liu
- School of Basic Medical Science, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310053, Zhejiang Province, China
| | - Weidong Wu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, Henan, 453003, China.
| |
Collapse
|
3
|
Guo Q, Zhao Y, Zhao J, Bian M, Qian L, Xue T, Zhang JJ, Duan X. Acute change of lung function to short-term exposure to ambient air pollutants with and without physical activity: A real-world crossover study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120481. [PMID: 36341821 DOI: 10.1016/j.envpol.2022.120481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Physical activity (PA) would increase the inhalation rate and thereby inhaled dose of air pollutants. However, it's still uncertain whether the effects of air pollutants on lung function are attenuated by PA, especially in the high-polluted areas. We aimed to disentangle the interaction between air pollution and PA on lung function among healthy adults. In this study, a real-world crossover study was conducted among 74 healthy adults. Each participant underwent both rest and 15-min intermittent moderate PA exposure scenarios (consisting of 15min stationary bike riding alternating with 15min of rest), which lasted for 2 h. On the same day, the participants among active and inactive group were exposed to the same air pollution. We have monitored the fine particulate matter (PM2.5), particulate matter less than 10 μm (PM10), particulate matter less than 1 μm (PM1), black carbon (BC), nitrogen dioxide (NO2), and ozone (O3) continuously during 2-h exposure. Lung function were measured at five times points for each visit (before, immediately, 3 h, 5 h, and 24 h after the 2-h exposure scenario). Mixed-effects models were applied to explore the effects of air pollution, PA, and their interaction on lung function. The participants had a mean (standard deviation (SD)) age of 19.9 (0.9) years. The average concentration [mean ± SD] of PM2.5, PM10, PM1, BC, NO2, and O3 were 59.4 ± 45.1 μg/m3, 122.8 ± 109.0 μg/m3, 38.8 ± 29.2 μg/m3, 1.94 ± 1.17 μg/m3, 59.5 ± 26.6 μg/m3, and 74.0 ± 30.3 μg/m3, respectively. Overall, greater increasement in lung function were observed among active group compared with inactive group at all timepoints. In fully adjusted models, we observed the benefits of PA and detrimental effects of air pollutants on lung function. Our results suggested that PA, compared to rest, alleviated the detrimental effects of air pollutants on lung function. We also stressed the importance of timing of measurements for capturing association. In conclusion, our observations suggested that PA might alleviate the associations between various pollutant exposures and lung function, which would drive further research towards potential pathway.
Collapse
Affiliation(s)
- Qian Guo
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yuchen Zhao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jiahao Zhao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Mengyao Bian
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Liqianxin Qian
- School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Tao Xue
- Institute of Reproductive and Child Health/Ministry of Health Key Laboratory of Reproductive Health and Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100083, China
| | - Junfeng Jim Zhang
- Nicholas School of the Environment and Global Health Institute, Duke University, Durham, NC, USA; Duke Kunshan University, Kunshan, Jiangsu Province, China
| | - Xiaoli Duan
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
4
|
Chandia-Poblete D, Cole-Hunter T, Haswell M, Heesch KC. The influence of air pollution exposure on the short- and long-term health benefits associated with active mobility: A systematic review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:157978. [PMID: 35964755 DOI: 10.1016/j.scitotenv.2022.157978] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 08/08/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Active mobility (AM), defined as walking and cycling for transportation, can improve health through increasing regular physical activity. However, these health improvements could be outweighed by harm from inhaling traffic-related air pollutants during AM participation. The interaction of AM and air pollutants on health is complex physiologically, manifesting as acute changes in health indicators that may lead to poor long-term health consequences. The aim of this study was to systematically review the current evidence of effect modification by air pollution (AP) on associations between AM and health indicators. Studies were included if they examined associations between AM and health indicators being modified by AP or, conversely, associations between AP and health indicators being modified by AM. Thirty-three studies met eligibility criteria. The main AP indicators studied were particulate matter, ultrafine particles, and nitrogen oxides. Most health indicators studied were grouped into cardiovascular and respiratory indicators. There is evidence of a reduction by AP, mainly ultrafine particles and PM2.5, in the short-term health benefits of AM. Multiple studies suggest that long-term health benefits of AM are not negatively associated with levels of the single traffic-related pollutant NO2. However, other studies reveal reduced long-term health benefits of AM in areas affected by high levels of pollutant mixtures. We recommend that future studies adopt consistent and rigorous study designs and include reporting of interaction testing, to advance understanding of the complex relationships between AM, AP, and health indicators.
Collapse
Affiliation(s)
- Damian Chandia-Poblete
- School of Public Health and Social Work, Faculty of Health, Queensland University of Technology, Victoria Park Road, Kelvin Grove, Queensland 4059, Australia.
| | - Thomas Cole-Hunter
- Section of Environmental Health, Department of Public Health, Faculty of Health and Medical Science, University of Copenhagen, Øster Farimagsgade 5, 1353 Copenhagen, Denmark.
| | - Melissa Haswell
- School of Public Health and Social Work, Faculty of Health, Queensland University of Technology, Victoria Park Road, Kelvin Grove, Queensland 4059, Australia; Office of the Deputy Vice Chancellor (Indigenous Strategy and Services) and School of Geosciences, Faculty of Science, University of Sydney, Australia.
| | - Kristiann C Heesch
- School of Public Health and Social Work, Faculty of Health, Queensland University of Technology, Victoria Park Road, Kelvin Grove, Queensland 4059, Australia.
| |
Collapse
|
5
|
A systematic review and meta-analysis of intraday effects of ambient air pollution and temperature on cardiorespiratory morbidities: First few hours of exposure matters to life. EBioMedicine 2022; 86:104327. [PMID: 36323182 PMCID: PMC9626385 DOI: 10.1016/j.ebiom.2022.104327] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/25/2022] [Accepted: 10/13/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND A growing number of studies have reported an increased risk of cardiovascular disease (CVD) and respiratory disease (RD) within hours after exposure to ambient air pollution or temperature. We assemble published evidence on the sub-daily associations of CVD and RD with ambient air pollution and temperature. METHODS Databases of PubMed and Web of Science were searched for original case-crossover and time-series designs of English articles examining the intra-day effects of ambient air pollution [particulate matter with aerodynamic diameter ≤2.5 μm (PM2.5), ≤10 μm (PM10), 2.5-10μm (PM10-2.5), and < 7 μm (SPM), O3, SO2, NO2, CO, and NO] and temperatures (heat and cold) on cardiorespiratory diseases within 24 h after exposure in the general population by comparing with exposure at different exposure levels or periods. Meta-analyses were conducted to pool excess risks (ERs, absolute percentage increase in risk) of CVD and RD morbidities associated with an increase of 10 μg/m3 in particulate matters, 0.1 ppm in CO, and 10 ppb in other gaseous pollutants. FINDINGS Final analysis included thirty-three papers from North America, Europe, Oceania, and Asia. Meta-analysis found an increased risk of total CVD morbidity within 3 h after exposure to PM2.5 [ER%: 2.65% (95% CI: 1.00% to 4.34%)], PM10-2.5 [0.31% (0.02% to 0.59%)], O3 [1.42% (0.14% to 2.73%)], and CO [0.41% (0.01% to 0.81%)]. The risk of total RD morbidity elevated at lag 7-12 h after exposure to PM2.5 [0.69% (0.14% to 1.24%)] and PM10 [0.38% (0.02% to 0.73%)] and at lag 12-24 h after exposure to SO2 [2.68% (0.94% to 4.44%)]. Cause-specific CVD analysis observed an increased risk of myocardial infarction morbidity within 6 h after exposure to PM2.5, PM10, and NO2, and an increased risk of out-of-hospital cardiac arrest morbidity within 12 h after exposure to CO. Risk of total CVD also increased within 24 h after exposure to heat. INTERPRETATION This study supports a sudden risk increase of cardiorespiratory diseases within a few hours after exposure to air pollution or heat, and some acute and highly lethal diseases such as myocardial infarction and cardiac arrest could be affected within a shorter time. FUNDING The National Natural Science Foundation of China (Grant No. 42105165; 81773518), the High-level Scientific Research Foundation of Anhui Medical University (Grant No. 0305044201), and the Discipline Construction of Anhui Medical University (Grant No. 0301001836).
Collapse
|
6
|
Cong X, Zhang J, Sun R, Pu Y. Short-term ambient particulate air pollution exposure, microRNAs, blood pressure and lung function. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118387. [PMID: 34673158 DOI: 10.1016/j.envpol.2021.118387] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 10/15/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
Ambient particulate air pollution is a risk factor for cardiovascular and respiratory disease, yet the biological mechanisms underlying this association are not well understood. The current study aimed to investigate the mediation role of microRNAs on the association between personal PM2.5 exposure and blood pressure and lung function. One hundred and twenty adults (60 truck drivers and 60 office workers) aged 18-46 years were assessed on the June 15, 2008 and at follow-up (1- to 2-weeks later). MicroRNAs were extracted from the peripheral blood samples. Compared to truck drivers, there is a significant increase in FEF25-75, FEV1, and FEV1/FVC and a decrease in PM2.5 in office workers (all p < 0.05). According to the Bonferroni corrected threshold p-value < 6.81 × 10-5 (0.05/734) used, personal PM2.5 data showed a significant positive association with miR-644 after the adjustment for age, BMI, smoking status, and habitual alcohol use. The mediation effect of miR-644 on the association between personal PM2.5 exposure and FEF25-75 [B (95%CI) = -1.342 (-2.810, -0.113)], PEF [B (95%CI) = -1.793 (-3.926, -0.195)], and FEV1/FVC [B (95%CI) = -0.119‰ (-0.224‰, -0.026‰)] was significant only for truck drivers after the adjustment for covariates. There were no similar associations with blood pressure. These results demonstrate microRNAs to potentially mediate association of PM2.5 with lung function. Subsequent studies are needed to further elucidate the potential mechanisms of action by which the mediation effect of microRNAs is achieved with this process.
Collapse
Affiliation(s)
- Xiaowei Cong
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Juan Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China.
| | - Rongli Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| |
Collapse
|
7
|
da Silveira Fleck A, Sadoine ML, Buteau S, Suarthana E, Debia M, Smargiassi A. Environmental and Occupational Short-Term Exposure to Airborne Particles and FEV 1 and FVC in Healthy Adults: A Systematic Review and Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182010571. [PMID: 34682321 PMCID: PMC8536058 DOI: 10.3390/ijerph182010571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/02/2021] [Accepted: 10/04/2021] [Indexed: 11/29/2022]
Abstract
Background: No study has compared the respiratory effects of environmental and occupational particulate exposure in healthy adults. Methods: We estimated, by a systematic review and meta-analysis, the associations between short term exposures to fine particles (PM2.5 and PM4) and certain parameters of lung function (FEV1 and FVC) in healthy adults. Results: In total, 33 and 14 studies were included in the qualitative synthesis and meta-analyses, respectively. In environmental studies, a 10 µg/m3 increase in PM2.5 was associated with an FEV1 reduction of 7.63 mL (95% CI: −10.62 to −4.63 mL). In occupational studies, an increase of 10 µg/m3 in PM4 was associated with an FEV1 reduction of 0.87 mL (95% CI: −1.36 to −0.37 mL). Similar results were observed with FVC. Conclusions: Both occupational and environmental short-term exposures to fine particles are associated with reductions in FEV1 and FVC in healthy adults.
Collapse
Affiliation(s)
- Alan da Silveira Fleck
- Department of Environmental and Occupational Health, School of Public Health, University of Montreal, 2375 Chem. de la Côte-Sainte-Catherine, Montreal, QC H3T 1A8, Canada; (A.d.S.F.); (M.L.S.); (M.D.)
- Centre for Public Health Research (CReSP), 7101 Av du Parc, Montreal, QC H3N 1X9, Canada
| | - Margaux L. Sadoine
- Department of Environmental and Occupational Health, School of Public Health, University of Montreal, 2375 Chem. de la Côte-Sainte-Catherine, Montreal, QC H3T 1A8, Canada; (A.d.S.F.); (M.L.S.); (M.D.)
- Centre for Public Health Research (CReSP), 7101 Av du Parc, Montreal, QC H3N 1X9, Canada
| | - Stéphane Buteau
- Institut National de Sante Publique du Québec (INSPQ), 190 Boul Crémazie E, Montreal, QC H2P 1E2, Canada;
| | - Eva Suarthana
- Research Institute of the McGill University Health Center, 2155 Rue Guy, Montreal, QC H3H 2L9, Canada;
- Centre de Recherche de l’Hôpital du Sacré-Coeur de Montréal (CRHSCM), 5400 Boul Gouin O, Montreal, QC H4J 1C5, Canada
| | - Maximilien Debia
- Department of Environmental and Occupational Health, School of Public Health, University of Montreal, 2375 Chem. de la Côte-Sainte-Catherine, Montreal, QC H3T 1A8, Canada; (A.d.S.F.); (M.L.S.); (M.D.)
- Centre for Public Health Research (CReSP), 7101 Av du Parc, Montreal, QC H3N 1X9, Canada
| | - Audrey Smargiassi
- Department of Environmental and Occupational Health, School of Public Health, University of Montreal, 2375 Chem. de la Côte-Sainte-Catherine, Montreal, QC H3T 1A8, Canada; (A.d.S.F.); (M.L.S.); (M.D.)
- Centre for Public Health Research (CReSP), 7101 Av du Parc, Montreal, QC H3N 1X9, Canada
- Institut National de Sante Publique du Québec (INSPQ), 190 Boul Crémazie E, Montreal, QC H2P 1E2, Canada;
- Correspondence:
| |
Collapse
|
8
|
Feasibility and acceptability of monitoring personal air pollution exposure with sensors for asthma self-management. Asthma Res Pract 2021; 7:13. [PMID: 34482835 PMCID: PMC8420032 DOI: 10.1186/s40733-021-00079-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 08/08/2021] [Indexed: 11/18/2022] Open
Abstract
Background Exposure to fine particulate matter (PM2.5) increases the risk of asthma exacerbations, and thus, monitoring personal exposure to PM2.5 may aid in disease self-management. Low-cost, portable air pollution sensors offer a convenient way to measure personal pollution exposure directly and may improve personalized monitoring compared with traditional methods that rely on stationary monitoring stations. We aimed to understand whether adults with asthma would be willing to use personal sensors to monitor their exposure to air pollution and to assess the feasibility of using sensors to measure real-time PM2.5 exposure. Methods We conducted semi-structured interviews with 15 adults with asthma to understand their willingness to use a personal pollution sensor and their privacy preferences with regard to sensor data. Student research assistants used HabitatMap AirBeam devices to take PM2.5 measurements at 1-s intervals while walking in Philadelphia neighborhoods in May–August 2018. AirBeam PM2.5 measurements were compared to concurrent measurements taken by three nearby regulatory monitors. Results All interview participants stated that they would use a personal air pollution sensor, though the consensus was that devices should be small (watch- or palm-sized) and light. Patients were generally unconcerned about privacy or sharing their GPS location, with only two stating they would not share their GPS location under any circumstances. PM2.5 measurements were taken using AirBeam sensors on 34 walks that extended through five Philadelphia neighborhoods. The range of sensor PM2.5 measurements was 0.6–97.6 μg/mL (mean 6.8 μg/mL), compared to 0–22.6 μg/mL (mean 9.0 μg/mL) measured by nearby regulatory monitors. Compared to stationary measurements, which were only available as 1-h integrated averages at discrete monitoring sites, sensor measurements permitted characterization of fine-scale fluctuations in PM2.5 levels over time and space. Conclusions Patients were generally interested in using sensors to monitor their personal exposure to PM2.5 and willing to share personal sensor data with health care providers and researchers. Compared to traditional methods of personal exposure assessment, sensors captured personalized air quality information at higher spatiotemporal resolution. Improvements to currently available sensors, including more reliable Bluetooth connectivity, increased portability, and longer battery life would facilitate their use in a general patient population. Supplementary Information The online version contains supplementary material available at 10.1186/s40733-021-00079-9.
Collapse
|
9
|
Santos UDP, Arbex MA, Braga ALF, Mizutani RF, Cançado JED, Terra-Filho M, Chatkin JM. Environmental air pollution: respiratory effects. J Bras Pneumol 2021; 47:e20200267. [PMID: 33567063 PMCID: PMC7889311 DOI: 10.36416/1806-3756/e20200267] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 12/06/2020] [Indexed: 12/25/2022] Open
Abstract
Environmental air pollution is a major risk factor for morbidity and mortality worldwide. Environmental air pollution has a direct impact on human health, being responsible for an increase in the incidence of and number of deaths due to cardiopulmonary, neoplastic, and metabolic diseases; it also contributes to global warming and the consequent climate change associated with extreme events and environmental imbalances. In this review, we present articles that show the impact that exposure to different sources and types of air pollutants has on the respiratory system; we present the acute effects-such as increases in symptoms and in the number of emergency room visits, hospitalizations, and deaths-and the chronic effects-such as increases in the incidence of asthma, COPD, and lung cancer, as well as a rapid decline in lung function. The effects of air pollution in more susceptible populations and the effects associated with physical exercise in polluted environments are also presented and discussed. Finally, we present the major studies on the subject conducted in Brazil. Health care and disease prevention services should be aware of this important risk factor in order to counsel more susceptible individuals about protective measures that can facilitate their treatment, as well as promoting the adoption of environmental measures that contribute to the reduction of such emissions.
Collapse
Affiliation(s)
- Ubiratan de Paula Santos
- . Divisão de Pneumologia, Instituto do Coração - InCor - Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo (SP) Brasil
| | - Marcos Abdo Arbex
- . Faculdade de Medicina, Universidade de Araraquara - UNIARA - Araraquara (SP) Brasil
- . Núcleo de Estudos em Epidemiologia Ambiental, Laboratório de Poluição Atmosférica Experimental - NEEA-LPAE - Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo (SP) Brasil
| | - Alfésio Luis Ferreira Braga
- . Núcleo de Estudos em Epidemiologia Ambiental, Laboratório de Poluição Atmosférica Experimental - NEEA-LPAE - Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo (SP) Brasil
- . Grupo de Avaliação de Exposição e Risco Ambiental, Programa de Pós-Graduação em Saúde Coletiva, Universidade Católica de Santos - UNISANTOS - Santos (SP) Brasil
| | - Rafael Futoshi Mizutani
- . Grupo de Doenças Respiratórias Ambientais, Ocupacionais e de Cessação de Tabagismo, Divisão de Pneumologia, Instituto do Coração - InCor - Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo (SP) Brasil
| | | | - Mário Terra-Filho
- . Departamento de Cardiopneumologia, Divisão de Pneumologia, Instituto do Coração - InCor - Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo (SP) Brasil
| | - José Miguel Chatkin
- . Disciplina de Medicina Interna/Pneumologia, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul - PUCRS - Porto Alegre (RS), Brasil
- . Hospital São Lucas, Pontifícia Universidade Católica do Rio Grande do Sul - PUCRS - Porto Alegre (RS), Brasil
| |
Collapse
|
10
|
Li CH, Sayeau K, Ellis AK. Air Pollution and Allergic Rhinitis: Role in Symptom Exacerbation and Strategies for Management. J Asthma Allergy 2020; 13:285-292. [PMID: 32922045 PMCID: PMC7457822 DOI: 10.2147/jaa.s237758] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/12/2020] [Indexed: 01/24/2023] Open
Abstract
This article reviews the current understanding of the role of air pollution in both the symptom exacerbation and rising prevalence of allergic rhinitis (AR) for the development of future AR therapeutics and management strategies. We discuss the epidemiological evidence for this relationship through birth cohort studies, the economic impact of AR, and the influence of air pollution through the lens of the exposome framework of allergic disease development. This is followed by a discussion on the influence of diesel exhaust and diesel exhaust particles (DEP) from motor vehicle emissions and their implication in the rising prevalence of allergic disease and allergic sensitization through triggering inflammatory signalling pathways that exacerbate AR symptoms. Finally, a summary is provided of clinical trials assessing the influence of air pollution on AR with a depiction of currently available therapies and management strategies. Future directions in the development of AR modalities given the air pollution-mediated symptom exacerbation are challenged with unfolding the complex gene–environment interaction product of heterogenous AR presentation.
Collapse
Affiliation(s)
- Carmen H Li
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada.,Allergy Research Unit, Kingston Health Sciences Center - KGH Site, Kingston, ON, Canada
| | - Kyle Sayeau
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada.,Allergy Research Unit, Kingston Health Sciences Center - KGH Site, Kingston, ON, Canada
| | - Anne K Ellis
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada.,Allergy Research Unit, Kingston Health Sciences Center - KGH Site, Kingston, ON, Canada.,Department of Medicine, Queen's University, Kingston, ON, Canada
| |
Collapse
|
11
|
Elliott L, Loomis D. Respiratory effects of road pollution in recreational cyclists: a pilot study. ARCHIVES OF ENVIRONMENTAL & OCCUPATIONAL HEALTH 2020; 76:94-102. [PMID: 32613903 DOI: 10.1080/19338244.2020.1787316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We sought to measure bicyclists' roadway exposures to particulate matter and assess whether those exposures are associated with reduced pulmonary function. Thirty-one (31) volunteer participants riding bicycles on selected routes were tracked using the Global Positioning System. Personal exposures to particulate matter (PM-10) were measured during the rides and pulmonary function tests were administered at baseline, immediately after the ride, and 2 and 6-24 hours later. Post-ride decrements in pulmonary function were observed for several outcome measures, with the largest differences immediately post-ride. Statistically-significant declines in FEV1 (-38.42, 95% Confidence Interval (CI), -63.79 to -13.05 ml), FVC (-36.89, 95% CI, -62.96, -10.84 ml), and PEFR (-162, 95% CI -316.02 to -9.49 ml/sec) were observed for each increase in decile of peak exposure. PM-10 exposures encountered on roadways may put bicyclists at risk for pulmonary deficits.
Collapse
Affiliation(s)
- Leslie Elliott
- School of Community Health Sciences, University of Nevada, Reno, NV, USA
| | - Dana Loomis
- School of Community Health Sciences, University of Nevada, Reno, NV, USA
| |
Collapse
|
12
|
Croft DP, Zhang W, Lin S, Thurston SW, Hopke PK, van Wijngaarden E, Squizzato S, Masiol M, Utell MJ, Rich DQ. Associations between Source-Specific Particulate Matter and Respiratory Infections in New York State Adults. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:975-984. [PMID: 31755707 PMCID: PMC6978840 DOI: 10.1021/acs.est.9b04295] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 11/18/2019] [Accepted: 11/22/2019] [Indexed: 05/22/2023]
Abstract
The response of respiratory infections to source-specific particulate matter (PM) is an area of active research. Using source-specific PM2.5 concentrations at six urban sites in New York State, a case-crossover design, and conditional logistic regression, we examined the association between source-specific PM and the rate of hospitalizations and emergency department (ED) visits for influenza or culture-negative pneumonia from 2005 to 2016. There were at most N = 14 764 influenza hospitalizations, N = 57 522 influenza ED visits, N = 274 226 culture-negative pneumonia hospitalizations, and N = 113 997 culture-negative pneumonia ED visits included in our analyses. We separately estimated the rate of respiratory infection associated with increased concentrations of source-specific PM2.5, including secondary sulfate (SS), secondary nitrate (SN), biomass burning (BB), pyrolyzed organic carbon (OP), road dust (RD), residual oil (RO), diesel (DIE), and spark ignition vehicle emissions (GAS). Increased rates of ED visits for influenza were associated with interquartile range increases in concentrations of GAS (excess rate [ER] = 9.2%; 95% CI: 4.3%, 14.3%) and DIE (ER = 3.9%; 95% CI: 1.1%, 6.8%) for lag days 0-3. There were similar associations between BB, SS, OP, and RO, and ED visits or hospitalizations for influenza, but not culture-negative pneumonia hospitalizations or ED visits. Short-term increases in PM2.5 from traffic and other combustion sources appear to be a potential risk factor for increased rates of influenza hospitalizations and ED visits.
Collapse
Affiliation(s)
- Daniel P. Croft
- Department
of Medicine, Department of Biostatistics and Computational Biology, Department of Public
Health Sciences, and Department of Environmental Medicine, University
of Rochester Medical Center, Rochester, New York 14642, United States
- E-mail: . Phone: 585 275 4161. Fax: 585 271 1171
| | - Wangjian Zhang
- Department
of Environmental Health Sciences, University at Albany, The State University of New York, Rensselaer, New York 12203, United States
| | - Shao Lin
- Department
of Environmental Health Sciences, University at Albany, The State University of New York, Rensselaer, New York 12203, United States
| | - Sally W. Thurston
- Department
of Medicine, Department of Biostatistics and Computational Biology, Department of Public
Health Sciences, and Department of Environmental Medicine, University
of Rochester Medical Center, Rochester, New York 14642, United States
| | - Philip K. Hopke
- Department
of Medicine, Department of Biostatistics and Computational Biology, Department of Public
Health Sciences, and Department of Environmental Medicine, University
of Rochester Medical Center, Rochester, New York 14642, United States
- Center for
Air Resources Engineering and Science, Clarkson
University, Potsdam, New York 13699, United States
| | - Edwin van Wijngaarden
- Department
of Medicine, Department of Biostatistics and Computational Biology, Department of Public
Health Sciences, and Department of Environmental Medicine, University
of Rochester Medical Center, Rochester, New York 14642, United States
| | - Stefania Squizzato
- Department
of Medicine, Department of Biostatistics and Computational Biology, Department of Public
Health Sciences, and Department of Environmental Medicine, University
of Rochester Medical Center, Rochester, New York 14642, United States
| | - Mauro Masiol
- Department
of Medicine, Department of Biostatistics and Computational Biology, Department of Public
Health Sciences, and Department of Environmental Medicine, University
of Rochester Medical Center, Rochester, New York 14642, United States
| | - Mark J. Utell
- Department
of Medicine, Department of Biostatistics and Computational Biology, Department of Public
Health Sciences, and Department of Environmental Medicine, University
of Rochester Medical Center, Rochester, New York 14642, United States
| | - David Q. Rich
- Department
of Medicine, Department of Biostatistics and Computational Biology, Department of Public
Health Sciences, and Department of Environmental Medicine, University
of Rochester Medical Center, Rochester, New York 14642, United States
| |
Collapse
|
13
|
von Schneidemesser E, Steinmar K, Weatherhead EC, Bonn B, Gerwig H, Quedenau J. Air pollution at human scales in an urban environment: Impact of local environment and vehicles on particle number concentrations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 688:691-700. [PMID: 31254835 DOI: 10.1016/j.scitotenv.2019.06.309] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 06/18/2019] [Accepted: 06/20/2019] [Indexed: 06/09/2023]
Abstract
Air pollution is a global challenge causing millions of premature deaths annually. This is limited not only to developing, but also developed nations, with cities in particular struggling to meet air quality limit values to adequately protect human health. Total exposure to air pollution is often disproportionately affected by the relatively short amount of time spent commuting or in the proximity of traffic. In this exploratory work, we conducted measurements of particle number concentrations using a DiscMini by bicycle. Eighteen tracks with accompanying video footage were analyzed and a suite of factors classified and quantified that influence exposure to air pollution. A method was developed to account for variations in the ambient average concentrations per trip that allowed for comparison across all tracks. Large differences in ultra-localized air pollution levels were identified and quantified for factors such as street type, environmental surroundings, and vehicle type. The occurrence of one or more non-passenger car vehicles, including e.g., buses, mopeds, or trucks, result in an increase in particulate concentrations of 30% to 40% relative to the average ambient level. High traffic situations, such as traffic jams or cars waiting at traffic lights, result in increased particulate concentrations (+47% and +35%, respectively). Cycling in residential neighborhoods decreased particulate number concentrations by 17% relative to the ambient average level, and by 22% when cycling through green spaces or parks. Such information is valuable for citizens who may want to reduce their air pollution exposure when moving through a city, but also for policy makers and urban planners who make or influence infrastructure decisions, to be able to reduce exposure and better protect human health, while progress is made to reduce air pollution levels overall.
Collapse
Affiliation(s)
| | - Kristina Steinmar
- Institute for Advanced Sustainability Studies, Berlinerstrasse 130, 14467 Potsdam, Germany
| | - Elizabeth C Weatherhead
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, 216 UCB, Boulder, CO 80309, USA
| | - Boris Bonn
- Institute for Advanced Sustainability Studies, Berlinerstrasse 130, 14467 Potsdam, Germany
| | - Holger Gerwig
- Division Environmental Health and Protection of Ecosystems, German Environment Agency, Wörlitzer Platz 1, 06844 Dessau-Roßlau, Germany
| | - Jörn Quedenau
- Institute for Advanced Sustainability Studies, Berlinerstrasse 130, 14467 Potsdam, Germany
| |
Collapse
|
14
|
Tong Z, Li Y, Westerdahl D, Adamkiewicz G, Spengler JD. Exploring the effects of ventilation practices in mitigating in-vehicle exposure to traffic-related air pollutants in China. ENVIRONMENT INTERNATIONAL 2019; 127:773-784. [PMID: 31030088 DOI: 10.1016/j.envint.2019.03.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 03/01/2019] [Accepted: 03/09/2019] [Indexed: 06/09/2023]
Abstract
In most major cities of China, commuters inevitably spend a considerable amount of time in vehicle cabins due to the escalation of traffic congestion and a rapidly increasing vehicle population. The in-vehicle microenvironment that is in close proximity to traffic emission sources is at particular risk of increased exposure to traffic-related air pollutants (TRAPs). In this study, a mobile measurement campaign was carried out to investigate in-vehicle exposure to TRAPs in China where the elevated level of TRAPs has drawn worldwide attention in recent years. Our analysis demonstrates that vehicle ventilation mode (i.e., mechanical ventilation, natural ventilation, hybrid ventilation, and infiltration) played a critical role in determining the level of in-vehicle exposure. Although the outside air (OA) mode of mechanical ventilation provided adequate air exchange to passengers, the average in-vehicle PM2.5 and UFP concentrations (119 μg/m3 and 97,227 cm-3 on freeway, and 93 μg/m3 and 42,829 cm-3 on local roadway) during a 20-min sampling period were observed at the level that are markedly greater than those from studies conducted in the U.S., posing a serious health threat to vehicle occupants. We elaborated how our results collected in China with a significantly more polluted on-road environment differ from existing studies in terms of ventilation and driving conditions. In addition, we made the first effort to examine in-vehicle exposure under hybrid ventilation that is a common ventilation practice in everyday commute to potentially reduce symptoms similar to sick building syndrome (SBS). Our data indicate that vehicle occupants under hybrid ventilation are at much greater risk of TRAPs exposure if operating in a polluted on-road environment, and we call for future research on automated ventilation system with advanced window control especially for vans and buses with a large cabin volume.
Collapse
Affiliation(s)
- Zheming Tong
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China; Center for Green Buildings and Cities, Harvard University, Cambridge, MA 02138, USA; School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Yue Li
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China; School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Dane Westerdahl
- Division of Environment and Sustainability, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon 999077, Hong Kong
| | - Gary Adamkiewicz
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - John D Spengler
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| |
Collapse
|
15
|
Walker DI, Lane KJ, Liu K, Uppal K, Patton AP, Durant JL, Jones DP, Brugge D, Pennell KD. Metabolomic assessment of exposure to near-highway ultrafine particles. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2019; 29:469-483. [PMID: 30518795 PMCID: PMC6551325 DOI: 10.1038/s41370-018-0102-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 09/06/2018] [Accepted: 11/12/2018] [Indexed: 05/17/2023]
Abstract
Exposure to traffic-related air pollutants has been associated with increased risk of adverse cardiopulmonary outcomes and mortality; however, the biochemical pathways linking exposure to disease are not known. To delineate biological response mechanisms associated with exposure to near-highway ultrafine particles (UFP), we used untargeted high-resolution metabolomics to profile plasma from 59 participants enrolled in the Community Assessment of Freeway Exposure and Health (CAFEH) study. Metabolic variations associated with UFP exposure were assessed using a cross-sectional study design based upon low (mean 16,000 particles/cm3) and high (mean 24,000 particles/cm3) annual average UFP exposures. In comparing quantified metabolites, we identified five metabolites that were differentially expressed between low and high exposures, including arginine, aspartic acid, glutamine, cystine and methionine sulfoxide. Analysis of the metabolome identified 316 m/z features associated with UFP, which were consistent with increased lipid peroxidation, endogenous inhibitors of nitric oxide and vehicle exhaust exposure biomarkers. Network correlation analysis and metabolic pathway enrichment identified 38 pathways and included variations related to inflammation, endothelial function and mitochondrial bioenergetics. Taken together, these results suggest UFP exposure is associated with a complex series of metabolic variations related to antioxidant pathways, in vivo generation of reactive oxygen species and processes critical to endothelial function.
Collapse
Affiliation(s)
- Douglas I Walker
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, School of Medicine, Emory University, Atlanta, GA, USA
- Department of Civil and Environmental Engineering, Tufts University, Medford, MA, USA
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kevin J Lane
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Ken Liu
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, School of Medicine, Emory University, Atlanta, GA, USA
| | - Karan Uppal
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, School of Medicine, Emory University, Atlanta, GA, USA
| | | | - John L Durant
- Department of Civil and Environmental Engineering, Tufts University, Medford, MA, USA
| | - Dean P Jones
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, School of Medicine, Emory University, Atlanta, GA, USA
| | - Doug Brugge
- Department of Civil and Environmental Engineering, Tufts University, Medford, MA, USA
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA, USA
- Jonathan M. Tisch College of Civic Life, Tufts University, Medford, MA, USA
| | - Kurt D Pennell
- Department of Civil and Environmental Engineering, Tufts University, Medford, MA, USA.
- School of Engineering, Brown University, Providence, RI, USA.
| |
Collapse
|
16
|
Sharma N, Vanderheyden C, Klunder K, Henry CS, Volckens J, Jathar SH. Emerging investigator series: oxidative potential of diesel exhaust particles: role of fuel, engine load, and emissions control. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2019; 21:819-830. [PMID: 30977477 DOI: 10.1039/c8em00571k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Exposure to diesel exhaust particles (DEP) has been linked to adverse human health outcomes. DEPs are reactive and can directly or indirectly lead to oxidative stress, which promotes inflammation in the body. The oxidative potential (OP) of DEPs is not well understood, particularly for combustion with alternative fuels, under different engine loads, and in combination with modern emissions control devices. In this study, we measured the OP of DEPs using a dithiothreitol assay (OP-DTT) from a modern-day non-road diesel engine for two different fuels (conventional diesel and soy-based biodiesel), two different engine loads (idle and 50% load), and with and without an emissions control system. The OP-DTT of DEPs was sensitive to the fuel used and the presence of an emissions control system but not to the engine load. On average, the use of biodiesel resulted in factor of ∼6 reduction in OP-DTT normalized to the DEP mass and a factor of ∼12 reduction in OP-DTT normalized to the fuel consumed. The use of the emissions control, on average, resulted in a factor of ∼6 reduction in OP-DTT normalized to the DEP mass and a three order of magnitude decrease in OP-DTT normalized to the fuel consumed. When studied in conjunction with the DEP composition, the OP-DTT seemed to correlate most strongly with elemental carbon (EC), followed by semi-volatile organic vapors. Assays performed on DEPs where EC was deliberately filtered out suggested that the species responsible for the OP-DTT might be correlated with EC but would need to be water soluble (e.g., quinones). The semi-volatile organic vapors accounted for more than a quarter of the OP-DTT of DEPs collected on the quartz filters. Finally, sensitivity studies performed with a different filter membrane (i.e., Teflon®) and solvent (i.e., dichloromethane) tended to increase the OP-DTT value. OP-DTT is emerging as an important metric for studying the adverse effects of DEPs and PM2.5 on human health; results of this work help define the sources and components of diesel PM2.5 that contribute to OP-DTT.
Collapse
Affiliation(s)
- Naman Sharma
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Brokamp C, Brandt EB, Ryan PH. Assessing exposure to outdoor air pollution for epidemiological studies: Model-based and personal sampling strategies. J Allergy Clin Immunol 2019; 143:2002-2006. [PMID: 31063735 DOI: 10.1016/j.jaci.2019.04.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 04/26/2019] [Accepted: 04/30/2019] [Indexed: 10/26/2022]
Abstract
Epidemiologic studies have found air pollution to be causally linked to respiratory health including the exacerbation and development of childhood asthma. Accurately characterizing exposure is paramount in these studies to ensure valid estimates of health effects. Here, we provide a brief overview of the evolution of air pollution exposure assessment ranging from the use of ground-based, single-site air monitoring stations for population-level estimates to recent advances in spatiotemporal models, which use advanced machine learning algorithms and satellite-based data to accurately estimate individual-level daily exposures at high spatial resolutions. In addition, we review recent advances in sensor technology that enable the use of personal monitoring in epidemiologic studies, long-considered the "holy grail" of air pollution exposure assessment. Finally, we highlight key advantages and uses of each approach including the generalizability and public health relevance of air pollution models and the accuracy of personal monitors that are useful to guide personalized prevention strategies. Investigators and clinicians interested in the effects of air pollution on allergic disease and asthma should carefully consider the pros and cons of each approach to guide their application in research and practice.
Collapse
Affiliation(s)
- Cole Brokamp
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio; Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Eric B Brandt
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio; Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Patrick H Ryan
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio; Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.
| |
Collapse
|
18
|
Pun VC, Ho KF. Blood pressure and pulmonary health effects of ozone and black carbon exposure in young adult runners. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 657:1-6. [PMID: 30530214 DOI: 10.1016/j.scitotenv.2018.11.465] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/30/2018] [Accepted: 11/30/2018] [Indexed: 06/09/2023]
Abstract
Physical activity has been shown to promote health and well-being, however, exercising in environments with high level of air pollution might increase the risk of cardio-respiratory impairments. In this crossover study, we constructed linear mixed models to investigate the impact of short-term exposure to black carbon (BC) and ozone on blood pressure and pulmonary functions among 30 healthy adult runners after 30-minute run on a clean and polluted route on separate days in August 2015 in Hong Kong. Runners were on average 20.6 years old, with mean body mass index of 20.3 kg/m2. Air pollution concentrations were higher in the polluted route than in the clean route, with the highest difference in BC (5.4 μg/m3 versus 1.3 μg/m3). In single-pollutant models, no significant association was found between air pollution and changes in blood pressures, forced vital capacity, forced expiratory volume in 1 s, peak expiratory flow and fractional exhaled nitric oxide, after adjusting for gender, type of route, temperature and relative humidity. When further adjusting for both BC and ozone simultaneously, increment in BC became statistically significantly associated with increase in systolic blood pressure (relative risk = 3.18; 95% CI: 0.24, 6.13) after running exercise. Stratified analysis further shows that the significant adverse association between systolic blood pressure and BC was only observed in the polluted route (e.g., relative risk = 4.51, 95% CI: 0.75, 8.27 in two-pollutant). Our finding of BC is consistent with existing literature, while further studies with greater sample size and longer exposure time are needed to investigate the effects of ozone to cardio-respiratory functions in runners. Given that exercise has clear health benefits, one should consider ways to minimize the air pollution exposure.
Collapse
Affiliation(s)
- Vivian C Pun
- Jockey Club School of Public Health and Primary Medicine, Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territory, Hong Kong.
| | - Kin-Fai Ho
- Jockey Club School of Public Health and Primary Medicine, Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territory, Hong Kong
| |
Collapse
|
19
|
Hart JE, Grady ST, Laden F, Coull BA, Koutrakis P, Schwartz JD, Moy ML, Garshick E. Effects of Indoor and Ambient Black Carbon and [Formula: see text] on Pulmonary Function among Individuals with COPD. ENVIRONMENTAL HEALTH PERSPECTIVES 2018; 126:127008. [PMID: 30570336 PMCID: PMC6371657 DOI: 10.1289/ehp3668] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 11/05/2018] [Accepted: 11/26/2018] [Indexed: 05/25/2023]
Abstract
BACKGROUND Particulate matter (PM) air pollution has been associated with decreased pulmonary function, but the exposure–response relationship in chronic obstructive pulmonary disease (COPD) patients is uncertain, and most studies have only focused on exposures to ambient pollution. OBJECTIVES We aimed to assess associations between pulmonary function and indoor and ambient PM [Formula: see text] ([Formula: see text]) and black carbon (BC). METHODS Between November 2012 and December 2014, 125 patients with COPD (mean age, 73.4 y) who were not currently smoking and without known indoor BC sources were recruited. Indoor BC and [Formula: see text] were measured in each home for a week in each season, up to four times a year, followed by in-person spirometry pre- and post-bronchodilator. Ambient exposures were available from a central site monitor. Multivariable adjusted mixed effects regression models were used to assess associations scaled per interquartile range (IQR) of exposure. RESULTS There were 367 study visits; the median (IQR) indoor BC and [Formula: see text] were 0.19 (0.22) [Formula: see text] and 6.67 (5.80) [Formula: see text], respectively. Increasing indoor exposures to BC were associated with decreases in pre-bronchodilator forced expiratory volume in 1 s [Formula: see text] and forced vital capacity (FVC), and [Formula: see text]. For example, in multivariable adjusted models, each IQR increase in indoor BC from the weekly integrated filter was associated with a [Formula: see text] [95% confidence interval (CI): [Formula: see text], [Formula: see text]] decrease in pre-bronchodilator [Formula: see text]. Increases in indoor [Formula: see text] were associated with decreases in [Formula: see text] and FVC of smaller magnitude than those for indoor BC; however, the results were less precise. Ambient BC was not associated with pre-bronchodilator pulmonary function, ambient [Formula: see text] was only associated with decreases in FVC and increases in [Formula: see text], and neither indoor nor ambient BC or [Formula: see text] were associated with post-bronchodilator pulmonary function. CONCLUSIONS Low-level exposures to indoor BC and [Formula: see text], but not ambient exposures, were consistently associated with decreases in pre-bronchodilator pulmonary function. There was no association between exposures and post-bronchodilator pulmonary function. https://doi.org/10.1289/EHP3668.
Collapse
Affiliation(s)
- Jaime E Hart
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Stephanie T Grady
- Research and Development Service, Veterans Administration Boston Health Care System, Boston, Massachusetts, USA
| | - Francine Laden
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Brent A Coull
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Petros Koutrakis
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Joel D Schwartz
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Marilyn L Moy
- Pulmonary, Allergy, Sleep and Critical Care Medicine, Veterans Administration Boston Healthcare System and Harvard Medical School, Boston, Massachusetts, USA
| | - Eric Garshick
- Pulmonary, Allergy, Sleep and Critical Care Medicine, Veterans Administration Boston Healthcare System and Harvard Medical School, Boston, Massachusetts, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
20
|
Cole CA, Carlsten C, Koehle M, Brauer M. Particulate matter exposure and health impacts of urban cyclists: a randomized crossover study. Environ Health 2018; 17:78. [PMID: 30428890 PMCID: PMC6237024 DOI: 10.1186/s12940-018-0424-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 10/30/2018] [Indexed: 05/25/2023]
Abstract
BACKGROUND Cycling and other forms of active transportation provide health benefits via increased physical activity. However, direct evidence of the extent to which these benefits may be offset by exposure and intake of traffic-related air pollution is limited. The purpose of this study is to measure changes in endothelial function, measures of oxidative stress and inflammation, and lung function in healthy participants before and after cycling along a high- and low- traffic route. METHODS Participants (n = 38) bicycled for 1 h along a Downtown and a Residential designated bicycle route in a randomized crossover trial. Heart rate, power output, particulate matter air pollution (PM10, PM2.5, and PM1) and particle number concentration (PNC) were measured. Lung function, endothelial function (reactive hyperemia index, RHI), C-reactive protein, interleukin-6, and 8-hydroxy-2'-deoxyguanosine were assessed within one hour pre- and post-trial. RESULTS Geometric mean PNC exposures and intakes were higher along the Downtown (exposure = 16,226 particles/cm3; intake = 4.54 × 1010 particles) compared to the Residential route (exposure = 9367 particles/cm3; intake = 3.13 × 1010 particles). RHI decreased following cycling along the Downtown route and increased on the Residential route; in mixed linear regression models, the (post-pre) change in RHI was 21% lower following cycling on the Downtown versus the Residential route (-0.43, 95% CI: -0.79, -0.079) but RHI decreases were not associated with measured exposure or intake of air pollutants. The differences in RHI by route were larger amongst females and older participants. No consistent associations were observed for any of the other outcome measures. CONCLUSIONS Although PNC exposures and intakes were higher along the Downtown route, the lack of association between air pollutant exposure or intake with RHI and other measures suggests other exposures related to cycling on the Downtown route may have been influential in the observed differences between routes in RHI. TRIAL REGISTRATION ClinicalTrials.gov, NCT01708356 . Registered 16 October 2012.
Collapse
Affiliation(s)
- Christie A. Cole
- School of Population and Public Health, University of British Columbia, 2206 East Mall, Vancouver, BC V6T 1Z3 Canada
| | - Christopher Carlsten
- Air Pollution Exposure Lab, Department of Medicine, University of British Columbia, 2775 Laurel Street 7th Floor, Vancouver, BC V5Z 1M9 Canada
| | - Michael Koehle
- School of Kinesiology and Division of Sport & Exercise Medicine, University of British Columbia, 2176 Health Sciences Mall, Vancouver, BC V6T 1Z3 Canada
| | - Michael Brauer
- School of Population and Public Health, University of British Columbia, 2206 East Mall, Vancouver, BC V6T 1Z3 Canada
| |
Collapse
|
21
|
Laeremans M, Dons E, Avila-Palencia I, Carrasco-Turigas G, Orjuela JP, Anaya E, Cole-Hunter T, de Nazelle A, Nieuwenhuijsen M, Standaert A, Van Poppel M, De Boever P, Int Panis L. Short-term effects of physical activity, air pollution and their interaction on the cardiovascular and respiratory system. ENVIRONMENT INTERNATIONAL 2018; 117:82-90. [PMID: 29729518 DOI: 10.1016/j.envint.2018.04.040] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/25/2018] [Accepted: 04/21/2018] [Indexed: 05/28/2023]
Abstract
Physical activity (PA) in urban environments may lead to increased inhalation of air pollutants. As PA and air pollution (AP) have respectively beneficial and detrimental effects on the cardiorespiratory system, the responses to these exposures can interact. Therefore, we assessed the short-term effects of PA, AP and their interaction on a set of subclinical cardiovascular and respiratory outcomes in a panel of healthy adults: heart rate variability (HRV), retinal vessel diameters, lung function and fractional exhaled nitric oxide (FeNO). One hundred twenty two participants measured their PA level and exposure to black carbon (BC), a marker of AP exposure, with wearable sensors during an unscripted week in three different seasons. The study was part of the PASTA project in three European cities (Antwerp: 41 participants, Barcelona: 41 participants, London: 40 participants). At the end of each measurement week, the health outcomes were evaluated. Responses to PA, BC and their interaction were assessed with mixed effect regression models. Separate models were used to account for a 2-h and 24-h time window. During the 2-h time window, HRV and lung function changed statistically significantly in response to PA (METhours) and logarithmic BC (%change). Changes in HRV marked an increased sympathetic tone with both PA (logarithmic LF/HF: +7%; p < 0.01) and BC (logarithmic HF: -19%; p < 0.05). In addition, PA provoked bronchodilation which was illustrated by a significant increase in lung function (FEV1: +15.63 mL; p < 0.05). While a BC %increase was associated with a significant lung function decrease (PEF: -0.10 mL; p < 0.05), the interaction indicated a potential protective effect of PA (p < 0.05). We did not observe a response of the retinal vessel diameters. Most subclinical outcomes did not change in the 24-h time window (except for a few minor changes in LF/HF, FeNO and PEF). Our results on the separate and combined effects of short-term PA and AP exposure on subclinical markers of the cardiorespiratory system are relevant for public health. We provide insights on the physiological responses of multiple, complementary markers. This may move further research towards elucidating potential pathways to disease and the long-term clinical impact of the observed physiological changes.
Collapse
Affiliation(s)
- Michelle Laeremans
- Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium; Transportation Research Institute (IMOB), Hasselt University, Wetenschapspark 5/6, 3590 Diepenbeek, Belgium
| | - Evi Dons
- Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium; Centre for Environmental Sciences, Hasselt University, Martelarenlaan 42, 3500 Hasselt, Belgium
| | - Ione Avila-Palencia
- ISGlobal, Centre for Research in Environmental Epidemiology, C/Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra, C/Dr. Aiguader 88, 08003 Barcelona, Spain; CIBER Epidemiología y Salud Pública, C/Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Glòria Carrasco-Turigas
- ISGlobal, Centre for Research in Environmental Epidemiology, C/Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra, C/Dr. Aiguader 88, 08003 Barcelona, Spain; CIBER Epidemiología y Salud Pública, C/Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Juan Pablo Orjuela
- Centre for Environmental Policy, Imperial College London, Exhibition Road, South Kensington Campus, SW7 2 AZ London, United Kingdom
| | - Esther Anaya
- Centre for Environmental Policy, Imperial College London, Exhibition Road, South Kensington Campus, SW7 2 AZ London, United Kingdom
| | - Tom Cole-Hunter
- ISGlobal, Centre for Research in Environmental Epidemiology, C/Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra, C/Dr. Aiguader 88, 08003 Barcelona, Spain; CIBER Epidemiología y Salud Pública, C/Monforte de Lemos 3-5, 28029 Madrid, Spain; Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Audrey de Nazelle
- Centre for Environmental Policy, Imperial College London, Exhibition Road, South Kensington Campus, SW7 2 AZ London, United Kingdom
| | - Mark Nieuwenhuijsen
- ISGlobal, Centre for Research in Environmental Epidemiology, C/Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra, C/Dr. Aiguader 88, 08003 Barcelona, Spain; CIBER Epidemiología y Salud Pública, C/Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Arnout Standaert
- Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium
| | - Martine Van Poppel
- Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium
| | - Patrick De Boever
- Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium; Centre for Environmental Sciences, Hasselt University, Martelarenlaan 42, 3500 Hasselt, Belgium
| | - Luc Int Panis
- Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium; Transportation Research Institute (IMOB), Hasselt University, Wetenschapspark 5/6, 3590 Diepenbeek, Belgium.
| |
Collapse
|
22
|
Krall JR, Ladva CN, Russell AG, Golan R, Peng X, Shi G, Greenwald R, Raysoni AU, Waller LA, Sarnat JA. Source-specific pollution exposure and associations with pulmonary response in the Atlanta Commuters Exposure Studies. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2018; 28:337-347. [PMID: 29298976 PMCID: PMC6013329 DOI: 10.1038/s41370-017-0016-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 11/15/2017] [Accepted: 11/21/2017] [Indexed: 05/19/2023]
Abstract
Concentrations of traffic-related air pollutants are frequently higher within commuting vehicles than in ambient air. Pollutants found within vehicles may include those generated by tailpipe exhaust, brake wear, and road dust sources, as well as pollutants from in-cabin sources. Source-specific pollution, compared to total pollution, may represent regulation targets that can better protect human health. We estimated source-specific pollution exposures and corresponding pulmonary response in a panel study of commuters. We used constrained positive matrix factorization to estimate source-specific pollution factors and, subsequently, mixed effects models to estimate associations between source-specific pollution and pulmonary response. We identified four pollution factors that we named: crustal, primary tailpipe traffic, non-tailpipe traffic, and secondary. Among asthmatic subjects (N = 48), interquartile range increases in crustal and secondary pollution were associated with changes in lung function of -1.33% (95% confidence interval (CI): -2.45, -0.22) and -2.19% (95% CI: -3.46, -0.92) relative to baseline, respectively. Among non-asthmatic subjects (N = 51), non-tailpipe pollution was associated with pulmonary response only at 2.5 h post-commute. We found no significant associations between pulmonary response and primary tailpipe pollution. Health effects associated with traffic-related pollution may vary by source, and therefore some traffic pollution sources may require targeted interventions to protect health.
Collapse
Affiliation(s)
- Jenna R Krall
- Department of Global and Community Health, College of Health and Human Services, George Mason University, 4400 University Drive MS 5B7, Fairfax, VA, 22030, USA.
| | | | - Armistead G Russell
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, USA
| | - Rachel Golan
- Department of Public Health, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Xing Peng
- College of Environmental Science and Engineering, Nankai University, Nankai Qu, China
| | - Guoliang Shi
- College of Environmental Science and Engineering, Nankai University, Nankai Qu, China
| | - Roby Greenwald
- Department of Environmental Health, Georgia State University, Atlanta, USA
| | - Amit U Raysoni
- Department of Environmental Health, Emory University, Atlanta, USA
| | - Lance A Waller
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, USA
| | - Jeremy A Sarnat
- Department of Environmental Health, Emory University, Atlanta, USA
| |
Collapse
|
23
|
Xu T, Hou J, Cheng J, Zhang R, Yin W, Huang C, Zhu X, Chen W, Yuan J. Estimated individual inhaled dose of fine particles and indicators of lung function: A pilot study among Chinese young adults. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 235:505-513. [PMID: 29324380 DOI: 10.1016/j.envpol.2017.12.074] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 11/04/2017] [Accepted: 12/21/2017] [Indexed: 06/07/2023]
Abstract
Fine particle (PM2.5)-related lung damage has been reported in most studies regarding environmental or personal PM2.5 concentrations. To assess effects of personal PM2.5 exposures on lung function, we recruited 20 postgraduate students and estimated the individual doses of inhaled PM2.5 based on their microenvironmetal PM2.5 concentrations, time-activity patterns and refereed inhalation rates. During the period of seven consecutive days in each of the four seasons, we repeatedly measured the daily lung function parameters and airway inflammation makers such as fractional exhaled nitric oxide (FeNO) as well as systemic inflammation markers including interleukin-1β on the final day. The high individual dose (median (IQR)) of inhaled PM2.5 was 957 (948) μg/day. We observed a maximum FeNO increase (9.1% (95%CI: 2.2-15.5)) at lag 0 day, a maximum decrease of maximum voluntary ventilation (11.8% (95% CI: 4.6-19.0)) at lag 5 day and a maximum interleukin-1β increase (103% (95% CI: 47-159)) at lag 2 day for an interquartile range increase in the individual dose of inhaled PM2.5 during the four seasons. Short-term exposure to PM2.5 assessed by the individual dose of inhaled PM2.5 was associated with higher airway and systemic inflammation and reduced lung function. Further studies are needed to understand better underlying mechanisms of lung damage following acute exposure to PM2.5.
Collapse
Affiliation(s)
- Tian Xu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China
| | - Jian Hou
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China
| | - Juan Cheng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China
| | - Runbo Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China
| | - Wenjun Yin
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China
| | - Cheng Huang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China
| | - Xiaochuan Zhu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China
| | - Weihong Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China
| | - Jing Yuan
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China.
| |
Collapse
|
24
|
Wagner DR, Clark NW. Effects of ambient particulate matter on aerobic exercise performance. J Exerc Sci Fit 2018; 16:12-15. [PMID: 30662486 PMCID: PMC6323157 DOI: 10.1016/j.jesf.2018.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 01/03/2018] [Accepted: 01/04/2018] [Indexed: 11/05/2022] Open
Abstract
Background/Objective Wintertime thermal inversions in narrow mountain valleys create a ceiling effect, increasing concentration of small particulate matter (PM2.5). Despite potential health risks, many people continue to exercise outdoors in thermal inversions. This study measured the effects of ambient PM2.5 exposure associated with a typical thermal inversion on exercise performance, pulmonary function, and biological markers of inflammation. Methods Healthy, active adults (5 males, 11 females) performed two cycle ergometer time trials outdoors in a counterbalanced design: 1) low ambient PM2.5 concentrations (<12 μg/m3), and 2) an air quality index (AQI) ranking of “yellow.” Variables of interest were exercise performance, exhaled nitric oxide (eNO), c-reactive protein (CRP), forced vital capacity (FVC), and forced expiratory volume in 1 s (FEV1). Results Despite a significant difference in mean PM2.5 concentration of 9.3 ± 3.0 μg/m3 between trials (p < .001), there was no significant difference (p = .424) in the distance covered during low PM2.5 conditions (9.9 ± 1.7 km) compared to high PM2.5 conditions (10.1 ± 1.5 km). There were no clinically significant differences across time or between trials for eNO, CRP, FVC, or FEV1. Additionally, there were no dose-response relationships (p > .05) for PM2.5 concentration and the measured variables. Conclusion An acute bout of vigorous exercise during an AQI of “yellow” did not diminish exercise performance in healthy adults, nor did it have a negative effect on pulmonary function or biological health markers. These variables might not be sensitive to small changes from acute, mild PM2.5 exposure.
Collapse
Affiliation(s)
- Dale R Wagner
- Kinesiology & Health Science Department, Utah State University, USA
| | - Nicolas W Clark
- Kinesiology & Health Science Department, Utah State University, USA
| |
Collapse
|
25
|
Chaney RA, Sloan CD, Cooper VC, Robinson DR, Hendrickson NR, McCord TA, Johnston JD. Personal exposure to fine particulate air pollution while commuting: An examination of six transport modes on an urban arterial roadway. PLoS One 2017; 12:e0188053. [PMID: 29121096 PMCID: PMC5679559 DOI: 10.1371/journal.pone.0188053] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 10/31/2017] [Indexed: 12/14/2022] Open
Abstract
Traffic-related air pollution in urban areas contributes significantly to commuters’ daily PM2.5 exposures, but varies widely depending on mode of commuting. To date, studies show conflicting results for PM2.5 exposures based on mode of commuting, and few studies compare multiple modes of transportation simultaneously along a common route, making inter-modal comparisons difficult. In this study, we examined breathing zone PM2.5 exposures for six different modes of commuting (bicycle, walking, driving with windows open and closed, bus, and light-rail train) simultaneously on a single 2.7 km (1.68 mile) arterial urban route in Salt Lake City, Utah (USA) during peak “rush hour” times. Using previously published minute ventilation rates, we estimated the inhaled dose and exposure rate for each mode of commuting. Mean PM2.5 concentrations ranged from 5.20 μg/m3 for driving with windows closed to 15.21 μg/m3 for driving with windows open. The estimated inhaled doses over the 2.7 km route were 6.83 μg for walking, 2.78 μg for cycling, 1.28 μg for light-rail train, 1.24 μg for driving with windows open, 1.23 μg for bus, and 0.32 μg for driving with windows closed. Similarly, the exposure rates were highest for cycling (18.0 μg/hr) and walking (16.8 μg/hr), and lowest for driving with windows closed (3.7 μg/hr). Our findings support previous studies showing that active commuters receive a greater PM2.5 dose and have higher rates of exposure than commuters using automobiles or public transportation. Our findings also support previous studies showing that driving with windows closed is protective against traffic-related PM2.5 exposure.
Collapse
Affiliation(s)
- Robert A. Chaney
- Brigham Young University, Department of Health Science, Provo, Utah, United States of America
- * E-mail:
| | - Chantel D. Sloan
- Brigham Young University, Department of Health Science, Provo, Utah, United States of America
| | - Victoria C. Cooper
- Brigham Young University, Department of Health Science, Provo, Utah, United States of America
| | - Daniel R. Robinson
- Brigham Young University, Department of Health Science, Provo, Utah, United States of America
| | - Nathan R. Hendrickson
- Brigham Young University, Department of Health Science, Provo, Utah, United States of America
| | - Tyler A. McCord
- Brigham Young University, Department of Health Science, Provo, Utah, United States of America
| | - James D. Johnston
- Brigham Young University, Department of Health Science, Provo, Utah, United States of America
| |
Collapse
|
26
|
Control Measures and Health Effects of Air Pollution: A Survey among Public Transportation Commuters in Malaysia. SUSTAINABILITY 2017. [DOI: 10.3390/su9091616] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
27
|
Boussetta N, Abedelmalek S, Aloui K, Souissi N. The effect of air pollution on diurnal variation of performance in anaerobic tests, cardiovascular and hematological parameters, and blood gases on soccer players following the Yo-Yo Intermittent Recovery Test Level-1. Chronobiol Int 2017; 34:903-920. [PMID: 28613960 DOI: 10.1080/07420528.2017.1325896] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This study aimed to investigate the effect of air pollution on diurnal variation of performance in anaerobic tests, cardiovascular and hematological parameters, and blood gases on soccer players following the Yo-Yo Intermittent Recovery Test Level-1 (YYIRT1). In a randomized order, 11 healthy soccer players (mean age: 21.8 [range: 20-24] years; height: 178.00 [range: 1.64-1.83] cm; body mass index [BMI]: 23.57 [range: 20.45-28.03] kg.m-2) performed a YYIRT1 at two different times of day (TOD) (08:00 h and 18:00 h) in two areas (i.e. polluted (PA) and non-polluted (NPA)) with a recovery period of ≥ 72 h in between, to determine the maximal oxygen uptake (VO2max). In each test session: resting oral temperature is measured, anaerobic performances (pre- and post-YYIRT1) were performed, cardiovascular parameters and blood samples were collected at: rest, 3 min and 60 min after the YYIRT1, to assess blood gases and hematological parameters. Our results showed that, agility performance, VO2max, red blood cells (RBC), hemoglobin (Hb), pH, and bicarbonate levels (HCO3-) decrease significantly (p < 0.001) following the YYIRT1 in PA compared to NPA. Likewise, the heart rate (HR), systolic blood pressure (SBP), platelets (PLT), white blood cells (WBC), neutrophiles (NEUT), lymphocytes (LYM), and partial pressure of CO2 levels (PvCO2) were significantly higher (p < 0.001) in PA. This effect was slightly accentuated at 18:00 h for some parameters (i.e. Agility, HCO3-, HR, PvCO2, RBC, SBP). However, performances of sprint and Sargent jump test (SJT), oral temperature, rate of perceived exertion scales (RPE), partial pressure of O2 (PvO2), diastolic blood pressure (DBP), and monocytes (MON) were not affected by pollution (p > 0.05). In conclusion, pollution seems to be critical for health stability and performance in response to YYIRT1 especially in the evening and the winter season. Therefore, coaches and athletes should draw attention to the potential importance of land use planning in their training sessions and competitions in the morning in polluted area to minimize the risk of pollution exposure.
Collapse
Affiliation(s)
- Nesrin Boussetta
- a Research Unit of Physical Activity, Sport and Health , National Sport Observatory of Tunisia , Tunis , Tunisia.,b High Institute of Sport and Physical Education , University of Mannouba , Ksar saïd , Tunisia
| | - Salma Abedelmalek
- c Research Laboratory ''Sports performance optimization'' National Center of Medicine and Science in Sports (CNMSS) , Tunis , Tunisia
| | - Khouloud Aloui
- d Faculty of Sciences of Bizerte, Department of Physiology , University of Carthage , Bizerte , Tunisia
| | - Nizar Souissi
- c Research Laboratory ''Sports performance optimization'' National Center of Medicine and Science in Sports (CNMSS) , Tunis , Tunisia.,e Department of Physiology and functional explorations , Sousse Faculty of Medicine , Sousse , Tunisia
| |
Collapse
|
28
|
Vlaanderen J, Pronk A, Rothman N, Hildesheim A, Silverman D, Hosgood HD, Spaan S, Kuijpers E, Godderis L, Hoet P, Lan Q, Vermeulen R. A cross-sectional study of changes in markers of immunological effects and lung health due to exposure to multi-walled carbon nanotubes. Nanotoxicology 2017; 11:395-404. [DOI: 10.1080/17435390.2017.1308031] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jelle Vlaanderen
- Division of Environmental Epidemiology, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Anjoeka Pronk
- Risk Analysis for Products in Development (RAPID), TNO, Zeist, The Netherlands
| | - Nathaniel Rothman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Allan Hildesheim
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Debra Silverman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - H. Dean Hosgood
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Suzanne Spaan
- Risk Analysis for Products in Development (RAPID), TNO, Zeist, The Netherlands
| | - Eelco Kuijpers
- Risk Analysis for Products in Development (RAPID), TNO, Zeist, The Netherlands
| | - Lode Godderis
- Centre for Environment and Health, Katholieke Universiteit Leuven, Leuven, Belgium
- External Service for Prevention and Protection at Work, IDEWE, Heverlee, Belgium
| | - Peter Hoet
- Centre for Environment and Health, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Qing Lan
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Roel Vermeulen
- Division of Environmental Epidemiology, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
29
|
Park HY, Gilbreath S, Barakatt E. Respiratory outcomes of ultrafine particulate matter (UFPM) as a surrogate measure of near-roadway exposures among bicyclists. Environ Health 2017; 16:6. [PMID: 28179003 PMCID: PMC5299642 DOI: 10.1186/s12940-017-0212-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 01/13/2017] [Indexed: 05/23/2023]
Abstract
BACKGROUND Studies have shown a consistent association between exposure to traffic-related air pollution and adverse health effects. In particular, exposure can be high for cyclists who travel near roadways. The objective of the current study was to examine the relationship between short-term exposure of near-road traffic emissions and acute changes in lung function among individuals who frequently bike in the Sacramento and Davis areas in California. Ultrafine particulate matter (UFPM) was used as a surrogate for near-roadway exposure in this study since the main source of this pollutant is from motor vehicle exhaust. METHODS Thirty-two bicyclists were recruited and completed two rides on separate days during the study period of March-June, 2008. One ride was on a high traffic route paralleling a section of Interstate 80 (I-80)/Interstate Business 80 (I-80B), and a second one was on a low traffic route, such as bike paths away from major highways. The participant's lung function was measured before and after each ride, and UFPM exposure was measured during the rides using a condensation particle counter (CPC). RESULTS In the final linear mixed-effect model using median UFPM concentrations as the main exposure, we observed that lung function change (post-ride minus baseline measurements) shifted in the negative direction. Lung function changed by 216 mL for FVC and 168 mL for FEV1, respectively, for an interquartile range (IQR: 12,225 to 36,833 number of particles/cm3) increase of UFPM concentration after adjusting for other covariates of age, sex, wind direction, and day of the week. CONCLUSIONS This study found significant associations between increased levels of UFPM concentrations as a proxy for near road traffic pollution, and decrements in lung function measurements. Our results are related to short-term exposures, and the long-term health effects of cycling near heavy traffic require further research. Our study suggests the need to reduce traffic pollution, particularly near roads. Cyclists should plan their route to reduce their exposure where possible and further research on built environment designs may help urban planners to reduce the potential health concerns of cyclists' exposure to traffic-related air pollution.
Collapse
Affiliation(s)
- Hye-Youn Park
- Research Division, California Air Resources Board, 1001 “I” street, P.O. Box 2815, Sacramento, CA 95812 USA
| | - Susan Gilbreath
- Research Division, California Air Resources Board, 1001 “I” street, P.O. Box 2815, Sacramento, CA 95812 USA
| | - Edward Barakatt
- Program in Physical Therapy, College of Health and Human Services, California State University, Sacramento, CA 95819 USA
| |
Collapse
|
30
|
Li HC, Chiueh PT, Liu SP, Huang YY. Assessment of different route choice on commuters' exposure to air pollution in Taipei, Taiwan. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:3163-3171. [PMID: 27864736 DOI: 10.1007/s11356-016-8000-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/25/2016] [Indexed: 06/06/2023]
Abstract
The purposes of this study are to develop a healthy commute map indicating cleanest route in Taipei metropolitan area for any given journey and to evaluate the pollutant doses exposed in different commuting modes. In Taiwan, there are more than 13.6 million motorcycles and 7.7 million vehicles among the 23 million people. Exposure to traffic-related air pollutants can thus cause adverse health effects. Moreover, increasing the level of physical activity during commuting and longer distances will result in inhalation of more polluted air. In this study, we utilized air pollution monitoring data (CO, SO2, NO2, PM10, and PM2.5) from Taiwan EPA's air quality monitoring stations in Taipei metropolitan area to estimate each pollutant exposure while commuting by different modes (motorcycling, bicycling, and walking). Spatial interpolation methods such as inverse distance weighting (IDW) were used to estimate each pollutant's distribution in Taipei metropolitan area. Three routes were selected to represent the variety of different daily commuting pathways. The cleanest route choice was based upon Dijkstra's algorithm to find the lowest cumulative pollutant exposure. The IDW interpolated values of CO, SO2, NO2, PM10, and PM2.5 ranged from 0.42-2.2 (ppm), 2.6-4.8 (ppb), 17.8-42.9 (ppb), 32.4-65.6 (μg/m3), and 14.2-38.9 (μg/m3), respectively. To compare with the IDW results, concentration of particulate matter (PM10, PM2.5, and PM1) along the motorcycle route was measured in real time. In conclusion, the results showed that the shortest commuting route for motorcyclists resulted in a much higher cumulative dose (PM2.5 3340.8 μg/m3) than the cleanest route (PM2.5 912.5 μg/m3). The mobile personal monitoring indicated that the motorcyclists inhaled significant high pollutants during commuting as a result of high-concentration exposure and short-duration peaks. The study could effectively present less polluted commuting routes for citizen health benefits.
Collapse
Affiliation(s)
- Hsien-Chih Li
- Graduate Institute of Environmental Engineering, National Taiwan University, 71 Chou-Shan Rd., Taipei, 106, Taiwan
| | - Pei-Te Chiueh
- Graduate Institute of Environmental Engineering, National Taiwan University, 71 Chou-Shan Rd., Taipei, 106, Taiwan.
| | - Shi-Ping Liu
- Department of Public Health, Fu Jen University, 510 Zhongzheng Rd., Xinzhuang Dist, New Taipei City, 242, Taiwan
| | - Yu-Yang Huang
- Graduate Institute of Environmental Engineering, National Taiwan University, 71 Chou-Shan Rd., Taipei, 106, Taiwan
| |
Collapse
|
31
|
Matt F, Cole-Hunter T, Donaire-Gonzalez D, Kubesch N, Martínez D, Carrasco-Turigas G, Nieuwenhuijsen M. Acute respiratory response to traffic-related air pollution during physical activity performance. ENVIRONMENT INTERNATIONAL 2016; 97:45-55. [PMID: 27776225 DOI: 10.1016/j.envint.2016.10.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/10/2016] [Accepted: 10/10/2016] [Indexed: 05/06/2023]
Abstract
BACKGROUND Physical activity (PA) has beneficial, whereas exposure to traffic related air pollution (TRAP) has adverse, respiratory effects. Few studies, however, have examined if the acute effects of TRAP upon respiratory outcomes are modified depending on the level of PA. OBJECTIVES The aim of our study was to disentangle acute effects of TRAP and PA upon respiratory outcomes and assess the impact of participants TRAP pre-exposure. METHODS We conducted a real-world crossover study with repeated measures of 30 healthy adults. Participants completed four 2-h exposure scenarios that included either rest or intermittent exercise in high- and low-traffic environments. Measures of respiratory function were collected at three time points. Pre-exposure to TRAP was ascertained from land-use-modeled address-attributed values. Mixed-effects models were used to estimate the impact of TRAP and PA on respiratory measures as well as potential effect modifications. RESULTS We found that PA was associated with a statistically significant increases of FEV1 (48.5mL, p=0.02), FEV1/FVC (0.64%, p=0.005) and FEF25-75% (97.8mL, p=0.02). An increase in exposure to one unit (1μg/m3) of PMcoarse was associated with a decrease in FEV1 (-1.31mL, p=0.02) and FVC (-1.71mL, p=0.01), respectively. On the other hand, for an otherwise equivalent exposure an increase of PA by one unit (1%Heart rate max) was found to reduce the immediate negative effects of particulate matter (PM) upon PEF (PM2.5, 0.02L/min, p=0.047; PM10, 0.02L/min p=0.02; PMcoarse, 0.03L/min, p=0.02) and the several hours delayed negative effects of PM upon FVC (PMcoarse, 0.11mL, p=0.02). The negative impact of exposure to TRAP constituents on FEV1/FVC and PEF was attenuated in those participants with higher TRAP pre-exposure levels. CONCLUSIONS Our results suggest that associations between various pollutant exposures and respiratory measures are modified by the level of PA during exposure and TRAP pre-exposure of participants.
Collapse
Affiliation(s)
- Florian Matt
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain; Rudolf Boehm Institute of Pharmacology and Toxicology, PGS Toxicology and Environmental Protection, University of Leipzig, Leipzig, Germany; Biological Safety & Risk Management, Institute Straumann AG, Basel, Switzerland.
| | - Tom Cole-Hunter
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain; Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain; Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - David Donaire-Gonzalez
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain; Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain; Physical Activity and Sports Sciences Department, Fundació Blanquerna, Barcelona, Spain
| | - Nadine Kubesch
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain; Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - David Martínez
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain; Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Glòria Carrasco-Turigas
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain; Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Mark Nieuwenhuijsen
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain; Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| |
Collapse
|
32
|
Shi J, Chen R, Yang C, Lin Z, Cai J, Xia Y, Wang C, Li H, Johnson N, Xu X, Zhao Z, Kan H. Association between fine particulate matter chemical constituents and airway inflammation: A panel study among healthy adults in China. ENVIRONMENTAL RESEARCH 2016; 150:264-268. [PMID: 27340812 DOI: 10.1016/j.envres.2016.06.022] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/26/2016] [Accepted: 06/14/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Ambient fine particulate matter (PM2.5) air pollution has been associated with increased airway inflammation, but the roles of various PM2.5 constituents remain to be determined. OBJECTIVES To investigate the acute effects of PM2.5 constituents on fractional exhaled nitric oxide (FeNO), a well-established biomarker of respiratory inflammation. METHODS A longitudinal panel study was performed among 32 healthy young adults in Shanghai, China from January 12th to February 6th, 2015. FeNO was repeatedly measured, 6-8 times per subject. Real-time mass concentration of ambient PM2.5 and chemical constituents were obtained from a nearby monitoring station. Linear mixed-effect models were applied to evaluate the association between FeNO and PM2.5 constituents, with the adjustment of age, gender, body mass index, temperature, relative humidity and day of week. The robustness of constituents' effects was also evaluated. RESULTS A total of 234 effective measurements of FeNO were obtained with a geometric mean of 13.1 ppb. The PM2.5-FeNO associations were strongest at lags of 0-6h and diminished at lags longer than 12h. An interquartile range increase in PM2.5 constituents (NH4(+), NO3(-), K(+), SO4(2-) and elemental carbon) at lags of 0-6h were significantly associated with increments in FeNO by 12.3%, 11.3%, 11.1%, 9.6% and 10.7%, respectively. After controlling for PM2.5 total mass and the colinearity, only elemental carbon remained significant. CONCLUSION Several chemical constituents of PM2.5 may impact FeNO following acute exposure. Elemental carbon in particular may be the primary component responsible for increased airway inflammation.
Collapse
Affiliation(s)
- Jingjin Shi
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai 200032, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Fudan University, Shanghai 200032, China
| | - Changyuan Yang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai 200032, China
| | - Zhijing Lin
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai 200032, China
| | - Jing Cai
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai 200032, China
| | - Yongjie Xia
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai 200032, China
| | - Cuicui Wang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai 200032, China
| | - Huichu Li
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai 200032, China
| | - Natalie Johnson
- Department of Environment & Occupational Health, Texas A&M School of Public Health, College Station, TX 77843, United States
| | - Xiaohui Xu
- Department of Epidemiology & Biostatistics, Texas A&M School of Public Health, College Station, TX 77843, United States
| | - Zhuohui Zhao
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai 200032, China.
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Fudan University, Shanghai 200032, China.
| |
Collapse
|
33
|
Han Y, Zhu T, Guan T, Zhu Y, Liu J, Ji Y, Gao S, Wang F, Lu H, Huang W. Association between size-segregated particles in ambient air and acute respiratory inflammation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 565:412-419. [PMID: 27179679 DOI: 10.1016/j.scitotenv.2016.04.196] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/29/2016] [Accepted: 04/29/2016] [Indexed: 05/25/2023]
Abstract
The health effects of particulate matter (PM) in ambient air are well documented. However, whether PM size plays a critical role in these effects is unclear in the population studies. This study investigated the association between the ambient concentrations of PM with varies sizes (5.6-560nm) and a biomarker of acute respiratory inflammation, the fraction of exhaled nitric oxide (FENO), in a panel of 55 elderly people in Shanghai, China. Linear mixed-effect model was fitted to estimate the association between FENO and moving average concentrations of PM, adjusting for temperature, relative humidity, day of the week, and age. Results showed that among the measured particles size range, Aitken-mode (20-100nm) particles had the strongest positive association with increased FENO when using moving average concentration of PM up to 24h prior to visits. The estimates were robust to the adjustment for gender, condition of chronic disease and use of medication, and to the sensitive analysis using different times of visits. The authors concluded that the association between acute respiratory inflammation and PM concentration of fine particulates depended on particle size, and suggested Aitken-mode particles may be the most responsible for this adverse health association.
Collapse
Affiliation(s)
- Yiqun Han
- College of Environmental Sciences and Engineering and Centre for Environment and Health, Peking University, Beijing 100871, China.
| | - Tong Zhu
- College of Environmental Sciences and Engineering and Centre for Environment and Health, Peking University, Beijing 100871, China.
| | - Tianjia Guan
- College of Environmental Sciences and Engineering and Centre for Environment and Health, Peking University, Beijing 100871, China
| | - Yi Zhu
- College of Environmental Sciences and Engineering and Centre for Environment and Health, Peking University, Beijing 100871, China
| | - Jun Liu
- College of Environmental Sciences and Engineering and Centre for Environment and Health, Peking University, Beijing 100871, China
| | - Yunfang Ji
- The Center for Diseases Control and Prevention of Huangpu District, Shanghai, China
| | - Shuna Gao
- The Center for Diseases Control and Prevention of Huangpu District, Shanghai, China
| | - Fei Wang
- The Center for Diseases Control and Prevention of Huangpu District, Shanghai, China
| | - Huimin Lu
- The Center for Diseases Control and Prevention of Huangpu District, Shanghai, China
| | - Wei Huang
- College of Occupational & Environmental Health, School of Public Health, Center of Health Sciences, Peking University, China
| |
Collapse
|
34
|
Farrell W, Weichenthal S, Goldberg M, Valois MF, Shekarrizfard M, Hatzopoulou M. Near roadway air pollution across a spatially extensive road and cycling network. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 212:498-507. [PMID: 26967536 DOI: 10.1016/j.envpol.2016.02.041] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 02/18/2016] [Accepted: 02/20/2016] [Indexed: 06/05/2023]
Abstract
This study investigates the variability in near-road concentrations of ultra-fine particles (UFP). Our results are based on a mobile data collection campaign conducted in 2012 in Montreal, Canada using instrumented bicycles and covering approximately 475 km of unique roadways. The spatial extent of the data collected included a diverse array of roads and land use patterns. Average concentrations of UFP per roadway segment varied greatly across the study area (1411-192,340 particles/cm(3)) as well as across the different visits to the same segment. Mixed effects linear regression models were estimated for UFP (R(2) = 43.80%), incorporating a wide range of predictors including land-use, built environment, road characteristics, and meteorology. Temperature and wind speed had a large negative effect on near-road concentrations of UFP. Both the day of the week and time of day had a significant effect with Tuesdays and afternoon periods positively associated with UFP. Since UFP are largely associated with traffic emissions and considering the wide spatial extent of our data collection campaign, it was impossible to collect traffic volume data. For this purpose, we used simulated data for traffic volumes and speeds across the region and observed a positive effect for volumes and negative effect for speed. Finally, proximity to truck routes was also associated with higher UFP concentrations.
Collapse
Affiliation(s)
- William Farrell
- Civil Engineering, McGill University, 817Sherbrooke St. W., Room 492, Montreal, QC, H3A 2K6, Canada.
| | - Scott Weichenthal
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, 1020 Pine Ave. West, Montreal, QC, H3A 1A2, Canada.
| | - Mark Goldberg
- Division of Clinical Epidemiology, McGill University Health Center, 687 Pine Ave. W., Royal Victoria Hospital, Room 4.29, Montreal, QC, H3A 1A1, Canada.
| | - Marie-France Valois
- Division of Clinical Epidemiology, McGill University Health Center, 687 Pine Ave. W., Royal Victoria Hospital, Room 4.29, Montreal, QC, H3A 1A1, Canada.
| | - Maryam Shekarrizfard
- Civil Engineering, McGill University, 817Sherbrooke St. W., Room 492, Montreal, QC, H3A 2K6, Canada.
| | - Marianne Hatzopoulou
- Civil Engineering, University of Toronto, 35St George Street, Room: GB305F, Toronto, ON, M5S 1A4, Canada.
| |
Collapse
|
35
|
Acute effects on pulmonary function in young healthy adults exposed to traffic-related air pollution in semi-closed transport hub in Beijing. Environ Health Prev Med 2016; 21:312-320. [PMID: 27106573 DOI: 10.1007/s12199-016-0531-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 03/31/2016] [Indexed: 10/21/2022] Open
Abstract
OBJECTIVES Transport hub is an important part of urban comprehensive transportation system. Traffic-related air pollution can reach high level because of difficulty of diffusion and increase of emission in transport hub. However, whether exposure in this semi-closed traffic micro-environment causes acute changes in pulmonary function of commuters still needs to be explored. METHODS Forty young healthy adults participated in this randomized, crossover study. Each participant underwent 2 h exposure in a designated transport hub and, on a separate occasion, in an appointed park. Personal exposures to fine particulate matter (PM2.5), black carbon (BC) and carbon monoxide (CO) were measured. Forced expiratory volume in 1 s (FEV1) and peak expiratory flow (PEF) were assessed pre-, during and post-exposure. Mixed linear models were used to analyze the pulmonary effects of traffic-related air pollutants. RESULTS Participants had significantly higher exposures to PM2.5, BC and CO in the transport hub than in the park. Exposure in transport hub induced significant reductions in FEV1 and PEF compared with the park during exposure 1 and 2 h. The reductions were significant associated with traffic-related air pollutants. For instance, per 10 μg/m3 increment in PM2.5 was associated with -0.15 % (95 % CI -0.28, -0.02 %) reduction in FEV1 during exposure 2 h. However, effects became attenuate after 2 h exposure. CONCLUSIONS Short-term exposure in transport hub had acute reduction effects on pulmonary function. More attention should be paid to the health effects of exposure in the semi-closed traffic micro-environment.
Collapse
|
36
|
Gaffney AW, Hang JQ, Lee MS, Su L, Zhang FY, Christiani DC. Socioeconomic status is associated with reduced lung function in China: an analysis from a large cross-sectional study in Shanghai. BMC Public Health 2016; 16:96. [PMID: 26832923 PMCID: PMC4736183 DOI: 10.1186/s12889-016-2752-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 01/19/2016] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND An inverse association between socioeconomic status and pulmonary function has emerged in many studies. However, the mediating factors in this relationship are poorly understood, and might be expected to differ between countries. We sought to investigate the relationship between socioeconomic status and lung function in China, a rapidly industrializing nation with unique environmental challenges, and to identify potentially-modifiable environmental mediators. METHODS We used data from the Shanghai Putuo Study, a cross-sectional study performed in Shanghai, China. Participants completed a questionnaire and spirometry. The primary exposure was socioeconomic status, determined by education level. The primary outcomes were FEV1 and FVC percent predicted. Multiple linear regressions were used to test this association, and the percent explained by behavioral, environmental, occupational, and dietary variables was determined by adding these variables to a base model. RESULTS The study population consisted of a total of 22,878 study subjects that were 53.3 % female and had a mean age of 48. In the final multivariate analysis, the effect estimates for FEV1 and FVC percent predicted for low socioeconomic status (compared to high) were statistically significant at a p-value of <0.01. Smoking, biomass exposure, mode of transportation to work, a diet low in fruits or vegetables, and occupational category partially attenuated the relationship between SES and lung function. In a fully-adjusted age-stratified analysis, the socioeconomic disparity in lung function widened with increasing age. CONCLUSIONS We found cross-sectional evidence of socioeconomic disparities in pulmonary function in Shanghai. These differences increased with age and were partially explained by potentially modifiable exposures.
Collapse
Affiliation(s)
- Adam W Gaffney
- Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA.
| | - Jing-qing Hang
- Shanghai Putuo District People's Hospital, Shanghai, China.
| | - Mi-Sun Lee
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA, 02115, USA.
| | - Li Su
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA, 02115, USA.
| | | | - David C Christiani
- Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA.
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA, 02115, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
37
|
Sloan CD, Philipp TJ, Bradshaw RK, Chronister S, Barber WB, Johnston JD. Applications of GPS-tracked personal and fixed-location PM(2.5) continuous exposure monitoring. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2016; 66:53-65. [PMID: 26512925 DOI: 10.1080/10962247.2015.1108942] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
UNLABELLED Continued development of personal air pollution monitors is rapidly improving government and research capabilities for data collection. In this study, we tested the feasibility of using GPS-enabled personal exposure monitors to collect personal exposure readings and short-term daily PM2.5 measures at 15 fixed locations throughout a community. The goals were to determine the accuracy of fixed-location monitoring for approximating individual exposures compared to a centralized outdoor air pollution monitor, and to test the utility of two different personal monitors, the RTI MicroPEM V3.2 and TSI SidePak AM510. For personal samples, 24-hr mean PM2.5 concentrations were 6.93 μg/m³ (stderr = 0.15) and 8.47 μg/m³ (stderr = 0.10) for the MicroPEM and SidePak, respectively. Based on time-activity patterns from participant journals, exposures were highest while participants were outdoors (MicroPEM = 7.61 µg/m³, stderr = 1.08, SidePak = 11.85 µg/m³, stderr = 0.83) or in restaurants (MicroPEM = 7.48 µg/m³, stderr = 0.39, SidePak = 24.93 µg/m³, stderr = 0.82), and lowest when participants were exercising indoors (MicroPEM = 4.78 µg/m³, stderr = 0.23, SidePak = 5.63 µg/m³, stderr = 0.08). Mean PM(2.5) at the 15 fixed locations, as measured by the SidePak, ranged from 4.71 µg/m³ (stderr = 0.23) to 12.38 µg/m³ (stderr = 0.45). By comparison, mean 24-h PM(2.5) measured at the centralized outdoor monitor ranged from 2.7 to 6.7 µg/m³ during the study period. The range of average PM(2.5) exposure levels estimated for each participant using the interpolated fixed-location data was 2.83 to 19.26 µg/m³ (mean = 8.3, stderr = 1.4). These estimated levels were compared with average exposure from personal samples. The fixed-location monitoring strategy was useful in identifying high air pollution microclimates throughout the county. For 7 of 10 subjects, the fixed-location monitoring strategy more closely approximated individuals' 24-hr breathing zone exposures than did the centralized outdoor monitor. Highlights are: Individual PM(2.5) exposure levels vary extensively by activity, location and time of day; fixed-location sampling more closely approximated individual exposures than a centralized outdoor monitor; and small, personal exposure monitors provide added utility for individuals, researchers, and public health professionals seeking to more accurately identify air pollution microclimates. IMPLICATIONS Personal air pollution monitoring technology is advancing rapidly. Currently, personal monitors are primarily used in research settings, but could they also support government networks of centralized outdoor monitors? In this study, we found differences in performance and practicality for two personal monitors in different monitoring scenarios. We also found that personal monitors used to collect outdoor area samples were effective at finding pollution microclimates, and more closely approximated actual individual exposure than a central monitor. Though more research is needed, there is strong potential that personal exposure monitors can improve existing monitoring networks.
Collapse
Affiliation(s)
- Chantel D Sloan
- a Department of Health Science , Brigham Young University , Provo , Utah , USA
| | - Tyler J Philipp
- a Department of Health Science , Brigham Young University , Provo , Utah , USA
| | - Rebecca K Bradshaw
- a Department of Health Science , Brigham Young University , Provo , Utah , USA
| | - Sara Chronister
- a Department of Health Science , Brigham Young University , Provo , Utah , USA
| | - W Bradford Barber
- a Department of Health Science , Brigham Young University , Provo , Utah , USA
| | - James D Johnston
- a Department of Health Science , Brigham Young University , Provo , Utah , USA
| |
Collapse
|
38
|
Dons E, Götschi T, Nieuwenhuijsen M, de Nazelle A, Anaya E, Avila-Palencia I, Brand C, Cole-Hunter T, Gaupp-Berghausen M, Kahlmeier S, Laeremans M, Mueller N, Orjuela JP, Raser E, Rojas-Rueda D, Standaert A, Stigell E, Uhlmann T, Gerike R, Int Panis L. Physical Activity through Sustainable Transport Approaches (PASTA): protocol for a multi-centre, longitudinal study. BMC Public Health 2015; 15:1126. [PMID: 26577129 PMCID: PMC4650276 DOI: 10.1186/s12889-015-2453-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 10/26/2015] [Indexed: 11/16/2022] Open
Abstract
Background Physical inactivity is one of the leading risk factors for non-communicable diseases, yet many are not sufficiently active. The Physical Activity through Sustainable Transport Approaches (PASTA) study aims to better understand active mobility (walking and cycling for transport solely or in combination with public transport) as an innovative approach to integrate physical activity into individuals’ everyday lives. The PASTA study will collect data of multiple cities in a longitudinal cohort design to study correlates of active mobility, its effect on overall physical activity, crash risk and exposure to traffic-related air pollution. Methods/Design A set of online questionnaires incorporating gold standard approaches from the physical activity and transport fields have been developed, piloted and are now being deployed in a longitudinal study in seven European cities (Antwerp, Barcelona, London, Oerebro, Rome, Vienna, Zurich). In total, 14000 adults are being recruited (2000 in each city). A first questionnaire collects baseline information; follow-up questionnaires sent every 13 days collect prospective data on travel behaviour, levels of physical activity and traffic safety incidents. Self-reported data will be validated with objective data in subsamples using conventional and novel methods. Accelerometers, GPS and tracking apps record routes and activity. Air pollution and physical activity are measured to study their combined effects on health biomarkers. Exposure-adjusted crash risks will be calculated for active modes, and crash location audits are performed to study the role of the built environment. Ethics committees in all seven cities have given independent approval for the study. Discussion The PASTA study collects a wealth of subjective and objective data on active mobility and physical activity. This will allow the investigation of numerous correlates of active mobility and physical activity using a data set that advances previous efforts in its richness, geographical coverage and comprehensiveness. Results will inform new health impact assessment models and support efforts to promote and facilitate active mobility in cities. Electronic supplementary material The online version of this article (doi:10.1186/s12889-015-2453-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Evi Dons
- Flemish Institute for Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium. .,Centre for Environmental Sciences, Hasselt University, Agoralaan building D, 3590, Diepenbeek, Belgium.
| | - Thomas Götschi
- Physical Activity and Health Unit, Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Seilergraben 49, 8001, Zurich, Switzerland.
| | - Mark Nieuwenhuijsen
- Centre for Research in Environmental Epidemiology (CREAL), C/Dr. Aiguader 88, 08003, Barcelona, Spain. .,Universitat Pompeu Fabra (UPF), C/Dr. Aiguader 88, 08003, Barcelona, Spain. .,CIBER Epidemiología y Salud Pública (CIBERESP), C/Monforte de Lemos 3-5, 28029, Madrid, Spain.
| | - Audrey de Nazelle
- Centre for Environmental Policy, Imperial College London, Exhibition Road, South Kensington Campus, SW7 2AZ, London, UK.
| | - Esther Anaya
- Centre for Environmental Policy, Imperial College London, Exhibition Road, South Kensington Campus, SW7 2AZ, London, UK.
| | - Ione Avila-Palencia
- Centre for Research in Environmental Epidemiology (CREAL), C/Dr. Aiguader 88, 08003, Barcelona, Spain. .,Universitat Pompeu Fabra (UPF), C/Dr. Aiguader 88, 08003, Barcelona, Spain. .,CIBER Epidemiología y Salud Pública (CIBERESP), C/Monforte de Lemos 3-5, 28029, Madrid, Spain.
| | - Christian Brand
- University of Oxford (UOXF) - Transport Studies Unit, South Parks Road, Oxford, OX1 3QY, UK.
| | - Tom Cole-Hunter
- Centre for Research in Environmental Epidemiology (CREAL), C/Dr. Aiguader 88, 08003, Barcelona, Spain. .,Universitat Pompeu Fabra (UPF), C/Dr. Aiguader 88, 08003, Barcelona, Spain. .,CIBER Epidemiología y Salud Pública (CIBERESP), C/Monforte de Lemos 3-5, 28029, Madrid, Spain.
| | - Mailin Gaupp-Berghausen
- University of Natural Resources and Life Sciences Vienna, Institute for Transport Studies, Peter-Jordan-Straße 82, 1190, Vienna, Austria.
| | - Sonja Kahlmeier
- Physical Activity and Health Unit, Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Seilergraben 49, 8001, Zurich, Switzerland.
| | - Michelle Laeremans
- Flemish Institute for Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium. .,Transportation Research Institute (IMOB), Hasselt University, Wetenschapspark 5/6, 3590, Diepenbeek, Belgium.
| | - Natalie Mueller
- Centre for Research in Environmental Epidemiology (CREAL), C/Dr. Aiguader 88, 08003, Barcelona, Spain. .,Universitat Pompeu Fabra (UPF), C/Dr. Aiguader 88, 08003, Barcelona, Spain. .,CIBER Epidemiología y Salud Pública (CIBERESP), C/Monforte de Lemos 3-5, 28029, Madrid, Spain.
| | - Juan Pablo Orjuela
- Centre for Environmental Policy, Imperial College London, Exhibition Road, South Kensington Campus, SW7 2AZ, London, UK.
| | - Elisabeth Raser
- University of Natural Resources and Life Sciences Vienna, Institute for Transport Studies, Peter-Jordan-Straße 82, 1190, Vienna, Austria.
| | - David Rojas-Rueda
- Centre for Research in Environmental Epidemiology (CREAL), C/Dr. Aiguader 88, 08003, Barcelona, Spain. .,Universitat Pompeu Fabra (UPF), C/Dr. Aiguader 88, 08003, Barcelona, Spain. .,CIBER Epidemiología y Salud Pública (CIBERESP), C/Monforte de Lemos 3-5, 28029, Madrid, Spain.
| | - Arnout Standaert
- Flemish Institute for Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium.
| | | | - Tina Uhlmann
- University of Natural Resources and Life Sciences Vienna, Institute for Transport Studies, Peter-Jordan-Straße 82, 1190, Vienna, Austria.
| | - Regine Gerike
- University of Natural Resources and Life Sciences Vienna, Institute for Transport Studies, Peter-Jordan-Straße 82, 1190, Vienna, Austria. .,Dresden University of Technology, Chair of Integrated Transport Planning and Traffic Engineering, 01062, Dresden, Germany.
| | - Luc Int Panis
- Flemish Institute for Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium. .,Transportation Research Institute (IMOB), Hasselt University, Wetenschapspark 5/6, 3590, Diepenbeek, Belgium.
| |
Collapse
|
39
|
Gaffney AW, Hang JQ, Lee MS, Su L, Zhang FY, Christiani DC. Commuting mode and pulmonary function in Shanghai, China. Eur Respir J 2015; 47:733-41. [PMID: 26541519 DOI: 10.1183/13993003.00637-2015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 09/24/2015] [Indexed: 01/21/2023]
Abstract
Exposure to air pollution can be particularly high during commuting and may depend on the mode of transportation. We investigated the impact of commuting mode on pulmonary function in Shanghai, China.The Shanghai Putuo Study is a cross-sectional, population-based study. Our primary outcomes were forced expiratory volume in 1 s (FEV1) and forced vital capacity (FVC) % predicted, and the secondary outcome was spirometric airflow obstruction. We tested the association between mode of transportation and these outcomes after adjusting for confounders.The study population consisted of 20 102 subjects. After adjusting for confounders, the change (95% CI) in FEV1 was -2.15% pred (-2.88- -1.42% pred) among pedestrians, -1.32% pred (-2.05- -0.59% pred) among those taking buses without air conditioning, -1.33% pred (-2.05- -0.61% pred) among those taking buses with air conditioning and -2.83% pred (-5.56- -0.10% pred) among those using underground railways, as compared to cyclists (the reference group). The effects of mode on FVC % predicted were in the same direction. Private car use had a significant protective effect on FVC % predicted and the risk of airflow obstruction (defined by Global Initiative for Chronic Obstructive Lung Disease but not by lower limit of normal criteria).Mode of transportation is associated with differences in lung function, which may reflect pollution levels in different transportation microenvironments.
Collapse
Affiliation(s)
| | - Jing-Qing Hang
- Shanghai Putuo District People's Hospital, Shanghai, China
| | - Mi-Sun Lee
- Environmental and Occupational Medicine and Epidemiology Program, Dept of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Li Su
- Environmental and Occupational Medicine and Epidemiology Program, Dept of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | - David C Christiani
- Massachusetts General Hospital, Boston, MA, USA Environmental and Occupational Medicine and Epidemiology Program, Dept of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA Harvard Medical School, Boston, MA, USA
| |
Collapse
|
40
|
Mirowsky JE, Peltier RE, Lippmann M, Thurston G, Chen LC, Neas L, Diaz-Sanchez D, Laumbach R, Carter JD, Gordon T. Repeated measures of inflammation, blood pressure, and heart rate variability associated with traffic exposures in healthy adults. Environ Health 2015; 14:66. [PMID: 26276052 PMCID: PMC4537534 DOI: 10.1186/s12940-015-0049-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 07/09/2015] [Indexed: 05/03/2023]
Abstract
BACKGROUND Previous human exposure studies of traffic-related air pollutants have demonstrated adverse health effects in human populations by comparing areas of high and low traffic, but few studies have utilized microenvironmental monitoring of pollutants at multiple traffic locations while looking at a vast array of health endpoints in the same population. We evaluated inflammatory markers, heart rate variability (HRV), blood pressure, exhaled nitric oxide, and lung function in healthy participants after exposures to varying mixtures of traffic pollutants. METHODS A repeated-measures, crossover study design was used in which 23 healthy, non-smoking adults had clinical cardiopulmonary and systemic inflammatory measurements taken prior to, immediately after, and 24 hours after intermittent walking for two hours in the summer months along three diverse roadways having unique emission characteristics. Measurements of PM2.5, PM10, black carbon (BC), elemental carbon (EC), and organic carbon (OC) were collected. Mixed effect models were used to assess changes in health effects associated with these specific pollutant classes. RESULTS Minimal associations were observed with lung function measurements and the pollutants measured. Small decreases in BP measurements and rMSSD, and increases in IL-1β and the low frequency to high frequency ratio measured in HRV, were observed with increasing concentrations of PM2.5 EC. CONCLUSIONS Small, acute changes in cardiovascular and inflammation-related effects of microenvironmental exposures to traffic-related air pollution were observed in a group of healthy young adults. The associations were most profound with the diesel-source EC.
Collapse
Affiliation(s)
- Jaime E Mirowsky
- Department of Environmental Medicine, New York University, Tuxedo, NY, USA.
| | - Richard E Peltier
- Division of Environmental Health Science, University of Massachusetts, Amherst, MA, USA.
| | - Morton Lippmann
- Department of Environmental Medicine, New York University, Tuxedo, NY, USA.
| | - George Thurston
- Department of Environmental Medicine, New York University, Tuxedo, NY, USA.
| | - Lung-Chi Chen
- Department of Environmental Medicine, New York University, Tuxedo, NY, USA.
| | - Lucas Neas
- U.S. EPA; Epidemiology Branch, Chapel Hill, NC, USA.
| | | | - Robert Laumbach
- Department of Environmental and Occupational Medicine, University of Medicine and Dentistry of New Jersey, Piscataway, NJ, USA.
| | | | - Terry Gordon
- Department of Environmental Medicine, New York University, Tuxedo, NY, USA.
| |
Collapse
|
41
|
Mirowsky J, Gordon T. Noninvasive effects measurements for air pollution human studies: methods, analysis, and implications. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2015; 25:354-80. [PMID: 25605444 PMCID: PMC6659729 DOI: 10.1038/jes.2014.93] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 09/26/2014] [Accepted: 11/05/2014] [Indexed: 05/09/2023]
Abstract
Human exposure studies, compared with cell and animal models, are heavily relied upon to study the associations between health effects in humans and air pollutant inhalation. Human studies vary in exposure methodology, with some work conducted in controlled settings, whereas other studies are conducted in ambient environments. Human studies can also vary in the health metrics explored, as there exists a myriad of health effect end points commonly measured. In this review, we compiled mini reviews of the most commonly used noninvasive health effect end points that are suitable for panel studies of air pollution, broken into cardiovascular end points, respiratory end points, and biomarkers of effect from biological specimens. Pertinent information regarding each health end point and the suggested methods for mobile collection in the field are assessed. In addition, the clinical implications for each health end point are summarized, along with the factors identified that can modify each measurement. Finally, the important research findings regarding each health end point and air pollutant exposures were reviewed. It appeared that most of the adverse health effects end points explored were found to positively correlate with pollutant levels, although differences in study design, pollutants measured, and study population were found to influence the magnitude of these effects. Thus, this review is intended to act as a guide for researchers interested in conducting human exposure studies of air pollutants while in the field, although there can be a wider application for using these end points in many epidemiological study designs.
Collapse
Affiliation(s)
- Jaime Mirowsky
- Department of Environmental Medicine, New York University School of Medicine, Nelson Institute of Environmental Medicine, Tuxedo, New York, USA
| | - Terry Gordon
- Department of Environmental Medicine, New York University School of Medicine, Nelson Institute of Environmental Medicine, Tuxedo, New York, USA
| |
Collapse
|
42
|
Cozza IC, Zanetta DMT, Fernandes FLA, da Rocha FMM, de Andre PA, Garcia MLB, Paceli RB, Prado GF, Terra-Filho M, do Nascimento Saldiva PH, de Paula Santos U. An approach to using heart rate monitoring to estimate the ventilation and load of air pollution exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 520:160-7. [PMID: 25813969 DOI: 10.1016/j.scitotenv.2015.03.049] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 01/30/2015] [Accepted: 03/13/2015] [Indexed: 05/22/2023]
Abstract
BACKGROUND The effects of air pollution on health are associated with the amount of pollutants inhaled which depends on the environmental concentration and the inhaled air volume. It has not been clear whether statistical models of the relationship between heart rate and ventilation obtained using laboratory cardiopulmonary exercise test (CPET) can be applied to an external group to estimate ventilation. OBJECTIVES To develop and evaluate a model to estimate respiratory ventilation based on heart rate for inhaled load of pollutant assessment in field studies. METHODS Sixty non-smoking men; 43 public street workers (public street group) and 17 employees of the Forest Institute (park group) performed a maximum cardiopulmonary exercise test (CPET). Regression equation models were constructed with the heart rate and natural logarithmic of minute ventilation data obtained on CPET. Ten individuals were chosen randomly (public street group) and were used for external validation of the models (test group). All subjects also underwent heart rate register, and particulate matter (PM2.5) monitoring for a 24-hour period. RESULTS For the public street group, the median difference between estimated and observed data was 0.5 (CI 95% -0.2 to 1.4) l/min and for the park group was 0.2 (CI 95% -0.2 to 1.2) l/min. In the test group, estimated values were smaller than the ones observed in the CPET, with a median difference of -2.4 (CI 95% -4.2 to -1.8) l/min. The mixed model estimated values suggest that this model is suitable for situations in which heart rate is around 120-140bpm. CONCLUSION The mixed effect model is suitable for ventilation estimate, with good accuracy when applied to homogeneous groups, suggesting that, in this case, the model could be used in field studies to estimate ventilation. A small but significant difference in the median of external validation estimates was observed, suggesting that the applicability of the model to external groups needs further evaluation.
Collapse
Affiliation(s)
- Izabela Campos Cozza
- Pulmonary Division, Heart Institute (Incor), Hospital das Clínicas, Medicine School, University of São Paulo, Brazil.
| | | | | | | | - Paulo Afonso de Andre
- Experimental Laboratory of Atmospheric Pollution, Pathology Department, Medicine School, University of São Paulo, Brazil
| | | | - Renato Batista Paceli
- Pulmonary Division, Heart Institute (Incor), Hospital das Clínicas, Medicine School, University of São Paulo, Brazil
| | - Gustavo Faibischew Prado
- Pulmonary Division, Heart Institute (Incor), Hospital das Clínicas, Medicine School, University of São Paulo, Brazil
| | - Mario Terra-Filho
- Pulmonary Division, Heart Institute (Incor), Hospital das Clínicas, Medicine School, University of São Paulo, Brazil
| | | | - Ubiratan de Paula Santos
- Pulmonary Division, Heart Institute (Incor), Hospital das Clínicas, Medicine School, University of São Paulo, Brazil
| |
Collapse
|
43
|
Mirabelli MC, Golan R, Greenwald R, Raysoni AU, Holguin F, Kewada P, Winquist A, Flanders WD, Sarnat JA. Modification of Traffic-related Respiratory Response by Asthma Control in a Population of Car Commuters. Epidemiology 2015; 26:546-55. [PMID: 25901844 PMCID: PMC4516050 DOI: 10.1097/ede.0000000000000296] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Effects of traffic-related exposures on respiratory health are well documented, but little information is available about whether asthma control influences individual susceptibility. We analyzed data from the Atlanta Commuter Exposure study to evaluate modification of associations between rush-hour commuting, in- vehicle air pollution, and selected respiratory health outcomes by asthma control status. METHODS Between 2009 and 2011, 39 adults participated in Atlanta Commuter Exposure, and each conducted two scripted rush-hour highway commutes. In-vehicle particulate components were measured during all commutes. Among adults with asthma, we evaluated asthma control by questionnaire and spirometry. Exhaled nitric oxide, forced expiratory volume in 1 second (FEV1), and other metrics of respiratory health were measured precommute and 0, 1, 2, and 3 hours postcommute. We used mixed effects linear regression to evaluate associations between commute-related exposures and postcommute changes in metrics of respiratory health by level of asthma control. RESULTS We observed increased exhaled nitric oxide across all levels of asthma control compared with precommute measurements, with largest postcommute increases observed among participants with below-median asthma control (2 hours postcommute: 14.6% [95% confidence interval {CI} = 5.7, 24.2]; 3 hours postcommute: 19.5% [95% CI = 7.8, 32.5]). No associations between in-vehicle pollutants and percent of predicted FEV1 were observed, although higher PM2.5 was associated with lower FEV1 % predicted among participants with below-median asthma control (3 hours postcommute: -7.2 [95% CI = -11.8, -2.7]). CONCLUSIONS Level of asthma control may influence respiratory response to in-vehicle exposures experienced during rush-hour commuting.
Collapse
Affiliation(s)
- Maria C. Mirabelli
- Air Pollution and Respiratory Health Branch, Division of Environmental Hazards and Health Effects, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA
| | - Rachel Golan
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA
| | - Roby Greenwald
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA
| | - Amit U. Raysoni
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA
| | - Fernando Holguin
- Division of Pulmonary, Allergy and Critical Care, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Priya Kewada
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA
| | - Andrea Winquist
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA
| | - W. Dana Flanders
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA
| | - Jeremy A. Sarnat
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA
| |
Collapse
|
44
|
Storer M, Curry K, Squire M, Kingham S, Epton M. Breath testing and personal exposure--SIFT-MS detection of breath acetonitrile for exposure monitoring. J Breath Res 2015; 9:036006. [PMID: 26010169 DOI: 10.1088/1752-7155/9/3/036006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Breath testing has potential for the rapid assessment of the source and impact of exposure to air pollutants. During the development of a breath test for acetonitrile using selected ion flow tube mass spectrometry (SIFT-MS) raised acetonitrile concentrations in the breath of volunteers were observed that could not be explained by known sources of exposure. Workplace/laboratory exposure to acetonitrile was proposed since this was common to the volunteers with increased breath concentrations. SIFT-MS measurements of acetonitrile in breath and air were used to confirm that an academic chemistry laboratory was the source of exposure to acetonitrile, and quantify the changes that occurred to exhaled acetonitrile after exposure. High concentrations of acetonitrile were detected in the air of the chemistry laboratory. However, concentrations in the offices were not significantly different across the campus. There was a significant difference in the exhaled acetonitrile concentrations of people who worked in the chemistry laboratories (exposed) and those who did not (non-exposed). SIFT-MS testing of air and breath made it possible to determine that occupational exposure to acetonitrile in the chemistry laboratory was the cause of increased exhaled acetonitrile. Additionally, the sensitivity was adequate to measure the changes to exhaled amounts and found that breath concentrations increased quickly with short exposure and remained increased even after periods of non-exposure. There is potential to add acetonitrile to a suite of VOCs to investigate source and impact of poor air quality.
Collapse
Affiliation(s)
- Malina Storer
- Respiratory Services, Christchurch Hospital, Christchurch, New Zealand
| | | | | | | | | |
Collapse
|
45
|
Scarpa MC, Kulkarni N, Maestrelli P. The role of non-invasive biomarkers in detecting acute respiratory effects of traffic-related air pollution. Clin Exp Allergy 2015; 44:1100-18. [PMID: 25040251 DOI: 10.1111/cea.12373] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The role of non-invasive methods in the investigation of acute effects of traffic-related air pollution is not clearly established. We evaluated the usefulness of non-invasive biomarkers in detecting acute air pollution effects according to the age of participants, the disease status, their sensitivity compared with lung function tests and their specificity for a type of pollutant. Search terms lead to 535 titles, among them 128 had potentially relevant abstracts. Sixtynine full papers were reviewed, while 59 articles were excluded as they did not meet the selection criteria. Methods used to assess short-term effects of air pollution included analysis of nasal lavage (NAL) for the upper airways, and induced sputum (IS), exhaled breath condensate (EBC) and exhaled nitric oxide (FeNO) for central and lower airways. There is strong evidence that FeNO evaluation is useful independently from subject age, while IS analysis is suitable almost for adults. Biomarker changes are generally observed upon pollutant exposure irrespective of the disease status of the participants. None of the biomarkers identified are specific for a type of pollutant exposure. Based on experimental exposure studies, there is moderate evidence that IS analysis is more sensitive than lung function tests, whereas this is not the case for biomarkers obtained by NAL or EBC. Cells and some cytokines (IL-6, IL-8 and myeloperoxidase) have been measured both in the upper respiratory tract (NAL) and in the lower airways (IS). Overall, the response to traffic exposure seems different in the two compartments. In conclusion, this survey of current literature displays the complexity of this research field, highlights the significance of short-term studies on traffic pollution and gives important tips when planning studies to detect acute respiratory effects of air pollution in a non-invasive way.
Collapse
Affiliation(s)
- M C Scarpa
- Department of Cardiologic, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| | | | | |
Collapse
|
46
|
Pun VC, Tian L, Yu ITS, Kioumourtzoglou MA, Qiu H. Differential distributed lag patterns of source-specific particulate matter on respiratory emergency hospitalizations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:3830-8. [PMID: 25651457 DOI: 10.1021/es505030u] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
While different emission sources and formation processes generate mixtures of particulate matter (PM) with different physicochemical compositions that may differentially affect PM toxicity, evidence of associations between PM sources and respiratory events is scarce. We estimated PM10 sources contributed from 19 chemical constituents by positive matrix factorization, and examined association of short-term sources exposure with emergency respiratory hospitalizations using generalized additive models for single- and distributed lag periods. PM10 contributions from eight sources were identified. Respiratory risks over a consecutive 6-day exposure period were the highest for vehicle exhaust [2.01%; 95% confidence interval (CI): 1.04, 2.99], followed by secondary sulfate (1.59%; 95% CI: 0.82, 2.37). Vehicle exhaust, regional combustion, and secondary nitrate were significantly associated with 0.93%-2.04% increase in respiratory hospitalizations at cumulative lag2-5; significant associations of aged sea salt (1.2%; 95% CI: 0.63, 1.78) and soil/road dust (0.42%; 95% CI: 0.03, 0.82) were at lag0-1. Some effect estimates were no longer significant in two-pollutant models adjusting for PM10; however, a similar temporal pattern of associations remains. Differential lag associations of respiratory hospitalizations with PM10 sources were indicated, which may reflect the different particle size fractions that sources tend to emit. Findings may have potential biological and policy implications.
Collapse
Affiliation(s)
| | | | - Ignatius T S Yu
- †Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, SAR China
| | - Marianthi-Anna Kioumourtzoglou
- ‡Department of Environmental Health, Harvard School of Public Health, Harvard University, Boston, Massachusetts 02115, United States
| | - Hong Qiu
- †Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, SAR China
| |
Collapse
|
47
|
Ryan PH, Son SY, Wolfe C, Lockey J, Brokamp C, LeMasters G. A field application of a personal sensor for ultrafine particle exposure in children. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 508:366-373. [PMID: 25497676 DOI: 10.1016/j.scitotenv.2014.11.061] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 11/11/2014] [Accepted: 11/19/2014] [Indexed: 06/04/2023]
Abstract
BACKGROUND Ultrafine particles (UFPs) have been associated with adverse health outcomes in children, but studies are often limited by surrogate estimates of exposure. Accurately characterizing children's personal exposure to UFP is difficult due to the high spatiotemporal variability of UFP and children's time-activity patterns. OBJECTIVE The objectives of this study were to conduct a field test of a personal sensor for UFP (PUFP) by measuring UFP exposure among children and assess the sensor's capabilities and limitations. METHODS Children wore the sensor at school, during transit periods between school and home, and in their home for 2-4h on 2 consecutive days and provided feedback regarding their experience with the sensor. The PUFP sensor recorded UFP number concentration at one second intervals and recorded GPS location allowing for comparisons of UFP exposure at homes, schools, and during transit. A mixed-effects linear model was used to compare the effect of microenvironment on personal UFP measurements. RESULTS The overall total median personal exposure to UFP was 12,900 particles/cm(3) (p/cm(3)). Median UFP exposure at homes, schools and during transit was 17,800, 11,900, and 13,600 p/cm(3), respectively. Results of the mixed-effects model found that riding in a car and walking were significantly associated with 1.36 (95% CI 1.33-1.39) and 2.51 (95% CI 2.44-2.57) times higher UFP concentrations compared to the home. CONCLUSIONS The PUFP sensor can measure near real-time exposure to UFP with high spatiotemporal resolution. Children's exposure to UFP varies by location, with increased exposure during transit to and from school.
Collapse
Affiliation(s)
- Patrick H Ryan
- Cincinnati Children's Hospital Medical Center, Division of Biostatistics and Epidemiology, Cincinnati, OH, USA; University of Cincinnati, Department of Environmental Health, Division of Epidemiology and Biostatistics, Cincinnati, OH, USA.
| | - Sang Young Son
- University of Cincinnati, Department of Mechanical and Materials Engineering, Cincinnati, OH, USA
| | - Christopher Wolfe
- University of Cincinnati, Department of Environmental Health, Division of Epidemiology and Biostatistics, Cincinnati, OH, USA
| | - James Lockey
- University of Cincinnati, Department of Environmental Health, Cincinnati, OH, USA; University of Cincinnati, Department of Internal Medicine, Cincinnati, OH, USA
| | - Cole Brokamp
- University of Cincinnati, Department of Environmental Health, Division of Epidemiology and Biostatistics, Cincinnati, OH, USA
| | - Grace LeMasters
- University of Cincinnati, Department of Environmental Health, Division of Epidemiology and Biostatistics, Cincinnati, OH, USA; Cincinnati Children's Hospital Medical Center, Division of Asthma Research, Cincinnati, OH, USA
| |
Collapse
|
48
|
Miao Q, Bouchard M, Chen D, Rosenberg MW, Aronson KJ. Commuting behaviors and exposure to air pollution in Montreal, Canada. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 508:193-198. [PMID: 25478656 DOI: 10.1016/j.scitotenv.2014.11.078] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 11/03/2014] [Accepted: 11/24/2014] [Indexed: 06/04/2023]
Abstract
BACKGROUND Vehicular traffic is a major source of outdoor air pollution in urban areas, and studies have shown that air pollution is worse during hours of commuting to and from work and school. However, it is unclear to what extent different commuting behaviors are a source of air pollution compared to non-commuters, and if air pollution exposure actually differs by the mode of commuting. This study aimed to examine the relationships between commuting behaviors and air pollution exposure levels measured by urinary 1-OHP (1-hydroxypyrene), a biomarker of exposure to polycyclic aromatic hydrocarbons (PAHs). METHODS A cross-sectional study of 174 volunteers living in Montreal, 92 females and 82 males, aged 20 to 53 years was conducted in 2011. Each participant completed a questionnaire regarding demographic factors, commuting behaviors, home and workplace addresses, and potential sources of PAH exposure, and provided a complete first morning void urine sample for 1-OHP analysis. Multivariable general linear regression models were used to examine the relationships between different types of commuting and urinary 1-OHP levels. RESULTS Compared to non-commuters, commuters traveling by foot or bicycle and by car or truck had a significantly higher urinary 1-OHP concentration in urine (p=0.01 for foot or bicycle vs. non-commuters; p=0.02 for car or truck vs. non-commuters); those traveling with public transportation and combinations of two or more types of modes tended to have an increased 1-OHP level in urine (p=0.06 for public transportation vs. non-commuters; p=0.05 for commuters with combinations of two or more types of modes vs. non-commuters). No significant difference in urinary 1-OHP variation was found by mode of commuting. CONCLUSION This preliminary study suggests that despite the mode of commuting, all types of commuting during rush hours increase exposure to air pollution as measured by a sensitive PAH metabolite biomarker, and mode of commuting did not explain exposure variation.
Collapse
Affiliation(s)
- Qun Miao
- Department of Public Health Sciences, Queen's University, Kingston, ON, Canada; Cancer Research Institute at Queen's University, Kingston, ON, Canada
| | - Michèle Bouchard
- Department of Environmental and Occupational Health, Chair in Toxicological Risk Assessment and Management, Université de Montréal, Montréal, QC, Canada
| | - Dongmei Chen
- Department of Geography, Queen's University, Kingston, ON, Canada
| | - Mark W Rosenberg
- Department of Geography, Queen's University, Kingston, ON, Canada
| | - Kristan J Aronson
- Department of Public Health Sciences, Queen's University, Kingston, ON, Canada; Cancer Research Institute at Queen's University, Kingston, ON, Canada.
| |
Collapse
|
49
|
De Prins S, Dons E, Van Poppel M, Int Panis L, Van de Mieroop E, Nelen V, Cox B, Nawrot TS, Teughels C, Schoeters G, Koppen G. Airway oxidative stress and inflammation markers in exhaled breath from children are linked with exposure to black carbon. ENVIRONMENT INTERNATIONAL 2014; 73:440-6. [PMID: 25244707 DOI: 10.1016/j.envint.2014.06.017] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 06/03/2014] [Accepted: 06/25/2014] [Indexed: 05/27/2023]
Abstract
BACKGROUND The current study aimed at assessing the associations between black carbon (BC) exposure and markers for airway inflammation and oxidative stress in primary school children in a Western European urban area. METHODS In 130 children aged 6-12 years old, the fraction of exhaled nitric oxide (FeNO), exhaled breath condensate (EBC) pH, 8-isoprostane and interleukin (IL)-1β were measured in two seasons. BC concentrations on the sampling day (2-h average, 8:00-10:00 AM) and on the day before (24-h average) were assessed using measurements at a central monitoring site. Land use regression (LUR) models were applied to estimate weekly average BC exposure integrated for the time spent at home and at school, and seasonal average BC exposure at the home address. Associations between exposure and biomarkers were tested using linear mixed effect regression models. Next to single exposure models, models combining different BC exposure metrics were used. RESULTS In single exposure models, an interquartile range (IQR) increase in 2-h BC (3.10 μg/m(3)) was linked with a 5.9% (95% CI: 0.1 to 12.0%) increase in 8-isoprostane. FeNO increased by 16.7% (95% CI: 2.2 to 33.2%) per IQR increase in 24-h average BC (4.50 μg/m(3)) and by 12.1% (95% CI: 2.5 to 22.8%) per IQR increase in weekly BC (1.73 μg/m(3)). IL-1β was associated with weekly and seasonal (IQR=1.70 μg/m(3)) BC with respective changes of 38.4% (95% CI: 9.0 to 75.4%) and 61.8% (95% CI: 3.5 to 153.9%) per IQR increase in BC. An IQR increase in weekly BC was linked with a lowering in EBC pH of 0.05 (95% CI: -0.10 to -0.01). All associations were observed independent of sex, age, allergy status, parental education level and meteorological conditions on the sampling day. Most of the associations remained when different BC exposure metrics were combined in multiple exposure models, after additional correction for sampling period or after exclusion of children with airway allergies. In additional analyses, FeNO was linked with 24-h PM10 levels, but the effect size was smaller than for BC. 8-Isoprostane was not linked with either 2-h or 24-h concentrations of PM2.5 or PM10. CONCLUSION BC exposure on the morning of sampling was associated with airway oxidative stress while 24-h and weekly exposures were linked with airway inflammation.
Collapse
Affiliation(s)
- Sofie De Prins
- Environmental Risk and Health Unit, VITO (Flemish Institute for Technological Research), Boeretang 200, B-2400 Mol, Belgium; Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium.
| | - Evi Dons
- Environmental Risk and Health Unit, VITO (Flemish Institute for Technological Research), Boeretang 200, B-2400 Mol, Belgium.
| | - Martine Van Poppel
- Environmental Risk and Health Unit, VITO (Flemish Institute for Technological Research), Boeretang 200, B-2400 Mol, Belgium.
| | - Luc Int Panis
- Environmental Risk and Health Unit, VITO (Flemish Institute for Technological Research), Boeretang 200, B-2400 Mol, Belgium; Transportation Research Institute (IMOB), Hasselt University, Wetenschapspark 5 Bus 6, B-3590 Diepenbeek, Belgium.
| | - Els Van de Mieroop
- Environment and Health Unit, Provincial Institute of Hygiene, Kronenburgstraat 45, B-2000 Antwerp, Belgium.
| | - Vera Nelen
- Environment and Health Unit, Provincial Institute of Hygiene, Kronenburgstraat 45, B-2000 Antwerp, Belgium.
| | - Bianca Cox
- Centre for Environmental Sciences, Hasselt University, Agoralaan Gebouw D, B-3590 Diepenbeek, Belgium.
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Agoralaan Gebouw D, B-3590 Diepenbeek, Belgium.
| | - Caroline Teughels
- Environment & Health, Flemish Government, Department of Environment, Nature and Energy, Koning Albert II-laan 20 Bus 8, B-1000 Brussels, Belgium.
| | - Greet Schoeters
- Environmental Risk and Health Unit, VITO (Flemish Institute for Technological Research), Boeretang 200, B-2400 Mol, Belgium; Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium.
| | - Gudrun Koppen
- Environmental Risk and Health Unit, VITO (Flemish Institute for Technological Research), Boeretang 200, B-2400 Mol, Belgium.
| |
Collapse
|
50
|
Badyda AJ, Dąbrowiecki P, Czechowski PO, Majewski G. Risk of bronchi obstruction among non-smokers--review of environmental factors affecting bronchoconstriction. Respir Physiol Neurobiol 2014; 209:39-46. [PMID: 25447677 DOI: 10.1016/j.resp.2014.10.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 10/07/2014] [Accepted: 10/28/2014] [Indexed: 11/28/2022]
Abstract
In order to find relationship between exposure to traffic and traffic-related air pollutants, pulmonary function tests and a detailed questionnaire were conducted among 3997 selected inhabitants of Warsaw (Poland) and 988 residents of rural areas. Advanced statistical analyses (including GRM models, correspondence analysis and parametrical tests) have been completed. Statistically significant differences between average percentages of predicted values of pulmonary function parameters were found. Among urban area inhabitants the values of FEV1, MEF50 and FEV1/FVC were statistically significant (p<0.05) lower compared with the residents of rural areas (in the non-smoking group this differences were strong (p<0.001)). General linear regression models indicated that residence in the vicinity of urban busy roads fosters a decrease of spirometric parameters. Physical activity however has a positive effect on pulmonary function (exemplified by FEV1) and allows to reduce part of the negative health effects of traffic-related emissions. The results of the presented study demonstrate that long-term residence under the influence of heavy traffic and high concentrations of traffic-related air pollutants reduces respiratory function parameters, which may result in increased bronchial hyperresponsiveness.
Collapse
Affiliation(s)
- Artur Jerzy Badyda
- Warsaw University of Technology, Faculty of Environmental Engineering, Warsaw, Poland; Polish Federation of Asthma, Allergy and COPD Patients' Associations, Warsaw, Poland.
| | - Piotr Dąbrowiecki
- Military Institute of Medicine, Central Clinical Hospital of the Ministry of National Defence, Warsaw, Poland; Polish Federation of Asthma, Allergy and COPD Patients' Associations, Warsaw, Poland
| | | | - Grzegorz Majewski
- Warsaw University of Life Sciences, Faculty of Civil and Environmental Engineering, Warsaw, Poland
| |
Collapse
|