1
|
Liu Z, You C. The bile acid profile. Clin Chim Acta 2024; 565:120004. [PMID: 39419312 DOI: 10.1016/j.cca.2024.120004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
As a large and structurally diverse family of small molecules, bile acids play a crucial role in regulating lipid, glucose, and energy metabolism. In the human body, bile acids share a similar chemical structure with many isomers, exhibit little difference in polarity, and possess various physiological activities. The types and contents of bile acids present in different diseases vary significantly. Therefore, comprehensive and accurate detection of the content of various types of bile acids in different biological samples can not only provide new insights into the pathogenesis of diseases but also facilitate the exploration of novel strategies for disease diagnosis, treatment, and prognosis. The detection of disease-induced changes in bile acid profiles has emerged as a prominent research focus in recent years. Concurrently, targeted metabolomics methods utilizing high-performance liquid chromatography-mass spectrometry (HPLC-MS) have progressively established themselves as the predominant technology for the separation and detection of bile acids. Bile acid profiles will increasingly play an important role in diagnosis and guidance in the future as the relationship between disease and changes in bile acid profiles becomes clearer. This highlights the growing diagnostic value of bile acid profiles and their potential to guide clinical decision-making. This review aims to explore the significance of bile acid profiles in clinical diagnosis from four perspectives: the synthesis and metabolism of bile acids, techniques for detecting bile acid profiles, changes in bile acid profiles associated with diseases, and the challenges and future prospects of applying bile acid profiles in clinical settings.
Collapse
Affiliation(s)
- Zhenhua Liu
- Laboratory Medicine Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Chongge You
- Laboratory Medicine Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China.
| |
Collapse
|
2
|
Ferdous SE, Ferrell JM. Pathophysiological Relationship between Type 2 Diabetes Mellitus and Metabolic Dysfunction-Associated Steatotic Liver Disease: Novel Therapeutic Approaches. Int J Mol Sci 2024; 25:8731. [PMID: 39201418 PMCID: PMC11354927 DOI: 10.3390/ijms25168731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 09/02/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM), often featuring hyperglycemia or insulin resistance, is a global health concern that is increasing in prevalence in the United States and worldwide. A common complication is metabolic dysfunction-associated steatotic liver disease (MASLD), the hepatic manifestation of metabolic syndrome that is also rapidly increasing in prevalence. The majority of patients with T2DM will experience MASLD, and likewise, individuals with MASLD are at an increased risk for developing T2DM. These two disorders may act synergistically, in part due to increased lipotoxicity and inflammation within the liver, among other causes. However, the pathophysiological mechanisms by which this occurs are unclear, as is how the improvement of one disorder can ameliorate the other. This review aims to discuss the pathogenic interactions between T2D and MASLD, and will highlight novel therapeutic targets and ongoing clinical trials for the treatment of these diseases.
Collapse
Affiliation(s)
- Shifat-E Ferdous
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA;
- School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA
| | - Jessica M. Ferrell
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA;
- School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
3
|
Lin YC, Chen IC, Chen YJ, Lin CT, Chang JC, Wang TJ, Chen YM, Lin CH. Association between HNF4A rs1800961 polymorphisms and gallstones in a Taiwanese population. J Gastroenterol Hepatol 2024; 39:305-311. [PMID: 38058101 DOI: 10.1111/jgh.16426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 09/22/2023] [Accepted: 11/05/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND AND AIM A large genetic effect of a novel gallstone-associated genetic variant, the hepatocyte nuclear factor 4α (HNF4A) rs1800961 polymorphism, has been identified through recent genome-wide association studies. However, this effect has not been validated in Asian populations. We investigated the association between the rs1800961 variant and gallstones among a Taiwanese population. METHODS A total of 20 405 participants aged between 30 and 70 years voluntarily enrolled in the Taiwan Biobank. Self-report questionnaires, physical examinations, biochemical tests, and genotyping were used for analysis. The association of the HNF4A rs1800961 variant and other metabolic risks with gallstone disease was analyzed using multiple logistic regression models. RESULTS The minor T allele of HNF4A rs1800961 was associated with an increased risk of gallstone, and the association remained significant even after adjustment for other risk factors including age, body mass index (BMI), diabetes, hyperlipidemia, hypertension, and cigarette smoking (adjusted odds ratio [OR] = 1.90, 95% confidence interval [CI] = 1.31 to 2.75) in male participants. When further stratified by BMI and age, the lithogenic effect was the most significant in male participants with obesity (adjusted OR = 3.55, 95% CI = 1.92 to 6.56) and who were younger (adjusted OR = 2.45, 95% CI = 1.49 to 4.04). CONCLUSION The novel gallstone-associated HNF4A rs1800961 variant was associated with the risk of gallstone in the Taiwanese men. Screening for the rs1800961 polymorphism may be particularly useful in assessing the risk of gallstone formation in younger or obese men.
Collapse
Affiliation(s)
- Ying-Cheng Lin
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - I-Chieh Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yen-Ju Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ching-Tsai Lin
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jui-Chun Chang
- Department of Obstetrics and Gynecology and Women's Health, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Tsai-Jung Wang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Nephrology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Critical Care Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yi-Ming Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
- Precision Medicine Research Center, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Ching-Heng Lin
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Public Health, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
- Department of Industrial Engineering and Enterprise Information, Tunghai University, Taichung, Taiwan
- Institute of Public Health and Community Medicine Research Center, National Yang Ming Chiao Tung University, Taipei City, Taiwan
| |
Collapse
|
4
|
Groenen C, Nguyen TA, Paulusma C, van de Graaf S. Bile salt signaling and bile salt-based therapies in cardiometabolic disease. Clin Sci (Lond) 2024; 138:1-21. [PMID: 38180064 PMCID: PMC10767275 DOI: 10.1042/cs20230934] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/23/2023] [Accepted: 12/05/2023] [Indexed: 01/06/2024]
Abstract
Bile salts have an established role in the emulsification and intestinal absorption of dietary lipids, and their homeostasis is tightly controlled by various transporters and regulators in the enterohepatic circulation. Notably, emerging evidence points toward bile salts as major modulators of cardiometabolic disease (CMD), an umbrella disease of disorders affecting the heart and blood vessels that is caused by systemic metabolic diseases such as Type 2 diabetes mellitus (T2DM) and metabolic dysfunction-associated steatotic liver disease (MASLD), the latter encompassing also metabolic dysfunction-associated steatohepatitis (MASH). The underlying mechanisms of protective effects of bile salts are their hormonal properties, enabling them to exert versatile metabolic effects by activating various bile salt-responsive signaling receptors with the nuclear farnesoid X receptor (FXR) and the Takeda G-protein-coupled receptor 5 (TGR5) as most extensively investigated. Activation of FXR and TGR5 is involved in the regulation of glucose, lipid and energy metabolism, and inflammation. Bile salt-based therapies directly targeting FXR and TGR5 signaling have been evaluated for their therapeutic potential in CMD. More recently, therapeutics targeting bile salt transporters thereby modulating bile salt localization, dynamics, and signaling, have been developed and evaluated in CMD. Here, we discuss the current knowledge on the contribution of bile salt signaling in the pathogenesis of CMD and the potential of bile salt-based therapies for the treatment of CMD.
Collapse
Affiliation(s)
- Claire C.J. Groenen
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism (AGEM), Amsterdam University Medical Centers, The Netherlands
| | - Thuc-Anh Nguyen
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism (AGEM), Amsterdam University Medical Centers, The Netherlands
| | - Coen C. Paulusma
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism (AGEM), Amsterdam University Medical Centers, The Netherlands
| | - Stan F.J. van de Graaf
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism (AGEM), Amsterdam University Medical Centers, The Netherlands
| |
Collapse
|
5
|
Cai W, Li C, Su Z, Cao J, Chen Z, Chen Y, Guo Z, Cai J, Xu F. Profile of the bile acid FXR-FGF15 pathway in the glucolipid metabolism disorder of diabetic mice suffering from chronic stress. PeerJ 2023; 11:e16407. [PMID: 38025699 PMCID: PMC10656902 DOI: 10.7717/peerj.16407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023] Open
Abstract
Background Imbalances in bile acid (BA) synthesis and metabolism are involved in the onset of diabetes and depression in humans and rodents. However, the role of BAs and the farnesoid X receptor (FXR)/fibroblast growth factor (FGF) 15 signaling pathway in the development of diabetes and depression is still largely unknown. Therefore, we investigated the potential molecular mechanisms of BAs that may be associated with glucolipid metabolism disorders in diabetic mice subjected to chronic stress. Methods The type 2 diabetes mellitus (T2DM) mouse model was induced by feeding mice a high-fat diet and administering an intraperitoneal injection of streptozotocin (STZ). The chronic unpredictable mild stress (CUMS) procedure was performed by introducing a series of mild stressors. Forty mice were randomly divided into the regular chow feeding group and the high-fat diet feeding group. After two weeks of feeding, the mice were randomly divided into four groups: the Control group, CUMS group, T2DM group, and T2DM+CUMS group. The T2DM group and T2DM+CUMS group received an intraperitoneal injection of STZ to induce the T2DM model. The CUMS and T2DM+CUMS groups were exposed to CUMS to induce depressive-like phenotypes. Blood and tissue samples were obtained for pertinent analysis and detection. Results Compared with the T2DM mice, T2DM+CUMS mice had higher blood glucose and lipid levels, insulin resistance, inflammation of the liver and pancreas, impaired liver function, and increased total bile acids. These changes were accompanied by attenuated FXR signaling. Chronic stress was found to attenuate FXR expression and its downstream target, FGF15, in the ileum when compared with the T2DM group. Conclusion FXR may play a role in the diabetic disorder of glucolipid metabolism when aggravated by chronic stress. FXR and its downstream target, FGF15, may be therapeutic targets for treating comorbid T2DM and depression.
Collapse
Affiliation(s)
- Weijia Cai
- Fengxian Hospital, Southern Medical University, Shanghai, China
- School of Pharmaceutical Science, Southern Medical University, Guangzhou, China
| | - Canye Li
- Fengxian Hospital, Southern Medical University, Shanghai, China
- School of Pharmaceutical Science, Southern Medical University, Guangzhou, China
| | - Zuanjun Su
- Fengxian Hospital, Southern Medical University, Shanghai, China
- School of Pharmaceutical Science, Southern Medical University, Guangzhou, China
| | - Jinming Cao
- Fengxian Hospital, Southern Medical University, Shanghai, China
- School of Pharmaceutical Science, Southern Medical University, Guangzhou, China
| | - Zhicong Chen
- Fengxian Hospital, Southern Medical University, Shanghai, China
- School of Pharmaceutical Science, Southern Medical University, Guangzhou, China
| | - Yitian Chen
- Fengxian Hospital, Southern Medical University, Shanghai, China
- School of Pharmaceutical Science, Southern Medical University, Guangzhou, China
| | - Zhijun Guo
- Heyou Meihe Hospital, Foshan, Guangdong, China
| | - Jian Cai
- Fengxian Mental Health Center, Shanghai, China
| | - Feng Xu
- Fengxian Hospital, Southern Medical University, Shanghai, China
- Sixth People’ s Hospital South Campus, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
6
|
Mahdavi A, Trottier J, Barbier O, Lebel M, Rudkowska I. Dairy Intake Modifies the Level of the Bile Acid Precursor and Its Correlation with Serum Proteins Associated with Cholesterol Clearance in Subjects with Hyperinsulinemia. Nutrients 2023; 15:4707. [PMID: 38004101 PMCID: PMC10675775 DOI: 10.3390/nu15224707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Bile acids regulate glucose homeostasis and lipid metabolism. Further, the levels of bile acids can be influenced by the intake of dairy products. Although the serum proteome can provide information on the biological pathways associated with different metabolites, it is unknown whether the intake of dairy modifies such associations between bile acids and the proteome. The objectives of this study were to examine plasma bile acid profiles, find the correlations between bile acids and lipid as well as glycemic markers, and to uncover the correlation between bile acids and proteins after high dairy (HD) and adequate dairy (AD) intake among 25 overweight individuals with hyperinsulinemia. In this randomized crossover-trial study, hyperinsulinemia adults were randomized to both HD (≥4 servings/day) and AD (≤2 servings/day) for 6 weeks. Measurements and analyses were performed on before- as well as after- AD and HD conditions. The results indicated that plasma 7α-hydroxy-4-cholesten-3-one (7AC4) increased after HD in comparison with before HD intake (p = 0.03). After adjusting for BMI, age, and sex, 7AC4 positively correlated with triglyceride levels in the pre-AD (r = 0.44; p = 0.03) and post-HD (r = 0.42; p = 0.04). Further, 7AC4 correlated positively with proteins associated with high-density lipoprotein particle remodeling pathway and reverse cholesterol transport only after HD consumption. Thus, the consumption of higher dairy intake modifies the association between 7AC4-a biomarker for bile acid synthesis-and serum proteins involved in cholesterol clearance. Overall, higher dairy consumption may have a positive effect on cholesterol metabolism in subjects at risk of type 2 diabetes.
Collapse
Affiliation(s)
- Atena Mahdavi
- Endocrinology and Nephrology, CHU de Québec Research Center—Université Laval, Quebec City, QC G1V 4G2, Canada;
| | - Jocelyn Trottier
- Laboratory of Molecular Pharmacology, CHU de Québec Research Center—Université Laval, Quebec City, QC G1V 4G2, Canada; (J.T.); (O.B.)
| | - Olivier Barbier
- Laboratory of Molecular Pharmacology, CHU de Québec Research Center—Université Laval, Quebec City, QC G1V 4G2, Canada; (J.T.); (O.B.)
- Faculty of Pharmacy, Université Laval, Quebec City, QC G1V 4G2, Canada
| | - Michel Lebel
- Endocrinology and Nephrology, CHU de Québec Research Center—Université Laval, Quebec City, QC G1V 4G2, Canada;
- Department of Molecular Biology, Medical Biochemistry, and Pathology, Université Laval, Quebec City, QC G1V 4G2, Canada
| | - Iwona Rudkowska
- Endocrinology and Nephrology, CHU de Québec Research Center—Université Laval, Quebec City, QC G1V 4G2, Canada;
- Department of Kinesiology, Faculty of Medicine, Université Laval, Quebec City, QC G1V 4G2, Canada
| |
Collapse
|
7
|
Tveter KM, Mezhibovsky E, Wu Y, Roopchand DE. Bile acid metabolism and signaling: Emerging pharmacological targets of dietary polyphenols. Pharmacol Ther 2023; 248:108457. [PMID: 37268113 PMCID: PMC10528343 DOI: 10.1016/j.pharmthera.2023.108457] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/03/2023] [Accepted: 05/22/2023] [Indexed: 06/04/2023]
Abstract
Beyond their role as emulsifiers of lipophilic compounds, bile acids (BAs) are signaling endocrine molecules that show differential affinity and specificity for a variety of canonical and non-canonical BA receptors. Primary BAs (PBAs) are synthesized in the liver while secondary BAs (SBAs) are gut microbial metabolites of PBA species. PBAs and SBAs signal to BA receptors that regulate downstream pathways of inflammation and energy metabolism. Dysregulation of BA metabolism or signaling has emerged as a feature of chronic disease. Dietary polyphenols are non-nutritive plant-derived compounds associated with decreased risk of metabolic syndrome, type-2 diabetes, hepatobiliary and cardiovascular disease. Evidence suggests that the health promoting effects of dietary polyphenols are linked to their ability to alter the gut microbial community, the BA pool, and BA signaling. In this review we provide an overview of BA metabolism and summarize studies that link the cardiometabolic improvements of dietary polyphenols to their modulation of BA metabolism and signaling pathways, and the gut microbiota. Finally, we discuss approaches and challenges in deciphering cause-effect relationships between dietary polyphenols, BAs, and gut microbes.
Collapse
Affiliation(s)
- Kevin M Tveter
- Rutgers, The State University of New Jersey, Department of Food Science, Institute for Food Nutrition and Health [Center for Microbiome, Nutrition and Health & Rutgers Center for Lipid Research], 61 Dudley Road, New Brunswick, NJ 08901, USA
| | - Esther Mezhibovsky
- Rutgers, The State University of New Jersey, Department of Food Science, Institute for Food Nutrition and Health [Center for Microbiome, Nutrition and Health & Rutgers Center for Lipid Research], 61 Dudley Road, New Brunswick, NJ 08901, USA
| | - Yue Wu
- Rutgers, The State University of New Jersey, Department of Food Science, Institute for Food Nutrition and Health [Center for Microbiome, Nutrition and Health & Rutgers Center for Lipid Research], 61 Dudley Road, New Brunswick, NJ 08901, USA
| | - Diana E Roopchand
- Rutgers, The State University of New Jersey, Department of Food Science, Institute for Food Nutrition and Health [Center for Microbiome, Nutrition and Health & Rutgers Center for Lipid Research], 61 Dudley Road, New Brunswick, NJ 08901, USA.
| |
Collapse
|
8
|
Tomar M, Sharma A, Araniti F, Pateriya A, Shrivastava A, Tamrakar AK. Distinct Metabolomic Profiling of Serum Samples from High-Fat-Diet-Induced Insulin-Resistant Mice. ACS Pharmacol Transl Sci 2023; 6:771-782. [PMID: 37200804 PMCID: PMC10186361 DOI: 10.1021/acsptsci.3c00028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Indexed: 05/20/2023]
Abstract
High-fat-diet (HFD)-induced obesity is associated with an elevated risk of insulin resistance (IR), which may precede the onset of type 2 diabetes mellitus and associated metabolic complications. Being a heterogeneous metabolic condition, it is pertinent to understand the metabolites and metabolic pathways that are altered during the development and progression of IR toward T2DM. Serum samples were collected from C57BL/6J mice fed with HFD or chow diet (CD) for 16 weeks. Collected samples were analyzed by gas chromatography-tandem mass spectrometry (GC-MS/MS). Data on the identified raw metabolites were evaluated using a combination of univariate and multivariate statistical methods. Mice fed with HFD had glucose and insulin intolerance associated with impairment of insulin signaling in key metabolic tissues. From the GC-MS/MS analysis of serum samples, a total of 75 common annotated metabolites were identified between HFD- and CD-fed mice. In the t-test, 22 significantly altered metabolites were identified. Out of these, 16 metabolites were up-accumulated, whereas 6 metabolites were down-accumulated. Pathway analysis identified 4 significantly altered metabolic pathways. In particular, primary bile acid biosynthesis and linoleic acid metabolism were upregulated, whereas the TCA cycle and pentose and glucuronate interconversion were downregulated in HFD-fed mice in comparison to CD-fed mice. These results show the distinct metabolic profiles associated with the onset of IR that could provide promising metabolic biomarkers for diagnostic and clinical applications.
Collapse
Affiliation(s)
- Manendra
Singh Tomar
- Centre
for Advance Research, Faculty of Medicine, King George’s Medical University, Lucknow 226003, India
| | - Aditya Sharma
- Division
of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Fabrizio Araniti
- Dipartimento
di Scienze Agrarie e Ambientali—Produzione, Territorio, Agroenergia, Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy
| | - Ankit Pateriya
- Centre
for Advance Research, Faculty of Medicine, King George’s Medical University, Lucknow 226003, India
| | - Ashutosh Shrivastava
- Centre
for Advance Research, Faculty of Medicine, King George’s Medical University, Lucknow 226003, India
| | - Akhilesh Kumar Tamrakar
- Division
of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| |
Collapse
|
9
|
Gallage S, Avila JEB, Ramadori P, Focaccia E, Rahbari M, Ali A, Malek NP, Anstee QM, Heikenwalder M. A researcher's guide to preclinical mouse NASH models. Nat Metab 2022; 4:1632-1649. [PMID: 36539621 DOI: 10.1038/s42255-022-00700-y] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 10/26/2022] [Indexed: 12/24/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) and its inflammatory form, non-alcoholic steatohepatitis (NASH), have quickly risen to become the most prevalent chronic liver disease in the Western world and are risk factors for the development of hepatocellular carcinoma (HCC). HCC is not only one of the most common cancers but is also highly lethal. Nevertheless, there are currently no clinically approved drugs for NAFLD, and NASH-induced HCC poses a unique metabolic microenvironment that may influence responsiveness to certain treatments. Therefore, there is an urgent need to better understand the pathogenesis of this rampant disease to devise new therapies. In this line, preclinical mouse models are crucial tools to investigate mechanisms as well as novel treatment modalities during the pathogenesis of NASH and subsequent HCC in preparation for human clinical trials. Although, there are numerous genetically induced, diet-induced and toxin-induced models of NASH, not all of these models faithfully phenocopy and mirror the human pathology very well. In this Perspective, we shed some light onto the most widely used mouse models of NASH and highlight some of the key advantages and disadvantages of the various models with an emphasis on 'Western diets', which are increasingly recognized as some of the best models in recapitulating the human NASH pathology and comorbidities.
Collapse
Affiliation(s)
- Suchira Gallage
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- The M3 Research Institute, Eberhard Karls University Tübingen, Tuebingen, Germany.
| | - Jose Efren Barragan Avila
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Pierluigi Ramadori
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Enrico Focaccia
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mohammad Rahbari
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Adnan Ali
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nisar P Malek
- The M3 Research Institute, Eberhard Karls University Tübingen, Tuebingen, Germany
- Department Internal Medicine I, Eberhard-Karls University, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, Tuebingen, Germany
| | - Quentin M Anstee
- Newcastle NIHR Biomedical Research Centre, Newcastle upon Tyne Hospitals, NHS Foundation Trust, Newcastle upon Tyne, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Mathias Heikenwalder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- The M3 Research Institute, Eberhard Karls University Tübingen, Tuebingen, Germany.
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, Tuebingen, Germany.
| |
Collapse
|
10
|
Aggarwal H, Pathak P, Gupta SK, Kumar Y, Jagavelu K, Dikshit M. Serum and cecal metabolic profile of the insulin resistant and dyslipidemic p47 phox knockout mice. Free Radic Res 2022; 56:483-497. [PMID: 36251883 DOI: 10.1080/10715762.2022.2133705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Involvement of NOX-dependent oxidative stress in the pathophysiology of metabolic disorders as well as in the maintenance of metabolic homeostasis has been demonstrated previously. In the present study, the metabolic profile in p47phox-/- and WT mice fed on a chow diet was evaluated to assess the role of metabolites in glucose intolerance and dyslipidemia under altered oxidative stress conditions. p47phox-/- mice displayed glucose intolerance, dyslipidemia, hyperglycemia, insulin resistance (IR), hyperinsulinemia, and altered energy homeostasis without any significant change in gluconeogenesis. The expression of genes involved in lipid synthesis and uptake was enhanced in the liver, adipose tissue, and intestine tissues. Similarly, the expression of genes associated with lipid efflux in the liver and intestine was also enhanced. Enhanced gut permeability, inflammation, and shortening of the gut was evident in p47phox-/- mice. Circulating levels of pyrimidines, phosphatidylglycerol lipids, and 3-methyl-2-oxindole were augmented, while level of purine was reduced in the serum. Moreover, the cecal metabolome was also altered, as was evident with the increase in indole-3-acetamide, N-acetyl galactosamine, glycocholate, and a decrease in hippurate, indoxyl sulfate, and indigestible sugars (raffinose and melezitose). Treatment of p47phox-/- mice with pioglitazone, marginally improved glucose intolerance, and dyslipidemia, with an increase in PUFAs (linoleate, docosahexaenoic acid, and arachidonic acid). Overall, the results obtained in p47phox-/- mice indicate an association of IR and dyslipidemia with altered serum and cecal metabolites (both host and bacterial-derived), implying a critical role of NOX-derived ROS in metabolic homeostasis.
Collapse
Affiliation(s)
- Hobby Aggarwal
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India.,Non-Communicable Diseases Division, Translational Health Science and Technology Institute, Faridabad, India
| | - Priya Pathak
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Sonu Kumar Gupta
- Non-Communicable Diseases Division, Translational Health Science and Technology Institute, Faridabad, India
| | - Yashwant Kumar
- Non-Communicable Diseases Division, Translational Health Science and Technology Institute, Faridabad, India
| | | | - Madhu Dikshit
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India.,Translational Health Science and Technology Institute, Faridabad, India
| |
Collapse
|
11
|
Wu S, Zhao W, Yu Z, Liu J. Antihypertensive effect and underlying mechanism of tripeptide NCW on spontaneously hypertensive rats using metabolomics analysis. Food Funct 2022; 13:1808-1821. [PMID: 35084009 DOI: 10.1039/d1fo03924e] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tripeptide NCW identified in our previous study displayed a strong ACE inhibitory activity, but whether it has any antihypertensive effect in vivo remains unknown. Thus, in this study, we aimed to investigate the protective effects of tripeptide NCW in spontaneously hypertensive rats (SHRs) and to further figure out the serum metabolic profiling variations due to its oral administration via UPLC-Q-TOF-MS/MS-based metabolomics analysis to clarify the underlying hypotensive mechanism. After three weeks of oral administration, the tripeptide NCW-treated group (NCW/SHR group, 80 mg per kg BW per d) showed significantly reduced systolic and diastolic blood pressure by 48.08 ± 3.84 mmHg and 48.92 ± 5.77 mmHg, respectively. Additionally, a total of 25 blood pressure-related metabolites were identified as being significantly changed in SHRs given tripeptide NCW after three weeks. These 25 metabolites might be biomarkers that indicated that the tripeptide NCW exhibits antihypertensive activity via regulating bile acid metabolism, lipid metabolism, amino acid metabolism, purinergic signaling, pantothenate and CoA biosynthesis, and the citrate cycle. Collectively, tripeptide NCW has a protective effect on SHRs associated with serum metabolite abnormalities.
Collapse
Affiliation(s)
- Sijia Wu
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, P.R. China. .,Lab of Nutrition and Functional Food, Jilin University, Changchun 130062, P.R. China
| | - Wenzhu Zhao
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, P.R. China.
| | - Zhipeng Yu
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, P.R. China.
| | - Jingbo Liu
- Lab of Nutrition and Functional Food, Jilin University, Changchun 130062, P.R. China
| |
Collapse
|
12
|
Zhou Y, Ye D, Yuan X, Zhou Y, Xia J. Serum Bile Acid Profiles in Latent Autoimmune Diabetes in Adults and Type 2 Diabetes Patients. J Diabetes Res 2022; 2022:2391188. [PMID: 35242878 PMCID: PMC8888061 DOI: 10.1155/2022/2391188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/10/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Impaired bile acid (BA) metabolism has been associated with the progression of type 2 diabetes (T2D). However, the contribution of BAs to the pathogenesis of latent autoimmune diabetes in adults (LADA) remains unclear. This study was aimed at investigating the association of serum BAs with different diabetes types and analyzing its correlation with main clinical and laboratory parameters. METHODS Patients with LADA, patients with T2D, and healthy controls (HCs) were enrolled. Serum BA profiles and inflammatory cytokines were measured. The correlation of BA species with different indicators was assessed by Spearman's correlation method. RESULTS Patients with diabetes (LADA and T2D) had significantly higher serum BAs, especially conjugated BAs, compared with those in HCs. Nevertheless, serum BA profiles had no special role in the progression of LADA, because no significant differences in BAs were observed between LADA and T2D patients. Interestingly, HbA1c levels and HOMA-β were found to be correlated with a series of BA species. Proinflammatory cytokines (IL-1β, IL-6, and TNF-α) and anti-inflammatory cytokine (IL-10) were all positively associated with several BA species, especially the conjugated secondary BAs. CONCLUSION Serum BAs regulate glucose homeostasis, but have no special value in the pathogenesis of LADA patients. Our study adds further information about the potential value of serum BAs in different types of diabetes.
Collapse
Affiliation(s)
- Yu Zhou
- Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Zhejiang, 310014 Hangzhou, China
| | - Deli Ye
- Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Zhejiang, 310014 Hangzhou, China
| | - Xiaofen Yuan
- Hangzhou Calibra Diagnostics Co., Ltd, Gene Town, Zijin Park, 859 Shixiang West Road, Xihu District, Hangzhou, Zhejiang, China
| | - Yonglie Zhou
- Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Zhejiang, 310014 Hangzhou, China
| | - Jun Xia
- Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Zhejiang, 310014 Hangzhou, China
| |
Collapse
|
13
|
Kusuma R, Widada J, Huriyati E, Julia M. Naturally Acquired Lactic Acid Bacteria from Fermented Cassava Improves Nutrient and Anti-dysbiosis Activity of Soy Tempeh. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.7540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Introduction: Gut microbiota dysbiosis indicated by increased gram-negative bacteria and reduced Firmicutes-producing short chain fatty acids bacteria has been linked with impairment in glucose metabolism. Tempeh is traditional fermented soy food that can stimulate the growth of beneficial bacteria. In Indonesia, some tempeh was produced by adding acidifier that contains lactic acid bacteria. This process may impact the nutrient and anti-dysbiosis activity of tempeh.
Objectives: To evaluate the impact of acidifier on nutrient and gut microbiota profile of diabetic animal model.
Method: Modified tempeh was made by addition of water extract of fermented cassava. Standard and modified tempeh were subjected to proximate analysis and dietary fibre. Diabetic animals were received standard tempeh or modified tempeh diet replacing 15% and 30% of protein in the diet for 4 weeks of intervention. At the end of experiment, caecal content was collected. Short chain fatty acids and microbiota composition were analysed using 16s rDNA next generation sequencing (NGS).
Result: There is significant different (p<0.05) on fat, protein, water and dietary fibre content between regular soy tempeh and modified tempeh. There is significant different (p<0.05) on serum glucose and short chain fatty acid composition among group. Diabetic animal has low ratio of Firmicutes/Bacteroidetes. Supplementation of both tempeh increased bacterial diversity, Firmicutes /Bacteroidetes ratio and short chain fatty acids producing bacteria.
Conclusion: Addition of naturally occurred lactic acid bacteria from fermented cassava during tempeh processing improved both nutrient and microbiota composition in the gut of diabetes mellitus.
Collapse
|
14
|
Qi L, Tian Y, Chen Y. Circulating Bile Acid Profiles: A Need for Further Examination. J Clin Endocrinol Metab 2021; 106:3093-3112. [PMID: 34279029 DOI: 10.1210/clinem/dgab531] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Indexed: 12/15/2022]
Abstract
CONTEXT Bile acids (BAs) are increasingly recognized as metabolic and chronobiologic integrators that synchronize the systemic metabolic response to nutrient availability. Alterations in the concentration and/or composition of circulating BAs are associated with a number of metabolic disorders, such as obesity, type 2 diabetes mellitus (T2DM), insulin resistance (IR), and metabolic associated fatty liver disease (MAFLD). This review summarizes recent evidence that links abnormal circulating BA profiles to multiple metabolic disorders, and discusses the possible mechanisms underlying the connections to determine the role of BA profiling as a novel biomarker for these abnormalities. EVIDENCE ACQUISITION The review is based on a collection of primary and review literature gathered from a PubMed search of BAs, T2DM, IR, and MAFLD, among other keywords. EVIDENCE SYNTHESIS Obese and IR subjects appear to have elevated fasting circulating BAs but lower postprandial increase when compared with controls. The possible underlying mechanisms are disruption in the synchronization between the feeding/fasting cycle and the properties of BA-regulated metabolic pathways. Whether BA alterations are associated per se with MAFLD remains inconclusive. However, increased fasting circulating BAs level was associated with higher risk of advanced fibrosis stage. Thus, for patients with MAFLD, dynamically monitoring the circulating BA profiles may be a promising tool for the stratification of MAFLD. CONCLUSIONS Alterations in the concentration, composition, and rhythm of circulating BAs are associated with adverse events in systemic metabolism. Subsequent investigations regarding these aspects of circulating BA kinetics may help predict future metabolic disorders and guide therapeutic interventions.
Collapse
Affiliation(s)
- Li Qi
- Department of Rheumatology and Immunology, Shengjing Hospital of China Medical University, Shenyang, 110022, Liaoning Province, China
| | - Yu Tian
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Yongsheng Chen
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| |
Collapse
|
15
|
Wang Z, Nagy RA, Groen H, Cantineau AEP, van Oers AM, van Dammen L, Wekker V, Roseboom TJ, Mol BWJ, Tietge UJF, Hoek A. Preconception insulin resistance and neonatal birth weight in women with obesity: role of bile acids. Reprod Biomed Online 2021; 43:931-939. [PMID: 34627684 DOI: 10.1016/j.rbmo.2021.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/29/2021] [Accepted: 08/02/2021] [Indexed: 11/29/2022]
Abstract
RESEARCH QUESTION Does maternal preconception insulin resistance affect neonatal birth weight among women with obesity? Is insulin resistance associated with circulating bile acids? Do bile acids influence the association between maternal preconception insulin resistance and neonatal birth weight? DESIGN An exploratory post-hoc analysis of the LIFEstyle randomized controlled trial comparing lifestyle intervention with conventional infertility treatment in women with a BMI of ≥29 kg/m2. Fasting blood samples were collected at randomization and after 3 and 6 months in 469 women. Insulin resistance was quantified using the homeostasis model assessment of insulin resistance (HOMA-IR). Bile acid sub-species were determined by liquid chromatography with tandem mass spectrometry. Singletons were included (n = 238). Birth weight Z-scores were adjusted for age, offspring gender and parity. Multilevel analysis and linear regressions were used. RESULTS A total of 913 pairs of simultaneous preconception HOMA-IR (median [Q25; Q75]: 2.96 [2.07; 4.16]) and total bile acid measurements (1.79 [1.10; 2.94]) µmol/l were taken. Preconception HOMA-IR was positively associated with total bile acids (adjusted B 0.15; 95% CI 0.09 to 0.22; P < 0.001) and all bile acid sub-species. At the last measurement before pregnancy, HOMA-IR (2.71 [1.91; 3.74]) was positively related to birth weight Z-score (mean ± SD 0.4 ± 1.1; adjusted B 0.08; 95% CI 0.01 to 0.14; P = 0.03). None of the preconception bile acids measured were associated with birth weight. CONCLUSION Maternal preconception insulin resistance is an important determinant of neonatal birth weight in women with obesity, whereas preconception bile acids are not.
Collapse
Affiliation(s)
- Zheng Wang
- University of Groningen, University Medical Centre Groningen, Department of Obstetrics and Gynecology, Groningen, The Netherlands
| | - Ruxandra A Nagy
- University of Groningen, University Medical Centre Groningen, Department of Clinical Genetics, Groningen, The Netherlands
| | - Henk Groen
- University of Groningen, University Medical Centre Groningen, Department of Epidemiology, Groningen, The Netherlands
| | - Astrid E P Cantineau
- University of Groningen, University Medical Centre Groningen, Department of Obstetrics and Gynecology, Groningen, The Netherlands
| | - Anne M van Oers
- University of Groningen, University Medical Centre Groningen, Department of Obstetrics and Gynecology, Groningen, The Netherlands
| | - Lotte van Dammen
- University of Groningen, University Medical Centre Groningen, Department of Obstetrics and Gynecology, Groningen, The Netherlands; University of Groningen, University Medical Centre Groningen, Department of Epidemiology, Groningen, The Netherlands; Iowa State University, Department of Human Development and Family Studies, Ames Iowa, USA
| | - Vincent Wekker
- Academic Medical Centre, University of Amsterdam, Department of Obstetrics and Gynecology, Amsterdam, The Netherlands; Amsterdam Public Health research institute, Academic Medical Centre, University of Amsterdam, Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam, the Netherlands
| | - Tessa J Roseboom
- Academic Medical Centre, University of Amsterdam, Department of Obstetrics and Gynecology, Amsterdam, The Netherlands; Amsterdam Public Health research institute, Academic Medical Centre, University of Amsterdam, Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam, the Netherlands.
| | - Ben W J Mol
- Monash University, Department of Obstetrics and Gynecology, Clayton, Australia
| | - Uwe J F Tietge
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Clinical Chemistry, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden
| | - Annemieke Hoek
- University of Groningen, University Medical Centre Groningen, Department of Obstetrics and Gynecology, Groningen, The Netherlands
| | | |
Collapse
|
16
|
Evaluation of the relationship between serum ferritin and insulin resistance and visceral adiposity index (VAI) in women with polycystic ovary syndrome. Eat Weight Disord 2021; 26:1581-1593. [PMID: 32772321 DOI: 10.1007/s40519-020-00980-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 07/30/2020] [Indexed: 01/08/2023] Open
Abstract
PURPOSE There is a relationship between polycystic ovary syndrome (PCOS) and adipose tissue dysfunction (ADD), but this relationship is not clear. It has been recently shown that iron accumulation in adipose tissue is among the causes of adipose tissue dysfunction. Data on adipose tissue dysfunction in women with PCOS are insufficient. In this study, we aimed to evaluate the relationship between serum ferritin levels (iron accumulation biomarker) and visceral adiposity index (an indicator of adipose tissue dysfunction). METHODS The study is a case-control study. Women with diagnosed PCOS with 2003 Rotterdam Diagnostic Criteria (n = 40) were compared with non-PCOS group (n = 40). In this study, the cholesterol ratios, the homeostatic model evaluation index for insulin resistance (HOMA-IR) and the quantitative insulin sensitivity control index were calculated using biochemical parameters, and the visceral adiposity index (VAI) and the lipid accumulation product (LAP) were calculated using both anthropometric and biochemical parameters. In this study, insulin resistance was evaluated by HOMA-IR and adipose tissue dysfunction was evaluated by VAI index. RESULTS According to the results of this study, women with PCOS have a worse metabolic status than women without PCOS. However, this has been shown only in overweight and obese women, not in women with normal weight. CONCLUSION As a result, the presence of obesity in women with PCOS exacerbates metabolic status. LEVEL OF EVIDENCE Level V, cross-sectional descriptive study.
Collapse
|
17
|
Grzych G, Chávez-Talavera O, Descat A, Thuillier D, Verrijken A, Kouach M, Legry V, Verkindt H, Raverdy V, Legendre B, Caiazzo R, Van Gaal L, Goossens JF, Paumelle R, Francque S, Pattou F, Haas JT, Tailleux A, Staels B. NASH-related increases in plasma bile acid levels depend on insulin resistance. JHEP Rep 2021; 3:100222. [PMID: 33615207 PMCID: PMC7878982 DOI: 10.1016/j.jhepr.2020.100222] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/09/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND & AIMS Plasma bile acids (BAs) have been extensively studied as pathophysiological actors in non-alcoholic steatohepatitis (NASH). However, results from clinical studies are often complicated by the association of NASH with type 2 diabetes (T2D), obesity, and insulin resistance (IR). Here, we sought to dissect the relationship between NASH, T2D, and plasma BA levels in a large patient cohort. METHODS Four groups of patients from the Biological Atlas of Severe Obesity (ABOS) cohort (Clinical Trials number NCT01129297) were included based on the presence or absence of histologically evaluated NASH with or without coincident T2D. Patients were matched for BMI, homeostatic model assessment 2 (HOMA2)-assessed IR, glycated haemoglobin, age, and gender. To study the effect of IR and BMI on the association of plasma BA and NASH, patients from the HEPADIP study were included. In both cohorts, fasting plasma BA concentrations were measured. RESULTS Plasma BA concentrations were higher in NASH compared with No-NASH patients both in T2D and NoT2D patients from the ABOS cohort. As we previously reported that plasma BA levels were unaltered in NASH patients of the HEPADIP cohort, we assessed the impact of BMI and IR on the association of NASH and BA on the combined BA datasets. Our results revealed that NASH-associated increases in plasma total cholic acid (CA) concentrations depend on the degree of HOMA2-assessed systemic IR, but not on β-cell function nor on BMI. CONCLUSIONS Plasma BA concentrations are elevated only in those NASH patients exhibiting pronounced IR. LAY SUMMARY Non-alcoholic steatohepatitis (NASH) is a progressive liver disease that frequently occurs in patients with obesity and type 2 diabetes. Reliable markers for the diagnosis of NASH are needed. Plasma bile acids have been proposed as NASH biomarkers. Herein, we found that plasma bile acids are only elevated in patients with NASH when significant insulin resistance is present, limiting their utility as NASH markers.
Collapse
Key Words
- ABOS, Biological Atlas of Severe Obesity
- ADA, American Diabetes Association
- BA, bile acids
- Bile acids
- C4, 7alpha-hydroxy-4-cholesten-3-one
- CA, cholic acid
- CDCA, chenodeoxycholic acid
- DCA, deoxycholic acid
- Diabetes
- FPG, fasting plasma glycaemia
- FXR, farnesoid-X-receptor
- GCA, glycocholic acid
- GCDCA, glycochenodeoxycholic acid
- GDCA, glycodeoxycholic acid
- GHCA, glycohyocholic acid
- GHDCA, glycohyodeoxycholic acid
- GLCA, glycolithocholic acid
- GUDCA, glycoursodeoxycholic acid
- HCA, hyocholic acid
- HDCA, hyodeoxycholic acid
- HOMA2, homeostatic model assessment 2
- HbA1c, glycated haemoglobin
- IR, insulin resistance
- Insulin resistance
- LCA, lithocholic acid
- MAFLD, metabolic associated fatty liver disease
- NAFL, non-alcoholic fatty liver
- NAFLD
- NAFLD, non-alcoholic fatty liver disease
- NASH
- NASH, non-alcoholic steatohepatitis
- OGTT, oral glucose tolerance test
- Obesity
- T2D, type 2 diabetes
- TCA, taurocholic acid
- TCDCA, taurochenodeoxycholic acid
- TDCA, taurodeoxycholic acid
- THCA, taurohyocholic acid
- THDCA, taurohyodeoxycholic acid
- TLCA, taurolithocholic acid
- TUDCA, tauroursodeoxycholic acid
- Translational study
- UDCA, ursodeoxycholic acid
Collapse
Affiliation(s)
- Guillaume Grzych
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000 Lille, France
| | - Oscar Chávez-Talavera
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000 Lille, France
| | - Amandine Descat
- Univ. Lille, CHU Lille, EA 7365-GRITA-Groupe de Recherche sur les formes Injectables et les Technologies Associées, F-59000 Lille, France
| | - Dorothée Thuillier
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1190 - EGID, F-59000, Lille, France
| | - An Verrijken
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Wilrijk/Antwerp, Belgium
- Department of Endocrinology, Diabetology and Metabolism, Antwerp University Hospital, 2650 Edegem/Antwerp, Belgium
| | - Mostafa Kouach
- Univ. Lille, CHU Lille, EA 7365-GRITA-Groupe de Recherche sur les formes Injectables et les Technologies Associées, F-59000 Lille, France
| | - Vanessa Legry
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000 Lille, France
| | - Hélène Verkindt
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1190 - EGID, F-59000, Lille, France
| | - Violeta Raverdy
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1190 - EGID, F-59000, Lille, France
| | - Benjamin Legendre
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1190 - EGID, F-59000, Lille, France
| | - Robert Caiazzo
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1190 - EGID, F-59000, Lille, France
| | - Luc Van Gaal
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Wilrijk/Antwerp, Belgium
- Department of Endocrinology, Diabetology and Metabolism, Antwerp University Hospital, 2650 Edegem/Antwerp, Belgium
| | - Jean-Francois Goossens
- Univ. Lille, CHU Lille, EA 7365-GRITA-Groupe de Recherche sur les formes Injectables et les Technologies Associées, F-59000 Lille, France
| | - Réjane Paumelle
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000 Lille, France
| | - Sven Francque
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Wilrijk/Antwerp, Belgium
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, 2650, Edegem, Antwerp, Belgium
| | - François Pattou
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1190 - EGID, F-59000, Lille, France
| | - Joel T. Haas
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000 Lille, France
| | - Anne Tailleux
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000 Lille, France
| | - Bart Staels
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000 Lille, France
| |
Collapse
|
18
|
Diboun I, Al-Mansoori L, Al-Jaber H, Albagha O, Elrayess MA. Metabolomics of Lean/Overweight Insulin-Resistant Females Reveals Alterations in Steroids and Fatty Acids. J Clin Endocrinol Metab 2021; 106:e638-e649. [PMID: 33053159 DOI: 10.1210/clinem/dgaa732] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/08/2020] [Indexed: 01/13/2023]
Abstract
BACKGROUND The global diabetes epidemic is largely attributed to obesity-triggered metabolic syndrome. However, the impact of insulin resistance (IR) prior to obesity on the high prevalence of diabetes and the molecular mediators remain largely unknown. This study aims to compare the metabolic profiling of apparently healthy lean/overweight participants with IR and insulin sensitivity (IS), and identify the metabolic pathways underlying IR. METHODS In this cross-sectional study, clinical and metabolic data for 200 seemingly healthy young female participants (100 IR and 100 IS) was collected from Qatar Biobank. Orthogonal partial least square analysis was performed to assess the extent of separation between individuals from the 2 groups based on measured metabolites. Classical linear models were used to identify the metabolic signature of IR, followed by elastic-net-regularized generalized linear model (GLMNET) and receiver operating characteristic (ROC) analysis to determine top metabolites associated with IR. RESULTS Compared to lean/overweight participants with IS, those with IR showed increased androgenic steroids, including androsterone glucuronide, in addition to various microbiota byproducts, such as the phenylalanine derivative carboxyethylphenylalanine. On the other hand, participants with IS had elevated levels of long-chain fatty acids. A ROC analysis suggested better discriminatory performance using 20 metabolites selected by GLMNET in comparison to the classical clinical traits (area under curve: 0.93 vs 0.73, respectively). CONCLUSION Our data confirm the multifactorial mechanism of IR with a diverse spectrum of emerging potential biomarkers, including steroids, long-chain fatty acids, and microbiota metabolites. Further studies are warranted to validate these markers for diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Ilhame Diboun
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | | | - Hend Al-Jaber
- Biomedical Research Center (BRC), Qatar University, Doha, Qatar
| | - Omar Albagha
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | | |
Collapse
|
19
|
Wang XH, Xu F, Cheng M, Wang X, Zhang DM, Zhao LH, Cai HL, Huang HY, Chen T, Zhang XL, Wang XQ, Cheng XB, Su JB, Lu Y. Fasting serum total bile acid levels are associated with insulin sensitivity, islet β-cell function and glucagon levels in response to glucose challenge in patients with type 2 diabetes. Endocr J 2020; 67:1107-1117. [PMID: 32684527 DOI: 10.1507/endocrj.ej20-0201] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Type 2 diabetes (T2D) is characterized by islet β-cell dysfunction and impaired suppression of glucagon secretion of α-cells in response to oral hyperglycaemia. Bile acid (BA) metabolism plays a dominant role in maintaining glucose homeostasis. So we evaluated the association of fasting serum total bile acids (S-TBAs) with insulin sensitivity, islet β-cell function and glucagon levels in T2D. Total 2,952 T2D patients with fasting S-TBAs in the normal range were recruited and received oral glucose tolerance tests for determination of fasting and postchallenge glucose, C-peptide and glucagon. Fasting and systemic insulin sensitivity were assessed by homeostasis model assessment (HOMA) and Matsuda index using C-peptide, i.e., ISHOMA-cp and ISIM-cp, respectively. Islet β-cell function was assessed by the insulin-secretion-sensitivity-index-2 using C-peptide (ISSI2cp). The area under the glucagon curve (AUCgla) was used to assess postchallenge glucagon. The results showed ISHOMA-cp, ISIM-cp and ISSI2cp decreased, while AUCgla notably increased, across ascending quartiles of S-TBAs but not fasting glucagon. Moreover, S-TBAs were inversely correlated with ISHOMA-cp, ISIM-cp and ISSI2cp (r = -0.21, -0.15 and -0.25, respectively, p < 0.001) and positively correlated with AUCgla (r = 0.32, p < 0.001) but not with fasting glucagon (r = 0.033, p = 0.070). Furthermore, after adjusting for other clinical covariates by multiple linear regression analyses, the S-TBAs were independently associated with ISHOMA-cp (β = -0.04, t = -2.82, p = 0.005), ISIM-cp (β = -0.11, t = -7.05, p < 0.001), ISSI2cp (β = -0.15, t = -10.26, p < 0.001) and AUCgla (β = 0.29, t = 19.08, p < 0.001). Increased fasting S-TBAs are associated with blunted fasting and systemic insulin sensitivity, impaired islet β-cell function and increased glucagon levels in response to glucose challenge in T2D.
Collapse
Affiliation(s)
- Xiao-Hua Wang
- Department of Endocrinology, First Affiliated Hospital of Soochow University, Suzhou 215006, China
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University, and First People's Hospital of Nantong City, Nantong 226001, China
| | - Feng Xu
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University, and First People's Hospital of Nantong City, Nantong 226001, China
| | - Ming Cheng
- School of Rail Transportation, Soochow University, Suzhou 215006, China
| | - Xing Wang
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University, and First People's Hospital of Nantong City, Nantong 226001, China
| | - Dong-Mei Zhang
- Medical Research Center, Affiliated Hospital 2 of Nantong University, and First People's Hospital of Nantong City, Nantong 226001, China
| | - Li-Hua Zhao
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University, and First People's Hospital of Nantong City, Nantong 226001, China
| | - Hong-Li Cai
- Department of Geriatrics, Affiliated Hospital 2 of Nantong University, and First People's Hospital of Nantong City, Nantong 226001, China
| | - Hai-Yan Huang
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University, and First People's Hospital of Nantong City, Nantong 226001, China
| | - Tong Chen
- Department of Clinical Laboratory, Affiliated Hospital 2 of Nantong University, and First People's Hospital of Nantong City, Nantong 226001, China
| | - Xiu-Lin Zhang
- Department of Clinical Laboratory, Affiliated Hospital 2 of Nantong University, and First People's Hospital of Nantong City, Nantong 226001, China
| | - Xue-Qin Wang
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University, and First People's Hospital of Nantong City, Nantong 226001, China
| | - Xing-Bo Cheng
- Department of Endocrinology, First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Jian-Bin Su
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University, and First People's Hospital of Nantong City, Nantong 226001, China
| | - Yan Lu
- Department of Endocrinology, First Affiliated Hospital of Soochow University, Suzhou 215006, China
| |
Collapse
|
20
|
Holter MM, Chirikjian MK, Govani VN, Cummings BP. TGR5 Signaling in Hepatic Metabolic Health. Nutrients 2020; 12:nu12092598. [PMID: 32859104 PMCID: PMC7551395 DOI: 10.3390/nu12092598] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022] Open
Abstract
TGR5 is a G protein-coupled bile acid receptor that is increasingly recognized as a key regulator of glucose homeostasis. While the role of TGR5 signaling in immune cells, adipocytes and enteroendocrine L cells in metabolic regulation has been well described and extensively reviewed, the impact of TGR5-mediated effects on hepatic physiology and pathophysiology in metabolic regulation has received less attention. Recent studies suggest that TGR5 signaling contributes to improvements in hepatic insulin signaling and decreased hepatic inflammation, as well as metabolically beneficial improvements in bile acid profile. Additionally, TGR5 signaling has been associated with reduced hepatic steatosis and liver fibrosis, and improved liver function. Despite the beneficial effects of TGR5 signaling on metabolic health, TGR5-mediated gallstone formation and gallbladder filling complicate therapeutic targeting of TGR5 signaling. To this end, there is a growing need to identify cell type-specific effects of hepatic TGR5 signaling to begin to identify and target the downstream effectors of TGR5 signaling. Herein, we describe and integrate recent advances in our understanding of the impact of TGR5 signaling on liver physiology and how its effects on the liver integrate more broadly with whole body glucose regulation.
Collapse
|
21
|
Zhu W, Wang S, Dai H, Xuan L, Deng C, Wang T, Zhao Z, Li M, Lu J, Xu Y, Chen Y, Wang W, Bi Y, Xu M, Ning G. Serum total bile acids associate with risk of incident type 2 diabetes and longitudinal changes in glucose-related metabolic traits. J Diabetes 2020; 12:616-625. [PMID: 32220107 DOI: 10.1111/1753-0407.13040] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/12/2020] [Accepted: 03/20/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Bile acids have been found to be related to changes in gut microbiota and multiple metabolic disorders, including type 2 diabetes (T2D). We aimed to prospectively investigate associations of serum total bile acids (TBAs) with risk of incident T2D and longitudinal changes in glycemic traits. METHODS A community-based study was conducted at baseline in 2010, including 4968 nondiabetic participants aged ≥40 years followed up for an average of 4.3 years. Incident T2D was defined by using the 1999 WHO criteria based on 75-g oral glucose tolerance tests. Multivariate Cox proportional hazards regression was used to examine the association of serum TBAs with incident T2D. Fasting plasma glucose (FPG), 2-hour postload plasma glucose (2-h PPG), and fasting serum insulin (FSI) were measured at baseline and follow-up. RESULTS During 21 653.7 person-years of follow-up, 605 cases of incident diabetes were identified (incidence rate 2.8%). Comparing to quartile 1 of serum TBAs, quartile 2, 3, and 4 were significantly associated with a 14.2%, 15.0%, and 31.4% higher risk of incident T2D (P = .029). Each one unit of log-TBAs was associated with an increase of 0.034 mmol/L in FPG, 0.111 mmol/L in 2-h PPG, 0.023 in log-FSI, and 0.012 in log-HOMA-IR (homeostasis model assessment of insulin resistance) (all P ≤ .024). The association was attenuated after further adjustment for HOMA-IR. Mediation analysis showed that insulin resistance indicated by HOMA-IR might mediate 28.5% of indirect effect on the association of TBAs with T2D (P = .0004). CONCLUSIONS Baseline serum TBAs were significantly associated with incident T2D and longitudinal changes in glycemic traits. Insulin resistance might partially mediate the association of TBAs and T2D.
Collapse
Affiliation(s)
- Wen Zhu
- State Key Laboratory of Medical Genomics, Shanghai National Clinical Research Center for Metabolic Diseases, Collaborative Innovation Center of Systems Biomedicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuangyuan Wang
- State Key Laboratory of Medical Genomics, Shanghai National Clinical Research Center for Metabolic Diseases, Collaborative Innovation Center of Systems Biomedicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huajie Dai
- State Key Laboratory of Medical Genomics, Shanghai National Clinical Research Center for Metabolic Diseases, Collaborative Innovation Center of Systems Biomedicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liping Xuan
- State Key Laboratory of Medical Genomics, Shanghai National Clinical Research Center for Metabolic Diseases, Collaborative Innovation Center of Systems Biomedicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chanjuan Deng
- State Key Laboratory of Medical Genomics, Shanghai National Clinical Research Center for Metabolic Diseases, Collaborative Innovation Center of Systems Biomedicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tiange Wang
- State Key Laboratory of Medical Genomics, Shanghai National Clinical Research Center for Metabolic Diseases, Collaborative Innovation Center of Systems Biomedicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiyun Zhao
- State Key Laboratory of Medical Genomics, Shanghai National Clinical Research Center for Metabolic Diseases, Collaborative Innovation Center of Systems Biomedicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mian Li
- State Key Laboratory of Medical Genomics, Shanghai National Clinical Research Center for Metabolic Diseases, Collaborative Innovation Center of Systems Biomedicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jieli Lu
- State Key Laboratory of Medical Genomics, Shanghai National Clinical Research Center for Metabolic Diseases, Collaborative Innovation Center of Systems Biomedicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Xu
- State Key Laboratory of Medical Genomics, Shanghai National Clinical Research Center for Metabolic Diseases, Collaborative Innovation Center of Systems Biomedicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuhong Chen
- State Key Laboratory of Medical Genomics, Shanghai National Clinical Research Center for Metabolic Diseases, Collaborative Innovation Center of Systems Biomedicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiqing Wang
- State Key Laboratory of Medical Genomics, Shanghai National Clinical Research Center for Metabolic Diseases, Collaborative Innovation Center of Systems Biomedicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yufang Bi
- State Key Laboratory of Medical Genomics, Shanghai National Clinical Research Center for Metabolic Diseases, Collaborative Innovation Center of Systems Biomedicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Xu
- State Key Laboratory of Medical Genomics, Shanghai National Clinical Research Center for Metabolic Diseases, Collaborative Innovation Center of Systems Biomedicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guang Ning
- State Key Laboratory of Medical Genomics, Shanghai National Clinical Research Center for Metabolic Diseases, Collaborative Innovation Center of Systems Biomedicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
22
|
Kassem I, Sanche S, Li J, Bonnefois G, Dubé MP, Rouleau JL, Tardif JC, White M, Turgeon J, Nekka F, de Denus S. Population Pharmacokinetics of Candesartan in Patients with Chronic Heart Failure. Clin Transl Sci 2020; 14:194-203. [PMID: 32702160 PMCID: PMC7877833 DOI: 10.1111/cts.12842] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 06/10/2020] [Indexed: 11/29/2022] Open
Abstract
Heart failure (HF) causes pathological changes in multiple organs, thus affecting the pharmacokinetics (PK) of drugs. The aim of this study was to investigate the PK of candesartan in patients with HF while examining significant covariates and their related impact on estimated clearance using a population PK (Pop‐PK) modeling approach. Data from a prospective, multicenter study were used. Modeling and simulations were conducted using Nonlinear Mixed‐Effects Modeling (NONMEM) and R software. A total of 281 white patients were included to develop the Pop‐PK model. The final model developed for apparent oral clearance (CL/F) included weight, estimated glomerular filtration rate (eGFR), and diabetes, which partly explained its interindividual variability. The mean CL/F value estimated was 7.6 L/h (1.7–22.6 L/h). Simulations revealed that an important decrease in CL/F (> 25%) is obtained with the combination of the factors retained in the final model. Considering these factors, a more individualized approach of candesartan dosing should be investigated in patients with HF.
Collapse
Affiliation(s)
- Imad Kassem
- Faculty of Pharmacy, Université de Montréal, Montreal, Quebec, Canada.,Montreal Heart Institute, Montreal, Quebec, Canada
| | - Steven Sanche
- Faculty of Pharmacy, Université de Montréal, Montreal, Quebec, Canada
| | - Jun Li
- Faculty of Pharmacy, Université de Montréal, Montreal, Quebec, Canada.,Mathematical Research Center, Université de Montréal, Montreal, Quebec, Canada
| | | | - Marie-Pierre Dubé
- Montreal Heart Institute, Montreal, Quebec, Canada.,Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada.,Université de Montréal Beaulieu-Saucier Pharmacogenomics Center, Montreal, Quebec, Canada
| | - Jean-Lucien Rouleau
- Montreal Heart Institute, Montreal, Quebec, Canada.,Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Jean-Claude Tardif
- Montreal Heart Institute, Montreal, Quebec, Canada.,Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada.,Université de Montréal Beaulieu-Saucier Pharmacogenomics Center, Montreal, Quebec, Canada
| | - Michel White
- Montreal Heart Institute, Montreal, Quebec, Canada.,Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Jacques Turgeon
- Tabula Rasa HealthCare, Precision Pharmacotherapy Research and Development Institute, Lake Nona, Florida, USA
| | - Fahima Nekka
- Faculty of Pharmacy, Université de Montréal, Montreal, Quebec, Canada.,Mathematical Research Center, Université de Montréal, Montreal, Quebec, Canada
| | - Simon de Denus
- Faculty of Pharmacy, Université de Montréal, Montreal, Quebec, Canada.,Montreal Heart Institute, Montreal, Quebec, Canada.,Université de Montréal Beaulieu-Saucier Pharmacogenomics Center, Montreal, Quebec, Canada
| |
Collapse
|
23
|
Nutrition and Gastrointestinal Microbiota, Microbial-Derived Secondary Bile Acids, and Cardiovascular Disease. Curr Atheroscler Rep 2020; 22:47. [PMID: 32681421 DOI: 10.1007/s11883-020-00863-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW The goal is to review the connection between gut microbiota and cardiovascular disease, with specific emphasis on bile acids, and the influence of diet in modulating this relationship. RECENT FINDINGS Bile acids exert a much broader range of biological functions than initially recognized, including regulation of cardiovascular function through direct and indirect mechanisms. There is a bi-directional relationship between gut microbiota modulation of bile acid-signaling properties, and their effects on gut microbiota composition. Evidence, primarily from rodent models and limited human trials, suggest that dietary modulation of the gut microbiome significantly impacts bile acid metabolism and subsequently host physiological response(s). Available evidence suggests that the link between diet, gut microbiota, and CVD risk is potentially mediated via bile acid effects on diverse metabolic pathways. However, further studies are needed to confirm/expand and translate these findings in a clinical setting.
Collapse
|
24
|
Xie X, Dong J, Lu G, Gao K, Li X, Mao W, Chen F, Tong Z, Li B, Li W. Increased circulating total bile acid levels were associated with organ failure in patients with acute pancreatitis. BMC Gastroenterol 2020; 20:222. [PMID: 32660430 PMCID: PMC7359019 DOI: 10.1186/s12876-020-01243-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/27/2020] [Indexed: 12/11/2022] Open
Abstract
Background Recent studies have shown that bile acids (BAs) are closely related to metabolic and inflammatory diseases. Our study aimed to investigate whether circulating total bile acid (TBA) levels were associated with the severity of acute pancreatitis (AP). Methods We retrospectively collected data on patients diagnosed with AP in a tertiary center from 01 January 2014 to 31 December 2016. The highest TBA value during the first 1,2,3,5,7 days after admission was determined as D1, D2, D3, D5, D7 TBAmax. Patients were divided into the high TBA (HTBA) group and the normal TBA (NTBA) group according to whether the TBAmax was ≥10 μmol/L. The prognosis and complications, including death, organ failure (OF) and pancreatic necrosis, were compared between the two groups. Logistic regression analysis and receiving operating characteristic (ROC) curve were used to evaluate the relationship between circulating TBA and organ failure in AP patients. Results Through stratified analysis of each time period, we found that the incidence of OF in the HTBA group was significantly higher than that in the NTBA group, and the AP severity classification in the HTBA group was more serious than that in the NTBA group. In addition, according to the D7 TBAmax values, the pancreatic necrosis rate, percutaneous catheter drainage (PCD) rate and mortality in the HTBA group were higher than those in the NTBA group. Multivariate regression analysis showed that HTBA (odds ratio (OR), 4.894; P = 0.002) was an independent risk factor for AP complicated with OF, which was verified in the grouping based on D7 TBAmax. ROC analysis revealed that a circulating D7 TBAmax cutoff point of 6.450 umol/L had optimal predictive value for the development of OF in AP patients with an area under the curve of the ROC curve (AUCROC) of 0.777. Conclusions The increase of circulating TBA in early stage of AP is independently related to organ failure, which indicates the adverse prognosis of AP patients.
Collapse
Affiliation(s)
- Xiaochun Xie
- Surgical Intensive Care Unit (SICU), Department of General Surgery, Jinling Hospital, Nanjing Medical University, Nanjing, 210002, People's Republic of China
| | - Jie Dong
- Surgical Intensive Care Unit (SICU), Department of General Surgery, Jinling Hospital, Nanjing Medical University, Nanjing, 210002, People's Republic of China
| | - Guotao Lu
- Pancreatic Center, Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, People's Republic of China
| | - Kun Gao
- Surgical Intensive Care Unit (SICU), Department of General Surgery, Jinling Hospital, Nanjing Medical University, Nanjing, 210002, People's Republic of China
| | - Xiaoyao Li
- Surgical Intensive Care Unit (SICU), Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, People's Republic of China
| | - Wenjian Mao
- Surgical Intensive Care Unit (SICU), Department of General Surgery, Jinling Hospital, South Medical University, Nanjing, 210002, People's Republic of China
| | - Faxi Chen
- Surgical Intensive Care Unit (SICU), Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, People's Republic of China
| | - Zhihui Tong
- Surgical Intensive Care Unit (SICU), Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, People's Republic of China.
| | - Baiqiang Li
- Surgical Intensive Care Unit (SICU), Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, People's Republic of China.
| | - Weiqin Li
- Surgical Intensive Care Unit (SICU), Department of General Surgery, Jinling Hospital, Nanjing Medical University, Nanjing, 210002, People's Republic of China. .,Surgical Intensive Care Unit (SICU), Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, People's Republic of China. .,Surgical Intensive Care Unit (SICU), Department of General Surgery, Jinling Hospital, South Medical University, Nanjing, 210002, People's Republic of China.
| |
Collapse
|
25
|
Cortés VA, Barrera F, Nervi F. Pathophysiological connections between gallstone disease, insulin resistance, and obesity. Obes Rev 2020; 21:e12983. [PMID: 31814283 DOI: 10.1111/obr.12983] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/28/2019] [Accepted: 11/13/2019] [Indexed: 12/12/2022]
Abstract
Obesity and cholesterol gallstone disease (GSD) are frequently coexisting diseases; therefore and considering the current worldwide obesity epidemics, a precise understanding of the pathophysiological relationships between GSD and insulin resistance (IR) is important. Classically, obesity has been understood as a risk factor for GSD and the gallbladder (GB) viewed as a simple bile reservoir, with no metabolic roles whatsoever. However, consistent evidence has showed that both GSD and cholecystectomy associates with fatty liver and IR, raising the possibility that the GB is indeed an organ with metabolic regulatory roles. Herein, we review the pathophysiological mechanisms by which GSD, IR, and obesity are interconnected, with emphasis in the actions of the GB as a regulator of bile acids kinetics and a hormone secreting organ, with metabolic actions at the systemic level. We also examine the relationships between increased hepatic lipogenic in IR states and GSD pathogenesis. We propose a model in which GSD and hepatic IR mutually interact to determine a state of dysregulated lipid and energy metabolism that potentiate the metabolic dysregulation of obesity.
Collapse
Affiliation(s)
- Víctor A Cortés
- Department of Nutrition, Diabetes and Metabolism, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Francisco Barrera
- Department of Gastroenterology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Flavio Nervi
- Department of Gastroenterology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
26
|
Lee SG, Lee YH, Choi E, Cho Y, Kim JH. Fasting serum bile acids concentration is associated with insulin resistance independently of diabetes status. Clin Chem Lab Med 2020; 57:1218-1228. [PMID: 30964746 DOI: 10.1515/cclm-2018-0741] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 12/20/2018] [Indexed: 12/19/2022]
Abstract
Background Bile acids (BAs) have been demonstrated to exert a variety of metabolic effects and alterations in BAs have been reported in patients with obesity, insulin resistance (IR) and type 2 diabetes mellitus (T2DM). However, it is unclear which metabolic condition is the main contributor to alterations in BAs. In this study, we investigate the associations between different BA profiles with glycemia, obesity or IR status. Methods Fasting serum concentrations of 15 BA species were determined in a total of 241 individuals (71 drug-naïve patients with T2DM, 95 patients with impaired fasting glucose [IFG], and 75 healthy controls. Results A comparison of the mean values of the BAs revealed no significant differences between normoglycemic controls and patients with IFG or T2DM. However, when the entire cohort was divided according to the presence of IR as determined by a homeostasis model assessment of insulin resistance (HOMA-IR) value >2.5, the levels of total BA and most species of BAs were significantly higher in patients with IR than in patients without. In the correlation analysis, most species of BAs, as well as total BA, were significantly associated with HOMA-IR levels. Furthermore, when the subjects were divided into four groups according to IR and diabetic status, subjects with IR had significantly higher total BAs than participants without IR both in diabetic and non-diabetic groups. Ultimately, multiple linear regression analysis identified HOMA-IR as the only significant contributor to most serum BA species. Conclusions Our findings support the essential role of IR in regulating BA metabolism and that this effect is independent of diabetic status.
Collapse
Affiliation(s)
- Sang-Guk Lee
- Department of Laboratory Medicine, Severance Hospital, Yonsei University College of Medicine, Seodaemun-gu, Seoul, Korea
| | - Yong-Ho Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Eunhye Choi
- Department of Laboratory Medicine, Severance Hospital, Yonsei University College of Medicine, Seodaemun-gu, Seoul, Korea
| | - Yonggeun Cho
- Department of Laboratory Medicine, Severance Hospital, Yonsei University College of Medicine, Seodaemun-gu, Seoul, Korea
| | - Jeong-Ho Kim
- Department of Laboratory Medicine, Severance Hospital, Yonsei University College of Medicine, Seodaemun-gu, Seoul, Korea
| |
Collapse
|
27
|
Cӑtoi AF, Pârvu AE, Mironiuc A, Silaghi H, Pop ID, Andreicuț AD. Ultra-Early and Early Changes in Bile Acids and Insulin After Sleeve Gastrectomy Among Obese Patients. MEDICINA (KAUNAS, LITHUANIA) 2019; 55:E757. [PMID: 31766784 PMCID: PMC6955910 DOI: 10.3390/medicina55120757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/17/2019] [Accepted: 11/18/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND OBJECTIVE In obese patients, sleeve gastrectomy (SG) has shown mixed results on bile acid (BA) values. The aim of our study was to examine the potential ultra-early and early changes of the circulating total BA in relation with the changes of insulin resistance (IR) in obese patients submitted to laparoscopic SG. Materials and Methods: Twenty-four obese subjects were investigated for body mass index (BMI), total fasting BA, insulin, homeostasis model assessment of insulin resistance (HOMA-IR), and leptin before and at 7 and 30 d after SG. Results: After surgery, mean BMI decreased at the first (p < 0.001) and at the second time point (p < 0.001) relative to baseline. Total fasting BA values did not change significantly at 7 d (p = 0.938) and at 30 d (p = 0.289) after SG. No significant changes were found at 7 d (p = 0.194, p = 0.34) and 30 d (p = 0.329, p = 0.151) after surgery regarding fasting insulin and HOMA-IR, respectively. However, a trend of increased total fasting BA and decreased fasting insulin and HOMA- after laparoscopic SG has been found. Negative correlations between total fasting BA and insulin (r = -0.807, p = 0.009), HOMA-IR (r = -0.855, p = 0.014), and blood glucose (r = -0.761, p = 0.047), respectively, were observed at one month after SG. Conclusion: In conclusion, here, we found a lack of significant changes in total fasting BA, insulin, and HOMA-IR ultra-early and early after SG, which precluded us to consider a possible relation between the variations of BA and IR. However, the presence of the tendency for total fasting BA to increase and for insulin and HOMA-IR to decrease, as well as of the negative correlations one month after laparoscopic SG, suggest that this surgery brings about some changes that point towards the existence, and possibly towards the restoration, at least to some extent, of the link between BA and glucose metabolism.
Collapse
Affiliation(s)
- Adriana Florinela Cӑtoi
- Department of Pathophysiology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.E.P.); (A.D.A.)
| | - Alina Elena Pârvu
- Department of Pathophysiology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.E.P.); (A.D.A.)
| | - Aurel Mironiuc
- 2nd Surgical Clinic, Department of Surgery, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Horațiu Silaghi
- 5th Surgical Clinic, Department of Surgery, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Ioana Delia Pop
- Department of Exact Sciences, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania;
| | - Andra Diana Andreicuț
- Department of Pathophysiology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.E.P.); (A.D.A.)
| |
Collapse
|
28
|
The Relationship Between Lipid Metabolism and The Level of Albuminuria with Single Nucleotide Polymorphism -204A>C [rs 3808607] CYP7A1 Gene in Patients with Type 2 Diabetes Mellitus and Diabetic Nephropathy. ROMANIAN JOURNAL OF DIABETES NUTRITION AND METABOLIC DISEASES 2019. [DOI: 10.2478/rjdnmd-2019-0026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Abstract
Background and aims. The purpose of our study was to determine the features of diabetic nephropathy, to identify the relationship between the level of albumin excretion, urine and lipid profile, genotype variants of the CYP7A1 gene in people with type 2 diabetes and diabetic nephropathy.
Material and methods. Patients were divided into three groups. Normoalbinuria was detected in group I, and II - microalbuminuria, and III -macroalbuminuria. Determination of albumin to creatinine ratio was more accurate, although more expensive method. We examined single nucleotide polymorphism -204A> C [rs 3808607] of the promoter region of the CYP7A1 gene.
Results. It was established that homozygotes by the major allele with genotype AA had lower values of albuminuria, atherogenic lipoproteins, total cholesterol, triglycerides and higher levels of anti-atherogenic lipoproteins than patients with AС and СС genotypes.
Conclusion. The СС genotype was most unfavorable in the prognostic plan, since homozygotes for this minor allele were characterized by higher values of albuminuria, total cholesterol, triglycerides, and lower values of high-density lipoprotein
Collapse
|
29
|
Ghaffarzadegan T, Zanzer YC, Östman E, Hållenius F, Essén S, Sandahl M, Nyman M. Postprandial Responses of Serum Bile Acids in Healthy Humans after Ingestion of Turmeric before Medium/High-Fat Breakfasts. Mol Nutr Food Res 2019; 63:e1900672. [PMID: 31411373 DOI: 10.1002/mnfr.201900672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/25/2019] [Indexed: 12/17/2022]
Abstract
SCOPE Bile acids (BAs) are known to regulate a number of metabolic activities in the body. However, very little is known about how BAs are affected by diet. This study aims to investigate whether a single dose of turmeric-based beverage (TUR) before ingestion of medium- (MF) or high-fat (HF) breakfasts would improve the BA profile in healthy subjects. METHODS AND RESULTS Twelve healthy subjects are assigned to a randomized crossover single-blind study. The subjects receive isocaloric MF or HF breakfasts after a drink containing flavored water with or without an extract of turmeric with at least 1-week wash-out period between the treatments. Postprandial BAs are measured using protein precipitation followed by ultra-high-performance liquid chromatography-mass spectrometry analysis. The concentration of BAs is generally higher after HF than MF breakfasts. Ingestion of TUR before MF breakfast increases the serum concentrations of free and conjugated forms of cholic (CA) and ursodeoxycholic acids (UDCA), as well as the concentrations of chenodeoxycholic acid (CDCA) and its taurine-conjugated forms. However, the concentration of conjugated forms of deoxycholic acid (DCA) decreases when TUR is taken before HF breakfast. CONCLUSION TUR ingestion before MF and HF breakfasts improve BA profiles and may therefore have potential health-promoting effects on BA metabolism.
Collapse
Affiliation(s)
- Tannaz Ghaffarzadegan
- Food for Health Science Centre, Kemicentrum, Lund University, P.O. Box 124, SE-221 00, Lund, Sweden
| | - Yoghatama Cindya Zanzer
- Food for Health Science Centre, Kemicentrum, Lund University, P.O. Box 124, SE-221 00, Lund, Sweden
| | - Elin Östman
- Food for Health Science Centre, Kemicentrum, Lund University, P.O. Box 124, SE-221 00, Lund, Sweden
| | - Frida Hållenius
- Food for Health Science Centre, Kemicentrum, Lund University, P.O. Box 124, SE-221 00, Lund, Sweden
| | - Sofia Essén
- Centre for Analysis and Synthesis, Department of Chemistry, Kemicentrum, Lund University, P.O. Box 124, SE-221 00, Lund, Sweden
| | - Margareta Sandahl
- Centre for Analysis and Synthesis, Department of Chemistry, Kemicentrum, Lund University, P.O. Box 124, SE-221 00, Lund, Sweden
| | - Margareta Nyman
- Food for Health Science Centre, Kemicentrum, Lund University, P.O. Box 124, SE-221 00, Lund, Sweden
| |
Collapse
|
30
|
Chávez-Talavera O, Haas J, Grzych G, Tailleux A, Staels B. Bile acid alterations in nonalcoholic fatty liver disease, obesity, insulin resistance and type 2 diabetes: what do the human studies tell? Curr Opin Lipidol 2019; 30:244-254. [PMID: 30893108 DOI: 10.1097/mol.0000000000000597] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW The purpose of this review is to discuss the influence of obesity, insulin resistance, type 2 diabetes (T2D), and nonalcoholic fatty liver disease (NAFLD) on bile acid metabolism and to analyze whether these findings reinforce current beliefs about the role of bile acids in the pathophysiology of these diseases. RECENT FINDINGS Discordant results on plasma bile acid alterations in NAFLD patients have been reported. Obesity, insulin resistance, and T2D, common comorbidities of NAFLD, have been associated with bile acid changes, but the individual bile acid species variations differ between studies (summarized in this review), perhaps because of clinicobiological differences between the studied patient populations and the heterogeneity of statistical analyses applied. SUMMARY The regulatory role of bile acids in metabolic and cellular homeostasis renders bile acids attractive candidates as players in the pathophysiology of NAFLD. However, considering the complex relationship between NAFLD, obesity, insulin resistance and T2D, it is difficult to establish clear and independent associations between bile acid alterations and these individual diseases. Though bile acid alterations may not drive NAFLD progression, signaling pathways activated by bile acids remain potent therapeutic targets for its treatment. Further studies with appropriate matching or adjustment for potential confounding factors are necessary to determine which pathophysiological conditions drive the alterations in bile acid metabolism.
Collapse
|
31
|
Syring KE, Cyphert TJ, Beck TC, Flynn CR, Mignemi NA, McGuinness OP. Systemic bile acids induce insulin resistance in a TGR5-independent manner. Am J Physiol Endocrinol Metab 2019; 316:E782-E793. [PMID: 30779633 PMCID: PMC6732652 DOI: 10.1152/ajpendo.00362.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 02/04/2019] [Accepted: 02/18/2019] [Indexed: 02/07/2023]
Abstract
Bile acids are involved in the emulsification and absorption of dietary fats, as well as acting as signaling molecules. Recently, bile acid signaling through farnesoid X receptor and G protein-coupled bile acid receptor (TGR5) has been reported to elicit changes in not only bile acid synthesis but also metabolic processes, including the alteration of gluconeogenic gene expression and energy expenditure. A role for bile acids in glucose metabolism is also supported by a correlation between changes in the metabolic state of patients (i.e., obesity or postbariatric surgery) and altered serum bile acid levels. However, despite evidence for a role for bile acids during metabolically challenging settings, the direct effect of elevated bile acids on insulin action in the absence of metabolic disease has yet to be investigated. The present study examines the impact of acutely elevated plasma bile acid levels on insulin sensitivity using hyperinsulinemic-euglycemic clamps. In wild-type mice, elevated bile acids impair hepatic insulin sensitivity by blunting the insulin suppression of hepatic glucose production. The impaired hepatic insulin sensitivity could not be attributed to TGR5 signaling, as TGR5 knockout mice exhibited a similar inhibition of insulin suppression of hepatic glucose production. Canonical insulin signaling pathways, such as hepatic PKB (or Akt) activation, were not perturbed in these animals. Interestingly, bile acid infusion directly into the portal vein did not result in an impairment in hepatic insulin sensitivity. Overall, the data indicate that acute increases in circulating bile acids in lean mice impair hepatic insulin sensitivity via an indirect mechanism.
Collapse
Affiliation(s)
- Kristen E Syring
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine , Nashville, Tennessee
| | - Travis J Cyphert
- Department of Biological Sciences, Marshall University College of Science, Huntington, West Virginia
| | - Thomas C Beck
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine , Nashville, Tennessee
| | - Charles R Flynn
- Department of Surgery, Vanderbilt University Medical Center , Nashville, Tennessee
| | - Nicholas A Mignemi
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine , Nashville, Tennessee
| | - Owen P McGuinness
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine , Nashville, Tennessee
| |
Collapse
|
32
|
Abstract
Bile acids have important roles in the regulation of lipid, glucose and energy metabolism. Metabolic diseases linked to obesity, including type 2 diabetes mellitus and non-alcoholic fatty liver disease, are associated with dysregulation of bile acid homeostasis. Here, the basic chemistry and regulation of bile acids as well as their metabolic effects will be reviewed. Changes in circulating bile acids associated with obesity and related diseases will be reviewed. Finally, pharmaceutical manipulation of bile acid homeostasis as therapy for metabolic diseases will be outlined.
Collapse
Affiliation(s)
- Emma Rose McGlone
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | - Stephen R Bloom
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| |
Collapse
|
33
|
Al-Aama JY, Al Mahdi HB, Salama MA, Bakur KH, Alhozali A, Mosli HH, Bahijri SM, Bahieldin A, Willmitzer L, Edris S. Detection of Secondary Metabolites as Biomarkers for the Early Diagnosis and Prevention of Type 2 Diabetes. Diabetes Metab Syndr Obes 2019; 12:2675-2684. [PMID: 31908508 PMCID: PMC6930579 DOI: 10.2147/dmso.s215528] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 10/22/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Type 2 diabetes, or T2D, is a metabolic disease that results in insulin resistance. In the present study, we hypothesize that metabolomic analysis in blood samples of T2D patients sharing the same ethnic background can recover new metabolic biomarkers and pathways that elucidate early diagnosis and predict the incidence of T2D. METHODS The study included 34 T2D patients and 33 healthy volunteers recruited between the years 2012 and 2013; the secondary metabolites were extracted from blood samples and analyzed using HPLC. RESULTS Principal coordinate analysis and hierarchical clustering patterns for the uncharacterized negatively and positively charged metabolites indicated that samples from healthy individuals and T2D patients were largely separated with only a few exceptions. The inspection of the top 10% secondary metabolites indicated an increase in fucose, tryptophan and choline levels in the T2D patients, while there was a reduction in carnitine, homoserine, allothreonine, serine and betaine as compared to healthy individuals. These metabolites participate mainly in three cross-talking pathways, namely "glucagon signaling", "glycine, serine and threonine" and "bile secretion". Reduced level of carnitine in T2D patients is known to participate in the impaired insulin-stimulated glucose utilization, while reduced betaine level in T2D patients is known as a common feature of this metabolic syndrome and can result in the reduced glycine production and the occurrence of insulin resistance. However, reduced levels of serine, homoserine and allothrionine, substrates for glycine production, indicate the depletion of glycine, thus possibly impair insulin sensitivity in T2D patients of the present study. CONCLUSION We introduce serine, homoserine and allothrionine as new potential biomarkers of T2D.
Collapse
Affiliation(s)
- Jumana Y Al-Aama
- King Abdulaziz University, Princess Al Jawhara Albrahim Centre of Excellence in Research of Hereditary Disorders, Jeddah, KSA
- King Abdulaziz University Faculty of Medicine, Department of Genetic Medicine, Jeddah, KSA
- Correspondence: Sherif Edris; Jumana Y Al-Aama King Abdulaziz University, Princess Al Jawhara Albrahim Centre of Excellence in Research of Hereditary Disorders, Jeddah, KSATel +966 593 66 23 84 Email ;
| | - Hadiah B Al Mahdi
- King Abdulaziz University, Princess Al Jawhara Albrahim Centre of Excellence in Research of Hereditary Disorders, Jeddah, KSA
| | - Mohammed A Salama
- King Abdulaziz University, Princess Al Jawhara Albrahim Centre of Excellence in Research of Hereditary Disorders, Jeddah, KSA
| | - Khadija H Bakur
- King Abdulaziz University, Princess Al Jawhara Albrahim Centre of Excellence in Research of Hereditary Disorders, Jeddah, KSA
- King Abdulaziz University Faculty of Medicine, Department of Genetic Medicine, Jeddah, KSA
| | - Amani Alhozali
- King Abdulaziz University, Faculty of Medicine, Department of Endocrinology and Metabolism, Jeddah, KSA
| | - Hala H Mosli
- King Abdulaziz University, Faculty of Medicine, Department of Endocrinology and Metabolism, Jeddah, KSA
| | - Suhad M Bahijri
- King Abdulaziz University, Faculty of Medicine, Department of Clinical Biochemistry, Jeddah, KSA
| | - Ahmed Bahieldin
- King Abdulaziz University, Faculty of Science, Biological Sciences Department, Jeddah, KSA
- Ain Shams University, Department of Genetics, Cairo, Egypt
| | - Lothar Willmitzer
- Max-Planck-Institut Für Molekulare Pflanzenphysiologie, Molecular Physiology, Golm, DE, Germany
| | - Sherif Edris
- King Abdulaziz University, Princess Al Jawhara Albrahim Centre of Excellence in Research of Hereditary Disorders, Jeddah, KSA
- King Abdulaziz University, Faculty of Science, Biological Sciences Department, Jeddah, KSA
- Ain Shams University, Department of Genetics, Cairo, Egypt
- Correspondence: Sherif Edris; Jumana Y Al-Aama King Abdulaziz University, Princess Al Jawhara Albrahim Centre of Excellence in Research of Hereditary Disorders, Jeddah, KSATel +966 593 66 23 84 Email ;
| |
Collapse
|
34
|
Caussy C, Hsu C, Singh S, Bassirian S, Kolar J, Faulkner C, Sinha N, Bettencourt R, Gara N, Valasek MA, Schnabl B, Richards L, Brenner DA, Hofmann AF, Loomba R. Serum bile acid patterns are associated with the presence of NAFLD in twins, and dose-dependent changes with increase in fibrosis stage in patients with biopsy-proven NAFLD. Aliment Pharmacol Ther 2019; 49:183-193. [PMID: 30506692 PMCID: PMC6319963 DOI: 10.1111/apt.15035] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/16/2018] [Accepted: 10/05/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND The fasting-state serum bile acid profile in nonalcoholic fatty liver disease (NAFLD) has been reported to differ when nonalcoholic steatohepatitis is compared to nonalcoholic fatty liver. However, there are few data comparing changes in NAFLD vs non-NAFLD, or whether the bile acid profile differs according to the degree of fibrosis. AIM To examine the serum bile acid profile across the entire spectrum of NAFLD. METHODS We performed a cross-sectional analysis of two complementary cohorts: a Twin and Family cohort of 156 participants, and a biopsy-proven-NAFLD cohort of 156 participants with fasting bile acid profiling using liquid chromatography/mass spectrometry. RESULTS In the Twin and Family cohort (mean age 46.3 years and body mass index (BMI) 26.6 kg/m2 ), 36 (23%) participants had NAFLD (magnetic resonance imaging proton density fat fraction ≥ 5%). Higher chenodeoxycholyl conjugates (9.0% vs 6.5%, P = 0.019) and lower glycohyocholate (1.2% vs 3.6%, P < 0.001) were observed in NAFLD compared to non-NAFLD-controls. In the biopsy-proven-NAFLD cohort (mean age 49.8 years, BMI 32.0 kg/m2 ), no differences in total bile acid were seen between nonalcoholic fatty liver vs nonalcoholic steatohepatitis. The total unconjugated bile acid significantly decreased across nonalcoholic steatohepatitis categories (P = 0.044). The distribution of stage of fibrosis was F0: 42.3%, F1: 32.7%, F2: 10.3%, F3: 8.3% and F4: 6.4%. The total serum bile acid increased with increase in fibrosis stage (P < 0.001). The primary conjugated bile acid proportion increased (P < 0.001) whereas unconjugated bile acid (P = 0.006), unconjugated cholyl (P < 0.001) and chenodeoxycholyl conjugates (P < 0.002) significantly decreased with increase in liver fibrosis stage. CONCLUSIONS Fasting-state serum bile acid profile alterations are seen across the entire spectrum of NAFLD. The total serum bile acids did not differ significantly between NAFLD vs non-NAFLD and nonalcoholic fatty liver vs nonalcoholic steatohepatitis, but were significantly perturbed progressively as liver fibrosis increases.
Collapse
Affiliation(s)
- Cyrielle Caussy
- NAFLD Research Center, Department of Medicine, University of California at San Diego, La Jolla, California,Université Lyon 1, Hospices Civils de Lyon, Lyon, France
| | - Cynthia Hsu
- NAFLD Research Center, Department of Medicine, University of California at San Diego, La Jolla, California
| | - Seema Singh
- NAFLD Research Center, Department of Medicine, University of California at San Diego, La Jolla, California
| | - Shirin Bassirian
- NAFLD Research Center, Department of Medicine, University of California at San Diego, La Jolla, California
| | - James Kolar
- NAFLD Research Center, Department of Medicine, University of California at San Diego, La Jolla, California
| | - Claire Faulkner
- NAFLD Research Center, Department of Medicine, University of California at San Diego, La Jolla, California
| | - Nikhil Sinha
- NAFLD Research Center, Department of Medicine, University of California at San Diego, La Jolla, California
| | - Ricki Bettencourt
- NAFLD Research Center, Department of Medicine, University of California at San Diego, La Jolla, California,Division of Epidemiology, Department of Family Medicine and Public Health, University of California at San Diego, La Jolla, California
| | - Naveen Gara
- Department of Pathology, University of California at San Diego, La Jolla, California
| | - Mark A. Valasek
- Division of Gastroenterology, Department of Medicine, La Jolla, California
| | - Bernd Schnabl
- Division of Gastroenterology, Department of Medicine, La Jolla, California
| | - Lisa Richards
- NAFLD Research Center, Department of Medicine, University of California at San Diego, La Jolla, California
| | - David A. Brenner
- NAFLD Research Center, Department of Medicine, University of California at San Diego, La Jolla, California,Division of Gastroenterology, Department of Medicine, La Jolla, California
| | - Alan F. Hofmann
- Division of Gastroenterology, Department of Medicine, La Jolla, California
| | - Rohit Loomba
- NAFLD Research Center, Department of Medicine, University of California at San Diego, La Jolla, California,Division of Epidemiology, Department of Family Medicine and Public Health, University of California at San Diego, La Jolla, California,Division of Gastroenterology, Department of Medicine, La Jolla, California
| |
Collapse
|
35
|
Wang D, Hartmann K, Seweryn M, Sadee W. Interactions Between Regulatory Variants in CYP7A1 (Cholesterol 7α-Hydroxylase) Promoter and Enhancer Regions Regulate CYP7A1 Expression. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2018; 11:e002082. [PMID: 30354296 PMCID: PMC6211808 DOI: 10.1161/circgen.118.002082] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 08/13/2018] [Indexed: 01/11/2023]
Abstract
BACKGROUND CYP7A1 (cholesterol 7α-hydroxylase) catalyzes the rate-limiting step in bile acid biosynthesis from cholesterol-a main pathway for cholesterol removal from the body. CYP7A1 single-nucleotide polymorphisms (SNPs) are associated with total cholesterol and LDL (low-density lipoprotein) levels, risk of cardiovascular diseases, and other phenotypes; however, results are inconsistent, and causative variants remain uncertain, except for a frequent promoter SNP (rs3808607). METHODS We used chromatin conformation capture (4C assay), chromatin immunoprecipitation qPCR assay in hepatocytes, and CRISPR (clustered regularly interspaced short palindromic repeats)-mediated genome editing in hepatocellular carcinoma cell line cells to identify regulatory regions for CYP7A1. We then screened for SNPs located in regulatory regions, testing effects on reporter gene assays and on hepatic CYP7A1 expression by measuring allelic mRNA expression imbalance. RESULTS 4C assays showed several regions interacting with CYP7A1 promoter. CRISPR-mediated genome editing in hepatocellular carcinoma cell line cells revealed a novel CYP7A1 enhancer and a repressor region, located >10 kb downstream of the CYP7A1 promoter. SNP screening with an allelic mRNA expression imbalance in human livers and reporter gene assays identified a frequent functional SNP (rs9297994) located in the downstream CYP7A1 enhancer region. SNP rs9297994 is in high linkage disequilibrium with promoter SNP rs3808607 but has opposite effects on CYP7A1 mRNA expression. Their combined effects using a 2-SNP model robustly associate with hepatic CYP7A1 mRNA expression, ranging >2 orders of magnitude. Moreover, only the 2-SNP model, but not each SNP alone, is significantly associated with LDL levels, risk of coronary artery disease, statin response, and diabetes mellitus in several clinical cohorts, including CATHGEN (Catheterization Genetics) and Framingham. CONCLUSIONS Two interacting regulatory SNPs modulate CYP7A1 expression and are associated with risk of coronary artery disease and diabetes mellitus.
Collapse
Affiliation(s)
- Danxin Wang
- Center for Pharmacogenomics, Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH
- Department of Pharmacotherapy and Translational Research, University of Florida, Gainesville, FL
| | - Kate Hartmann
- Center for Pharmacogenomics, Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH
| | - Michal Seweryn
- Center for Medical Genomics OMICRON, UJ CM, Krakow, Poland
| | - Wolfgang Sadee
- Center for Pharmacogenomics, Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH
| |
Collapse
|
36
|
Ginos BNR, Navarro SL, Schwarz Y, Gu H, Wang D, Randolph TW, Shojaie A, Hullar MAJ, Lampe PD, Kratz M, Neuhouser ML, Raftery D, Lampe JW. Circulating bile acids in healthy adults respond differently to a dietary pattern characterized by whole grains, legumes and fruits and vegetables compared to a diet high in refined grains and added sugars: A randomized, controlled, crossover feeding study. Metabolism 2018; 83:197-204. [PMID: 29458053 PMCID: PMC5960615 DOI: 10.1016/j.metabol.2018.02.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 02/12/2018] [Accepted: 02/15/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The effects of diets high in refined grains on biliary and colonic bile acids have been investigated extensively. However, the effects of diets high in whole versus refined grains on circulating bile acids, which can influence glucose homeostasis and inflammation through activation of farnesoid X receptor (FXR) and G protein-coupled bile acid receptor 1 (TGR5), have not been studied. MATERIALS AND METHODS We conducted a secondary analysis from a randomized controlled crossover feeding trial (NCT00622661) in 80 healthy adults (40 women/40 men, age 18-45 years) from the greater Seattle Area, half of which were normal weight (BMI 18.5-25.0 kg/m2) and half overweight to obese (BMI 28.0-39.9 kg/m2). Participants consumed two four-week controlled diets in randomized order: 1) a whole grain diet (WG diet), designed to be low in glycemic load (GL), high in whole grains, legumes, and fruits and vegetables, and 2) a refined grain diet (RG diet), designed to be high GL, high in refined grains and added sugars, separated by a four-week washout period. Quantitative targeted analysis of 55 bile acid species in fasting plasma was performed using liquid chromatography tandem mass spectrometry. Concentrations of glucose, insulin, and CRP were measured in fasting serum. Linear mixed models were used to test the effects of diet on bile acid concentrations, and determine the association between plasma bile acid concentrations and HOMA-IR and CRP. Benjamini-Hochberg false discovery rate (FDR) < 0.05 was used to control for multiple testing. RESULTS A total of 29 plasma bile acids were reliably detected and retained for analysis. Taurolithocholic acid (TLCA), taurocholic acid (TCA) and glycocholic acid (GCA) were statistically significantly higher after the WG compared to the RG diet (FDR < 0.05). There were no significant differences by BMI or sex. When evaluating the association of bile acids and HOMA-IR, GCA, taurochenodeoxycholic acid, ursodeoxycholic acid (UDCA), 5β‑cholanic acid‑3β,12α‑diol, 5‑cholanic acid‑3β‑ol, and glycodeoxycholic acid (GDCA) were statistically significantly positively associated with HOMA-IR individually, and as a group, total, 12α‑hydroxylated, primary and secondary bile acids were also significant (FDR < 0.05). When stratifying by BMI, chenodeoxycholic acid (CDCA), cholic acid (CA), UDCA, 5β-cholanic acid-3β, deoxycholic acid, and total, 12α-hydroxylated, primary and secondary bile acid groups were significantly positively associated with HOMA-IR among overweight to obese individuals (FDR < 0.05). When stratifying by sex, GCA, CDCA, TCA, CA, UDCA, GDCA, glycolithocholic acid (GLCA), total, primary, 12α‑hydroxylated, and glycine-conjugated bile acids were significantly associated with HOMA-IR among women, and CDCA, GDCA, and GLCA were significantly associated among men (FDR < 0.05). There were no significant associations between bile acids and CRP. CONCLUSIONS Diets with comparable macronutrient and energy composition, but differing in carbohydrate source, affected fasting plasma bile acids differently. Specifically, a diet characterized by whole grains, legumes, and fruits and vegetables compared to a diet high in refined grains and added sugars led to modest increases in concentrations of TLCA, TCA and GCA, ligands for FXR and TGR5, which may have beneficial effects on glucose homeostasis.
Collapse
Affiliation(s)
- Bigina N R Ginos
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| | - Sandi L Navarro
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| | - Yvonne Schwarz
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| | - Haiwei Gu
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA.
| | - Dongfang Wang
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA.
| | - Timothy W Randolph
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| | - Ali Shojaie
- Department of Biostatistics, University of Washington, Seattle, WA, USA.
| | - Meredith A J Hullar
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| | - Paul D Lampe
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| | - Mario Kratz
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| | - Marian L Neuhouser
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| | - Daniel Raftery
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA.
| | - Johanna W Lampe
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| |
Collapse
|
37
|
Effects of supplemented isoenergetic diets varying in cereal fiber and protein content on the bile acid metabolic signature and relation to insulin resistance. Nutr Diabetes 2018; 8:11. [PMID: 29549243 PMCID: PMC5856807 DOI: 10.1038/s41387-018-0020-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/16/2018] [Accepted: 01/21/2018] [Indexed: 12/13/2022] Open
Abstract
Bile acids (BA) are potent metabolic regulators influenced by diet. We studied effects of isoenergetic increases in the dietary protein and cereal-fiber contents on circulating BA and insulin resistance (IR) in overweight and obese adults. Randomized controlled nutritional intervention (18 weeks) in 72 non-diabetic participants (overweight/obese: 29/43) with at least one further metabolic risk factor. Participants were group-matched and allocated to four isoenergetic supplemented diets: control; high cereal fiber (HCF); high-protein (HP); or moderately increased cereal fiber and protein (MIX). Whole-body IR and insulin-mediated suppression of hepatic endogenous glucose production were measured using euglycaemic–hyperinsulinemic clamps with [6-62H2] glucose infusion. Circulating BA, metabolic biomarkers, and IR were measured at 0, 6, and 18 weeks. Under isoenergetic conditions, HP-intake worsened IR in obese participants after 6 weeks (M-value: 3.77 ± 0.58 vs. 3.07 ± 0.44 mg/kg/min, p = 0.038), with partial improvement back to baseline levels after 18 weeks (3.25 ± 0.45 mg/kg/min, p = 0.089). No deleterious effects of HP-intake on IR were observed in overweight participants. HCF-diet improved IR in overweight participants after 6 weeks (M-value 4.25 ± 0.35 vs. 4.81 ± 0.31 mg/kg/min, p = 0.016), but did not influence IR in obese participants. Control and MIX diets did not influence IR. HP-induced, but not HCF-induced changes in IR strongly correlated with changes of BA profiles. MIX-diet significantly increased most BA at 18 weeks in obese, but not in overweight participants. BA remained unchanged in controls. Pooled BA concentrations correlated with fasting fibroblast growth factor-19 (FGF-19) plasma levels (r = 0.37; p = 0.003). Higher milk protein intake was the only significant dietary predictor for raised total and primary BA in regression analyses (total BA, p = 0.017; primary BA, p = 0.011). Combined increased intake of dietary protein and cereal fibers markedly increased serum BA concentrations in obese, but not in overweight participants. Possible mechanisms explaining this effect may include compensatory increases of the BA pool in the insulin resistant, obese state; or defective BA transport.
Collapse
|
38
|
Abstract
Bile acids (BA), for decades considered only to have fat-emulsifying functions in the gut lumen, have recently emerged as novel cardio-metabolic modulators. They have real endocrine effects, acting via multiple intracellular receptors in various organs and tissues. BA affect energy homeostasis through the modulation of glucose and lipid metabolism, predominantly by activating the nuclear farnesoid X receptor (FXR), as well as the cytoplasmic membrane G protein-coupled BA receptor TGR5 in a variety of tissues; although numerous other intracellular targets of BA are also in play.The roles of BA in the pathogenesis of diabetes, obesity, metabolic syndrome, and cardiovascular diseases are seriously being considered, and BA and their derivatives seem to represent novel potential therapeutics to treat these diseases of civilization.
Collapse
Affiliation(s)
- Libor Vítek
- Institute of Medical Biochemistry and Laboratory Diagnostics, and 4th Department of Internal Medicine, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
39
|
Legry V, Francque S, Haas JT, Verrijken A, Caron S, Chávez-Talavera O, Vallez E, Vonghia L, Dirinck E, Verhaegen A, Kouach M, Lestavel S, Lefebvre P, Van Gaal L, Tailleux A, Paumelle R, Staels B. Bile Acid Alterations Are Associated With Insulin Resistance, but Not With NASH, in Obese Subjects. J Clin Endocrinol Metab 2017; 102:3783-3794. [PMID: 28938455 DOI: 10.1210/jc.2017-01397] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 07/31/2017] [Indexed: 12/15/2022]
Abstract
CONTEXT Bile acids (BAs) are signaling molecules controlling energy homeostasis that can be both toxic and protective for the liver. BA alterations have been reported in obesity, insulin resistance (IR), and nonalcoholic steatohepatitis (NASH). However, whether BA alterations contribute to NASH independently of the metabolic status is unclear. OBJECTIVE To assess BA alterations associated with NASH independently of body mass index and IR. DESIGN AND SETTING Patients visiting the obesity clinic of the Antwerp University Hospital (a tertiary referral facility) were recruited from 2006 to 2014. PATIENTS Obese patients with biopsy-proven NASH (n = 32) and healthy livers (n = 26) were matched on body mass index and homeostasis model assessment of IR. MAIN OUTCOME MEASURES Transcriptomic analyses were performed on liver biopsies. Plasma concentrations of 21 BA species and 7α-hydroxy-4-cholesten-3-one, a marker of BA synthesis, were determined by liquid chromatography-tandem mass spectrometry. Plasma fibroblast growth factor 19 was measured by enzyme-linked immunosorbent assay. RESULTS Plasma BA concentrations did not correlate with any hepatic lesions, whereas, as previously reported, primary BA strongly correlated with IR. Transcriptomic analyses showed unaltered hepatic BA metabolism in NASH patients. In line, plasma 7α-hydroxy-4-cholesten-3-one was unchanged in NASH. Moreover, no sign of hepatic BA accumulation or activation of BA receptors-farnesoid X, pregnane X, and vitamin D receptors-was found. Finally, plasma fibroblast growth factor 19, secondary-to-primary BA, and free-to-conjugated BA ratios were similar, suggesting unaltered intestinal BA metabolism and signaling. CONCLUSIONS In obese patients, BA alterations are related to the metabolic phenotype associated with NASH, especially IR, but not liver necroinflammation.
Collapse
Affiliation(s)
- Vanessa Legry
- Université Lille, INSERM, Centre Hospitalier Universitaire de Lille, Institut Pasteur de Lille, U1011-European Genomic Institute for Diabetes, F-59000 Lille, France
| | - Sven Francque
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, 2650 Edegem/Antwerp, Belgium
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Wilrijk/Antwerp, Belgium
| | - Joel T Haas
- Université Lille, INSERM, Centre Hospitalier Universitaire de Lille, Institut Pasteur de Lille, U1011-European Genomic Institute for Diabetes, F-59000 Lille, France
| | - An Verrijken
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Wilrijk/Antwerp, Belgium
- Department of Endocrinology, Diabetes and Metabolism, Antwerp University Hospital, 2650 Egedem/Antwerp, Belgium
| | - Sandrine Caron
- Université Lille, INSERM, Centre Hospitalier Universitaire de Lille, Institut Pasteur de Lille, U1011-European Genomic Institute for Diabetes, F-59000 Lille, France
| | - Oscar Chávez-Talavera
- Université Lille, INSERM, Centre Hospitalier Universitaire de Lille, Institut Pasteur de Lille, U1011-European Genomic Institute for Diabetes, F-59000 Lille, France
| | - Emmanuelle Vallez
- Université Lille, INSERM, Centre Hospitalier Universitaire de Lille, Institut Pasteur de Lille, U1011-European Genomic Institute for Diabetes, F-59000 Lille, France
| | - Luisa Vonghia
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, 2650 Edegem/Antwerp, Belgium
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Wilrijk/Antwerp, Belgium
| | - Eveline Dirinck
- Department of Endocrinology, Diabetes and Metabolism, Antwerp University Hospital, 2650 Egedem/Antwerp, Belgium
| | - Ann Verhaegen
- Department of Endocrinology, Diabetes and Metabolism, Antwerp University Hospital, 2650 Egedem/Antwerp, Belgium
| | - Mostafa Kouach
- Plateau de Spectrométrie de Masse-Groupe de Recherche sur les formes Injectables et les Technologies Associées, (PSM-GRITA), Faculté de Pharmacie, F-59000 Lille, France
| | - Sophie Lestavel
- Université Lille, INSERM, Centre Hospitalier Universitaire de Lille, Institut Pasteur de Lille, U1011-European Genomic Institute for Diabetes, F-59000 Lille, France
| | - Philippe Lefebvre
- Université Lille, INSERM, Centre Hospitalier Universitaire de Lille, Institut Pasteur de Lille, U1011-European Genomic Institute for Diabetes, F-59000 Lille, France
| | - Luc Van Gaal
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Wilrijk/Antwerp, Belgium
- Department of Endocrinology, Diabetes and Metabolism, Antwerp University Hospital, 2650 Egedem/Antwerp, Belgium
| | - Anne Tailleux
- Université Lille, INSERM, Centre Hospitalier Universitaire de Lille, Institut Pasteur de Lille, U1011-European Genomic Institute for Diabetes, F-59000 Lille, France
| | - Réjane Paumelle
- Université Lille, INSERM, Centre Hospitalier Universitaire de Lille, Institut Pasteur de Lille, U1011-European Genomic Institute for Diabetes, F-59000 Lille, France
| | - Bart Staels
- Université Lille, INSERM, Centre Hospitalier Universitaire de Lille, Institut Pasteur de Lille, U1011-European Genomic Institute for Diabetes, F-59000 Lille, France
| |
Collapse
|
40
|
Albaugh VL, Banan B, Ajouz H, Abumrad NN, Flynn CR. Bile acids and bariatric surgery. Mol Aspects Med 2017; 56:75-89. [PMID: 28390813 PMCID: PMC5603298 DOI: 10.1016/j.mam.2017.04.001] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/27/2017] [Accepted: 04/04/2017] [Indexed: 12/12/2022]
Abstract
Bariatric surgery, specifically Roux-en-Y gastric bypass (RYGB) and vertical sleeve gastrectomy (VSG), are the most effective and durable treatments for morbid obesity and potentially a viable treatment for type 2 diabetes (T2D). The resolution rate of T2D following these procedures is between 40 and 80% and far surpasses that achieved by medical management alone. The molecular basis for this improvement is not entirely understood, but has been attributed in part to the altered enterohepatic circulation of bile acids. In this review we highlight how bile acids potentially contribute to improved lipid and glucose homeostasis, insulin sensitivity and energy expenditure after these procedures. The impact of altered bile acid levels in enterohepatic circulation is also associated with changes in gut microflora, which may further contribute to some of these beneficial effects. We highlight the beneficial effects of experimental surgical procedures in rodents that alter bile secretory flow without gastric restriction or altering nutrient flow. This information suggests a role for bile acids beyond dietary fat emulsification in altering whole body glucose and lipid metabolism strongly, and also suggests emerging roles for the activation of the bile acid receptors farnesoid x receptor (FXR) and G-protein coupled bile acid receptor (TGR5) in these improvements. The limitations of rodent studies and the current state of our understanding is reviewed and the potential effects of bile acids mediating the short- and long-term metabolic improvements after bariatric surgery is critically examined.
Collapse
MESH Headings
- Animals
- Bile Acids and Salts/metabolism
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/microbiology
- Diabetes Mellitus, Type 2/pathology
- Diabetes Mellitus, Type 2/surgery
- Enterohepatic Circulation
- Gastrectomy
- Gastric Bypass
- Gastrointestinal Microbiome/physiology
- Gene Expression Regulation
- Glucose/metabolism
- Homeostasis/physiology
- Humans
- Insulin Resistance
- Obesity, Morbid/metabolism
- Obesity, Morbid/microbiology
- Obesity, Morbid/pathology
- Obesity, Morbid/surgery
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Rodentia
- Signal Transduction
Collapse
Affiliation(s)
- Vance L Albaugh
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Babak Banan
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Hana Ajouz
- American University of Beirut, Beirut, Lebanon
| | - Naji N Abumrad
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Charles R Flynn
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
41
|
Chen C, Hu B, Wu T, Zhang Y, Xu Y, Feng Y, Jiang H. Bile acid profiles in diabetic (db/db) mice and their wild type littermates. J Pharm Biomed Anal 2016; 131:473-481. [PMID: 27689719 DOI: 10.1016/j.jpba.2016.09.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 09/21/2016] [Accepted: 09/22/2016] [Indexed: 12/12/2022]
Abstract
This study aimed to obtain information on bile acid profiles in diabetic (db/db) mice and their wild type (wt) littermates for the understanding of pathogenesis and discovery of potential biomarkers of type 2 diabetes. Analytical methods based on protein precipitation or solid-phase extraction together with liquid chromatography-tandem mass spectrometry were developed for the determination of 25 bile acids in plasma, urine and feces samples collected from db/db and wt mice. GLP-1 concentration and hepatic genes related to bile acid synthesis were also investigated. The results showed that the concentrations of individual bile acids varied notably both interindividually and temporally. However, plasma, urine and feces samples displayed discriminating bile acid profiles between the db/db and wt groups, with the plasma profile showing the best differentiation capacity. In plasma and urine, the concentration variation of taurine-conjugated bile acids was more correlated with that of other taurine-conjugated bile acids, and vice versa for the unconjugated bile acids. Transcription of hepatic gene Cyp7b1 was downregulated, and Hsd3b7 upregulated in db/db mice. In conclusion, the bile acid profile, particularly that in plasma, can distinguish the two animal groups and is a promising biomarker for type 2 diabetes.
Collapse
Affiliation(s)
- Chang Chen
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, China; Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Bingying Hu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, China
| | - Tongzhi Wu
- Discipline of Medicine and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
| | - Yang Zhang
- Department of Pharmacy, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Xu
- Medical Research Center, Humanwell Healthcare (Group) Co., Ltd., Wuhan, China
| | - Yulin Feng
- Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Hongliang Jiang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|