1
|
Dimitriadis K, Pyrpyris N, Tatakis F, Kyriakoulis K, Pitsiori DE, Beneki E, Fragkoulis C, Konstantinidis D, Kollias A, Aznaouridis K, Tsioufis K. The effect of renal denervation in microcirculation: focusing on coronary microvascular dysfunction. Future Cardiol 2025:1-12. [PMID: 39924226 DOI: 10.1080/14796678.2025.2464478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 02/05/2025] [Indexed: 02/11/2025] Open
Abstract
Arterial hypertension is one of the most prevalent cardiovascular pathologies worldwide. Considering the increased rates of uncontrolled hypertension and treatment non-adherence, catheter-based methods, with the most prominent being renal denervation, have been recently included in international guidelines for the management of the pathology, naming the method the third pillar in hypertension management. However, sympathetic overactivation is not only a major pathophysiologic driver in hypertension, but in other cardiovascular pathologies as well. Considering the effect of renal denervation in hypertension-mediated target organ damage, as well as the pleotropic effects of this modality, recent evidence have evaluated the modality in coronary microvascular dysfunction (CMD). Interestingly, despite preclinical data showcase a benefit of renal denervation in microcirculatory homeostasis, with enhancement of endothelial-mediated vasodilation and reduction of inflammation, these effects have failed to be translated into clinical benefit, with the limited, to date, non-interventional studies in coronary microcirculation reporting neutral effects. Therefore, this review aims to delineate the pathophysiological processes which relate microvascular dysfunction with hypertension, discuss the effect of the procedure in hypertension-mediated target organ damage, analyze preclinical and clinical data on the safety and efficacy of renal denervation in improving microcirculatory indices, as well as provide future directions for this novel field.
Collapse
Affiliation(s)
- Kyriakos Dimitriadis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Pyrpyris
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Fotis Tatakis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Kyriakoulis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Daphne Elpy Pitsiori
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Eirini Beneki
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Christos Fragkoulis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Konstantinidis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastasios Kollias
- Hypertension Center STRIDE-7, School of Medicine, Third Department of Medicine, National and Kapodistrian University of Athens, Sotiria Hospital, Athens, Greece
| | - Konstantinos Aznaouridis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Tsioufis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
2
|
Dimitriadis K, Iliakis P, Vakka A, Pyrpyris N, Pitsillidi A, Tsioufis P, Fragkoulis C, Hering D, Weil J, Kollias A, Konstantinidis D, Tsioufis K. Effects of Sympathetic Denervation in Metabolism Regulation: A Novel Approach for the Treatment of MASLD? Cardiol Rev 2025:00045415-990000000-00395. [PMID: 39750025 DOI: 10.1097/crd.0000000000000850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Although metabolic dysfunction-associated steatotic liver disease (MASLD), previously termed nonalcoholic fatty liver disease, has become the most common chronic liver disorder, its complex pathophysiology has not been fully elucidated up to date. A correlation between elevated sympathetic activation and MASLD has been highlighted in recent preclinical and clinical studies. Furthermore, increased sympathetic activity has been associated with the main mechanisms involved in MASLD, such as lipid accumulation in the liver, insulin resistance, and metabolic dysregulation, while it has been also correlated with the progression of MASLD, leading to liver fibrosis. Preclinical studies demonstrated that therapies which ameliorate the activation of the sympathetic nervous system, such as renal and liver sympathetic denervation, reduce hepatic insulin resistance, decrease hepatic glucose production, and reverse hepatic steatosis in high-fat-diet models. However, data from clinical trials regarding the effect of renal denervation on metabolic parameters are conflicting, since several trials reported a favorable effect, while other trials stated no significant difference, with the profound limitation of the lack of originally designed denervation trials in this setting. Thus, a thorough review of the role of the sympathetic nervous system in the pathophysiology of MASLD, as well as the results of recent sympathetic denervation studies and trials regarding metabolic regulation and MASLD treatment would be of great importance.
Collapse
Affiliation(s)
- Kyriakos Dimitriadis
- From the First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, Athens, Greece
| | - Panagiotis Iliakis
- From the First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, Athens, Greece
| | - Angeliki Vakka
- From the First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, Athens, Greece
| | - Nikolaos Pyrpyris
- From the First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, Athens, Greece
| | - Anna Pitsillidi
- Department of Obstetrics and Gynecology, Rheinlandklinikum Dormagen, Dormagen, Germany
| | - Panagiotis Tsioufis
- From the First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, Athens, Greece
| | - Christos Fragkoulis
- From the First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, Athens, Greece
| | - Dagmara Hering
- Department of Hypertension and Diabetology, Medical University of Gdańsk, Gdańsk, Poland
| | - Joachim Weil
- Medizinische Klinik II, Sana Kliniken Lübeck GmbH, Lübeck, Germany
| | - Anastasios Kollias
- Hypertension Center STRIDE-7, National and Kapodistrian University of Athens, School of Medicine, Third Department of Medicine, Sotiria Hospital, Athens, Greece
| | - Dimitris Konstantinidis
- From the First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, Athens, Greece
| | - Konstantinos Tsioufis
- From the First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, Athens, Greece
| |
Collapse
|
3
|
Dimitriadis K, Pitsiori D, Alexiou P, Pyrpyris N, Sakalidis A, Beneki E, Iliakis P, Tatakis F, Theofilis P, Tsioufis P, Konstantinidis D, Aggeli K, Tsioufis K. Modulating Sympathetic Nervous System With the Use of SGLT2 Inhibitors: Where There Is Smoke, There Is Fire? J Cardiovasc Pharmacol 2025; 85:12-20. [PMID: 39436317 DOI: 10.1097/fjc.0000000000001644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/24/2024] [Indexed: 10/23/2024]
Abstract
Heart failure (HF) has become even more prevalent in recent years, because of improved diagnostics and an increase in the risk factors predisposing to its pathology. Sodium-glucose cotransporter 2 inhibitors (SGLT2i) emerged as one of the key pharmacotherapy options for both reduced and preserved ejection fraction, providing cardio- and renoprotection and improving mortality and cardiovascular (CV) outcomes. The pleiotropism of SGLT2i has led to multiple efforts to understand their distinct pathophysiologic interactions with various pathways, including microcirculation, endothelial dysfunction, and inflammation. More recently, the role of SGLT2i on the sympathetic nervous system (SNS) is starting to be recognized, especially because observations of retained or reduced heart rate despite volume contraction have been noted by investigators in the large clinical trials testing the safety and efficacy of these agents. Both preclinical and clinical studies have been performed, with conflicting results. Interestingly, in both settings, although there are indications of SNS modulation by SGLT2i, other studies contradict such findings, without showing, however, worsening of the autonomic homeostasis. Given the importance of neuromodulation in HF, in both pharmacologic and interventional therapies, in this review, we aim to describe the role of SNS in CV disease, focusing on HF, analyze preclinical and clinical data regarding the efficacy of SGLT2i in modulating autonomic dysfunction by examining various markers of SNS activation, and provide the most plausible theoretical backgrounds on the mechanism of benefit of SNS from the inhibition of SGLT2 receptors.
Collapse
Affiliation(s)
- Kyriakos Dimitriadis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, Athens, Greece
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Dimitriadis K, Iliakis P, Pyrpyris N, Tatakis F, Fragkoulis C, Mantziaris V, Plaitis A, Beneki E, Tsioufis P, Hering D, Kollias A, Konstantinidis D, Tsioufis K. Renal Denervation in Heart Failure Treatment: Data for a Self-Fulfilling Prophecy. J Clin Med 2024; 13:6656. [PMID: 39597800 PMCID: PMC11594571 DOI: 10.3390/jcm13226656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/02/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
Renal denervation (RDN), a transcatheter renal sympathetic nerve ablation procedure, is a relatively novel established procedure for the treatment of hypertension, with it being recognized as a third option for hypertension management in the most recent European guidelines, together with pharmacotherapy, for achieving blood pressure targets. Given the relationship between both hypertension and sympathetic overdrive and the development of heart failure (HF), even studies at the dawn of research on RDN explored it as a treatment to overcome diuretic resistance in those patients. As it is now recognized that RDN does not only have organ-specific but also systemic effects, several investigators have aimed to delineate whether renal sympathetic denervation could alter the prognosis, symptoms, and adverse events of HF patients. Data are available in both HF patients with reduced and preserved ejection fraction. As the significance of neuromodulation is gaining grounds in the HF therapeutic arsenal, in this review, we aim to provide a rationale for using RDN in HF and an up-to-date overview of available data in both HF phenotypes, as well as discuss the future of neuromodulatory therapy in HF management.
Collapse
Affiliation(s)
- Kyriakos Dimitriadis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 115 27 Athens, Greece; (P.I.); (N.P.); (F.T.); (C.F.); (V.M.); (A.P.); (E.B.); (P.T.); (D.K.); (K.T.)
| | - Panagiotis Iliakis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 115 27 Athens, Greece; (P.I.); (N.P.); (F.T.); (C.F.); (V.M.); (A.P.); (E.B.); (P.T.); (D.K.); (K.T.)
| | - Nikolaos Pyrpyris
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 115 27 Athens, Greece; (P.I.); (N.P.); (F.T.); (C.F.); (V.M.); (A.P.); (E.B.); (P.T.); (D.K.); (K.T.)
| | - Fotis Tatakis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 115 27 Athens, Greece; (P.I.); (N.P.); (F.T.); (C.F.); (V.M.); (A.P.); (E.B.); (P.T.); (D.K.); (K.T.)
| | - Christos Fragkoulis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 115 27 Athens, Greece; (P.I.); (N.P.); (F.T.); (C.F.); (V.M.); (A.P.); (E.B.); (P.T.); (D.K.); (K.T.)
| | - Vasileios Mantziaris
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 115 27 Athens, Greece; (P.I.); (N.P.); (F.T.); (C.F.); (V.M.); (A.P.); (E.B.); (P.T.); (D.K.); (K.T.)
| | - Aristides Plaitis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 115 27 Athens, Greece; (P.I.); (N.P.); (F.T.); (C.F.); (V.M.); (A.P.); (E.B.); (P.T.); (D.K.); (K.T.)
| | - Eirini Beneki
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 115 27 Athens, Greece; (P.I.); (N.P.); (F.T.); (C.F.); (V.M.); (A.P.); (E.B.); (P.T.); (D.K.); (K.T.)
| | - Panagiotis Tsioufis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 115 27 Athens, Greece; (P.I.); (N.P.); (F.T.); (C.F.); (V.M.); (A.P.); (E.B.); (P.T.); (D.K.); (K.T.)
| | - Dagmara Hering
- Department of Hypertension and Diabetology, Medical University of Gdansk, 80-214 Gdansk, Poland;
| | - Anastasios Kollias
- Hypertension Center STRIDE-7, School of Medicine, Third Department of Medicine, National and Kapodistrian University of Athens, Sotiria Hospital, 115 27 Athens, Greece;
| | - Dimitrios Konstantinidis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 115 27 Athens, Greece; (P.I.); (N.P.); (F.T.); (C.F.); (V.M.); (A.P.); (E.B.); (P.T.); (D.K.); (K.T.)
| | - Konstantinos Tsioufis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 115 27 Athens, Greece; (P.I.); (N.P.); (F.T.); (C.F.); (V.M.); (A.P.); (E.B.); (P.T.); (D.K.); (K.T.)
| |
Collapse
|
5
|
Sharp AS, Sanderson A, Hansell N, Reddish K, Miller P, Moss J, Schmieder RE, McCool R. Renal denervation for uncontrolled hypertension: a systematic review and meta-analysis examining multiple subgroups. J Hypertens 2024; 42:1133-1144. [PMID: 38634457 PMCID: PMC11139244 DOI: 10.1097/hjh.0000000000003727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/04/2024] [Accepted: 03/12/2024] [Indexed: 04/19/2024]
Abstract
This systematic review and meta-analysis was conducted to assess the randomized controlled trial (RCT) evidence available for renal denervation (RDN) in uncontrolled arterial hypertension. Twenty-five RCTs met the eligibility criteria for the systematic review, and 16 RCTs were included in the meta-analysis. The results of the random effects meta-analysis estimated a mean difference of -8.5 mmHg [95% confidence interval (CI) -13.5 to -3.6] for office SBP, -3.6 mmHg (95% CI -5.2 to -2.0) for 24 h SBP and -3.9 mmHg (95% CI -5.6 to -2.2) for ambulatory daytime SBP in favour of RDN compared with control (medication and/or sham-only) at primary follow-up. Similarly favourable results were observed across a range of prespecified subgroup analyses, including treatment-resistant hypertension. This meta-analysis suggests that the use of RDN in uncontrolled hypertension leads to consistent reductions in blood pressure. Reductions appear to be statistically consistent in the presence or absence of medications and in populations resistant to the use of three medications.
Collapse
Affiliation(s)
| | - Alice Sanderson
- York Health Economics Consortium Ltd, York Science Park, York, UK
| | - Neil Hansell
- York Health Economics Consortium Ltd, York Science Park, York, UK
| | - Katie Reddish
- York Health Economics Consortium Ltd, York Science Park, York, UK
| | - Paul Miller
- York Health Economics Consortium Ltd, York Science Park, York, UK
| | - Joe Moss
- York Health Economics Consortium Ltd, York Science Park, York, UK
| | - Roland E. Schmieder
- Department of Nephrology and Hypertension University Hospital Erlangen, Friedrich Alexander University Erlangen/Nürnberg, Germany
| | - Rachael McCool
- York Health Economics Consortium Ltd, York Science Park, York, UK
| |
Collapse
|
6
|
Zhao GF, Pan T, Yan R, Deng G, Wang Z, Qin YL, Ji JJ, Bai ZB, Li R, Teng GJ. Endovascular Denervation for the Improvement of Limb Ischemia in Patients with Peripheral Artery Disease: A Randomized Clinical Trial. Ann Vasc Surg 2024; 100:39-46. [PMID: 38104925 DOI: 10.1016/j.avsg.2023.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND To evaluate the safety and efficacy of endovascular denervation (EDN) as an adjunct to percutaneous vascular intervention (PVI) for peripheral artery disease (PAD). METHODS From August 2019 to April 2021, 38 eligible patients with PAD enrolled in this study were randomly and equally assigned into 2 groups: the PVI group and the PVI + EDN group treated with EDN at the iliac and femoral arteries before PVI. The primary endpoint was the improvement in the ankle brachial index at 6 months after the procedure. The secondary endpoints were transcutaneous oxygen pressure (TcPO2), Rutherford category, numerical rating scale score, and safety. RESULTS The technical success rates of PVI and EDN were 100%, and no device-related or procedure-related major adverse events occurred in either group. Compared with PVI alone, PVI + EDN demonstrated a significant improvement in limb hemodynamics at 6 months (Δ ankle brachial index 0.44 ± 0.31 vs. 0.24 ± 0.15, P = 0.018). Microcirculatory perfusion of PAD was significantly better at 6 months in the PVI + EDN group (ΔTcPO2, 15.68 ± 16.72 vs. 4.95 ± 13.43, P = 0.036). The Rutherford category was significantly improved in the PVI + EDN group in comparison with the PVI group at the 3-month follow-up (100.00% vs. 68.42%, P = 0.02). The decrease in the numerical rating scale score in the PVI + EDN group was greater than that in the PVI group at 1 week following the procedure (3 [2-5] vs. 4 [4-6], P = 0.022). CONCLUSIONS In this single-center pilot analysis of a heterogeneous cohort of patients with PAD, PVI with EDN demonstrated a significant improvement in limb ischemia at 6 months compared with PVI alone.
Collapse
Affiliation(s)
- Guo-Feng Zhao
- Center of Interventional Radiology and Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Tao Pan
- Center of Interventional Radiology and Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Rong Yan
- Center of Interventional Radiology and Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Gang Deng
- Center of Interventional Radiology and Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Zhi Wang
- Center of Interventional Radiology and Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Yong-Lin Qin
- Center of Interventional Radiology and Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Jia-Jie Ji
- Center of Interventional Radiology and Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Zhi-Bin Bai
- Center of Interventional Radiology and Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Rui Li
- Center of Interventional Radiology and Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Gao-Jun Teng
- Center of Interventional Radiology and Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China.
| |
Collapse
|
7
|
Koutra E, Dimitriadis K, Pyrpyris N, Iliakis P, Fragkoulis C, Beneki E, Kasiakogias A, Tsioufis P, Tatakis F, Kordalis A, Tsiachris D, Aggeli K, Tsioufis K. Unravelling the effect of renal denervation on glucose homeostasis: more questions than answers? Acta Diabetol 2024; 61:267-280. [PMID: 38066299 PMCID: PMC10948574 DOI: 10.1007/s00592-023-02208-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 11/07/2023] [Indexed: 03/20/2024]
Abstract
Renal Denervation (RDN) is an interventional, endovascular procedure used for the management of hypertension. The procedure itself aims to ablate the renal sympathetic nerves and to interrupt the renal sympathetic nervous system overactivation, thus decreasing blood pressure (BP) levels and total sympathetic drive in the body. Recent favorable evidence for RDN resulted in the procedure being included in the recent European Guidelines for the management of Hypertension, while RDN is considered the third pillar, along with pharmacotherapy, for managing hypertension. Sympathetic overactivation, however, is associated with numerous other pathologies, including diabetes, metabolic syndrome and glycemic control, which are linked to adverse cardiovascular health and outcomes. Therefore, RDN, via ameliorating sympathetic response, could be also proven beneficial for maintaining an euglycemic status in patients with cardiovascular disease, alongside its BP-lowering effects. Several studies have aimed, over the years, to provide evidence regarding the pathophysiological effects of RDN in glucose homeostasis as well as investigate the potential clinical benefits of the procedure in glucose and insulin homeostasis. The purpose of this review is, thus, to analyze the pathophysiological links between the autonomous nervous system and glycemic control, as well as provide an overview of the available preclinical and clinical data regarding the effect of RDN in glycemic control.
Collapse
Affiliation(s)
- Evaggelia Koutra
- First Department of Cardiology, School of Medicine, Hippokration General Hospital, National and Kapodistrian University of Athens, 115 27, Athens, Greece
| | - Kyriakos Dimitriadis
- First Department of Cardiology, School of Medicine, Hippokration General Hospital, National and Kapodistrian University of Athens, 115 27, Athens, Greece.
- , Dardanellion 146-148, 17123, Athens, Greece.
| | - Nikolaos Pyrpyris
- First Department of Cardiology, School of Medicine, Hippokration General Hospital, National and Kapodistrian University of Athens, 115 27, Athens, Greece
| | - Panagiotis Iliakis
- First Department of Cardiology, School of Medicine, Hippokration General Hospital, National and Kapodistrian University of Athens, 115 27, Athens, Greece
| | - Christos Fragkoulis
- First Department of Cardiology, School of Medicine, Hippokration General Hospital, National and Kapodistrian University of Athens, 115 27, Athens, Greece
| | - Eirini Beneki
- First Department of Cardiology, School of Medicine, Hippokration General Hospital, National and Kapodistrian University of Athens, 115 27, Athens, Greece
| | - Alexandros Kasiakogias
- First Department of Cardiology, School of Medicine, Hippokration General Hospital, National and Kapodistrian University of Athens, 115 27, Athens, Greece
| | - Panagiotis Tsioufis
- First Department of Cardiology, School of Medicine, Hippokration General Hospital, National and Kapodistrian University of Athens, 115 27, Athens, Greece
| | - Fotis Tatakis
- First Department of Cardiology, School of Medicine, Hippokration General Hospital, National and Kapodistrian University of Athens, 115 27, Athens, Greece
| | - Athanasios Kordalis
- First Department of Cardiology, School of Medicine, Hippokration General Hospital, National and Kapodistrian University of Athens, 115 27, Athens, Greece
| | - Dimitrios Tsiachris
- First Department of Cardiology, School of Medicine, Hippokration General Hospital, National and Kapodistrian University of Athens, 115 27, Athens, Greece
| | - Konstantina Aggeli
- First Department of Cardiology, School of Medicine, Hippokration General Hospital, National and Kapodistrian University of Athens, 115 27, Athens, Greece
| | - Konstantinos Tsioufis
- First Department of Cardiology, School of Medicine, Hippokration General Hospital, National and Kapodistrian University of Athens, 115 27, Athens, Greece
| |
Collapse
|
8
|
Nistor M, Schmidt M, Klingner C, Klingner C, Matziolis G, Shayganfar S, Schiffner R. Effect of Low-Frequency Renal Nerve Stimulation on Renal Glucose Release during Normoglycemia and a Hypoglycemic Clamp in Pigs. Int J Mol Sci 2024; 25:2041. [PMID: 38396718 PMCID: PMC10888375 DOI: 10.3390/ijms25042041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Previously, we demonstrated that renal denervation in pigs reduces renal glucose release during a hypoglycemic episode. In this study we set out to examine changes in side-dependent renal net glucose release (SGN) through unilateral low-frequency stimulation (LFS) of the renal plexus with a pulse generator (2-5 Hz) during normoglycemia (60 min) and insulin-induced hypoglycemia ≤3.5 mmol/L (75 min) in seven pigs. The jugular vein, carotid artery, renal artery and vein, and both ureters were catheterized for measurement purposes, blood pressure management, and drug and fluid infusions. Para-aminohippurate (PAH) and inulin infusions were used to determine side-dependent renal plasma flow (SRP) and glomerular filtration rate (GFR). In a linear mixed model, LFS caused no change in SRP but decreased sodium excretion (p < 0.0001), as well as decreasing GFR during hypoglycemia (p = 0.0176). In a linear mixed model, only hypoglycemic conditions exerted significant effects on SGN (p = 0.001), whereas LFS did not. In a Wilcoxon signed rank exact test, LFS significantly increased SGN (p = 0.03125) and decreased sodium excretion (p = 0.0017) and urinary flow rate (p = 0.0129) when only considering the first instance LFS followed a preceding period of non-stimulation during normoglycemia. To conclude, this study represents, to our knowledge, the first description of an induction of renal gluconeogenesis by LFS.
Collapse
Affiliation(s)
- Marius Nistor
- Orthopaedic Department, Jena University Hospital, 07747 Jena, Germany (G.M.)
| | - Martin Schmidt
- Institute for Biochemistry II, Jena University Hospital, 07747 Jena, Germany;
| | - Carsten Klingner
- Department of Neurology, Jena University Hospital, 07747 Jena, Germany; (C.K.); (C.K.)
| | - Caroline Klingner
- Department of Neurology, Jena University Hospital, 07747 Jena, Germany; (C.K.); (C.K.)
| | - Georg Matziolis
- Orthopaedic Department, Jena University Hospital, 07747 Jena, Germany (G.M.)
| | - Sascha Shayganfar
- Emergency Department, Helios University Clinic Wuppertal, 42283 Wuppertal, Germany;
- Faculty of Health/School of Medicine, Lehrstuhl für Klinische Akut- und Notfallmedizin, Witten/Herdecke University, Alfred-Herrhausen-Straße 50, 58448 Witten, Germany
| | - René Schiffner
- Orthopaedic Department, Jena University Hospital, 07747 Jena, Germany (G.M.)
- Emergency Department, Helios University Clinic Wuppertal, 42283 Wuppertal, Germany;
- Faculty of Health/School of Medicine, Lehrstuhl für Klinische Akut- und Notfallmedizin, Witten/Herdecke University, Alfred-Herrhausen-Straße 50, 58448 Witten, Germany
- Emergency Department, Otto-von-Guericke University, 39120 Magdeburg, Germany
| |
Collapse
|
9
|
Gauthier MM, Hayoz S, Banek CT. Neuroimmune interplay in kidney health and disease: Role of renal nerves. Auton Neurosci 2023; 250:103133. [PMID: 38061177 PMCID: PMC10748436 DOI: 10.1016/j.autneu.2023.103133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/15/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023]
Abstract
Renal nerves and their role in physiology and disease have been a topic of increasing interest in the past few decades. Renal inflammation contributes to many cardiorenal disease conditions, including hypertension, chronic kidney disease, and polycystic kidney disease. Much is known about the role of renal sympathetic nerves in physiology - they contribute to the regulation of sodium reabsorption, renin release, and renal vascular resistance. In contrast, far less is known about afferent, or "sensory," renal nerves, which convey signals from the kidney to the brain. While much remains unknown about these nerves in the context of normal physiology, even less is known about their contribution to disease states. Furthermore, it has become apparent that the crosstalk between renal nerves and the immune system may augment or modulate disease. Research from other fields, especially pain research, has provided critical insight into neuroimmune crosstalk. Sympathetic renal nerve activity may increase immune cell recruitment, but far less work has been done investigating the interplay between afferent renal nerves and the immune system. Evidence from other fields suggests that inflammation may augment afferent renal nerve activity. Furthermore, these nerves may exacerbate renal inflammation through the release of afferent-specific neurotransmitters.
Collapse
Affiliation(s)
- Madeline M Gauthier
- Department of Physiology, University of Arizona Health Sciences Center, Tucson, AZ, USA
| | - Sebastien Hayoz
- Department of Physiology, University of Arizona Health Sciences Center, Tucson, AZ, USA
| | - Christopher T Banek
- Department of Physiology, University of Arizona Health Sciences Center, Tucson, AZ, USA.
| |
Collapse
|
10
|
Rebrova TY, Falkovskaya AY, Afanasiev SA, Mordovin VF, Zyubanova IV, Muslimova EF. [Five-year dynamics adrenergic reactivity of erythrocytes after radio-frequency sympathic denervation of renal arteries in patients with resistant arterial hypertension]. TERAPEVT ARKH 2023; 95:757-762. [PMID: 38158918 DOI: 10.26442/1560-4071-2020-1-3677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Indexed: 01/03/2024]
Abstract
AIM To study the initial state of adrenergic reactivity and the five-year dynamics of the beta-adrenergic reactivity index of erythrocyte membranes and the manifestation of the antihypertensive effect of the procedure for radiofrequency destruction of sympathetic structures of the renal artery in patients with resistant arterial hypertension. SUBJECTS AND METHODS The analysis included 42 patients with resistant arterial hypertension (RH). The renal denervation (RD) procedure of the kidneys was performed by endovascular bilateral transcatheter radiofrequency ablation of the renal arteries. The study of 24-hour blood pressure monitoring (BPM) and the determination of β-adrenoreactivity of erythrocytes (β-ARM) by changes in the osmoresistance of erythrocyte membranes were performed initially, 1 week, 6 months, 1, 2, 3 and 5 years after RD. Patients retrospectively, at a follow-up period of 6 months after RD, were divided into responders (decrease in blood pressure by 10 or more mm Hg) and non-responders (decrease in blood pressure less than 10 mm Hg). RESULTS 6 months after the RD, the number of responders was 28 people (66.7%), after 5 years - 31 people (73.8%). At the time of inclusion in the study, the median β-ARM in the group of non-responders was not significantly higher than in the group of responders. After 6 months after the RD procedure, the β-ARM indicator in the non-responder group was significantly lower than in the responder group (p = 0.043). With further follow-up in the group of responders, an increase in the median β-ARM was noted, which reached significant differences relative to the baseline values in the group at follow-up periods of 1 year (p = 0.036) and 5 years (p = 0.004) after RD. The change in the β-ARM indicator in the non-responder group was wavy in nature, the changes did not reach the significance criteria. CONCLUSION Renal denervation in 73.8% of cases is accompanied by a stable antihypertensive response for 5 years of observation and an increase in β-ARM, which may indicate the implementation of compensatory mechanisms in conditions of increasing activity of the sympathoadrenal system in response to a decrease in blood pressure.
Collapse
|
11
|
Kiuchi MG, Carnagarin R, Matthews VB, Schlaich MP. Multi-organ denervation: a novel approach to combat cardiometabolic disease. Hypertens Res 2023; 46:1747-1758. [PMID: 37088807 PMCID: PMC10319631 DOI: 10.1038/s41440-023-01287-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/17/2023] [Accepted: 04/02/2023] [Indexed: 04/25/2023]
Abstract
Cardiometabolic disorders are associated with a substantial loss in quality of life and pose a large burden on healthcare systems worldwide. Overactivation of the sympathetic nervous system has been shown to be a key player in several aspects relating to cardiometabolic disturbances. While diet- and exercise-induced approaches to help reduce weight remains the main strategy to combat metabolic disorders, this is often difficult to achieve. Current pharmacological approaches result in variable responses in different patient cohorts and long-term efficacy may be limited by medication side effects and non-adherence in the long term. There is a clear clinical need for complementary therapies to curb the burden of cardiometabolic disease. One such approach may include interventional sympathetic neuromodulation of organs relevant to cardiometabolic control. Data from sham-controlled clinical trials demonstrate the feasibility, safety and efficacy of catheter-based renal denervation. In analogy, denervation of the common hepatic artery is now feasible in humans and may prove to be similarly useful in modulating sympathetic overdrive directed towards the liver, pancreas and duodenum. Such a targeted multi-organ neuromodulation strategy may beneficially influence multiple aspects of the cardiometabolic disease continuum including blood pressure, glucose and lipid control.
Collapse
Affiliation(s)
- Márcio Galindo Kiuchi
- Dobney Hypertension Centre, Medical School-Royal Perth Hospital Unit and RPH Research Foundation, The University of Western Australia, Perth, WA, Australia
| | - Revathy Carnagarin
- Dobney Hypertension Centre, Medical School-Royal Perth Hospital Unit and RPH Research Foundation, The University of Western Australia, Perth, WA, Australia
| | - Vance B Matthews
- Dobney Hypertension Centre, Medical School-Royal Perth Hospital Unit and RPH Research Foundation, The University of Western Australia, Perth, WA, Australia
| | - Markus P Schlaich
- Dobney Hypertension Centre, Medical School-Royal Perth Hospital Unit and RPH Research Foundation, The University of Western Australia, Perth, WA, Australia.
- Departments of Cardiology and Nephrology, Royal Perth Hospital, Perth, WA, Australia.
- Neurovascular Hypertension & Kidney Disease Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.
| |
Collapse
|
12
|
Biffi A, Dell'Oro R, Quarti-Trevano F, Cuspidi C, Corrao G, Mancia G, Grassi G. Effects of Renal Denervation on Sympathetic Nerve Traffic and Correlates in Drug-Resistant and Uncontrolled Hypertension: A Systematic Review and Meta-Analysis. Hypertension 2023; 80:659-667. [PMID: 36628971 DOI: 10.1161/hypertensionaha.122.20503] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Whether and to what extent the reported blood pressure (BP) lowering effects of renal denervation (RDN) are associated with a central sympathoinhibition is controversial. We examined this issue by performing a meta-analysis of the microneurographic studies evaluating the BP and muscle sympathetic nerve activity (MSNA) responses to RDN in drug-resistant or uncontrolled hypertension (RHT). METHODS This analysis comprised 11 studies including a total of >400 RHT patients undergoing RDN and were followed up for 6 months. Evaluation was extended to the relationships of MSNA with clinic heart rate and BP changes associated with RDN. RESULTS MSNA showed a significant reduction after RDN (-4.78 bursts/100 heart beats; P<0.04), which was also accompanied by a significant systolic (-11.45 mm Hg; P<0.002) and diastolic (-5.24 mm Hg; P=0.0001) BP decrease. No significant quantitative relationship was found between MSNA and systolic (r=-0.96, P=0.19) or diastolic BP (r=-0.97, P=0.23) responses to RDN. This was also the case for clinic heart rate (r=0.53, P=0.78, respectively), whose post RDN values were not significant different from the pre-RDN ones. More than 10 renal nerves ablations were found to be needed for obtaining a significant sympathoinhibition. CONCLUSIONS This meta-analysis, the first ever done on the MSNA responses to RDN, shows that in a consistent number of RHT patients RDN is associated with a significant, although modest, central sympathoinhibition, which appears to be unrelated to the BP lowering effects of the procedure. Thus factors other than the central sympathetic outflow inhibition may concur at the BP lowering effects of RDN.
Collapse
Affiliation(s)
- Annalisa Biffi
- Department of Statistics and Quantitative Methods (A.B., G.C.), University Milano-Bicocca, Italy.,Na-National Centre for Healthcare Research and Pharmacoepidemiology (A.B., G.C.), University Milano-Bicocca, Italy
| | - Raffaella Dell'Oro
- Clinica Medica, Department of Medicine and Surgery (R.D.O., F.Q.-T., C.C., G.M., G.G.), University Milano-Bicocca, Italy
| | - Fosca Quarti-Trevano
- Clinica Medica, Department of Medicine and Surgery (R.D.O., F.Q.-T., C.C., G.M., G.G.), University Milano-Bicocca, Italy
| | - Cesare Cuspidi
- Clinica Medica, Department of Medicine and Surgery (R.D.O., F.Q.-T., C.C., G.M., G.G.), University Milano-Bicocca, Italy
| | - Giovanni Corrao
- Department of Statistics and Quantitative Methods (A.B., G.C.), University Milano-Bicocca, Italy.,Na-National Centre for Healthcare Research and Pharmacoepidemiology (A.B., G.C.), University Milano-Bicocca, Italy
| | - Giuseppe Mancia
- Clinica Medica, Department of Medicine and Surgery (R.D.O., F.Q.-T., C.C., G.M., G.G.), University Milano-Bicocca, Italy
| | - Guido Grassi
- Clinica Medica, Department of Medicine and Surgery (R.D.O., F.Q.-T., C.C., G.M., G.G.), University Milano-Bicocca, Italy
| |
Collapse
|
13
|
Lauder L, Mahfoud F, Azizi M, Bhatt DL, Ewen S, Kario K, Parati G, Rossignol P, Schlaich MP, Teo KK, Townsend RR, Tsioufis C, Weber MA, Weber T, Böhm M. Hypertension management in patients with cardiovascular comorbidities. Eur Heart J 2022:6808663. [DOI: 10.1093/eurheartj/ehac395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/23/2022] [Accepted: 07/08/2022] [Indexed: 11/09/2022] Open
Abstract
Abstract
Arterial hypertension is a leading cause of death globally. Due to ageing, the rising incidence of obesity, and socioeconomic and environmental changes, its incidence increases worldwide. Hypertension commonly coexists with Type 2 diabetes, obesity, dyslipidaemia, sedentary lifestyle, and smoking leading to risk amplification. Blood pressure lowering by lifestyle modifications and antihypertensive drugs reduce cardiovascular (CV) morbidity and mortality. Guidelines recommend dual- and triple-combination therapies using renin–angiotensin system blockers, calcium channel blockers, and/or a diuretic. Comorbidities often complicate management. New drugs such as angiotensin receptor-neprilysin inhibitors, sodium–glucose cotransporter 2 inhibitors, glucagon-like peptide-1 receptor agonists, and non-steroidal mineralocorticoid receptor antagonists improve CV and renal outcomes. Catheter-based renal denervation could offer an alternative treatment option in comorbid hypertension associated with increased sympathetic nerve activity. This review summarises the latest clinical evidence for managing hypertension with CV comorbidities.
Collapse
Affiliation(s)
- Lucas Lauder
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, Saarland University , Kirrberger Str. 1, 66421 Homburg , Germany
| | - Felix Mahfoud
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, Saarland University , Kirrberger Str. 1, 66421 Homburg , Germany
| | - Michel Azizi
- Université Paris Cité, INSERM CIC1418 , F-75015 Paris , France
- AP-HP, Hôpital Européen Georges-Pompidou, Hypertension Department, DMU CARTE , F-75015 Paris , France
- FCRIN INI-CRCT , Nancy , France
| | - Deepak L Bhatt
- Brigham and Women’s Hospital Heart and Vascular Center, Harvard Medical School , Boston, MA , USA
| | - Sebastian Ewen
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, Saarland University , Kirrberger Str. 1, 66421 Homburg , Germany
| | - Kazuomi Kario
- Division of Cardiovascular Medicine, Department of Medicine, Jichi Medical University School of Medicine , Tochigi , Japan
| | - Gianfranco Parati
- Department of Medicine and Surgery, Cardiology Unit, University of Milano-Bicocca and Istituto Auxologico Italiano, IRCCS , Milan , Italy
| | - Patrick Rossignol
- FCRIN INI-CRCT , Nancy , France
- Université de Lorraine, INSERM, Centre d'Investigations Cliniques - Plurithématique 14-33 and INSERM U1116 , Nancy , France
- CHRU de Nancy , Nancy , France
| | - Markus P Schlaich
- Dobney Hypertension Centre, Medical School—Royal Perth Hospital Unit, Medical Research Foundation, The University of Western Australia , Perth, WA , Australia
- Departments of Cardiology and Nephrology, Royal Perth Hospital , Perth, WA , Australia
| | - Koon K Teo
- Population Health Research Institute, McMaster University , Hamilton, ON , Canada
| | - Raymond R Townsend
- Perelman School of Medicine, University of Pennsylvania , Philadelphia, PA , USA
| | - Costas Tsioufis
- National and Kapodistrian University of Athens, 1st Cardiology Clinic, Hippocratio Hospital , Athens , Greece
| | | | - Thomas Weber
- Department of Cardiology, Klinikum Wels-Grieskirchen , Wels , Austria
| | - Michael Böhm
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, Saarland University , Kirrberger Str. 1, 66421 Homburg , Germany
- Cape Heart Institute (CHI), Faculty of Health Sciences, University of Cape Town , Cape Town , South Africa
| |
Collapse
|
14
|
Abstract
Obesity, dieting, and weight cycling are common among reproductive-age women. Weight cycling refers to intentional weight loss followed by unintentional weight regain. Weight loss is accompanied by changes in gut peptides, adipose hormones, and energy expenditure that promote weight regain to a tightly regulated set point. While weight loss can improve body composition and surrogate markers of cardiometabolic health, it is hypothesized that the weight regain can result in an overshoot effect, resulting in excess weight gain, altered body composition, and negative effects on surrogate markers of cardiometabolic health. Numerous observational studies have examined the association of weight cycling and health outcomes. There appears to be modest association between weight cycling with type 2 diabetes mellitus and dyslipidemia in women, but no association with hypertension, cardiovascular events, and overall cancer risk. Interestingly, mild weight cycling may be associated with a decreased risk of overall and cardiovascular mortality. Little is known about the effects of weight cycling in the preconception period. Although obesity and weight gain are associated with pregnancy complications, preconception weight loss does not appear to mitigate the risk of most pregnancy complications related to obesity. Research on preconception weight cycling may provide insight into this paradox.
Collapse
Affiliation(s)
- Katelyn J Carey
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, New York
| | - Wendy Vitek
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
15
|
Dimitriadis K, Narkiewicz K, Leontsinis I, Konstantinidis D, Mihas C, Andrikou I, Thomopoulos C, Tousoulis D, Tsioufis K. Acute Effects of Electronic and Tobacco Cigarette Smoking on Sympathetic Nerve Activity and Blood Pressure in Humans. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:3237. [PMID: 35328926 PMCID: PMC8952787 DOI: 10.3390/ijerph19063237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/01/2022] [Accepted: 03/07/2022] [Indexed: 02/04/2023]
Abstract
Acute tobacco cigarette (TC) smoking increases blood pressure and sympathetic nerve activity, whereas there are scarce data on the impact of electronic cigarette (EC) smoking. We assessed the acute effects of TC, EC and sham smoking on blood pressure, heart rate and sympathetic nervous system. Methods: We studied 12 normotensive male habitual smokers (mean age 33 years) free of cardiovascular disease. The study design was randomized and sham controlled with three experimental sessions (sham smoking, TC smoking and EC smoking). After baseline measurements at rest, the subjects were then asked to smoke (puffing habits left uncontrolled) two TC cigarettes containing 1.1 mg nicotine, EC smoking or simulated smoking with a drinking straw with a filter (sham smoking), in line with previous methodology. Results: EC smoking at 5 and 30 min compared to baseline was accompanied by the augmentation of mean arterial pressure (MAP) and heart rate (p < 0.001 for all). The muscle sympathetic nerve activity (MSNA) decrease was significant during both TC and EC sessions (p < 0.001 for both comparisons) and was similar between them (−25.1% ± 9.8% vs. −34.4% ± 8.3%, respectively, p = 0.018). Both MSNA decreases were significantly higher (p < 0.001 for both comparisons) than that elicited by sham smoking (−4.4% ± 4.8%). Skin sympathetic nerve activity increase was significant in both TC and EC groups (p < 0.001 for both comparisons) and similar between them (73.4% ± 17.9% and 71.9% ± 7%, respectively, p = 0.829). Conclusions: The unfavorable responses of sympathetic and arterial pressure to EC smoking are similar to those elicited by TC in healthy habitual smokers.
Collapse
Affiliation(s)
- Kyriakos Dimitriadis
- First Cardiology Clinic, Medical School, National and Kapodistrian University of Athens, Hippokration Hospital, 11527 Athens, Greece; (K.D.); (I.L.); (D.K.); (C.M.); (I.A.); (C.T.); (D.T.)
| | - Krzysztof Narkiewicz
- Department of Hypertension and Diabetology, Medical University of Gdansk, 80-210 Gdansk, Poland;
| | - Ioannis Leontsinis
- First Cardiology Clinic, Medical School, National and Kapodistrian University of Athens, Hippokration Hospital, 11527 Athens, Greece; (K.D.); (I.L.); (D.K.); (C.M.); (I.A.); (C.T.); (D.T.)
| | - Dimitris Konstantinidis
- First Cardiology Clinic, Medical School, National and Kapodistrian University of Athens, Hippokration Hospital, 11527 Athens, Greece; (K.D.); (I.L.); (D.K.); (C.M.); (I.A.); (C.T.); (D.T.)
| | - Costas Mihas
- First Cardiology Clinic, Medical School, National and Kapodistrian University of Athens, Hippokration Hospital, 11527 Athens, Greece; (K.D.); (I.L.); (D.K.); (C.M.); (I.A.); (C.T.); (D.T.)
| | - Ioannis Andrikou
- First Cardiology Clinic, Medical School, National and Kapodistrian University of Athens, Hippokration Hospital, 11527 Athens, Greece; (K.D.); (I.L.); (D.K.); (C.M.); (I.A.); (C.T.); (D.T.)
| | - Costas Thomopoulos
- First Cardiology Clinic, Medical School, National and Kapodistrian University of Athens, Hippokration Hospital, 11527 Athens, Greece; (K.D.); (I.L.); (D.K.); (C.M.); (I.A.); (C.T.); (D.T.)
| | - Dimitrios Tousoulis
- First Cardiology Clinic, Medical School, National and Kapodistrian University of Athens, Hippokration Hospital, 11527 Athens, Greece; (K.D.); (I.L.); (D.K.); (C.M.); (I.A.); (C.T.); (D.T.)
| | - Konstantinos Tsioufis
- First Cardiology Clinic, Medical School, National and Kapodistrian University of Athens, Hippokration Hospital, 11527 Athens, Greece; (K.D.); (I.L.); (D.K.); (C.M.); (I.A.); (C.T.); (D.T.)
| |
Collapse
|
16
|
Pan T, Zhang Q, Guo J. Endovascular denervation (EDN): From Hypertension to Non-Hypertension Diseases. J Interv Med 2021; 4:130-135. [PMID: 34805960 PMCID: PMC8562178 DOI: 10.1016/j.jimed.2021.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/22/2021] [Accepted: 05/22/2021] [Indexed: 11/26/2022] Open
Abstract
Recently, the use of endovascular denervation (EDN) to treat resistant hypertension has gained significant attention. In addition to reducing sympathetic activity, EDN might also have beneficial effects on pulmonary arterial hypertension, insulin resistance, chronic kidney disease, atrial fibrillation, heart failure, obstructive sleep apnea syndrome, loin pain hematuria syndrome, cancer pain and so on. In this article we will summarize the progress of EDN in clinical research.
Collapse
Affiliation(s)
- Tao Pan
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Zhongda Hospital, Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, China
| | - Qi Zhang
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Zhongda Hospital, Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, China
| | - Jinhe Guo
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Zhongda Hospital, Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, China
| |
Collapse
|
17
|
Tsioufis KP, Dimitriadis K. RADIANCE-HTN TRIO: how the saga of renal denervation revisits hypertension therapy. Cardiovasc Res 2021; 117:e141-e143. [PMID: 34562002 DOI: 10.1093/cvr/cvab274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Konstantinos P Tsioufis
- First Cardiology Clinic, Medical School, University of Athens, Hippokration Hospital, 114 Vasilissis Sofias Ave, Athens 11527, Greece
| | - Kyriakos Dimitriadis
- First Cardiology Clinic, Medical School, University of Athens, Hippokration Hospital, 114 Vasilissis Sofias Ave, Athens 11527, Greece
| |
Collapse
|
18
|
Abstract
This ESH Position Paper 2021 with updated proposed recommendations was deemed necessary after the publication of a set of new pivotal sham-controlled randomized clinical trials (RCTs), which provided important information about the efficacy and safety of endovascular device-based renal denervation (RDN) for hypertension treatment. RDN is effective in reducing or interrupting the sympathetic signals to the kidneys and decreasing whole body sympathetic activity. Five independent, fully completed, sham-controlled RCTs provide conclusive evidence that RDN lowers ambulatory and office blood pressure (BP) to a significantly greater extent than sham treatment. BP-lowering efficacy is evident both in patients with and without concomitant antihypertensive medication. The average decrease of 10 mmHg in office BP is estimated to lower the incidence of cardiovascular events by 25-30%, based on meta-analyses of RCTs using pharmacological treatment. Neither peri-procedural, nor short-term or long-term adverse events or safety signals (available up to 3 years) have been observed. Implementing RDN as an innovative third option in the armamentarium of antihypertensive treatment requires a structured process that ensures the appropriate performance of the endovascular RDN procedure and adequate selection of hypertensive patients. The latter should also incorporate patients' perspective and preference that needs to be respected in a shared decision-making process.
Collapse
|
19
|
Zhang Z, Liu K, Xiao S, Chen X. Effects of catheter-based renal denervation on glycemic control and lipid levels: a systematic review and meta-analysis. Acta Diabetol 2021; 58:603-614. [PMID: 33459896 DOI: 10.1007/s00592-020-01659-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/10/2020] [Indexed: 02/05/2023]
Abstract
AIMS As an emerging interventional technique to treat resistant hypertension, renal denervation (RDN) has also attracted considerable attention due to its potential beneficial effects on glucose and lipid metabolism. Given that inconsistent results were documented among studies, we aimed to perform a systematic review and meta-analysis to elaborate on this issue. METHODS The PubMed, EMBASE, Web of Science (SCI) and ClinicalTrials.gov databases were comprehensively searched from their inception date to June 18, 2020, for relevant clinical studies evaluating the efficacy of RDN on glucose and lipid levels. The outcomes of interest were changes in fasting glucose, insulin, C-peptide, hemoglobin A1C (HbA1C), homeostatic model assessment-insulin resistance (HOMA-IR), cholesterol and triglyceride (TG) levels before versus after RDN and also RDN versus the control group. The mean differences (MDs) of the outcomes measured before versus after RDN and RDN versus the control group were pooled by a randomized effects model. Heterogeneity was quantified with Chi-square (χ2) and inconsistency index (I2). Assessment of publication bias was performed by the funnel plot and Egger's test. RESULTS A total of 1600 studies were initially identified. Nineteen of the identified studies (six randomized controlled studies, one non-randomized controlled studies and 12 observational cohort studies) involving 2245 subjects were included in the final analysis. No significant change was observed after RDN in fasting glucose (weighted mean difference [WMD] - 0.19 mmol/L; 95% CI - 0.37, 0.00 mmol/L), insulin (standardized mean difference [SMD] - 0.01; 95% CI - 0.41, 0.39), C-peptide (SMD - 0.05; 95% CI - 0.30, 0.21), HbA1C (SMD - 0.05; 95% CI - 0.17, 0.07), HOMA-IR (SMD - 0.29; 95% CI - 0.72, 0.14), total cholesterol (TC) (WMD - 0.11 mmol/L; 95% CI - 0.37, 0.15 mmol/L), and low-density lipoprotein cholesterol (LDL-C) levels (WMD - 0.18 mmol/L; 95% CI - 0.59, 0.24 mmol/L) during follow-up. Changes in fasting glucose, insulin, HbA1C and TC levels in RDN groups were not significantly different from those in the control group. High-density lipoprotein cholesterol (HDL-C) and TG were slightly improved after RDN (WMD 0.07 mmol/L, 95% CI 0.01, 0.14 mmol/L; WMD - 0.26 mmol/l, 95% CI - 0.51, - 0.01 mmol/L, respectively). The funnel plot and Egger's test demonstrated the absence of potential publication bias. CONCLUSIONS Catheter-based RDN appeared to have no impact on glucose metabolism. There was a statistically significant but clinically negligible improvement in HDL-C and TG levels based on the current evidence. Future research with more rigorous designs is warranted to draw definitive conclusions. REGISTRATION DETAILS The protocol of this meta-analysis was registered on PROSPERO (CRD42020192805). ( https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=192805 ).
Collapse
Affiliation(s)
- Zhipeng Zhang
- Department of Cardiology, West China Hospital, Sichuan University, Sichuan province, Chengdu, China
| | - Kai Liu
- Department of Cardiology, West China Hospital, Sichuan University, Sichuan province, Chengdu, China
| | - Shan Xiao
- Day Surgery Center, West China Hospital, Sichuan University, Sichuan province, Chengdu, China
| | - Xiaoping Chen
- Department of Cardiology, West China Hospital, Sichuan University, Sichuan province, Chengdu, China.
| |
Collapse
|
20
|
Doumas M, Andreadis E, Andronoglou M, Davlouros P, Dimitriadis K, Gkaliagkousi E, Grassos H, Hatzitolios A, Iliakis P, Kalaitzidis R, Kallistratos E, Kasiakogias A, Konstantinidis D, Kotsis V, Makris T, Manolis A, Moulias A, Marketou M, Papadakis I, Papadopoulos D, Poulimenos L, Sanidas E, Sarafidis P, Savopoulos C, Stergiou G, Tatakis F, Thomopoulos K, Triantafyllidi H, Triantafyllou A, Vlachakos D, Zebekakis P, Ziakas A, Papademetriou V, Tsioufis C. Joint ESH excellence centers' national meeting on renal sympathetic denervation: A Greek experts' survey. Hellenic J Cardiol 2021; 62:355-358. [PMID: 33895312 DOI: 10.1016/j.hjc.2021.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE The efficacy of renal sympathetic denervation (RDN) has been affirmed by a number of recent clinical studies, despite controversies in this field over the last five years. Therefore, it is of paramount importance that hypertension experts debate the merits of RDN by revealing and expressing their personal beliefs and perspectives regarding this procedure. METHODS A cross-sectional survey was conducted among Greek leaders of the Hypertension Excellence Centers with the use of a closed-type questionnaire specifically designed to elicit information and evaluate the respondent's views and perspectives about RDN efficacy, safety and ideal target patient population. RESULTS A total of 36 participants completed the survey. Based on the results, RDN was considered efficient (91.7%) and safe (94.5%), while the overwhelming majority of the participants felt confident in the long-term efficacy (88.9%) of the intervention and that it lacks reliable predictors of blood pressure response (94.5%). Patients with resistant (91.7%), ultra-resistant (94.4%), and uncontrolled hypertension (80.6%) were suggested as ideal candidates for RDN. Establishing a close co-operation between interventionalists and hypertension experts was considered essential to ensure the efficacy (97.2%) as well as the safety (97.3%) of the procedure. CONCLUSION The vast majority of Greek hypertension experts surveyed were convinced of the efficacy and safety of RDN based on the preponderance of available scientific and clinical data. Identification of the ideal patient group remains controversial. Respondents generally agreed on the necessity of building close collaborative relationships between interventionalists and hypertension experts in order to improve RDN clinical outcome.
Collapse
|
21
|
Abstract
OBJECTIVE The microneurographic technique has shown that sympathetic overactivity may characterize patients with the metabolic syndrome. However, technical and methodological limitations of the studies prevented to draw definite conclusions. The present meta-analysis evaluated 16 microneurographic studies including 650 individuals, 444 metabolic syndrome patients and 206 healthy controls, respectively. The analysis was primarily based on muscle sympathetic nerve traffic (MSNA) quantified by microneurography in metabolic syndrome. METHODS Assessment was extended to the relationships of MSNA with an indirect neuroadrenergic marker, such as heart rate (HR), anthropometric variables, as BMI, waist-hip ratio and metabolic profile. RESULTS Metabolic syndrome individuals displayed MSNA values (means ± SEM) significantly greater than controls (58.6 ± 4.8 versus 41.6 ± 4.1 bursts/100 heart beats, P < 0.01). This result was independent on the concomitant presence of sleep apnea and drug treatment. MSNA was directly and significantly related to clinic SBP (r = 0.91, P < 0.01) but not to BMI (r = 0.17, P = NS), whereas no significant relationship was found between MSNA and metabolic variables included in the definition of metabolic syndrome. No significant correlation was found between MSNA and HR. CONCLUSION These data provide evidence that metabolic syndrome is characterized by a marked increase (about 30%) in MSNA. They also show that among the variables included in metabolic syndrome definition and related to the sympathetic overdrive blood pressure appears to be the most important one, at variance from what described in obesity in which metabolic and anthropometric factors play a major role. Finally in metabolic syndrome HR does not appear to represent a faithful mirror of the occurring sympathetic activation.
Collapse
|
22
|
Kiuchi MG, Ganesan K, Keating J, Carnagarin R, Matthews VB, Herat LY, Goh G, Adams L, Schlaich MP. Combined renal and common hepatic artery denervation as a novel approach to reduce cardiometabolic risk: technical approach, feasibility and safety in a pre-clinical model. Clin Res Cardiol 2021; 110:740-753. [PMID: 33635438 PMCID: PMC8099764 DOI: 10.1007/s00392-021-01814-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/01/2021] [Indexed: 02/06/2023]
Abstract
Background Cardiovascular and metabolic regulation is governed by neurohumoral signalling in relevant organs such as kidney, liver, pancreas, duodenum, adipose tissue, and skeletal muscle. Combined targeting of relevant neural outflows may provide a unique therapeutic opportunity for cardiometabolic disease. Objectives We aimed to investigate the feasibility, safety, and performance of a novel device-based approach for multi-organ denervation in a swine model over 30 and 90 days of follow-up. Methods Five Yorkshire cross pigs underwent combined percutaneous denervation in the renal arteries and the common hepatic artery (CHA) with the iRF Denervation System. Control animals (n = 3) were also studied. Specific energy doses were administered in the renal arteries and CHA. Blood was collected at 30 and 90 days. All animals had a pre-terminal procedure angiography. Tissue samples were collected for norepinephrine (NEPI) bioanalysis. Histopathological evaluation of collateral structures and tissues near the treatment sites was performed to assess treatment safety. Results All animals entered and exited the study in good health. No stenosis or vessel abnormalities were present. No significant changes in serum chemistry occurred. NEPI concentrations were significantly reduced in the liver (− 88%, p = 0.005), kidneys (− 78%, p < 0.001), pancreas (− 78%, p = 0.018) and duodenum (− 95%, p = 0.028) following multi-organ denervation treatment compared to control animals. Histologic findings were consistent with favourable tissue responses at 90 days follow-up. Conclusions Significant and sustained denervation of the treated organs was achieved at 90 days without major safety events. Our findings demonstrate the feasibility of multi-organ denervation using a novel iRF Denervation System in a single procedure.
Collapse
Affiliation(s)
- Márcio Galindo Kiuchi
- Dobney Hypertension Centre, Faculty of Medicine, School of Medicine-Royal Perth Hospital Unit, Dentistry and Health Sciences, The University of Western Australia, Level 3, MRF Building, Rear 50 Murray St, Perth, WA, 6000, Australia
| | | | | | - Revathy Carnagarin
- Dobney Hypertension Centre, Faculty of Medicine, School of Medicine-Royal Perth Hospital Unit, Dentistry and Health Sciences, The University of Western Australia, Level 3, MRF Building, Rear 50 Murray St, Perth, WA, 6000, Australia
| | - Vance B Matthews
- Dobney Hypertension Centre, Faculty of Medicine, School of Medicine-Royal Perth Hospital Unit, Dentistry and Health Sciences, The University of Western Australia, Level 3, MRF Building, Rear 50 Murray St, Perth, WA, 6000, Australia
| | - Lakshini Y Herat
- Dobney Hypertension Centre, Faculty of Medicine, School of Medicine-Royal Perth Hospital Unit, Dentistry and Health Sciences, The University of Western Australia, Level 3, MRF Building, Rear 50 Murray St, Perth, WA, 6000, Australia
| | - Gerard Goh
- Radiology Department, Department of Surgery, Central Clinical School Alfred Hospital, Monash University, Melbourne, VIC, Australia
| | - Leon Adams
- Medical School, The University of Western Australia, Perth, WA, Australia
| | - Markus P Schlaich
- Dobney Hypertension Centre, Faculty of Medicine, School of Medicine-Royal Perth Hospital Unit, Dentistry and Health Sciences, The University of Western Australia, Level 3, MRF Building, Rear 50 Murray St, Perth, WA, 6000, Australia. .,Neurovascular Hypertension and Kidney Disease Laboratories, Baker Heart and Diabetes Institute, Melbourne, Australia. .,Departments of Cardiology and Nephrology, Royal Perth Hospital, Perth, Australia.
| |
Collapse
|
23
|
Zhang H, Li LY, Xiao RX, Zhang TC, Liu ZJ, Gao JQ. Effects of different ablation points of renal denervation on the efficacy of resistant hypertension. PeerJ 2020; 8:e9842. [PMID: 32983640 PMCID: PMC7500320 DOI: 10.7717/peerj.9842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/10/2020] [Indexed: 11/20/2022] Open
Abstract
Objective To explore the blood pressure response to different ablation points of renal denervation (RDN) in patients with resistant hypertension Methods A total of 42 cases with resistant hypertension treated by RDN in our center from 2013 to 2015 were retrospectively analyzed. The patients were divided into two groups according to the different ablation points of RDN: the standard treatment group (spiral ablation from near to proximal, with less than 8 points per artery) and the intensive treatment group (from near to far by spiral ablation, with at least 8 points per artery), with 21 patients in each group. The ablation parameters, including points, impedance, actual wattage, and actual temperature, were recorded intraoperatively. Renal angiography was performed again after RDN. Ambulatory blood pressure (ABP) images were taken for all patients at the baseline and 6 months after operation. Results The mean 24-h blood pressure of the standard treatment group was lower than that of the baseline (24-h systolic blood pressure decreased by 7.4 ± 10.6 mmHg and 24-h diastolic blood pressure decreased by 4.6 ± 6.1 mmHg), and the mean 24-h blood pressure decreased significantly from baseline to 6 months in the intensive treatment group (24–h systolic blood pressure decreased by 27.4 ± 11.4 mmHg, P < 0.0001; 24–h diastolic blood pressure decreased by 10.9 ± 9.6 mmHg, P = 0.005). There was a positive correlation between the decrease of systolic/diastolic 24-hour mean and the number of ablation points used in the procedure. The mean value of systolic and diastolic blood pressure was positively correlated with ablation points at 24-hour (R2 = 0.777 and 0.633 respectively, P < 0.01). There were no adverse events in either group after the operation and during the follow-up. Conclusions RDN could significantly reduce BP in patients with resistant hypertension. Our study showed that the antihypertensive effect appeared to be positively correlated with the number of ablation points.
Collapse
Affiliation(s)
- Hua Zhang
- Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ling-Yan Li
- Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rong-Xue Xiao
- Shanghai Putuo Center Clinical College, Anhui Medical University, Shanghai, China
| | - Ting-Chuan Zhang
- Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zong-Jun Liu
- Shanghai Putuo Center Clinical College, Anhui Medical University, Shanghai, China
| | - Jun-Qing Gao
- Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
24
|
Morisawa N, Kitada K, Fujisawa Y, Nakano D, Yamazaki D, Kobuchi S, Li L, Zhang Y, Morikawa T, Konishi Y, Yokoo T, Luft FC, Titze J, Nishiyama A. Renal sympathetic nerve activity regulates cardiovascular energy expenditure in rats fed high salt. Hypertens Res 2020; 43:482-491. [PMID: 31932643 DOI: 10.1038/s41440-019-0389-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 01/20/2023]
Abstract
We recently reported that a 4% high-salt diet + saline for drinking (HS + saline) leads to a catabolic state, reduced heart rate, and suppression of cardiovascular energy expenditure in mice. We suggested that HS + saline reduces heart rate via the suppression of the sympathetic nervous system to compensate for the high salt intake-induced catabolic state. To test this hypothesis, we directly measured renal sympathetic nerve activity (RSNA) in conscious Sprague-Dawley (SD) rats using a radiotelemetry system. We confirmed that HS + saline induced a catabolic state. HS + saline decreased heart rate, while also reducing RSNA in SD rats. In contrast, Dahl salt-sensitive (DSS) rats exhibited no change in heart rate and increased RSNA during high salt intake. Renal denervation significantly decreased heart rate and attenuated the catabolic state independent of blood pressure in DSS rats fed HS + saline, suggesting that salt-sensitive animals were unable to decrease cardiovascular energy consumption due to abnormal renal sympathetic nerve activation during high salt intake. These findings support the hypothesis that RSNA mediates heart rate during high salt intake in SD rats. However, the insensitivity of heart rate and enhanced RSNA observed in DSS rats may be additional critical diagnostic factors for salt-sensitive hypertension. Renal denervation may benefit salt-sensitive hypertension by reducing its effects on catabolism and cardiovascular energy expenditure.
Collapse
Affiliation(s)
- Norihiko Morisawa
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan.,Division of Nephrology and Hypertension, Department of Internal Medicine, Jikei University School of Medicine, Tokyo, Japan
| | - Kento Kitada
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan. .,Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore.
| | - Yoshihide Fujisawa
- Life Science Research Center, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Daisuke Nakano
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Daisuke Yamazaki
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan.,Division of Nephrology and Hypertension, Osaka City General Hospital, Osaka, Japan
| | - Shuhei Kobuchi
- Division of Pharmacology, Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Hyogo, Japan
| | - Lei Li
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Yifan Zhang
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Takashi Morikawa
- Division of Nephrology and Hypertension, Osaka City General Hospital, Osaka, Japan
| | - Yoshio Konishi
- Division of Nephrology and Hypertension, Osaka City General Hospital, Osaka, Japan
| | - Takashi Yokoo
- Division of Nephrology and Hypertension, Department of Internal Medicine, Jikei University School of Medicine, Tokyo, Japan
| | - Friedrich C Luft
- Experimental & Clinical Research Center, a joint collaboration between Max-Delbrück Center for Molecular Medicine and Charité Universitätsmedizin, Berlin, Germany
| | - Jens Titze
- Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore.,Division of Nephrology, Duke University Medical Center, Durham, NC, USA.,Division of Nephrology and Hypertension, University Clinic Erlangen, Erlangen, Germany
| | - Akira Nishiyama
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| |
Collapse
|
25
|
Zhang WH, Zhou QN, Lu YM, Li YD, Zhang L, Zhang JH, Xing Q, Lv WK, Cheng XC, Zhang GG, Wang XS, Gu Q, Lou X, Guli B, Tang BP, Zhou XH. Renal Denervation Reduced Ventricular Arrhythmia After Myocardial Infarction by Inhibiting Sympathetic Activity and Remodeling. J Am Heart Assoc 2019; 7:e009938. [PMID: 30371294 PMCID: PMC6474949 DOI: 10.1161/jaha.118.009938] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Ventricular arrhythmia after myocardial infarction is the most important risk factor for sudden cardiac death, which poses a serious threat to human health. As the correlation between autonomic nervous systemic dysfunction and heart rhythm abnormality has been gradually revealed, remedies targeting autonomic nervous system dysfunction, especially the sympathetic nerve, have emerged. Among them, renal denervation is noted for its powerful effect on the inhibition of sympathetic nerve activity. We aim to investigate whether renal denervation can reduce ventricular arrhythmia after myocardial infarction and thus decrease the risk of sudden cardiac death. In addition, we explore the potential mechanism with respect to nerve activity and remodeling. Methods and Results Twenty-four beagles were randomized into the control (n=4), renal denervation (n=10), and sham (n=10) groups. Permanent left anterior descending artery ligation was performed to establish myocardial infarction in the latter 2 groups. Animals in the renal denervation group underwent both surgical and chemical renal denervation. Compared with dogs in the sham group, dogs in the renal denervation group demonstrated attenuated effective refractory period shortening and inhomogeneity, flattened restitution curve, increased ventricular threshold, and decreased ventricular arrhythmia. Heart rate variability assessment, catecholamine measurement, and nerve discharge recordings all indicated that renal denervation could reduce whole-body and local tissue sympathetic tone. Tissue analysis revealed a significant decrease in neural remodeling in both the heart and stellate ganglion. Conclusions Surgical and chemical renal denervation decreased whole-body and local tissue sympathetic activity and reversed neural remodeling in the heart and stellate ganglion. Consequently, renal denervation led to beneficial remodeling of the electrophysiological characteristics in the infarction border zone, translating to a decrease in ventricular arrhythmia after myocardial infarction.
Collapse
Affiliation(s)
- Wen-Hui Zhang
- 1 Cardiac Pacing and Electrophysiological Division The First Affiliated Hospital of Xinjiang Medical University Urumqi Xinjiang China
| | - Qi-Na Zhou
- 2 Xinjiang Key Laboratory of Medical Animal Model Research Clinical Medical Research Institute The First Affiliated Hospital of Xinjiang Medical University Urumqi Xinjiang China
| | - Yan-Mei Lu
- 1 Cardiac Pacing and Electrophysiological Division The First Affiliated Hospital of Xinjiang Medical University Urumqi Xinjiang China
| | - Yao-Dong Li
- 1 Cardiac Pacing and Electrophysiological Division The First Affiliated Hospital of Xinjiang Medical University Urumqi Xinjiang China
| | - Ling Zhang
- 1 Cardiac Pacing and Electrophysiological Division The First Affiliated Hospital of Xinjiang Medical University Urumqi Xinjiang China
| | - Jiang-Hua Zhang
- 1 Cardiac Pacing and Electrophysiological Division The First Affiliated Hospital of Xinjiang Medical University Urumqi Xinjiang China
| | - Qiang Xing
- 1 Cardiac Pacing and Electrophysiological Division The First Affiliated Hospital of Xinjiang Medical University Urumqi Xinjiang China
| | - Wen-Kui Lv
- 1 Cardiac Pacing and Electrophysiological Division The First Affiliated Hospital of Xinjiang Medical University Urumqi Xinjiang China
| | - Xin-Chun Cheng
- 3 Geriatric Center The People's Hospital of Xinjiang Uygur Autonomous Region Urumqi Xinjiang China
| | - Ge-Ge Zhang
- 1 Cardiac Pacing and Electrophysiological Division The First Affiliated Hospital of Xinjiang Medical University Urumqi Xinjiang China
| | - Xue-Sheng Wang
- 1 Cardiac Pacing and Electrophysiological Division The First Affiliated Hospital of Xinjiang Medical University Urumqi Xinjiang China
| | - Qi Gu
- 1 Cardiac Pacing and Electrophysiological Division The First Affiliated Hospital of Xinjiang Medical University Urumqi Xinjiang China
| | - Xue Lou
- 1 Cardiac Pacing and Electrophysiological Division The First Affiliated Hospital of Xinjiang Medical University Urumqi Xinjiang China
| | - Buajier Guli
- 1 Cardiac Pacing and Electrophysiological Division The First Affiliated Hospital of Xinjiang Medical University Urumqi Xinjiang China
| | - Bao-Peng Tang
- 1 Cardiac Pacing and Electrophysiological Division The First Affiliated Hospital of Xinjiang Medical University Urumqi Xinjiang China
| | - Xian-Hui Zhou
- 1 Cardiac Pacing and Electrophysiological Division The First Affiliated Hospital of Xinjiang Medical University Urumqi Xinjiang China
| |
Collapse
|
26
|
Cheng X, Zhang D, Luo S, Qin S. Effect of Catheter-Based Renal Denervation on Uncontrolled Hypertension: A Systematic Review and Meta-analysis. Mayo Clin Proc 2019; 94:1695-1706. [PMID: 31402054 DOI: 10.1016/j.mayocp.2019.07.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 04/08/2019] [Accepted: 07/01/2019] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To assess the efficacy and safety of catheter-based renal denervation (RDN) for the treatment of uncontrolled hypertension by conducting a systematic review and a meta-analysis. METHODS The Medline, Cochrane Library, and Embase databases were searched for clinical studies between January 1, 2009, and July 16, 2018. Studies that evaluated the effect of RDN on uncontrolled hypertension were identified. The primary endpoints were changes in 24-hour ambulatory systolic blood pressure (BP) and office systolic BP. The secondary endpoints included changes in 24-hour ambulatory diastolic BP, office diastolic BP, and major adverse events. RESULTS After a literature search and detailed evaluation, 12 randomized controlled trials with a total of 1539 individuals were included in the quantitative analysis. Pooled analyses indicated that RDN was associated with a significantly greater reduction of 24-hour systolic BP (mean difference [MD], -4.02 mm Hg; 95% CI, -5.49 to -2.56; P<.001) and office systolic BP (MD, -8.93 mm Hg; 95% CI, -14.03 to -3.83; P<.001) than controls. Similarly, RDN significantly reduced 24-hour diastolic BP (MD, -2.05 mm Hg; 95% CI, -3.05 to -1.05; P<.001) and office diastolic BP (MD, -4.49 mm Hg; 95% CI, -6.46 to -2.52; P<.001). RDN was not associated with an increased risk of major adverse events (relative risk, 1.06; 95% CI, 0.72 to 1.57; P=.76). CONCLUSIONS Catheter-based RDN was associated with a significant BP-lowering benefit without increasing major adverse events.
Collapse
Affiliation(s)
- Xiaocheng Cheng
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dongying Zhang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Suxin Luo
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shu Qin
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
27
|
Affiliation(s)
- Costas Tsioufis
- From the First Cardiology Clinic, Medical School, National and Kapodistrian University of Athens, Hippokration Hospital, Athens, Greece
| | - Kyriakos Dimitriadis
- From the First Cardiology Clinic, Medical School, National and Kapodistrian University of Athens, Hippokration Hospital, Athens, Greece
| |
Collapse
|
28
|
de Lucia C, Piedepalumbo M, Paolisso G, Koch WJ. Sympathetic nervous system in age-related cardiovascular dysfunction: Pathophysiology and therapeutic perspective. Int J Biochem Cell Biol 2019; 108:29-33. [PMID: 30639431 PMCID: PMC6383565 DOI: 10.1016/j.biocel.2019.01.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/30/2018] [Accepted: 01/08/2019] [Indexed: 12/16/2022]
Abstract
Cardiovascular diseases such as heart failure and metabolic syndrome have high prevalence in the elderly population and are leading causes of death, disability, hospitalization, driving high healthcare costs worldwide. To reduce this social and economic burden there is urgency to find effective therapeutic targets. Several studies have linked the dysfunction of the Sympathetic Nervous System and β-adrenergic receptor signaling with the pathogenesis of age-related cardiovascular diseases. Therapeutic treatments that restore their functions have been shown to be effective in subjects with cardiovascular comorbidities. In fact, lifestyle interventions (such as exercise training and diet) as well as pharmacologic treatments (e.g. β-blockers or moxonidine) and mini-invasive interventions (renal sympathetic denervation) have beneficial effects on age-related cardiovascular diseases. In the current "Medicine in focus" article we will discuss the pathogenic role of the Sympathetic Nervous System in age-related cardiovascular diseases as well as current and new therapeutic approaches.
Collapse
Affiliation(s)
- Claudio de Lucia
- Center for Translational Medicine and Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, USA.
| | - Michela Piedepalumbo
- Center for Translational Medicine and Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, USA; Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.
| | - Giuseppe Paolisso
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.
| | - Walter J Koch
- Center for Translational Medicine and Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, USA.
| |
Collapse
|
29
|
Dimitriadis K, Tsioufis C, Tousoulis D. Do we need biomarkers for diabetics progressing to heart failure? Hellenic J Cardiol 2018; 59:98-99. [PMID: 29940223 DOI: 10.1016/j.hjc.2018.06.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 06/05/2018] [Accepted: 06/07/2018] [Indexed: 12/22/2022] Open
Abstract
Cardiovascular changes produce unfavorable outcomes including arterial hypertension and diabetes, which are related to the increased risk of heart failure (HF). The latter is highly prevalent in the setting of glucose metabolism dysregulation and high hemodynamic load, and identifying predictors of the incidence of HF with preserved ejection fraction (HFpEF) requires a research and is a clinical need. Toward this end, the variability in glucose regulation represents a novel dynamic way to comprehend and study the impact of glycemia. The results of the published study highlight the independent association of glycated hemoglobin A1c variability with the development of HFpEF in hypertensive diabetic patients. Based on the above, the effect of diverse antidiabetic therapies on glycemic control variability and overall management of these patients to reduce the risk of HFpEF remain essential for the modern cardiologist.
Collapse
Affiliation(s)
- Kyriakos Dimitriadis
- First Cardiology Clinic, Medical School, National and Kapodistrian University of Athens, Hippokration Hospital, Athens, Greece.
| | - Costas Tsioufis
- First Cardiology Clinic, Medical School, National and Kapodistrian University of Athens, Hippokration Hospital, Athens, Greece
| | - Dimitrios Tousoulis
- First Cardiology Clinic, Medical School, National and Kapodistrian University of Athens, Hippokration Hospital, Athens, Greece
| |
Collapse
|
30
|
Soncrant T, Komnenov D, Beierwaltes WH, Chen H, Wu M, Rossi NF. Bilateral renal cryodenervation decreases arterial pressure and improves insulin sensitivity in fructose-fed Sprague-Dawley rats. Am J Physiol Regul Integr Comp Physiol 2018; 315:R529-R538. [PMID: 29847164 DOI: 10.1152/ajpregu.00020.2018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Consumption of food high in fructose is prevalent in modern diets. One week of moderately high fructose intake combined with high salt diet has been shown to increase blood pressure and failed to suppress plasma renin activity (PRA). We tested the hypothesis that the hypertension and high PRA are consequences of elevated renal sympathetic nerve activity (RSNA). In protocol 1, we assessed RSNA by telemetry in conscious Sprague-Dawley rats given 20% fructose or 20% glucose in drinking water on a 0.4% NaCl diet (NS) for 1 wk and then transitioned to a 4% NaCl diet (HS). After an additional week, mean arterial pressure (MAP) and RSNA increased significantly in fructose-fed but not glucose-fed HS rats. In protocol 2, fructose (Fruc)- or glucose (Glu)-fed rats on NS or HS diet for 3 wk underwent sham denervation (shamDNX) or bilateral renal denervation using cryoablation (cryoDNX). MAP was higher in Fruc-HS rats compared with Glu-NS, Glu-HS, or Fruc-NS rats and decreased after cryoDNX ( P < 0.01). MAP did not change in Fruc-HS shamDNX rats. Renal norepinephrine content decreased by 85% in cryoDNX ( P < 0.01 vs. shamDNX). PRA significantly decreased after cryoDNX in both Fruc-NS and Fruc-HS rats. Nonfasting blood glucose levels were similar among the four groups. Glucose-to-insulin ratio significantly increased in Fruc-HS cryoDNX rats, consistent with greater insulin sensitivity. Taken together, these studies show that renal sympathoexcitation is, at least in part, responsible for salt-dependent increases in MAP, increased PRA, and decreased insulin sensitivity in rats fed a moderately high fructose diet for as little as 3 wk.
Collapse
Affiliation(s)
- Tyler Soncrant
- Department of Internal Medicine, Wayne State University School of Medicine , Detroit, Michigan
| | - Dragana Komnenov
- Department of Internal Medicine, Wayne State University School of Medicine , Detroit, Michigan.,John D. Dingell Veterans Administration Medical Center , Detroit, Michigan
| | - William H Beierwaltes
- Department of Physiology, Wayne State University School of Medicine , Detroit, Michigan.,Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital , Detroit, Michigan
| | - Haiping Chen
- Department of Internal Medicine, Wayne State University School of Medicine , Detroit, Michigan
| | - Min Wu
- Department of Internal Medicine, Wayne State University School of Medicine , Detroit, Michigan
| | - Noreen F Rossi
- Department of Internal Medicine, Wayne State University School of Medicine , Detroit, Michigan.,Department of Physiology, Wayne State University School of Medicine , Detroit, Michigan.,John D. Dingell Veterans Administration Medical Center , Detroit, Michigan
| |
Collapse
|
31
|
Pappaccogli M, Covella M, Berra E, Fulcheri C, Di Monaco S, Perlo E, Burrello J, Monticone S, Rossato D, Rabbia F, Veglio F. Effectiveness of Renal Denervation in Resistant Hypertension: A Meta-Analysis of 11 Controlled Studies. High Blood Press Cardiovasc Prev 2018; 25:167-176. [DOI: 10.1007/s40292-018-0260-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 04/27/2018] [Indexed: 10/16/2022] Open
|
32
|
Effects of Multi-Electrode Renal Denervation on Insulin Sensitivity and Glucose Metabolism in a Canine Model of Type 2 Diabetes Mellitus. J Vasc Interv Radiol 2018; 29:731-738.e2. [DOI: 10.1016/j.jvir.2017.12.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 12/05/2017] [Accepted: 12/12/2017] [Indexed: 11/18/2022] Open
|
33
|
Sympathomodulatory effects of sodium–glucose transporter-2 inhibitors in the kidneys and beyond. J Hypertens 2017; 35:1966-1967. [DOI: 10.1097/hjh.0000000000001454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|