1
|
Linero PL, Castilla-Guerra L. Management of Cardiovascular Risk in the Non-alcoholic Fatty Liver Disease Setting. Eur Cardiol 2024; 19:e02. [PMID: 38807854 PMCID: PMC11131151 DOI: 10.15420/ecr.2023.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 10/02/2023] [Indexed: 05/30/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is an overlooked and undetected pathology, which affects more than 32% of adults worldwide. NAFLD is becoming more common in Western industrialised countries, particularly in patients with central obesity, type 2 diabetes, dyslipidaemia and metabolic syndrome. Although NAFLD has traditionally been interpreted as a liver disease with a high risk of liver-related complications, NAFLD is an underappreciated and independent risk factor for atherosclerotic cardiovascular disease, which is the principal cause of death in patients with NAFLD. Treatment options to counteract both the progression and development of cardiovascular disease and NAFLD include lifestyle interventions, such as weight loss, increased physical activity and dietary modification, and optimal medical therapy of comorbid conditions; nevertheless, further studies are needed to define optimal treatment strategies for the prevention of both hepatic and cardiovascular complications of NAFLD.
Collapse
Affiliation(s)
- Paula Luque Linero
- Vascular Risk Unit, Department of Internal Medicine, Hospital Virgen MacarenaSeville, Spain
| | - Luis Castilla-Guerra
- Vascular Risk Unit, Department of Internal Medicine, Hospital Virgen MacarenaSeville, Spain
- Department of Medicine, University of SevilleSeville, Spain
| |
Collapse
|
2
|
Aizenshtadt A, Wang C, Abadpour S, Menezes PD, Wilhelmsen I, Dalmao‐Fernandez A, Stokowiec J, Golovin A, Johnsen M, Combriat TMD, Røberg‐Larsen H, Gadegaard N, Scholz H, Busek M, Krauss SJK. Pump-Less, Recirculating Organ-on-Chip (rOoC) Platform to Model the Metabolic Crosstalk between Islets and Liver. Adv Healthc Mater 2024; 13:e2303785. [PMID: 38221504 PMCID: PMC11468483 DOI: 10.1002/adhm.202303785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/05/2023] [Indexed: 01/16/2024]
Abstract
Type 2 diabetes mellitus (T2DM), obesity, and metabolic dysfunction-associated steatotic liver disease (MASLD) are epidemiologically correlated disorders with a worldwide growing prevalence. While the mechanisms leading to the onset and development of these conditions are not fully understood, predictive tissue representations for studying the coordinated interactions between central organs that regulate energy metabolism, particularly the liver and pancreatic islets, are needed. Here, a dual pump-less recirculating organ-on-chip platform that combines human pluripotent stem cell (sc)-derived sc-liver and sc-islet organoids is presented. The platform reproduces key aspects of the metabolic cross-talk between both organs, including glucose levels and selected hormones, and supports the viability and functionality of both sc-islet and sc-liver organoids while preserving a reduced release of pro-inflammatory cytokines. In a model of metabolic disruption in response to treatment with high lipids and fructose, sc-liver organoids exhibit hallmarks of steatosis and insulin resistance, while sc-islets produce pro-inflammatory cytokines on-chip. Finally, the platform reproduces known effects of anti-diabetic drugs on-chip. Taken together, the platform provides a basis for functional studies of obesity, T2DM, and MASLD on-chip, as well as for testing potential therapeutic interventions.
Collapse
Affiliation(s)
- Aleksandra Aizenshtadt
- Hybrid Technology Hub Centre of ExcellenceInstitute of Basic Medical ScienceUniversity of OsloP.O. Box 1110Oslo0317Norway
- Dep. of Immunology and Transfusion MedicineOslo University HospitalP.O. Box 4950Oslo0424Norway
| | - Chencheng Wang
- Hybrid Technology Hub Centre of ExcellenceInstitute of Basic Medical ScienceUniversity of OsloP.O. Box 1110Oslo0317Norway
- Dep. of Transplantation MedicineExperimental Cell Transplantation Research GroupOslo University HospitalP.O. Box 4950Oslo0424Norway
| | - Shadab Abadpour
- Hybrid Technology Hub Centre of ExcellenceInstitute of Basic Medical ScienceUniversity of OsloP.O. Box 1110Oslo0317Norway
- Dep. of Transplantation MedicineExperimental Cell Transplantation Research GroupOslo University HospitalP.O. Box 4950Oslo0424Norway
- Institute for Surgical ResearchOslo University HospitalOsloNorway
| | - Pedro Duarte Menezes
- Hybrid Technology Hub Centre of ExcellenceInstitute of Basic Medical ScienceUniversity of OsloP.O. Box 1110Oslo0317Norway
- James Watt School of EngineeringUniversity of GlasgowRankine BuildingGlasgowG12 8LTUK
| | - Ingrid Wilhelmsen
- Hybrid Technology Hub Centre of ExcellenceInstitute of Basic Medical ScienceUniversity of OsloP.O. Box 1110Oslo0317Norway
- Dep. of Immunology and Transfusion MedicineOslo University HospitalP.O. Box 4950Oslo0424Norway
| | - Andrea Dalmao‐Fernandez
- Hybrid Technology Hub Centre of ExcellenceInstitute of Basic Medical ScienceUniversity of OsloP.O. Box 1110Oslo0317Norway
- Department of PharmacyFaculty of Mathematics and Natural SciencesUniversity of OsloP.O. Box 1083Oslo0316Norway
| | - Justyna Stokowiec
- Hybrid Technology Hub Centre of ExcellenceInstitute of Basic Medical ScienceUniversity of OsloP.O. Box 1110Oslo0317Norway
- Dep. of Immunology and Transfusion MedicineOslo University HospitalP.O. Box 4950Oslo0424Norway
| | - Alexey Golovin
- Hybrid Technology Hub Centre of ExcellenceInstitute of Basic Medical ScienceUniversity of OsloP.O. Box 1110Oslo0317Norway
- Dep. of Immunology and Transfusion MedicineOslo University HospitalP.O. Box 4950Oslo0424Norway
| | - Mads Johnsen
- Section for Chemical Life SciencesDepartment of ChemistryUniversity of OsloP.O. Box 1033Oslo0315Norway
| | - Thomas M. D. Combriat
- Hybrid Technology Hub Centre of ExcellenceInstitute of Basic Medical ScienceUniversity of OsloP.O. Box 1110Oslo0317Norway
| | - Hanne Røberg‐Larsen
- Hybrid Technology Hub Centre of ExcellenceInstitute of Basic Medical ScienceUniversity of OsloP.O. Box 1110Oslo0317Norway
- Section for Chemical Life SciencesDepartment of ChemistryUniversity of OsloP.O. Box 1033Oslo0315Norway
| | - Nikolaj Gadegaard
- Hybrid Technology Hub Centre of ExcellenceInstitute of Basic Medical ScienceUniversity of OsloP.O. Box 1110Oslo0317Norway
- James Watt School of EngineeringUniversity of GlasgowRankine BuildingGlasgowG12 8LTUK
| | - Hanne Scholz
- Hybrid Technology Hub Centre of ExcellenceInstitute of Basic Medical ScienceUniversity of OsloP.O. Box 1110Oslo0317Norway
- Dep. of Transplantation MedicineExperimental Cell Transplantation Research GroupOslo University HospitalP.O. Box 4950Oslo0424Norway
| | - Mathias Busek
- Hybrid Technology Hub Centre of ExcellenceInstitute of Basic Medical ScienceUniversity of OsloP.O. Box 1110Oslo0317Norway
- Dep. of Immunology and Transfusion MedicineOslo University HospitalP.O. Box 4950Oslo0424Norway
| | - Stefan J. K. Krauss
- Hybrid Technology Hub Centre of ExcellenceInstitute of Basic Medical ScienceUniversity of OsloP.O. Box 1110Oslo0317Norway
- Dep. of Immunology and Transfusion MedicineOslo University HospitalP.O. Box 4950Oslo0424Norway
| |
Collapse
|
3
|
Perazza F, Leoni L, Colosimo S, Musio A, Bocedi G, D’Avino M, Agnelli G, Nicastri A, Rossetti C, Sacilotto F, Marchesini G, Petroni ML, Ravaioli F. Metformin and the Liver: Unlocking the Full Therapeutic Potential. Metabolites 2024; 14:186. [PMID: 38668314 PMCID: PMC11052067 DOI: 10.3390/metabo14040186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Metformin is a highly effective medication for managing type 2 diabetes mellitus. Recent studies have shown that it has significant therapeutic benefits in various organ systems, particularly the liver. Although the effects of metformin on metabolic dysfunction-associated steatotic liver disease and metabolic dysfunction-associated steatohepatitis are still being debated, it has positive effects on cirrhosis and anti-tumoral properties, which can help prevent the development of hepatocellular carcinoma. Furthermore, it has been proven to improve insulin resistance and dyslipidaemia, commonly associated with liver diseases. While more studies are needed to fully determine the safety and effectiveness of metformin use in liver diseases, the results are highly promising. Indeed, metformin has a terrific potential for extending its full therapeutic properties beyond its traditional use in managing diabetes.
Collapse
Affiliation(s)
- Federica Perazza
- Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy; (F.P.); (L.L.); (G.A.); (A.N.); (C.R.); (F.S.); (G.M.); (M.L.P.)
| | - Laura Leoni
- Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy; (F.P.); (L.L.); (G.A.); (A.N.); (C.R.); (F.S.); (G.M.); (M.L.P.)
| | - Santo Colosimo
- Doctorate School of Nutrition Science, University of Milan, 20122 Milan, Italy;
| | | | - Giulia Bocedi
- U.O. Diabetologia, Ospedale C. Magati, Scandiano, 42019 Reggio Emilia, Italy;
| | - Michela D’Avino
- S.C. Endocrinologia Arcispedale Santa Maria Nuova, 42123 Reggio Emilia, Italy;
| | - Giulio Agnelli
- Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy; (F.P.); (L.L.); (G.A.); (A.N.); (C.R.); (F.S.); (G.M.); (M.L.P.)
| | - Alba Nicastri
- Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy; (F.P.); (L.L.); (G.A.); (A.N.); (C.R.); (F.S.); (G.M.); (M.L.P.)
| | - Chiara Rossetti
- Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy; (F.P.); (L.L.); (G.A.); (A.N.); (C.R.); (F.S.); (G.M.); (M.L.P.)
| | - Federica Sacilotto
- Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy; (F.P.); (L.L.); (G.A.); (A.N.); (C.R.); (F.S.); (G.M.); (M.L.P.)
| | - Giulio Marchesini
- Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy; (F.P.); (L.L.); (G.A.); (A.N.); (C.R.); (F.S.); (G.M.); (M.L.P.)
| | - Maria Letizia Petroni
- Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy; (F.P.); (L.L.); (G.A.); (A.N.); (C.R.); (F.S.); (G.M.); (M.L.P.)
| | - Federico Ravaioli
- Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy; (F.P.); (L.L.); (G.A.); (A.N.); (C.R.); (F.S.); (G.M.); (M.L.P.)
- Division of Hepatobiliary and Immunoallergic Diseases, Department of Internal Medicine, IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy
| |
Collapse
|
4
|
Zachou M, Flevari P, Nasiri-Ansari N, Varytimiadis C, Kalaitzakis E, Kassi E, Androutsakos T. The role of anti-diabetic drugs in NAFLD. Have we found the Holy Grail? A narrative review. Eur J Clin Pharmacol 2024; 80:127-150. [PMID: 37938366 PMCID: PMC10781828 DOI: 10.1007/s00228-023-03586-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/19/2023] [Indexed: 11/09/2023]
Abstract
PURPOSE Non-alcoholic fatty liver disease (NAFLD) has become a leading cause of liver disease, affecting 30% of the global population. NAFLD prevalence is particularly high in obese individuals and patients with type 2 diabetes mellitus (T2DM). NAFLD ranges from simple fat deposition in the liver to necroinflammation and fibrosis (non-alcoholic steatohepatitis (NASH)), NASH-cirrhosis, and/or hepatocellular carcinoma. Insulin resistance plays a key role in NAFLD pathogenesis, alongside dysregulation of adipocytes, mitochondrial dysfunction, genetic factors, and changes in gut microbiota. Since insulin resistance is also a major predisposing factor of T2DM, the administration of anti-diabetic drugs for the management of NAFLD seems reasonable. METHODS In this review we provide the NAFLD-associated mechanisms of action of some of the most widely used anti-diabetic drugs, namely metformin, pioglitazone, sodium-glucose transport protein-2 inhibitors (SGLT2i), glucagon-like peptide 1 receptor analogs (GLP1 RAs), and dipeptyl-peptidase-4 inhibitors (DPP4i) and present available data regarding their use in patients with NAFLD, with and without T2DM. RESULTS Both metformin and DPP4i have shown rather contradictory results, while pioglitazone seems to benefit patients with NASH and is thus the only drug approved for NASH with concomitant significant liver fibrosis by all major liver societies. On the other hand, SGLT2i and GLP1 RAs seem to be beneficiary in patients with NAFLD, showing both remarkable results, with SGLT2i proving to be more efficient in the only head-to-head study so far. CONCLUSION In patients with NAFLD and diabetes, pioglitazone, GLP1 RAs, and SGLT2i seem to be logical treatment options. Larger studies are needed before these drugs can be recommended for non-diabetic individuals.
Collapse
Affiliation(s)
- Maria Zachou
- Gastroenterology Department, "Sismanoglio" General Hospital, 151 26, Athens, Greece
| | - Pagona Flevari
- Expertise Center in Rare Haematological Diseases-Haemoglobinopathies, "Laiko" General Hospital, 115 27, Athens, Greece
| | - Narjes Nasiri-Ansari
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 115 27, Athens, Greece
| | | | - Evangelos Kalaitzakis
- Department of Gastroenterology, University Hospital of Heraklion, University of Crete, 715 00, Heraklion, Greece
| | - Eva Kassi
- Unit of Molecular Endocrinology, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 115 27, Athens, Greece
- Endocrine Unit, 1st Department of Propaedeutic Internal Medicine, "Laiko" Hospital, National and Kapodistrian University of Athens, 115 27, Athens, Greece
| | - Theodoros Androutsakos
- Department of Pathophysiology, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, 115 27, Athens, Greece.
| |
Collapse
|
5
|
Cheng PN, Chen WJ, Hou CJY, Lin CL, Chang ML, Wang CC, Chang WT, Wang CY, Lin CY, Hung CL, Peng CY, Yu ML, Chao TH, Huang JF, Huang YH, Chen CY, Chiang CE, Lin HC, Li YH, Lin TH, Kao JH, Wang TD, Liu PY, Wu YW, Liu CJ. Taiwan Association for the Study of the Liver-Taiwan Society of Cardiology Taiwan position statement for the management of metabolic dysfunction- associated fatty liver disease and cardiovascular diseases. Clin Mol Hepatol 2024; 30:16-36. [PMID: 37793641 PMCID: PMC10776290 DOI: 10.3350/cmh.2023.0315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023] Open
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) is an increasingly common liver disease worldwide. MAFLD is diagnosed based on the presence of steatosis on images, histological findings, or serum marker levels as well as the presence of at least one of the three metabolic features: overweight/obesity, type 2 diabetes mellitus, and metabolic risk factors. MAFLD is not only a liver disease but also a factor contributing to or related to cardiovascular diseases (CVD), which is the major etiology responsible for morbidity and mortality in patients with MAFLD. Hence, understanding the association between MAFLD and CVD, surveillance and risk stratification of MAFLD in patients with CVD, and assessment of the current status of MAFLD management are urgent requirements for both hepatologists and cardiologists. This Taiwan position statement reviews the literature and provides suggestions regarding the epidemiology, etiology, risk factors, risk stratification, nonpharmacological interventions, and potential drug treatments of MAFLD, focusing on its association with CVD.
Collapse
Affiliation(s)
- Pin-Nan Cheng
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Jone Chen
- Department of Internal Medicine, Min-Sheng General Hospital, Taoyuan; Cardiovascular Center, National Taiwan University Hospital, Taipei, Taiwan
| | | | - Chih-Lin Lin
- Department of Gastroenterology, Renai Branch, Taipei City Hospital, Taipei, Taiwan
| | - Ming-Ling Chang
- Division of Hepatology, Department of Gastroenterology and Hepatology, Linkou Medical Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chia-Chi Wang
- Department of Gastroenterology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation and School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Wei-Ting Chang
- Division of Cardiology, Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
- School of Medicine and Doctoral Program of Clinical and Experimental Medicine, College of Medicine and Center of Excellence for Metabolic Associated Fatty Liver Disease, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Chao-Yung Wang
- Division of Cardiology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan City, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Chun-Yen Lin
- Department of Gastroenterology and Hepatology, Linkou Medical Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chung-Lieh Hung
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei, Taiwan
- Division of Cardiology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
| | - Cheng-Yuan Peng
- Center for Digestive Medicine, China Medical University Hospital, Taichung, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
| | - Ming-Lung Yu
- School of Medicine and Doctoral Program of Clinical and Experimental Medicine, College of Medicine and Center of Excellence for Metabolic Associated Fatty Liver Disease, National Sun Yat-sen University, Kaohsiung, Taiwan
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- College of Medicine and Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Hepato-Gastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Ting-Hsing Chao
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jee-Fu Huang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Hsiang Huang
- Healthcare and Services Center, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Gastroenterology and Hepatology, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, Taiwan
| | - Chi-Yi Chen
- Department of Internal Medicine, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi, Taiwan
| | - Chern-En Chiang
- General Clinical Research Center, and Cardiovascular Center, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Han-Chieh Lin
- Division of Gastroenterology and Hepatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yi-Heng Li
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tsung-Hsien Lin
- Division of Cardiology, Department of Internal Medicine Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Faculty of Medicine and Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jia-Horng Kao
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Tzung-Dau Wang
- Cardiovascular Center, MacKay Memorial Hospital, Taipei, Taiwan
- MacKay Medical College, New Taipei City, Taiwan
| | - Ping-Yen Liu
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yen-Wen Wu
- Division of Cardiology, Cardiovascular Medical Center, and Department of Nuclear Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan
- School of Medicine, National Yang Ming Chao Tung University, Taipei, Taiwan
- Graduate Institute of Medicine, Yuan Ze University, Taoyuan City, Taiwan
| | - Chun-Jen Liu
- Hepatitis Research Center, Department of Internal Medicine and Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan
| |
Collapse
|
6
|
Asakawa M, Takagi N, Hamada D, Yamasaki Y, Katsuta H. Efficacy of 3 months of additional pioglitazone treatment in type 2 diabetes patients with alcoholic fatty liver disease. Diabetol Int 2023; 14:243-251. [PMID: 37397908 PMCID: PMC10307745 DOI: 10.1007/s13340-023-00619-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/31/2023] [Indexed: 02/21/2023]
Abstract
Pioglitazone ameliorates liver dysfunction in type 2 diabetes (T2D) patients with non-alcoholic fatty liver disease (NAFLD); however, its efficacy in T2D patients with alcoholic fatty liver disease (AFLD) is unclear. Here, we conducted a retrospective single-center trial investigating whether pioglitazone ameliorates liver dysfunction in T2D patients with AFLD. T2D patients (n = 100) receiving 3 months of additional pioglitazone were divided into those with or without fatty liver (FL), and those with FL were further classified into AFLD (n = 21) and NAFLD (n = 57) groups. The effects of pioglitazone were compared across groups using medical record data on body weight changes; HbA1c, aspartate aminotransferase (AST), alanine aminotransferase (ALT), and gamma-glutamyl transpeptidase (γ-GTP) levels; and fibrosis-4 (FIB-4) index. The pioglitazone dose (mean dose: 10.6 ± 4.6 mg/day) did not affect weight gain but significantly decreased the HbA1c level in patients with or without FL (P < 0.01 and P < 0.05, respectively). The decrease in HbA1c level was significantly more pronounced in patients with FL than in those without FL (P < 0.05). In patients with FL, the HbA1c, AST, ALT, and γ-GTP levels significantly decreased after pioglitazone treatment than before (P < 0.01). The AST and ALT levels, but not the γ-GTP level, and the FIB-4 index significantly decreased after pioglitazone addition in the AFLD group, similar to that in the NAFLD group (P < 0.05 and P < 0.01, respectively). Similar effects were observed following low-dose pioglitazone treatment (≤ 7.5 mg/day) (P < 0.05) in T2D patients with AFLD and NAFLD. These results suggest that pioglitazone may be also an effective treatment option for T2D patients with AFLD.
Collapse
Affiliation(s)
- Masahiro Asakawa
- Department of Endocrinology and Metabolism, Tokyo Teishin Hospital, 2-14-23, Fujimi, Chiyoda-ku, Tokyo, Japan
| | - Noriko Takagi
- Department of Endocrinology and Metabolism, Tokyo Teishin Hospital, 2-14-23, Fujimi, Chiyoda-ku, Tokyo, Japan
| | - Daisuke Hamada
- Department of Endocrinology and Metabolism, Tokyo Teishin Hospital, 2-14-23, Fujimi, Chiyoda-ku, Tokyo, Japan
| | - Yuko Yamasaki
- Department of Endocrinology and Metabolism, Tokyo Teishin Hospital, 2-14-23, Fujimi, Chiyoda-ku, Tokyo, Japan
| | - Hidenori Katsuta
- Department of Endocrinology and Metabolism, Tokyo Teishin Hospital, 2-14-23, Fujimi, Chiyoda-ku, Tokyo, Japan
| |
Collapse
|
7
|
Zeng M, Chen L, Li Y, Mi Y, Xu L. Problems and Challenges Associated with Renaming Non-alcoholic Fatty Liver Disease to Metabolic Associated Fatty Liver Disease. Medicine (Baltimore) 2023; 3. [PMCID: PMC10368226 DOI: 10.1097/id9.0000000000000085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Indexed: 10/08/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become the world’s largest chronic liver disease in the 21st century, affecting 20%–30% of the world’s population. As the epidemiology, etiology, and pathogenesis of NAFLD have been studied in-depth, it has been gradually recognized that most patients with NAFLD have one or more combined metabolic abnormalities known as metabolic syndrome. In 2020, the international expert group changed the name of NAFLD to metabolic-associated fatty liver disease (MAFLD) and proposed new diagnostic criteria for MAFLD and MAFLD-related liver cirrhosis, as well as the conceptual framework of other cause-related fatty liver diseases to avoid diagnosis based on the exclusion of other causes and better reflect its pathogenesis. However, there are still many ambiguities in the term, and changing the name does not address the unmet key needs in the field. The change from NAFLD to MAFLD was not just a change of definition. The problems and challenges are summarized as follows: epidemiology, children, rationality of “metabolism,” diagnostic criteria, double/multiple causes, drug discovery, clinical trials, and awareness raising. Metabolic-associated fatty liver disease has complex disease characteristics, and there are still some problems that need to be solved.
Collapse
Affiliation(s)
- Minghui Zeng
- Clinical School of the Second People’s Hospital, Tianjin Medical University, Tianjin 300192, China
- Department of Hepatology, Tianjin Second People’s Hospital, Tianjin 300192, China
| | - Lin Chen
- Clinical School of the Second People’s Hospital, Tianjin Medical University, Tianjin 300192, China
- Department of Hepatology, Tianjin Second People’s Hospital, Tianjin 300192, China
| | - Yuqin Li
- Clinical School of the Second People’s Hospital, Tianjin Medical University, Tianjin 300192, China
- Department of Hepatology, Tianjin Second People’s Hospital, Tianjin 300192, China
| | - Yuqiang Mi
- Department of Hepatology, Tianjin Second People’s Hospital, Tianjin 300192, China
- Tianjin Research Institute of Liver Diseases, Tianjin 300192, China
| | - Liang Xu
- Department of Hepatology, Tianjin Second People’s Hospital, Tianjin 300192, China
- Tianjin Research Institute of Liver Diseases, Tianjin 300192, China
| |
Collapse
|
8
|
Cernea S, Onișor D. Screening and interventions to prevent nonalcoholic fatty liver disease/nonalcoholic steatohepatitis-associated hepatocellular carcinoma. World J Gastroenterol 2023; 29:286-309. [PMID: 36687124 PMCID: PMC9846941 DOI: 10.3748/wjg.v29.i2.286] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/06/2022] [Accepted: 12/21/2022] [Indexed: 01/06/2023] Open
Abstract
Liver cancer is the sixth most commonly diagnosed cancer worldwide, with hepatocellular carcinoma (HCC) comprising most cases. Besides hepatitis B and C viral infections, heavy alcohol use, and nonalcoholic steatohepatitis (NASH)-associated advanced fibrosis/cirrhosis, several other risk factors for HCC have been identified (i.e. old age, obesity, insulin resistance, type 2 diabetes). These might in fact partially explain the occurrence of HCC in non-cirrhotic patients without viral infection. HCC surveillance through effective screening programs is still an unmet need for many nonalcoholic fatty liver disease (NAFLD) patients, and identification of pre-cirrhotic individuals who progress to HCC represents a substantial challenge in clinical practice at the moment. Patients with NASH-cirrhosis should undergo systematic HCC surveillance, while this might be considered in patients with advanced fibrosis based on individual risk assessment. In this context, interventions that potentially prevent NAFLD/ NASH-associated HCC are needed. This paper provided an overview of evidence related to lifestyle changes (i.e. weight loss, physical exercise, adherence to healthy dietary patterns, intake of certain dietary components, etc.) and pharmacological interventions that might play a protective role by targeting the underlying causative factors and pathogenetic mechanisms. However, well-designed prospective studies specifically dedicated to NAFLD/NASH patients are still needed to clarify the relationship with HCC risk.
Collapse
Affiliation(s)
- Simona Cernea
- Department M3/Internal Medicine I, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, Târgu Mureş 540139, Romania
- Diabetes, Nutrition and Metabolic Diseases Outpatient Unit, Emergency County Clinical Hospital, Târgu Mureş 540136, Romania
| | - Danusia Onișor
- Department ME2/Internal Medicine VII, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureş, Târgu Mureş 540139, Romania
- Gastroenterology Department, Mureș County Clinical Hospital, Târgu Mureș 540072, Romania
| |
Collapse
|
9
|
Ortiz-López N, Fuenzalida C, Dufeu MS, Pinto-León A, Escobar A, Poniachik J, Roblero JP, Valenzuela-Pérez L, Beltrán CJ. The immune response as a therapeutic target in non-alcoholic fatty liver disease. Front Immunol 2022; 13:954869. [PMID: 36300120 PMCID: PMC9589255 DOI: 10.3389/fimmu.2022.954869] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/21/2022] [Indexed: 08/25/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a complex and heterogeneous disorder considered a liver-damaging manifestation of metabolic syndrome. Its prevalence has increased in the last decades due to modern-day lifestyle factors associated with overweight and obesity, making it a relevant public health problem worldwide. The clinical progression of NAFLD is associated with advanced forms of liver injury such as fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). As such, diverse pharmacological strategies have been implemented over the last few years, principally focused on metabolic pathways involved in NAFLD progression. However, a variable response rate has been observed in NAFLD patients, which is explained by the interindividual heterogeneity of susceptibility to liver damage. In this scenario, it is necessary to search for different therapeutic approaches. It is worth noting that chronic low-grade inflammation constitutes a central mechanism in the pathogenesis and progression of NAFLD, associated with abnormal composition of the intestinal microbiota, increased lymphocyte activation in the intestine and immune effector mechanisms in liver. This review aims to discuss the current knowledge about the role of the immune response in NAFLD development. We have focused mainly on the impact of altered gut-liver-microbiota axis communication on immune cell activation in the intestinal mucosa and the role of subsequent lymphocyte homing to the liver in NAFLD development. We further discuss novel clinical trials that addressed the control of the liver and intestinal immune response to complement current NAFLD therapies.
Collapse
Affiliation(s)
- Nicolás Ortiz-López
- Laboratory of Immunogastroenterology, Unit of Gastroenterology, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago, Chile
- School of Medicine, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Catalina Fuenzalida
- Laboratory of Immunogastroenterology, Unit of Gastroenterology, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago, Chile
- School of Medicine, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - María Soledad Dufeu
- Laboratory of Immunogastroenterology, Unit of Gastroenterology, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago, Chile
- School of Medicine, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Araceli Pinto-León
- Laboratory of Immunogastroenterology, Unit of Gastroenterology, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago, Chile
| | | | - Jaime Poniachik
- Unit of Gastroenterology, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Juan Pablo Roblero
- Unit of Gastroenterology, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Lucía Valenzuela-Pérez
- Laboratory of Immunogastroenterology, Unit of Gastroenterology, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago, Chile
- School of Medicine, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Caroll J. Beltrán
- Laboratory of Immunogastroenterology, Unit of Gastroenterology, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago, Chile
- School of Medicine, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
10
|
Sakuma T, Nakamura M, Chiba T, Iwanaga T, Kan M, Kojima R, Ao J, Ma Y, Unozawa H, Fujita N, Kanayama K, Kanzaki H, Koroki K, Kobayashi K, Nakagawa R, Kanogawa N, Kiyono S, Kondo T, Saito T, Ogasawara S, Nakamoto S, Muroyama R, Kato J, Kishimoto T, Kato N. A diet-induced murine model for non-alcoholic fatty liver disease with obesity and insulin resistance that rapidly develops steatohepatitis and fibrosis. J Transl Med 2022; 102:1150-1157. [PMID: 35643859 DOI: 10.1038/s41374-022-00807-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/08/2022] [Accepted: 05/09/2022] [Indexed: 11/09/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become the leading cause of chronic liver disease worldwide. Patients with NAFLD often suffer steatohepatitis, which can progress to cirrhosis and hepatocellular carcinoma. The presence of visceral obesity or type 2 diabetes mellitus (T2DM) is a major risk factor and potential therapeutic target for NAFLD. The establishment of animal models with these metabolic comorbidities and with the rapid progression of the disease is needed for developing treatments for NAFLD but remains to be archived. In the present study, KK-Ay mice, widely used as T2DM models, or C57BL6 mice were fed a high-fat, high-fructose, and high-cholesterol diet supplemented with cholic acid (NAFLD diet). The KK-Ay mice fed a NAFLD diet exhibited remarkable obesity and insulin resistance. A prominent accumulation of triglycerides and cholesterol in the liver was observed at 4 weeks. These mice developed steatohepatitis at 4 weeks and fibrosis at 12 weeks. In contrast, C57BL6 mice fed a NAFLD diet remained lean, although they still developed steatohepatitis and fibrosis. In summary, we established a diet-induced murine NAFLD model with the rapid development of steatohepatitis and fibrosis, bearing obesity and insulin resistance. This model could be useful as preclinical models for drug development of NAFLD.
Collapse
Affiliation(s)
- Takafumi Sakuma
- Department of Gastroenterology, Chiba University, Graduate School of Medicine, Chiba, 260-8677, Japan
| | - Masato Nakamura
- Department of Gastroenterology, Chiba University, Graduate School of Medicine, Chiba, 260-8677, Japan.
| | - Tetsuhiro Chiba
- Department of Gastroenterology, Chiba University, Graduate School of Medicine, Chiba, 260-8677, Japan
| | - Terunao Iwanaga
- Department of Gastroenterology, Chiba University, Graduate School of Medicine, Chiba, 260-8677, Japan
| | - Motoyasu Kan
- Department of Gastroenterology, Chiba University, Graduate School of Medicine, Chiba, 260-8677, Japan
| | - Ryuta Kojima
- Department of Gastroenterology, Chiba University, Graduate School of Medicine, Chiba, 260-8677, Japan
| | - Junjie Ao
- Department of Gastroenterology, Chiba University, Graduate School of Medicine, Chiba, 260-8677, Japan
| | - Yaojia Ma
- Department of Gastroenterology, Chiba University, Graduate School of Medicine, Chiba, 260-8677, Japan
| | - Hidemi Unozawa
- Department of Gastroenterology, Chiba University, Graduate School of Medicine, Chiba, 260-8677, Japan
| | - Naoto Fujita
- Department of Gastroenterology, Chiba University, Graduate School of Medicine, Chiba, 260-8677, Japan
| | - Kengo Kanayama
- Department of Gastroenterology, Chiba University, Graduate School of Medicine, Chiba, 260-8677, Japan
| | - Hiroaki Kanzaki
- Department of Gastroenterology, Chiba University, Graduate School of Medicine, Chiba, 260-8677, Japan
| | - Keisuke Koroki
- Department of Gastroenterology, Chiba University, Graduate School of Medicine, Chiba, 260-8677, Japan
| | - Kazufumi Kobayashi
- Department of Gastroenterology, Chiba University, Graduate School of Medicine, Chiba, 260-8677, Japan.,Translational Research and Development Center, Chiba University Hospital, Chiba, 260-8677, Japan
| | - Ryo Nakagawa
- Department of Gastroenterology, Chiba University, Graduate School of Medicine, Chiba, 260-8677, Japan
| | - Naoya Kanogawa
- Department of Gastroenterology, Chiba University, Graduate School of Medicine, Chiba, 260-8677, Japan
| | - Soichiro Kiyono
- Department of Gastroenterology, Chiba University, Graduate School of Medicine, Chiba, 260-8677, Japan
| | - Takayuki Kondo
- Department of Gastroenterology, Chiba University, Graduate School of Medicine, Chiba, 260-8677, Japan
| | - Tomoko Saito
- Department of Gastroenterology, Chiba University, Graduate School of Medicine, Chiba, 260-8677, Japan
| | - Sadahisa Ogasawara
- Department of Gastroenterology, Chiba University, Graduate School of Medicine, Chiba, 260-8677, Japan.,Translational Research and Development Center, Chiba University Hospital, Chiba, 260-8677, Japan
| | - Shingo Nakamoto
- Department of Gastroenterology, Chiba University, Graduate School of Medicine, Chiba, 260-8677, Japan
| | - Ryosuke Muroyama
- Department of Molecular Virology, Chiba University, Graduate School of Medicine, Chiba, 260-8677, Japan
| | - Jun Kato
- Department of Gastroenterology, Chiba University, Graduate School of Medicine, Chiba, 260-8677, Japan
| | - Takashi Kishimoto
- Department of Molecular Pathology, Chiba University, Graduate School of Medicine, Chiba, 260-8677, Japan
| | - Naoya Kato
- Department of Gastroenterology, Chiba University, Graduate School of Medicine, Chiba, 260-8677, Japan
| |
Collapse
|
11
|
Pennisi G, Celsa C, Enea M, Vaccaro M, Di Marco V, Ciccioli C, Infantino G, La Mantia C, Parisi S, Vernuccio F, Craxì A, Cammà C, Petta S. Effect of pharmacological interventions and placebo on liver Histology in nonalcoholic steatohepatitis: A network meta-analysis. Nutr Metab Cardiovasc Dis 2022; 32:2279-2288. [PMID: 35970684 DOI: 10.1016/j.numecd.2022.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND The aims of this study were to quantify the histological improvement and its risk factors in patients with NASH enrolled in the placebo arms of randomized controlled trials (RCTs), and to indirectly compare the effect of several investigational drugs for NASH on validated histological outcomes. DATA SYNTHESIS A comprehensive search was conducted to detect phase 2 and 3 RCTs comparing pharmacological interventions in patients with NASH. According to Food and Drug Administration (FDA) recommendations, primary outcomes included: 1) NASH resolution without worsening of fibrosis; 2) At least 1-point reduction in fibrosis without worsening of NASH. Meta-analysis and meta-regressions were conducted on placebo arms, while network meta-analysis was performed on intervention arms. A total of 15 RCTs met the eligibility criteria. The meta-analysis on placebo arms showed a pooled estimate rate of 17% (95%C.I. 12%-23%;I2 = 86%; p < 0.01) for NASH resolution without worsening of fibrosis and of 21% (95%C.I. 13%-31%;I2 = 84%; p < 0.01) for ≥1stage improvement of fibrosis without worsening of NASH. Phase 3 (vs Phase 2)RCTs, older age and higher AST levels were significantly associated with progression of liver disease by univariate meta-regression. At network meta-analysis, Semaglutide (P-score 0.906), Pioglitazione alone (score 0.890) and plus Vitamin E (0.826) had the highest probability of being ranked the most effective intervention for NASH resolution without worsening of fibrosis, while Aldafermin (0.776), Lanifibranor (0.773) and Obeticholic acid (0.771) had the highest probability to achieve ≥1 stage of fibrosis improvement without worsening of NASH. CONCLUSION This study confirms the heterogeneity of histological progression of untreated patients with NASH and provides evidence to stratify patients according to identified risk factors in future RCTs of combination therapies. PROSPERO CRD42021287205.
Collapse
Affiliation(s)
- Grazia Pennisi
- Section of Gastroenterology and Hepatology, Dipartimento Di Promozione Della Salute, Materno Infantile, Medicina Interna e Specialistica Di Eccellenza (PROMISE), University of Palermo, Italy
| | - Ciro Celsa
- Section of Gastroenterology and Hepatology, Dipartimento Di Promozione Della Salute, Materno Infantile, Medicina Interna e Specialistica Di Eccellenza (PROMISE), University of Palermo, Italy
| | - Marco Enea
- Dipartimento di Scienze Economiche, Aziendali e Statistiche, University of Palermo, 90133 Palermo, Italy
| | - Marco Vaccaro
- Dipartimento di Scienze Economiche, Aziendali e Statistiche, University of Palermo, 90133 Palermo, Italy
| | - Vito Di Marco
- Section of Gastroenterology and Hepatology, Dipartimento Di Promozione Della Salute, Materno Infantile, Medicina Interna e Specialistica Di Eccellenza (PROMISE), University of Palermo, Italy
| | - Carlo Ciccioli
- Section of Gastroenterology and Hepatology, Dipartimento Di Promozione Della Salute, Materno Infantile, Medicina Interna e Specialistica Di Eccellenza (PROMISE), University of Palermo, Italy
| | - Giuseppe Infantino
- Section of Gastroenterology and Hepatology, Dipartimento Di Promozione Della Salute, Materno Infantile, Medicina Interna e Specialistica Di Eccellenza (PROMISE), University of Palermo, Italy
| | - Claudia La Mantia
- Section of Gastroenterology and Hepatology, Dipartimento Di Promozione Della Salute, Materno Infantile, Medicina Interna e Specialistica Di Eccellenza (PROMISE), University of Palermo, Italy
| | - Stefanie Parisi
- Section of Gastroenterology and Hepatology, Dipartimento Di Promozione Della Salute, Materno Infantile, Medicina Interna e Specialistica Di Eccellenza (PROMISE), University of Palermo, Italy
| | - Federica Vernuccio
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica avanzata (BIND), University of Palermo, Italy
| | - Antonio Craxì
- Section of Gastroenterology and Hepatology, Dipartimento Di Promozione Della Salute, Materno Infantile, Medicina Interna e Specialistica Di Eccellenza (PROMISE), University of Palermo, Italy
| | - Calogero Cammà
- Section of Gastroenterology and Hepatology, Dipartimento Di Promozione Della Salute, Materno Infantile, Medicina Interna e Specialistica Di Eccellenza (PROMISE), University of Palermo, Italy
| | - Salvatore Petta
- Section of Gastroenterology and Hepatology, Dipartimento Di Promozione Della Salute, Materno Infantile, Medicina Interna e Specialistica Di Eccellenza (PROMISE), University of Palermo, Italy.
| |
Collapse
|
12
|
Early biochemical observations point to nutritional strategies to manage non-alcoholic fatty liver disease. Clin Sci (Lond) 2022; 136:1019-1023. [PMID: 35775425 DOI: 10.1042/cs20220380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/19/2022] [Accepted: 06/20/2022] [Indexed: 11/17/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most prevalent liver disease globally. The first stage of NAFLD is steatosis, the accumulation of triacylglycerols within hepatocytes. Inflammation and oxidative stress both contribute to progression to more severe disease. In 2004 Clinical Science published two papers reporting on fatty acids and oxidative stress markers in the livers of patients with NAFLD; both these papers are highly cited. One paper reported an altered pattern of fatty acids within the livers of patients with NAFLD; there was a lower contribution of polyunsaturated fatty acids (PUFAs) including both n - 6 and n - 3 PUFAs and an altered balance between n - 6 and n - 3 PUFAs in favour of the former. Ratios of precursor PUFAs to their long chain more unsaturated derivatives were altered in NAFLD and were interpreted to indicate a reduced activity of the pathway of synthesis of long chain highly unsaturated PUFAs. The authors interpreted their findings to indicate that a low hepatic content of n - 3 PUFAs has a causal role in NAFLD. The second paper reported lower hepatic antioxidant defences and increased markers of oxidative stress in NAFLD, consistent with a role for oxidative stress in the disease. Many studies have now explored the effect of supplemental n - 3 PUFAs or antioxidants, including vitamin E, in patients with NAFLD with some benefits being reported. There remains much interest in n - 3 PUFAs and antioxidants as preventive and therapeutic strategies in NAFLD and therefore it seems likely that citation of the two papers from 2004 will be sustained.
Collapse
|
13
|
Duell PB, Welty FK, Miller M, Chait A, Hammond G, Ahmad Z, Cohen DE, Horton JD, Pressman GS, Toth PP. Nonalcoholic Fatty Liver Disease and Cardiovascular Risk: A Scientific Statement From the American Heart Association. Arterioscler Thromb Vasc Biol 2022; 42:e168-e185. [PMID: 35418240 DOI: 10.1161/atv.0000000000000153] [Citation(s) in RCA: 279] [Impact Index Per Article: 93.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is an increasingly common condition that is believed to affect >25% of adults worldwide. Unless specific testing is done to identify NAFLD, the condition is typically silent until advanced and potentially irreversible liver impairment occurs. For this reason, the majority of patients with NAFLD are unaware of having this serious condition. Hepatic complications from NAFLD include nonalcoholic steatohepatitis, hepatic cirrhosis, and hepatocellular carcinoma. In addition to these serious complications, NAFLD is a risk factor for atherosclerotic cardiovascular disease, which is the principal cause of death in patients with NAFLD. Accordingly, the purpose of this scientific statement is to review the underlying risk factors and pathophysiology of NAFLD, the associations with atherosclerotic cardiovascular disease, diagnostic and screening strategies, and potential interventions.
Collapse
|
14
|
Chan W, Tan S, Chan S, Lee Y, Tee H, Mahadeva S, Goh K, Ramli AS, Mustapha F, Kosai NR, Raja Ali RA. Malaysian Society of Gastroenterology and Hepatology consensus statement on metabolic dysfunction-associated fatty liver disease. J Gastroenterol Hepatol 2022; 37:795-811. [PMID: 35080048 PMCID: PMC9303255 DOI: 10.1111/jgh.15787] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/19/2021] [Accepted: 01/10/2022] [Indexed: 12/19/2022]
Abstract
The Malaysian Society of Gastroenterology and Hepatology saw the need for a consensus statement on metabolic dysfunction-associated fatty liver disease (MAFLD). The consensus panel consisted of experts in the field of gastroenterology/hepatology, endocrinology, bariatric surgery, family medicine, and public health. A modified Delphi process was used to prepare the consensus statements. The panel recognized the high and increasing prevalence of the disease and the consequent anticipated increase in liver-related complications and mortality. Cardiovascular disease is the leading cause of mortality in MAFLD patients; therefore, cardiovascular disease risk assessment and management is important. A simple and clear liver assessment and referral pathway was agreed upon, so that patients with more severe MAFLD can be linked to gastroenterology/hepatology care, while patients with less severe MAFLD can remain in primary care or endocrinology, where they are best managed. Lifestyle intervention is the cornerstone in the management of MAFLD. The panel provided a consensus on the use of statin, angiotensin-converting enzyme inhibitor or angiotensin receptor blocker, sodium-glucose cotransporter-2 inhibitor, glucagon-like peptide-1 agonist, pioglitazone, vitamin E, and metformin, as well as recommendations on bariatric surgery, screening for gastroesophageal varices and hepatocellular carcinoma, and liver transplantation in MAFLD patients. Increasing the awareness and knowledge of the various stakeholders on MAFLD and incorporating MAFLD into existing noncommunicable disease-related programs and activities are important steps to tackle the disease. These consensus statements will serve as a guide on MAFLD for clinicians and other stakeholders.
Collapse
Affiliation(s)
- Wah‐Kheong Chan
- Gastroenterology and Hepatology Unit, Department of Medicine, Faculty of MedicineUniversity of MalayaKuala LumpurMalaysia
| | - Soek‐Siam Tan
- Department of HepatologySelayang HospitalBatu CavesSelangorMalaysia
| | | | - Yeong‐Yeh Lee
- School of Medical SciencesUniversiti Sains MalaysiaKota BharuKelantanMalaysia
| | - Hoi‐Poh Tee
- KPJ Pahang Specialist CentreKuantanPahangMalaysia
| | - Sanjiv Mahadeva
- Gastroenterology and Hepatology Unit, Department of Medicine, Faculty of MedicineUniversity of MalayaKuala LumpurMalaysia
| | - Khean‐Lee Goh
- Gastroenterology and Hepatology Unit, Department of Medicine, Faculty of MedicineUniversity of MalayaKuala LumpurMalaysia
| | - Anis Safura Ramli
- Department of Primary Care Medicine, Faculty of MedicineUniversiti Teknologi MARA, Selayang CampusBatu CavesSelangorMalaysia
- Institute of Pathology, Laboratory and Forensic Medicine, Centre of Excellence for Research on Atherosclerosis and CVD PreventionUniversiti Teknologi MARA, Sungai Buloh CampusSungai BulohSelangorMalaysia
| | - Feisul Mustapha
- Disease Control DivisionMinistry of Health, MalaysiaPutrajayaMalaysia
| | - Nik Ritza Kosai
- Upper Gastrointestinal, Metabolic and Bariatric Surgery Unit, Department of SurgeryUniversiti Kebangsaan MalaysiaKuala LumpurMalaysia
| | - Raja Affendi Raja Ali
- Gastroenterology Unit, Department of MedicineUniversiti Kebangsaan MalaysiaKuala LumpurMalaysia
| |
Collapse
|
15
|
Cusi K, Isaacs S, Barb D, Basu R, Caprio S, Garvey WT, Kashyap S, Mechanick JI, Mouzaki M, Nadolsky K, Rinella ME, Vos MB, Younossi Z. American Association of Clinical Endocrinology Clinical Practice Guideline for the Diagnosis and Management of Nonalcoholic Fatty Liver Disease in Primary Care and Endocrinology Clinical Settings: Co-Sponsored by the American Association for the Study of Liver Diseases (AASLD). Endocr Pract 2022; 28:528-562. [PMID: 35569886 DOI: 10.1016/j.eprac.2022.03.010] [Citation(s) in RCA: 481] [Impact Index Per Article: 160.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/11/2022] [Accepted: 03/11/2022] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To provide evidence-based recommendations regarding the diagnosis and management of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) to endocrinologists, primary care clinicians, health care professionals, and other stakeholders. METHODS The American Association of Clinical Endocrinology conducted literature searches for relevant articles published from January 1, 2010, to November 15, 2021. A task force of medical experts developed evidence-based guideline recommendations based on a review of clinical evidence, expertise, and informal consensus, according to established American Association of Clinical Endocrinology protocol for guideline development. RECOMMENDATION SUMMARY This guideline includes 34 evidence-based clinical practice recommendations for the diagnosis and management of persons with NAFLD and/or NASH and contains 385 citations that inform the evidence base. CONCLUSION NAFLD is a major public health problem that will only worsen in the future, as it is closely linked to the epidemics of obesity and type 2 diabetes mellitus. Given this link, endocrinologists and primary care physicians are in an ideal position to identify persons at risk on to prevent the development of cirrhosis and comorbidities. While no U.S. Food and Drug Administration-approved medications to treat NAFLD are currently available, management can include lifestyle changes that promote an energy deficit leading to weight loss; consideration of weight loss medications, particularly glucagon-like peptide-1 receptor agonists; and bariatric surgery, for persons who have obesity, as well as some diabetes medications, such as pioglitazone and glucagon-like peptide-1 receptor agonists, for those with type 2 diabetes mellitus and NASH. Management should also promote cardiometabolic health and reduce the increased cardiovascular risk associated with this complex disease.
Collapse
Affiliation(s)
- Kenneth Cusi
- Guideine and Algorithm Task Forces Co-Chair, Division of Endocrinology, Diabetes and Metabolism, University of Florida, Gainesville, Florida
| | - Scott Isaacs
- Guideline and Algorithm Task Forces Co-Chair, Division of Endocrinology, Emory University School of Medicine, Atlanta, Georgia
| | - Diana Barb
- University of Florida, Gainesville, Florida
| | - Rita Basu
- Division of Endocrinology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Sonia Caprio
- Yale University School of Medicine, New Haven, Connecticut
| | - W Timothy Garvey
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama
| | | | - Jeffrey I Mechanick
- The Marie-Josee and Henry R. Kravis Center for Cardiovascular Health at Mount Sinai Heart, Icahn School of Medicine at Mount Sinai
| | | | - Karl Nadolsky
- Michigan State University College of Human Medicine, Grand Rapids, Michigan
| | - Mary E Rinella
- AASLD Representative, University of Pritzker School of Medicine, Chicago, Illinois
| | - Miriam B Vos
- Center for Clinical and Translational Research, Emory University School of Medicine, Children's Healthcare of Atlanta, Atlanta, Georgia
| | - Zobair Younossi
- AASLD Representative, Inova Medicine, Inova Health System, Falls Church, Virginia
| |
Collapse
|
16
|
Patikorn C, Veettil SK, Phisalprapa P, Pham T, Kowdley KV, Chaiyakunapruk N. Horizon scanning of therapeutic modalities for nonalcoholic steatohepatitis. Ann Hepatol 2022; 24:100315. [PMID: 33515800 DOI: 10.1016/j.aohep.2021.100315] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/15/2020] [Accepted: 01/08/2021] [Indexed: 02/07/2023]
Abstract
Many interventions have been investigated for the treatment of nonalcoholic steatohepatitis (NASH). This study aims to summarize all investigated options to date and review the use of specific endpoints at different stages of ongoing trials of noncirrhotic NASH treatments. Using a horizon scanning approach, evidence were identified including meta-analyses of randomized controlled trials (RCTs) in PubMed, EMBASE, Cochrane, and AMED (up to February 2020), recently published RCTs in PubMed (2015-April 2020), RCTs presented at conferences (AASL and EASL, 2015-2020), and ongoing RCTs in ClincalTrials.gov (2015-November 2020). We included 6 meta-analyses of RCTs, 30 published RCTs, 11 conference abstracts, and 62 ongoing RCTs. An evidence map was created to demonstrate the treatment effects of 49 therapeutic modalities for NASH. Only six interventions (6/49, 12.24%) met the histological surrogate endpoints for potential conditional FDA approval. Obeticholic acid is the only therapy demonstrating positive benefits in ≥1-point improvement in fibrosis with no worsening of NASH in a phase 3 trial. The other therapies were all phase 2 studies. ≥1-point improvement in fibrosis with no worsening of NASH was shown in patients treated with cenicriviroc. NASH resolution with no worsening of fibrosis was shown in patients treated with liraglutide, semaglutide and resmetirom. Lanifibranor achieved both surrogate histological endpoints. Five ongoing RCTs (5/62, 8.06%) will investigate histological progression to cirrhosis, death, or liver-related clinical outcomes. In conclusion, some therapeutic modalities showed promising benefits, but further studies are warranted to find a definite treatment of NASH which prevents progression to cirrhosis and adverse liver outcomes.
Collapse
Affiliation(s)
- Chanthawat Patikorn
- Department of Social and Administrative Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Sajesh K Veettil
- Department of Pharmacotherapy, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
| | - Pochamana Phisalprapa
- Division of Ambulatory Medicine, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Tuan Pham
- Department of Internal Medicine, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Kris V Kowdley
- Liver Institute Northwest and Washington State University, Seattle WA, USA
| | - Nathorn Chaiyakunapruk
- Department of Pharmacotherapy, College of Pharmacy, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
17
|
The effects of metformin, pioglitazone, exenatide and exercise on fatty liver in obese diabetic rats: the role of IRS-1 and SOCS-3 molecules. Inflammopharmacology 2022; 30:243-250. [DOI: 10.1007/s10787-021-00916-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/23/2021] [Indexed: 12/12/2022]
|
18
|
Tokushige K, Ikejima K, Ono M, Eguchi Y, Kamada Y, Itoh Y, Akuta N, Yoneda M, Iwasa M, Yoneda M, Otsuka M, Tamaki N, Kogiso T, Miwa H, Chayama K, Enomoto N, Shimosegawa T, Takehara T, Koike K. Evidence-based clinical practice guidelines for nonalcoholic fatty liver disease/nonalcoholic steatohepatitis 2020. Hepatol Res 2021; 51:1013-1025. [PMID: 34533266 DOI: 10.1111/hepr.13688] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 12/12/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become a serious public health issue not only in Western countries but also in Japan. Within the wide spectrum of NAFLD, nonalcoholic steatohepatitis (NASH) is a progressive form of disease that often develops into liver cirrhosis and increases the risk of hepatocellular carcinoma (HCC). While a definite diagnosis of NASH requires liver biopsy to confirm the presence of hepatocyte ballooning, hepatic fibrosis is the most important prognostic factor in NAFLD. With so many NAFLD patients, it is essential to have an effective screening method for NAFLD with hepatic fibrosis. As HCC with non-viral liver disease has increased markedly in Japan, effective screening and surveillance of HCC are also urgently needed. The most common death etiology in NAFLD patients is cardiovascular disease event. Gastroenterologists must, therefore, pay close attention to CVD when examining NAFLD patients. In the updated guidelines, we propose screening and follow-up methods for hepatic fibrosis, HCC, and CVD in NAFLD patients. Several drug trials are ongoing for NAFLD/NASH therapy, however, there is currently no specific drug therapy for NAFLD/NASH. In addition to vitamin E and thiazolidinedione derivatives, recent trials have focused on sodium glucose co-transporter 2 (SGLT2) inhibitors and glucagon-like peptide-1 (GLP-1) analogues, and effective therapies are expected to be developed. These practical guidelines for NAFLD/NASH were established by the Japanese Society of Gastroenterology in conjunction with the Japan Society of Hepatology. Clinical evidence reported internationally between 1983 and October 2018 was collected, and each clinical and background question was evaluated using the Grades of Recommendation Assessment, Development and Evaluation (GRADE) system. This English summary pro- vides the core essentials of these clinical practice guidelines, which include the definition and concept, screening systems for hepatic fibrosis, HCC and CVD, and current therapies for NAFLD/NASH in Japan.
Collapse
Affiliation(s)
- Katsutoshi Tokushige
- Guidelines Committee for Creating and Evaluating the "Evidence-Based Clinical Practice Guidelines for Nonalcoholic Fatty Liver Disease/Nonalcoholic Steatohepatitis", The Japanese Society of Gastroenterology, The Japan Society of Hepatology, Tokyo, Japan.,Institute of Gastroenterology, Department of Internal Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Kenichi Ikejima
- Guidelines Committee for Creating and Evaluating the "Evidence-Based Clinical Practice Guidelines for Nonalcoholic Fatty Liver Disease/Nonalcoholic Steatohepatitis", The Japanese Society of Gastroenterology, The Japan Society of Hepatology, Tokyo, Japan
| | - Masafumi Ono
- Guidelines Committee for Creating and Evaluating the "Evidence-Based Clinical Practice Guidelines for Nonalcoholic Fatty Liver Disease/Nonalcoholic Steatohepatitis", The Japanese Society of Gastroenterology, The Japan Society of Hepatology, Tokyo, Japan
| | - Yuichiro Eguchi
- Guidelines Committee for Creating and Evaluating the "Evidence-Based Clinical Practice Guidelines for Nonalcoholic Fatty Liver Disease/Nonalcoholic Steatohepatitis", The Japanese Society of Gastroenterology, The Japan Society of Hepatology, Tokyo, Japan
| | - Yoshihiro Kamada
- Guidelines Committee for Creating and Evaluating the "Evidence-Based Clinical Practice Guidelines for Nonalcoholic Fatty Liver Disease/Nonalcoholic Steatohepatitis", The Japanese Society of Gastroenterology, The Japan Society of Hepatology, Tokyo, Japan
| | - Yoshito Itoh
- Guidelines Committee for Creating and Evaluating the "Evidence-Based Clinical Practice Guidelines for Nonalcoholic Fatty Liver Disease/Nonalcoholic Steatohepatitis", The Japanese Society of Gastroenterology, The Japan Society of Hepatology, Tokyo, Japan
| | - Norio Akuta
- Guidelines Committee for Creating and Evaluating the "Evidence-Based Clinical Practice Guidelines for Nonalcoholic Fatty Liver Disease/Nonalcoholic Steatohepatitis", The Japanese Society of Gastroenterology, The Japan Society of Hepatology, Tokyo, Japan
| | - Masato Yoneda
- Guidelines Committee for Creating and Evaluating the "Evidence-Based Clinical Practice Guidelines for Nonalcoholic Fatty Liver Disease/Nonalcoholic Steatohepatitis", The Japanese Society of Gastroenterology, The Japan Society of Hepatology, Tokyo, Japan
| | - Motoh Iwasa
- Guidelines Committee for Creating and Evaluating the "Evidence-Based Clinical Practice Guidelines for Nonalcoholic Fatty Liver Disease/Nonalcoholic Steatohepatitis", The Japanese Society of Gastroenterology, The Japan Society of Hepatology, Tokyo, Japan
| | - Masashi Yoneda
- Guidelines Committee for Creating and Evaluating the "Evidence-Based Clinical Practice Guidelines for Nonalcoholic Fatty Liver Disease/Nonalcoholic Steatohepatitis", The Japanese Society of Gastroenterology, The Japan Society of Hepatology, Tokyo, Japan
| | - Motoyuki Otsuka
- Guidelines Committee for Creating and Evaluating the "Evidence-Based Clinical Practice Guidelines for Nonalcoholic Fatty Liver Disease/Nonalcoholic Steatohepatitis", The Japanese Society of Gastroenterology, The Japan Society of Hepatology, Tokyo, Japan
| | - Nobuharu Tamaki
- Guidelines Committee for Creating and Evaluating the "Evidence-Based Clinical Practice Guidelines for Nonalcoholic Fatty Liver Disease/Nonalcoholic Steatohepatitis", The Japanese Society of Gastroenterology, The Japan Society of Hepatology, Tokyo, Japan
| | - Tomomi Kogiso
- Guidelines Committee for Creating and Evaluating the "Evidence-Based Clinical Practice Guidelines for Nonalcoholic Fatty Liver Disease/Nonalcoholic Steatohepatitis", The Japanese Society of Gastroenterology, The Japan Society of Hepatology, Tokyo, Japan
| | - Hiroto Miwa
- Guidelines Committee for Creating and Evaluating the "Evidence-Based Clinical Practice Guidelines for Nonalcoholic Fatty Liver Disease/Nonalcoholic Steatohepatitis", The Japanese Society of Gastroenterology, The Japan Society of Hepatology, Tokyo, Japan
| | | | - Nobuyuki Enomoto
- Guidelines Committee for Creating and Evaluating the "Evidence-Based Clinical Practice Guidelines for Nonalcoholic Fatty Liver Disease/Nonalcoholic Steatohepatitis", The Japanese Society of Gastroenterology, The Japan Society of Hepatology, Tokyo, Japan
| | - Tooru Shimosegawa
- Guidelines Committee for Creating and Evaluating the "Evidence-Based Clinical Practice Guidelines for Nonalcoholic Fatty Liver Disease/Nonalcoholic Steatohepatitis", The Japanese Society of Gastroenterology, The Japan Society of Hepatology, Tokyo, Japan
| | | | - Kazuhiko Koike
- Guidelines Committee for Creating and Evaluating the "Evidence-Based Clinical Practice Guidelines for Nonalcoholic Fatty Liver Disease/Nonalcoholic Steatohepatitis", The Japanese Society of Gastroenterology, The Japan Society of Hepatology, Tokyo, Japan
| |
Collapse
|
19
|
Padda J, Khalid K, Khedr A, Tasnim F, Al-Ewaidat OA, Cooper AC, Jean-Charles G. Non-Alcoholic Fatty Liver Disease and Its Association With Diabetes Mellitus. Cureus 2021; 13:e17321. [PMID: 34557367 PMCID: PMC8449987 DOI: 10.7759/cureus.17321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2021] [Indexed: 11/29/2022] Open
Abstract
There is a bidirectional relationship between non-alcoholic fatty liver disease (NAFLD) and type 2 diabetes mellitus (T2DM). The liver has a vital role in the pathophysiology of both diseases as it leads to the development of insulin resistance (IR), which in turn results in NAFLD and T2DM. It has been shown that T2DM increases the risk of NAFLD progression. Furthermore, the presence of NAFLD raises the probability of T2DM complications, which explains the increased rates of NAFLD screening in patients with T2DM. In addition, there are common management options for the two diseases. Lifestyle changes can play a role in the initial management of both diseases. Medications that are used to treat T2DM are also used in the management of NAFLD, such as metformin, thiazolidinediones (TZD), glucagon-like peptide-1 (GLP-1) analogues, and dipeptidyl peptidase-4 (DPP4) inhibitors. Bariatric surgery is often used as a last resort and has shown promising results. Lifestyle interventions with diet and exercise are important postoperatively to maintain the weight loss. There are many novel treatments that are being investigated for the treatment of NAFLD, targeting multiple pathophysiologic pathways. This review aims to shed some light on the intricate relationship between NAFLD and T2DM and how IR links both diseases. We also try to raise awareness among clinicians about this relationship and how the presence of one disease should raise a high index of suspicion for the existence of the other.
Collapse
Affiliation(s)
| | | | - Anwar Khedr
- Internal Medicine, JC Medical Center, Orlando, USA
| | | | | | | | - Gutteridge Jean-Charles
- Internal Medicine, JC Medical Center, Orlando, USA.,Internal Medicine, Advent Health & Orlando Health Hospital, Orlando, USA
| |
Collapse
|
20
|
Sewter R, Heaney S, Patterson A. Coffee Consumption and the Progression of NAFLD: A Systematic Review. Nutrients 2021; 13:2381. [PMID: 34371891 PMCID: PMC8308484 DOI: 10.3390/nu13072381] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/01/2021] [Accepted: 07/06/2021] [Indexed: 11/23/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the leading cause of chronic liver disease in developed countries. Coffee is one of the most consumed beverages in the world and has been shown to be beneficial in limiting progression in chronic liver disease in general. However, research surrounding the impact of coffee consumption on NAFLD progression is limited. This systematic review aimed to investigate the relationship between coffee consumption and the progression of liver disease, specifically for cases of NAFLD. MEDLINE, EMBASE, CINAHL, the Cochrane Library, and Scopus were searched for published studies that evaluated the effects of coffee consumption on the progression of NAFLD. The results are presented in a narrative synthesis with principal summary measures, including odds ratios, p-values, and differences in mean coffee intake in relation to severity of NAFLD. Five studies met the inclusion criteria and were included in this review. There was no trial evidence among NAFLD patients, rather all studies were of a cross-sectional design. Using the Academy of Nutrition and Dietetics Quality Criteria Checklist, four studies received a positive rating, with the remaining study receiving a neutral rating. Overall, four out of the five studies reported a statistically significant relationship between coffee consumption and the severity of fibrosis. Methods around capturing and defining coffee consumption were heterogeneous and therefore an effective dose could not be elucidated. Results suggest that higher coffee consumption is inversely associated with the severity of hepatic fibrosis in individuals with NAFLD. However, further research is required to elucidate the optimum quantity and form/preparation of coffee required to exert this hepatoprotective role.
Collapse
Affiliation(s)
- Rebecca Sewter
- School of Health Sciences, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308, Australia; (R.S.); (S.H.)
| | - Susan Heaney
- School of Health Sciences, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308, Australia; (R.S.); (S.H.)
- Department of Rural Health, College of Health, Medicine and Wellbeing, University of Newcastle, Port Macquarie, NSW 2444, Australia
| | - Amanda Patterson
- School of Health Sciences, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308, Australia; (R.S.); (S.H.)
- Priority Research Centre for Physical Activity and Nutrition, University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
21
|
Panunzi S, Maltese S, Verrastro O, Labbate L, De Gaetano A, Pompili M, Capristo E, Bornstein SR, Mingrone G. Pioglitazone and bariatric surgery are the most effective treatments for non-alcoholic steatohepatitis: A hierarchical network meta-analysis. Diabetes Obes Metab 2021; 23:980-990. [PMID: 33368954 DOI: 10.1111/dom.14304] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/26/2020] [Accepted: 12/13/2020] [Indexed: 02/06/2023]
Abstract
AIMS To compare different treatments for non-alcoholic steatohepatitis (NASH) and to determine an effectiveness hierarchy. MATERIALS AND METHODS We conducted a systematic review and Bayesian network meta-analysis including randomized controlled trials or prospective trials with at least 6 months' follow-up and histologically proven NASH in adult participants. Monte Carlo simulations were performed, each generating 10 000 data points, and results are reported as medians and 95% credibility intervals (CrIs). A meta-regression was conducted to find the effects of body mass index (BMI) decrement or reduction of homeostatic model assessment of insulin resistance (HOMA-IR) index on non-alcoholic fatty liver disease activity score (NAS) change. RESULTS The review identified 48 eligible trials comprising 2356 adults (55.6% men). Data were pooled using a random-effects model. The most effective treatments in terms of NAS reduction per semester were pioglitazone and Roux-en-Y gastric bypass (RYGB; -1.50 [95% CrI -2.08, -1.00] for pioglitazione and -1.00 [95% CrI -1.70, -0.32] for RYGB). Pioglitazone was also the best therapy for steatosis and lobular inflammation reduction. RYGB was the best treatment for hepatocellular ballooning reduction, whereas antioxidants appeared to be best for fibrosis improvement. For each 1% decrement in BMI, NAS was reduced by 1.3% (β = 1.28%, P = 0.01). Conversely, a 1% reduction of HOMA-IR index reduced NAS by 0.3% (β = 0.31%, P < 0.001). Treatments that were regarded as promising, such as elafibranor, simtuzumab, selonsertib, cenicriviroc, obeticholic acid and liraglutide, did not reduce either NAS or liver fibrosis significantly. CONCLUSIONS Pioglitazione and RYGB are the most effective therapies for NASH. Antioxidants may be effective in reducing liver fibrosis. Weight loss and improvement of hepatic insulin resistance are promising approaches in the treatment of NASH.
Collapse
Affiliation(s)
- Simona Panunzi
- CNR-IASI, Laboratorio di Biomatematica, Consiglio Nazionale delle Ricerche, Istituto di Analisi dei Sistemi ed Informatica, Rome, Italy
| | - Sabina Maltese
- CNR-IRIB, Consiglio Nazionale delle Ricerche, Istituto per la Ricerca e l'Innovazione Biomedica, Palermo, Italy
| | - Ornella Verrastro
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Luca Labbate
- CNR-IRIB, Consiglio Nazionale delle Ricerche, Istituto per la Ricerca e l'Innovazione Biomedica, Palermo, Italy
| | - Andrea De Gaetano
- CNR-IASI, Laboratorio di Biomatematica, Consiglio Nazionale delle Ricerche, Istituto di Analisi dei Sistemi ed Informatica, Rome, Italy
| | - Maurizio Pompili
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Esmeralda Capristo
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Stefan R Bornstein
- Department of Medicine III, Universitätsklinikum Carl Gustav Carus an der Technischen Universität Dresden, Dresden, Germany
- Division of Diabetes and Nutritional Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Geltrude Mingrone
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
- Division of Diabetes and Nutritional Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| |
Collapse
|
22
|
Arai T, Atsukawa M, Tsubota A, Mikami S, Ono H, Kawano T, Yoshida Y, Tanabe T, Okubo T, Hayama K, Nakagawa-Iwashita A, Itokawa N, Kondo C, Kaneko K, Emoto N, Nagao M, Inagaki K, Fukuda I, Sugihara H, Iwakiri K. Effect of sodium-glucose cotransporter 2 inhibitor in patients with non-alcoholic fatty liver disease and type 2 diabetes mellitus: a propensity score-matched analysis of real-world data. Ther Adv Endocrinol Metab 2021; 12:20420188211000243. [PMID: 33815743 PMCID: PMC7989116 DOI: 10.1177/20420188211000243] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/12/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Although sodium-glucose cotransporter 2 inhibitors (SGLT2-Is) improve not only glycemic control but also liver inflammation and fatty changes in patients with non-alcoholic fatty liver disease (NAFLD) and type 2 diabetes mellitus (T2DM), its sustainability and effect on liver fibrosis have remained unclear. The current study aimed to clarify the effects of 48-week SGLT2-I therapy on liver inflammation, fatty changes, and fibrosis in NAFLD patients with T2DM. METHODS This study evaluated the effects of SGLT2-I on NAFLD, including liver fibrosis assessed via transient elastography, in 56 patients with NAFLD who received SGLT2-I for 48 weeks. Moreover, changes in each clinical parameter between patients receiving SGLT2-I (the SGLT2-I group) and those receiving other oral hypoglycemic agents (OHAs) (the non-SGLT2-I group) were compared, using 1:1 propensity score matching to adjust for baseline factors. RESULTS The SGLT2-I group exhibited a significant decrease in controlled attenuation parameter (312 dB/m at baseline to 280 dB/m at week 48) and liver stiffness measurement (9.1-6.7 kPa) (p < 0.001 for both). After propensity score matching (44 patients each in the SGLT2-I and non-SGLT2-I groups), no significant difference in HbA1c decrease was observed between the two groups. However, compared with the non-SGLT2-I group, the SGLT2-I group showed a significant decrease in body weight (p < 0.001), alanine aminotransferase (p = 0.02), uric acid (p < 0.001), and Fibrosis-4 (FIB-4) index (p = 0.01) at week 48. The improvement in FIB-4 index, defined as a ⩾10% decline from baseline at week 48, was 56.8% (25/44) in the SGLT2-I group and 20.5% (9/44) in the non-SGLT2-I group (p < 0.001). CONCLUSION SGLT2-Is improved not only glycemic control but also liver fatty infiltration and fibrosis in patients with NAFLD and T2DM, suggesting their possible superiority to other OHAs concerning these effects.
Collapse
Affiliation(s)
- Taeang Arai
- Division of Gastroenterology and Hepatology, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| | - Masanori Atsukawa
- Division of Gastroenterology and Hepatology, Nippon Medical School, 1-1-5, Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan
| | - Akihito Tsubota
- Core Research Facilities for Basic Science, Research Center for Medical Sciences, The Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Shigeru Mikami
- Division of Gastroenterology, Department of Internal Medicine, Kikkoman General Hospital, Miyazaki Noda, Japan
| | - Hiroki Ono
- Division of Gastroenterology and Hepatology, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| | - Tadamichi Kawano
- Division of Gastroenterology and Hepatology, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| | - Yuji Yoshida
- Division of Gastroenterology, Nippon Medical School Chiba Hokusoh Hospital, Inzai-shi, Chiba, Japan
| | - Tomohide Tanabe
- Division of Gastroenterology and Hepatology, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| | - Tomomi Okubo
- Division of Gastroenterology, Nippon Medical School Chiba Hokusoh Hospital, Inzai-shi, Chiba, Japan
| | - Korenobu Hayama
- Division of Gastroenterology, Nippon Medical School Chiba Hokusoh Hospital, Inzai-shi, Chiba, Japan
| | - Ai Nakagawa-Iwashita
- Division of Gastroenterology and Hepatology, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| | - Norio Itokawa
- Division of Gastroenterology and Hepatology, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| | - Chisa Kondo
- Division of Gastroenterology and Hepatology, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| | - Keiko Kaneko
- Division of Gastroenterology and Hepatology, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| | - Naoya Emoto
- Division of Endocrinology, Nippon Medical School Chiba Hokusoh Hospital, Inzai-shi, Chiba, Japan
| | - Mototsugu Nagao
- Division of Endocrinology, Diabetes and Metabolism, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| | - Kyoko Inagaki
- Division of Endocrinology, Diabetes and Metabolism, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| | - Izumi Fukuda
- Division of Endocrinology, Diabetes and Metabolism, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| | - Hitoshi Sugihara
- Division of Endocrinology, Diabetes and Metabolism, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| | - Katsuhiko Iwakiri
- Division of Gastroenterology and Hepatology, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
23
|
Sharma M, Premkumar M, Kulkarni AV, Kumar P, Reddy DN, Rao NP. Drugs for Non-alcoholic Steatohepatitis (NASH): Quest for the Holy Grail. J Clin Transl Hepatol 2021; 9:40-50. [PMID: 33604254 PMCID: PMC7868704 DOI: 10.14218/jcth.2020.00055] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/29/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a global epidemic that is likely to become the most common cause of chronic liver disease in the next decade, worldwide. Though numerous drugs have been evaluated in clinical trials, most of them have returned inconclusive results and shown poorly-tolerated adverse effects. None of the drugs have been approved by the Food and Drug Administration for treating biopsy-proven non-alcoholic steatohepatitis (NASH). Vitamin E and pioglitazone have been extensively used in treatment of biopsy-proven nondiabetic NASH patients. Although some amelioration of inflammation has been seen, these drugs did not improve the fibrosis component of NASH. Therefore, dietary modification and weight reduction have remained the cornerstone of treatment of NASH; moreover, they have shown to improve histological activity as well as fibrosis. The search for an ideal drug or 'Holy Grail' within this landscape of possible agents continues, as weight reduction is achieved only in less than 10% of patients. In this current review, we summarize the drugs for NASH which are under investigation, and we provide a critical analysis of their up-to-date results and outcomes.
Collapse
Affiliation(s)
- Mithun Sharma
- Department of Hepatology, Asian Institute of Gastroenterology, Hyderabad, India
| | | | - Anand V Kulkarni
- Department of Hepatology, Asian Institute of Gastroenterology, Hyderabad, India
- Correspondence to: Dr. Anand V Kulkarni, Department of Hepatology and Liver Transplantation, Asian Institute of Gastroenterology, Hyderabad, India. Tel: +91-40-42444222, E-mail:
| | - Pramod Kumar
- Department of Hepatology, Asian Institute of Gastroenterology, Hyderabad, India
| | - D Nageshwar Reddy
- Department of Gastroenterology, Asian Institute of Gastroenterology, Hyderabad, India
| | - Nagaraja Padaki Rao
- Department of Hepatology, Asian Institute of Gastroenterology, Hyderabad, India
| |
Collapse
|
24
|
Tokushige K, Ikejima K, Ono M, Eguchi Y, Kamada Y, Itoh Y, Akuta N, Yoneda M, Iwasa M, Yoneda M, Otsuka M, Tamaki N, Kogiso T, Miwa H, Chayama K, Enomoto N, Shimosegawa T, Takehara T, Koike K. Evidence-based clinical practice guidelines for nonalcoholic fatty liver disease/nonalcoholic steatohepatitis 2020. J Gastroenterol 2021; 56:951-963. [PMID: 34533632 PMCID: PMC8531062 DOI: 10.1007/s00535-021-01796-x] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 05/14/2021] [Indexed: 02/04/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become a serious public health issue not only in Western countries but also in Japan. Within the wide spectrum of NAFLD, nonalcoholic steatohepatitis (NASH) is a progressive form of disease that often develops into liver cirrhosis and increases the risk of hepatocellular carcinoma (HCC). While a definite diagnosis of NASH requires liver biopsy to confirm the presence of hepatocyte ballooning, hepatic fibrosis is the most important prognostic factor in NAFLD. With so many NAFLD patients, it is essential to have an effective screening method for NAFLD with hepatic fibrosis. As HCC with non-viral liver disease has increased markedly in Japan, effective screening and surveillance of HCC are also urgently needed. The most common death etiology in NAFLD patients is cardiovascular disease (CVD) event. Gastroenterologists must, therefore, pay close attention to CVD when examining NAFLD patients. In the updated guidelines, we propose screening and follow-up methods for hepatic fibrosis, HCC, and CVD in NAFLD patients. Several drug trials are ongoing for NAFLD/NASH therapy, however, there is currently no specific drug therapy for NAFLD/NASH. In addition to vitamin E and thiazolidinedione derivatives, recent trials have focused on sodium glucose co-transporter 2 (SGLT2) inhibitors and glucagon-like peptide-1 (GLP-1) analogues, and effective therapies are expected to be developed. These practical guidelines for NAFLD/NASH were established by the Japanese Society of Gastroenterology in conjunction with the Japan Society of Hepatology. Clinical evidence reported internationally between 1983 and October 2018 was collected, and each clinical and background question was evaluated using the Grades of Recommendation Assessment, Development and Evaluation (GRADE) system. This English summary provides the core essentials of these clinical practice guidelines, which include the definition and concept, screening systems for hepatic fibrosis, HCC and CVD, and current therapies for NAFLD/NASH in Japan.
Collapse
Affiliation(s)
- Katsutoshi Tokushige
- Guidelines Committee for Creating and Evaluating the ‘‘Evidence-Based Clinical Practice Guidelines for Nonalcoholic Fatty Liver Disease/Nonalcoholic Steatohepatitis’’, The Japanese Society of Gastroenterology / The Japan Society of Hepatology, 6F Shimbashi i-MARK Building, 2-6-2 Shimbashi, Minato-ku, Tokyo, 105-0004 Japan ,grid.410818.40000 0001 0720 6587Institute of Gastroenterology, Department of Internal Medicine, Tokyo Women’s Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, Japan
| | - Kenichi Ikejima
- Guidelines Committee for Creating and Evaluating the ‘‘Evidence-Based Clinical Practice Guidelines for Nonalcoholic Fatty Liver Disease/Nonalcoholic Steatohepatitis’’, The Japanese Society of Gastroenterology / The Japan Society of Hepatology, 6F Shimbashi i-MARK Building, 2-6-2 Shimbashi, Minato-ku, Tokyo, 105-0004 Japan
| | - Masafumi Ono
- Guidelines Committee for Creating and Evaluating the ‘‘Evidence-Based Clinical Practice Guidelines for Nonalcoholic Fatty Liver Disease/Nonalcoholic Steatohepatitis’’, The Japanese Society of Gastroenterology / The Japan Society of Hepatology, 6F Shimbashi i-MARK Building, 2-6-2 Shimbashi, Minato-ku, Tokyo, 105-0004 Japan
| | - Yuichiro Eguchi
- Guidelines Committee for Creating and Evaluating the ‘‘Evidence-Based Clinical Practice Guidelines for Nonalcoholic Fatty Liver Disease/Nonalcoholic Steatohepatitis’’, The Japanese Society of Gastroenterology / The Japan Society of Hepatology, 6F Shimbashi i-MARK Building, 2-6-2 Shimbashi, Minato-ku, Tokyo, 105-0004 Japan
| | - Yoshihiro Kamada
- Guidelines Committee for Creating and Evaluating the ‘‘Evidence-Based Clinical Practice Guidelines for Nonalcoholic Fatty Liver Disease/Nonalcoholic Steatohepatitis’’, The Japanese Society of Gastroenterology / The Japan Society of Hepatology, 6F Shimbashi i-MARK Building, 2-6-2 Shimbashi, Minato-ku, Tokyo, 105-0004 Japan
| | - Yoshito Itoh
- Guidelines Committee for Creating and Evaluating the ‘‘Evidence-Based Clinical Practice Guidelines for Nonalcoholic Fatty Liver Disease/Nonalcoholic Steatohepatitis’’, The Japanese Society of Gastroenterology / The Japan Society of Hepatology, 6F Shimbashi i-MARK Building, 2-6-2 Shimbashi, Minato-ku, Tokyo, 105-0004 Japan
| | - Norio Akuta
- Guidelines Committee for Creating and Evaluating the ‘‘Evidence-Based Clinical Practice Guidelines for Nonalcoholic Fatty Liver Disease/Nonalcoholic Steatohepatitis’’, The Japanese Society of Gastroenterology / The Japan Society of Hepatology, 6F Shimbashi i-MARK Building, 2-6-2 Shimbashi, Minato-ku, Tokyo, 105-0004 Japan
| | - Masato Yoneda
- Guidelines Committee for Creating and Evaluating the ‘‘Evidence-Based Clinical Practice Guidelines for Nonalcoholic Fatty Liver Disease/Nonalcoholic Steatohepatitis’’, The Japanese Society of Gastroenterology / The Japan Society of Hepatology, 6F Shimbashi i-MARK Building, 2-6-2 Shimbashi, Minato-ku, Tokyo, 105-0004 Japan
| | - Motoh Iwasa
- Guidelines Committee for Creating and Evaluating the ‘‘Evidence-Based Clinical Practice Guidelines for Nonalcoholic Fatty Liver Disease/Nonalcoholic Steatohepatitis’’, The Japanese Society of Gastroenterology / The Japan Society of Hepatology, 6F Shimbashi i-MARK Building, 2-6-2 Shimbashi, Minato-ku, Tokyo, 105-0004 Japan
| | - Masashi Yoneda
- Guidelines Committee for Creating and Evaluating the ‘‘Evidence-Based Clinical Practice Guidelines for Nonalcoholic Fatty Liver Disease/Nonalcoholic Steatohepatitis’’, The Japanese Society of Gastroenterology / The Japan Society of Hepatology, 6F Shimbashi i-MARK Building, 2-6-2 Shimbashi, Minato-ku, Tokyo, 105-0004 Japan
| | - Motoyuki Otsuka
- Guidelines Committee for Creating and Evaluating the ‘‘Evidence-Based Clinical Practice Guidelines for Nonalcoholic Fatty Liver Disease/Nonalcoholic Steatohepatitis’’, The Japanese Society of Gastroenterology / The Japan Society of Hepatology, 6F Shimbashi i-MARK Building, 2-6-2 Shimbashi, Minato-ku, Tokyo, 105-0004 Japan
| | - Nobuharu Tamaki
- Guidelines Committee for Creating and Evaluating the ‘‘Evidence-Based Clinical Practice Guidelines for Nonalcoholic Fatty Liver Disease/Nonalcoholic Steatohepatitis’’, The Japanese Society of Gastroenterology / The Japan Society of Hepatology, 6F Shimbashi i-MARK Building, 2-6-2 Shimbashi, Minato-ku, Tokyo, 105-0004 Japan
| | - Tomomi Kogiso
- Guidelines Committee for Creating and Evaluating the ‘‘Evidence-Based Clinical Practice Guidelines for Nonalcoholic Fatty Liver Disease/Nonalcoholic Steatohepatitis’’, The Japanese Society of Gastroenterology / The Japan Society of Hepatology, 6F Shimbashi i-MARK Building, 2-6-2 Shimbashi, Minato-ku, Tokyo, 105-0004 Japan
| | - Hiroto Miwa
- Guidelines Committee for Creating and Evaluating the ‘‘Evidence-Based Clinical Practice Guidelines for Nonalcoholic Fatty Liver Disease/Nonalcoholic Steatohepatitis’’, The Japanese Society of Gastroenterology / The Japan Society of Hepatology, 6F Shimbashi i-MARK Building, 2-6-2 Shimbashi, Minato-ku, Tokyo, 105-0004 Japan
| | - Kazuaki Chayama
- The Japan Society of Hepatology, Kashiwaya 2 Building 5F, 3-28-10 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Nobuyuki Enomoto
- Guidelines Committee for Creating and Evaluating the ‘‘Evidence-Based Clinical Practice Guidelines for Nonalcoholic Fatty Liver Disease/Nonalcoholic Steatohepatitis’’, The Japanese Society of Gastroenterology / The Japan Society of Hepatology, 6F Shimbashi i-MARK Building, 2-6-2 Shimbashi, Minato-ku, Tokyo, 105-0004 Japan
| | - Tooru Shimosegawa
- Guidelines Committee for Creating and Evaluating the ‘‘Evidence-Based Clinical Practice Guidelines for Nonalcoholic Fatty Liver Disease/Nonalcoholic Steatohepatitis’’, The Japanese Society of Gastroenterology / The Japan Society of Hepatology, 6F Shimbashi i-MARK Building, 2-6-2 Shimbashi, Minato-ku, Tokyo, 105-0004 Japan
| | - Tetsuo Takehara
- The Japan Society of Hepatology, Kashiwaya 2 Building 5F, 3-28-10 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Kazuhiko Koike
- Guidelines Committee for Creating and Evaluating the ‘‘Evidence-Based Clinical Practice Guidelines for Nonalcoholic Fatty Liver Disease/Nonalcoholic Steatohepatitis’’, The Japanese Society of Gastroenterology / The Japan Society of Hepatology, 6F Shimbashi i-MARK Building, 2-6-2 Shimbashi, Minato-ku, Tokyo, 105-0004 Japan
| |
Collapse
|
25
|
Khalatbari-Soltani S, Marques-Vidal P, Imamura F, Forouhi NG. Prospective association between adherence to the Mediterranean diet and hepatic steatosis: the Swiss CoLaus cohort study. BMJ Open 2020; 10:e040959. [PMID: 33371031 PMCID: PMC7757450 DOI: 10.1136/bmjopen-2020-040959] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE The Mediterranean diet has been promoted as a healthy dietary pattern, but whether the Mediterranean diet may help to prevent hepatic steatosis is not clear. This study aimed to evaluate the prospective association between adherence to the Mediterranean diet and risk of hepatic steatosis. DESIGN Population-based prospective cohort study. SETTING The Swiss CoLaus Study. PARTICIPANTS We evaluated 2288 adults (65.4% women, aged 55.8±10.0 years) without hepatic steatosis at first follow-up in 2009-2012. Adherence to the Mediterranean diet was scaled as the Mediterranean diet score (MDS) based on the Mediterranean diet pyramid ascertained with responses to Food Frequency Questionnaires. OUTCOME MEASURES New onset of hepatic steatosis was ascertained by two indices separately: the Fatty Liver Index (FLI, ≥60 points) and the non-alcoholic fatty liver disease (NAFLD) score (≥-0.640 points). Prospective associations between adherence to the Mediterranean diet and risk of hepatic steatosis were quantified using Poisson regression. RESULTS During a mean 5.3 years of follow-up, hepatic steatosis was ascertained in 153 (6.7%) participants by FLI criteria and in 208 (9.1%) by NAFLD score. After multivariable adjustment, higher adherence to MDS was associated with lower risk of hepatic steatosis based on FLI: risk ratio 0.84 (95% CI 0.73 to 0.96) per 1 SD of MDS; 0.85 (0.73 to 0.99) adjusted for BMI; and 0.85 (0.71 to 1.02) adjusted for both BMI and waist circumference. When using NAFLD score, no significant association was found between MDS and risk of hepatic steatosis (0.95 (0.83 to 1.09)). CONCLUSION A potential role of the Mediterranean diet in the prevention of hepatic steatosis is suggested by the inverse association observed between adherence to the Mediterranean diet and incidence of hepatic steatosis based on the FLI. The inconsistency of this association when hepatic steatosis was assessed by NAFLD score points to the need for accurate population-level assessment of fatty liver and its physiological markers.
Collapse
Affiliation(s)
- Saman Khalatbari-Soltani
- Faculty of Medicine and Health, The University of Sydney School of Public Health, Sydney, New South Wales, Australia
- ARC Centre for Excellence in Population Ageing Research (CEPAR), University of Sydney, Sydney, New South Wales, Australia
- Department of Internal Medicine, Internal Medicine, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Pedro Marques-Vidal
- Department of Internal Medicine, Internal Medicine, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Fumiaki Imamura
- Medical Research Council Epidemiology Unit, University of Cambridge, School of Clinical Medicine, Cambridge, UK
| | - Nita G Forouhi
- Medical Research Council Epidemiology Unit, University of Cambridge, School of Clinical Medicine, Cambridge, UK
| |
Collapse
|
26
|
Associations between dietary total antioxidant capacity and odds of non-alcoholic fatty liver disease (NAFLD) in adults: a case-control study. J Nutr Sci 2020; 9:e48. [PMID: 33244400 PMCID: PMC7681134 DOI: 10.1017/jns.2020.39] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023] Open
Abstract
The relationships between the total antioxidant capacity (TAC) of the diet and the risk of non-alcoholic fatty liver disease (NAFLD) have not previously been assessed. The aim of this study was to assess relationships between DTAC and odds of NAFLD in a case–control study. This case–control study was carried out in 158 patients with NAFLD and 357 healthy individuals aged 18–55 years. Dietary data were collected using validated 168-item quantitative food frequency questionnaires. Triacylglycerols (TAGs), total cholesterol (TC), high-density lipoprotein (HDL-C), low-density lipoprotein (LDL-C) and fasting blood glucose (FBS) concentrations were assessed using enzymatic methods and commercial kits. The DTAC was calculated based on the oxygen radical absorbance capacity of each food reported by the U.S. Department of Agriculture. The mean ± sd (standard deviation) for age and body mass index (BMI) of the study participants were 43⋅9 years ±5⋅9 and had 30⋅5 kg/m2 ±2⋅6. The NAFLD patients included higher BMI and female proportion, compared with the control group. The NAFLD patients included higher smoking rates, biochemical parameters (TG, TC, LDL-C and FBS) and DTAC scores, compared with control groups (P-value < 0⋅05). However, patients with NAFLD had lower HDL levels and physical activities, compared with the control group. The highest tertile of DTAC showed lower odds of NAFLD, compared with the lowest tertile. This association was significant after adjustment for potential confounders (OR, 0⋅19; 95 % CI, 0⋅9–0⋅34; P for trend 0⋅001). Findings suggest that the promotion of naturally increased antioxidant capacities may help prevent odds of NAFLD.
Collapse
|
27
|
Htet TD, Godneva A, Liu Z, Chalmers E, Kolobkov D, Snaith JR, Richens R, Toth K, Danta M, Hng TM, Elinav E, Segal E, Greenfield JR, Samocha-Bonet D. Rationale and design of a randomised controlled trial testing the effect of personalised diet in individuals with pre-diabetes or type 2 diabetes mellitus treated with metformin. BMJ Open 2020; 10:e037859. [PMID: 33040003 PMCID: PMC7552859 DOI: 10.1136/bmjopen-2020-037859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Metformin and diets aimed at promoting healthy body weight are the first line in treating type 2 diabetes mellitus (T2DM). Clinical practice, backed by clinical trials, suggests that many individuals do not reach glycaemic targets using this approach alone. The primary aim of the Personalised Medicine in Pre-diabetes-Towards Preventing Diabetes in Individuals at Risk (PREDICT) Study is to test the efficacy of personalised diet as adjuvant to metformin in improving glycaemic control in individuals with dysglycaemia. METHODS AND ANALYSIS PREDICT is a two-arm, parallel group, single-masked randomised controlled trial in adults with pre-diabetes or early-stage T2DM (with glycated haemoglobin (HbA1c) up to 8.0% (64 mmol/mol)), not treated with glucose-lowering medication. PREDICT is conducted at the Clinical Research Facility at the Garvan Institute of Medical Research (Sydney). Enrolment of participants commenced in December 2018 and expected to complete in December 2021. Participants are commenced on metformin (Extended Release, titrated to a target dose of 1500 mg/day) and randomised with equal allocation to either (1) the Personalised Nutrition Project algorithm-based diet or (2) low-fat high-dietary fibre diet, designed to provide caloric restriction (75%) in individuals with body mass index >25 kg/m2. Treatment duration is 6 months and participants visit the Clinical Research Facility five times over approximately 7 months. The primary outcome measure is HbA1c. The secondary outcomes are (1) time of interstitial glucose <7.8 mmol/L and (2) glycaemic variability (continuous glucose monitoring), (3) body weight, (4) fat mass and (5) abdominal visceral fat volume (dual-energy X-ray absorptiometry), serum (6) low-density lipoprotein cholesterol (7) high-density lipoprotein cholesterol and (8) triglycerides concentrations, (9) blood pressure, and (10) liver fat (Fibroscan). ETHICS AND DISSEMINATION The study has been approved by the St Vincent's Hospital Human Research Ethics Committee (File 17/080, Sydney, Australia) and the Weizmann Institutional Review Board (File 528-3, Rehovot, Israel). The findings will be published in peer-reviewed open access medical journals. TRIAL REGISTRATION NUMBER NCT03558867; Pre-results.
Collapse
Affiliation(s)
- Thaw D Htet
- Healthy Ageing Theme, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- St Vincent's Clinical School, UNSW, Sydney, New South Wales, Australia
- Department of Endocrinology, St Vincent's Hospital, Sydney, New South Wales, Australia
| | - Anastasia Godneva
- Department of Computer Science & Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Zhixin Liu
- Mark Wainwright Analytical Centre, UNSW, Sydney, New South Wales, Australia
| | - Eliza Chalmers
- Healthy Ageing Theme, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Dmitry Kolobkov
- Department of Computer Science & Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Jennifer R Snaith
- Healthy Ageing Theme, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- St Vincent's Clinical School, UNSW, Sydney, New South Wales, Australia
- Department of Endocrinology, St Vincent's Hospital, Sydney, New South Wales, Australia
| | - Renee Richens
- Healthy Ageing Theme, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Krisztina Toth
- Healthy Ageing Theme, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Mark Danta
- St Vincent's Clinical School, UNSW, Sydney, New South Wales, Australia
- Department of Gastroenterology, St Vincent's Hospital, Sydney, New South Wales, Australia
| | - Tien-Ming Hng
- Diabetes and Endocrinology, Blacktown Mount Druitt Hospital, Sydney, New South Wales, Australia
- Blacktown Clinical School, Western Sydney University, Sydney, New South Wales, Australia
| | - Eran Elinav
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Eran Segal
- Department of Computer Science & Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Jerry R Greenfield
- Healthy Ageing Theme, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- St Vincent's Clinical School, UNSW, Sydney, New South Wales, Australia
- Department of Endocrinology, St Vincent's Hospital, Sydney, New South Wales, Australia
| | - Dorit Samocha-Bonet
- Healthy Ageing Theme, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- St Vincent's Clinical School, UNSW, Sydney, New South Wales, Australia
| |
Collapse
|
28
|
Sohouli M, Fatahi S. Associations between Dietary Total Antioxidant Capacity and Risk of Nonalcoholic Fatty Liver Disease (NAFLD) in Adults: A Case-Control Study. NUTRITION AND FOOD SCIENCES RESEARCH 2020. [DOI: 10.29252/nfsr.7.3.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
29
|
Pratt M, Wieland S, Ahmadzai N, Butler C, Wolfe D, Pussagoda K, Skidmore B, Veroniki A, Rios P, Tricco AC, Hutton B. A scoping review of network meta-analyses assessing the efficacy and safety of complementary and alternative medicine interventions. Syst Rev 2020; 9:97. [PMID: 32354348 PMCID: PMC7191816 DOI: 10.1186/s13643-020-01328-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 03/10/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Network meta-analysis (NMA) has rapidly grown in use during the past decade for the comparison of healthcare interventions. While its general use in the comparison of conventional medicines has been studied previously, to our awareness, its use to assess complementary and alternative medicines (CAM) has not been studied. A scoping review of the literature was performed to identify systematic reviews incorporating NMAs involving one or more CAM interventions. METHODS An information specialist executed a multi-database search (e.g., MEDLINE, Embase, Cochrane), and two reviewers performed study selection and data collection. Information on publication characteristics, diseases studied, interventions compared, reporting transparency, outcomes assessed, and other parameters were extracted from each review. RESULTS A total of 89 SR/NMAs were included. The largest number of NMAs was conducted in China (39.3%), followed by the United Kingdom (12.4%) and the United States (9.0%). Reviews were published between 2010 and 2018, with the majority published between 2015 and 2018. More than 90 different CAM therapies appeared at least once, and the median number per NMA was 2 (IQR 1-4); 20.2% of reviews consisted of only CAM therapies. Dietary supplements (51.1%) and vitamins and minerals (42.2%) were the most commonly studied therapies, followed by electrical stimulation (31.1%), herbal medicines (24.4%), and acupuncture and related treatments (22.2%). A diverse set of conditions was identified, the most common being various forms of cancer (11.1%), osteoarthritis of the hip/knee (7.8%), and depression (5.9%). Most reviews adequately addressed a majority of the PRISMA NMA extension items; however, there were limitations in indication of an existing review protocol, exploration of network geometry, and exploration of risk of bias across studies, such as publication bias. CONCLUSION The use of NMA to assess the effectiveness of CAM interventions is growing rapidly. Efforts to identify priority topics for future CAM-related NMAs and to enhance methods for CAM comparisons with conventional medicine are needed. SYSTEMATIC REVIEW REGISTRATION: https://ruor.uottawa.ca/handle/10393/35658.
Collapse
Affiliation(s)
- Misty Pratt
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, 501 Smyth Road, Box 201, Ottawa, Ontario K1H 8 L6 Canada
| | - Susan Wieland
- University of Maryland School of Medicine, Baltimore, MD USA
| | - Nadera Ahmadzai
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, 501 Smyth Road, Box 201, Ottawa, Ontario K1H 8 L6 Canada
| | - Claire Butler
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, 501 Smyth Road, Box 201, Ottawa, Ontario K1H 8 L6 Canada
| | - Dianna Wolfe
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, 501 Smyth Road, Box 201, Ottawa, Ontario K1H 8 L6 Canada
| | - Kusala Pussagoda
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, 501 Smyth Road, Box 201, Ottawa, Ontario K1H 8 L6 Canada
| | - Becky Skidmore
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, 501 Smyth Road, Box 201, Ottawa, Ontario K1H 8 L6 Canada
| | - Argie Veroniki
- Department of Primary Education, School of Education, University of Ioannina, Ioannina, Greece
- Li Ka Shing Knowledge Institute, St Michael’s Hospital, Unity Health Toronto, Toronto, Canada
- Institute of Reproductive and Developmental Biology, Department of Surgery & Cancer, Faculty of Medicine, Imperial College, London, United Kingdom
| | - Patricia Rios
- Li Ka Shing Knowledge Institute, St Michael’s Hospital, Unity Health Toronto, Toronto, Canada
| | - Andrea C. Tricco
- Li Ka Shing Knowledge Institute, St Michael’s Hospital, Unity Health Toronto, Toronto, Canada
- Epidemiology Division, Dalla Lana School of Public Health and Institute for Health Policy, Management, and Evaluation, University of Toronto, Toronto, Canada
| | - Brian Hutton
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, 501 Smyth Road, Box 201, Ottawa, Ontario K1H 8 L6 Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada
| |
Collapse
|
30
|
Bile acids and butyrate in the effects of probiotics/synbiotics on nonalcoholic fatty liver disease. Eur J Gastroenterol Hepatol 2019; 31:1475-1476. [PMID: 31464781 DOI: 10.1097/meg.0000000000001506] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
31
|
NAFLD and Extra-Hepatic Comorbidities: Current Evidence on a Multi-Organ Metabolic Syndrome. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16183415. [PMID: 31540048 PMCID: PMC6765902 DOI: 10.3390/ijerph16183415] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/06/2019] [Accepted: 09/08/2019] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease worldwide and its incidence is definitely increasing. NAFLD is a metabolic disease with extensive multi-organ involvement, whose extra-hepatic manifestations include type 2 diabetes mellitus, cardiovascular disease, obstructive sleep apnea, chronic kidney disease, osteoporosis, and polycystic ovarian syndrome. Recently, further evidence has given attention to pathological correlations not strictly related to metabolic disease, also incorporating in this broad spectrum of systemic involvement hypothyroidism, psoriasis, male sexual dysfunction, periodontitis, and urolithiasis. The most common cause of mortality in NAFLD is represented by cardiovascular disease, followed by liver-related complications. Therefore, clinicians should learn to screen and initiate treatment for these extra-hepatic manifestations, in order to provide appropriate multidisciplinary assessments and rigorous surveillance. This review evaluates the current evidence regarding extra-hepatic associations of NAFLD, focusing on the pathogenic hypothesis and the clinical implications.
Collapse
|
32
|
Jayakumar S, Loomba R. Review article: emerging role of the gut microbiome in the progression of nonalcoholic fatty liver disease and potential therapeutic implications. Aliment Pharmacol Ther 2019; 50:144-158. [PMID: 31149745 PMCID: PMC6771496 DOI: 10.1111/apt.15314] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 10/24/2018] [Accepted: 04/30/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is a prevalent disorder associated with obesity and diabetes. Few treatment options are effective for patients with NAFLD, but connections between the gut microbiome and NAFLD and NAFLD-associated conditions suggest that modulation of the gut microbiota could be a novel therapeutic option. AIM To examine the effect of the gut microbiota on pathophysiologic causes of NAFLD and assess the potential of microbiota-targeting therapies for NAFLD. METHODS A PubMed search of the literature was performed; relevant articles were included. RESULTS The composition of bacteria in the gastrointestinal tract can enhance fat deposition, modulate energy metabolism and alter inflammatory processes. Emerging evidence suggests a role for the gut microbiome in obesity and metabolic syndrome. NAFLD is often considered the hepatic manifestation of metabolic syndrome, and there has been tremendous progress in understanding the association of gut microbiome composition with NAFLD disease severity. We discuss the role of the gut microbiome in NAFLD pathophysiology and whether the microbiome composition can differentiate the two categories of NAFLD: nonalcoholic fatty liver (NAFL, the non-progressive form) vs nonalcoholic steatohepatitis (NASH, the progressive form). The association between gut microbiome and fibrosis progression in NAFLD is also discussed. Finally, we review whether modulation of the gut microbiome plays a role in improving treatment outcomes for patients with NAFLD. CONCLUSIONS Multiple pathophysiologic pathways connect the gut microbiome with the pathophysiology of NAFLD. Therefore, therapeutics that effectively target the gut microbiome may be beneficial for the treatment of patients with NAFLD.
Collapse
Affiliation(s)
- Saumya Jayakumar
- Division of Gastroenterology and Hepatology, Department of MedicineNAFLD Research Center, University of California at San DiegoLa JollaCalifornia
| | - Rohit Loomba
- Division of Gastroenterology and Hepatology, Department of MedicineNAFLD Research Center, University of California at San DiegoLa JollaCalifornia,Division of Epidemiology, Department of Family Medicine and Public HealthUniversity of California at San DiegoLa JollaCalifornia
| |
Collapse
|
33
|
From sugar to liver fat and public health: systems biology driven studies in understanding non-alcoholic fatty liver disease pathogenesis. Proc Nutr Soc 2019; 78:290-304. [PMID: 30924429 DOI: 10.1017/s0029665119000570] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is now a major public health concern with an estimated prevalence of 25-30% of adults in many countries. Strongly associated with obesity and the metabolic syndrome, the pathogenesis of NAFLD is dependent on complex interactions between genetic and environmental factors that are not completely understood. Weight loss through diet and lifestyle modification underpins clinical management; however, the roles of individual dietary nutrients (e.g. saturated and n-3 fatty acids; fructose, vitamin D, vitamin E) in the pathogenesis or treatment of NAFLD are only partially understood. Systems biology offers valuable interdisciplinary methods that are arguably ideal for application to the studying of chronic diseases such as NAFLD, and the roles of nutrition and diet in their molecular pathogenesis. Although present in silico models are incomplete, computational tools are rapidly evolving and human metabolism can now be simulated at the genome scale. This paper will review NAFLD and its pathogenesis, including the roles of genetics and nutrition in the development and progression of disease. In addition, the paper introduces the concept of systems biology and reviews recent work utilising genome-scale metabolic networks and developing multi-scale models of liver metabolism relevant to NAFLD. A future is envisioned where individual genetic, proteomic and metabolomic information can be integrated computationally with clinical data, yielding mechanistic insight into the pathogenesis of chronic diseases such as NAFLD, and informing personalised nutrition and stratified medicine approaches for improving prognosis.
Collapse
|
34
|
Effect of Fish Oil Supplementation on Hepatic and Visceral Fat in Overweight Men: A Randomized Controlled Trial. Nutrients 2019; 11:nu11020475. [PMID: 30813440 PMCID: PMC6413081 DOI: 10.3390/nu11020475] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/12/2019] [Accepted: 02/20/2019] [Indexed: 12/16/2022] Open
Abstract
Being overweight increases the risk of the development of metabolic conditions such as non-alcoholic fatty liver disease (NAFLD), which is itself an independent predictor of cardiovascular disease. Omega-3 polyunsaturated fatty acid (PUFA) supplementation is recommended for prevention of chronic disease, and is thought to reduce raised liver fat, yet there have been few randomized controlled trials with accurate measurement of liver fat. We assessed the effect of 12 weeks of supplementation with omega-3 PUFA from fish oil versus placebo on quantified liver fat, liver tests, and body composition including visceral adipose tissue (VAT) in a double-blind randomized controlled trial. Fifty apparently healthy overweight men (BMI 25.0–29.9 kg/m2; waist > 94 cm) were randomly allocated to consume fish oil (total daily dose: 1728 mg marine triglycerides, of which 588 mg EPA and 412 mg DHA, combined with 200 mg antioxidant, coenzyme Q10) or placebo (olive oil capsules) daily for 12 weeks. Liver fat was assessed using proton magnetic resonance spectroscopy. All outcomes were assessed at baseline and following 6 and 12 weeks of supplementation. Baseline liver fat was 4.6 ± 0.5% (range: 0.6 to 18.2%); 16 (32%) participants met the criteria for NAFLD (>5.5% liver fat). Repeated measures ANOVA revealed no significant time or group × time effect for fish oil versus placebo for liver fat, liver enzymes, anthropometry, or body composition including VAT (p > 0.05 for all), with similar finding for sub-analysis of participants with NAFLD. Omega-3 PUFA did not appear to be an effective agent for reducing liver fat in overweight men. The factors determining the health benefits of omega-3 PUFA supplementation on an individual level need to be clarified.
Collapse
|
35
|
Chongmelaxme B, Phisalprapa P, Sawangjit R, Dilokthornsakul P, Chaiyakunapruk N. Weight Reduction and Pioglitazone are Cost-Effective for the Treatment of Non-Alcoholic Fatty Liver Disease in Thailand. PHARMACOECONOMICS 2019; 37:267-278. [PMID: 30430467 DOI: 10.1007/s40273-018-0736-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
INTRODUCTION This study evaluated lifetime liver-related clinical outcomes, costs of treatment, and the cost-effectiveness of treatment options for non-alcoholic fatty liver disease (NAFLD) in Thailand. METHODS A cost-utility analysis using a lifetime Markov model was conducted among Thai patients with NAFLD, from a societal perspective. Pioglitazone, vitamin E, a weight reduction program, and usual care were investigated, with the outcomes of interest being the number of cirrhosis and hepatocellular carcinoma (HCC) cases, life expectancy, quality-adjusted life-years (QALYs), lifetime costs, and the incremental cost-effectiveness ratios (ICERs). One-way and probabilistic sensitivity analyses were performed. RESULTS When compared with usual care, a weight reduction program can prevent cirrhosis and HCC cases by 13.91% (95% credible interval [CrI] 0.97, 20.59) and 2.12% (95% CrI 0.43, 4.56), respectively; pioglitazone can prevent cirrhosis and HCC cases by 9.30% (95% CrI -2.52, 15.24) and 1.42% (95% CrI -0.18, 3.74), respectively; and vitamin E can prevent cirrhosis and HCC cases by 7.32% (95% CrI -4.64, 15.56) and 1.12% (95% CrI -0.81, 3.44), respectively. Estimated incremental life expectancy and incremental QALYs for all treatment options compared with usual care were approximately 0.06 years and 0.07 QALYs, respectively. The lifetime costs of both a weight reduction program and pioglitazone were less than usual care, while vitamin E was $3050 (95% CrI 2354, 3650). The weight reduction program dominated all other treatment options. The probability of being cost-effective in Thailand's willingness-to-pay threshold ($4546/QALY gained) was 76% for the weight reduction program, 22% for pioglitazone, 2% for usual care, and 0% for vitamin E. CONCLUSIONS A weight reduction program can prevent cirrhosis and HCC occurrences, and dominates all other treatment options. Pioglitazone and vitamin E demonstrated a trend towards decreasing the number of cirrhosis and HCC cases.
Collapse
Affiliation(s)
- Bunchai Chongmelaxme
- Center of Pharmaceutical Outcomes Research, Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Naresuan University, 65000, Phitsanulok, Thailand
| | - Pochamana Phisalprapa
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Ratree Sawangjit
- Clinical Pharmacy Research Unit, Department of Clinical Pharmacy, Faculty of Pharmacy, Mahasarakham University, Mahasarakham, Thailand
- School of Pharmacy, Monash University Malaysia, Selangor, Malaysia
| | - Piyameth Dilokthornsakul
- Center of Pharmaceutical Outcomes Research, Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Naresuan University, 65000, Phitsanulok, Thailand.
| | - Nathorn Chaiyakunapruk
- Center of Pharmaceutical Outcomes Research, Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Naresuan University, 65000, Phitsanulok, Thailand.
- School of Pharmacy, Monash University Malaysia, Selangor, Malaysia.
- School of Pharmacy, University of Wisconsin, Wisconsin, MA, USA.
- Asian Centre for Evidence Synthesis in Population, Implementation and Clinical Outcomes (PICO), Health and Well-Being Cluster, Global Asia in the 21st Century (GA21) Platform, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
36
|
Antidiabetic Drugs in NAFLD: The Accomplishment of Two Goals at Once? Pharmaceuticals (Basel) 2018; 11:ph11040121. [PMID: 30413050 PMCID: PMC6316860 DOI: 10.3390/ph11040121] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/02/2018] [Accepted: 11/03/2018] [Indexed: 02/06/2023] Open
Abstract
Non-Alcoholic Fatty Liver Disease (NAFLD) is the most common cause of chronic liver disease in Western countries, accounting for 20–30% of general population and reaching a prevalence of 55% in patients with type 2 diabetes mellitus (T2DM). Insulin resistance plays a key role in pathogenic mechanisms of NAFLD. Many drugs have been tested but no medications have yet been approved. Antidiabetic drugs could have a role in the progression reduction of the disease. The aim of this review is to summarize evidence on efficacy and safety of antidiabetic drugs in patients with NAFLD. Metformin, a biguanide, is the most frequently used drug in the treatment of T2DM. To date 15 randomized controlled trials (RCTs) and four meta-analysis on the use of metformin in NAFLD are available. No significant improvement in histological liver fibrosis was shown, but it can be useful in the treatment of co-factors of NAFLD, like body weight, transaminase or cholesterol levels, and HbA1c levels. A possible protective role in various types of cancer has been reported for Metformin. Thiazolidinediones modulate insulin sensitivity by the activation of PPAR-γ. The RCTs and the meta-analysis available about the role of these drugs in NAFLD show an improvement in ballooning, lobular inflammation, and perhaps fibrosis, but some side effects, in particular cardiovascular, were showed. GLP-1 analogues stimulate insulin secretion by pancreatic beta cell and inhibit glucagon release; Liraglutide is the most used drug in this class and significantly improves steatosis, hepatocyte ballooning and transaminase levels. Scanty data about the role of DPP-4 and SGLT inhibitors were published. No data about insulin effects on NAFLD are available but it was showed a possible association between insulin use and the development of solid neoplasms, in particular HCC. In conclusion, antidiabetic drugs seem to be promising drugs, because they are able to treat both NAFLD manifestations and diabetes, preventing worsening of hepatic damage, but data are still conflicting. All antidiabetic drugs can be safely used in patients with compensated cirrhosis, while insulin is the preferred drug in decompensated Child C cirrhosis.
Collapse
|
37
|
Madiraju AK, Qiu Y, Perry RJ, Rahimi Y, Zhang XM, Zhang D, Camporez JPG, Cline GW, Butrico GM, Kemp BE, Casals G, Steinberg GR, Vatner DF, Petersen KF, Shulman GI. Metformin inhibits gluconeogenesis via a redox-dependent mechanism in vivo. Nat Med 2018; 24:1384-1394. [PMID: 30038219 PMCID: PMC6129196 DOI: 10.1038/s41591-018-0125-4] [Citation(s) in RCA: 199] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 06/04/2018] [Indexed: 02/07/2023]
Abstract
Metformin, the universal first-line treatment for type 2 diabetes, exerts its therapeutic glucose-lowering effects by inhibiting hepatic gluconeogenesis. However, the primary molecular mechanism of this biguanide remains unclear, though it has been suggested to act, at least partially, by mitochondrial complex I inhibition. Here we show that clinically relevant concentrations of plasma metformin achieved by acute intravenous, acute intraportal or chronic oral administration in awake normal and diabetic rats inhibit gluconeogenesis from lactate and glycerol but not from pyruvate and alanine, implicating an increased cytosolic redox state in mediating metformin's antihyperglycemic effect. All of these effects occurred independently of complex I inhibition, evidenced by unaltered hepatic energy charge and citrate synthase flux. Normalizing the cytosolic redox state by infusion of methylene blue or substrates that contribute to gluconeogenesis independently of the cytosolic redox state abrogated metformin-mediated inhibition of gluconeogenesis in vivo. Additionally, in mice expressing constitutively active acetyl-CoA carboxylase, metformin acutely decreased hepatic glucose production and increased the hepatic cytosolic redox state without altering hepatic triglyceride content or gluconeogenic enzyme expression. These studies demonstrate that metformin, at clinically relevant plasma concentrations, inhibits hepatic gluconeogenesis in a redox-dependent manner independently of reductions in citrate synthase flux, hepatic nucleotide concentrations, acetyl-CoA carboxylase activity, or gluconeogenic enzyme protein expression.
Collapse
Affiliation(s)
- Anila K Madiraju
- Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
- Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA
| | - Yang Qiu
- Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Rachel J Perry
- Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Yasmeen Rahimi
- Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Xian-Man Zhang
- Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Dongyan Zhang
- Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
| | | | - Gary W Cline
- Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Gina M Butrico
- Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Bruce E Kemp
- St. Vincent's Institute of Medical Research and Department of Medicine, University of Melbourne & Mary MacKillop Institute for Health Research, Australian Catholic University Fitzroy, Fitzroy, Victoria, Australia
| | - Gregori Casals
- Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Gregory R Steinberg
- Departments of Medicine and Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Daniel F Vatner
- Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Kitt F Petersen
- Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Gerald I Shulman
- Department of Medicine, Yale University School of Medicine, New Haven, CT, USA.
- Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA.
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
38
|
Vasco M, Paolillo R, Schiano C, Sommese L, Cuomo O, Napoli C. Compromised nutritional status in patients with end-stage liver disease: Role of gut microbiota. Hepatobiliary Pancreat Dis Int 2018; 17:290-300. [PMID: 30173786 DOI: 10.1016/j.hbpd.2018.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 05/29/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Patients with end-stage liver disease (ESLD) have a compromised nutritional status because of the liver crucial role in regulating metabolic homeostasis and energy balance. DATA SOURCES A systematic review of literature based on extensive relevant articles published from 2001 to 2017 in English in PubMed database was performed by searching keywords such as liver disease, non-alcoholic liver disease, alcoholic liver disease, malnutrition, epigenetics, gut microbiota, and probiotics. RESULTS Liver transplantation would be one eligible therapy for ESLD patients, even if, the clinical outcome is negatively influenced by malnutrition and/or infections. The malnutrition is a condition of nutrient imbalance with a high incidence in ESLD patients. An accurate evaluation of nutritional status could be fundamental for reducing complications and prolonging the survival of ESLD patients including those undergoing liver transplantation. In addition, the interaction among nutrients, diet and genes via epigenetics has emerged as a potential target to reduce the morbidity and mortality in ESLD patients. The malnutrition induces changes in gut microbiota causing dysbiosis with a probable translocation of bacteria and/or pathogen-derived factors from the intestine to the liver. Gut microbiota contribute to the progression of chronic liver diseases as well as hepatocellular carcinoma. The administration of probiotics modulating gut microbiota could improve all chronic liver diseases. CONCLUSIONS This review provides an update on malnutrition status linked to epigenetics and the potential benefit of some probiotics on the management of ESLD patients. In support of this view and to reveal the constant and growing interest in this field, some clinical trials are reported.
Collapse
Affiliation(s)
- Maria Vasco
- U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Regional Reference Laboratory of Transplant Immunology, Department of Internal and Specialty Medicine, Azienda Ospedaliera Universitaria, Università degli Studi della Campania "Luigi Vanvitelli", Naples 80138, Italy
| | - Rossella Paolillo
- U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Regional Reference Laboratory of Transplant Immunology, Department of Internal and Specialty Medicine, Azienda Ospedaliera Universitaria, Università degli Studi della Campania "Luigi Vanvitelli", Naples 80138, Italy
| | | | - Linda Sommese
- U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Regional Reference Laboratory of Transplant Immunology, Department of Internal and Specialty Medicine, Azienda Ospedaliera Universitaria, Università degli Studi della Campania "Luigi Vanvitelli", Naples 80138, Italy; Department of Experimental Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples 80138, Italy.
| | - Oreste Cuomo
- Department of Liver Transplant, AORN A. Cardarelli, Naples, Italy
| | - Claudio Napoli
- U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Regional Reference Laboratory of Transplant Immunology, Department of Internal and Specialty Medicine, Azienda Ospedaliera Universitaria, Università degli Studi della Campania "Luigi Vanvitelli", Naples 80138, Italy; IRCCS SDN, Naples, Italy; Department of Medical, Surgical, Neurological, Metabolic and Geriatric Sciences, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
39
|
Deng W, Meng Z, Sun A, Yang Z. Pioglitazone suppresses inflammation and fibrosis in nonalcoholic fatty liver disease by down-regulating PDGF and TIMP-2: Evidence from in vitro study. Cancer Biomark 2018; 20:411-415. [PMID: 28946547 DOI: 10.3233/cbm-170157] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND The prevalence of nonalcoholic fatty liver disease (NAFLD) has been increasing worldwide. Pioglitazone is a pharmacologic agonist of peroxisome proliferators-activated receptor-γ (PPAR-γ) that was reported to ameliorate hepatic steatosis and inflammatory changes. OBJECTIVE We aimed to evaluate the effects of pioglitazone in NAFLD and investigate the underlying mechanism by testing platelet derived growth factor (PDGF) and tissue inhibitory of metalloproteinase-2 (TIMP-2). METHODS A total of C57BL/6 wild-type mice were randomized to three groups, control group (NC, n= 60), high-fat control group (HF, n= 60), and pioglitazone treatment group (L,n= 60). Mice were administrated with high-fat diet to construct NAFLD model. Enzyme-linked immunosorbent assay (ELISA) was used to measure protein expression of PDGF and TIMP-2. Liver histology samples were stained with hematoxylin and eosin (H&E). RESULTS Upon pioglitazone treatment, the PDGF and TIMP-2 expression levels were decreased compared with high-fat diet-fed mice devoid of drug stimulation. Analysis of liver histology showed pioglitazone treatment could reduce steatosis and inflammatory changes, which was helpful to inhibit hepatic fibrosis in NAFLD mice. CONCLUSIONS The study showed pioglitazone might exert an inhibitory effect on hepatic inflammation and fibrosis in NAFLD. Moreover, this study provided novel evidence for the promising clinical application of pioglitazone in intervening NAFLD.
Collapse
Affiliation(s)
- Wen Deng
- Department of Cardiovascular Medicine, Yantaishan Hospital, Yantai 264000, Shandong, China.,Department of Cardiovascular Medicine, Yantaishan Hospital, Yantai 264000, Shandong, China
| | - Zimin Meng
- Department of Cardiovascular Medicine, Weihai Municipal Hospital, Weihai 264200, Shandong, China.,Department of Cardiovascular Medicine, Yantaishan Hospital, Yantai 264000, Shandong, China
| | - Aitao Sun
- Department of Digestive, Yantaishan Hospital, Yantai 264000, Shandong, China
| | - Zhihong Yang
- Department of Digestive, Yantaishan Hospital, Yantai 264000, Shandong, China
| |
Collapse
|
40
|
Snyder HS, Sakaan SA, March KL, Siddique O, Cholankeril R, Cummings CD, Gadiparthi C, Satapathy SK, Ahmed A, Cholankeril G. Non-alcoholic Fatty Liver Disease: A Review of Anti-diabetic Pharmacologic Therapies. J Clin Transl Hepatol 2018; 6:168-174. [PMID: 29951362 PMCID: PMC6018310 DOI: 10.14218/jcth.2017.00050] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 11/06/2017] [Accepted: 01/10/2018] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), the most common cause of liver disease, affects approximately 75 to 100 million Americans. Patients with concurrent NAFLD and type 2 diabetes mellitus have a higher risk of progressing to advanced fibrosis and non-alcoholic steatohepatitis compared to non-diabetics. Lifestyle modifications, including weight loss, remain the mainstay of treatment for NAFLD, as there are no medications currently indicated for this disease state. Anti-diabetic pharmacologic therapies aimed at improving insulin sensitivity and decreasing insulin production have been studied to determine their potential role in slowing the progression of NAFLD. In this review, we focus on the evidence surrounding anti-diabetic medications and their ability to improve disease progression in patients with NAFLD.
Collapse
Affiliation(s)
- Heather S. Snyder
- Department of Pharmacy, Methodist University Hospital, Memphis, TN, USA
- College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
- *Correspondence to: George Cholankeril, Stanford University School of Medicine, 750 Welch Road, Stanford, CA 94304, USA. Tel: +1-914-215-268, Fax: +1-901-516-8178, E-mail: , ; Heather S. Snyder, Department of Pharmacy, Methodist University Hospital, 1265 Union Avenue, Memphis, TN 38104, USA. Tel: +1-901-516-9021, Fax: +1-901-516-2412, E-mail:
| | - Sami A. Sakaan
- Department of Pharmacy, Methodist University Hospital, Memphis, TN, USA
- College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Katherine L. March
- Department of Pharmacy, Methodist University Hospital, Memphis, TN, USA
- College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Osama Siddique
- Department of Medicine, Memorial Hospital of Rhode Island, Providence, RI, USA
| | | | - Carolyn D. Cummings
- Department of Pharmacy, Methodist University Hospital, Memphis, TN, USA
- College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Chiran Gadiparthi
- Methodist University Hospital Transplant Institute, University of Tennessee Health Sciences Center, Memphis, TN, USA
| | - Sanjaya K. Satapathy
- Methodist University Hospital Transplant Institute, University of Tennessee Health Sciences Center, Memphis, TN, USA
| | - Aijaz Ahmed
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA, USA
| | - George Cholankeril
- Methodist University Hospital Transplant Institute, University of Tennessee Health Sciences Center, Memphis, TN, USA
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA, USA
- *Correspondence to: George Cholankeril, Stanford University School of Medicine, 750 Welch Road, Stanford, CA 94304, USA. Tel: +1-914-215-268, Fax: +1-901-516-8178, E-mail: , ; Heather S. Snyder, Department of Pharmacy, Methodist University Hospital, 1265 Union Avenue, Memphis, TN 38104, USA. Tel: +1-901-516-9021, Fax: +1-901-516-2412, E-mail:
| |
Collapse
|
41
|
Labarca G, Cruz R, Jorquera J. Continuous Positive Airway Pressure in Patients With Obstructive Sleep Apnea and Non-Alcoholic Steatohepatitis: A Systematic Review and Meta-Analysis. J Clin Sleep Med 2018; 14:133-139. [PMID: 29151428 DOI: 10.5664/jcsm.6900] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 09/14/2017] [Indexed: 12/13/2022]
Abstract
STUDY OBJECTIVES Several studies have reported an association between obstructive sleep apnea (OSA) and several extra-pulmonary issues, such as arterial hypertension and insulin resistance. In recent years, the associations between OSA, non-alcoholic fatty liver disease, and non-alcoholic steatohepatitis (NASH) have been published; however, there is a gap between experimental and clinical studies regarding the efficacy of continuous positive airway pressure (CPAP) treatment in patient populations with these conditions. This issue should be considered when deciding on CPAP treatment in patients with OSA, especially in patients with moderate OSA. METHODS We performed a systematic review and meta-analysis of randomized controlled trials (RCTs) using the following databases: MEDLINE, Lilacs, and CENTRAL. Two independent reviewers performed the search, analysis, data extraction, and critical analysis. RESULTS From 622 identified studies, we included 5 RCTs that involved patients with OSA and NASH and who were treated with a CPAP device. After CPAP treatment, no changes in liver steatosis, liver fibrosis, and aminotransferase levels (alanine aminotransferase and aspartate aminotransferase) were found. Finally, the quality of evidence using the GRADE approach was low and very low for several outcomes. CONCLUSIONS According to the current analysis, no data regarding the efficacy of CPAP in patients with NASH are available to make recommendations. SYSTEMATIC REVIEW REGISTRATION PROSPERO; ID: CRD42015027981; URL: https://www.crd.york.ac.uk/PROSPERO/display_record.php?ID=CRD42015027981.
Collapse
Affiliation(s)
- Gonzalo Labarca
- Universidad San Sebastián, Concepción, Chile.,Departamento de Medicina Interna, Complejo Asistencial Víctor Ríos Ruiz, Los Ángeles, Chile
| | - Rodrigo Cruz
- Gastroenterology, Hospital Dipreca, Santiago, Chile
| | - Jorge Jorquera
- Sleep Center and Respiratory Disease, Clinica Las Condes, Santiago, Chile
| |
Collapse
|
42
|
Chitturi S, Wong VWS, Chan WK, Wong GLH, Wong SKH, Sollano J, Ni YH, Liu CJ, Lin YC, Lesmana LA, Kim SU, Hashimoto E, Hamaguchi M, Goh KL, Fan J, Duseja A, Dan YY, Chawla Y, Farrell G, Chan HLY. The Asia-Pacific Working Party on Non-alcoholic Fatty Liver Disease guidelines 2017-Part 2: Management and special groups. J Gastroenterol Hepatol 2018; 33:86-98. [PMID: 28692197 DOI: 10.1111/jgh.13856] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 05/31/2017] [Accepted: 06/25/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Shiv Chitturi
- Gastroenterology and Hepatology Unit, The Canberra Hospital, Canberra, Australian Capital Territory, Australia
| | - Vincent Wai-Sun Wong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong.,State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Wah-Kheong Chan
- Department of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Grace Lai-Hung Wong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong.,State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Simon Kin-Hung Wong
- Department of Surgery, The Chinese University of Hong Kong, Shatin, Hong Kong
| | | | - Yen-Hsuan Ni
- Hepatitis Research Center, National Taiwan University, Taipei, Taiwan
| | - Chun-Jen Liu
- Department of Internal Medicine, Hepatitis Research Center, Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan
| | - Yu-Cheng Lin
- Hepatitis Research Center, National Taiwan University, Taipei, Taiwan
| | | | - Seung Up Kim
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
| | - Etsuko Hashimoto
- Department of Internal Medicine and Gastroenterology, Tokyo Women's Medical University, Tokyo, Japan
| | | | - Khean-Lee Goh
- Department of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Jiangao Fan
- Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ajay Duseja
- Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Yock Young Dan
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yogesh Chawla
- Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Geoff Farrell
- Gastroenterology and Hepatology Unit, The Canberra Hospital, Canberra, Australian Capital Territory, Australia
| | - Henry Lik-Yuen Chan
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong.,State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
43
|
Obeticholic acid raises LDL-cholesterol and reduces HDL-cholesterol in the Diet-Induced NASH (DIN) hamster model. Eur J Pharmacol 2017; 818:449-456. [PMID: 29155143 DOI: 10.1016/j.ejphar.2017.11.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 10/27/2017] [Accepted: 11/13/2017] [Indexed: 12/12/2022]
Abstract
The use of rat and mouse models limits the translation to humans for developing novel drugs targeting nonalcoholic steatohepatitis (NASH). Obeticholic acid (OCA) illustrates this limitation since its dyslipidemic effect in humans cannot be observed in these rodents. Conversely, Golden Syrian hamsters have a lipoprotein metabolism mimicking human dyslipidemia since it does express the cholesteryl ester transfer protein (CETP). We therefore developed a Diet-Induced NASH (DIN) hamster model and evaluated the impact of OCA. Compared with chow fed controls, hamsters fed for 20 weeks with a free-choice (FC) diet, developed obesity, insulin resistance, dyslipidemia and NASH (microvesicular steatosis, inflammation, hepatocyte ballooning and perisinusoidal to bridging fibrosis). After 20 weeks of diet, FC fed hamsters were treated without or with obeticholic acid (15mg/kg/day) for 5 weeks. Although a non-significant trend towards higher dietary caloric intake was observed, OCA significantly lowered body weight after 5 weeks of treatment. OCA significantly increased CETP activity and LDL-C levels by 20% and 27%, and reduced HDL-C levels by 20%. OCA blunted hepatic gene expression of Cyp7a1 and Cyp8b1 and reduced fecal bile acids mass excretion by 64% (P < 0.05). Hamsters treated with OCA showed a trend towards higher scavenger receptor Class B type I (SR-BI) and lower LDL-receptor hepatic protein expression. OCA reduced NAS score for inflammation (P < 0.01) and total NAS score, although not significantly. Compared to mouse and rat models, the DIN hamster replicates benefits and side effects of OCA as observed in humans, and should be useful for evaluating novel drugs targeting NASH.
Collapse
|
44
|
Lonardo A, Nascimbeni F, Maurantonio M, Marrazzo A, Rinaldi L, Adinolfi LE. Nonalcoholic fatty liver disease: Evolving paradigms. World J Gastroenterol 2017; 23:6571-6592. [PMID: 29085206 PMCID: PMC5643282 DOI: 10.3748/wjg.v23.i36.6571] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/21/2017] [Accepted: 09/05/2017] [Indexed: 02/06/2023] Open
Abstract
In the last years new evidence has accumulated on nonalcoholic fatty liver disease (NAFLD) challenging the paradigms that had been holding the scene over the previous 30 years. NAFLD has such an epidemic prevalence as to make it impossible to screen general population looking for NAFLD cases. Conversely, focusing on those cohorts of individuals exposed to the highest risk of NAFLD could be a more rational approach. NAFLD, which can be diagnosed with either non-invasive strategies or through liver biopsy, is a pathogenically complex and clinically heterogeneous disease. The existence of metabolic as opposed to genetic-associated disease, notably including ”lean NAFLD” has recently been recognized. Moreover, NAFLD is a systemic condition, featuring metabolic, cardiovascular and (hepatic/extra-hepatic) cancer risk. Among the clinico-laboratory features of NAFLD we discuss hyperuricemia, insulin resistance, atherosclerosis, gallstones, psoriasis and selected endocrine derangements. NAFLD is a precursor of type 2 diabetes (T2D) and metabolic syndrome and progressive liver disease develops in T2D patients in whom the course of disease is worsened by NAFLD. Finally, lifestyle changes and drug treatment options to be implemented in the individual patient are also critically discussed. In conclusion, this review emphasizes the new concepts on clinical and pathogenic heterogeneity of NAFLD, a systemic disorder with a multifactorial pathogenesis and protean clinical manifestations. It is highly prevalent in certain cohorts of individuals who are thus potentially amenable to selective screening strategies, intensive follow-up schedules for early identification of liver-related and extrahepatic complications and in whom earlier and more aggressive treatment schedules should be carried out whenever possible.
Collapse
Affiliation(s)
- Amedeo Lonardo
- Azienda Ospedaliero-Universitaria di Modena, Ospedale Civile di Baggiovara, 41126 Modena, Italy
| | - Fabio Nascimbeni
- Azienda Ospedaliero-Universitaria di Modena, Ospedale Civile di Baggiovara, 41126 Modena, Italy
- University of Modena and Reggio Emilia, 41126 Modena, Italy
| | - Mauro Maurantonio
- Azienda Ospedaliero-Universitaria di Modena, Ospedale Civile di Baggiovara, 41126 Modena, Italy
| | - Alessandra Marrazzo
- Azienda Ospedaliero-Universitaria di Modena, Ospedale Civile di Baggiovara, 41126 Modena, Italy
- University of Modena and Reggio Emilia, 41126 Modena, Italy
| | - Luca Rinaldi
- Department of Medical, Surgical, Neurological, Geriatric, and Metabolic Sciences, University of Campania “Luigi Vanvitelli”, 80100 Naples, Italy
| | - Luigi Elio Adinolfi
- Department of Medical, Surgical, Neurological, Geriatric, and Metabolic Sciences, University of Campania “Luigi Vanvitelli”, 80100 Naples, Italy
| |
Collapse
|
45
|
Suárez M, Boqué N, Del Bas JM, Mayneris-Perxachs J, Arola L, Caimari A. Mediterranean Diet and Multi-Ingredient-Based Interventions for the Management of Non-Alcoholic Fatty Liver Disease. Nutrients 2017; 9:E1052. [PMID: 28937599 PMCID: PMC5691669 DOI: 10.3390/nu9101052] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/01/2017] [Accepted: 09/11/2017] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) comprises a wide spectrum of hepatic disorders, from simple steatosis to hepatic necro-inflammation leading to non-alcoholic steatohepatitis (NASH). Although the prevalence of these multifactorial pathologies is continuously increasing in the population, there is still not an established methodology for their treatment other than weight loss and a change in lifestyle habits, such as a hypocaloric diet and physical exercise. In this framework, there is increasing evidence that several food bioactives and dietary patterns are effective for reversing and preventing the onset of these pathologies. Some studies have claimed that better responses are obtained when treatments are performed under a multifaceted approach, using different bioactive compounds that act against complementary targets. Thus, in this work, current strategies for treating NAFLD and NASH based on multi-ingredient-based supplements or the Mediterranean diet, a dietary pattern rich in bioactive compounds, are reviewed. Furthermore, the usefulness of omics techniques to design effective multi-ingredient nutritional interventions and to predict and monitor their response against these disorders is also discussed.
Collapse
Affiliation(s)
- Manuel Suárez
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili (URV), Campus Sescelades, Tarragona 43007, Spain.
| | - Noemí Boqué
- Technological Unit of Nutrition and Health, EURECAT-Technology Centre of Catalonia, Avinguda Universitat 1, Reus 43204, Spain.
| | - Josep M Del Bas
- Technological Unit of Nutrition and Health, EURECAT-Technology Centre of Catalonia, Avinguda Universitat 1, Reus 43204, Spain.
| | - Jordi Mayneris-Perxachs
- Technological Unit of Nutrition and Health, EURECAT-Technology Centre of Catalonia, Avinguda Universitat 1, Reus 43204, Spain.
| | - Lluís Arola
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili (URV), Campus Sescelades, Tarragona 43007, Spain.
- Technological Unit of Nutrition and Health, EURECAT-Technology Centre of Catalonia, Avinguda Universitat 1, Reus 43204, Spain.
| | - Antoni Caimari
- Technological Unit of Nutrition and Health, EURECAT-Technology Centre of Catalonia, Avinguda Universitat 1, Reus 43204, Spain.
| |
Collapse
|
46
|
Liyanagedera S, Williams RP, Veraldi S, Nobili V, Mann JP. The pharmacological management of NAFLD in children and adolescents. Expert Rev Clin Pharmacol 2017; 10:1225-1237. [PMID: 28803504 DOI: 10.1080/17512433.2017.1365599] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Non-alcoholic fatty liver disease (NAFLD) represents a spectrum, including 'simple' steatosis, non-alcoholic steatohepatitis (NASH), and fibrosis. Increasing prevalence of NAFLD has followed the international rise in obesity and lifestyle modification is the mainstay therapy for children. To date, pharmacological trials have had varying efficacy but a large number of new agents are in early phase trials for adults. Areas covered: This review explores the effect of current and potential future paediatric NAFLD treatments in terms of histological and biochemical endpoints. The potential for the extension of adult treatments to children is discussed, as well as what limits the use of certain agents in children. Expert commentary: No drugs have yet to be licenced for NAFLD. Trial heterogeneity makes comparison of drugs between studies challenging. FXR agonists are yet to be trialled in children but may represent a safe and potentially efficacious therapy. Future treatments would likely encompass a multimodal approach that may include bariatric surgery.
Collapse
Affiliation(s)
- Savinda Liyanagedera
- a Department of Paediatrics , Cardiff University School of Medicine , Cardiff , UK
| | | | - Silvio Veraldi
- b Hepatometabolic Unit , Bambino Gesu Hospital - IRCCS , Rome , Italy.,c Liver Research Unit , Bambino Gesu Hospital, IRCCS , Rome , Italy
| | - Valerio Nobili
- b Hepatometabolic Unit , Bambino Gesu Hospital - IRCCS , Rome , Italy.,c Liver Research Unit , Bambino Gesu Hospital, IRCCS , Rome , Italy
| | - Jake P Mann
- d Metabolic Research Laboratories, Institute of Metabolic Science , University of Cambridge , Cambridge , UK.,e Department of Paediatrics , University of Cambridge , Cambridge , UK
| |
Collapse
|
47
|
Jump DB, Lytle KA, Depner CM, Tripathy S. Omega-3 polyunsaturated fatty acids as a treatment strategy for nonalcoholic fatty liver disease. Pharmacol Ther 2017; 181:108-125. [PMID: 28723414 DOI: 10.1016/j.pharmthera.2017.07.007] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Obese and type 2 diabetic (T2DM) patients have a high prevalence of nonalcoholic fatty liver disease (NAFLD). NAFLD is a continuum of chronic liver diseases ranging from benign hepatosteatosis to nonalcoholic steatohepatitis (NASH), cirrhosis and primary hepatocellular cancer (HCC). Because of its strong association with the obesity epidemic, NAFLD is rapidly becoming a major public health concern worldwide. Surprisingly, there are no FDA approved NAFLD therapies; and current therapies focus on the co-morbidities associated with NAFLD, namely, obesity, hyperglycemia, dyslipidemia, and hypertension. The goal of this review is to provide background on the disease process, discuss human studies and preclinical models that have examined treatment options. We also provide an in-depth rationale for the use of dietary ω3 polyunsaturated fatty acid (ω3 PUFA) supplements as a treatment option for NAFLD. This focus is based on recent studies indicating that NASH patients and preclinical mouse models of NASH have low levels of hepatic C20-22 ω3 PUFA. This decline in hepatic PUFA may account for the major phenotypic features associated with NASH, including steatosis, inflammation and fibrosis. Finally, our discussion will address the strengths and limitations of ω3 PUFA supplements use in NAFLD therapy.
Collapse
Affiliation(s)
- Donald B Jump
- Molecular Nutrition and Diabetes Research Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, United States.
| | - Kelli A Lytle
- Molecular Nutrition and Diabetes Research Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, United States
| | - Christopher M Depner
- Molecular Nutrition and Diabetes Research Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, United States
| | - Sasmita Tripathy
- Molecular Nutrition and Diabetes Research Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, United States
| |
Collapse
|
48
|
Wen WX, Lee SY, Siang R, Koh RY. Repurposing Pentoxifylline for the Treatment of Fibrosis: An Overview. Adv Ther 2017; 34:1245-1269. [PMID: 28484954 DOI: 10.1007/s12325-017-0547-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Indexed: 12/20/2022]
Abstract
Fibrosis is a potentially debilitating disease with high morbidity rates. It is estimated that half of all deaths that occur in the USA are attributed to fibrotic disorders. Fibrotic disorders are characterized primarily by disruption in the extracellular matrix deposition and breakdown equilibrium, leading to the accumulation of excessive amounts of extracellular matrix. Given the potentially high prevalence of fibrosis and the paucity of agents currently available for the treatment of this disease, there is an urgent need for the identification of drugs that can be utilized to treat the disease. Pentoxifylline is a methylxanthine derivative that is currently approved for the treatment of vascular diseases, in particular, claudication. Pentoxifylline has three main properties: improving the rheological properties of blood, anti-inflammatory, and antioxidative. Recently, the effectiveness of pentoxifylline in the treatment of fibrosis via attenuating and reversing fibrotic lesions has been demonstrated in several clinical trials and animal studies. As a result of the limited availability of antifibrotic agents in the long-term treatment of fibrosis that can attenuate and even reverse fibrotic lesions effectively, it would be of particular importance to consider the potential clinical utility of pentoxifylline in the treatment of fibrosis. Thus, this paper discusses the evolving roles of pentoxifylline in the treatment of different types of fibrosis.
Collapse
Affiliation(s)
- Wei Xiong Wen
- International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Siang Yin Lee
- Colloids and Interface Science Centre, Centre of Excellence, RRIM Sungai Buloh Research Station, Malaysian Rubber Board, 47000, Sungai Buloh, Selangor, Malaysia
| | - Rafaella Siang
- International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
- Acute Medicine, George Eliot Hospital NHS Trust, College St, Nuneaton, UK
| | - Rhun Yian Koh
- International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| |
Collapse
|
49
|
Lombardi R, Onali S, Thorburn D, Davidson BR, Gurusamy KS, Tsochatzis E. Pharmacological interventions for non-alcohol related fatty liver disease (NAFLD): an attempted network meta-analysis. Cochrane Database Syst Rev 2017; 3:CD011640. [PMID: 28358980 PMCID: PMC6464620 DOI: 10.1002/14651858.cd011640.pub2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Non-alcohol related fatty liver disease (commonly called non-alcoholic fatty liver disease (NAFLD)) is liver steatosis in the absence of significant alcohol consumption, use of hepatotoxic medication, or other disorders affecting the liver such as hepatitis C virus infection, Wilson's disease, and starvation. NAFLD embraces the full spectrum of disease from pure steatosis (i.e. uncomplicated fatty liver) to non-alcoholic steatohepatitis (NASH), via NASH-cirrhosis to cirrhosis. The optimal pharmacological treatment for people with NAFLD remains uncertain. OBJECTIVES To assess the comparative benefits and harms of different pharmacological interventions in the treatment of NAFLD through a network meta-analysis and to generate rankings of the available pharmacological treatments according to their safety and efficacy. However, it was not possible to assess whether the potential effect modifiers were similar across different comparisons. Therefore, we did not perform the network meta-analysis, and instead, assessed the comparative benefits and harms of different interventions using standard Cochrane methodology. SEARCH METHODS We searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, Science Citation Index Expanded, the World Health Organization International Clinical Trials Registry Platform, and ClinicalTrials.com to August 2016. SELECTION CRITERIA We included only randomised clinical trials (irrespective of language, blinding, or publication status) in participants with NAFLD. We excluded trials which included participants who had previously undergone liver transplantation. We considered any of the various pharmacological interventions compared with each other or with placebo or no intervention. DATA COLLECTION AND ANALYSIS We calculated the odds ratio (OR) and rate ratio with 95% confidence intervals (CI) using both fixed-effect and random-effects models based on an available participant analysis with Review Manager. We assessed risk of bias according to the Cochrane risk of bias tool, controlled risk of random errors with Trial Sequential Analysis, and assessed the quality of the evidence using GRADE. MAIN RESULTS We identified 77 trials including 6287 participants that met the inclusion criteria of this review. Forty-one trials (3829 participants) provided information for one or more outcomes. Only one trial was at low risk of bias in all domains. All other trials were at high risk of bias in one or more domains. Overall, all the evidence was very low quality. Thirty-five trials included only participants with non-alcohol related steatohepatitis (NASH) (based on biopsy confirmation). Five trials included only participants with diabetes mellitus; 14 trials included only participants without diabetes mellitus. The follow-up in the trials ranged from one month to 24 months.We present here only the comparisons of active intervention versus no intervention in which two or more trials reported at least one of the following outcomes: mortality at maximal follow-up, serious adverse events, and health-related quality of life, the outcomes that determine whether a treatment should be used. Antioxidants versus no interventionThere was no mortality in either group (87 participants; 1 trial; very low quality evidence). None of the participants developed serious adverse events in the trial which reported the proportion of people with serious adverse events (87 participants; 1 trial; very low quality evidence). There was no evidence of difference in the number of serious adverse events between antioxidants and no intervention (rate ratio 0.89, 95% CI 0.36 to 2.19; 254 participants; 2 trials; very low quality evidence). None of the trials reported health-related quality of life. Bile acids versus no interventionThere was no evidence of difference in mortality at maximal follow-up (OR 5.11, 95% CI 0.24 to 107.34; 659 participants; 4 trials; very low quality evidence), proportion of people with serious adverse events (OR 1.56, 95% CI 0.84 to 2.88; 404 participants; 3 trials; very low quality evidence), or the number of serious adverse events (rate ratio 1.01, 95% CI 0.66 to 1.54; 404 participants; 3 trials; very low quality evidence) between bile acids and no intervention. None of the trials reported health-related quality of life. Thiazolidinediones versus no interventionThere was no mortality in either group (74 participants; 1 trial; very low quality evidence). None of the participants developed serious adverse events in the two trials which reported the proportion of people with serious adverse events (194 participants; 2 trials; very low quality evidence). There was no evidence of difference in the number of serious adverse events between thiazolidinediones and no intervention (rate ratio 0.25, 95% CI 0.06 to 1.05; 357 participants; 3 trials; very low quality evidence). None of the trials reported health-related quality of life. Source of fundingTwenty-six trials were partially- or fully-funded by pharmaceutical companies that would benefit, based on the results of the trial. Twelve trials did not receive any additional funding or were funded by parties with no vested interest in the results. The source of funding was not provided in 39 trials. AUTHORS' CONCLUSIONS Due to the very low quality evidence, we are very uncertain about the effectiveness of pharmacological treatments for people with NAFLD including those with steatohepatitis. Further well-designed randomised clinical trials with sufficiently large sample sizes are necessary.
Collapse
Affiliation(s)
- Rosa Lombardi
- Royal Free Hospital and the UCL Institute of Liver and Digestive HealthSheila Sherlock Liver CentreLondonUKNW3 2QG
| | - Simona Onali
- Royal Free Hospital and the UCL Institute of Liver and Digestive HealthSheila Sherlock Liver CentreLondonUKNW3 2QG
| | - Douglas Thorburn
- Royal Free Hospital and the UCL Institute of Liver and Digestive HealthSheila Sherlock Liver CentreLondonUKNW3 2QG
| | - Brian R Davidson
- Royal Free Campus, UCL Medical SchoolDepartment of SurgeryPond StreetLondonUKNW3 2QG
| | | | - Emmanuel Tsochatzis
- Royal Free Hospital and the UCL Institute of Liver and Digestive HealthSheila Sherlock Liver CentreLondonUKNW3 2QG
| | | |
Collapse
|
50
|
Cernea S, Cahn A, Raz I. Pharmacological management of nonalcoholic fatty liver disease in type 2 diabetes. Expert Rev Clin Pharmacol 2017; 10:535-547. [PMID: 28276774 DOI: 10.1080/17512433.2017.1300059] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The prevalence of nonalcoholic fatty liver disease (NAFLD) in patients with type 2 diabetes (T2D) is high and it is associated with poor prognosis. Hepatic steatosis results as a consequence of excessive hepatic lipid accumulation which correlates with insulin resistance and lipotoxicity, with subsequent oxidative stress, inflammation, apoptosis and fibrosis. Areas covered: This article presents the main pathophysiologic mechanisms and currently available drugs evaluated for their therapeutic effects on NAFLD/nonalcoholic steatohepatitis (NASH) and drugs under development that target relevant pathogenetic pathways. However, to date there is no particular drug approved for treatment of NAFLD in patients with T2D. Expert commentary: Early recognition and intervention are essential to ameliorate disease progression. Specific recommendations are still needed for NAFLD/NASH screening and diagnosis and therapeutic algorithm in patients with T2D. Lifestyle optimization with significant weight loss is a key intervention in patients with NAFLD and T2D. Pioglitazone, liraglutide, vitamin E, OCA and pentoxifylline have proven some histological improvements in NASH and omega 3-PUFAs were shown to decrease liver fat, but no specific recommendation can be made for treatment of NASH. Perhaps a combination of agents that target different pathogenic pathways are needed to better control disease progression, but more robust evidence for these agents is still needed.
Collapse
Affiliation(s)
- Simona Cernea
- a Department M3/Internal Medicine IV , University of Medicine and Pharmacy , Târgu Mureş , Romania.,b Diabetes, Nutrition and Metabolic Diseases Outpatient Unit , Emergency County Clinical Hospital , Târgu Mureş , Romania
| | - Avivit Cahn
- c Diabetes Unit, Department of Internal Medicine , Hadassah Hebrew University Hospital , Jerusalem , Israel.,d Endocrinology and Metabolism Unit, Department of Internal Medicine , Hadassah University Hospital , Jerusalem , Israel
| | - Itamar Raz
- c Diabetes Unit, Department of Internal Medicine , Hadassah Hebrew University Hospital , Jerusalem , Israel
| |
Collapse
|