1
|
Single-Nucleotide Polymorphisms as Biomarkers of Antipsychotic-Induced Akathisia: Systematic Review. Genes (Basel) 2023; 14:genes14030616. [PMID: 36980888 PMCID: PMC10048266 DOI: 10.3390/genes14030616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
Antipsychotic-induced akathisia (AIA) is a movement disorder characterized by a subjective feeling of inner restlessness or nervousness with an irresistible urge to move, resulting in repetitive movements of the limbs and torso, while taking antipsychotics (APs). In recent years, there have been some associative genetic studies of the predisposition to the development of AIA. Objective: The goal of our study was to review the results of associative genetic and genome-wide studies and to systematize and update the knowledge on the genetic predictors of AIA in patients with schizophrenia (Sch). Methods: We searched full-text publications in PubMed, Web of Science, Springer, Google Scholar, and e-Library databases from 1977 to 2022. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) quality scale was used for the critical selection of the studies. Results: We identified 37 articles, of which 3 were included in the review. Thus, the C allele of rs1800498 (59414 C>T) and the A allele of rs1800497 (17316 G>A) (TaqIA) from the DRD2 gene as well as the TT genotype rs13212041 (77461407 C>T) from the HTR1B gene were found to be associated with AIA. Conclusions: Uncovering the genetic biomarkers of AIA may provide a key to developing a strategy for the personalized prevention and treatment of this adverse neurological drug reaction of APs in patients with Sch in real clinical practice.
Collapse
|
2
|
SLC6A3, HTR2C and HTR6 Gene Polymorphisms and the Risk of Haloperidol-Induced Parkinsonism. Biomedicines 2022; 10:biomedicines10123237. [PMID: 36551993 PMCID: PMC9776373 DOI: 10.3390/biomedicines10123237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Antipsychotic-induced parkinsonism (AIP) is the most common type of extrapyramidal side effect (EPS), caused by the blockage of dopamine receptors. Since dopamine availability might influence the AIP risk, the dopamine transporter (DAT) and serotonin receptors (5-HTRs), which modulate the dopamine release, may be also involved in the AIP development. As some of the individual differences in the susceptibility to AIP might be due to the genetic background, this study aimed to examine the associations of SLC6A3, HTR2C and HTR6 gene polymorphisms with AIP in haloperidol-treated schizophrenia patients. The Extrapyramidal Symptom Rating Scale (ESRS) was used to evaluate AIP as a separate entity. Genotyping was performed using a PCR, following the extraction of blood DNA. The results revealed significant associations between HTR6 rs1805054 polymorphism and haloperidol-induced tremor and rigidity. Additionally, the findings indicated a combined effect of HTR6 T and SLC6A3 9R alleles on AIP, with their combination associated with significantly lower scores of ESRS subscale II for parkinsonism, ESRS-based tremor or hyperkinesia and ESRS subscales VI and VIII. These genetic predictors of AIP could be helpful in better understanding its pathophysiology, recognizing the individuals at risk of developing AIP and offering personalized therapeutic strategies for the patients suffering from this EPS.
Collapse
|
3
|
Eliasen A, Kornholt J, Mathiasen R, Wadt K, Stoltze U, Brok J, Rechnitzer C, Schmiegelow K, Dalhoff K. Background sensitivity to chemotherapy-induced nausea and vomiting and response to antiemetics in paediatric patients: a genetic association study. Pharmacogenet Genomics 2022; 32:72-78. [PMID: 34750329 DOI: 10.1097/fpc.0000000000000460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Chemotherapy-induced nausea and vomiting (CINV) remains a common adverse effect for children with cancer. In children, chemotherapy emetogenicity and patient factors such as susceptibility to motion sickness and age group determine a patient's risk of CINV. Besides known risk factors, genetic factors may play a role in interindividual variation in the occurrence of CINV. We investigated the influence of candidate gene polymorphisms on the efficacy of antiemetics and on the background sensitivity to CINV in children. This prospective study included 100 children with cancer (median age 6.4 years, range 0.8-17.9) who received moderately to highly emetogenic chemotherapy. Participants registered nausea and vomiting episodes in a mobile app. Genotypes were determined by whole-genome sequencing (n = 79) or Sanger sequencing (n = 21) for 71 genetic polymorphisms involved in motion sickness and antiemetic pathways. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated to estimate associations between acute CINV and genotypes adjusting for susceptibility to motion sickness and age group. Rs3782025 in the 5-hydroxytryptamine type 3 (5-HT3) receptor gene (HTR3B) [minor allele frequency (MAF): 0.48] affected response to 5-HT3 receptor antagonists; acute CINV occurred in 76% of patients with GA/AA genotypes and in 41% of patients with GG genotype (OR 5.59; 95% CI 1.74-17.9, dominant genetic model). Rs2975226 in the dopamine transporter gene (SLC6A3) (MAF: 0.54) was associated with acute CINV (OR 5.79; 95% CI 1.09-30.67, recessive genetic model). Polymorphisms in HTR3B and SLC6A3 may contribute to the variability in response to antiemetic prophylaxis for CINV in children.
Collapse
Affiliation(s)
- Astrid Eliasen
- Department of Clinical Pharmacology, Bispebjerg and Frederiksberg University Hospital
- Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital Rigshospitalet
- Institute of Clinical Medicine, Faculty of Medicine, University of Copenhagen
| | - Jonatan Kornholt
- Department of Clinical Pharmacology, Bispebjerg and Frederiksberg University Hospital
- Institute of Clinical Medicine, Faculty of Medicine, University of Copenhagen
| | - René Mathiasen
- Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital Rigshospitalet
| | - Karin Wadt
- Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Ulrik Stoltze
- Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital Rigshospitalet
- Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Jesper Brok
- Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital Rigshospitalet
| | - Catherine Rechnitzer
- Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital Rigshospitalet
| | - Kjeld Schmiegelow
- Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital Rigshospitalet
- Institute of Clinical Medicine, Faculty of Medicine, University of Copenhagen
| | - Kim Dalhoff
- Department of Clinical Pharmacology, Bispebjerg and Frederiksberg University Hospital
- Institute of Clinical Medicine, Faculty of Medicine, University of Copenhagen
| |
Collapse
|
4
|
Spiros A, Geerts H. Toward Predicting Impact of Common Genetic Variants on Schizophrenia Clinical Responses With Antipsychotics: A Quantitative System Pharmacology Study. Front Neurosci 2021; 15:738903. [PMID: 34658776 PMCID: PMC8511786 DOI: 10.3389/fnins.2021.738903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/06/2021] [Indexed: 11/13/2022] Open
Abstract
CNS disorders are lagging behind other indications in implementing genotype-dependent treatment algorithms for personalized medicine. This report uses a biophysically realistic computer model of an associative and dorsal motor cortico-striatal-thalamo-cortical loop and a working memory cortical model to investigate the pharmacodynamic effects of COMTVal158Met rs4680, 5-HTTLPR rs 25531 s/L and D2DRTaq1A1 genotypes on the clinical response of 7 antipsychotics. The effect of the genotypes on dopamine and serotonin dynamics and the level of target exposure for the drugs was calibrated from PET displacement studies. The simulations suggest strong gene-gene pharmacodynamic interactions unique to each antipsychotic. For PANSS Total, the D2DRTaq1 allele has the biggest impact, followed by the 5-HTTLPR rs25531. The A2A2 genotype improved efficacy for all drugs, with a more complex outcome for the 5-HTTLPR rs25531 genotype. Maximal range in PANSS Total for all 27 individual combinations is 3 (aripiprazole) to 5 points (clozapine). The 5-HTTLPR L/L with aripiprazole and risperidone and the D2DRTaq1A2A2 allele with haloperidol, clozapine and quetiapine reduce the motor side-effects with opposite effects for the s/s genotype. The COMT genotype has a limited effect on antipsychotic effect and EPS. For cognition, the COMT MM 5-HTTLPR L/L genotype combination has the best performance for all antipsychotics, except clozapine. Maximal difference is 25% of the total dynamic range in a 2-back working memory task. Aripiprazole is the medication that is best suited for the largest number of genotype combinations (10) followed by Clozapine and risperidone (6), haloperidol and olanzapine (3) and quetiapine and paliperidone for one genotype. In principle, the platform could identify the best antipsychotic treatment balancing efficacy and side-effects for a specific individual genotype. Once the predictions of this platform are validated in a clinical setting the platform has potential to support rational personalized treatment guidance in clinical practice.
Collapse
Affiliation(s)
- Athan Spiros
- In Silico Biosciences, Berwyn, PA, United States
| | - Hugo Geerts
- In Silico Biosciences, Berwyn, PA, United States.,Certara QSP, Canterbury, United Kingdom
| |
Collapse
|
5
|
Chen APF, Chen L, Kim TA, Xiong Q. Integrating the Roles of Midbrain Dopamine Circuits in Behavior and Neuropsychiatric Disease. Biomedicines 2021; 9:biomedicines9060647. [PMID: 34200134 PMCID: PMC8228225 DOI: 10.3390/biomedicines9060647] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 01/11/2023] Open
Abstract
Dopamine (DA) is a behaviorally and clinically diverse neuromodulator that controls CNS function. DA plays major roles in many behaviors including locomotion, learning, habit formation, perception, and memory processing. Reflecting this, DA dysregulation produces a wide variety of cognitive symptoms seen in neuropsychiatric diseases such as Parkinson’s, Schizophrenia, addiction, and Alzheimer’s disease. Here, we review recent advances in the DA systems neuroscience field and explore the advancing hypothesis that DA’s behavioral function is linked to disease deficits in a neural circuit-dependent manner. We survey different brain areas including the basal ganglia’s dorsomedial/dorsolateral striatum, the ventral striatum, the auditory striatum, and the hippocampus in rodent models. Each of these regions have different reported functions and, correspondingly, DA’s reflecting role in each of these regions also has support for being different. We then focus on DA dysregulation states in Parkinson’s disease, addiction, and Alzheimer’s Disease, emphasizing how these afflictions are linked to different DA pathways. We draw upon ideas such as selective vulnerability and region-dependent physiology. These bodies of work suggest that different channels of DA may be dysregulated in different sets of disease. While these are great advances, the fine and definitive segregation of such pathways in behavior and disease remains to be seen. Future studies will be required to define DA’s necessity and contribution to the functional plasticity of different striatal regions.
Collapse
Affiliation(s)
- Allen PF Chen
- Department of Neurobiology and Behavior, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA; (A.P.C.); (L.C.); (T.A.K.)
- Medical Scientist Training Program, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA
| | - Lu Chen
- Department of Neurobiology and Behavior, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA; (A.P.C.); (L.C.); (T.A.K.)
| | - Thomas A. Kim
- Department of Neurobiology and Behavior, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA; (A.P.C.); (L.C.); (T.A.K.)
- Medical Scientist Training Program, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA
| | - Qiaojie Xiong
- Department of Neurobiology and Behavior, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA; (A.P.C.); (L.C.); (T.A.K.)
- Correspondence:
| |
Collapse
|
6
|
Application of a Pharmacogenetics-Based Precision Medicine Model (5SPM) to Psychotic Patients That Presented Poor Response to Neuroleptic Therapy. J Pers Med 2020; 10:jpm10040289. [PMID: 33352925 PMCID: PMC7767089 DOI: 10.3390/jpm10040289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 02/08/2023] Open
Abstract
Antipsychotics are the keystone of the treatment of severe and prolonged mental disorders. However, there are many risks associated with these drugs and not all patients undergo full therapeutic profit from them. The application of the 5 Step Precision Medicine model(5SPM), based on the analysis of the pharmacogenetic profile of each patient, could be a helpful tool to solve many of the problematics traditionally associated with the neuroleptic treatment. In order to solve this question, a cohort of psychotic patients that showed poor clinical evolution was analyzed. After evaluating the relationship between the prescribed treatment and pharmacogenetic profile of each patient, a great number of pharmacological interactions and pharmacogenetical conflicts were found. After reconsidering the treatment of the conflictive cases, patients showed a substantial reduction on mean daily doses and polytherapy cases, which may cause less risk of adverse effects, greater adherence, and a reduction on economic costs.
Collapse
|
7
|
Kim G, Moon E, Park JM, Lee BD, Lee YM, Jeong HJ, Kim SY, Lee K, Suh H. Various Psychiatric Manifestation in DiGeorge Syndrome (22q11.2 Deletion Syndrome): A Case Report. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2020; 18:458-462. [PMID: 32702226 PMCID: PMC7383002 DOI: 10.9758/cpn.2020.18.3.458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 11/20/2022]
Abstract
This case report aimed to describe various psychiatric manifestation and treatment course in a patient with DiGeorge syndrome. Psychiatric symptoms and treatment course in a female patient with DiGeorge syndrome were described. This patient showed psychotic symptoms, mood symptoms, and intellectual disability. As well as various psychiatric symptoms, treatment response and sensitivity of side effect by antipsychotics were different from typical characteristics in psychiatric disorders. This case suggests that the genetic defect in DiGeorge syndrome might have a great association with psychiatric problems and response of antipsychotics.
Collapse
Affiliation(s)
- Giok Kim
- Department of Psychiatry, Medical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Eunsoo Moon
- Department of Psychiatry, Medical Research Institute, Pusan National University Hospital, Busan, Korea.,Department of Psychiatry, Pusan National University School of Medicine, Yangsan, Korea
| | - Je Min Park
- Department of Psychiatry, Medical Research Institute, Pusan National University Hospital, Busan, Korea.,Department of Psychiatry, Pusan National University School of Medicine, Yangsan, Korea
| | - Byung Dae Lee
- Department of Psychiatry, Medical Research Institute, Pusan National University Hospital, Busan, Korea.,Department of Psychiatry, Pusan National University School of Medicine, Yangsan, Korea
| | - Young Min Lee
- Department of Psychiatry, Medical Research Institute, Pusan National University Hospital, Busan, Korea.,Department of Psychiatry, Pusan National University School of Medicine, Yangsan, Korea
| | - Hee Jeong Jeong
- Department of Psychiatry, Medical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Soo Yeon Kim
- Department of Psychiatry, Medical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Kangyoon Lee
- Department of Psychiatry, Medical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Hwagyu Suh
- Department of Psychiatry, Medical Research Institute, Pusan National University Hospital, Busan, Korea
| |
Collapse
|
8
|
Boloc D, Rodríguez N, Torres T, García-Cerro S, Parellada M, Saiz-Ruiz J, Cuesta MJ, Bernardo M, Gassó P, Lafuente A, Mas S, Arnaiz JA. Identifying key transcription factors for pharmacogenetic studies of antipsychotics induced extrapyramidal symptoms. Psychopharmacology (Berl) 2020; 237:2151-2159. [PMID: 32382784 DOI: 10.1007/s00213-020-05526-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 04/13/2020] [Indexed: 12/14/2022]
Abstract
INTRODUCTION We explore the transcription factors involved in the molecular mechanism of antipsychotic (AP)-induced acute extrapyramidalsymptoms (EPS) in order to identify new candidate genes for pharmacogenetic studies. METHODS Protein-protein interaction (PPI) networks previously created from three pharmacogenomic models (in vitro, animal, and peripheral blood inhumans) were used to, by means of several bioinformatic tools; identify key transcription factors (TFs) that regulate each network. Once the TFs wereidentified, SNPs disrupting the binding sites (TFBS) of these TFs in the genes of each network were selected for genotyping. Finally, SNP-basedassociations with EPS were analyzed in a sample of 356 psychiatric patients receiving AP. RESULTS Our analysis identified 33 TFs expressed in the striatum, and 125 SNPs disrupting TFBS in 50 genes of our initial networks. Two SNPs (rs938112,rs2987902) in two genes (LSMAP and ABL1) were significantly associated with AP induced EPS (p < 0.001). These SNPs disrupt TFBS regulated byPOU2F1. CONCLUSION Our results highlight the possible role of the disruption of TFBS by SNPs in the pharmacological response to AP.
Collapse
Affiliation(s)
- Daniel Boloc
- Department of Medicine, University of Barcelona, Barcelona, Spain
| | | | - Teresa Torres
- Dept. Clinical Foundations, Pharmacology Unit, University of Barcelona, Barcelona, Spain
| | - Susana García-Cerro
- Dept. Clinical Foundations, Pharmacology Unit, University of Barcelona, Barcelona, Spain
| | - Mara Parellada
- Child and Adolescent Psychiatry Department, Hospital General Universitario Gregorio Marañón, School of Medicine, Universidad Complutense, IiSGM, Madrid, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, Madrid, Spain
| | - Jeronimo Saiz-Ruiz
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, Madrid, Spain
- Hospital Ramon y Cajal, Universidad de Alcala, IRYCIS, Madrid, Spain
| | - Manuel J Cuesta
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, Madrid, Spain
- Department of Psychiatry, Complejo Hospitalario de Navarra. Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Miquel Bernardo
- Department of Medicine, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, Madrid, Spain
- Barcelona Clínic Schizophrenia Unit, Hospital Clínic de Barcelona, Barcelona, Spain
- Spain The August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Patricia Gassó
- Dept. Clinical Foundations, Pharmacology Unit, University of Barcelona, Barcelona, Spain
- Spain The August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Amalia Lafuente
- Dept. Clinical Foundations, Pharmacology Unit, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, Madrid, Spain
- Spain The August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Sergi Mas
- Dept. Clinical Foundations, Pharmacology Unit, University of Barcelona, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, Madrid, Spain.
- Spain The August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain.
| | - Joan Albert Arnaiz
- Dept. Clinical Foundations, Pharmacology Unit, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
9
|
Cacabelos R. Pharmacogenomics of Cognitive Dysfunction and Neuropsychiatric Disorders in Dementia. Int J Mol Sci 2020; 21:E3059. [PMID: 32357528 PMCID: PMC7246738 DOI: 10.3390/ijms21093059] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/21/2020] [Accepted: 04/21/2020] [Indexed: 02/07/2023] Open
Abstract
Symptomatic interventions for patients with dementia involve anti-dementia drugs to improve cognition, psychotropic drugs for the treatment of behavioral disorders (BDs), and different categories of drugs for concomitant disorders. Demented patients may take >6-10 drugs/day with the consequent risk for drug-drug interactions and adverse drug reactions (ADRs >80%) which accelerate cognitive decline. The pharmacoepigenetic machinery is integrated by pathogenic, mechanistic, metabolic, transporter, and pleiotropic genes redundantly and promiscuously regulated by epigenetic mechanisms. CYP2D6, CYP2C9, CYP2C19, and CYP3A4/5 geno-phenotypes are involved in the metabolism of over 90% of drugs currently used in patients with dementia, and only 20% of the population is an extensive metabolizer for this tetragenic cluster. ADRs associated with anti-dementia drugs, antipsychotics, antidepressants, anxiolytics, hypnotics, sedatives, and antiepileptic drugs can be minimized by means of pharmacogenetic screening prior to treatment. These drugs are substrates, inhibitors, or inducers of 58, 37, and 42 enzyme/protein gene products, respectively, and are transported by 40 different protein transporters. APOE is the reference gene in most pharmacogenetic studies. APOE-3 carriers are the best responders and APOE-4 carriers are the worst responders; likewise, CYP2D6-normal metabolizers are the best responders and CYP2D6-poor metabolizers are the worst responders. The incorporation of pharmacogenomic strategies for a personalized treatment in dementia is an effective option to optimize limited therapeutic resources and to reduce unwanted side-effects.
Collapse
Affiliation(s)
- Ramon Cacabelos
- EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, 15165-Bergondo, Corunna, Spain
| |
Collapse
|
10
|
Grubor M, Zivkovic M, Sagud M, Nikolac Perkovic M, Mihaljevic-Peles A, Pivac N, Muck-Seler D, Svob Strac D. HTR1A, HTR1B, HTR2A, HTR2C and HTR6 Gene Polymorphisms and Extrapyramidal Side Effects in Haloperidol-Treated Patients with Schizophrenia. Int J Mol Sci 2020; 21:ijms21072345. [PMID: 32231051 PMCID: PMC7178229 DOI: 10.3390/ijms21072345] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/20/2020] [Accepted: 03/27/2020] [Indexed: 12/14/2022] Open
Abstract
Schizophrenia is a serious, chronic psychiatric disorder requiring lifelong treatment. Extrapyramidal side effects (EPS) are common adverse reactions to antipsychotic medications. In addition to the dopaminergic system, serotonergic mechanisms, including serotonin (5-HT) receptors, might be involved in EPS development. This study aimed to examine molecular associations of HTR1A, HTR1B, HTR2A, HTR2C and HTR6 gene polymorphisms with acute EPS in 229 male schizophrenia patients, following two weeks of haloperidol monotherapy. The Simpson-Angus Rating Scale for Extrapyramidal Side Effects (SAS), Barnes Akathisia Rating Scale (BARS) and Extrapyramidal Symptom Rating Scale (ESRS) were used to evaluate EPS severity. Genotyping was performed using real-time PCR, following extraction of blood DNA. Significant acute EPS appeared in 48.03% of schizophrenia patients. For the rs13212041 HTR1B gene polymorphism, affecting microRNA regulation of HTR1B gene expression, a higher frequency of TT carriers was found among haloperidol-treated patients with akathisia when compared to the group without akathisia symptoms. In comparison to C-allele carriers, patients carrying the TT genotype had higher akathisia severity, as determined by the SAS, BARS and ESRS scales. These molecular findings suggest potential involvement of 5-HT1B receptors in akathisia development following haloperidol treatment, as well as possible epigenetic mechanisms of serotonergic modulation associated with antipsychotic-induced EPS.
Collapse
MESH Headings
- Adult
- Antipsychotic Agents/adverse effects
- Antipsychotic Agents/therapeutic use
- Haloperidol/adverse effects
- Haloperidol/therapeutic use
- Humans
- Male
- Middle Aged
- Polymorphism, Genetic
- Receptor, Serotonin, 5-HT1A/genetics
- Receptor, Serotonin, 5-HT1B/genetics
- Receptor, Serotonin, 5-HT2A/genetics
- Receptor, Serotonin, 5-HT2C/genetics
- Receptors, Serotonin/genetics
- Schizophrenia/drug therapy
- Schizophrenia/genetics
Collapse
Affiliation(s)
- Mirko Grubor
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10 000 Zagreb, Croatia;
| | - Maja Zivkovic
- Department of Psychiatry, University Hospital Centre Zagreb, 10 000 Zagreb, Croatia; (M.Z.); (M.S.); (A.M.-P.)
| | - Marina Sagud
- Department of Psychiatry, University Hospital Centre Zagreb, 10 000 Zagreb, Croatia; (M.Z.); (M.S.); (A.M.-P.)
- School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia
| | - Matea Nikolac Perkovic
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, 10 000 Zagreb, Croatia; (M.N.P.); (N.P.); (D.M.-S.)
| | - Alma Mihaljevic-Peles
- Department of Psychiatry, University Hospital Centre Zagreb, 10 000 Zagreb, Croatia; (M.Z.); (M.S.); (A.M.-P.)
- School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia
| | - Nela Pivac
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, 10 000 Zagreb, Croatia; (M.N.P.); (N.P.); (D.M.-S.)
| | - Dorotea Muck-Seler
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, 10 000 Zagreb, Croatia; (M.N.P.); (N.P.); (D.M.-S.)
| | - Dubravka Svob Strac
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, 10 000 Zagreb, Croatia; (M.N.P.); (N.P.); (D.M.-S.)
- Correspondence: ; Tel.: +385-1-457-1207
| |
Collapse
|
11
|
Cacabelos R. Pharmacogenomics of drugs used to treat brain disorders. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2020. [DOI: 10.1080/23808993.2020.1738217] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ramon Cacabelos
- International Center of Neuroscience and Genomic Medicine, EuroEspes Biomedical Research Center, Corunna, Spain
| |
Collapse
|
12
|
Ye J, Ji F, Jiang D, Lin X, Chen G, Zhang W, Shan P, Zhang L, Zhuo C. Polymorphisms in Dopaminergic Genes in Schizophrenia and Their Implications in Motor Deficits and Antipsychotic Treatment. Front Neurosci 2019; 13:355. [PMID: 31057354 PMCID: PMC6479209 DOI: 10.3389/fnins.2019.00355] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/28/2019] [Indexed: 12/14/2022] Open
Abstract
Dopaminergic system dysfunction is involved in schizophrenia (SCZ) pathogenesis and can mediate SCZ-related motor disorders. Recent studies have gradually revealed that SCZ susceptibility and the associated motor symptoms can be mediated by genetic factors, including dopaminergic genes. More importantly, polymorphisms in these genes are associated with both antipsychotic drug sensitivity and adverse effects. The study of genetic polymorphisms in the dopaminergic system may help to optimize individualized drug strategies for SCZ patients. This review summarizes the current progress about the involvement of the dopamine system in SCZ-associated motor disorders and the motor-related adverse effects after antipsychotic treatment, with a special focus on polymorphisms in dopaminergic genes. We hypothesize that the genetic profile of the dopaminergic system mediates both SCZ-associated motor deficits associated and antipsychotic drug-related adverse effects. The study of dopaminergic gene polymorphisms may help to predict drug efficacy and decrease adverse effects, thereby optimizing treatment strategies.
Collapse
Affiliation(s)
- Jiaen Ye
- Department of Psychiatry, Wenzhou Seventh People's Hospital, Wenzhou, China
| | - Feng Ji
- Department of Psychiatry, College of Mental Health, Jining Medical University, Jining, China
| | - Deguo Jiang
- Department of Psychiatric-Neuroimaging-Genetics and Morbidity Laboratory (PNGC-Lab), Nankai University Affiliated Tianjin Anding Hospital, Tianjin Mental Health Center, Mental Health Teaching Hospital, Tianjin Medical University, Tianjin, China
| | - Xiaodong Lin
- Department of Psychiatry, Wenzhou Seventh People's Hospital, Wenzhou, China
| | - Guangdong Chen
- Department of Psychiatry, Wenzhou Seventh People's Hospital, Wenzhou, China
| | - Wei Zhang
- Department of Psychiatry, Wenzhou Seventh People's Hospital, Wenzhou, China
| | - Peiwei Shan
- Department of Psychiatry, Wenzhou Seventh People's Hospital, Wenzhou, China
| | - Li Zhang
- GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Chuanjun Zhuo
- Department of Psychiatry, Wenzhou Seventh People's Hospital, Wenzhou, China.,Department of Psychiatry, College of Mental Health, Jining Medical University, Jining, China.,Department of Psychiatric-Neuroimaging-Genetics and Morbidity Laboratory (PNGC-Lab), Nankai University Affiliated Tianjin Anding Hospital, Tianjin Mental Health Center, Mental Health Teaching Hospital, Tianjin Medical University, Tianjin, China
| |
Collapse
|
13
|
Osmanova DZ, Freidin MB, Fedorenko OY, Pozhidaev IV, Boiko AS, Vyalova NM, Tiguntsev VV, Kornetova EG, Loonen AJM, Semke AV, Wilffert B, Bokhan NA, Ivanova SA. A pharmacogenetic study of patients with schizophrenia from West Siberia gets insight into dopaminergic mechanisms of antipsychotic-induced hyperprolactinemia. BMC MEDICAL GENETICS 2019; 20:47. [PMID: 30967134 PMCID: PMC6454588 DOI: 10.1186/s12881-019-0773-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Hyperprolactinemia (HPRL) is a classical side effect of antipsychotic drugs primarily attributed to blockade of dopamine D2 receptors (DRD2s) on the membranes of lactotroph cells within the pituitary gland. Certain antipsychotic drugs, e.g. risperidone, are more likely to induce HPRL because of relative accumulation within the adenohypophysis. Nevertheless, due to competition for pituitary DRD2s by high dopamine levels may limit antipsychotic-induced HPRL. Moreover, the activity of prolactin-producing lactotrophs also depends on other hormones which are regulated by the extra-pituitary activity of dopamine receptors, dopamine transporters, enzymes of neurotransmitter metabolism and other factors. Polymorphic variants in the genes coding for these receptors and proteins can have functional significance and influence on the development of hyperprolactinemia. METHODS A set of 41 SNPs of genes for dopamine receptors DRD1, DRD2, DRD3, DRD4, the dopamine transporter SLC6A3 and dopamine catabolizing enzymes MAOA and MAOB was investigated in a population of 446 Caucasians (221 males/225 females) with a clinical diagnosis of schizophrenia (according to ICD-10: F20) with and without HPRL who were treated with classical and/or atypical antipsychotic drugs. Additive genetic model was tested and the analysis was carried out in the total group and in subgroup stratified by the use of risperidone/paliperidone. RESULTS One statistically significant association between polymorphic variant rs1799836 of MAOB gene and HPRL in men was found in the total group. Furthermore, the rs40184 and rs3863145 variants in SLC6A3 gene appeared to be associated with HPRL in the subgroup of patients using the risperidone/paliperidone, but not with HPRL induced by other antipsychotic drugs. CONCLUSIONS Our results indicate that genetic variants of MAOB and SLC6A3 may have consequences on the modulation of prolactin secretion. A further search for genetic markers associated with the development of antipsychotic-related hyperprolactinemia in schizophrenic patients is needed.
Collapse
Affiliation(s)
- Diana Z. Osmanova
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Aleutskaya str., 4, Tomsk, Russian Federation 634014
- National Research Tomsk State University, Lenin Avenue, Tomsk, Russian Federation 36
| | - Maxim B. Freidin
- Department of Twin Research and Genetic Epidemiology, School of Live Course Sciences, King’s College London, Lambeth Palace Road, London, SE1 7EH UK
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Naberezhnaya Ushaiki str, Tomsk, Russian Federation 10
| | - Olga Yu. Fedorenko
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Aleutskaya str., 4, Tomsk, Russian Federation 634014
- National Research Tomsk Polytechnic University, Lenin Avenue, Tomsk, Russian Federation 30
| | - Ivan V. Pozhidaev
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Aleutskaya str., 4, Tomsk, Russian Federation 634014
- National Research Tomsk State University, Lenin Avenue, Tomsk, Russian Federation 36
| | - Anastasiia S. Boiko
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Aleutskaya str., 4, Tomsk, Russian Federation 634014
| | - Natalia M. Vyalova
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Aleutskaya str., 4, Tomsk, Russian Federation 634014
| | - Vladimir V. Tiguntsev
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Aleutskaya str., 4, Tomsk, Russian Federation 634014
| | - Elena G. Kornetova
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Aleutskaya str., 4, Tomsk, Russian Federation 634014
| | - Anton J. M. Loonen
- Groningen Research Institute of Pharmacy, PharmacoTherapy, Epidemiology & Economics, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
- GGZ Westelijk Noord-Brabant, Hoofdlaan 8, 4661 AA Halsteren, The Netherlands
| | - Arkadiy V. Semke
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Aleutskaya str., 4, Tomsk, Russian Federation 634014
| | - Bob Wilffert
- Groningen Research Institute of Pharmacy, PharmacoTherapy, Epidemiology & Economics, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
- University Medical Center Groningen, Department of Clinical Pharmacy and Pharmacology, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Nikolay A. Bokhan
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Aleutskaya str., 4, Tomsk, Russian Federation 634014
- National Research Tomsk State University, Lenin Avenue, Tomsk, Russian Federation 36
| | - Svetlana A. Ivanova
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Aleutskaya str., 4, Tomsk, Russian Federation 634014
- National Research Tomsk Polytechnic University, Lenin Avenue, Tomsk, Russian Federation 30
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW This review highlights recent advances in the investigation of genetic factors for antipsychotic response and side effects. RECENT FINDINGS Antipsychotics prescribed to treat psychotic symptoms are variable in efficacy and propensity for causing side effects. The major side effects include tardive dyskinesia, antipsychotic-induced weight gain (AIWG), and clozapine-induced agranulocytosis (CIA). Several promising associations of polymorphisms in genes including HSPG2, CNR1, and DPP6 with tardive dyskinesia have been reported. In particular, a functional genetic polymorphism in SLC18A2, which is a target of recently approved tardive dyskinesia medication valbenazine, was associated with tardive dyskinesia. Similarly, several consistent findings primarily from genes modulating energy homeostasis have also been reported (e.g. MC4R, HTR2C). CIA has been consistently associated with polymorphisms in the HLA genes (HLA-DQB1 and HLA-B). The association findings between glutamate system genes and antipsychotic response require additional replications. SUMMARY The findings to date are promising and provide us a better understanding of the development of side effects and response to antipsychotics. However, more comprehensive investigations in large, well characterized samples will bring us closer to clinically actionable findings.
Collapse
|
15
|
Hirjak D, Meyer-Lindenberg A, Kubera KM, Thomann PA, Wolf RC. Motor dysfunction as research domain in the period preceding manifest schizophrenia: A systematic review. Neurosci Biobehav Rev 2018; 87:87-105. [DOI: 10.1016/j.neubiorev.2018.01.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 01/08/2018] [Accepted: 01/21/2018] [Indexed: 12/13/2022]
|
16
|
Amato D, Vernon AC, Papaleo F. Dopamine, the antipsychotic molecule: A perspective on mechanisms underlying antipsychotic response variability. Neurosci Biobehav Rev 2018; 85:146-159. [DOI: 10.1016/j.neubiorev.2017.09.027] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 09/20/2017] [Accepted: 09/26/2017] [Indexed: 12/12/2022]
|
17
|
Salem H, Pigott T, Zhang XY, Zeni CP, Teixeira AL. Antipsychotic-induced Tardive dyskinesia: from biological basis to clinical management. Expert Rev Neurother 2017; 17:883-894. [PMID: 28750568 DOI: 10.1080/14737175.2017.1361322] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Tardive dyskinesia (TD) is a chronic and disabling movement disorder with a complex pathophysiological basis. A significant percentage of patients does not receive correct diagnosis, resulting in delayed or inaccurate treatment and poor outcome. Therefore, there is a critical need for prompt recognition, implementation of efficacious treatment regimens and long-term follow up of patients with TD. Areas covered: The current paper provides an overview of emerging data concerning proposed pathophysiology theories, epidemiology, risk factors, and therapeutic strategies for TD. Expert commentary: Despite considerable research efforts, TD remains a challenge in the treatment of psychosis as the available strategies remain sub-optimal. The best scenario will always be the prophylaxis or prevention of TD, which entails limiting the use of antipsychotics.
Collapse
Affiliation(s)
- Haitham Salem
- a Harris County psychiatric center, Department Psychiatry and behavioral sciences, McGovern medical school , The university of texas health science center at Houston , TX , USA.,b Neuropsychiatry program, Department Psychiatry and behavioral sciences, McGovern medical school , The university of texas health science center at Houston , TX , USA
| | - Teresa Pigott
- a Harris County psychiatric center, Department Psychiatry and behavioral sciences, McGovern medical school , The university of texas health science center at Houston , TX , USA
| | - Xiang Y Zhang
- b Neuropsychiatry program, Department Psychiatry and behavioral sciences, McGovern medical school , The university of texas health science center at Houston , TX , USA
| | - Cristian P Zeni
- c Pediatric mood disorder/ADHD program, Department Psychiatry and behavioral sciences, McGovern medical school , The university of texas health science center at Houston , TX , USA
| | - Antonio L Teixeira
- a Harris County psychiatric center, Department Psychiatry and behavioral sciences, McGovern medical school , The university of texas health science center at Houston , TX , USA.,b Neuropsychiatry program, Department Psychiatry and behavioral sciences, McGovern medical school , The university of texas health science center at Houston , TX , USA
| |
Collapse
|
18
|
Zastrozhin MS, Brodyansky VM, Skryabin VY, Grishina EA, Ivashchenko DV, Ryzhikova KA, Savchenko LM, Kibitov AO, Bryun EA, Sychev DA. Pharmacodynamic genetic polymorphisms affect adverse drug reactions of haloperidol in patients with alcohol-use disorder. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2017; 10:209-215. [PMID: 28744152 PMCID: PMC5511016 DOI: 10.2147/pgpm.s140700] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Background Antipsychotic action of haloperidol is due to blockade of D2 receptors in the mesolimbic dopamine pathway, while the adverse drug reactions are associated with striatal D2 receptor blockade. Contradictory data concerning the effects of genetic polymorphisms of genes encoding these receptors and associated structures (catechol-O-methyltransferase [COMT], glycine transporter and gene encoding the density of D2 receptors on the neuronal membrane) are described. Objective The objectives of this study were to evaluate the correlation between DRD2, SLC6A3 (DAT) and COMT genetic polymorphisms and to investigate their effect on the development of adverse drug reactions in patients with alcohol-use disorder who received haloperidol. Patients and methods The study included 64 male patients (average age 41.38 ± 10.14 years, median age 40 years, lower quintile [LQ] 35 years, upper quintile [UQ] 49 years). Bio-Rad CFX Manager™ software and “SNP-Screen” sets of “Syntol” (Russia) were used to determine polymorphisms rs4680, rs1800497, rs1124493, rs2242592, rs2298826 and rs2863170. In every “SNP-Screen” set, two allele-specific hybridizations were used, which allowed to determine two alleles of studied polymorphism separately on two fluorescence channels. Results Results of this study detected a statistically significant difference in the adverse drug reaction intensity in patients receiving haloperidol with genotypes 9/10 and 10/10 of polymorphic marker SLC6A3 rs28363170. In patients receiving haloperidol in tablets, the increases in the UKU Side-Effect Rating Scale (UKU) score of 9.96 ± 2.24 (10/10) versus 13 ± 2.37 (9/10; p < 0.001) and in the Simpson-Angus Scale (SAS) score of 5.04 ± 1.59 (10/10) versus 6.41 ± 1.33 (9/10; p = 0.006) were revealed. Conclusion Polymorphism of the SCL6A3 gene can affect the safety of haloperidol, and this should be taken into account during the choice of drug and its dosage regimen.
Collapse
Affiliation(s)
- Mikhail Sergeevich Zastrozhin
- Department of Addictology, Russian Medical Academy of Continuous Professional Education of the Ministry of Health of the Russian Federation, Moscow, Russia.,Moscow Research and Practical Centre on Addictions of the Moscow Department of Healthcare, Center for the Prevention of Dependent Behavior, Moscow, Russia
| | - Vadim Markovich Brodyansky
- Federal Medical Research Centre of Psychiatry and Addictology, Laboratory of Molecular Genetics, Moscow, Russia
| | - Valentin Yurievich Skryabin
- Moscow Research and Practical Centre on Addictions of the Moscow Department of Healthcare, Department of Addictology, Moscow, Russia
| | - Elena Anatolievna Grishina
- Russian Medical Academy of Continuous Professional Education of the Ministry of Health of the Russian Federation, Research Centre, Moscow, Russia
| | - Dmitry Vladimirovich Ivashchenko
- Russian Medical Academy of Continuous Professional Education of the Ministry of Health of the Russian Federation, Research Centre, Moscow, Russia
| | - Kristina Anatolievna Ryzhikova
- Russian Medical Academy of Continuous Professional Education of the Ministry of Health of the Russian Federation, Research Centre, Moscow, Russia
| | - Ludmila Mikhaylovna Savchenko
- Department of Addictology, Russian Medical Academy of Continuous Professional Education of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Alexander Olegovich Kibitov
- Federal Medical Research Centre of Psychiatry and Addictology, Laboratory of Molecular Genetics, Moscow, Russia
| | - Evgeny Alekseevich Bryun
- Department of Addictology, Russian Medical Academy of Continuous Professional Education of the Ministry of Health of the Russian Federation, Moscow, Russia.,Moscow Research and Practical Centre on Addictions of the Moscow Department of Healthcare, Department of Addictology, Moscow, Russia
| | - Dmitry Alekseevich Sychev
- Russian Medical Academy of Continuous Professional Education of the Ministry of Health of the Russian Federation, Department of Clinical Pharmacology and Therapy, Moscow, Russia
| |
Collapse
|
19
|
Research Domain Criteria versus DSM V: How does this debate affect attempts to model corticostriatal dysfunction in animals? Neurosci Biobehav Rev 2016; 76:301-316. [PMID: 27826070 DOI: 10.1016/j.neubiorev.2016.10.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 09/03/2016] [Accepted: 10/31/2016] [Indexed: 01/29/2023]
Abstract
For decades, the nosology of mental illness has been based largely upon the descriptions in the Diagnostic and Statistical Manual of the American Psychiatric Association (DSM). A recent challenge to the DSM approach to psychiatric nosology from the National Institute on Mental Health (USA) defines Research Domain Criteria (RDoC) as an alternative. For RDoC, psychiatric illnesses are not defined as discrete categories, but instead as specific behavioral dysfunctions irrespective of DSM diagnostic categories. This approach was driven by two primary weaknesses noted in the DSM: (1) the same symptoms occur in very different disease states; and (2) DSM criteria lack grounding in the underlying biological causes of mental illness. RDoC intends to ground psychiatric nosology in those underlying mechanisms. This review addresses the suitability of RDoC vs. DSM from the view of modeling mental illness in animals. A consideration of all types of psychiatric dysfunction is beyond the scope of this review, which will focus on models of conditions associated with frontostriatal dysfunction.
Collapse
|
20
|
Mas S, Gassó P, Lafuente A, Bioque M, Lobo A, Gonzàlez-Pinto A, Olmeda MS, Corripio I, Llerena A, Cabrera B, Saiz-Ruiz J, Bernardo M. Pharmacogenetic study of antipsychotic induced acute extrapyramidal symptoms in a first episode psychosis cohort: role of dopamine, serotonin and glutamate candidate genes. THE PHARMACOGENOMICS JOURNAL 2016; 16:439-45. [PMID: 27272046 DOI: 10.1038/tpj.2016.44] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 04/22/2016] [Accepted: 05/02/2016] [Indexed: 01/16/2023]
Abstract
This study investigated whether the risk of presenting antipsychotic (AP)-induced extrapyramidal symptoms (EPS) could be related to single-nucleotide polymorphisms (SNPs) in a naturalistic cohort of first episode psychosis (FEP) patients. Two hundred and two SNPs in 31 candidate genes (involved in dopamine, serotonin and glutamate pathways) were analyzed in the present study. One hundred and thirteen FEP patients (43 presenting EPS and 70 non-presenting EPS) treated with high-potency AP (amisulpride, paliperidone, risperidone and ziprasidone) were included in the analysis. The statistical analysis was adjusted by age, gender, AP dosage, AP combinations and concomitant treatments as covariates. Four SNPs in different genes (DRD2, SLC18A2, HTR2A and GRIK3) contributed significantly to the risk of EPS after correction for multiple testing (P<1 × 10(-4)). These findings support the involvement of dopamine, serotonin and glutamate pathways in AP-induced EPS.
Collapse
Affiliation(s)
- S Mas
- Department of Pathological Anatomy, Pharmacology and Microbiology, University of Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM),Madrid, Spain
| | - P Gassó
- Department of Pathological Anatomy, Pharmacology and Microbiology, University of Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM),Madrid, Spain
| | - A Lafuente
- Department of Pathological Anatomy, Pharmacology and Microbiology, University of Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM),Madrid, Spain
| | - M Bioque
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM),Madrid, Spain
- Barcelona Clínic Schizophrenia Unit, Hospital Clínic de Barcelona, Barcelona, Spain
| | - A Lobo
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM),Madrid, Spain
- Department of Medicine and Psychiatry, Instituto de Investigación Sanitaria Aragón (IIS Aragón), University of Zaragoza, Zaragoza, Spain
| | - A Gonzàlez-Pinto
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM),Madrid, Spain
- Department of Psychiatry, Hospital Universitario de Alava, University of the Basque Country, Leioa, Spain
| | - M S Olmeda
- Department of Psychiatry, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - I Corripio
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM),Madrid, Spain
- Department of Psychiatry, Hospital de Sant Pau, Barcelona, Spain
| | - A Llerena
- CICAB Clinical Research Centre, Extremadura University Hospital and Medical School Servicio Extremeño de Salud, Badajoz, Spain
| | - B Cabrera
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM),Madrid, Spain
- Barcelona Clínic Schizophrenia Unit, Hospital Clínic de Barcelona, Barcelona, Spain
| | - J Saiz-Ruiz
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM),Madrid, Spain
- Hospital Ramon y Cajal, Universidad de Alcala, IRYCIS, Madrid, Spain
| | - M Bernardo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM),Madrid, Spain
- Barcelona Clínic Schizophrenia Unit, Hospital Clínic de Barcelona, Barcelona, Spain
- Department of Psychiatry and Clinical Psychobiology, University of Barcelona, Barcelona, Spain
| |
Collapse
|
21
|
Miura I, Zhang JP, Hagi K, Lencz T, Kane JM, Yabe H, Malhotra AK, Correll CU. Variants in the DRD2 locus and antipsychotic-related prolactin levels: A meta-analysis. Psychoneuroendocrinology 2016; 72:1-10. [PMID: 27333159 PMCID: PMC10443951 DOI: 10.1016/j.psyneuen.2016.06.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 06/03/2016] [Accepted: 06/03/2016] [Indexed: 01/23/2023]
Abstract
BACKGROUND Although dopamine D2 receptor antagonists lead to dose-dependent prolactin (PRL) elevations proportionate to their D2 affinity, considerable inter-individual differences exist. We conducted a meta-analytic review of associations between genetic variations in the dopamine D2 receptor gene (DRD2) and PRL levels in antipsychotic-treated subjects. METHODS Systematic literature search (5/8/2015) was performed to find published studies of pharmacogenetic associations between two DRD2 variants, Taq1A (rs1800497) and -141C Ins/Del (rs1799732), and PRL levels during antipsychotic treatment (excluding aripiprazole). Patients were included independent of age or diagnosis. Random effects models were used and Hedges' g was calculated as the effect size measure. Subgroup analyses explored the effect of sex and diagnosis, (males vs females; schizophrenia vs non-schizophrenia). RESULTS Altogether, 11 studies (n=1034, schizophrenia-spectrum=475) for Taq1A polymorphism, and 4 studies (n=451, schizophrenia-spectrum=274) for -141C Ins/Del polymorphism, each reporting on PRL levels but not on the proportion of patients with hyperprolactinemia, were meta-analyzed. Across all patients, there was no statistically significant association between PRL levels and either DRD2 Taq1A genotype or DRD2 -141C Ins/Del genotype. However, in patients with schizophrenia, PRL levels were significantly higher in DRD2 Taq1A A1 carriers than A1 non-carriers (studies=5, n=475, Hedges' g=0.250, 95% CI=0.068-0.433, p=0.007, I(2)=0%). DISCUSSION Although there was no significant association between either DRD2 Taq1A genotype or DRD2 -141C Ins/Del genotype and PRL levels in all included patients, our results suggest that DRD2 Taq1A genotype may affect antipsychotic-related PRL levels in patients with schizophrenia. Because of the small sample size, further studies are needed to confirm these results.
Collapse
Affiliation(s)
- Itaru Miura
- The Zucker Hillside Hospital, Psychiatry Research, North Shore-Long Island Jewish Health System, Glen Oaks, NY, USA; Department of Neuropsychiatry, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Jian-Ping Zhang
- The Zucker Hillside Hospital, Psychiatry Research, North Shore-Long Island Jewish Health System, Glen Oaks, NY, USA; Hofstra North Shore LIJ School of Medicine, Hempstead, NY, USA; The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Katsuhiko Hagi
- The Zucker Hillside Hospital, Psychiatry Research, North Shore-Long Island Jewish Health System, Glen Oaks, NY, USA; Sumitomo Dainippon Pharma Co., Ltd., Medical Affairs, Tokyo, Japan
| | - Todd Lencz
- The Zucker Hillside Hospital, Psychiatry Research, North Shore-Long Island Jewish Health System, Glen Oaks, NY, USA; Hofstra North Shore LIJ School of Medicine, Hempstead, NY, USA; The Feinstein Institute for Medical Research, Manhasset, NY, USA; Albert Einstein College of Medicine, Bronx, NY, USA
| | - John M Kane
- The Zucker Hillside Hospital, Psychiatry Research, North Shore-Long Island Jewish Health System, Glen Oaks, NY, USA; Hofstra North Shore LIJ School of Medicine, Hempstead, NY, USA; The Feinstein Institute for Medical Research, Manhasset, NY, USA; Albert Einstein College of Medicine, Bronx, NY, USA
| | - Hirooki Yabe
- Department of Neuropsychiatry, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Anil K Malhotra
- The Zucker Hillside Hospital, Psychiatry Research, North Shore-Long Island Jewish Health System, Glen Oaks, NY, USA; Hofstra North Shore LIJ School of Medicine, Hempstead, NY, USA; The Feinstein Institute for Medical Research, Manhasset, NY, USA; Albert Einstein College of Medicine, Bronx, NY, USA
| | - Christoph U Correll
- The Zucker Hillside Hospital, Psychiatry Research, North Shore-Long Island Jewish Health System, Glen Oaks, NY, USA; Hofstra North Shore LIJ School of Medicine, Hempstead, NY, USA; The Feinstein Institute for Medical Research, Manhasset, NY, USA; Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
22
|
Porcelli S, Crisafulli C, Calabrò M, Serretti A, Rujescu D. Possible biomarkers modulating haloperidol efficacy and/or tolerability. Pharmacogenomics 2016; 17:507-29. [PMID: 27023437 DOI: 10.2217/pgs.16.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Haloperidol (HP) is widely used in the treatment of several forms of psychosis. Despite of its efficacy, HP use is a cause of concern for the elevated risk of adverse drug reactions. adverse drug reactions risk and HP efficacy greatly vary across subjects, indicating the involvement of several factors in HP mechanism of action. The use of biomarkers that could monitor or even predict HP treatment impact would be of extreme importance. We reviewed the elements that could potentially be used as peripheral biomarkers of HP effectiveness. Although a validated biomarker still does not exist, we underlined the several potential findings (e.g., about cytokines, HP metabolites and genotypic biomarkers) which could pave the way for future research on HP biomarkers.
Collapse
Affiliation(s)
- Stefano Porcelli
- Department of Biomedical & NeuroMotor Sciences, University of Bologna, Italy
| | - Concetta Crisafulli
- Department of Biomedical Science & Morphological & Functional Images, University of Messina, Italy
| | - Marco Calabrò
- Department of Biomedical Science & Morphological & Functional Images, University of Messina, Italy
| | - Alessandro Serretti
- Department of Biomedical & NeuroMotor Sciences, University of Bologna, Italy
| | - Dan Rujescu
- Department of Psychiatry, University of Halle, Halle, Germany
| |
Collapse
|
23
|
Arranz MJ, Gallego C, Salazar J, Arias B. Pharmacogenetic studies of drug response in schizophrenia. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2016. [DOI: 10.1080/23808993.2016.1140554] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
24
|
Gareeva AE, Kinyasheva KO, Galaktionova DY, Sabirov ET, Valinourov RG, Chudinov AV, Zasedatelev AS, Nasedkina TV, Khusnutdinova EK. Polymorphism of brain neurotransmitter system genes: Search for pharmacogenetic markers of haloperidol efficiency in Russians and Tatars. Mol Biol 2015. [DOI: 10.1134/s0026893315050076] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Mas S, Gassó P, Lafuente A. Applicability of gene expression and systems biology to develop pharmacogenetic predictors; antipsychotic-induced extrapyramidal symptoms as an example. Pharmacogenomics 2015; 16:1975-88. [PMID: 26556470 DOI: 10.2217/pgs.15.134] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Pharmacogenetics has been driven by a candidate gene approach. The disadvantage of this approach is that is limited by our current understanding of the mechanisms by which drugs act. Gene expression could help to elucidate the molecular signatures of antipsychotic treatments searching for dysregulated molecular pathways and the relationships between gene products, especially protein-protein interactions. To embrace the complexity of drug response, machine learning methods could help to identify gene-gene interactions and develop pharmacogenetic predictors of drug response. The present review summarizes the applicability of the topics presented here (gene expression, network analysis and gene-gene interactions) in pharmacogenetics. In order to achieve this, we present an example of identifying genetic predictors of extrapyramidal symptoms induced by antipsychotic.
Collapse
Affiliation(s)
- Sergi Mas
- Department of Pathological Anatomy, Pharmacology & Microbiology, University of Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | - Patricia Gassó
- Department of Pathological Anatomy, Pharmacology & Microbiology, University of Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Amelia Lafuente
- Department of Pathological Anatomy, Pharmacology & Microbiology, University of Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| |
Collapse
|
26
|
Kirnichnaya KA, Sosin DN, Ivanov MV, Mikhaylov VA, Ivashchenko DV, Ershov EE, Taraskina AE, Nasyrova RF, Krupitsky EM. [Pharmacogenetic-based risk assessment of antipsychotic-induced extrapyramidal symptoms]. Zh Nevrol Psikhiatr Im S S Korsakova 2015; 115:113-125. [PMID: 26322366 DOI: 10.17116/jnevro201511541113-125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
"Typical" antipsychotics remain the wide-prescribed drugs in modern psychiatry. But these drugs are associated with development of extrapyramidal symptoms (EPS). Preventive methods of EPS are actively developed and they concentrate on personalized approach. The method of taking into account genetic characteristics of patient for prescribing of treatment was proven as effective in cardiology, oncology, HIV-medicine. In this review the modern state of pharmacogenetic research of antipsychotic-induced EPS are considered. There are pharmacokinetic and pharmacodynamic factors which impact on adverse effects. Pharmacokinetic factors are the most well-studied to date, these include genetic polymorphisms of genes of cytochrome P450. However, evidence base while does not allow to do the significant prognosis of development of EPS based on genetic testing of CYP2D6 and CYP7A2 polymorphisms. Genes of pharmacodynamics factors, which realize the EPS during antipsychotic treatment, are the wide field for research. In separate part of review research of such systems as dopaminergic, serotonergic, adrenergic, glutamatergic, GABAergic, BDNF were analyzed. The role of oxidative stress factors in the pathogenesis of antipsychotic-induced EPS was enough detailed considered. The system of those factors may be used for personalized risk assessment of antipsychotics' safety in the future. Although there were numerous studies, the pharmacogenetic-based prevention of EPS before prescribing of antipsychotics was not introduced. However, it is possible to distinguish the most perspectives markers for further research. Furthermore, brief review of new candidate genes provides here, but only preliminary results were published. The main problem of the field is the lack of high- quality studies. Moreover, the several results were not replicated in repeat studies. The pharmacogenetic-based research must be standardized by ethnicity of patients. But there is the ethnical misbalance in world literature. These facts explain why the introduction of pharmacogenetic testing for risk assessment of antipsychotic-induced EPS is so difficult to achieve.
Collapse
Affiliation(s)
- K A Kirnichnaya
- Bekhterev St. Petersburg Psychoneurological Research Institute, St. Petersburg
| | - D N Sosin
- Bekhterev St. Petersburg Psychoneurological Research Institute, St. Petersburg
| | - M V Ivanov
- Bekhterev St. Petersburg Psychoneurological Research Institute, St. Petersburg
| | - V A Mikhaylov
- Bekhterev St. Petersburg Psychoneurological Research Institute, St. Petersburg
| | - D V Ivashchenko
- Bekhterev St. Petersburg Psychoneurological Research Institute, St. Petersburg
| | - E E Ershov
- Kashchenko St. Petersburg City Psychiatric Hospital #1, St. Petersburg
| | - A E Taraskina
- Bekhterev St. Petersburg Psychoneurological Research Institute, St. Petersburg; Pavlov First St. Petersburg State Medical University, St. Petersburg
| | - R F Nasyrova
- Bekhterev St. Petersburg Psychoneurological Research Institute, St. Petersburg
| | - E M Krupitsky
- Bekhterev St. Petersburg Psychoneurological Research Institute, St. Petersburg; Pavlov First St. Petersburg State Medical University, St. Petersburg
| |
Collapse
|
27
|
Hendren G, Aponte-Feliciano A, Kovac A. Safety and efficacy of commonly used antiemetics. Expert Opin Drug Metab Toxicol 2015; 11:1753-67. [DOI: 10.1517/17425255.2015.1080688] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
28
|
Genetics of psychotropic medication induced side effects in two independent samples of bipolar patients. J Neural Transm (Vienna) 2014; 122:43-58. [PMID: 25129258 DOI: 10.1007/s00702-014-1290-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 08/02/2014] [Indexed: 02/07/2023]
Abstract
The treatment of bipolar disorder (BD) usually requires combination therapies, with the critical issue of the emergence of adverse drug reactions (ADRs) and the possibility of low treatment adherence. Genetic polymorphisms are hypothesized to modulate the pharmacodynamics of psychotropic drugs, representing potential biological markers of ADRs. This study investigated genes involved in the regulation of neuroplasticity (BDNF, ST8SIA2), second messenger cascades (GSK3B, MAPK1, and CREB1), circadian rhythms (RORA), transcription (SP4, ZNF804A), and monoaminergic system (HTR2A and COMT) in the risk of neurological, psychic, autonomic, and other ADRs. Two independent samples of BD patients naturalistically treated were included (COPE-BD n = 147; STEP-BD n = 659). In the COPE-BD 34 SNPs were genotyped, while in the STEP-BD polymorphisms in the selected genes were extracted from the genome-wide dataset. Each ADRs group was categorized as absent-mild or moderate-severe and logistic regression with appropriate covariates was applied to identify possible risk genotypes/alleles. 58.5 and 93.5 % of patients were treated with mood stabilizers, 44.2 and 50.7 % were treated with antipsychotics, and 69.4 and 46.1 % were treated with antidepressants in the COPE-BD and STEP-BD, respectively. Our findings suggested that ST8SIA2 may be associated with psychic ADRs, as shown in the COPE-BD (rs4777989 p = 0.0017) and STEP-BD (rs56027313, rs13379489 and rs10852173). A cluster of RORA SNPs around rs2083074 showed an effect on psychic ADRs in the STEP-BD. Trends supporting the association between HTR2A and autonomic ADRs were found in both samples. Confirmations are needed particularly for ST8SIA2 and RORA since the few available data regarding their role in relation to psychotropic ADRs.
Collapse
|
29
|
Lin E, Lane HY. Research Highlights: Genetic association of the NDUFS1 gene with antipsychotic-induced weight gain in schizophrenia. Pharmacogenomics 2014; 15:415-7. [DOI: 10.2217/pgs.14.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Eugene Lin
- Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
- Vita Genomics, Inc., 7th Floor, Number 6, Section 1, Jung-Shing Road, Wugu Shiang, Taipei, Taiwan
| | - Hsien-Yuan Lane
- Department of Psychiatry, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|