1
|
Siboto A, Ludidi A, Sibiya N, Khathi A, Ngubane P. Maternal prediabetes as a risk factor of preeclampsia and placental dysfunction in pregnant female Sprague-Dawley rats. J OBSTET GYNAECOL 2024; 44:2379498. [PMID: 39084241 DOI: 10.1080/01443615.2024.2379498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 06/24/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Prediabetes (PD) is associated with intermediate hyperglycaemia, dyslipidaemia, reduced nitric oxide (NO) bioavailability and moderate hypertension. All these factors are risk factor for preeclampsia (PE). However, the effects of the PD on placental function have not been shown. Accordingly, this study sought to investigate a possible link between maternal PD and the risk of developing PE. METHODS Pregnant female Sprague-Dawley rats (N = 18) were divided into normal, preeclamptic and prediabetic groups (n = 6 in each group) to study the effects of maternal PD on placenta function over the period of 19 days. Blood glucose and blood pressure were measured on gestational day (GND) 0, 9 and 18. Placental vascular endothelial growth factor (VEGF), placenta growth factor (PlGF) and soluble fms-like tyrosine kinase 1 (sFlt-1) mRNA expression were measured terminally. Data were analysed using ANOVA followed by the Tukey-Kramer post hoc test. Values of p < .05 were used to indicate statistical significance. RESULTS Maternal PD and PE significantly increased blood glucose, decrease NO concentration and increase in MAP by comparison to the normal pregnant control group. Maternal PD significantly decreased VEGF, PlGF mRNA expression with a slight increase in sFlt-1 mRNA expression comparison to the normal pregnant control group. CONCLUSIONS Maternal PD is associated with placental dysfunction due to impaired glucose handling, endothelial dysfunction and an imbalance in angiogenic and antiangiogenic factors. Therefore, maternal PD is a risk factor of PE.
Collapse
Affiliation(s)
- Aneliswe Siboto
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu Natal, Durban, South Africa
| | - Asiphaphola Ludidi
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu Natal, Durban, South Africa
| | - Ntethelelo Sibiya
- Division of Pharmacology, Faculty of Pharmacy, Rhodes University, Makhanda, South Africa
| | - Andile Khathi
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu Natal, Durban, South Africa
| | - Phikelelani Ngubane
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu Natal, Durban, South Africa
| |
Collapse
|
2
|
Mora-Ortiz M, Rivas-García L. Gestational Diabetes Mellitus: Unveiling Maternal Health Dynamics from Pregnancy Through Postpartum Perspectives. OPEN RESEARCH EUROPE 2024; 4:164. [PMID: 39355538 PMCID: PMC11443192 DOI: 10.12688/openreseurope.18026.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 10/29/2024] [Indexed: 10/03/2024]
Abstract
Gestational Diabetes Mellitus (GDM) is the most frequent pregnancy-related medical issue and presents significant risks to both maternal and foetal health, requiring monitoring and management during pregnancy. The prevalence of GDM has surged globally in recent years, mirroring the rise in diabetes and obesity rates. Estimated to affect from 5% to 25% of pregnancies, GDM impacts approximately 21 million live births annually, according to the International Diabetes Federation (IDF). However, consensus on diagnostic approaches remains elusive, with varying recommendations from international organizations, which makes the comparison between research complicated. Compounding concerns are the short-term and long-term complications stemming from GDM for mothers and offspring. Maternal outcomes include heightened cardiovascular risks and a notable 70% risk of developing Type 2 Diabetes Mellitus (T2DM) within a decade postpartum. Despite this, research into the metabolic profiles associated with a previous GDM predisposing women to T2D remains limited. While genetic biomarkers have been identified, indicating the multifaceted nature of GDM involving hormonal changes, insulin resistance, and impaired insulin secretion, there remains a dearth of exploration into the enduring health implications for both mothers and their children. Furthermore, offspring born to mothers with GDM have been shown to face an increased risk of obesity and metabolic syndrome during childhood and adolescence, with studies indicating a heightened risk ranging from 20% to 50%. This comprehensive review aims to critically assess the current landscape of Gestational Diabetes Mellitus (GDM) research, focusing on its prevalence, diagnostic challenges, and health impacts on mothers and offspring. By examining state-of-the-art knowledge and identifying key knowledge gaps in the scientific literature, this review aims to highlight the multifaceted factors that have hindered a deeper understanding of GDM and its long-term consequences. Ultimately, this scholarly exploration seeks to promote further investigation into this critical area, improving health outcomes for mothers and their children.
Collapse
Affiliation(s)
- Marina Mora-Ortiz
- Lipids and Atherosclerosis Unit, Internal Medicine, Reina Sofia University Hospital, Córdoba, Andalucía, 14004, Spain
- GC09-Nutrigenomics and Metabolic Syndrome, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Córdoba, Andalucía, 14004, Spain
- Department of Medical and Surgical Sciences, Universidad de Cordoba, Córdoba, Andalucía, 14004, Spain
| | - Lorenzo Rivas-García
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix Verdú”, Biomedical Research Centre, Universidad de Granada, Armilla, Granada, Andalucia, 18016, Spain
- Sport and Health Research Centre, Universidad de Granada, Armilla, Granada, Andalucia, 18016, Spain
| |
Collapse
|
3
|
Angley M, Zhang Y, Koutrakis P, Kahe K. Exposure to radon and ambient particle radioactivity during pregnancy and adverse maternal, fetal and perinatal outcomes: The current literature and potential mechanisms. ENVIRONMENTAL RESEARCH 2024; 263:120272. [PMID: 39481782 DOI: 10.1016/j.envres.2024.120272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/12/2024] [Accepted: 10/29/2024] [Indexed: 11/02/2024]
Abstract
Radon is a colorless, odorless radioactive gas that is naturally occurring in the environment, originating from the decay of uranium that exists in the earth's crust. In addition to lung cancer, radon exposure has recently been associated with hypertension and cardiovascular disease. However, little consideration has been given to radon exposure during pregnancy, even though pregnant people are a more vulnerable population and ionizing radiation is a known risk factor for adverse maternal and fetal outcomes. There is also greater recognition of the potential effect of ambient particle radioactivity. The radioactivity of ambient particles is primarily due to the decay of radon progeny, and thus another source of exposure to radiation due to radon decay. We systematically searched and evaluated the literature and summarized the current evidence on radon and particle radioactivity exposure during pregnancy. While the literature is sparse, we identified eight human studies that address this topic. The accumulated evidence suggests that radon and particle radioactivity may be associated with a range of adverse pregnancy outcomes, including gestational diabetes and hypertension and fetal development. Additionally, we highlight several potential biological pathways by which radon may affect maternal and fetal health. The ubiquity of radon and ambient particle radioactivity exposure, biological plausibility and results of early studies all suggest radon exposure during pregnancy is an important topic that merits further investigation.
Collapse
Affiliation(s)
- Meghan Angley
- Department of Obstetrics and Gynecology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Yijia Zhang
- Department of Obstetrics and Gynecology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Petros Koutrakis
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Ka Kahe
- Department of Obstetrics and Gynecology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA.
| |
Collapse
|
4
|
Inthavong S, Jatavan P, Tongsong T. Predictive Utility of Biochemical Markers for the Diagnosis and Prognosis of Gestational Diabetes Mellitus. Int J Mol Sci 2024; 25:11666. [PMID: 39519218 PMCID: PMC11545977 DOI: 10.3390/ijms252111666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Gestational diabetes mellitus (GDM) is a common complication during pregnancy with an increasing prevalence worldwide. Early prediction of GDM and its associated adverse outcomes is crucial for timely intervention and improved maternal and fetal health. The objective of this review is to provide a comprehensive summary of contemporary evidence on biomarkers, focusing on their potential to predict the development of GDM and serve as predictors of maternal, fetal, and neonatal outcomes in women with GDM. A literature search was conducted in the PubMed database using relevant terms. Original research articles published in English between 1 January 2015, and 30 June 2024, were included. A two-stage screening process was employed to identify studies on biomarkers for GDM diagnosis and prognosis and to evaluate the evidence for each biomarker's diagnostic performance and its potential prognostic correlation with GDM. Various biochemical markers, including adipokines, inflammatory markers, insulin resistance markers, glycemic markers, lipid profile markers, placenta-derived markers, and other related markers, have shown promise in identifying women at risk of developing GDM and predicting adverse pregnancy outcomes. Several promising markers with high predictive performance were identified. However, no single biomarker has demonstrated sufficient accuracy to replace the current diagnostic criteria for GDM. The complexity of multiple pathways in GDM pathogenesis highlights the need for a multi-marker approach to improve risk stratification and guide personalized management strategies. While significant progress has been made in GDM biomarker research, further studies are required to refine and validate these markers for clinical use and to develop a comprehensive, evidence-based approach to GDM prediction and management that can improve maternal and child health outcomes.
Collapse
Affiliation(s)
| | - Phudit Jatavan
- Department of Obstetrics and Gynecology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (S.I.); (T.T.)
| | | |
Collapse
|
5
|
Xu Y, Alves-Wagner AB, Inada H, Firouzjah SD, Osana S, Amir MS, Conlin RH, Hirshman MF, Nozik ES, Goodyear LJ, Nagatomi R, Kusuyama J. Placenta-derived SOD3 deletion impairs maternal behavior via alterations in FGF/FGFR-prolactin signaling axis. Cell Rep 2024; 43:114789. [PMID: 39325622 DOI: 10.1016/j.celrep.2024.114789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 07/27/2024] [Accepted: 09/06/2024] [Indexed: 09/28/2024] Open
Abstract
Offspring growth requires establishing maternal behavior associated with the maternal endocrine profile. Placentae support the adaptations of the mother, producing bioactive molecules that affect maternal organs. We recently reported that placentae produce superoxide dismutase 3 (SOD3) that exerts sustained effects on the offspring liver via epigenetic modifications. Here, we demonstrate that placenta-specific Sod3 knockout (Sod3-/-) dams exhibited impaired maternal behavior and decreased prolactin levels. Most fibroblast growth factor (FGF)-regulated pathways were downregulated in the pituitary tissues from Sod3-/- dams. FGF1-, FGF2-, and FGF4-induced prolactin expression and signaling via the phosphoinositide 3-kinase (PI3K)-phospholipase C-γ1 (PLCγ1)-protein kinase-Cδ (PKC)δ axis were reduced in primary pituitary cells from Sod3-/- dams. Mechanistically, FGF1/FGF receptor (FGFR)2 expressions were inhibited by the suppression of the ten-eleven translocation (TET)/isocitrate dehydrogenase (IDH)/α-ketoglutarate pathway and DNA demethylation levels at the zinc finger and BTB domain containing 18 (ZBTB18)-targeted promoters of Fgf1/Fgfr2. Importantly, offspring from Sod3-/- dams also showed impaired nurturing behavior to their grandoffspring. Collectively, placenta-derived SOD3 promotes maternal behavior via epigenetic programming of the FGF/FGFR-prolactin axis.
Collapse
Affiliation(s)
- Yidan Xu
- Department of Biosignals and Inheritance, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan; Department of Medicine and Science in Sports and Exercise, Tohoku University School of Medicine, Sendai 980-8575, Japan
| | - Ana B Alves-Wagner
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Hitoshi Inada
- Department of Medicine and Science in Sports and Exercise, Tohoku University School of Medicine, Sendai 980-8575, Japan; Department of Developmental Neuroscience, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Sepideh D Firouzjah
- Department of Biosignals and Inheritance, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Shion Osana
- Department of Medicine and Science in Sports and Exercise, Tohoku University School of Medicine, Sendai 980-8575, Japan; Division of Biomedical Engineering for Health and Welfare, Graduate School of Biomedical Engineering, Tohoku University, Sendai 980-8575, Japan
| | - Muhammad Subhan Amir
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Airlangga University, Surabaya 60132, Indonesia; Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Royce H Conlin
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Michael F Hirshman
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Eva S Nozik
- Cardiovascular Pulmonary Research Laboratories and Pediatric Critical Care, Department of Pediatrics, the University of Colorado Anschutz Medical Center, Aurora, CO 80045, USA
| | - Laurie J Goodyear
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Ryoichi Nagatomi
- Department of Medicine and Science in Sports and Exercise, Tohoku University School of Medicine, Sendai 980-8575, Japan; Department of Developmental Neuroscience, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Joji Kusuyama
- Department of Biosignals and Inheritance, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan; Department of Medicine and Science in Sports and Exercise, Tohoku University School of Medicine, Sendai 980-8575, Japan; Division of Biomedical Engineering for Health and Welfare, Graduate School of Biomedical Engineering, Tohoku University, Sendai 980-8575, Japan; Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai 980-8578, Japan.
| |
Collapse
|
6
|
Huang Q, Shire D, Hollis F, Abuaish S, Picard M, Monk C, Duman EA, Trumpff C. Associations between prenatal distress, mitochondrial health, and gestational age: findings from two pregnancy studies in the USA and Turkey. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.16.618719. [PMID: 39464008 PMCID: PMC11507865 DOI: 10.1101/2024.10.16.618719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Background Pregnancy outcomes are influenced by maternal distress but the pathways underlying these effects are still unknown. Mitochondria, crucial for stress adaptation and energy production, may link psychosocial stress to its biological effects, especially during pregnancy when energy demands significantly increase. This study explores two mitochondrial markers-circulating cell-free mitochondrial DNA (cf-mtDNA) and Growth Differentiation Factor-15 (GDF15)-as potential mitochondrial health indicators linking maternal distress to pregnancy outcomes in two longitudinal studies from the USA and Turkey. Methods We analyzed biological, demographic, and psychological data from women in two pregnancy studies: EPI (N=187, USA, Mean age=29.6(SD=6.2) and BABIP (N=198, Turkey, Mean age=32.4(SD=4.0)). Data were collected at multiple time points during the perinatal period, including late 2nd and 3rd trimester, with EPI also including additional data at early 2nd trimester and 4-14 months postpartum. Prenatal maternal psychological distress was measured as perceived stress, anxiety, and depressive symptoms. Plasma cf-mtDNA and GDF15 levels were assessed using qPCR and ELISA, respectively. Statistical analyses included Wilcoxon signed-rank tests, Spearman correlations, and Mann-Whitney tests. Results Plasma cf-mtDNA levels did not change significantly during pregnancy in either study. Plasma GDF15 levels increased from early to late pregnancy in both studies and significantly decreased postpartum in EPI. Perinatal maternal distress in the late 2nd and 3rd trimesters was not associated with cf-mtDNA or GDF15 in either study. Metabolic distress, measured as higher pre-pregnancy BMI, was negatively correlated with GDF15 in the late 2nd trimester in EPI and showed a similar trend in BABIP. Similarly, higher maternal psychological distress in the early 2nd trimester were associated with lower cf-mtDNA and a trend for lower GDF15 in EPI. Finally, higher pre-pregnancy BMI and maternal distress in late pregnancy were linked to a smaller decline in GDF15 from late pregnancy to postpartum in EPI, suggesting an interaction between metabolic stress, prenatal distress and post-pregnancy physiological recovery. Conclusions This study identified distinct patterns of plasma cf-mtDNA and GDF15 levels during the perinatal period across studies from two countries, revealing unique associations between maternal characteristics, prenatal distress, and pregnancy outcomes, suggesting that maternal distress can interact with energy mobilization during pregnancy.
Collapse
Affiliation(s)
- Qiuhan Huang
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - David Shire
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Fiona Hollis
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Sameera Abuaish
- Department of Basic Sciences, College of Medicine, Princess Nourah Bint Abdulrahman University, Riyadh, Kingdom of Saudi Arabia
| | - Martin Picard
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- Department of Neurology, H. Houston Merritt Center, Neuromuscular Medicine Division, Columbia University Irving Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
- Robert N Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Catherine Monk
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY, USA
| | - Elif Aysimi Duman
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Acibadem University, Istanbul, Turkey
- Institute of Natural and Applied Sciences, Acibadem University, Istanbul, Turkey
| | - Caroline Trumpff
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
7
|
Than NG, Romero R, Fitzgerald W, Gudicha DW, Gomez-Lopez N, Posta M, Zhou F, Bhatti G, Meyyazhagan A, Awonuga AO, Chaiworapongsa T, Matthies D, Bryant DR, Erez O, Margolis L, Tarca AL. Proteomic Profiles of Maternal Plasma Extracellular Vesicles for Prediction of Preeclampsia. Am J Reprod Immunol 2024; 92:e13928. [PMID: 39347565 DOI: 10.1111/aji.13928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 08/30/2024] [Accepted: 09/01/2024] [Indexed: 10/01/2024] Open
Abstract
PROBLEM Preeclampsia is a heterogeneous syndrome of diverse etiologies and molecular pathways leading to distinct clinical subtypes. Herein, we aimed to characterize the extracellular vesicle (EV)-associated and soluble fractions of the maternal plasma proteome in patients with preeclampsia and to assess their value for disease prediction. METHOD OF STUDY This case-control study included 24 women with term preeclampsia, 23 women with preterm preeclampsia, and 94 healthy pregnant controls. Blood samples were collected from cases on average 7 weeks before the diagnosis of preeclampsia and were matched to control samples. Soluble and EV fractions were separated from maternal plasma; EVs were confirmed by cryo-EM, NanoSight, and flow cytometry; and 82 proteins were analyzed with bead-based, multiplexed immunoassays. Quantile regression analysis and random forest models were implemented to evaluate protein concentration differences and their predictive accuracy. Preeclampsia subgroups defined by molecular profiles were identified by hierarchical cluster analysis. Significance was set at p < 0.05 or false discovery rate-adjusted q < 0.1. RESULTS In preterm preeclampsia, PlGF, PTX3, and VEGFR-1 displayed differential abundance in both soluble and EV fractions, whereas angiogenin, CD40L, endoglin, galectin-1, IL-27, CCL19, and TIMP1 were changed only in the soluble fraction (q < 0.1). The direction of changes in the EV fraction was consistent with that in the soluble fraction for nine proteins. In term preeclampsia, CCL3 had increased abundance in both fractions (q < 0.1). The combined EV and soluble fraction proteomic profiles predicted preterm and term preeclampsia with an AUC of 78% (95% CI, 66%-90%) and 68% (95% CI, 56%-80%), respectively. Three clusters of preeclampsia featuring distinct clinical characteristics and placental pathology were identified based on combined protein data. CONCLUSIONS Our findings reveal distinct alterations of the maternal EV-associated and soluble plasma proteome in preterm and term preeclampsia and identify molecular subgroups of patients with distinct clinical and placental histopathologic features.
Collapse
Affiliation(s)
- Nándor Gábor Than
- Systems Biology of Reproduction Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Department of Obstetrics and Gynecology, Semmelweis University, Budapest, Hungary
- Maternity Private Clinic of Obstetrics and Gynecology, Budapest, Hungary
| | - Roberto Romero
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, USA
| | - Wendy Fitzgerald
- Section on Intercellular Interactions, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Dereje W Gudicha
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Nardhy Gomez-Lopez
- Department of Obstetrics and Gynecology & Department of Pathology and Immunology, Washington University, St. Louis, Missouri, USA
| | - Máté Posta
- Systems Biology of Reproduction Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Semmelweis University Doctoral School, Budapest, Hungary
| | - Fei Zhou
- Unit on Structural Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Gaurav Bhatti
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
| | - Arun Meyyazhagan
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Awoniyi O Awonuga
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Tinnakorn Chaiworapongsa
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Doreen Matthies
- Unit on Structural Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - David R Bryant
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Offer Erez
- Department of Obstetrics and Gynecology, Ben Gurion University of the Negev, Beer-Sheva, Israel
| | - Leonid Margolis
- Faculty of Natural Sciences and Medicine, Ilia State University, Tbilisi, Georgia
| | - Adi L Tarca
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Computer Science, Wayne State University College of Engineering, Detroit, Michigan, USA
| |
Collapse
|
8
|
Ragsdale HB, Miller AA, McDade TW, Lee NR, Bas IN, Kuzawa CW. Investigating the IGF axis as a pathway for intergenerational effects. J Dev Orig Health Dis 2024; 15:e16. [PMID: 39291329 DOI: 10.1017/s2040174424000266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Early nutritional and growth experiences can impact development, metabolic function, and reproductive outcomes in adulthood, influencing health trajectories in the next generation. The insulin-like growth factor (IGF) axis regulates growth, metabolism, and energetic investment, but whether it plays a role in the pathway linking maternal experience with offspring prenatal development is unclear. To test this, we investigated patterns of maternal developmental weight gain (a proxy of early nutrition), young adult energy stores, age, and parity as predictors of biomarkers of the pregnancy IGF axis (n = 36) using data from the Cebu Longitudinal Health and Nutrition Survey in Metro Cebu, Philippines. We analyzed maternal conditional weight measures at 2, 8, and 22 years of age and leptin at age 22 (a marker of body fat/energy stores) in relation to free IGF-1 and IGFBP-3 in mid/late pregnancy (mean age = 27). Maternal IGF axis measures were also assessed as predictors of offspring fetal growth. Maternal age, parity, and age 22 leptin were associated with pregnancy free IGF-1, offspring birth weight, and offspring skinfold thickness. We find that free IGF-1 levels in pregnancy are more closely related to nutritional status in early adulthood than to preadult developmental nutrition and demonstrate significant effects of young adult leptin on offspring fetal fat mass deposition. We suggest that the previously documented finding that maternal developmental nutrition predicts offspring birth size likely operates through pathways other than the maternal IGF axis, which reflects more recent energy status.
Collapse
Affiliation(s)
- Haley B Ragsdale
- Department of Anthropology, Northwestern University, Evanston, IL, USA
| | - Aaron A Miller
- Department of Anthropology, Northwestern University, Evanston, IL, USA
| | - Thomas W McDade
- Department of Anthropology, Northwestern University, Evanston, IL, USA
- Institute for Policy Research, Northwestern University, Evanston, IL, USA
| | - Nanette R Lee
- USC-Office of Population Studies Foundation, Inc., University of San Carlos, Cebu, Philippines
| | - Isabelita N Bas
- USC-Office of Population Studies Foundation, Inc., University of San Carlos, Cebu, Philippines
| | - Christopher W Kuzawa
- Department of Anthropology, Northwestern University, Evanston, IL, USA
- Institute for Policy Research, Northwestern University, Evanston, IL, USA
| |
Collapse
|
9
|
Rakoczy K, Kaczor J, Sołtyk A, Jonderko L, Sędzik M, Lizon J, Lewandowska A, Saczko M, Kulbacka J. Pregnancy, abortion, and birth control methods' complicity with breast cancer occurrence. Mol Cell Endocrinol 2024; 590:112264. [PMID: 38705365 DOI: 10.1016/j.mce.2024.112264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/05/2024] [Accepted: 04/30/2024] [Indexed: 05/07/2024]
Abstract
Reproductive factors play significantly important roles in determining the breast cancer (BC) risk. The impact of pregnancy, abortion, and birth control methods on tumor development remains unclear. It has been found that early full-term pregnancies in young women can lower their lifetime risk of developing the type of cancer in question. However, having a first full-term pregnancy at an older age can increase this risk. The relationship between pregnancy and breast cancer (BC) is, however, much more complicated. Both induced and spontaneous abortions lead to sudden changes in hormonal balance, which could cause different effects on sensitive breast epithelial cells, making abortion a potential risk factor for breast cancer. The influence of hormonal contraception on carcinogenesis is not comprehensively understood, and therefore, more exhaustive analysis of existing data and further investigation is needed. This review explores how the mentioned reproductive factors affect the risk of breast cancer (BC), focusing on the molecular mechanisms that contribute to its complexity. By comprehending this intricate network of relationships, we can develop new strategies for predicting and treating the disease.
Collapse
Affiliation(s)
- Katarzyna Rakoczy
- Faculty of Medicine, Wroclaw Medical University, J. Mikulicza-Radeckiego 5, 50-345, Wroclaw, Poland
| | - Justyna Kaczor
- Faculty of Medicine, Wroclaw Medical University, J. Mikulicza-Radeckiego 5, 50-345, Wroclaw, Poland
| | - Adam Sołtyk
- Faculty of Medicine, Wroclaw Medical University, J. Mikulicza-Radeckiego 5, 50-345, Wroclaw, Poland
| | - Laura Jonderko
- Faculty of Medicine, Wroclaw Medical University, J. Mikulicza-Radeckiego 5, 50-345, Wroclaw, Poland
| | - Mikołaj Sędzik
- Faculty of Medicine, Wroclaw Medical University, J. Mikulicza-Radeckiego 5, 50-345, Wroclaw, Poland
| | - Julia Lizon
- Faculty of Medicine, Wroclaw Medical University, J. Mikulicza-Radeckiego 5, 50-345, Wroclaw, Poland
| | - Anna Lewandowska
- Faculty of Medicine, Wroclaw Medical University, J. Mikulicza-Radeckiego 5, 50-345, Wroclaw, Poland
| | - Małgorzata Saczko
- A. Falkiewicz Specialist Hospital in Wroclaw, Warszawska 2, 52-114 Wroclaw, Poland
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556 Wroclaw, Poland; Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, Santariškių 5, 08410, Vilnius, Lithuania.
| |
Collapse
|
10
|
Qin B, Huang Y, Zhang Y. A case of multiple soft fibromas complicated with pityriasis versicolor during pregnancy: A case report. SAGE Open Med Case Rep 2024; 12:2050313X241274891. [PMID: 39157036 PMCID: PMC11329953 DOI: 10.1177/2050313x241274891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 06/17/2024] [Indexed: 08/20/2024] Open
Abstract
Dermatological conditions in pregnancy pose unique challenges due to concerns for maternal and fetal health. We present a case of a 32-year-old primigravida who, at 36 weeks of gestation, exhibited melanotic papules and neoplasms on her neck, chest, and breasts. Seeking evaluation for potential effects on her unborn child and breastfeeding, she presented to our dermatological outpatient facility. Physical examination revealed varied pigmented papules and verrucous proliferations. Laboratory tests and imaging were unremarkable, with histological analysis confirming fibromas and pityriasis versicolor. The patient declined treatment during pregnancy, and postpartum, spontaneous regression of lesions occurred, with complete resolution within 1 year. The child exhibited normal development, with no recurrence observed at the 2-year follow-up. This case underscores the importance of multidisciplinary care and long-term monitoring in managing dermatological manifestations during pregnancy.
Collapse
Affiliation(s)
- Bi Qin
- Institute of Traditional Chinese Medicine of Sichuan Academy of Chinese Medicine Sciences, Chengdu City, Sichuan Province, China
| | - Yuhua Huang
- Institute of Traditional Chinese Medicine of Sichuan Academy of Chinese Medicine Sciences, Chengdu City, Sichuan Province, China
| | - Yan Zhang
- Institute of Traditional Chinese Medicine of Sichuan Academy of Chinese Medicine Sciences, Chengdu City, Sichuan Province, China
| |
Collapse
|
11
|
Xue L, Chen X, Sun J, Fan M, Qian H, Li Y, Wang L. Maternal Dietary Carbohydrate and Pregnancy Outcomes: Quality over Quantity. Nutrients 2024; 16:2269. [PMID: 39064712 PMCID: PMC11280101 DOI: 10.3390/nu16142269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/30/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Dietary nutrition plays a crucial role in determining pregnancy outcomes, with poor diet being a major contributor to pregnancy metabolic syndrome and metabolic disorders in offspring. While carbohydrates are essential for fetal development, the excessive consumption of low-quality carbohydrates can increase the risk of pregnancy complications and have lasting negative effects on offspring development. Recent studies not only highlighted the link between carbohydrate intake during pregnancy, maternal health, and offspring well-being, but also suggested that the quality of carbohydrate foods consumed is more critical. This article reviews the impacts of low-carbohydrate and high-carbohydrate diets on pregnancy complications and offspring health, introduces the varied physiological effects of different types of carbohydrate consumption during pregnancy, and emphasizes the importance of both the quantity and quality of carbohydrates in nutritional interventions during pregnancy. These findings may offer valuable insights for guiding dietary interventions during pregnancy and shaping the future development of carbohydrate-rich foods.
Collapse
Affiliation(s)
- Lamei Xue
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (L.X.); (J.S.); (M.F.); (H.Q.)
| | - Xiaofang Chen
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
| | - Juan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (L.X.); (J.S.); (M.F.); (H.Q.)
| | - Mingcong Fan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (L.X.); (J.S.); (M.F.); (H.Q.)
| | - Haifeng Qian
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (L.X.); (J.S.); (M.F.); (H.Q.)
| | - Yan Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (L.X.); (J.S.); (M.F.); (H.Q.)
| | - Li Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (L.X.); (J.S.); (M.F.); (H.Q.)
| |
Collapse
|
12
|
Fu Y, Gou W, Wu P, Lai Y, Liang X, Zhang K, Shuai M, Tang J, Miao Z, Chen J, Yuan J, Zhao B, Yang Y, Liu X, Hu Y, Pan A, Pan XF, Zheng JS. Landscape of the gut mycobiome dynamics during pregnancy and its relationship with host metabolism and pregnancy health. Gut 2024; 73:1302-1312. [PMID: 38724219 PMCID: PMC11287620 DOI: 10.1136/gutjnl-2024-332260] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/23/2024] [Indexed: 07/13/2024]
Abstract
OBJECTIVE The remodelling of gut mycobiome (ie, fungi) during pregnancy and its potential influence on host metabolism and pregnancy health remains largely unexplored. Here, we aim to examine the characteristics of gut fungi in pregnant women, and reveal the associations between gut mycobiome, host metabolome and pregnancy health. DESIGN Based on a prospective birth cohort in central China (2017 to 2020): Tongji-Huaxi-Shuangliu Birth Cohort, we included 4800 participants who had available ITS2 sequencing data, dietary information and clinical records during their pregnancy. Additionally, we established a subcohort of 1059 participants, which included 514 women who gave birth to preterm, low birthweight or macrosomia infants, as well as 545 randomly selected controls. In this subcohort, a total of 750, 748 and 709 participants had ITS2 sequencing data, 16S sequencing data and serum metabolome data available, respectively, across all trimesters. RESULTS The composition of gut fungi changes dramatically from early to late pregnancy, exhibiting a greater degree of variability and individuality compared with changes observed in gut bacteria. The multiomics data provide a landscape of the networks among gut mycobiome, biological functionality, serum metabolites and pregnancy health, pinpointing the link between Mucor and adverse pregnancy outcomes. The prepregnancy overweight status is a key factor influencing both gut mycobiome compositional alteration and the pattern of metabolic remodelling during pregnancy. CONCLUSION This study provides a landscape of gut mycobiome dynamics during pregnancy and its relationship with host metabolism and pregnancy health, which lays the foundation of the future gut mycobiome investigation for healthy pregnancy.
Collapse
Affiliation(s)
- Yuanqing Fu
- Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, China
| | - Wanglong Gou
- Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, China
| | - Ping Wu
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuwei Lai
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinxiu Liang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, China
| | - Ke Zhang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, China
| | - Menglei Shuai
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, China
| | - Jun Tang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, China
| | - Zelei Miao
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, China
| | - Jieteng Chen
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, China
| | - Jiaying Yuan
- Department of Science and Education, Shuangliu Maternal and Child Health Hospital, Chengdu, China
| | - Bin Zhao
- Antenatal Care Clinics, Shuangliu Maternal and Child Health Hospital, Chengdu, China
| | - Yunhaonan Yang
- Section of Epidemiology and Population Health & Department of Obstetrics and Gynecology, Ministry of Education Key Laboratory of Birth Defects and Related Diseases of Women and Children & National Medical Products Administration Key Laboratory for Technical Research on Drug Products In Vitro and In Vivo Correlation, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xiaojuan Liu
- Department of Laboratory Medicine, Ministry of Education Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yayi Hu
- Department of Obstetrics and Gynecology, Ministry of Education Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second University Hospital, Sichuan University, Chengdu, China
| | - An Pan
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiong-Fei Pan
- Section of Epidemiology and Population Health & Department of Obstetrics and Gynecology, Ministry of Education Key Laboratory of Birth Defects and Related Diseases of Women and Children & National Medical Products Administration Key Laboratory for Technical Research on Drug Products In Vitro and In Vivo Correlation, West China Second University Hospital, Sichuan University, Chengdu, China
- Shuangliu Institute of Women's and Children's Health, Shuangliu Maternal and Child Health Hospital, Chengdu, China
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ju-Sheng Zheng
- Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
- Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, School of Medicine, Westlake University, Hangzhou, China
| |
Collapse
|
13
|
Moazzam S, Noorjahan N, Jin Y, Nagy JI, Kardami E, Cattini PA. Effect of high fat diet on maternal behavior, brain-derived neurotrophic factor and neural stem cell proliferation in mice expressing human placental lactogen during pregnancy. J Neuroendocrinol 2024; 36:e13258. [PMID: 36989439 DOI: 10.1111/jne.13258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 02/05/2023] [Accepted: 02/08/2023] [Indexed: 03/14/2023]
Abstract
Maternal obesity is a serious health concern because it increases risks of neurological disorders, including anxiety and peripartum depression. In mice, a high fat diet (HFD) in pregnancy can negatively affect placental structure and function as well as maternal behavior reflected by impaired nest building and pup-retrieval. In humans, maternal obesity in pregnancy is associated with reduced placental lactogen (PL) gene expression, which has been linked to a higher risk of depression. PL acting predominantly through the prolactin receptor maintains energy homeostasis and is a marker of placenta villous trophoblast differentiation during pregnancy. Impaired neurogenesis and low serum levels of brain-derived neurotrophic factor (BDNF) have also been implicated in depression. Augmented neurogenesis in brain during pregnancy was reported in the subventricular zone (SVZ) of mice at gestation day 7 and linked to increased prolactin receptor signaling. Here, we used transgenic CD-1 mice that express human (h) PL during pregnancy to investigate whether the negative effects of diet on maternal behavior are mitigated in these (CD-1[hGH/PL]) mice. Specifically, we examined the effect of a HFD on nest building prepartum and pup retrieval postpartum, as well as on brain BDNF levels and neurogenesis. In contrast to wild-type CD-1[WT]mice, CD-1[hGH/PL] mice displayed significantly less anxiety-like behavior, and showed no impairment in prepartum nest building or postpartum pup-retrieval when fed a HFD. Furthermore, the HFD decreased prepartum and increased postpartum BDNF levels in CD-1[WT] but not CD-1[hGH/PL] mice. Finally, neurogenesis in the SVZ as well as phosphorylated mitogen-activated protein kinase, indicative of lactogenic signaling, appeared unaffected by pregnancy and diet at gestation day 7 in CD-1[hGH/PL] mice. These observations indicate that CD-1[hGH/PL] mice are resistant to the negative effects of HFD reported for CD-1[WT] mice, including effects on maternal behaviors and BDNF levels, and potentially, neurogenesis. This difference probably reflects a direct or indirect effect of the products of the hGH/PL transgene.
Collapse
Affiliation(s)
- Showall Moazzam
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada
| | - Noshin Noorjahan
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada
| | - Yan Jin
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada
| | - James I Nagy
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada
| | - Elissavet Kardami
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Canada
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada
| | - Peter A Cattini
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
14
|
Leca BM, Lagojda L, Kite C, Karteris E, Kassi E, Randeva HS, Kyrou I. Maternal obesity and metabolic (dysfunction) associated fatty liver disease in pregnancy: a comprehensive narrative review. Expert Rev Endocrinol Metab 2024; 19:335-348. [PMID: 38860684 DOI: 10.1080/17446651.2024.2365791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/05/2024] [Indexed: 06/12/2024]
Abstract
INTRODUCTION Obesity and metabolic-associated fatty liver disease (MAFLD) during pregnancy constitute significant problems for routine antenatal care, with increasing prevalence globally. Similar to obesity, MAFLD is associated with a higher risk for maternal complications (e.g. pre-eclampsia and gestational diabetes) and long-term adverse health outcomes for the offspring. However, MAFLD during pregnancy is often under-recognized, with limited management/treatment options. AREAS COVERED PubMed/MEDLINE, EMBASE, and Scopus were searched based on a search strategy for obesity and/or MAFLD in pregnancy to identify relevant papers up to 2024. This review summarizes the pertinent evidence on the relationship between maternal obesity and MAFLD during pregnancy. Key mechanisms implicated in the underlying pathophysiology linking obesity and MAFLD during pregnancy (e.g. insulin resistance and dysregulated adipokine secretion) are highlighted. Moreover, a diagnostic approach for MAFLD diagnosis during pregnancy and its complications are presented. Finally, promising relevant areas for future research are covered. EXPERT OPINION Research progress regarding maternal obesity, MAFLD, and their impact on maternal and fetal/offspring health is expected to improve the relevant diagnostic methods and lead to novel treatments. Thus, routine practice could apply more personalized management strategies, incorporating individualized algorithms with genetic and/or multi-biomarker profiling to guide prevention, early diagnosis, and treatment.
Collapse
Affiliation(s)
- Bianca M Leca
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
- Warwick Medical School, University of Warwick, Coventry, UK
| | - Lukasz Lagojda
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
- Clinical Evidence-Based Information Service (CEBIS), University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
| | - Chris Kite
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
- School of Health and Society, Faculty of Education, Health and Wellbeing, University of Wolverhampton, Wolverhampton, UK
- Centre for Sport, Exercise and Life Sciences, Research Institute for Health & Wellbeing, Coventry University, Coventry, UK
- Chester Medical School, University of Chester, Shrewsbury, UK
| | - Emmanouil Karteris
- College of Health, Medicine and Life Sciences, Division of Biosciences, Brunel University London, Uxbridge, UK
| | - Eva Kassi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Endocrine Unit, 1st Department of Propaedeutic Internal Medicine, Laiko Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Harpal S Randeva
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
- Warwick Medical School, University of Warwick, Coventry, UK
- Centre for Sport, Exercise and Life Sciences, Research Institute for Health & Wellbeing, Coventry University, Coventry, UK
- Institute of Cardiometabolic Medicine, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
| | - Ioannis Kyrou
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
- Warwick Medical School, University of Warwick, Coventry, UK
- Centre for Sport, Exercise and Life Sciences, Research Institute for Health & Wellbeing, Coventry University, Coventry, UK
- Institute of Cardiometabolic Medicine, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
- Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham, UK
- College of Health, Psychology and Social Care, University of Derby, Derby, UK
- Laboratory of Dietetics and Quality of Life, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
15
|
Hribar K, Eichhorn D, Bongiovanni L, Koster MH, Kloosterhuis NJ, de Bruin A, Oosterveer MH, Kruit JK, van der Beek EM. Postpartum development of metabolic dysfunction-associated steatotic liver disease in a lean mouse model of gestational diabetes mellitus. Sci Rep 2024; 14:14621. [PMID: 38918525 PMCID: PMC11199516 DOI: 10.1038/s41598-024-65239-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024] Open
Abstract
Gestational diabetes mellitus (GDM) is associated with increased postpartum risk for metabolic dysfunction-associated steatotic liver disease (MASLD). GDM-related MASLD predisposes to advanced liver disease, necessitating a better understanding of its development in GDM. This preclinical study evaluated the MASLD development in a lean GDM mouse model with impaired insulin secretion capacity. Lean GDM was induced by short-term 60% high-fat diet and low-dose streptozotocin injections (60 mg/kg for 3 days) before mating in C57BL/6N mice. The control dams received only high-fat diet or low-fat diet. Glucose homeostasis was assessed during pregnancy and postpartum, whereas MASLD was assessed on postpartum day 30 (PP30). GDM dams exhibited a transient hyperglycemic phenotype during pregnancy, with hyperglycaemia reappearing after lactation. Lower insulin levels and impaired glucose-induced insulin response were observed in GDM mice during pregnancy and postpartum. At PP30, GDM dams displayed higher hepatic triglyceride content compared controls, along with increased MAS (MASLD) activity scores, indicating lipid accumulation, inflammation, and cell turnover indices. Additionally, at PP30, GDM dams showed elevated plasma liver injury markers. Given the absence of obesity in this double-hit GDM model, the results clearly indicate that impaired insulin secretion driven pregnancy hyperglycaemia has a distinct contribution to the development of postpartum MASLD.
Collapse
Affiliation(s)
- K Hribar
- Department of Pediatrics, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - D Eichhorn
- The Central Animal Facility, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - L Bongiovanni
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - M H Koster
- Department of Pediatrics, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - N J Kloosterhuis
- Department of Pediatrics, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - A de Bruin
- Department of Pediatrics, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - M H Oosterveer
- Department of Pediatrics, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
- Department of Laboratory Medicine, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - J K Kruit
- Department of Pediatrics, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands.
| | - E M van der Beek
- Department of Pediatrics, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
| |
Collapse
|
16
|
Li Y, He J, Zhang L, Liu H, Cao M, Lin Y, Xu S, Che L, Fang Z, Feng B, Li J, Zhuo Y, Wu D. Improvement of insulin sensitivity by dietary fiber consumption during late pregnant sows is associated with gut microbiota regulation of tryptophan metabolism. Anim Microbiome 2024; 6:34. [PMID: 38907293 PMCID: PMC11191243 DOI: 10.1186/s42523-024-00323-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 06/12/2024] [Indexed: 06/23/2024] Open
Abstract
BACKGROUND Dietary fiber (DF) consumption was reported to improve insulin sensitivity, change the tryptophan metabolism, and alter the gut microbiota. Herein, this study aimed to investigate the effects of DF consumption on insulin sensitivity, tryptophan metabolism, and gut microbiota composition in sows during late pregnancy, and explore the relationship between tryptophan metabolites and insulin sensitivity regulated by DF supplementation. RESULTS Twelve sows were randomly assigned to two dietary treatment groups (six/group): the low-fiber (LF) group, which was fed a basal diet, and the high-fiber (HF) group, which was fed the basal diet supplemented with 22.60 g/kg inulin and 181.60 g/kg cellulose. During late pregnancy, meal test, glucose tolerance test, and insulin challenge test were used to investigate the insulin sensitivity of sows, using the percutaneous brachiocephalic vein catheterization technique. High DF consumption resulted in improved insulin sensitivity, especially during the second and third trimesters, and promoted serotonin production from tryptophan. Additionally, plasma serotonin concentration was positively correlated with the insulin sensitivity index during late pregnancy. Moreover, DF consumption elevated fecal short-chain fatty acid (SCFA) concentrations, altered fecal microbial diversity, and increased the abundances of Rikenellaceae_RC9_gut_group, Alloprevotella, Parabacteroides, Roseburia, and Sphaerochaeta, which were positively correlated to plasma serotonin concentration. CONCLUSIONS DF consumption improved insulin sensitivity during late pregnancy in sows, which improved microbial diversity in fecal samples and increased fecal SCFA concentrations, resulting in a positive correlation with plasma serotonin level.
Collapse
Affiliation(s)
- Yang Li
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Panhe Street 7#, Tai'an, 271017, People's Republic of China
- Key Laboratory for Animal Disease-Resistance Nutrition of the Ministry of Agriculture, Institute of Animal Nutrition, Sichuan Agricultural University, Huimin Road 211#, Chengdu, 611130, People's Republic of China
- Division of Animal and Human Health Engineering, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 30, Heverlee, 3001, Belgium
| | - Jiaqi He
- Key Laboratory for Animal Disease-Resistance Nutrition of the Ministry of Agriculture, Institute of Animal Nutrition, Sichuan Agricultural University, Huimin Road 211#, Chengdu, 611130, People's Republic of China
| | - Lijia Zhang
- Key Laboratory for Animal Disease-Resistance Nutrition of the Ministry of Agriculture, Institute of Animal Nutrition, Sichuan Agricultural University, Huimin Road 211#, Chengdu, 611130, People's Republic of China
| | - Haoyu Liu
- Key Laboratory for Animal Disease-Resistance Nutrition of the Ministry of Agriculture, Institute of Animal Nutrition, Sichuan Agricultural University, Huimin Road 211#, Chengdu, 611130, People's Republic of China
| | - Meng Cao
- Key Laboratory for Animal Disease-Resistance Nutrition of the Ministry of Agriculture, Institute of Animal Nutrition, Sichuan Agricultural University, Huimin Road 211#, Chengdu, 611130, People's Republic of China
| | - Yan Lin
- Key Laboratory for Animal Disease-Resistance Nutrition of the Ministry of Agriculture, Institute of Animal Nutrition, Sichuan Agricultural University, Huimin Road 211#, Chengdu, 611130, People's Republic of China
| | - Shengyu Xu
- Key Laboratory for Animal Disease-Resistance Nutrition of the Ministry of Agriculture, Institute of Animal Nutrition, Sichuan Agricultural University, Huimin Road 211#, Chengdu, 611130, People's Republic of China
| | - Lianqiang Che
- Key Laboratory for Animal Disease-Resistance Nutrition of the Ministry of Agriculture, Institute of Animal Nutrition, Sichuan Agricultural University, Huimin Road 211#, Chengdu, 611130, People's Republic of China
| | - Zhengfeng Fang
- Key Laboratory for Animal Disease-Resistance Nutrition of the Ministry of Agriculture, Institute of Animal Nutrition, Sichuan Agricultural University, Huimin Road 211#, Chengdu, 611130, People's Republic of China
| | - Bin Feng
- Key Laboratory for Animal Disease-Resistance Nutrition of the Ministry of Agriculture, Institute of Animal Nutrition, Sichuan Agricultural University, Huimin Road 211#, Chengdu, 611130, People's Republic of China
| | - Jian Li
- Key Laboratory for Animal Disease-Resistance Nutrition of the Ministry of Agriculture, Institute of Animal Nutrition, Sichuan Agricultural University, Huimin Road 211#, Chengdu, 611130, People's Republic of China
| | - Yong Zhuo
- Key Laboratory for Animal Disease-Resistance Nutrition of the Ministry of Agriculture, Institute of Animal Nutrition, Sichuan Agricultural University, Huimin Road 211#, Chengdu, 611130, People's Republic of China.
| | - De Wu
- Key Laboratory for Animal Disease-Resistance Nutrition of the Ministry of Agriculture, Institute of Animal Nutrition, Sichuan Agricultural University, Huimin Road 211#, Chengdu, 611130, People's Republic of China.
| |
Collapse
|
17
|
Liang LD, Li S, Huang MJ, Peng HX, Lu ZJ, Zhang ZH, Su LY, Sooranna SR, Liu Y, Huang ZH. Causal relationship between gut microbiota and puerperal sepsis: a 2-sample Mendelian randomization study. Front Microbiol 2024; 15:1407324. [PMID: 38933024 PMCID: PMC11203603 DOI: 10.3389/fmicb.2024.1407324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Background Some recent observational studies have shown that gut microbiota composition is associated with puerperal sepsis (PS) and no causal effect have been attributed to this. The aim of this study was to determine a causal association between gut microbiota and PS by using a two-sample Mendelian randomization (MR) analysis. Methods This study performed MR analysis on the publicly accessible genome-wide association study (GWAS) summary level data in order to explore the causal effects between gut microbiota and PS. Gut microbiota GWAS (n = 18,340) were obtained from the MiBioGen study and GWAS-summary-level data for PS were obtained from the UK Biobank (PS, 3,940 cases; controls, 202,267 cases). Identification of single nucleotide polymorphisms associated with each feature were identified based on a significance threshold of p < 1.0 × 10-5. The inverse variance weighted (IVW) parameter was used as the primary method for MR and it was supplemented by other methods. Additionally, a set of sensitivity analytical methods, including the MR-Egger intercept, Mendelian randomized polymorphism residual and outlier, Cochran's Q and the leave-one-out tests were carried out to assess the robustness of our findings. Results Our study found 3 species of gut microbiota, Lachnospiraceae FCS020, Lachnospiraceae NK4A136, and Ruminococcaceae NK4A214, to be associated with PS. The IVW method indicated an approximately 19% decreased risk of PS per standard deviation increase with Lachnospiraceae FCS020 (OR = 0.81; 95% CI 0.66-1.00, p = 0.047). A similar trend was also found with Lachnospiraceae NK4A136 (OR = 0.80; 95% CI 0.66-0.97, p = 0.024). However, Ruminococcaceae NK4A214 was positively associated with the risk of PS (OR = 1.33, 95% CI: 1.07-1.67, p = 0.011). Conclusion This two-sample MR study firstly found suggestive evidence of beneficial and detrimental causal associations of gut microbiota on the risk of PS. This may provide valuable insights into the pathogenesis of microbiota-mediated PS and potential strategies for its prevention and treatment.
Collapse
Affiliation(s)
- Liu-dan Liang
- Department of Cardiology, The First Clinical Medical College of Jinan University, Guangzhou, China
- Department of Cardiology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Department of Infectious Diseases, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Atherosclerosis and Ischemic Cardiovascular Diseases Laboratory, Youjiang Medical University for Nationalities, Baise, China
| | - Sheng Li
- Department of Cardiology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Graduate School, Youjiang Medical University for Nationalities, Baise, China
| | - Mei-jin Huang
- Department of Cardiology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Department of Infectious Diseases, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Hui-xin Peng
- Department of Cardiology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Life Science and Clinical Research Center, Youjiang Medical University for Nationalities, Baise, China
| | - Zi-jun Lu
- Department of Cardiology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Graduate School, Youjiang Medical University for Nationalities, Baise, China
| | - Zhuo-hua Zhang
- Department of Cardiology, The First Clinical Medical College of Jinan University, Guangzhou, China
- Department of Cardiology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Department of Infectious Diseases, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Li-ye Su
- Department of Cardiology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Graduate School, Youjiang Medical University for Nationalities, Baise, China
| | - Suren R. Sooranna
- Life Science and Clinical Research Center, Youjiang Medical University for Nationalities, Baise, China
- Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdom
| | - Yan Liu
- Department of Cardiology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Atherosclerosis and Ischemic Cardiovascular Diseases Laboratory, Youjiang Medical University for Nationalities, Baise, China
| | - Zhao-he Huang
- Department of Cardiology, The First Clinical Medical College of Jinan University, Guangzhou, China
- Department of Cardiology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Graduate School, Youjiang Medical University for Nationalities, Baise, China
| |
Collapse
|
18
|
Scairati R, Auriemma RS, Del Vecchio G, Di Meglio S, Pivonello R, Colao A. Prolactin effects on the pathogenesis of diabetes mellitus. Eur J Clin Invest 2024; 54:e14190. [PMID: 38470045 DOI: 10.1111/eci.14190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/12/2024] [Accepted: 02/22/2024] [Indexed: 03/13/2024]
Abstract
BACKGROUND Prolactin (PRL) is a pituitary hormone promoting lactation in response to the suckling reflex. Beyond its well-known effects, novel tissue-specific and metabolic functions of PRL are emerging. AIMS To dissect PRL as a critical mediator of whole-body gluco-insulinemic sensitivity. METHODS PubMed-based search with the following terms 'prolactin', 'glucose metabolism', 'type 2 diabetes mellitus', 'type 1 diabetes mellitus', 'gestational diabetes mellitus' was performed. DISCUSSION The identification of the PRL-glucose metabolism network poses the basis for unprecedented avenues of research in the pathogenesis of diabetes mellitus type 1 or 2, as well as of gestational diabetes. In this regard, it is of timely relevance to define properly the homeostatic PRL serum levels since glucose metabolism could be influenced by the circulating amount of the hormone. RESULTS This review underscores the basic mechanisms of regulation of pancreatic β-cell functions by PRL and provides a revision of articles which have investigated the connection between PRL unbalancing and diabetes mellitus. Future studies are needed to elucidate the burden and the role of PRL in the regulation of glucose metabolism and determine the specific PRL threshold that may impact the management of diabetes. CONCLUSION A careful evaluation and context-driven interpretation of PRL levels (e.g., pregnancy, PRL-secreting pituitary adenomas, drug-related hyper- and hypoprolactinemia) could be critical for the correct screening and management of glucometabolic disorders, such as type 1 or 2 as well as gestational diabetes mellitus.
Collapse
Affiliation(s)
- Roberta Scairati
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Diabetologia, Andrologia e Nutrizione, Università Federico II di Napoli, Naples, Italy
| | - Renata Simona Auriemma
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Diabetologia, Andrologia e Nutrizione, Università Federico II di Napoli, Naples, Italy
| | - Guendalina Del Vecchio
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Diabetologia, Andrologia e Nutrizione, Università Federico II di Napoli, Naples, Italy
| | - Sara Di Meglio
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Diabetologia, Andrologia e Nutrizione, Università Federico II di Napoli, Naples, Italy
| | - Rosario Pivonello
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Diabetologia, Andrologia e Nutrizione, Università Federico II di Napoli, Naples, Italy
- UNESCO Chair for Health Education and Sustainable Development, University Federico II, Naples, Italy
| | - Annamaria Colao
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Diabetologia, Andrologia e Nutrizione, Università Federico II di Napoli, Naples, Italy
- UNESCO Chair for Health Education and Sustainable Development, University Federico II, Naples, Italy
| |
Collapse
|
19
|
Kim DS, Song L, Gou W, Kim J, Liu B, Wei H, Muise-Helmericks RC, Li Z, Wang H. GRP94 is an IGF-1R chaperone and regulates beta cell death in diabetes. Cell Death Dis 2024; 15:374. [PMID: 38811543 PMCID: PMC11137047 DOI: 10.1038/s41419-024-06754-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 05/10/2024] [Accepted: 05/16/2024] [Indexed: 05/31/2024]
Abstract
High workload-induced cellular stress can cause pancreatic islet β cell death and dysfunction, or β cell failure, a hallmark of type 2 diabetes mellitus. Thus, activation of molecular chaperones and other stress-response genes prevents β cell failure. To this end, we have shown that deletion of the glucose-regulated protein 94 (GRP94) in Pdx1+ pancreatic progenitor cells led to pancreas hypoplasia and reduced β cell mass during pancreas development in mice. Here, we show that GRP94 was involved in β cell adaption and compensation (or failure) in islets from leptin receptor-deficient (db/db) mice in an age-dependent manner. GRP94-deficient cells were more susceptible to cell death induced by various diabetogenic stress conditions. We also identified a new client of GRP94, insulin-like growth factor-1 receptor (IGF-1R), a critical factor for β cell survival and function that may mediate the effect of GRP94 in the pathogenesis of diabetes. This study has identified essential functions of GRP94 in β cell failure related to diabetes.
Collapse
Affiliation(s)
- Do-Sung Kim
- Department of Surgery, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Lili Song
- Department of Surgery, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Wenyu Gou
- Department of Surgery, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Jisun Kim
- Microbiology and Immunology, Medical University of South Carolina, Charleson, SC, 29425, USA
| | - Bei Liu
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center-James, Columbus, OH, 43210, USA
| | - Hua Wei
- Department of Surgery, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Robin C Muise-Helmericks
- Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Zihai Li
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center-James, Columbus, OH, 43210, USA
| | - Hongjun Wang
- Department of Surgery, Medical University of South Carolina, Charleston, SC, 29425, USA.
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, USA.
| |
Collapse
|
20
|
Zheng J, Li S, He J, Liu H, Huang Y, Jiang X, Zhao X, Li J, Feng B, Che L, Fang Z, Xu S, Lin Y, Hua L, Zhuo Y, Wu D. A Gestational Pectin Diet Could Improve the Health of Multiparous Sows by Modulating the Gut Microbiota and Cytokine Level during Late Pregnancy. Animals (Basel) 2024; 14:1559. [PMID: 38891606 PMCID: PMC11171106 DOI: 10.3390/ani14111559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
This study aimed to investigate the effects of the dietary fiber pectin on the gut microbiota and health of parturient sows. A total of 30 parity 5-7, multiparous gestation sows (Large White × Landrace) were randomly assigned to two treatment groups after mating: Con (control, basic diet) and Pec (pectin, 3%). The sows received the two diets during gestation, and all sows were fed the same standard basic diet during lactation. The results of β-diversity showed that the composition of the gut microbiota was different in the Con and Pec groups. Compared with the sows in the Con group, the Pec sows showed a higher abundance of the gut bacteria Clostridium and Romboutsia and a lower abundance of harmful bacteria (Micrococcaceae, Coriobacteriaceae, Dorea, Actinomyces). On the other hand, the SCFA plasma concentration was increased in the Pec group, while pro-inflammatory cytokine (IL-6, IL-1β, and TNF-α) concentrations were decreased. In conclusion, the soluble dietary fiber pectin could improve the reproductive performance and health of sows by increasing the abundance of some commensal bacteria enhancing the metabolite SCFA levels and reducing the pro-inflammatory cytokine plasma levels.
Collapse
Affiliation(s)
- Jie Zheng
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| | - Shuang Li
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
- College of Bioengineering, Sichuan University of Science & Engineering, Yibin 644000, China
| | - Jiaqi He
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| | - Hao Liu
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| | - Yingyan Huang
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| | - Xuemei Jiang
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| | - Xilun Zhao
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| | - Jian Li
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| | - Bin Feng
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| | - Lianqiang Che
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| | - Zhengfeng Fang
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| | - Shengyu Xu
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| | - Yan Lin
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| | - Lun Hua
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| | - Yong Zhuo
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| | - De Wu
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| |
Collapse
|
21
|
Argyropoulou MI, Xydis V, Astrakas LG, Drougia A, Styliara EI, Kiortsis DN, Giapros V, Kanaka-Gantenbein C. Pituitary gland height evaluated with magnetic resonance imaging in premature twins: the impact of growth and sex. Pediatr Radiol 2024; 54:787-794. [PMID: 38386022 DOI: 10.1007/s00247-024-05873-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND Pituitary gland height reflects secretory activity of the hypothalamo-pituitary axis. OBJECTIVE To assess the cumulative impact of fetal growth and sex on pituitary gland height in premature twins, dissociated from prematurity. MATERIALS AND METHODS A retrospective study was conducted, assessing the pituitary gland height in 63 pairs of preterm twins, measured from T1-weighted magnetic resonance imaging (MRI). Auxological parameters, including body weight, body length, and head circumference, at birth and at the time of MRI, were used as proxies for fetal and postnatal growth, respectively. The study population was divided into two groups, using corrected age at around term equivalent as the cutoff point. Statistical analysis was performed using mixed-effects linear regression models. RESULTS When pituitary gland height was evaluated at around term equivalent, a greater pituitary gland height, suggesting a more immature hypothamo-pituitary axis, was associated with the twin exhibiting lower auxological data at birth. The same association was observed when body weight and length at MRI were used as covariants. In the group evaluated after term equivalent, a smaller pituitary gland height, suggesting a more mature hypothamo-pituitary axis, was associated with male sex. This difference was observed in twin pairs with higher average body weight at birth, and in babies exhibiting higher auxological data at MRI. CONCLUSION After isolating the effect of prematurity, at around term equivalent, pituitary gland height reflects the cumulative impact of fetal growth on the hypothalamo-pituitary axis. Subsequently, pituitary gland height shows effects of sex and of fetal and postnatal growth.
Collapse
Affiliation(s)
- Maria I Argyropoulou
- Department of Radiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, P.O. Box 1186, 45110, Ioannina, Greece.
| | - Vasileios Xydis
- Department of Radiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, P.O. Box 1186, 45110, Ioannina, Greece
| | - Loukas G Astrakas
- Department of Medical Physics, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Aikaterini Drougia
- Neonatal Intensive Care Unit, Child Health Department, Faculty of Medicine, University of Ioannina, Ioannina, Greece
| | - Effrosyni I Styliara
- Department of Radiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, P.O. Box 1186, 45110, Ioannina, Greece
| | - Dimitrios-Nikiforos Kiortsis
- Department of Radiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, P.O. Box 1186, 45110, Ioannina, Greece
| | - Vasileios Giapros
- Neonatal Intensive Care Unit, Child Health Department, Faculty of Medicine, University of Ioannina, Ioannina, Greece
| | - Christina Kanaka-Gantenbein
- Division of Endocrinology, Diabetes and Metabolism, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, "Aghia Sophia" Children's Hospital, Athens, Greece
| |
Collapse
|
22
|
Crespi BJ. Nausea, vomiting and conflict in pregnancy: The adaptive significance of Growth-Differentiation Factor 15. Evol Med Public Health 2024; 12:75-81. [PMID: 38711789 PMCID: PMC11071683 DOI: 10.1093/emph/eoae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/05/2024] [Indexed: 05/08/2024] Open
Abstract
Nausea and vomiting in pregnancy (NVP) is heritable, common and aversive, and its extreme, hyperemesis gravidarum (HG), can be highly deleterious to the mother and fetus. Recent influential studies have demonstrated that HG is caused predominantly by high levels of Growth-Differentiation Factor 15 (GDF15), a hormone produced by the placenta in substantial amounts. This work has led to calls for therapeutic modulation of this hormone to reduce GDF15 levels and ameliorate HG risk. I describe three main lines of evidence relevant to the hypothesis that GDF15 production is typically adaptive for the fetus, in the context of enhanced placental invasion, reduced rates of miscarriage and preterm birth and higher birth weight. These considerations highlight the medical implications of maternal-fetal conflict, in the context of tradeoffs between aversive symptoms during gestation, rare disorders of pregnancy with major adverse effects and moderate fitness-enhancing benefits to fetuses.
Collapse
Affiliation(s)
- Bernard J Crespi
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
23
|
Tang B, Hao Y, Wang C, Deng Z, Kou Z, Zhou H, Zhang H, Fan F, Wang K, Wang D. Biological characteristics of pregnancy in captive Yangtze finless porpoises revealed by urinary metabolomics†. Biol Reprod 2024; 110:808-818. [PMID: 38169437 PMCID: PMC11017131 DOI: 10.1093/biolre/ioad175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/20/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
The Yangtze finless porpoises (Neophocaena asiaeorientalis a.) are an endemic and critically endangered species in China. Intensive captive breeding is essential for understanding the biology of critically endangered species, especially their pregnancy characteristics, knowledge of which is crucial for effective breeding management. Urine metabolomics can reveal metabolic differences, arising from physiological changes across pregnancy stages. Therefore, we used the urinary metabolomic technology, to explore urinary metabolite changes in pregnant Yangtze finless porpoises. A total of 2281 metabolites were identified in all samples, which including organic acids and derivatives (24.45%), organoheterocyclic compounds (20.23%), benzenoids (18.05%), organic oxygen compounds (7.73%), and phenylpropanoids and polyketides (6.48%). There were 164, 387, and 522 metabolites demonstrating differential abundance during early pregnancy, mid pregnancy, and late pregnancy, respectively, from the levels observed in nonpregnancy. The levels of pregnenolone, 17α-hydroxyprogesterone, and tetrahydrocortisone were significantly higher during all pregnancy stages, indicating their important roles in fetal development. The differential metabolites between nonpregnancy and pregnancy were mainly associated with amino acid and carbohydrate metabolism. Moreover, metabolic activity varied across pregnancy stages; steroid hormone biosynthesis was predominant in early pregnancy, and amino acid biosynthesis and carbohydrate metabolism were predominant in mid pregnancy and late pregnancy, respectively. Our results provide new insights into metabolic characteristics in the Yangtze finless porpoises' urine during pregnancy, and indicate that the differential levels of urine metabolites can determine pregnancy in Yangtze finless porpoises, providing valuable information for the husbandry and management of pregnant Yangtze finless porpoises in captivity.
Collapse
Affiliation(s)
- Bin Tang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Yujiang Hao
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- National Aquatic Biological Resource Center, NABRC, Wuhan, China
| | - Chaoqun Wang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- National Aquatic Biological Resource Center, NABRC, Wuhan, China
| | - Zhengyu Deng
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- National Aquatic Biological Resource Center, NABRC, Wuhan, China
| | - Zhangbing Kou
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Haojie Zhou
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haobo Zhang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fei Fan
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- National Aquatic Biological Resource Center, NABRC, Wuhan, China
| | - Kexiong Wang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- National Aquatic Biological Resource Center, NABRC, Wuhan, China
| | - Ding Wang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- National Aquatic Biological Resource Center, NABRC, Wuhan, China
| |
Collapse
|
24
|
Hill TG, Hill DJ. The Importance of Intra-Islet Communication in the Function and Plasticity of the Islets of Langerhans during Health and Diabetes. Int J Mol Sci 2024; 25:4070. [PMID: 38612880 PMCID: PMC11012451 DOI: 10.3390/ijms25074070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Islets of Langerhans are anatomically dispersed within the pancreas and exhibit regulatory coordination between islets in response to nutritional and inflammatory stimuli. However, within individual islets, there is also multi-faceted coordination of function between individual beta-cells, and between beta-cells and other endocrine and vascular cell types. This is mediated partly through circulatory feedback of the major secreted hormones, insulin and glucagon, but also by autocrine and paracrine actions within the islet by a range of other secreted products, including somatostatin, urocortin 3, serotonin, glucagon-like peptide-1, acetylcholine, and ghrelin. Their availability can be modulated within the islet by pericyte-mediated regulation of microvascular blood flow. Within the islet, both endocrine progenitor cells and the ability of endocrine cells to trans-differentiate between phenotypes can alter endocrine cell mass to adapt to changed metabolic circumstances, regulated by the within-islet trophic environment. Optimal islet function is precariously balanced due to the high metabolic rate required by beta-cells to synthesize and secrete insulin, and they are susceptible to oxidative and endoplasmic reticular stress in the face of high metabolic demand. Resulting changes in paracrine dynamics within the islets can contribute to the emergence of Types 1, 2 and gestational diabetes.
Collapse
Affiliation(s)
- Thomas G. Hill
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - David J. Hill
- Lawson Health Research Institute, St. Joseph’s Health Care, London, ON N6A 4V2, Canada;
- Departments of Medicine, Physiology and Pharmacology, Western University, London, ON N6A 3K7, Canada
| |
Collapse
|
25
|
Ragsdale HB, Lee NR, Kuzawa CW. Evidence that highly canalized fetal traits are sensitive to intergenerational effects of maternal developmental nutrition. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 183:e24883. [PMID: 38018347 DOI: 10.1002/ajpa.24883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/03/2023] [Accepted: 11/13/2023] [Indexed: 11/30/2023]
Abstract
OBJECTIVES Maternal experiences before pregnancy predict birth outcomes, a key indicator of health trajectories, but the timing and pathways for these effects are poorly understood. Here we test the hypothesis that maternal pre-adult growth patterns predict pregnancy glucose and offspring fetal growth in Cebu, Philippines. METHODS Using multiple regression and path analysis, gestational age-adjusted birthweight and variables reflecting infancy, childhood, and post-childhood/adolescent weight gain (conditional weights) were used to predict pregnancy HbA1c and offspring birth outcomes among participants in the Cebu Longitudinal Health and Nutrition Survey. RESULTS Maternal early/mid-childhood weight gain predicted birth weight, length, and head circumference in female offspring. Late-childhood/adolescent weight gain predicted birth length, birth weight, skinfold thickness, and head circumference in female offspring, and head circumference in male offspring. Pregnancy HbA1c did not mediate relationships between maternal growth and birth size parameters. DISCUSSION In Cebu, maternal growth patterns throughout infancy, childhood, and adolescence predict fetal growth via a pathway independent of circulating glucose, with stronger impacts on female than male offspring, consistent with a role of developmental nutrition on offspring fetal growth. Notably, the strength of relationships followed a pattern opposite to what occurs in response to acute pregnancy stress, with strongest effects on head circumference and birth length and weakest on skinfolds. We speculate that developmental sensitivities are reversed for stable, long-term nutritional cues that reflect average local environments. These findings are relevant to public health and life-history theory as further evidence of developmental influences on health and resource allocation across the life course.
Collapse
Affiliation(s)
- Haley B Ragsdale
- Department of Anthropology, Northwestern University, Evanston, Illinois, USA
| | - Nanette R Lee
- USC-Office of Population Studies Foundation, University of San Carlos, Cebu, Philippines
| | - Christopher W Kuzawa
- Department of Anthropology, Northwestern University, Evanston, Illinois, USA
- Institute for Policy Research, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
26
|
Yi Y, Wang T, Xu W, Zhang SH. Epigenetic modifications of placenta in women with gestational diabetes mellitus and their offspring. World J Diabetes 2024; 15:378-391. [PMID: 38591094 PMCID: PMC10999040 DOI: 10.4239/wjd.v15.i3.378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/30/2023] [Accepted: 02/06/2024] [Indexed: 03/15/2024] Open
Abstract
Gestational diabetes mellitus (GDM) is a pregnancy-related complication characterized by abnormal glucose metabolism in pregnant women and has an important impact on fetal development. As a bridge between the mother and the fetus, the placenta has nutrient transport functions, endocrine functions, etc., and can regulate placental nutrient transport and fetal growth and development according to maternal metabolic status. Only by means of placental transmission can changes in maternal hyperglycemia affect the fetus. There are many reports on the placental pathophysiological changes associated with GDM, the impacts of GDM on the growth and development of offspring, and the prevalence of GDM in offspring after birth. Placental epigenetic changes in GDM are involved in the programming of fetal development and are involved in the pathogenesis of later chronic diseases. This paper summarizes the effects of changes in placental nutrient transport function and hormone secretion levels due to maternal hyperglycemia and hyperinsulinemia on the development of offspring as well as the participation of changes in placental epigenetic modifications due to maternal hyperglycemia in intrauterine fetal programming to promote a comprehensive understanding of the impacts of placental epigenetic modifications on the development of offspring from patients with GDM.
Collapse
Affiliation(s)
- Yan Yi
- Department of Ultrasonography, The First Affiliated Hospital of Yangtze University, Jingzhou 434000, Hubei Province, China
| | - Tao Wang
- Clinical Molecular Immunology Center, Yangtze University, Jingzhou 434023, Hubei Province, China
| | - Wei Xu
- Department of Ultrasonography, The First Affiliated Hospital of Yangtze University, Jingzhou 434000, Hubei Province, China
| | - San-Hong Zhang
- Department of Pediatric, Xiantao First People’s Hospital, Xiantao 433000, Hubei Province, China
| |
Collapse
|
27
|
Lu X, Shi Z, Jiang L, Zhang S. Maternal gut microbiota in the health of mothers and offspring: from the perspective of immunology. Front Immunol 2024; 15:1362784. [PMID: 38545107 PMCID: PMC10965710 DOI: 10.3389/fimmu.2024.1362784] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/28/2024] [Indexed: 04/17/2024] Open
Abstract
Due to the physiological alteration during pregnancy, maternal gut microbiota changes following the metabolic processes. Recent studies have revealed that maternal gut microbiota is closely associated with the immune microenvironment in utero during pregnancy and plays a vital role in specific pregnancy complications, including preeclampsia, gestational diabetes, preterm birth and recurrent miscarriages. Some other evidence has also shown that aberrant maternal gut microbiota increases the risk of various diseases in the offspring, such as allergic and neurodevelopmental disorders, through the immune alignment between mother and fetus and the possible intrauterine microbiota. Probiotics and the high-fiber diet are effective inventions to prevent mothers and fetuses from diseases. In this review, we summarize the role of maternal gut microbiota in the development of pregnancy complications and the health condition of future generations from the perspective of immunology, which may provide new therapeutic strategies for the health management of mothers and offspring.
Collapse
Affiliation(s)
- Xiaowen Lu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction, Management of Zhejiang Province, Hangzhou, China
| | - Zhan Shi
- Department of Obstetrics and Gynecology, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
| | - Lingling Jiang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction, Management of Zhejiang Province, Hangzhou, China
| | - Songying Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction, Management of Zhejiang Province, Hangzhou, China
| |
Collapse
|
28
|
Yen IW, Kuo CH, Lin MW, Tai YY, Chen KY, Chen SC, Lin CH, Hsu CY, Lee CN, Lin SY, Li HY, Fan KC. Advanced maternal age-related clustering of metabolic abnormalities is associated with risks of adverse pregnancy outcomes. J Formos Med Assoc 2024; 123:325-330. [PMID: 38097427 DOI: 10.1016/j.jfma.2023.11.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 03/16/2024] Open
Abstract
AIMS Advanced maternal age (AMA) is correlated with higher risk of adverse pregnancy outcomes while the pathophysiology remains unclear. Our study aimed to investigate whether AMA is linked to the clustering of metabolic abnormalities, which in turn is associated with an increased risk of adverse pregnancy outcomes. METHOD A total of 857 pregnant woman were recruited in a prospective cohort at National Taiwan University Hospital, from November 2013 to April 2018. Metabolic abnormalities during pregnancy were defined as following: fasting plasma glucose ≥92 mg/dl, body mass index (BMI) ≥24 kg/m2, plasma high-density lipoprotein cholesterol <50 mg/dl, hyper-triglyceridemia (≥140 mg/dl in the first trimester or ≥220 mg/dl in the second trimester), and blood pressure ≥130/85 mmHg. RESULT Incidence of large for gestational age (LGA), primary caesarean section (CS), and the presence of any adverse pregnancy outcome increased with age. The advanced-age group tended to have more metabolic abnormalities in both the first and the second trimesters. There was a significant association between the number of metabolic abnormalities in the first and the second trimesters and the incidence of LGA, gestational hypertension or preeclampsia, primary CS, preterm birth, and the presence of any adverse pregnancy outcome, adjusted for maternal age. CONCLUSION AMA is associated with clustering of metabolic abnormalities during pregnancy, and clustering of metabolic abnormalities is correlated with increased risk of adverse pregnancy outcomes.
Collapse
Affiliation(s)
- I-Weng Yen
- Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, No. 2, Sec. 1, Shengyi Rd., Zhubei City, Hsinchu County, Taiwan; National Taiwan University College of Medicine Graduate Institute of Clinical Medicine, No. 1, Section 1, Ren'ai Road, Taipei, Taiwan
| | - Chun-Heng Kuo
- National Taiwan University College of Medicine Graduate Institute of Clinical Medicine, No. 1, Section 1, Ren'ai Road, Taipei, Taiwan; Department of Internal Medicine, Fu Jen Catholic University Hospital, Fu Jen Catholic University, No. 69, Guizi Rd, New Taipei City, Taiwan
| | - Ming-Wei Lin
- Department of Obstetrics and Gynecology, National Taiwan University Hospital Hsin-Chu Branch, No. 2, Sec. 1, Shengyi Rd., Zhubei City, Hsinchu County, Taiwan
| | - Yi-Yun Tai
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, No.7, Zhongshan S. Rd, Taipei, Taiwan
| | - Kuan-Yu Chen
- Ansn Clinic, No. 128, Zhongzheng Road, East District, Hsinchu City, Taiwan
| | - Szu-Chieh Chen
- Good Liver Clinic, 9F., No.30, Gongyuan Road, Taipei, Taiwan
| | - Chia-Hung Lin
- National Taiwan University College of Medicine Graduate Institute of Clinical Medicine, No. 1, Section 1, Ren'ai Road, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital, No.7, Zhongshan S. Rd, Taipei, Taiwan
| | - Chih-Yao Hsu
- Department of Internal Medicine, Taipei City Hospital, Ren-Ai Branch, No.10, Section 4, Ren'ai Road, Taipei, Taiwan
| | - Chien-Nan Lee
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, No.7, Zhongshan S. Rd, Taipei, Taiwan
| | - Shin-Yu Lin
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, No.7, Zhongshan S. Rd, Taipei, Taiwan
| | - Hung-Yuan Li
- Department of Internal Medicine, National Taiwan University Hospital, No.7, Zhongshan S. Rd, Taipei, Taiwan
| | - Kang-Chih Fan
- Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, No. 2, Sec. 1, Shengyi Rd., Zhubei City, Hsinchu County, Taiwan; National Taiwan University College of Medicine Graduate Institute of Clinical Medicine, No. 1, Section 1, Ren'ai Road, Taipei, Taiwan.
| |
Collapse
|
29
|
Chen M, Zhao Y, Li S, Chang Z, Liu H, Zhang D, Wang S, Zhang X, Wang J. Maternal Malic Acid May Ameliorate Oxidative Stress and Inflammation in Sows through Modulating Gut Microbiota and Host Metabolic Profiles during Late Pregnancy. Antioxidants (Basel) 2024; 13:253. [PMID: 38397851 PMCID: PMC10886295 DOI: 10.3390/antiox13020253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/25/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Sows suffer oxidative stress and inflammation induced by metabolic burden during late pregnancy, which negatively regulates reproductive and lactating performances. We previously found that L-malic acid (MA) alleviated oxidative stress and inflammation and improved reproductive performances in sows. However, the mechanism underlying the MA's positive effects remains unexplored. Here, twenty Large White × Landrace sows with similar parity were randomly divided into two groups and fed with a basal diet or a diet supplemented with 2% L-malic acid complex from day 85 of gestation to delivery. The gut microbiome, fecal short-chain fatty acids, and untargeted serum metabolome were determined. Results showed that Firmicutes, Bacteroidota, and Spirochaetota were the top abundant phyla identified in late pregnancy for sows. Maternal MA supplementation modulated the composition but not the richness and diversity of gut microbiota during late pregnancy. Correlation analysis between gut microbiota and antioxidant capacity (or inflammation indicators) revealed that unclassified_f_Ruminococcaceae, unclassified_f_Lachnospiraceae, UCG-002, norank_f_norank_o_RF3, and Lactobacillus might play a role in anti-oxidation, and Lachnospiraceae_XPB1014_group, Lachnospiraceae_NK4A136_group, UCG-002, unclassified_f_Ruminococcaceae, Candidatus_Soleaferrea, norank_f_UCG-010, norank_f_norank_o_RF39, and unclassified_f_Lachnospiraceae might be involved in the anti-inflammatory effect. The improved antioxidant and inflammation status induced by MA might be independent of short chain fatty acid changes. In addition, untargeted metabolomics analysis exhibited different metabolic landscapes of sows in the MA group from in the control group and revealed the contribution of modified amino acid and lipid metabolism to the improved antioxidant capacity and inflammation status. Notably, correlation results of gut microbiota and serum metabolites, as well as serum metabolites and antioxidant capacity (or inflammation indicators), demonstrated that differential metabolism was highly related to the fecal microorganisms and antioxidant or inflammation indicators. Collectively, these data demonstrated that a maternal dietary supply of MA can ameliorate oxidative stress and inflammation in sows through modulating gut microbiota and host metabolic profiles during late pregnancy.
Collapse
Affiliation(s)
- Meixia Chen
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (H.L.); (D.Z.); (S.W.)
| | - Ying Zhao
- Precision Livestock and Nutrition Unit, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium;
| | - Shuang Li
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China;
| | - Zhuo Chang
- Beijing General Station of Animal Husbandry, Beijing 100107, China;
| | - Hui Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (H.L.); (D.Z.); (S.W.)
| | - Dongyan Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (H.L.); (D.Z.); (S.W.)
| | - Sixin Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (H.L.); (D.Z.); (S.W.)
| | - Xin Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| | - Jing Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (H.L.); (D.Z.); (S.W.)
| |
Collapse
|
30
|
Sleumer B, van Faassen M, Vos MJ, den Besten G, Kema IP, van de Merbel NC. Simultaneous quantification of the 22-kDa isoforms of human growth hormone 1 and 2 in human plasma by multiplexed immunocapture and LC-MS/MS. Clin Chim Acta 2024; 554:117736. [PMID: 38142804 DOI: 10.1016/j.cca.2023.117736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/30/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
An LC-MS/MS method is presented for the simultaneous quantification of two structurally closely related protein biomarker isoforms, the 22-kDa isoforms of human growth hormone 1 and human growth hormone 2, in human plasma. It is based on multiplexed immunocapture using two monoclonal antibodies immobilized on magnetic beads, tryptic digestion and quantification of two specific signature peptides plus an additional peptide for estimation of total growth hormone related concentrations. A full validation according to international guidelines was performed across the clinically relevant concentration ranges of 0.5 to 50 ng/mL for growth hormone 1, and 2 to 50 ng/mL for growth hormone 2 and demonstrated satisfactory method performance in terms of accuracy, precision, stability and absence of interference. The method's applicability for routine analysis and its ability to effectively distinguish between GH1 and GH2 was demonstrated by the analysis of plasma samples from pregnant individuals to study the changes in growth hormone levels during pregnancy.
Collapse
Affiliation(s)
- Bas Sleumer
- ICON Bioanalytical Laboratories, Amerikaweg 18, 9407 TK Assen, the Netherlands; Department of Analytical Biochemistry University of Groningen, A. Deusinglaan 1, 9700 AV Groningen, the Netherlands; Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, EA61, P.O. Box 30.001, 9700 RB Groningen, the Netherlands
| | - Martijn van Faassen
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, EA61, P.O. Box 30.001, 9700 RB Groningen, the Netherlands
| | - Michel J Vos
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, EA61, P.O. Box 30.001, 9700 RB Groningen, the Netherlands
| | - Gijs den Besten
- Department of Clinical Chemistry, Isala, Dr. Van Heesweg 2, 8025 AB Zwolle, the Netherlands
| | - Ido P Kema
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, EA61, P.O. Box 30.001, 9700 RB Groningen, the Netherlands
| | - Nico C van de Merbel
- ICON Bioanalytical Laboratories, Amerikaweg 18, 9407 TK Assen, the Netherlands; Department of Analytical Biochemistry University of Groningen, A. Deusinglaan 1, 9700 AV Groningen, the Netherlands.
| |
Collapse
|
31
|
Vlachou F, Iakovou D, Daru J, Khan R, Pepas L, Quenby S, Iliodromiti S. Fetal loss and long-term maternal morbidity and mortality: A systematic review and meta-analysis. PLoS Med 2024; 21:e1004342. [PMID: 38335157 PMCID: PMC10857720 DOI: 10.1371/journal.pmed.1004342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 01/03/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Evidence suggests common pathways between pregnancy losses and subsequent long-term maternal morbidity, rendering pregnancy complications an early chronic disease marker. There is a plethora of studies exploring associations between miscarriage and stillbirth with long-term adverse maternal health; however, these data are inconclusive. METHODS AND FINDINGS We systematically searched MEDLINE, EMBASE, AMED, BNI, CINAHL, and the Cochrane Library with relevant keywords and MeSH terms from inception to June 2023 (no language restrictions). We included studies exploring associations between stillbirth or miscarriage and incidence of cardiovascular, malignancy, mental health, other morbidities, and all-cause mortality in women without previous pregnancy loss. Studies reporting short-term morbidity (within a year of loss), case reports, letters, and animal studies were excluded. Study selection and data extraction were performed by 2 independent reviewers. Risk of bias was assessed using the Newcastle Ottawa Scale (NOS) and publication bias with funnel plots. Subgroup analysis explored the effect of recurrent losses on adverse outcomes. Statistical analysis was performed using an inverse variance random effects model and results are reported as risk ratios (RRs) with 95% confidence intervals (CIs) and prediction intervals (PIs) by combining the most adjusted RR, odds ratios (ORs) and hazard ratios (HRs) under the rare outcome assumption. We included 56 observational studies, including 45 in meta-analysis. There were 1,119,815 women who experienced pregnancy loss of whom 951,258 had a miscarriage and 168,557 stillbirth, compared with 11,965,574 women without previous loss. Women with a history of stillbirth had a greater risk of ischaemic heart disease (IHD) RR 1.56, 95% CI [1.30, 1.88]; p < 0.001, 95% PI [0.49 to 5.15]), cerebrovascular (RR 1.71, 95% CI [1.44, 2.03], p < 0.001, 95% PI [1.92, 2.42]), and any circulatory/cardiovascular disease (RR 1.86, 95% CI [1.01, 3.45], p = 0.05, 95% PI [0.74, 4.10]) compared with women without pregnancy loss. There was no evidence of increased risk of cardiovascular disease (IHD: RR 1.11, 95% CI [0.98, 1.27], 95% PI [0.46, 2.76] or cerebrovascular: RR 1.01, 95% CI [0.85, 1.21]) in women experiencing a miscarriage. Only women with a previous stillbirth were more likely to develop type 2 diabetes mellitus (T2DM) (RR: 1.16, 95% CI [1.07 to 2.26]; p < 0.001, 95% PI [1.05, 1.35]). Women with a stillbirth history had an increased risk of developing renal morbidities (RR 1.97, 95% CI [1.51, 2.57], p < 0.001, 95% [1.06, 4.72]) compared with controls. Women with a history of stillbirth had lower risk of breast cancer (RR: 0.80, 95% CI [0.67, 0.96], p-0.02, 95% PI [0.72, 0.93]). There was no evidence of altered risk of other malignancies in women experiencing pregnancy loss compared to controls. There was no evidence of long-term mental illness risk in women with previous pregnancy losses (stillbirth: RR 1.90, 95% CI [0.93, 3.88], 95% PI [0.34, 9.51], miscarriage: RR 1.78, 95% CI [0.88, 3.63], 95% PI [1.13, 4.16]). The main limitations include the potential for confounding due to use of aggregated data with variable degrees of adjustment. CONCLUSIONS Our results suggest that women with a history of stillbirth have a greater risk of future cardiovascular disease, T2DM, and renal morbidities. Women experiencing miscarriages, single or multiple, do not seem to have an altered risk.
Collapse
Affiliation(s)
- Florentia Vlachou
- Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Whitechapel, London, United Kingdom
| | - Despoina Iakovou
- Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Whitechapel, London, United Kingdom
| | - Jahnavi Daru
- Women’s Health Research Unit, Institute for Population Health, Queen Mary University of London, London, United Kingdom
| | - Rehan Khan
- Royal London Hospital, Department of Obstetrics & Gynaecology, Barts Health NHS Trust, London, United Kingdom
| | - Litha Pepas
- Barts Centre of Reproductive Medicine, Barts NHS Trust, London, United Kingdom
| | - Siobhan Quenby
- Division of Reproductive Health, Centre for Early Life, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Stamatina Iliodromiti
- Women’s Health Research Unit, Institute for Population Health, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
32
|
Huang L, Li Y, Tang R, Yang P, Zhuo Y, Jiang X, Che L, Lin Y, Xu S, Li J, Fang Z, Zhao X, Li H, Yang M, Feng B, Wu D, Hua L. Bile acids metabolism in the gut-liver axis mediates liver injury during lactation. Life Sci 2024; 338:122380. [PMID: 38142738 DOI: 10.1016/j.lfs.2023.122380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
AIMS The obesity epidemic, especially in pregnant women, linked to a higher risk of liver diseases. Bile acids (BAs) are known to participate in liver metabolism, but this function during obesogenic reproductive process remains largely uncertain. The study aims to identify whether a high-fat diet (HFD) during pregnancy negatively disturbs liver metabolism and the potential role of BAs and gut microbiota (GM)in a sow model. MAIN METHODS Reproductive (RP) or non-reproductive (NRP) sows were fed a 15 % HFD containing compound oil. Body condition, blood parameters, and BAs levels/profile during gestation and lactation were monitored. The tissues and colonic GM were collected after euthanasia at the end of lactation. HepG2 hepatocytes were used to test the effects of BAs on liver damage and the mechanism. KEY FINDINGS Reproductive sows fed an HFD (HF-RP) experienced increased weight loss, and elevated plasma non-esterified fatty acid (NEFA) during lactation, consistent with exacerbated lipolysis, aggravating the risk of liver damage. HF-RP sows exhibited an enlarged BAs pool size and alterations in composition (higher levels of CDCA and LCA species) along with a drastic change in the GM (increased Firmicutes/Bacteroidetes ratio and declined Lactobacillus abundance). Furthermore, the liver FXR-SHP pathway, BAs synthesis and transport underwent adaptive regulation to sustain the BAs homeostasis and hepatic lipid metabolism. CDCA alleviated endoplasmic reticulum (ER) stress induced by palmitic acid via FXR pathway, in HepG2 cells. SIGNIFICANCE Lactation BAs metabolism signal in gut-liver axis coordinated the risk of liver damage induced by exacerbated lipolysis in obesogenic pregnancy.
Collapse
Affiliation(s)
- Long Huang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Yingjie Li
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Rui Tang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Pu Yang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Yong Zhuo
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Xuemei Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Lianqiang Che
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Yan Lin
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Shengyu Xu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Jian Li
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Zhengfeng Fang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Xilun Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Hua Li
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Min Yang
- Pet Nutrition and Health Research Center, Chengdu Agricultural College, Chengdu 611130, PR China
| | - Bin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - De Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China.
| | - Lun Hua
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China.
| |
Collapse
|
33
|
Wang Y, Yuan Y, Shen S, Ge Z, Zhu D, Bi Y. Placenta-derived exosomes exacerbate beta cell dysfunction in gestational diabetes mellitus through delivery of miR-320b. Front Endocrinol (Lausanne) 2024; 14:1282075. [PMID: 38260139 PMCID: PMC10800463 DOI: 10.3389/fendo.2023.1282075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/07/2023] [Indexed: 01/24/2024] Open
Abstract
Recent studies have shown placenta-derived exosome (pdE) acts as an important mediator of organ-to-organ interplay regulating maternal metabolic alterations, however, the function and mechanisms of placental exosomes on pancreatic β-cell maladaptation in gestational diabetes mellitus (GDM) remain unclear. The purpose of this investigation was to ascertain how placental exosomes affected the β-cell dysfunction associated with the onset of GDM. Exosomes were isolated from chorionic villi explants of pregnant mice and humans with normal glucose tolerance (NGT) and GDM. The effects of pdE from GDM on glucose tolerance in vivo and islets function in vitro were determined. Isolated islets from mice fed on the chow diet displayed an increase in apoptosis and observed their glucose-stimulated insulin secretion (GSIS) greatly diminished by PdE from GDM mice. Mice that accepted PdE from mice with GDM possessed glucose intolerance.Based on miRNA microarray assay and bioinformatics analysis from human placental exosomes, we identified miR-320b selectively enriched in PdE secreted in GDM compared with NGT. Importantly, the level of placental miR-320b was positively correlated with the 1h-glucose and 2-h glucose of a 75 g oral glucose tolerance test (OGTT) during human pregnancies. Furthermore, miR-320 overexpression attributed to impaired insulin secretion and increased apoptosis in MIN6 cells and islets obtained from mice with normal insulin sensitivity. This study firstly proposed that altered miRNAs in pdE contribute to defective adaptation of β cells during pregnancy, which expands the knowledge of GDM pathogenesis. Exosomes from the placenta may be an emerging therapeutic target for GDM.
Collapse
Affiliation(s)
- Yanmei Wang
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Yue Yuan
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Shanmei Shen
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Zhijuan Ge
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Dalong Zhu
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Yan Bi
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| |
Collapse
|
34
|
Amato KR, Pradhan P, Mallott EK, Shirola W, Lu A. Host-gut microbiota interactions during pregnancy. Evol Med Public Health 2024; 12:7-23. [PMID: 38288320 PMCID: PMC10824165 DOI: 10.1093/emph/eoae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/07/2023] [Indexed: 01/31/2024] Open
Abstract
Mammalian pregnancy is characterized by a well-known suite of physiological changes that support fetal growth and development, thereby positively affecting both maternal and offspring fitness. However, mothers also experience trade-offs between current and future maternal reproductive success, and maternal responses to these trade-offs can result in mother-offspring fitness conflicts. Knowledge of the mechanisms through which these trade-offs operate, as well as the contexts in which they operate, is critical for understanding the evolution of reproduction. Historically, hormonal changes during pregnancy have been thought to play a pivotal role in these conflicts since they directly and indirectly influence maternal metabolism, immunity, fetal growth and other aspects of offspring development. However, recent research suggests that gut microbiota may also play an important role. Here, we create a foundation for exploring this role by constructing a mechanistic model linking changes in maternal hormones, immunity and metabolism during pregnancy to changes in the gut microbiota. We posit that marked changes in hormones alter maternal gut microbiome composition and function both directly and indirectly via impacts on the immune system. The gut microbiota then feeds back to influence maternal immunity and metabolism. We posit that these dynamics are likely to be involved in mediating maternal and offspring fitness as well as trade-offs in different aspects of maternal and offspring health and fitness during pregnancy. We also predict that the interactions we describe are likely to vary across populations in response to maternal environments. Moving forward, empirical studies that combine microbial functional data and maternal physiological data with health and fitness outcomes for both mothers and infants will allow us to test the evolutionary and fitness implications of the gestational microbiota, enriching our understanding of the ecology and evolution of reproductive physiology.
Collapse
Affiliation(s)
- Katherine R Amato
- Department of Anthropology, Northwestern University, Evanston, IL 60208, USA
| | - Priyanka Pradhan
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Elizabeth K Mallott
- Department of Anthropology, Northwestern University, Evanston, IL 60208, USA
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Wesley Shirola
- Department of Psychology, Northwestern University, Evanston, IL 60208, USA
| | - Amy Lu
- Department of Anthropology, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
35
|
Zangeneh FZ, Hantoushzadeh S. The physiological basis with uterine myometrium contractions from electro-mechanical/hormonal myofibril function to the term and preterm labor. Heliyon 2023; 9:e22259. [PMID: 38034762 PMCID: PMC10687101 DOI: 10.1016/j.heliyon.2023.e22259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 12/02/2023] Open
Abstract
Background Most labor-related problems can be attributed to the uterine myometrium muscle, as this irritable tissue must suppress its irritability potential during pregnancy. Unfortunately, fewer studies have investigated the causes of this lack of suppression in preterm labor. Methods We conducted a scoping narrative review using three online databases (PubMed, Scopus, and Science Direct). Results The review focused on ion channel functions in the myometrium, including sodium channels [Na K-ATPase, Na-activated K channels (Slo2), voltage-gated (SCN) Na+, Na+ leaky channels, nonselective (NALCN) channels], potassium channels [KATP (Kir6) channels, voltage-dependent K channels (Kv4, Kv7, and Kv11), twin-pore domain K channels (TASK, TREK), inward rectifier Kir7.1, Ca2+-activated K+ channels with large (KCNMA1, Slo1), small (KCNN1-3), intermediate (KCNN4) conductance], and calcium channels [L-Type and T-type Ca2+ channels, calcium-activated chloride channels (CaCC)], as well as hyperpolarization-activated cation channels. These channels' functions are associated with hormonal effects such as oxytocin, estrogen/progesterone, and local prostaglandins. Conclusion Electromechanical/hormonal activity and environmental autocrine factors can serve as the primary practical basis for premature uterine contractions in term/preterm labor. Our findings highlight the significance of.1.the amplitude rate of hyperpolarization and the frequency of contractions,2.changes in the estrogen/progesterone ratio,3.Prostaglandins E/F involvement in initiating potential spikes and the increase of intracytoplasmic Ca2+.This narrative study highlights the range of hyperpolarization and the frequency of myometrium contractions as crucial factors. The synchronized complex progress of estrogen to progesterone ratio and prostaglandins plays a significant role in initiating potential spikes and increasing intracytoplasmic Ca2+, which further influences the contraction process during labor. Insights into myometrium physiology gained from this study may pave the way for much-needed new treatments to reduce problems associated with normal and preterm labor.
Collapse
Affiliation(s)
- Farideh Zafari Zangeneh
- Vali-E-Asr Reproductive Health Research Center, Family Health Research Institute, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Sedighe Hantoushzadeh
- Department of Fetal-Maternal Medicine, Tehran University of Medical Sciences, Imam Khomeini Hospital, Tehran, Iran
| |
Collapse
|
36
|
Ron I, Mdah R, Zemet R, Ulman RY, Rathaus M, Brandt B, Mazaki-Tovi S, Hemi R, Barhod E, Tirosh A. Adipose tissue-derived FABP4 mediates glucagon-stimulated hepatic glucose production in gestational diabetes. Diabetes Obes Metab 2023; 25:3192-3201. [PMID: 37449442 DOI: 10.1111/dom.15214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/14/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023]
Abstract
AIMS One of the most common complications of pregnancy is gestational diabetes mellitus (GDM), which may result in significant health threats of the mother, fetus and the newborn. Fatty acid-binding protein 4 (FABP4) is an adipokine that regulates glucose homeostasis by promoting glucose production and liver insulin resistance in mouse models. FABP4 levels are increased in GDM and correlates with maternal indices of insulin resistance, with a rapid decline post-partum. We therefore aimed to determine the tissue origin of elevated circulating FABP4 levels in GDM and to assess its potential contribution in promoting glucagon-induced hepatic glucose production. MATERIALS AND METHODS FABP4 protein and gene expression was determined in biopsies from placenta, subcutaneous (sWAT) and visceral (vWAT) white adipose tissues from GDM and normoglycaemic pregnant women. FABP4 differential contribution in glucagon-stimulated hepatic glucose production was tested in conditioned media before and after its immune clearance. RESULTS We showed that FABP4 is expressed in placenta, sWAT and vWAT of pregnant women at term, with a significant increase in its secretion from vWAT of women with GDM compared with normoglycaemic pregnant women. Neutralizing FABP4 from both normoglycaemic pregnant women and GDM vWAT secretome, resulted in a decrease in glucagon-stimulated hepatic glucose production. CONCLUSIONS This study provides new insights into the role of adipose tissue-derived FABP4 in GDM, highlighting this adipokine, as a potential co-activator of glucagon-stimulated hepatic glucose production during pregnancy.
Collapse
Affiliation(s)
- Idit Ron
- The Dalia and David Arabov Endocrinology and Diabetes Research Center, Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Center, Tel-Hashomer, Israel
| | - Ragad Mdah
- The Dalia and David Arabov Endocrinology and Diabetes Research Center, Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Center, Tel-Hashomer, Israel
- Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Roni Zemet
- Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Department of Obstetrics and Gynecology, Sheba Medical Center, Tel-Hashomer, Israel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Rakefet Yoeli Ulman
- Department of Obstetrics and Gynecology, Sheba Medical Center, Tel-Hashomer, Israel
| | - Moran Rathaus
- The Dalia and David Arabov Endocrinology and Diabetes Research Center, Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Center, Tel-Hashomer, Israel
| | - Benny Brandt
- Department of Obstetrics and Gynecology, Sheba Medical Center, Tel-Hashomer, Israel
- Department of Gynecologic Oncology, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shali Mazaki-Tovi
- Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Department of Obstetrics and Gynecology, Sheba Medical Center, Tel-Hashomer, Israel
| | - Rina Hemi
- The Dalia and David Arabov Endocrinology and Diabetes Research Center, Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Center, Tel-Hashomer, Israel
| | - Ehud Barhod
- The Dalia and David Arabov Endocrinology and Diabetes Research Center, Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Center, Tel-Hashomer, Israel
| | - Amir Tirosh
- The Dalia and David Arabov Endocrinology and Diabetes Research Center, Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Center, Tel-Hashomer, Israel
- Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
37
|
Page L, Younge N, Freemark M. Hormonal Determinants of Growth and Weight Gain in the Human Fetus and Preterm Infant. Nutrients 2023; 15:4041. [PMID: 37764824 PMCID: PMC10537367 DOI: 10.3390/nu15184041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/13/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
The factors controlling linear growth and weight gain in the human fetus and newborn infant are poorly understood. We review here the changes in linear growth, weight gain, lean body mass, and fat mass during mid- and late gestation and the early postnatal period in the context of changes in the secretion and action of maternal, placental, fetal, and neonatal hormones, growth factors, and adipocytokines. We assess the effects of hormonal determinants on placental nutrient delivery and the impact of preterm delivery on hormone expression and postnatal growth and metabolic function. We then discuss the effects of various maternal disorders and nutritional and pharmacologic interventions on fetal and perinatal hormone and growth factor production, growth, and fat deposition and consider important unresolved questions in the field.
Collapse
Affiliation(s)
- Laura Page
- Division of Pediatric Endocrinology, Duke University Medical Center, Durham, NC 27710, USA;
| | - Noelle Younge
- Neonatology, Duke University Medical Center, Durham, NC 27710, USA;
| | - Michael Freemark
- Division of Pediatric Endocrinology, Duke University Medical Center, Durham, NC 27710, USA;
- The Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
38
|
Diniz MS, Grilo LF, Tocantins C, Falcão-Pires I, Pereira SP. Made in the Womb: Maternal Programming of Offspring Cardiovascular Function by an Obesogenic Womb. Metabolites 2023; 13:845. [PMID: 37512552 PMCID: PMC10386510 DOI: 10.3390/metabo13070845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/02/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Obesity incidence has been increasing at an alarming rate, especially in women of reproductive age. It is estimated that 50% of pregnancies occur in overweight or obese women. It has been described that maternal obesity (MO) predisposes the offspring to an increased risk of developing many chronic diseases in an early stage of life, including obesity, type 2 diabetes, and cardiovascular disease (CVD). CVD is the main cause of death worldwide among men and women, and it is manifested in a sex-divergent way. Maternal nutrition and MO during gestation could prompt CVD development in the offspring through adaptations of the offspring's cardiovascular system in the womb, including cardiac epigenetic and persistent metabolic programming of signaling pathways and modulation of mitochondrial metabolic function. Currently, despite diet supplementation, effective therapeutical solutions to prevent the deleterious cardiac offspring function programming by an obesogenic womb are lacking. In this review, we discuss the mechanisms by which an obesogenic intrauterine environment could program the offspring's cardiovascular metabolism in a sex-divergent way, with a special focus on cardiac mitochondrial function, and debate possible strategies to implement during MO pregnancy that could ameliorate, revert, or even prevent deleterious effects of MO on the offspring's cardiovascular system. The impact of maternal physical exercise during an obesogenic pregnancy, nutritional interventions, and supplementation on offspring's cardiac metabolism are discussed, highlighting changes that may be favorable to MO offspring's cardiovascular health, which might result in the attenuation or even prevention of the development of CVD in MO offspring. The objectives of this manuscript are to comprehensively examine the various aspects of MO during pregnancy and explore the underlying mechanisms that contribute to an increased CVD risk in the offspring. We review the current literature on MO and its impact on the offspring's cardiometabolic health. Furthermore, we discuss the potential long-term consequences for the offspring. Understanding the multifaceted effects of MO on the offspring's health is crucial for healthcare providers, researchers, and policymakers to develop effective strategies for prevention and intervention to improve care.
Collapse
Affiliation(s)
- Mariana S Diniz
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-531 Coimbra, Portugal
- Ph.D. Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3004-531 Coimbra, Portugal
| | - Luís F Grilo
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-531 Coimbra, Portugal
- Ph.D. Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3004-531 Coimbra, Portugal
| | - Carolina Tocantins
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-531 Coimbra, Portugal
- Ph.D. Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3004-531 Coimbra, Portugal
| | - Inês Falcão-Pires
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4099-002 Porto, Portugal
| | - Susana P Pereira
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-531 Coimbra, Portugal
- Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sports, University of Porto, 4200-450 Porto, Portugal
| |
Collapse
|
39
|
Newman C, Rabbitt L, Ero A, Dunne FP. Focus on Metformin: Its Role and Safety in Pregnancy and Beyond. Drugs 2023:10.1007/s40265-023-01899-0. [PMID: 37354354 PMCID: PMC10322786 DOI: 10.1007/s40265-023-01899-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2023] [Indexed: 06/26/2023]
Abstract
Metformin is used worldwide in the treatment of type 2 diabetes and has been used in the treatment of diabetes in pregnancy since the 1970s. It is highly acceptable to patients due to its ease of administration, cost and adverse effect profile. It is effective in reducing macrosomia, large-for-gestational-age infants and reduces maternal weight gain. Despite its many advantages, metformin has been associated with reductions in foetal size and has been associated with an increase in infants born small-for-gestational-age in certain cohorts. In this article, we review its efficacy, adverse effects and long-term follow-up before, during and after pregnancy for both mother and infant. We also evaluate the other forms of treatment for gestational diabetes, including oral therapies, insulin therapy and emerging treatments.
Collapse
Affiliation(s)
- Christine Newman
- Centre for Diabetes, Endocrinology and Metabolism, Galway University Hospital, Galway, Ireland.
- Diabetes Collaborative Clinical Trial Network, Clinical Research Facility, University of Galway, Galway, Ireland.
| | - Louise Rabbitt
- Department of Clinical Pharmacology and Therapeutics, Galway University Hospital, Galway, Ireland
- Discipline of Pharmacology and Therapeutics, School of Medicine, University of Galway, Galway, Ireland
| | - Adesuwa Ero
- Centre for Diabetes, Endocrinology and Metabolism, Galway University Hospital, Galway, Ireland
| | - Fidelma P Dunne
- Centre for Diabetes, Endocrinology and Metabolism, Galway University Hospital, Galway, Ireland
- Diabetes Collaborative Clinical Trial Network, Clinical Research Facility, University of Galway, Galway, Ireland
| |
Collapse
|
40
|
Gao T, Chen X, Liu Z, Diao X. Effects of soybean hulls and corn stalk on the performance, colostrum composition and faecal microflora of pregnant sows. J Anim Physiol Anim Nutr (Berl) 2023; 107:485-494. [PMID: 35514035 DOI: 10.1111/jpn.13721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 02/15/2022] [Accepted: 04/10/2022] [Indexed: 11/29/2022]
Abstract
This study was conducted to investigate the effects of different supplementation levels of soybean hulls and corn stalk in high-fibre gestation diet on the performance, colostrum composition and faecal microbiota of sows. Forty first-farrowing Danish Landrace sows were randomly assigned to five dietary treatment groups. The control (CON, 3.15% crude fibre) group was fed a normal diet, and the treatment groups were soybean hulls low-fibre (SHL, 6.00% crude fibre) group, soybean hulls high-fibre (SHH, 8.00% crude fibre) group, corn stalk low-fibre (CSL, 6.00% crude fibre) group and corn stalk high-fibre (CSH, 8.00% crude fibre) group. The weaning weight of the litter and the average daily feed intake of the lactating sows in the SHL, SHH and CSH groups were higher than those in the CON group (p < 0.05). The immunoglobulin A and G levels of the colostrum in the SHL, SHH, CSL and CSH groups were higher than those in the CON group (p < 0.05), and the immunoglobulin M levels in the SHL, SHH and CSH groups were higher than those in the CON group (p < 0.05). The abundance of Proteobacteria at the phylum level in the CON group was higher than that in the CSL, CSH and SHH groups (p < 0.05). The abundance of Lactobacillaceae at the family level in the SHH and CSL groups were higher than that in the CON group (p < 0.05). The abundance of Lactobacillus at the genus level in the SHH and CSL groups were higher than that in the CON group (p < 0.05). In conclusion, SHH group had the best effect, and the optimal crude fibre level in the gestation diet of sows is 8%.
Collapse
Affiliation(s)
- Tie Gao
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Xueying Chen
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Zhen Liu
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Xinping Diao
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| |
Collapse
|
41
|
Gut Microbial Succession Patterns and Metabolic Profiling during Pregnancy and Lactation in a Goat Model. Microbiol Spectr 2023; 11:e0295522. [PMID: 36700635 PMCID: PMC9927511 DOI: 10.1128/spectrum.02955-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The maternal gut microbiome affects the duration of pregnancy, delivery, and lactation. It also coordinates the stability of maternal metabolism by regulating and modulating inflammatory cytokines and reproductive hormones. This has been shown in several species; however, the situation in ruminants remains a black box. Here, we aimed to elucidate the relationship between the hindgut microbiota, metabolism, and reproductive hormones in domestic goats (Capra hircus) during nonpregnancy, pregnancy, and lactation stages. The hindgut microbiota was altered during these three stages, with a drastic decrease in the abundance of Family_XIII_AD3011_group in the second and third trimesters of pregnancy. Additionally, a decline in the abundance of Christensenellaceae_R-7_group and Turicibacter was observed from the nonpregnancy stage to late gestation. Family_XIII_AD3011_group and Paeniclostridium were strongly correlated with decreased fecal estradiol and progesterone. Furthermore, we generated a metabolome atlas of the gut and serum from nonpregnancy to lactation to reveal the specific metabolic fingerprints of each physiological stage. Several specific gut metabolites, including carnitine C8:1, γ-aminobutyric acid, and indole-3-carboxylic acid, were negatively correlated with the fecal and serum estradiol concentrations. In contrast, 2'-deoxyinosine, deoxyadenosine, and 5'-deoxyadenosine were positively correlated with the fecal and serum estradiol concentrations. The levels of 2'-deoxyinosine, deoxyadenosine, and 5'-deoxyadenosine in fecal samples were positively correlated with Family_XIII_AD3011_group. Other serum metabolites, such as (±)12-HEPE (hydroxy eicosapentaenoic acid), (±)15-HEPE, (±)18-HEPE, cytidine, uracil, and 5-hydroxyindole-3-acetic acid, were negatively correlated with the serum concentrations of estradiol and progesterone. Finally, Corynebacterium and Clostridium_sensu_stricto_1 in the fecal samples were positively correlated with the abundance of 11,12-EET (epoxy-eicosatrienoic acid), (±)18-HEPE, (±)15-HEPE, and (±)12-HEPE in the serum. IMPORTANCE Our findings revealed that the activity of Family_XIII_AD3011_group and Corynebacterium is strongly correlated with the beneficial regulation of physiological hormones and metabolic changes during pregnancy and lactation. These findings are key for guiding targeted microbial therapeutic approaches to modulate microbiomes in gestating and lactating mammals.
Collapse
|
42
|
Yung HW, Zhao X, Glover L, Burrin C, Pang PC, Jones CJ, Gill C, Duhig K, Olovsson M, Chappell LC, Haslam SM, Dell A, Burton GJ, Charnock-Jones DS. Perturbation of placental protein glycosylation by endoplasmic reticulum stress promotes maladaptation of maternal hepatic glucose metabolism. iScience 2023; 26:105911. [PMID: 36660474 PMCID: PMC9843443 DOI: 10.1016/j.isci.2022.105911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/30/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
Placental hormones orchestrate maternal metabolic adaptations to support pregnancy. We hypothesized that placental ER stress, which characterizes early-onset pre-eclampsia (ePE), compromises glycosylation, reducing hormone bioactivity and these maladaptations predispose the mother to metabolic disease in later life. We demonstrate ER stress reduces the complexity and sialylation of trophoblast protein N-glycosylation, while aberrant glycosylation of vascular endothelial growth factor reduced its bioactivity. ER stress alters the expression of 66 of the 146 genes annotated with "protein glycosylation" and reduces the expression of sialyltransferases. Using mouse placental explants, we show ER stress promotes the secretion of mis-glycosylated glycoproteins. Pregnant mice carrying placentas with junctional zone-specific ER stress have reduced blood glucose, anomalous hepatic glucose metabolism, increased cellular stress and elevated DNA methyltransferase 3A. Using pregnancy-specific glycoproteins as a readout, we also demonstrate aberrant glycosylation of placental proteins in women with ePE, thus providing a mechanistic link between ePE and subsequent maternal metabolic disorders.
Collapse
Affiliation(s)
- Hong Wa Yung
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
| | - Xiaohui Zhao
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
| | - Luke Glover
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
| | - Charlotte Burrin
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
| | - Poh-Choo Pang
- Department of Life Sciences, Imperial College London, London, UK
| | - Carolyn J.P. Jones
- Maternal and Fetal Health Centre, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Carolyn Gill
- Department of Women and Children’s Health, King’s College London, London, UK
| | - Kate Duhig
- Maternal and Fetal Health Centre, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, UK
- Department of Women and Children’s Health, King’s College London, London, UK
| | - Matts Olovsson
- Department of Women’s and Children’s Health, Uppsala University, Uppsala, Sweden
| | - Lucy C. Chappell
- Department of Women and Children’s Health, King’s College London, London, UK
| | - Stuart M. Haslam
- Department of Life Sciences, Imperial College London, London, UK
| | - Anne Dell
- Department of Life Sciences, Imperial College London, London, UK
| | - Graham J. Burton
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
| | - D. Stephen Charnock-Jones
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
- Department of Obstetrics and Gynaecology, University of Cambridge, Cambridge CB2 0SW, UK
| |
Collapse
|
43
|
Alawadhi M, Kilarkaje N, Mouihate A, Al-Bader MD. Role of progesterone on dexamethasone-induced alterations in placental vascularization and progesterone receptors in rats†. Biol Reprod 2023; 108:133-149. [PMID: 36322157 DOI: 10.1093/biolre/ioac192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/04/2022] [Accepted: 10/18/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Intrauterine growth restriction (IUGR) is manifested by lower maternal progesterone levels, smaller placental size, and decreased placental vascularity indicated by lower expression of vascular endothelial growth factor (VEGF). Studies showed that progesterone increases angiogenesis and induces VEGF expression in different tissues. Therefore, the aim of the present study is to evaluate the effect of progesterone on placental vascular bed and VEGF expression and the modulation of nuclear and membranous progesterone receptors (PR) in dexamethasone-induced rat IUGR model. METHODS Pregnant Sprague-Dawley rats were allocated into four groups and given intraperitoneal injections of either saline, dexamethasone, dexamethasone, and progesterone or progesterone. Injections started on gestation day (DG) 15 and lasted until the days of euthanization (19 and 21 DG). Enzyme-linked immunosorbent assay was used to evaluate plasma progesterone levels. Real-time PCR and western blotting were used to evaluate gene and protein expressions of VEGF, and PR in labyrinth and basal placental zones. Immunohistochemistry was used to locate VEGF and different PRs in placental cells. Immunofluorescence was used to monitor the expression of blood vessel marker (αSMA). RESULTS Dexamethasone decreased the vascular bed fraction and the expression of VEGF in both placental zones. Progesterone co-treatment with dexamethasone prevented this reduction. Nuclear and membrane PRs showed tissue-specific expression in different placental zones and responded differently to both dexamethasone and progesterone. CONCLUSIONS Progesterone treatment improves the outcomes in IUGR pregnancy. Progesterone alleviated DEX-induced IUGR probably by promoting placental VEGF and angiogenesis.
Collapse
Affiliation(s)
- Mariam Alawadhi
- Department of Physiology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Narayana Kilarkaje
- Department of Anatomy, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Abdeslam Mouihate
- Department of Physiology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Maie D Al-Bader
- Department of Physiology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| |
Collapse
|
44
|
Rassie K, Giri R, Joham AE, Teede H, Mousa A. Human Placental Lactogen in Relation to Maternal Metabolic Health and Fetal Outcomes: A Systematic Review and Meta-Analysis. Int J Mol Sci 2022; 23:ijms232415621. [PMID: 36555258 PMCID: PMC9779646 DOI: 10.3390/ijms232415621] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Human placental lactogen (hPL) is a placental hormone which appears to have key metabolic functions in pregnancy. Preclinical studies have putatively linked hPL to maternal and fetal outcomes, yet-despite human observational data spanning several decades-evidence on the role and importance of this hormone remains disparate and conflicting. We aimed to explore (via systematic review and meta-analysis) the relationship between hPL levels, maternal pre-existing and gestational metabolic conditions, and fetal growth. MEDLINE via OVID, CINAHL plus, and Embase were searched from inception through 9 May 2022. Eligible studies included women who were pregnant or up to 12 months post-partum, and reported at least one endogenous maternal serum hPL level during pregnancy in relation to pre-specified metabolic outcomes. Two independent reviewers extracted data. Meta-analysis was conducted where possible; for other outcomes narrative synthesis was performed. 35 studies met eligibility criteria. No relationship was noted between hPL and gestational diabetes status. In type 1 diabetes mellitus, hPL levels appeared lower in early pregnancy (possibly reflecting delayed placental development) and higher in late pregnancy (possibly reflecting increased placental mass). Limited data were found in other pre-existing metabolic conditions. Levels of hPL appear to be positively related to placental mass and infant birthweight in pregnancies affected by maternal diabetes. The relationship between hPL, a purported pregnancy metabolic hormone, and maternal metabolism in human pregnancy is complex and remains unclear. This antenatal biomarker may offer value, but future studies in well-defined contemporary populations are required.
Collapse
Affiliation(s)
- Kate Rassie
- Monash Centre for Health Research and Implementation (MCHRI), School of Public Health and Preventive Medicine, Monash University, Level 1, 43-51 Kanooka Grove, Clayton, Melbourne, VIC 3168, Australia
- Department of Diabetes, Monash Health, 246 Clayton Rd, Clayton, Melbourne, VIC 3168, Australia
| | - Rinky Giri
- Department of Diabetes, Monash Health, 246 Clayton Rd, Clayton, Melbourne, VIC 3168, Australia
| | - Anju E. Joham
- Monash Centre for Health Research and Implementation (MCHRI), School of Public Health and Preventive Medicine, Monash University, Level 1, 43-51 Kanooka Grove, Clayton, Melbourne, VIC 3168, Australia
- Department of Diabetes, Monash Health, 246 Clayton Rd, Clayton, Melbourne, VIC 3168, Australia
| | - Helena Teede
- Monash Centre for Health Research and Implementation (MCHRI), School of Public Health and Preventive Medicine, Monash University, Level 1, 43-51 Kanooka Grove, Clayton, Melbourne, VIC 3168, Australia
- Department of Diabetes, Monash Health, 246 Clayton Rd, Clayton, Melbourne, VIC 3168, Australia
| | - Aya Mousa
- Monash Centre for Health Research and Implementation (MCHRI), School of Public Health and Preventive Medicine, Monash University, Level 1, 43-51 Kanooka Grove, Clayton, Melbourne, VIC 3168, Australia
- Correspondence: ; Tel.: +61-3857-22854
| |
Collapse
|
45
|
Li H, Miao C, Liu W, Gao H, Li W, Wu Z, Cao H, Zhu Y. First-Trimester Triglyceride-Glucose Index and Risk of Pregnancy-Related Complications: A Prospective Birth Cohort Study in Southeast China. Diabetes Metab Syndr Obes 2022; 15:3705-3715. [PMID: 36465992 PMCID: PMC9717426 DOI: 10.2147/dmso.s378964] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/01/2022] [Indexed: 11/29/2022] Open
Abstract
Purpose To evaluate the relationships of the triglyceride-glucose (TyG) index with pregnancy-related complications (PRCs) and to clarify the predictability of the TyG index for PRCs. Patients and Methods Totally of 11,387 women with a singleton pregnancy were prospectively followed until after delivery. Maternal fasting lipids and glucose concentration were measured in the first trimester (11 weeks gestation on average). The TyG index was calculated as ln [triglyceride (mg/dL) × fasting plasma glucose (mg/dL)/2]. We used generalized linear models to calculate the relative risks and 95% confidence intervals. Receiver-operating characteristic curve analysis was employed to assess the ability of the TyG index to predict the risks of PRCs. Results Smooth spline reveals that the probability of gestational diabetes mellitus (GDM) is intensified with the increasing TyG index. Multivariate logistic regression adjusted for risk factors demonstrates a 1-unit and a 1-SD increment in the TyG index raises the risk of GDM by 3.63 and 1.57 times, respectively. Identically, the risk of GDM maximizes in the TyG quintile 5 (OR: 3.14; 95% CI: 2.55~3.85) relative to the lowest TyG index group. However, no association between TyG index and the risk of other PRCs was observed after full adjustment. The area under receiver operating characteristic curves is 0.647 (95% CI: 0.632-0.66) for GDM, and the optimal predictive cut-off is 8.55, with a specificity of 0.679 and sensitivity of 0.535. Conclusion The first-trimester TyG index is significantly associated with the risk of incident GDM, while the relationships between the TyG index and other PRCs need further exploration.
Collapse
Affiliation(s)
- Haibo Li
- Division of Birth Cohort Study, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Chong Miao
- Department of Information, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Wenjuan Liu
- Division of Birth Cohort Study, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, People’s Republic of China
- Division of Birth Cohort Study, Fujian Children’s Hospital, Fuzhou, People’s Republic of China
| | - Haiyan Gao
- Division of Birth Cohort Study, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, People’s Republic of China
- Division of Birth Cohort Study, Fujian Obstetrics and Gynecology Hospital, Fuzhou, People’s Republic of China
| | - Wei Li
- Division of Birth Cohort Study, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, People’s Republic of China
- Division of Birth Cohort Study, Fujian Obstetrics and Gynecology Hospital, Fuzhou, People’s Republic of China
| | - Zhengqin Wu
- Division of Birth Cohort Study, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, People’s Republic of China
- Division of Birth Cohort Study, Fujian Obstetrics and Gynecology Hospital, Fuzhou, People’s Republic of China
| | - Hua Cao
- Division of Birth Cohort Study, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, People’s Republic of China
- Fujian Key Laboratory of Women and Children’s Critical Disease Research, Fuzhou, People’s Republic of China
| | - Yibing Zhu
- Division of Birth Cohort Study, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, People’s Republic of China
| |
Collapse
|
46
|
Hong Y, Yang C, Zhong J, Hou Y, Xie K, Wang L. Dietary Plant Protein Intake Can Reduce Maternal Insulin Resistance during Pregnancy. Nutrients 2022; 14:nu14235039. [PMID: 36501068 PMCID: PMC9740834 DOI: 10.3390/nu14235039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Evidence suggests that the source of dietary protein may have an impact on insulin resistance, but no studies have explored it in pregnant populations. In this study, we combined a population study and an animal experiment to explore this effect. The population study was conducted with data from NHANES. Multiple linear regression was used to observe the association of protein intake with outcomes, including fasting glucose (GLU), insulin (INS), and HOMA-IR. In the animal experiment, 36 pregnant SD rats in three groups were orally administered 100% animal protein, 50% animal protein and 50% plant protein, or 100% plant protein, respectively. The intervention continued throughout the whole pregnancy. On day 19.5, maternal plasma was collected after overnight fasting, and metabolomics was performed using UPLC-MS. We found plant protein intake was negatively correlated with INS and HOMA-IR in the whole population. During the third trimester, a similar correlation was also observed. The animal experiment also presented the same result. In metabolomic analysis, changes in various metabolites and related pathways including FoxO and mTOR signaling pathways were observed. In conclusion, we found a negative association between dietary plant protein intake and maternal insulin resistance during pregnancy. Changes in some active substances and related metabolic pathways may play an important role.
Collapse
Affiliation(s)
- Yuting Hong
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Chen Yang
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Jinjing Zhong
- Ausnutria Hyproca Nutrition Co., Ltd., Changsha 410000, China
| | - Yanmei Hou
- Ausnutria Hyproca Nutrition Co., Ltd., Changsha 410000, China
| | - Kui Xie
- Ausnutria Hyproca Nutrition Co., Ltd., Changsha 410000, China
| | - Linlin Wang
- Ausnutria Hyproca Nutrition Co., Ltd., Changsha 410000, China
- Correspondence:
| |
Collapse
|
47
|
Kang K, Zeng L, Ma J, Shi L, Hu R, Zou H, Peng Q, Wang L, Xue B, Wang Z. High energy diet of beef cows during gestation promoted growth performance of calves by improving placental nutrients transport. Front Vet Sci 2022; 9:1053730. [PMID: 36504847 PMCID: PMC9730878 DOI: 10.3389/fvets.2022.1053730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/08/2022] [Indexed: 11/25/2022] Open
Abstract
The aim of this study was to explore the effects of dietary energy level during gestation on growth performance and serum parameters in offspring using beef cattle as research objects. Additionally, the gene expressions associated with nutrients transport in the placenta were evaluated. Eighteen Simmental crossbred cows (body weight = 338.44 ± 16.03 kg and 760 ± 6 days of age) were randomly assigned to 3 dietary treatment groups: low energy (LE, metabolic energy = 8.76 MJ/kg), medium (ME, 9.47 MJ/kg) and high (HE, 10.18 MJ/kg). The dietary treatments were introduced from day 45 before expected date of parturition. The pre-experiment lasted for 15 days and formal experiment lasted for 30 days. Growth performance data and blood samples of calves were collected at birth and day 30 post-birth. The placental tissue was collected at parturition. The results indicated that the birth weight and average daily gain of calves in HE group were higher (P < 0.05) than those in LE group. After parturition, the serum contents of glucose, total protein, cortisol and leptin in neonatal calves were significantly increased (P < 0.05) with the elevation of dietary energy levels. At 30 days postpartum, the glucose, glutathione peroxidase, growth hormone, insulin-like growth factor 1 and leptin concentrations of HE group were significantly increased (P < 0.05) as compared with LE group, while the serum amyloid protein A displayed an opposite trend between two groups. With the increase of dietary energy concentration, placental mRNA expressions of vascular endothelial growth factor A, glucose transporter 1 and 3 were significantly up-regulated (P < 0.05). Furthermore, the amino acid transporter solute carrier family 38 member 1, hydroxysteroid 11-beta dehydrogenase 2, insulin-like growth factor 1 and 2 mRNA expressions of HE group were higher (P < 0.05) than those of LE and ME groups. In conclusion, the improved growth performance of calves from the high energy ration supplemented beef cows may be attributed to the increased placental nutrients transport, which may lead to the increased nutrient supply to the fetus.
Collapse
|
48
|
Chen WJ, Robledo C, Davis EM, Goodman JR, Xu C, Hwang J, Janitz AE, Garwe T, Calafat AM, Peck JD. Assessing urinary phenol and paraben mixtures in pregnant women with and without gestational diabetes mellitus: A case-control study. ENVIRONMENTAL RESEARCH 2022; 214:113897. [PMID: 35839910 PMCID: PMC9514543 DOI: 10.1016/j.envres.2022.113897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/17/2022] [Accepted: 07/10/2022] [Indexed: 05/11/2023]
Abstract
Prior studies have identified the associations between environmental phenol and paraben exposures and increased risk of gestational diabetes mellitus (GDM), but no study addressed these exposures as mixtures. As methods have emerged to better assess exposures to multiple chemicals, our study aimed to apply Bayesian kernel machine regression (BKMR) to evaluate the association between phenol and paraben mixtures and GDM. This study included 64 GDM cases and 237 obstetric patient controls from the University of Oklahoma Medical Center. Mid-pregnancy spot urine samples were collected to quantify concentrations of bisphenol A (BPA), benzophenone-3, triclosan, 2,4-dichlorophenol, 2,5-dichlorophenol, butylparaben, methylparaben, and propylparaben. Multivariable logistic regression was used to evaluate the associations between individual chemical biomarkers and GDM while controlling for confounding. We used probit implementation of BKMR with hierarchical variable selection to estimate the mean difference in GDM probability for each component of the phenol and paraben mixtures while controlling for the correlation among the chemical biomarkers. When analyzing individual chemicals using logistic regression, benzophenone-3 was positively associated with GDM [adjusted odds ratio (aOR) per interquartile range (IQR) = 1.54, 95% confidence interval (CI) 1.15, 2.08], while BPA was negatively associated with GDM (aOR 0.61, 95% CI 0.37, 0.99). In probit-BKMR analysis, an increase in z-score transformed log urinary concentrations of benzophenone-3 from the 10th to 90th percentile was associated with an increase in the estimated difference in the probability of GDM (0.67, 95% Credible Interval 0.04, 1.30), holding other chemicals fixed at their medians. No associations were identified between other chemical biomarkers and GDM in the BKMR analyses. We observed that the association of BPA and GDM was attenuated when accounting for correlated phenols and parabens, suggesting the importance of addressing chemical mixtures in perinatal environmental exposure studies. Additional prospective investigations will increase the understanding of the relationship between benzophenone-3 exposure and GDM development.
Collapse
Affiliation(s)
- Wei-Jen Chen
- Department of Biostatistics and Epidemiology, Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX, USA.
| | - Candace Robledo
- Department of Population Health and Biostatistics, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Erin M Davis
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY, USA
| | - Jean R Goodman
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Missouri, Columbia, MO, USA
| | - Chao Xu
- Department of Biostatistics and Epidemiology, Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jooyeon Hwang
- Department of Occupational and Environmental Health, Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Amanda E Janitz
- Department of Biostatistics and Epidemiology, Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Tabitha Garwe
- Department of Biostatistics and Epidemiology, Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Antonia M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jennifer D Peck
- Department of Biostatistics and Epidemiology, Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
49
|
Hu R, Tan J, Li Z, Wang L, Shi M, Li B, Liu M, Yuan X, He J, Wu X. Effect of dietary resveratrol on placental function and reproductive performance of late pregnancy sows. Front Nutr 2022; 9:1001031. [PMID: 36407549 PMCID: PMC9673905 DOI: 10.3389/fnut.2022.1001031] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/20/2022] [Indexed: 09/13/2024] Open
Abstract
Placental function is vital to the fetal growth of sows, and resveratrol (RES) can protect cells against oxidative stress, which is one of the major factors impairing placental function. This study aimed to investigate the effect of dietary resveratrol (RES) on placental function and reproductive performance during late pregnancy in a sow model from the aspects of oxidative stress, insulin resistance, and gut microbiota. A total of 26 hybrid pregnant sows (Landrace × Yorkshire) with similar parity were randomly allocated into two groups (n = 13) and fed with a basal diet or a diet containing 200 mg/kg of resveratrol from day 85 of gestation until parturition. The dietary supplementation of RES increased the litter weight at parturition by 12.53% (p = 0.145), with ameliorated insulin resistance (HOMA-IR), increased triglyceride (TG) levels, and decreased interleukin (IL)-1β and IL-6 levels in serum (p < 0.05). Moreover, resveratrol increased the placental vascular density (p < 0.05) with the enhanced expression of nutrient transporter genes (SLC2A1 and SLC2A3) and antioxidant genes, such as superoxide dismutase 2 (SOD2) and heme oxygenase-1 (HO-1) but declined the expression of inflammatory genes, such as IL-1β and IL-6 (p < 0.05). The characterization of the fecal microbiota revealed that resveratrol decreased the relative abundance of the Christensensllaceae R-7 group and Ruminococcaceae UCG-008 (p < 0.05), which had a positive linear correlation with the expression of IL-1β and IL-6 (p < 0.05), but had a negative linear correlation with the expression of SOD2, HO-1, SLC2A1, and SCL2A3 genes (p < 0.05). These data demonstrated that dietary supplementation with resveratrol can improve placental function with ameliorated insulin resistance, oxidative stress, and inflammation potentially by regulating Ruminococcaceae UCG-008 and the Christensensllaceae R-7 group in sows.
Collapse
Affiliation(s)
- Ruizhi Hu
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Jijun Tan
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Zhanfeng Li
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Long Wang
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Mingkun Shi
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Baizhen Li
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Ming Liu
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Xupeng Yuan
- Hunan Xinguang'an Agricultural Husbandry Co., Ltd., Changsha, China
| | - Jianhua He
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Xiaosong Wu
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
50
|
Ionescu RF, Enache RM, Cretoiu SM, Gaspar BS. Gut Microbiome Changes in Gestational Diabetes. Int J Mol Sci 2022; 23:12839. [PMID: 36361626 PMCID: PMC9654708 DOI: 10.3390/ijms232112839] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 08/27/2023] Open
Abstract
Gestational diabetes mellitus (GDM), one of the most common endocrine pathologies during pregnancy, is defined as any degree of glucose intolerance with onset or first discovery in the perinatal period. Physiological changes that occur in pregnant women can lead to inflammation, which promotes insulin resistance. In the general context of worldwide increasing obesity in young females of reproductive age, GDM follows the same ascending trend. Changes in the intestinal microbiome play a decisive role in obesity and the development of insulin resistance and chronic inflammation, especially in patients with type 2 diabetes mellitus (T2D). To date, various studies have also associated intestinal dysbiosis with metabolic changes in women with GDM. Although host metabolism in women with GDM has not been fully elucidated, it is of particular importance to analyze the available data and to discuss the actual knowledge regarding microbiome changes with potential impact on the health of pregnant women and newborns. We analyzed peer-reviewed journal articles available in online databases in order to summarize the most recent findings regarding how variations in diet and metabolic status of GDM patients can contribute to alteration of the gut microbiome, in the same way that changes of the gut microbiota can lead to GDM. The most frequently observed alteration in the microbiome of patients with GDM was either an increase of the Firmicutes phylum, respectively, or a decrease of the Bacteroidetes and Actinobacteria phyla. Gut dysbiosis was still present postpartum and can impact the development of the newborn, as shown in several studies. In the evolution of GDM, probiotic supplementation and regular physical activity have the strongest evidence of proper blood glucose control, favoring fetal development and a healthy outcome for the postpartum period. The current review aims to summarize and discuss the most recent findings regarding the correlation between GDM and dysbiosis, and current and future methods for prevention and treatment (lifestyle changes, pre- and probiotics administration). To conclude, by highlighting the role of the gut microbiota, one can change perspectives about the development and progression of GDM and open up new avenues for the development of innovative therapeutic targets in this disease.
Collapse
Affiliation(s)
- Ruxandra Florentina Ionescu
- Department of Cardiology I, Central Military Emergency Hospital “Dr Carol Davila”, 030167 Bucharest, Romania
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Robert Mihai Enache
- Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Sanda Maria Cretoiu
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Bogdan Severus Gaspar
- Surgery Department, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Surgery Clinic, Bucharest Emergency Clinical Hospital, 014461 Bucharest, Romania
| |
Collapse
|