1
|
Manolis A, Karakasis P, Patoulias D, Doumas M, Kallistratos M, Thomopoulos C, Koutsaki M, Grassi G, Mancia G. Effect of nebivolol monotherapy or combination therapy on blood pressure levels in patients with hypertension: an updated systematic review and multilevel meta-analysis of 91 randomized controlled trials. High Blood Press Cardiovasc Prev 2024:10.1007/s40292-024-00687-5. [PMID: 39467996 DOI: 10.1007/s40292-024-00687-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 10/13/2024] [Indexed: 10/30/2024] Open
Abstract
AIMS To systematically appraise and summarize the available evidence from published randomized controlled trials considering the effect of nebivolol on blood pressure in patients with hypertension. METHODS Literature search was performed through Medline (via PubMed), Cochrane Library and Scopus until December 15, 2023. Double-independent study selection, data extraction and quality assessment were performed. Evidence was pooled with three-level mixed-effects meta-analysis. RESULTS In total, 7,737 participants with hypertension, who were treated with nebivolol, were analyzed across 91 RCTs. Nebivolol was associated with significantly greater reduction in office systolic and diastolic BP compared to placebo (MD = - 6.01 mmHg; 95% CI = [- 7.46, - 4.55] and MD = - 5.01 mmHg; 95% CI = [- 5.91, - 4.11], respectively). Moreover, resulted a similar reduction in systolic BP (MD = - 0.22 mmHg; 95% CI = [- 0.91, 0.46]) and a significantly greater reduction in diastolic BP compared to the active comparator (MD = - 0.71 mmHg; 95% CI = [- 1.27, - 0.16]). When considering the effect of nebivolol on 24-hour ambulatory BP, notable reductions were observed compared to placebo. In contrast, compared to the active comparators, there was no significant difference in systolic BP reduction, but a significant reduction in diastolic BP favoring nebivolol. Based on moderator analyses, the impact of nebivolol on the pooled estimates remained independent of the dose of nebivolol, age, male sex, trial duration, body mass index (BMI), baseline diabetes, heart failure, and baseline systolic and diastolic BP. CONCLUSION Nebivolol, compared to placebo, showed a significant BP reduction and was non-inferior to other active comparators in terms of BP reduction.
Collapse
Affiliation(s)
| | - Paschalis Karakasis
- Second Department of Cardiology, Aristotle University of Thessaloniki, General Hospital Hippokration, Thessaloniki, Greece
| | - Dimitrios Patoulias
- Second Propedeutic Department of Internal Medicine, Aristotle University, Thessaloniki, Greece
| | - Michalis Doumas
- Second Propedeutic Department of Internal Medicine, Aristotle University, Thessaloniki, Greece
| | | | | | - Maria Koutsaki
- Cardiology Department, Asklepeion General Hospital, Voula, Greece
| | - Guido Grassi
- Clinica Medica, University of Milano-Bicocca, Milan, Italy
| | - Giuseppe Mancia
- ESH Foundation/ESH Educational Board, University Milano-Bicocca, Milan, Italy
| |
Collapse
|
2
|
Al-Amir H, Janabi A, Hadi NR. Ameliorative effect of nebivolol in doxorubicin-induced cardiotoxicity. J Med Life 2023; 16:1357-1363. [PMID: 38107721 PMCID: PMC10719778 DOI: 10.25122/jml-2023-0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 05/27/2023] [Indexed: 12/19/2023] Open
Abstract
This study aimed to investigate the potential of nebivolol in preventing doxorubicin-induced cardiotoxicity by targeting the inflammatory, oxidative, and apoptotic pathways. Twenty-eight male rats were randomly divided into four groups, each consisting of seven rats. The control group received standard diets and unrestricted access to water. The rats in the normal saline (N/S) group were administered a 0.9% normal saline solution for two weeks. The doxorubicin group (the "induced group") received doxorubicin at a dosage of 2.5 mg/kg three times per week for two weeks. The nebivolol group received an oral dose of 4 mg/kg of nebivolol for the same duration. The cardiac tissues of rats treated with doxorubicin exhibited increased levels of tumor necrosis factor, interleukin-1, malondialdehyde, and caspase-3 compared to the normal saline control group (p<0.05), along with decreased levels of total antioxidant capacity and Bcl-2. These results show that doxorubicin is harmful to the heart. The administration of nebivolol significantly reduced the cardiotoxic effects induced by doxorubicin, as indicated by a statistically significant decrease in the levels of inflammatory markers, specifically tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β) (p<0.05). The nebivolol group exhibited a significant decrease in malondialdehyde levels, which serves as a signal of oxidation, in cardiac tissue compared to the doxorubicin-only group (p<0.05). Additionally, the nebivolol group showed a significant increase in overall antioxidant capacity. Nebivolol dramatically attenuated doxorubicin-induced cardiotoxicity in rats, likely by interfering with oxidative stress, the inflammatory response, and the apoptotic pathway.
Collapse
Affiliation(s)
| | - Ali Janabi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Kufa, Najaf, Iraq
| | - Najah Rayish Hadi
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, University of Kufa, Najaf, Iraq
| |
Collapse
|
3
|
Santillo E, Migale M. Beta receptor blocker therapy for the elderly in the COVID-19 era. World J Clin Cases 2022; 10:8088-8096. [PMID: 36159512 PMCID: PMC9403662 DOI: 10.12998/wjcc.v10.i23.8088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/26/2022] [Accepted: 07/11/2022] [Indexed: 02/06/2023] Open
Abstract
When the coronavirus disease 2019 (COVID-19) pandemic spread globally from the Hubei region of China in December 2019, the impact on elderly people was particularly unfavorable. The mortality associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection was highest in older individuals, in whom frailty and comorbidities increased susceptibility to severe forms of COVID-19. Unfortunately, in older patients, the course of COVID-19 was often characterized by significant cardiovascular complications, such as heart failure decompensation, arrhythmias, pericarditis, and myopericarditis. Ensuring that the elderly have adequate therapeutic coverage against known cardiovascular diseases and risk factors is particularly important in the COVID-19 era. Beta blockers are widely used for the treatment and prevention of cardiovascular disease. The clinical benefits of beta blockers have been confirmed in elderly patients, and in addition to their negative chronotropic effect, sympathetic inhibition and anti-inflammatory activity are theoretically of great benefit for the treatment of COVID-19 infection. Beta blockers have not been clearly shown to prevent SARS-CoV-2 infection, but there is evidence from published studies including elderly patients that beta blockers are associated with a more favorable clinical course of COVID-19 and reduced mortality. In this minireview, we summarize the most important evidence available in the literature on the usefulness of beta blocker therapy for older patients in the context of the COVID-19 pandemic.
Collapse
Affiliation(s)
- Elpidio Santillo
- Geriatric Rehabilitative Department, IRCCS-INRCA, Fermo 63900, Italy
| | - Monica Migale
- Geriatric Rehabilitative Department, IRCCS-INRCA, Fermo 63900, Italy
| |
Collapse
|
4
|
Perez LC, Perez LT, Nene Y, Umpierrez GE, Davis GM, Pasquel FJ. Interventions associated with brown adipose tissue activation and the impact on energy expenditure and weight loss: A systematic review. Front Endocrinol (Lausanne) 2022; 13:1037458. [PMID: 36568070 PMCID: PMC9780295 DOI: 10.3389/fendo.2022.1037458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/09/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Brown adipose tissue (BAT) plays a role in modulating energy expenditure. People with obesity have been shown to have reduced activation of BAT. Agents such as β-agonists, capsinoids, thyroid hormone, sildenafil, caffeine, or cold exposure may lead to activation of BAT in humans, potentially modulating metabolism to promote weight loss. METHODS We systematically searched electronic databases for clinical trials testing the effect of these agents and cold exposure on energy expenditure/thermogenesis and the extent to which they may impact weight loss in adults. RESULTS A total of 695 studies from PubMed, Web of Science, and Medline electronic databases were identified. After the removal of duplicates and further evaluation, 47 clinical trials were analyzed. We observed significant heterogeneity in the duration of interventions and the metrics utilized to estimate thermogenesis/energy expenditure. Changes observed in energy expenditure do not correlate with major weight changes with different interventions commonly known to stimulate thermogenesis. Even though cold exposure appears to consistently activate BAT and induce thermogenesis, studies are small, and it appears to be an unlikely sustainable therapy to combat obesity. Most studies were small and potential risks associated with known side effects of some agents such as β-agonists (tachycardia), sibutramine (hypertension, tachycardia), thyroid hormone (arrhythmias) cannot be fully evaluated from these small trials. CONCLUSION Though the impact of BAT activation and associated increases in energy expenditure on clinically meaningful weight loss is a topic of great interest, further data is needed to determine long-term feasibility and efficacy.
Collapse
Affiliation(s)
- Luis C. Perez
- Ponce Health Sciences University School of Medicine, Ponce, PR, United States
| | - Laura T. Perez
- Ponce Health Sciences University School of Medicine, Ponce, PR, United States
| | - Yash Nene
- Neurology Residency Program, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Guillermo E. Umpierrez
- Department of Endocrinology, Emory University School of Medicine, Atlanta, GA, United States
| | - Georgia M. Davis
- Department of Endocrinology, Emory University School of Medicine, Atlanta, GA, United States
| | - Francisco J. Pasquel
- Department of Endocrinology, Emory University School of Medicine, Atlanta, GA, United States
- *Correspondence: Francisco J. Pasquel,
| |
Collapse
|
5
|
Xie J, Liu H, Wandi Y, Ge S, Jin Z, Zheng M, Dan C, Liu M, Liu J. Zeaxanthin Remodels Cytoplasmic Lipid Droplets via β3-Adrenergic Receptor Signaling and Enhances Perilipin 5-Mediated Lipid Droplet–Mitochondria Interactions in Adipocytes. Food Funct 2022; 13:8892-8906. [DOI: 10.1039/d2fo01094a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cytoplasmic lipid droplets (LDs), which are remarkably dynamic, neutral lipid storage organelles, play fundamental roles in lipid metabolism and energy homeostasis. Both the dynamic remodeling of LDs and LD–mitochondria interactions...
Collapse
|
6
|
Therapeutic Perspectives of Thermogenic Adipocytes in Obesity and Related Complications. Int J Mol Sci 2021; 22:ijms22137177. [PMID: 34281227 PMCID: PMC8267903 DOI: 10.3390/ijms22137177] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/22/2021] [Accepted: 06/29/2021] [Indexed: 12/11/2022] Open
Abstract
There is a rapidly increasing prevalence of obesity and related metabolic disorders such as type 2 diabetes worldwide. White adipose tissue (WAT) stores excess energy, whereas brown and beige adipose tissues consume energy to generate heat in the process of thermogenesis. Adaptive thermogenesis occurs in response to environmental cues as a means of generating heat by dissipating stored chemical energy. Due to its cumulative nature, very small differences in energy expenditure from adaptive thermogenesis can have a significant impact on systemic metabolism over time. Targeting brown adipose tissue (BAT) activation and converting WAT to beige fat as a method to increase energy expenditure is one of the promising strategies to combat obesity. In this review, we discuss the activation of the thermogenic process in response to physiological conditions. We highlight recent advances in harnessing the therapeutic potential of thermogenic adipocytes by genetic, pharmacological and cell-based approaches in the treatment of obesity and metabolic disorders in mice and the human.
Collapse
|
7
|
Cero C, Lea HJ, Zhu KY, Shamsi F, Tseng YH, Cypess AM. β3-Adrenergic receptors regulate human brown/beige adipocyte lipolysis and thermogenesis. JCI Insight 2021; 6:e139160. [PMID: 34100382 PMCID: PMC8262278 DOI: 10.1172/jci.insight.139160] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 04/28/2021] [Indexed: 12/12/2022] Open
Abstract
β3-Adrenergic receptors (β3-ARs) are the predominant regulators of rodent brown adipose tissue (BAT) thermogenesis. However, in humans, the physiological relevance of BAT and β3-AR remains controversial. Herein, using primary human adipocytes from supraclavicular neck fat and immortalized brown/beige adipocytes from deep neck fat from 2 subjects, we demonstrate that the β3-AR plays a critical role in regulating lipolysis, glycolysis, and thermogenesis. Silencing of the β3-AR compromised genes essential for thermogenesis, fatty acid metabolism, and mitochondrial mass. Functionally, reduction of β3-AR lowered agonist-mediated increases in intracellular cAMP, lipolysis, and lipolysis-activated, uncoupling protein 1-mediated thermogenic capacity. Furthermore, mirabegron, a selective human β3-AR agonist, stimulated BAT lipolysis and thermogenesis, and both processes were lost after silencing β3-AR expression. This study highlights that β3-ARs in human brown/beige adipocytes are required to maintain multiple components of the lipolytic and thermogenic cellular machinery and that β3-AR agonists could be used to achieve metabolic benefit in humans.
Collapse
Affiliation(s)
- Cheryl Cero
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Hannah J Lea
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Kenneth Y Zhu
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Farnaz Shamsi
- Integrative Physiology and Metabolism Section, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Yu-Hua Tseng
- Integrative Physiology and Metabolism Section, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Aaron M Cypess
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| |
Collapse
|
8
|
Ferri C. The role of nebivolol in the management of hypertensive patients: from pharmacological profile to treatment guidelines. Future Cardiol 2021; 17:1421-1433. [PMID: 34060323 DOI: 10.2217/fca-2021-0048] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
According to the most recent international guidelines, β-blockers maintain a central role in the management of hypertension, being recommended at any treatment step when there is a specific indication, such as heart failure, angina, postacute myocardial infarction, atrial fibrillation or pregnancy. However, β-blockers are not a homogeneous class: individual molecules differ in terms of pharmacological and clinical profile and are therefore suitable for different patient subtypes. In particular nebivolol, a third generation β1-selective β-blocker with vasodilating properties, neutral metabolic effects and good tolerability, proved to have advantages over other β-blockers, which makes the drug suitable in a wide variety of hypertensive patients with or without comorbidities.
Collapse
Affiliation(s)
- Claudio Ferri
- Department of Life, Health & Environmental Sciences, University of L'Aquila, San Salvatore Hospital, L'Aquila, Italy
| |
Collapse
|
9
|
Bové M, Monto F, Guillem-Llobat P, Ivorra MD, Noguera MA, Zambrano A, Sirerol-Piquer MS, Requena AC, García-Alonso M, Tejerina T, Real JT, Fariñas I, D’Ocon P. NT3/TrkC Pathway Modulates the Expression of UCP-1 and Adipocyte Size in Human and Rodent Adipose Tissue. Front Endocrinol (Lausanne) 2021; 12:630097. [PMID: 33815288 PMCID: PMC8015941 DOI: 10.3389/fendo.2021.630097] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/04/2021] [Indexed: 12/11/2022] Open
Abstract
Neurotrophin-3 (NT3), through activation of its tropomyosin-related kinase receptor C (TrkC), modulates neuronal survival and neural stem cell differentiation. It is widely distributed in peripheral tissues (especially vessels and pancreas) and this ubiquitous pattern suggests a role for NT3, outside the nervous system and related to metabolic functions. The presence of the NT3/TrkC pathway in the adipose tissue (AT) has never been investigated. Present work studies in human and murine adipose tissue (AT) the presence of elements of the NT3/TrkC pathway and its role on lipolysis and adipocyte differentiation. qRT-PCR and immunoblot indicate that NT3 (encoded by NTF3) was present in human retroperitoneal AT and decreases with age. NT3 was also present in rat isolated adipocytes and retroperitoneal, interscapular, perivascular, and perirenal AT. Histological analysis evidences that NT3 was mainly present in vessels irrigating AT close associated to sympathetic fibers. Similar mRNA levels of TrkC (encoded by NTRK3) and β-adrenoceptors were found in all ATs assayed and in isolated adipocytes. NT3, through TrkC activation, exert a mild effect in lipolysis. Addition of NT3 during the differentiation process of human pre-adipocytes resulted in smaller adipocytes and increased uncoupling protein-1 (UCP-1) without changes in β-adrenoceptors. Similarly, transgenic mice with reduced expression of NT3 (Ntf3 knock-in lacZ reporter mice) or lacking endothelial NT3 expression (Ntf3flox1/flox2;Tie2-Cre+/0) displayed enlarged white and brown adipocytes and lower UCP-1 expression. Conclusions NT3, mainly released by blood vessels, activates TrkC and regulates adipocyte differentiation and browning. Disruption of NT3/TrkC signaling conducts to hypertrophied white and brown adipocytes with reduced expression of the thermogenesis marker UCP-1.
Collapse
Affiliation(s)
- María Bové
- Departamento de Farmacología, Facultad de Farmacia, Universidad de Valencia, Valencia, Spain
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universidad de Valencia, Valencia, Spain
| | - Fermi Monto
- Departamento de Farmacología, Facultad de Farmacia, Universidad de Valencia, Valencia, Spain
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universidad de Valencia, Valencia, Spain
| | - Paloma Guillem-Llobat
- Departamento de Farmacología, Facultad de Farmacia, Universidad de Valencia, Valencia, Spain
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universidad de Valencia, Valencia, Spain
| | - M Dolores Ivorra
- Departamento de Farmacología, Facultad de Farmacia, Universidad de Valencia, Valencia, Spain
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universidad de Valencia, Valencia, Spain
| | - M Antonia Noguera
- Departamento de Farmacología, Facultad de Farmacia, Universidad de Valencia, Valencia, Spain
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universidad de Valencia, Valencia, Spain
| | - Andrea Zambrano
- Departamento de Farmacología, Facultad de Farmacia, Universidad de Valencia, Valencia, Spain
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universidad de Valencia, Valencia, Spain
| | - M Salome Sirerol-Piquer
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universidad de Valencia, Valencia, Spain
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universidad de Valencia, Valencia, Spain
- CIBER en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Ana Cristina Requena
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universidad de Valencia, Valencia, Spain
| | - Mauricio García-Alonso
- Servicio de Cirugía General y Aparato Digestivo, Hospital Clínico San Carlos, Madrid, Spain
| | - Teresa Tejerina
- Servicio de Cirugía General y Aparato Digestivo, Hospital Clínico San Carlos, Madrid, Spain
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - José T. Real
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
- Servicio de Endocrinología y Nutrición, Hospital Clínico Universitario e INCLIVA, Valencia, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - Isabel Fariñas
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universidad de Valencia, Valencia, Spain
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universidad de Valencia, Valencia, Spain
- CIBER en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Pilar D’Ocon
- Departamento de Farmacología, Facultad de Farmacia, Universidad de Valencia, Valencia, Spain
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universidad de Valencia, Valencia, Spain
| |
Collapse
|
10
|
Del Mauro JS, Prince PD, Santander Plantamura Y, Allo MA, Parola L, Fernandez Machulsky N, Morettón MA, Bin EP, González GE, Bertera FM, Carranza A, Berg G, Taira CA, Donato M, Chiappetta DA, Polizio AH, Höcht C. Nebivolol is more effective than atenolol for blood pressure variability attenuation and target organ damage prevention in L-NAME hypertensive rats. Hypertens Res 2021; 44:791-802. [PMID: 33612826 DOI: 10.1038/s41440-021-00630-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 12/06/2020] [Accepted: 12/27/2020] [Indexed: 02/07/2023]
Abstract
β-Adrenergic blockers are no longer recommended as first-line therapy due to the reduced cardioprotection of traditional β-blockers compared with other antihypertensive drugs. It is unknown whether third-generation β-blockers share the limitations of traditional β-blockers. The aim of the present study was to compare the effects of nebivolol or atenolol on central and peripheral systolic blood pressure (SBP) and its variability and target organ damage (TOD) in N-nitro-L-arginine methyl ester (L-NAME) hypertensive rats. Male Wistar rats were treated with L-NAME for 8 weeks together with oral administration of nebivolol 30 mg/kg (n = 8), atenolol 90 mg/kg (n = 8), or vehicle (n = 8). The control group was composed of vehicle-treated Wistar rats. SBP and its variability, as well as echocardiographic parameters, were assessed during the last 2 weeks of treatment. Tissue levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and transforming growth factor β (TGF-β), and histopathological parameters were evaluated in the left ventricle and aorta. Nebivolol had a greater ability than atenolol to decrease central SBP and mid-term and short-term blood pressure variability (BPV) in L-NAME rats. Echocardiographic analysis showed that nebivolol was more effective than atenolol on E/A wave ratio normalization. Compared with atenolol treatment, nebivolol had a greater protective effect on different TOD markers, inducing a decrease in collagen deposition and a reduction in the proinflammatory cytokines IL-6 and TNF-α in the left ventricle and aorta. Our findings suggest that the adverse hemodynamic profile and the reduced cardiovascular protection reported with traditional β-blockers must not be carried forward to third-generation β-blockers.
Collapse
Affiliation(s)
- Julieta S Del Mauro
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Farmacología, Buenos Aires, Argentina.
| | - Paula D Prince
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Físicoquímica, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, Argentina
| | - Yanina Santander Plantamura
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Farmacología, Buenos Aires, Argentina
| | - Miguel A Allo
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Farmacología, Buenos Aires, Argentina
| | - Luciano Parola
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Farmacología, Buenos Aires, Argentina
| | - Nahuel Fernandez Machulsky
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Bioquímica Clínica, Laboratorio de Lípidos y Aterosclerosis, Buenos Aires, Argentina.,Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Buenos Aires, Argentina
| | - Marcela A Morettón
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Tecnología Farmacéutica, Buenos Aires, Argentina
| | - Eliana P Bin
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Fisiopatología Cardiovascular (INFICA), Departamento de Patología, Buenos Aires, Argentina
| | - Germán E González
- Instituto de Investigaciones Biomédicas (BIOMED UCA-CONICET), Laboratorio de Patología Cardiovascular Experimental e Hipertensión Arterial, Buenos Aires, Argentina
| | - Facundo M Bertera
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Farmacología, Buenos Aires, Argentina.,Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Buenos Aires, Argentina
| | - Andrea Carranza
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Farmacología, Buenos Aires, Argentina
| | - Gabriela Berg
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Bioquímica Clínica, Laboratorio de Lípidos y Aterosclerosis, Buenos Aires, Argentina.,Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Buenos Aires, Argentina
| | - Carlos A Taira
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Farmacología, Buenos Aires, Argentina.,Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Buenos Aires, Argentina
| | - Martín Donato
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Fisiopatología Cardiovascular (INFICA), Departamento de Patología, Buenos Aires, Argentina
| | - Diego A Chiappetta
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Tecnología Farmacéutica, Buenos Aires, Argentina
| | - Ariel H Polizio
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Farmacología, Buenos Aires, Argentina
| | - Christian Höcht
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Farmacología, Buenos Aires, Argentina.,Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Buenos Aires, Argentina
| |
Collapse
|
11
|
Ge P, Ma H, Li Y, Ni A, Isa AM, Wang P, Bian S, Shi L, Zong Y, Wang Y, Jiang L, Hagos H, Yuan J, Sun Y, Chen J. Identification of microRNA-Associated-ceRNA Networks Regulating Crop Milk Production in Pigeon ( Columba livia). Genes (Basel) 2020; 12:genes12010039. [PMID: 33396684 PMCID: PMC7824448 DOI: 10.3390/genes12010039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 12/18/2022] Open
Abstract
Pigeon belongs to altrices. Squab cannot forage independently. Nutrition can only be obtained from crop milk secreted by male and female pigeon. miRNA could regulate many biological events. However, the roles of miRNA and ceRNA in regulating crop milk production are still unknown. In this study, we investigated the miRNAs expression profile of female pigeon crop, explored the potential key genes, and found the regulatory mechanisms of crop milk production. A total of 71 miRNAs were identified differentially expressed significantly. Meanwhile, miR-20b-5p, miR-146b-5p, miR-21-5p, and miR-26b-5p were found to be the key miRNAs regulating lactation. Target genes of these miRNAs participated mainly in cell development; protein and lipid synthesis; and ion signaling processes, such as cell-cell adhesion, epithelial cell morphogenesis, calcium signaling pathway, protein digestion, and absorption. In the ceRNA network, miR-193-5p was located in the central position, and miR-193-5p/CREBRF/LOC110355588, miR-460b-5p/GRHL2/MSTRG.132954, and miR-193-5p/PIK3CD/LOC110355588 regulatory axes were believed to affect lactation. Collectively, our findings enriched the miRNA expression profile of pigeon and provided novel insights into the microRNA-associated-ceRNA networks regulating crop milk production in pigeon.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Jilan Chen
- Correspondence: ; Tel.: +86-10-628-160-05
| |
Collapse
|
12
|
Hamano S, Tomokiyo A, Hasegawa D, Yuda A, Sugii H, Yoshida S, Mitarai H, Wada N, Maeda H. Functions of beta2-adrenergic receptor in human periodontal ligament cells. J Cell Biochem 2020; 121:4798-4808. [PMID: 32115771 DOI: 10.1002/jcb.29706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 01/30/2020] [Indexed: 12/12/2022]
Abstract
Adrenergic receptors (ARs) are receptors of noradrenalin and adrenalin, of which there are nine different subtypes. In particular, β2 adrenergic receptor (β2-AR) is known to be related to the restoration and maintenance of homeostasis in bone and cardiac tissues; however, the functional role of signaling through β2-AR in periodontal ligament (PDL) tissue has not been fully examined. In this report, we investigated that β2-AR expression in PDL tissues and their features in PDL cells. β2-AR expressed in rat PDL tissues and human PDL cells (HPDLCs) derived from two different patients (HPDLCs-2G and -3S). Rat PDL tissue with occlusal loading showed high β2-AR expression, while its expression was downregulated in that without loading. In HPDLCs, β2-AR expression was increased exposed to stretch loading. The gene expression of PDL-related molecules was investigated in PDL clone cells (2-23 cells) overexpressing β2-AR. Their gene expression and intracellular cyclic adenosine monophosphate (cAMP) levels were also investigated in HPDLCs treated with a specific β2-AR agonist, fenoterol (FEN). Overexpression of β2-AR significantly promoted the gene expression of PDL-related molecules in 2 to 23 cells. FEN led to an upregulation in the expression of PDL-related molecules and increased intracellular cAMP levels in HPDLCs. In both HPDLCs, inhibition of cAMP signaling by using protein kinase A inhibitor suppressed the FEN-induced gene expression of α-smooth muscle actin. Our findings suggest that the occlusal force is important for β2-AR expression in PDL tissue and β2-AR is involved in fibroblastic differentiation and collagen synthesis of PDL cells. The signaling through β2-AR might be important for restoration and homeostasis of PDL tissue.
Collapse
Affiliation(s)
- Sayuri Hamano
- Division of Oral Rehabilitation, Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
- Division of OBT Research Center, Kyushu University, Fukuoka, Japan
| | - Atsushi Tomokiyo
- Division of Endodontology, Kyushu University Hospital, Kyushu University, Fukuoka, Japan
| | - Daigaku Hasegawa
- Division of Endodontology, Kyushu University Hospital, Kyushu University, Fukuoka, Japan
| | - Asuka Yuda
- Division of General Dentistry, Kyushu University Hospital, Kyushu University, Fukuoka, Japan
| | - Hideki Sugii
- Division of Endodontology, Kyushu University Hospital, Kyushu University, Fukuoka, Japan
| | - Shinichiro Yoshida
- Division of Endodontology, Kyushu University Hospital, Kyushu University, Fukuoka, Japan
| | - Hiromi Mitarai
- Division of General Dentistry, Kyushu University Hospital, Kyushu University, Fukuoka, Japan
| | - Naohisa Wada
- Division of General Dentistry, Kyushu University Hospital, Kyushu University, Fukuoka, Japan
| | - Hidefumi Maeda
- Division of Oral Rehabilitation, Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
- Division of Endodontology, Kyushu University Hospital, Kyushu University, Fukuoka, Japan
| |
Collapse
|
13
|
Ahmad B, Friar EP, Vohra MS, Garrett MD, Serpell CJ, Fong IL, Wong EH. Mechanisms of action for the anti-obesogenic activities of phytochemicals. PHYTOCHEMISTRY 2020; 180:112513. [PMID: 33010536 DOI: 10.1016/j.phytochem.2020.112513] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 09/01/2020] [Accepted: 09/04/2020] [Indexed: 06/11/2023]
Abstract
The prevalence of obesity is increasing rapidly globally and has recently reached pandemic proportions. It is a multifactorial disorder linked to a number of non-communicable diseases such as type-2 diabetes, cardiovascular disease, and cancer. Over-nutrition and a sedentary lifestyle are considered the most significant causes of obesity; a healthy lifestyle and behavioural interventions are the most powerful ways to achieve successful weight loss, but to maintain this in the long term can prove difficult for many individuals, without medical intervention. Various pharmacological anti-obesogenic drugs have been tested and marketed in the past and have been moderately successful in the management of obesity, but their adverse effects on human health often outweigh the benefits. Natural products from plants, either in the form of crude extracts or purified phytochemicals, have been shown to have anti-obesogenic properties and are generally considered as nontoxic and cost-effective compared to synthetic alternatives. These plant products combat obesity by targeting the various pathways and/or regulatory functions intricately linked to obesity. Their mechanisms of action include inhibition of pancreatic lipase activities, an increase in energy expenditure, appetite regulation, lipolytic effects, and inhibition of white adipose tissue development. In this review, we discuss the distinct anti-obesogenic properties of recently reported plant extracts and specific bioactive compounds, along with their molecular mechanisms of action. This review will provide a common platform for understanding the different causes of obesity and the possible approaches to using plant products in tackling this worldwide health issue.
Collapse
Affiliation(s)
- Bilal Ahmad
- School of Biosciences, Faculty of Health and Medical Sciences Taylor's University Lakeside Campus, No1 Jalan Taylor's, 47500, Subang Jaya, Malaysia
| | - Emily P Friar
- School of Physical Sciences, Ingram Building, University of Kent, Canterbury, Kent, CT2 7NH, United Kingdom
| | - Muhammad Sufyan Vohra
- School of Medicine, Faculty of Health and Medical Sciences Taylor's University Lakeside Campus, No 1 Jalan Taylor's, 47500, Subang Jaya, Malaysia
| | - Michelle D Garrett
- School of Biosciences, Stacey Building, University of Kent, Canterbury, Kent, CT2 7NJ, United Kingdom
| | - Christopher J Serpell
- School of Physical Sciences, Ingram Building, University of Kent, Canterbury, Kent, CT2 7NH, United Kingdom
| | - Isabel Lim Fong
- Department of Paraclinical Sciences, Faculty of Medicine and Health Sciences, Universiti Malaysia Sarawak (UNIMAS), 94300, Kota Samarahan, Sarawak, Malaysia
| | - Eng Hwa Wong
- School of Medicine, Faculty of Health and Medical Sciences Taylor's University Lakeside Campus, No 1 Jalan Taylor's, 47500, Subang Jaya, Malaysia.
| |
Collapse
|
14
|
Abstract
INTRODUCTION Vibegron is a very selective new β3-adrenergic receptor agonist introduced recently to clinical practice for OAB patients, which offers an alternative option for to antimuscarinic drugs. AREAS COVERED This review presents the current knowledge concerning the mechanism of action, pharmacokinetics, and pharmacodynamics of vibegron. Moreover, it presents an overview of preclinical and phase II and phase III clinical studies on the efficacy, tolerability, and safety of this agent in patients suffering from OAB. EXPERT OPINION Clinical studies confirmed efficacy and safety of vibegron in OAB patients. Vibegron differ from well-known mirabegron with regards to its pharmacological profile because it is metabolized independently from CYP3A4, 2D6, or 2C9 and therefore is less likely to cause a drug-drug interaction. Moreover, since this drug does not penetrate the blood-brain barrier, it could become the drug of choice in OAB patients with cognitive impairment. These properties have paved the way in near future for better-tailored treatments for OAB patients.
Collapse
Affiliation(s)
- Tomasz Rechberger
- Second Department of Gynecology, Medical University of Lublin , Lublin, Poland
| | - Andrzej Wróbel
- Second Department of Gynecology, Medical University of Lublin , Lublin, Poland
| |
Collapse
|
15
|
Beta-3 adrenoceptors: A potential therapeutic target for heart disease. Eur J Pharmacol 2019; 858:172468. [DOI: 10.1016/j.ejphar.2019.172468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/12/2019] [Accepted: 06/16/2019] [Indexed: 12/21/2022]
|
16
|
Olawi N, Krüger M, Grimm D, Infanger M, Wehland M. Nebivolol in the treatment of arterial hypertension. Basic Clin Pharmacol Toxicol 2019; 125:189-201. [DOI: 10.1111/bcpt.13248] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 05/02/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Nasima Olawi
- Department of Biomedicine, Pharmacology Aarhus University Aarhus C Denmark
| | - Marcus Krüger
- Clinic for Plastic, Aesthetic and Hand Surgery Otto von Guericke University Magdeburg Magdeburg Germany
| | - Daniela Grimm
- Department of Biomedicine, Pharmacology Aarhus University Aarhus C Denmark
- Clinic for Plastic, Aesthetic and Hand Surgery Otto von Guericke University Magdeburg Magdeburg Germany
| | - Manfred Infanger
- Clinic for Plastic, Aesthetic and Hand Surgery Otto von Guericke University Magdeburg Magdeburg Germany
| | - Markus Wehland
- Clinic for Plastic, Aesthetic and Hand Surgery Otto von Guericke University Magdeburg Magdeburg Germany
| |
Collapse
|
17
|
Affiliation(s)
- Saverio Cinti
- Professor of Human Anatomy, Director, Center of Obesity, University of Ancona (Politecnica delle Marche), Ancona, Italy
| |
Collapse
|
18
|
Panagia M, Chen HH, Croteau D, Iris Chen YC, Ran C, Luptak I, Josephson L, Colucci WS, Sosnovik DE. Multiplexed Optical Imaging of Energy Substrates Reveals That Left Ventricular Hypertrophy Is Associated With Brown Adipose Tissue Activation. Circ Cardiovasc Imaging 2018; 11:e007007. [PMID: 29555834 PMCID: PMC5908227 DOI: 10.1161/circimaging.117.007007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 01/18/2018] [Indexed: 01/06/2023]
Abstract
BACKGROUND Substrate utilization in tissues with high energetic requirements could play an important role in cardiometabolic disease. Current techniques to assess energetics are limited by high cost, low throughput, and the inability to resolve multiple readouts simultaneously. Consequently, we aimed to develop a multiplexed optical imaging platform to simultaneously assess energetics in multiple organs in a high throughput fashion. METHODS AND RESULTS The detection of 18F-Fluordeoxyglucose uptake via Cerenkov luminescence and free fatty acid uptake with a fluorescent C16 free fatty acid was tested. Simultaneous uptake of these agents was measured in the myocardium, brown/white adipose tissue, and skeletal muscle in mice with/without thoracic aortic banding. Within 5 weeks of thoracic aortic banding, mice developed left ventricular hypertrophy and brown adipose tissue activation with upregulation of β3AR (β3 adrenergic receptors) and increased natriuretic peptide receptor ratio. Imaging of brown adipose tissue 15 weeks post thoracic aortic banding revealed an increase in glucose (P<0.01) and free fatty acid (P<0.001) uptake versus controls and an increase in uncoupling protein-1 (P<0.01). Similar but less robust changes were seen in skeletal muscle, while substrate uptake in white adipose tissue remained unchanged. Myocardial glucose uptake was increased post-thoracic aortic banding but free fatty acid uptake trended to decrease. CONCLUSIONS A multiplexed optical imaging technique is presented that allows substrate uptake to be simultaneously quantified in multiple tissues in a high throughput manner. The activation of brown adipose tissue occurs early in the onset of left ventricular hypertrophy, which produces tissue-specific changes in substrate uptake that may play a role in the systemic response to cardiac pressure overload.
Collapse
Affiliation(s)
- Marcello Panagia
- From the Cardiovascular Medicine Section, Department of Medicine, Boston University Medical Center, MA (M.P., D.C., I.L., W.S.C.); Cardiovascular Research Center (M.P., H.H.C., D.E.S.) and Martinos Center for Biomedical Imaging, Department of Radiology (M.P., H.H.C., Y.-C.I.C., C.R., L.J., D.E.S.), Massachusetts General Hospital, Boston, MA
| | - Howard H Chen
- From the Cardiovascular Medicine Section, Department of Medicine, Boston University Medical Center, MA (M.P., D.C., I.L., W.S.C.); Cardiovascular Research Center (M.P., H.H.C., D.E.S.) and Martinos Center for Biomedical Imaging, Department of Radiology (M.P., H.H.C., Y.-C.I.C., C.R., L.J., D.E.S.), Massachusetts General Hospital, Boston, MA
| | - Dominique Croteau
- From the Cardiovascular Medicine Section, Department of Medicine, Boston University Medical Center, MA (M.P., D.C., I.L., W.S.C.); Cardiovascular Research Center (M.P., H.H.C., D.E.S.) and Martinos Center for Biomedical Imaging, Department of Radiology (M.P., H.H.C., Y.-C.I.C., C.R., L.J., D.E.S.), Massachusetts General Hospital, Boston, MA
| | - Yin-Ching Iris Chen
- From the Cardiovascular Medicine Section, Department of Medicine, Boston University Medical Center, MA (M.P., D.C., I.L., W.S.C.); Cardiovascular Research Center (M.P., H.H.C., D.E.S.) and Martinos Center for Biomedical Imaging, Department of Radiology (M.P., H.H.C., Y.-C.I.C., C.R., L.J., D.E.S.), Massachusetts General Hospital, Boston, MA
| | - Chongzhao Ran
- From the Cardiovascular Medicine Section, Department of Medicine, Boston University Medical Center, MA (M.P., D.C., I.L., W.S.C.); Cardiovascular Research Center (M.P., H.H.C., D.E.S.) and Martinos Center for Biomedical Imaging, Department of Radiology (M.P., H.H.C., Y.-C.I.C., C.R., L.J., D.E.S.), Massachusetts General Hospital, Boston, MA
| | - Ivan Luptak
- From the Cardiovascular Medicine Section, Department of Medicine, Boston University Medical Center, MA (M.P., D.C., I.L., W.S.C.); Cardiovascular Research Center (M.P., H.H.C., D.E.S.) and Martinos Center for Biomedical Imaging, Department of Radiology (M.P., H.H.C., Y.-C.I.C., C.R., L.J., D.E.S.), Massachusetts General Hospital, Boston, MA
| | - Lee Josephson
- From the Cardiovascular Medicine Section, Department of Medicine, Boston University Medical Center, MA (M.P., D.C., I.L., W.S.C.); Cardiovascular Research Center (M.P., H.H.C., D.E.S.) and Martinos Center for Biomedical Imaging, Department of Radiology (M.P., H.H.C., Y.-C.I.C., C.R., L.J., D.E.S.), Massachusetts General Hospital, Boston, MA
| | - Wilson S Colucci
- From the Cardiovascular Medicine Section, Department of Medicine, Boston University Medical Center, MA (M.P., D.C., I.L., W.S.C.); Cardiovascular Research Center (M.P., H.H.C., D.E.S.) and Martinos Center for Biomedical Imaging, Department of Radiology (M.P., H.H.C., Y.-C.I.C., C.R., L.J., D.E.S.), Massachusetts General Hospital, Boston, MA
| | - David E Sosnovik
- From the Cardiovascular Medicine Section, Department of Medicine, Boston University Medical Center, MA (M.P., D.C., I.L., W.S.C.); Cardiovascular Research Center (M.P., H.H.C., D.E.S.) and Martinos Center for Biomedical Imaging, Department of Radiology (M.P., H.H.C., Y.-C.I.C., C.R., L.J., D.E.S.), Massachusetts General Hospital, Boston, MA.
| |
Collapse
|
19
|
Cao WY, Liu Z, Guo F, Yu J, Li H, Yin X. Adipocyte ADRB3 Down-Regulated in Chinese Overweight Individuals Adipocyte ADRB3 in Overweight. Obes Facts 2018; 11:524-533. [PMID: 30580338 PMCID: PMC6341365 DOI: 10.1159/000495116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 11/02/2018] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES Activation of β3-adrenoceptor (ADRB3) is essential in the process of human adipose tissue browning, but obese subjects suffered from reduced ability of brown adipose tissue activation. The present study aims to detect the adipocyte ADRB3 expression in overweight individuals and the relationship between adipocyte ADRB3 expression and adiposity in adults. METHODS Visceral adipose tissue samples were obtained from 85 subjects who underwent abdominal surgery. ADRB3 mRNA and protein expression levels in mature adipocytes and adipose tissue stromal vascular cells were examined by quantitative real-time PCR and Western blot assay, respectively. UCP-1mRNA expression levels in mature adipocytes were examined by quantitative real-time PCR. RESULTS The data revealed that ADRB3 mRNA (p = 0.021) and protein (p = 0.025) expression levels in mature adipocytes were significantly higher in the normal-weight than in the overweight group. Similar results were also found for ADRB3 mRNA (p = 0.041) and protein (p = 0.025) expressions of stromal vascular cells. An inverse correlation was verified between mature adipocyte ADRB3 mRNA expression and BMI (r = -0.362, p = 0.012). UCP-1 mRNA expression levels in mature adipocytes were higher in the normal-weight group compared with the overweight group (p = 0.045). CONCLUSION Adipocyte ADRB3 expression levels were down-regulated before the onset of obesity, which indicated that the reduction of ADRB3 expression might be the cause of compromised adipose tissue browning and obesity rather than the result. Thus, the interference of the ADRB3 pathway in adipocytes may provide a potential treatment target for obesity.
Collapse
Affiliation(s)
- Wen-Yue Cao
- Department of Endocrinology, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhao Liu
- Department of Hepatobiliary Surgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Feng Guo
- Department of Urology, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Jing Yu
- Operating Room, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Han Li
- Department of Endocrinology, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiao Yin
- Department of Endocrinology, Jinan Central Hospital Affiliated to Shandong University, Jinan, China,
| |
Collapse
|
20
|
Abstract
Cardiac diseases, such as heart failure, remain leading causes of morbidity and mortality worldwide, with myocardial infarction as the most common etiology. HF is characterized by β-adrenergic receptor (βAR) dysregulation that is primarily due to the upregulation of G protein–coupled receptor kinases that leads to overdesensitization of β1 and β2ARs, and this clinically manifests as a loss of inotropic reserve. Interestingly, the “minor” βAR isoform, the β3AR, found in the heart, lacks G protein–coupled receptor kinases recognition sites, and is not subject to desensitization, and as a consequence of this, in human failing myocardium, the levels of this receptor remain unchanged or are even increased. In different preclinical studies, it has been shown that β3ARs can activate different signaling pathways that can protect the heart. The clinical relevance of this is also supported by the effects of β-blockers which are well known for their proangiogenic and cardioprotective effects, and data are emerging showing that these are mediated, at least in part, by enhancement of β3AR activity. In this regard, targeting of β3ARs could represent a novel potential strategy to improve cardiac metabolism, function, and remodeling.
Collapse
|
21
|
Di Salvo J, Nagabukuro H, Wickham LA, Abbadie C, DeMartino JA, Fitzmaurice A, Gichuru L, Kulick A, Donnelly MJ, Jochnowitz N, Hurley AL, Pereira A, Sanfiz A, Veronin G, Villa K, Woods J, Zamlynny B, Zycband E, Salituro G, Frenkl T, Weber AE, Edmondson SD, Struthers M. Pharmacological Characterization of a Novel Beta 3 Adrenergic Agonist, Vibegron: Evaluation of Antimuscarinic Receptor Selectivity for Combination Therapy for Overactive Bladder. J Pharmacol Exp Ther 2016; 360:346-355. [DOI: 10.1124/jpet.116.237313] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 12/05/2016] [Indexed: 12/17/2022] Open
|
22
|
Sun NN, Wu TY, Chau CF. Natural Dietary and Herbal Products in Anti-Obesity Treatment. Molecules 2016; 21:molecules21101351. [PMID: 27727194 PMCID: PMC6273667 DOI: 10.3390/molecules21101351] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 10/02/2016] [Accepted: 10/07/2016] [Indexed: 12/31/2022] Open
Abstract
The prevalence of overweight and obesity is on the rise around the world. Common comorbidities associated with obesity, particularly diabetes, hypertension, and heart disease have an impact on social and financial systems. Appropriate lifestyle and behavior interventions are still the crucial cornerstone to weight loss success, but maintaining such a healthy lifestyle is extremely challenging. Abundant natural materials have been explored for their obesity treatment potential and widely used to promote the development of anti-obesity products. The weight loss segment is one of the major contributors to the overall revenue of the dietary supplements market. In this review, the anti-obesity effects of different dietary or herbal products, and their active ingredients and mechanisms of action against obesity will be discussed.
Collapse
Affiliation(s)
- Nan-Nong Sun
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan.
| | - Tsung-Yen Wu
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan.
| | - Chi-Fai Chau
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan.
- Agricultural Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan.
| |
Collapse
|
23
|
Giordano A, Frontini A, Cinti S. Convertible visceral fat as a therapeutic target to curb obesity. Nat Rev Drug Discov 2016; 15:405-24. [PMID: 26965204 DOI: 10.1038/nrd.2016.31] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
New therapeutic and preventative strategies are needed to address the growing obesity epidemic. In animal models, brown adipose tissue activation and the associated heat produced contribute to countering obesity and the accompanying metabolic abnormalities. Adult humans also have functional brown fat. Here, we present and discuss the concepts of murine and human white adipose tissue plasticity and the transdifferentiation of white adipocytes into brown adipocytes. Human visceral adipocytes - which are crucial contributors to the burden of obesity and its complications - are particularly susceptible to such transdifferentiation. Therefore, we propose that this process should be a focus of anti-obesity research. Approved drugs that have browning properties as well as future drugs that target molecular pathways involved in white-to-brown visceral adipocyte transdifferentiation may provide new avenues for obesity therapy.
Collapse
Affiliation(s)
- Antonio Giordano
- Department of Experimental and Clinical Medicine, University of Ancona (Università Politecnica delle Marche), Via Tronto, 10/A 60020 Ancona, Italy
| | - Andrea Frontini
- Department of Public Health Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy
| | - Saverio Cinti
- Department of Experimental and Clinical Medicine, University of Ancona (Università Politecnica delle Marche), Via Tronto, 10/A 60020 Ancona, Italy.,Center of Obesity, University of Ancona (Università Politecnica delle Marche)-United Hospitals, 60020 Ancona, Italy
| |
Collapse
|
24
|
Sheng LJ, Ruan CC, Ma Y, Chen DR, Kong LR, Zhu DL, Gao PJ. Beta3 adrenergic receptor is involved in vascular injury in deoxycorticosterone acetate-salt hypertensive mice. FEBS Lett 2016; 590:769-78. [PMID: 26910302 DOI: 10.1002/1873-3468.12107] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 12/19/2015] [Accepted: 02/10/2016] [Indexed: 11/11/2022]
Abstract
Beta3 adrenergic receptor (ADRB3) mediates vessel relaxation in the endothelium while it modulates lipolysis in the adipose tissue. However, the function and regulation mechanism of ADRB3 in the perivascular adipose tissue (PVAT), especially in hypertension, is still unclear. We show that ADRB3 protein is upregulated in the PVAT of deoxycorticosterone acetate-salt (DOCA-salt) hypertensive mice, with the characteristics of PVAT browning and increased uncoupling protein 1 (UCP1) expression. Inhibition of ADRB3 with selective antagonist SR59230A caused serious vascular injury in vivo, even though UCP1 expression was downregulated. ADRB3 protein was regulated by let-7b, which was decreased in the PVAT of the DOCA-salt group. These data reveal that ADRB3 in PVAT contributes to vascular function in the progression of hypertension.
Collapse
Affiliation(s)
- Li-Juan Sheng
- State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension and Department of Hypertension, Ruijin Hospital, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cheng-Chao Ruan
- State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension and Department of Hypertension, Ruijin Hospital, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Laboratory of Vascular Biology and Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Ma
- State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension and Department of Hypertension, Ruijin Hospital, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dong-Rui Chen
- State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension and Department of Hypertension, Ruijin Hospital, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling-Ran Kong
- State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension and Department of Hypertension, Ruijin Hospital, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ding-Liang Zhu
- State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension and Department of Hypertension, Ruijin Hospital, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ping-Jin Gao
- State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension and Department of Hypertension, Ruijin Hospital, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Laboratory of Vascular Biology and Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
25
|
Poher AL, Altirriba J, Veyrat-Durebex C, Rohner-Jeanrenaud F. Brown adipose tissue activity as a target for the treatment of obesity/insulin resistance. Front Physiol 2015; 6:4. [PMID: 25688211 PMCID: PMC4311629 DOI: 10.3389/fphys.2015.00004] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 01/06/2015] [Indexed: 12/25/2022] Open
Abstract
Presence of brown adipose tissue (BAT), characterized by the expression of the thermogenic uncoupling protein 1 (UCP1), has recently been described in adult humans. UCP1 is expressed in classical brown adipocytes, as well as in “beige cells” in white adipose tissue (WAT). The thermogenic activity of BAT is mainly controlled by the sympathetic nervous system. Endocrine factors, such as fibroblast growth factor 21 (FGF21) and bone morphogenic protein factor-9 (BMP-9), predominantly produced in the liver, were shown to lead to activation of BAT thermogenesis, as well as to “browning” of WAT. This was also observed in response to irisin, a hormone secreted by skeletal muscles. Different approaches were used to delineate the impact of UCP1 on insulin sensitivity. When studied under thermoneutral conditions, UCP1 knockout mice exhibited markedly increased metabolic efficiency due to impaired thermogenesis. The impact of UCP1 deletion on insulin sensitivity in these mice was not reported. Conversely, several studies in both rodents and humans have shown that BAT activation (by cold exposure, β3-agonist treatment, transplantation and others) improves glucose tolerance and insulin sensitivity. Interestingly, similar results were obtained by adipose tissue-specific overexpression of PR-domain-containing 16 (PRDM16) or BMP4 in mice. The mediators of such beneficial effects seem to include FGF21, interleukin-6, BMP8B and prostaglandin D2 synthase. Interestingly, some of these molecules can be secreted by BAT itself, indicating the occurrence of autocrine effects. Stimulation of BAT activity and/or recruitment of UCP1-positive cells are therefore relevant targets for the treatment of obesity/type 2 diabetes in humans.
Collapse
Affiliation(s)
- Anne-Laure Poher
- Laboratory of Metabolism, Department of Internal Medicine Specialties, Faculty of Medicine, University of Geneva Geneva, Switzerland
| | - Jordi Altirriba
- Laboratory of Metabolism, Department of Internal Medicine Specialties, Faculty of Medicine, University of Geneva Geneva, Switzerland
| | | | - Françoise Rohner-Jeanrenaud
- Laboratory of Metabolism, Department of Internal Medicine Specialties, Faculty of Medicine, University of Geneva Geneva, Switzerland
| |
Collapse
|
26
|
Jeanson Y, Carrière A, Casteilla L. A New Role for Browning as a Redox and Stress Adaptive Mechanism? Front Endocrinol (Lausanne) 2015; 6:158. [PMID: 26500607 PMCID: PMC4598589 DOI: 10.3389/fendo.2015.00158] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 09/24/2015] [Indexed: 01/27/2023] Open
Abstract
The worldwide epidemic of obesity and metabolic disorders is focusing the attention of the scientific community on white adipose tissue (WAT) and its biology. This tissue is characterized not only by its capability to change in size and shape but also by its heterogeneity and versatility. WAT can be converted into brown fat-like tissue according to different physiological and pathophysiological situations. The expression of uncoupling protein-1 in brown-like adipocytes changes their function from energy storage to energy dissipation. This plasticity, named browning, was recently rediscovered and convergent recent accounts, including in humans, have revived the idea of using these oxidative cells to fight against metabolic diseases. Furthermore, recent reports suggest that, beside the increased energy dissipation and thermogenesis that may have adverse effects in situations such as cancer-associated cachexia and massive burns, browning could be also considered as an adaptive stress response to high redox pressure and to major stress that could help to maintain tissue homeostasis and integrity. The aim of this review is to summarize the current knowledge concerning brown adipocytes and the browning process and also to explore unexpected putative role(s) for these cells. While it is important to find new browning inducers to limit energy stores and metabolic diseases, it also appears crucial to develop new browning inhibitors to limit adverse energy dissipation in wasting-associated syndromes.
Collapse
Affiliation(s)
- Yannick Jeanson
- UMR STROMALab, CNRS 5273, INSERM U1031, Université Toulouse III – Paul Sabatier, Toulouse, France
| | - Audrey Carrière
- UMR STROMALab, CNRS 5273, INSERM U1031, Université Toulouse III – Paul Sabatier, Toulouse, France
| | - Louis Casteilla
- UMR STROMALab, CNRS 5273, INSERM U1031, Université Toulouse III – Paul Sabatier, Toulouse, France
- *Correspondence: Louis Casteilla,
| |
Collapse
|
27
|
Pfeifer A, Hoffmann LS. Brown, beige, and white: the new color code of fat and its pharmacological implications. Annu Rev Pharmacol Toxicol 2014; 55:207-27. [PMID: 25149919 DOI: 10.1146/annurev-pharmtox-010814-124346] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Brown adipose tissue (BAT) was previously regarded as a special type of fat relevant only for defending hibernating animals and newborns against a cold environment. Recently, BAT has received considerable attention following its (re)discovery in humans. Using glucose tracers, multiple laboratories independently found metabolically active BAT in adults. The enormous metabolic powers of BAT in animal models could make it an attractive target for antiobesity therapies in humans. Here, we review the present knowledge on the role of BAT in energy homeostasis and metabolism, focusing on signaling pathways and potential targets for novel therapeutics. We also shine light on ongoing debates, including those about the true color of brown fat in adults, as well as on the requirements for translation of basic research on BAT into clinical medicine.
Collapse
Affiliation(s)
- Alexander Pfeifer
- Institute of Pharmacology and Toxicology, Biomedical Center, University of Bonn, 53105 Bonn, Germany;
| | | |
Collapse
|