1
|
Cugini C, Ramasubbu N, Tsiagbe VK, Fine DH. Dysbiosis From a Microbial and Host Perspective Relative to Oral Health and Disease. Front Microbiol 2021; 12:617485. [PMID: 33763040 PMCID: PMC7982844 DOI: 10.3389/fmicb.2021.617485] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/09/2021] [Indexed: 12/14/2022] Open
Abstract
The significance of microbiology and immunology with regard to caries and periodontal disease gained substantial clinical or research consideration in the mid 1960's. This enhanced emphasis related to several simple but elegant experiments illustrating the relevance of bacteria to oral infections. Since that point, the understanding of oral diseases has become increasingly sophisticated and many of the original hypotheses related to disease causality have either been abandoned or amplified. The COVID pandemic has reminded us of the importance of history relative to infectious diseases and in the words of Churchill "those who fail to learn from history are condemned to repeat it." This review is designed to present an overview of broad general directions of research over the last 60 years in oral microbiology and immunology, reviewing significant contributions, indicating emerging foci of interest, and proposing future directions based on technical advances and new understandings. Our goal is to review this rich history (standard microbiology and immunology) and point to potential directions in the future (omics) that can lead to a better understanding of disease. Over the years, research scientists have moved from a position of downplaying the role of bacteria in oral disease to one implicating bacteria as true pathogens that cause disease. More recently it has been proposed that bacteria form the ecological first line of defense against "foreign" invaders and also serve to train the immune system as an acquired host defensive stimulus. While early immunological research was focused on immunological exposure as a modulator of disease, the "hygiene hypothesis," and now the "old friends hypothesis" suggest that the immune response could be trained by bacteria for long-term health. Advanced "omics" technologies are currently being used to address changes that occur in the host and the microbiome in oral disease. The "omics" methodologies have shaped the detection of quantifiable biomarkers to define human physiology and pathologies. In summary, this review will emphasize the role that commensals and pathobionts play in their interaction with the immune status of the host, with a prediction that current "omic" technologies will allow researchers to better understand disease in the future.
Collapse
Affiliation(s)
- Carla Cugini
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, United States
| | | | | | | |
Collapse
|
2
|
Saraf S, Jain S, Sahoo RN, Mallick S. Present Scenario of M-Cell Targeting Ligands for Oral Mucosal Immunization. Curr Drug Targets 2020; 21:1276-1284. [DOI: 10.2174/1389450121666200609113252] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/18/2020] [Accepted: 04/23/2020] [Indexed: 02/07/2023]
Abstract
The immune system plays an important role in the prevention of infection and forms the
first line of defense against pathogen attack. Delivering of antigen through mucosal route may elicit
mucosal immune system as the mucosal surface is the most common site of pathogen entry. Mucosal
immune system will be capable to counter pathogen at mucosal surface. Oral mucosal immunization
opens the ways to deliver antigens at gut-associated lymphoid tissue. This can elicit both local and
systemic immune response. Mucosal vaccines are economical, highly accessible, non parenteral delivery
and capacity to produce mass immunization at the time of pandemics. To deliver antigens on the
mucosal surface of the gastrointestinal tract, the immune system relies on specialized epithelial cell
i.e. Microfold (M)-cell. An approach to exploit the targeting specific receptors on M-cell for entry of
antigens has made a breakthrough in vaccine development. In this review, various strategies have been
discussed for the possible entry of antigens through M-cells and an approach to increase the uptake
and efficacy of vaccines for oral mucosal immunization.
Collapse
Affiliation(s)
- Surendra Saraf
- School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar-751030, Orissa, India
| | - Shailesh Jain
- Dean, Faculty of Pharmacy and Pharmaceutical Sciences at Madhyanchal Professional University Bhopal (MP), India
| | - Rudra Narayan Sahoo
- School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar-751030, Orissa, India
| | - Subrata Mallick
- School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar-751030, Orissa, India
| |
Collapse
|
3
|
Renu S, Han Y, Dhakal S, Lakshmanappa YS, Ghimire S, Feliciano-Ruiz N, Senapati S, Narasimhan B, Selvaraj R, Renukaradhya GJ. Chitosan-adjuvanted Salmonella subunit nanoparticle vaccine for poultry delivered through drinking water and feed. Carbohydr Polym 2020; 243:116434. [PMID: 32532387 DOI: 10.1016/j.carbpol.2020.116434] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/20/2020] [Accepted: 05/08/2020] [Indexed: 12/21/2022]
Abstract
Poor induction of mucosal immunity in the intestines by current Salmonella vaccines is a challenge to the poultry industry. We prepared and tested an oral deliverable Salmonella subunit vaccine containing immunogenic outer membrane proteins (OMPs) and flagellin (F) protein loaded and F-protein surface coated chitosan nanoparticles (CS NPs) (OMPs-F-CS NPs). The OMPs-F-CS NPs had mean particle size distribution of 514 nm, high positive charge and spherical in shape. In vitro and in vivo studies revealed the F-protein surface coated CS NPs were specifically targeted to chicken immune cells. The OMPs-F-CS NPs treatment of chicken immune cells upregulated TLRs, and Th1 and Th2 cytokines mRNA expression. Oral delivery of OMPs-F-CS NPs in birds enhanced the specific systemic IgY and mucosal IgA antibodies responses as well as reduced the challenge Salmonella load in the intestines. Thus, user friendly oral deliverable chitosan-based Salmonella vaccine for poultry is a viable alternative to current vaccines.
Collapse
Affiliation(s)
- Sankar Renu
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, 1680 Madison Avenue, Wooster, OH, 44691, USA; Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Yi Han
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, 1680 Madison Avenue, Wooster, OH, 44691, USA; Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Santosh Dhakal
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, 1680 Madison Avenue, Wooster, OH, 44691, USA; Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Yashavanth S Lakshmanappa
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, 1680 Madison Avenue, Wooster, OH, 44691, USA; Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Shristi Ghimire
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, 1680 Madison Avenue, Wooster, OH, 44691, USA; Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Ninoshkaly Feliciano-Ruiz
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, 1680 Madison Avenue, Wooster, OH, 44691, USA; Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Sujata Senapati
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Ramesh Selvaraj
- Department of Poultry Science, University of Georgia, Athens, GA, 30602, USA
| | - Gourapura J Renukaradhya
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, 1680 Madison Avenue, Wooster, OH, 44691, USA; Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
4
|
Li P, Liu Q, Luo H, Liang K, Yi J, Luo Y, Hu Y, Han Y, Kong Q. O-Serotype Conversion in Salmonella Typhimurium Induces Protective Immune Responses against Invasive Non-Typhoidal Salmonella Infections. Front Immunol 2017; 8:1647. [PMID: 29255460 PMCID: PMC5722840 DOI: 10.3389/fimmu.2017.01647] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 11/10/2017] [Indexed: 12/16/2022] Open
Abstract
Salmonella infections remain a big problem worldwide, causing enteric fever by Salmonella Typhi (or Paratyphi) or self-limiting gastroenteritis by non-typhoidal Salmonella (NTS) in healthy individuals. NTS may become invasive and cause septicemia in elderly or immuno-compromised individuals, leading to high mortality and morbidity. No vaccines are currently available for preventing NTS infection in human. As these invasive NTS are restricted to several O-antigen serogroups including B1, D1, C1, and C2, O-antigen polysaccharide is believed to be a good target for vaccine development. In this study, a strategy of O-serotype conversion was investigated to develop live attenuated S. Typhimurium vaccines against the major serovars of NTS infections. The immunodominant O4 serotype of S. Typhimurium was converted into O9, O7, and O8 serotypes through unmarked chromosomal deletion–insertion mutations. O-serotype conversion was confirmed by LPS silver staining and western blotting. All O-serotype conversion mutations were successfully introduced into the live attenuated S. Typhimurium vaccine S738 (Δcrp Δcya) to evaluate their immunogenicity in mice model. The vaccine candidates induced high amounts of heterologous O-polysaccharide-specific functional IgG responses. Vaccinated mice survived a challenge of 100 times the 50% lethality dose (LD50) of wild-type S. Typhimurium. Protective efficacy against heterologous virulent Salmonella challenges was highly O-serotype related. Furthermore, broad-spectrum protection against S. Typhimurium, S. Enteritidis, and S. Choleraesuis was observed by co-vaccination of O9 and O7 O-serotype-converted vaccine candidates. This study highlights the strategy of expressing heterologous O-polysaccharides via genetic engineering in developing live attenuated S. Typhimurium vaccines against NTS infections.
Collapse
Affiliation(s)
- Pei Li
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - Qing Liu
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Hongyan Luo
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Kang Liang
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Jie Yi
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ying Luo
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yunlong Hu
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yue Han
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qingke Kong
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ, United States.,Department of Infectious Diseases and Pathology, University of Florida, Gainesville, FL, United States
| |
Collapse
|
5
|
Suganya K, Prem Kumar A, Sekar B, Sundaran B. Protection of mice against gastric colonization of Helicobacter pylori by therapeutic immunization with systemic whole cell inactivated vaccines. Biologicals 2017; 45:39-46. [DOI: 10.1016/j.biologicals.2016.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/06/2016] [Accepted: 10/04/2016] [Indexed: 10/20/2022] Open
|
6
|
Beltrán-López JI, Romero-Maldonado A, Monreal-Escalante E, Bañuelos-Hernández B, Paz-Maldonado LM, Rosales-Mendoza S. Chlamydomonas reinhardtii chloroplasts express an orally immunogenic protein targeting the p210 epitope implicated in atherosclerosis immunotherapies. PLANT CELL REPORTS 2016; 35:1133-1141. [PMID: 26886711 DOI: 10.1007/s00299-016-1946-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 02/01/2016] [Indexed: 06/05/2023]
Abstract
An algae-based vaccine model against atherosclerosis was developed with positive findings in terms of antigen yield and immunogenicity in mouse. Several immunotherapies against atherosclerosis have been evaluated at the preclinical level thus far, with some of them currently under evaluation in clinical trials. In particular, the p210 epitope from ApoB100 is known to elicit atheroprotective responses. Considering that Chlamydomonas reinhardtii is an attractive host for the production and delivery of subunit vaccines, in this study a chimeric protein consisting of the B subunit of the cholera toxin and the p210 epitope from ApoB100 (CTB:p210) has been expressed in C. reinhardtii chloroplast as an attempt to establish an oral vaccine candidate against atherosclerosis. The Chlamydomonas-made CTB:p210 protein was successfully expressed at levels of up to 60 µg per g of fresh weight biomass. The antigenic activity of the CTB and the p210 moiety was preserved in the CTB:p210 chimera. Moreover the algae-made CTB:p210 showed an immunogenic activity, when orally administered to BALB/c mice, as evidenced the presence of anti-p210 serum antibodies in mice treated with the algae-derived CTB:p210. The antibody response lasts for at least 80 days after the last boost. This experimental model is proposed as a convenient tool in the development of low cost atherosclerosis vaccines of easy compliance and friendly delivery. Further studies will determine the therapeutic potential of this algae-made vaccine in atherosclerosis animal models.
Collapse
Affiliation(s)
- Josué I Beltrán-López
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, 78210, San Luis, SLP, Mexico
| | - Andrea Romero-Maldonado
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, 78210, San Luis, SLP, Mexico
| | - Elizabeth Monreal-Escalante
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, 78210, San Luis, SLP, Mexico
| | - Bernardo Bañuelos-Hernández
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, 78210, San Luis, SLP, Mexico
| | - Luz Mt Paz-Maldonado
- Laboratorio de Biorreactores, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, 78210, San Luis, SLP, Mexico
| | - Sergio Rosales-Mendoza
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, 78210, San Luis, SLP, Mexico.
| |
Collapse
|
7
|
Samuelson DR, de la Rua NM, Charles TP, Ruan S, Taylor CM, Blanchard EE, Luo M, Ramsay AJ, Shellito JE, Welsh DA. Oral Immunization of Mice with Live Pneumocystis murina Protects against Pneumocystis Pneumonia. THE JOURNAL OF IMMUNOLOGY 2016; 196:2655-65. [PMID: 26864029 DOI: 10.4049/jimmunol.1502004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 01/06/2016] [Indexed: 01/01/2023]
Abstract
Pneumocystis pneumonia is a major cause of morbidity and mortality in immunocompromised patients, particularly those infected with HIV. In this study, we evaluated the potential of oral immunization with live Pneumocystis to elicit protection against respiratory infection with Pneumocystis murina. C57BL/6 mice vaccinated with live P. murina using a prime-boost vaccination strategy were protected from a subsequent lung challenge with P. murina at 2, 7, 14, and 28 d postinfection even after CD4(+) T cell depletion. Specifically, vaccinated immunocompetent mice had significantly faster clearance than unvaccinated immunocompetent mice and unvaccinated CD4-depleted mice remained persistently infected with P. murina. Vaccination also increased numbers of CD4(+) T cells, CD8(+) T cells, CD19(+) B cells, and CD11b(+) macrophages in the lungs following respiratory infection. In addition, levels of lung, serum, and fecal P. murina-specific IgG and IgA were increased in vaccinated animals. Furthermore, administration of serum from vaccinated mice significantly reduced Pneumocystis lung burden in infected animals compared with control serum. We also found that the diversity of the intestinal microbial community was altered by oral immunization with P. murina. To our knowledge, our data demonstrate for the first time that an oral vaccination strategy prevents Pneumocystis infection.
Collapse
Affiliation(s)
- Derrick R Samuelson
- Section of Pulmonary/Critical Care and Allergy/Immunology, Department of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112
| | - Nicholas M de la Rua
- Section of Pulmonary/Critical Care and Allergy/Immunology, Department of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112
| | - Tysheena P Charles
- Section of Pulmonary/Critical Care and Allergy/Immunology, Department of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112
| | - Sanbao Ruan
- Section of Pulmonary/Critical Care and Allergy/Immunology, Department of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112
| | - Christopher M Taylor
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112; and
| | - Eugene E Blanchard
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112; and
| | - Meng Luo
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112; and
| | - Alistair J Ramsay
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112; and Louisiana Vaccine Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112
| | - Judd E Shellito
- Section of Pulmonary/Critical Care and Allergy/Immunology, Department of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112; Louisiana Vaccine Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112
| | - David A Welsh
- Section of Pulmonary/Critical Care and Allergy/Immunology, Department of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112;
| |
Collapse
|
8
|
Tennant SM, Levine MM. Live attenuated vaccines for invasive Salmonella infections. Vaccine 2015; 33 Suppl 3:C36-41. [PMID: 25902362 PMCID: PMC4469493 DOI: 10.1016/j.vaccine.2015.04.029] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 04/06/2015] [Accepted: 04/08/2015] [Indexed: 02/04/2023]
Abstract
Salmonella enterica serovar Typhi produces significant morbidity and mortality worldwide despite the fact that there are licensed Salmonella Typhi vaccines available. This is primarily due to the fact that these vaccines are not used in the countries that most need them. There is growing recognition that an effective invasive Salmonella vaccine formulation must also prevent infection due to other Salmonella serovars. We anticipate that a multivalent vaccine that targets the following serovars will be needed to control invasive Salmonella infections worldwide: Salmonella Typhi, Salmonella Paratyphi A, Salmonella Paratyphi B (currently uncommon but may become dominant again), Salmonella Typhimurium, Salmonella Enteritidis and Salmonella Choleraesuis (as well as other Group C Salmonella). Live attenuated vaccines are an attractive vaccine formulation for use in developing as well as developed countries. Here, we describe the methods of attenuation that have been used to date to create live attenuated Salmonella vaccines and provide an update on the progress that has been made on these vaccines.
Collapse
Affiliation(s)
- Sharon M Tennant
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Myron M Levine
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
9
|
A perspective on the use of Pleurotus for the development of convenient fungi-made oral subunit vaccines. Vaccine 2014; 33:25-33. [PMID: 25444808 DOI: 10.1016/j.vaccine.2014.10.059] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 10/16/2014] [Accepted: 10/21/2014] [Indexed: 01/15/2023]
Abstract
This review provides an outlook of the medical applications of immunomodulatory compounds taken from Pleurotus and proposes this fungus as a convenient host for the development of innovative vaccines. Although some fungal species, such as Saccharomyces and Pichia, occupy a relevant position in the biopharmaceutical field, these systems are essentially limited to the production of conventional expensive vaccines. Formulations made with minimally processed biomass constitute the ideal approach for developing low cost vaccines, which are urgently needed by low-income populations. The use of edible fungi has not been explored for the production and delivery of low cost vaccines, despite these organisms' attractive features. These include the fact that edible biomass can be produced at low costs in a short period of time, its high biosynthetic capacity, its production of immunomodulatory compounds, and the availability of genetic transformation methods. Perspectives associated to this biotechnological application are identified and discussed.
Collapse
|
10
|
Rosales-Mendoza S. Plant-Based Vaccines as a Global Vaccination Approach: Current Perspectives. GENETICALLY ENGINEERED PLANTS AS A SOURCE OF VACCINES AGAINST WIDE SPREAD DISEASES 2014. [PMCID: PMC7114996 DOI: 10.1007/978-1-4939-0850-9_13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
This chapter provides a perspective on the evolution of the field of plant-based vaccine from the limitations identified in initial developments as to how this biotechnological approach has become sophisticated via the development of new technologies and has gained industry interest. Perspectives for the field at both the basic research and the industrial level are emphasized. Perspectives considered of relevance in terms of basic research include (1) advancing the development of oral formulations, (2) expanding the modalities of expression of immunogens, (3) diversifying production platforms, particularly those performed under full containment, and (4) targeting a broader number of diseases. These goals are expected to multiply the expectations for benefits derived from plant-based vaccine-production technology. On the other hand, technology transfer and regulatory issues represent a critical hurdle to this technology becoming a reality. It is also critical to achieve social acceptance as well as implement initiatives for the exploitation of the technology for humanitarian purposes and for the benefit of poor countries. This overview predicts considerable potential for plant-based vaccines to positively impact the field of vaccinology in the near future.
Collapse
Affiliation(s)
- Sergio Rosales-Mendoza
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| |
Collapse
|
11
|
Rosales-Mendoza S, Salazar-González JA. Immunological aspects of using plant cells as delivery vehicles for oral vaccines. Expert Rev Vaccines 2014; 13:737-49. [DOI: 10.1586/14760584.2014.913483] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
12
|
Rosales-Mendoza S. Future directions for the development of Chlamydomonas-based vaccines. Expert Rev Vaccines 2014; 12:1011-9. [PMID: 24053395 DOI: 10.1586/14760584.2013.825455] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Besides serving as a valuable model in biological sciences, Chamydomonas reinhardtii has been used during the last decade in the biotechnology arena to establish models for the low cost production of vaccines. Antigens from various pathogens including Plasmodium falciparum, foot and mouth disease virus, Staphylococcus aureus, classical swine fever virus (CSFV) as well as some auto-antigens, have been produced in C. reinhardtii. Although some of them have been functionally characterized with promising results, this review identifies future directions for the advancement in the exploitation of this robust and safe vaccine production platform. The present analysis reflects that important immunological implications exist for this system and remain unexplored, including the possible adjuvant effects of algae biomolecules, the effect of bioencapsulation on immunogenicity and the possible development of whole-cell vaccines as an approach to trigger cytotoxic immune responses. Recently described molecular strategies that aim to optimize the expression of nuclear-encoded target antigens are also discussed.
Collapse
Affiliation(s)
- Sergio Rosales-Mendoza
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, SLP, 78210, México +52 444 826 2440 +52 444 826 2440
| |
Collapse
|
13
|
|
14
|
Regulatory T-cell vaccination independent of auto-antigen. Exp Mol Med 2014; 46:e82. [PMID: 24626168 PMCID: PMC3972794 DOI: 10.1038/emm.2014.4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 12/06/2013] [Indexed: 12/21/2022] Open
Abstract
To date, efforts to treat autoimmune diseases have primarily focused on the disease symptoms rather than on the cause of the disease. In large part, this is attributed to not knowing the responsible auto-antigens (auto-Ags) for driving the self-reactivity coupled with the poor success of treating autoimmune diseases using oral tolerance methods. Nonetheless, if tolerogenic approaches or methods that stimulate regulatory T (Treg) cells can be devised, these could subdue autoimmune diseases. To forward such efforts, our approach with colonization factor antigen I (CFA/I) fimbriae is to establish bystander immunity to ultimately drive the development of auto-Ag-specific Treg cells. Using an attenuated Salmonella vaccine expressing CFA/I fimbriae, fimbriae-specific Treg cells were induced without compromising the vaccine's capacity to protect against travelers' diarrhea or salmonellosis. By adapting the vaccine's anti-inflammatory properties, it was found that it could also dampen experimental inflammatory diseases resembling multiple sclerosis (MS) and rheumatoid arthritis. Because of this bystander effect, disease-specific Treg cells are eventually induced to resolve disease. Interestingly, this same vaccine could elicit the required Treg cell subset for each disease. For MS-like disease, conventional CD25+ Treg cells are stimulated, but for arthritis CD39+ Treg cells are induced instead. This review article will examine the potential of treating autoimmune diseases without having previous knowledge of the auto-Ag using an innocuous antigen to stimulate Treg cells via the production of transforming growth factor-β and interleukin-10.
Collapse
|
15
|
Antigen targeting to M cells for enhancing the efficacy of mucosal vaccines. Exp Mol Med 2014; 46:e85. [PMID: 24626171 PMCID: PMC3972786 DOI: 10.1038/emm.2013.165] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 12/06/2013] [Indexed: 01/01/2023] Open
Abstract
Vaccination is one of the most successful applications of immunology and for a long time has depended on parenteral administration protocols. However, recent studies have pointed to the promise of mucosal vaccination because of its ease, economy and efficiency in inducing an immune response not only systemically, but also in the mucosal compartment where many pathogenic infections are initiated. However, successful mucosal vaccination requires the help of an adjuvant for the efficient delivery of vaccine material into the mucosa and the breaking of the tolerogenic environment, especially in oral mucosal immunization. Given that M cells are the main gateway to take up luminal antigens and initiate antigen-specific immune responses, understanding the role and characteristics of M cells is crucial for the development of successful mucosal vaccines. Especially, particular interest has been focused on the regulation of the tolerogenic mucosal microenvironment and the introduction of the luminal antigen into the lymphoid organ by exploiting the molecules of M cells. Here, we review the characteristics of M cells and the immune regulatory factors in mucosa that can be exploited for mucosal vaccine delivery and mucosal immune regulation.
Collapse
|
16
|
Patel GB, Chen W. Archaeal lipid mucosal vaccine adjuvant and delivery system. Expert Rev Vaccines 2014; 9:431-40. [DOI: 10.1586/erv.10.34] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
17
|
White JA, Blum JS, Hosken NA, Marshak JO, Duncan L, Zhu C, Norton EB, Clements JD, Koelle DM, Chen D, Weldon WC, Steven Oberste M, Lal M. Serum and mucosal antibody responses to inactivated polio vaccine after sublingual immunization using a thermoresponsive gel delivery system. Hum Vaccin Immunother 2014; 10:3611-21. [PMID: 25483682 PMCID: PMC4514067 DOI: 10.4161/hv.32253] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 07/23/2014] [Accepted: 08/04/2014] [Indexed: 01/27/2023] Open
Abstract
Administering vaccines directly to mucosal surfaces can induce both serum and mucosal immune responses. Mucosal responses may prevent establishment of initial infection at the port of entry and subsequent dissemination to other sites. The sublingual route is attractive for mucosal vaccination, but both a safe, potent adjuvant and a novel formulation are needed to achieve an adequate immune response. We report the use of a thermoresponsive gel (TRG) combined with a double mutant of a bacterial heat-labile toxin (dmLT) for sublingual immunization with a trivalent inactivated poliovirus vaccine (IPV) in mice. This TRG delivery system, which changes from aqueous solution to viscous gel upon contact with the mucosa at body temperature, helps to retain the formulation at the site of delivery and has functional adjuvant activity from the inclusion of dmLT. IPV was administered to mice either sublingually in the TRG delivery system or intramuscularly in phosphate-buffered saline. We measured poliovirus type-specific serum neutralizing antibodies as well as polio-specific serum Ig and IgA antibodies in serum, saliva, and fecal samples using enzyme-linked immunosorbent assays. Mice receiving sublingual vaccination via the TRG delivery system produced both mucosal and serum antibodies, including IgA. Intramuscularly immunized animals produced only serum neutralizing and binding Ig but no detectable IgA. This study provides proof of concept for sublingual immunization using the TRG delivery system, comprising a thermoresponsive gel and dmLT adjuvant.
Collapse
Key Words
- CT, cholera toxin
- DPBS, Dulbecco's phosphate-buffered saline
- DU, D-antigen units
- ELISA, enzyme-linked immunosorbent assay
- IM, intramuscular
- IPV, inactivated poliovirus vaccine
- IgA, immunoglobulin A
- IgG, immunoglobulin G
- OPV, oral poliovirus vaccine
- PBS, phosphate-buffered saline
- RT, room temperature
- SL, sublingual
- SSI, Staten Serum Institute
- TMB, tetramethylbenzidine
- TRG, thermoresponsive gel
- adjuvants
- dmLT
- dmLT, double mutant heat-labile toxin
- mucosal immune response
- poliovirus
- sublingual immunization
- thermoresponsive gel
- vaccine delivery
Collapse
Affiliation(s)
| | | | - Nancy A Hosken
- Department of Medicine; University of Washington; Seattle, WA USA
| | - Joshua O Marshak
- Department of Medicine; University of Washington; Seattle, WA USA
| | | | | | - Elizabeth B Norton
- Department of Microbiology and Immunology; Tulane University School of Medicine; New Orleans, LA USA
| | - John D Clements
- Department of Microbiology and Immunology; Tulane University School of Medicine; New Orleans, LA USA
| | - David M Koelle
- Department of Medicine; University of Washington; Seattle, WA USA
- Department of Laboratory Medicine; University of Washington; Seattle, WA USA
- Vaccine and Infectious Diseases Division; Fred Hutchinson Cancer Research Institute; Seattle, WA USA
- Department of Global Health; University of Washington; Seattle, WA USA
| | | | - William C Weldon
- Division of Viral Diseases; Centers for Disease Control and Prevention; Atlanta, GA USA
| | - M Steven Oberste
- Division of Viral Diseases; Centers for Disease Control and Prevention; Atlanta, GA USA
| | | |
Collapse
|
18
|
Jang YS. A bacterium's guide to orienteering in the intestinal lumen. Interview by Emma Louise Walton. Microbes Infect 2013; 15:845-8. [PMID: 24140556 DOI: 10.1016/j.micinf.2013.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 10/08/2013] [Indexed: 11/25/2022]
Affiliation(s)
- Yong-Suk Jang
- Université Paris 7, UMR7216 Epigenetics and Cell Fate, 35 rue Hélène Brion, Paris 75013, France.
| |
Collapse
|
19
|
Kim SH, Lee HY, Jang YS. Targeted Delivery of VP1 Antigen of Foot-and-mouth Disease Virus to M Cells Enhances the Antigen-specific Systemic and Mucosal Immune Response. Immune Netw 2013; 13:157-62. [PMID: 24009543 PMCID: PMC3759713 DOI: 10.4110/in.2013.13.4.157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 08/01/2013] [Accepted: 08/05/2013] [Indexed: 12/01/2022] Open
Abstract
Application of vaccine materials through oral mucosal route confers great economical advantage in animal farming industry due to much less vaccination cost compared with that of injection-based vaccination. In particular, oral administration of recombinant protein antigen against foot-and-mouth disease virus (FMDV) is an ideal strategy because it is safe from FMDV transmission during vaccine production and can induce antigen-specific immune response in mucosal compartments, where FMDV infection has been initiated, which is hardly achievable through parenteral immunization. Given that effective delivery of vaccine materials into immune inductive sites is prerequisite for effective oral mucosal vaccination, M cell-targeting strategy is crucial in successful vaccination since M cells are main gateway for luminal antigen influx into mucosal lymphoid tissue. Here, we applied previously identified M cell-targeting ligand Co1 to VP1 of FMDV in order to test the possible oral mucosal vaccination against FMDV infection. M cell-targeting ligand Co1-conjugated VP1 interacted efficiently with M cells of Peyer's patch. In addition, oral administration of ligand-conjugated VP1 enhanced the induction of VP1-specific IgG and IgA responses in systemic and mucosal compartments, respectively, in comparison with those from oral administration of VP1 alone. In addition, the enhanced VP1-specific immune response was found to be due to antigen-specific Th2-type cytokine production. Collectively, it is suggested that the M cell-targeting strategy could be applied to develop efficient oral mucosal vaccine against FMDV infection.
Collapse
Affiliation(s)
- Sae-Hae Kim
- Department of Molecular Biology, Interdisciplinary Program of Bioactive Materials, and Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju 561-756, Korea
| | | | | |
Collapse
|
20
|
Kim SH, Jung DI, Yang IY, Jang SH, Kim J, Truong TT, Pham TV, Truong NU, Lee KY, Jang YS. Application of an M-cell-targeting ligand for oral vaccination induces efficient systemic and mucosal immune responses against a viral antigen. Int Immunol 2013; 25:623-32. [DOI: 10.1093/intimm/dxt029] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
21
|
Kim SH, Yang IY, Jang SH, Kim J, Truong TT, Van Pham T, Truong NU, Lee KY, Jang YS. C5a receptor-targeting ligand-mediated delivery of dengue virus antigen to M cells evokes antigen-specific systemic and mucosal immune responses in oral immunization. Microbes Infect 2013; 15:895-902. [PMID: 23892099 DOI: 10.1016/j.micinf.2013.07.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Revised: 04/03/2013] [Accepted: 07/16/2013] [Indexed: 12/16/2022]
Abstract
Oral mucosal immunization is a feasible and economic vaccination strategy. In order to achieve a successful oral mucosal vaccination, antigen delivery to gut immune inductive site and avoidance of oral tolerance induction should be secured. One promising approach is exploring the specific molecules expressed on the apical surfaces of M cells that have potential for antigen uptake and immune stimulation. We previously identified complement 5a receptor (C5aR) expression on human M-like cells and mouse M cells and confirmed its non-redundant role as a target receptor for antigen delivery to M cells using a model antigen. Here, we applied the OmpH ligand, which is capable of targeting the ligand-conjugated antigen to M cells to induce specific mucosal and systemic immunities against the EDIII of dengue virus (DENV). Oral immunization with the EDIII-OmpH efficiently targeted the EDIII to M cells and induced EDIII-specific immune responses comparable to those induced by co-administration of EDIII with cholera toxin (CT). Also, the enhanced responses by OmpH were characterized as Th2-skewed responses. Moreover, oral immunization using EDIII-OmpH did not induce systemic tolerance against EDIII. Collectively, we suggest that OmpH-mediated targeting of antigens to M cells could be used for an efficient oral vaccination against DENV infection.
Collapse
Affiliation(s)
- Sae-Hae Kim
- Department of Molecular Biology, Chonbuk National University, Jeonju 561-756, Republic of Korea; Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju 561-756, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Mathur R, Oh H, Zhang D, Park SG, Seo J, Koblansky A, Hayden MS, Ghosh S. A mouse model of Salmonella typhi infection. Cell 2013; 151:590-602. [PMID: 23101627 DOI: 10.1016/j.cell.2012.08.042] [Citation(s) in RCA: 154] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 06/29/2012] [Accepted: 08/15/2012] [Indexed: 01/29/2023]
Abstract
Salmonella spp. are gram-negative flagellated bacteria that can cause food- and waterborne gastroenteritis and typhoid fever in humans. We now report that flagellin from Salmonella spp. is recognized in mouse intestine by Toll-like receptor 11 (TLR11). Absence of TLR11 renders mice more susceptible to infection by S. Typhimurium, with increased dissemination of the bacteria and enhanced lethality. Unlike S. Typhimurium, S. Typhi, a human obligatory pathogen that causes typhoid fever, is normally unable to infect mice. TLR11 is expressed in mice, but not in humans, and remarkably, we find that tlr11(-/-) mice are efficiently infected with orally administered S. Typhi. We also find that tlr11(-/-) mice can be immunized against S. Typhi. Therefore, tlr11(-/-) mice represent a small-animal model for the study of the immune response to S. Typhi and for the development of vaccines against this important human pathogen.
Collapse
Affiliation(s)
- Ramkumar Mathur
- Department of Microbiology and Immunology, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Kim SH, Lee KY, Jang YS. Mucosal Immune System and M Cell-targeting Strategies for Oral Mucosal Vaccination. Immune Netw 2012; 12:165-75. [PMID: 23213309 PMCID: PMC3509160 DOI: 10.4110/in.2012.12.5.165] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 10/05/2012] [Accepted: 10/09/2012] [Indexed: 02/08/2023] Open
Abstract
Vaccination is one of the most effective methods available to prevent infectious diseases. Mucosa, which are exposed to heavy loads of commensal and pathogenic microorganisms, are one of the first areas where infections are established, and therefore have frontline status in immunity, making mucosa ideal sites for vaccine application. Moreover, vaccination through the mucosal immune system could induce effective systemic immune responses together with mucosal immunity in contrast to parenteral vaccination, which is a poor inducer of effective immunity at mucosal surfaces. Among mucosal vaccines, oral mucosal vaccines have the advantages of ease and low cost of vaccine administration. The oral mucosal immune system, however, is generally recognized as poorly immunogenic due to the frequent induction of tolerance against orally-introduced antigens. Consequently, a prerequisite for successful mucosal vaccination is that the orally introduced antigen should be transported across the mucosal surface into the mucosa-associated lymphoid tissue (MALT). In particular, M cells are responsible for antigen uptake into MALT, and the rapid and effective transcytotic activity of M cells makes them an attractive target for mucosal vaccine delivery, although simple transport of the antigen into M cells does not guarantee the induction of specific immune responses. Consequently, development of mucosal vaccine adjuvants based on an understanding of the biology of M cells has attracted much research interest. Here, we review the characteristics of the oral mucosal immune system and delineate strategies to design effective oral mucosal vaccines with an emphasis on mucosal vaccine adjuvants.
Collapse
Affiliation(s)
- Sae-Hae Kim
- Department of Molecular Biology and the Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju 561-756, Korea
| | | | | |
Collapse
|
24
|
Zhang Y, Chen S, Li J, Liu Y, Hu Y, Cai H. Oral immunogenicity of potato-derived antigens to Mycobacterium tuberculosis in mice. Acta Biochim Biophys Sin (Shanghai) 2012; 44:823-30. [PMID: 22917938 DOI: 10.1093/abbs/gms068] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The novel use of transgenic plants as vectors for the expression of viral and bacterial antigens has been increasingly tested as an alternative methodology for the production and delivery of experimental oral vaccines. Here, we examined the immunogenicity of combined plant-made vaccines that include four genes encoding immune-dominant antigens from Mycobacterium tuberculosis. Compared with the wild type and other control groups, mice treated with the combined plant-made vaccines showed significantly higher levels of interferon-γ and interleukin-2 production in response to all four proteins, and higher levels of antigen-specific CD4(+) and CD8(+) T-cell responses and immunoglobulin (Ig) G and IgA titers. These results suggest that combined plant-made vaccines can induce immunogenicity against M. tuberculosis through the induction of stronger Th1-associated immune responses. This is the first report of an orally delivered combined plant-made vaccine against tuberculosis priming an antigen-specific Th1 response, a comprehensive effect including both mucosal and systemic immune responses.
Collapse
Affiliation(s)
- Yi Zhang
- State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing, China
| | | | | | | | | | | |
Collapse
|
25
|
Hajishengallis G, Connell TD. Type II heat-labile enterotoxins: structure, function, and immunomodulatory properties. Vet Immunol Immunopathol 2012; 152:68-77. [PMID: 23137790 DOI: 10.1016/j.vetimm.2012.09.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The heat-labile enterotoxins (HLTs) of Escherichia coli and Vibrio cholerae are classified into two major types on the basis of genetic, biochemical, and immunological properties. Type I and Type II HLT have been intensively studied for their exceptionally strong adjuvant activities. Despite general structural similarities, these molecules, in intact or derivative (non-toxic) forms, display notable differences in their mode of immunomodulatory action. The molecular basis of these differences has remained largely uncharacterized until recently. This review focuses on the Type II HLTs and their immunomodulatory properties which depend largely on interactions with unique gangliosides and Toll-like receptors that are not utilized by the Type I HLTs.
Collapse
Affiliation(s)
- George Hajishengallis
- University of Pennsylvania School of Dental Medicine, Department of Microbiology, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
26
|
Mikschofsky H, Broer I. Feasibility of Pisum sativum as an expression system for pharmaceuticals. Transgenic Res 2012; 21:715-24. [PMID: 22057506 DOI: 10.1007/s11248-011-9573-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2011] [Accepted: 10/20/2011] [Indexed: 12/15/2022]
Abstract
Based on its high protein content and excellent storage capacity, pea (Pisum sativum), as well as other plants, is considered to be a suitable production platform for protein-based pharmaceuticals. Its capacity to produce high proportions of active recombinant proteins (up to 2% total soluble protein corresponding to approximately 8 mg/g fresh weight) has been proven using pea-derived strong seed-specific promoters. The active antigens produced were also stable for more than 4 years. Pea can be used as a feed additive, up to a proportion of 30% to total feed, despite the presence of lectins. Thus, a low dosage of recombinant pea-based pharmaceuticals is non-hazardous. In addition, it is independent of N-fertilisation, has excellent biosafety characteristics and is accessible to gene transfer. Growth systems with a capacity for high yield are available for the greenhouse (5 t/ha) and, to a limited extent, also in the field (2.3 t/ha). The practicable establishment of pea seed banks allows a continuous production process. Although the use of a pea system is limited by complex transformation procedures, these advantages render pea a promising plant for the production of pharmaceuticals.
Collapse
Affiliation(s)
- Heike Mikschofsky
- Agrobiotechnology, University of Rostock, Justus-von-Liebig-Weg 8, 18059 Rostock, Germany.
| | | |
Collapse
|
27
|
Fundamentals of Vaccine Delivery in Infectious Diseases. FUNDAMENTALS AND APPLICATIONS OF CONTROLLED RELEASE DRUG DELIVERY 2012. [PMCID: PMC7119968 DOI: 10.1007/978-1-4614-0881-9_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Infectious diseases continue to be the major causes of illness, disability, and death. Moreover, in recent years, new infectious agents and diseases are being identified, and some diseases that were previously considered under control have reemerged. Furthermore, antimicrobial resistance has grown rapidly in a variety of hospital as well as community acquired infections. Thus, humanity still faces big challenges in the prevention and control of infectious diseases. Vaccination, generally considered to be the most effective method of preventing infectious diseases, works by presenting a foreign antigen to the immune system to evoke an immune response. The administered antigen can either be a live, but weakened, form of a pathogen (bacteria or virus), a killed or inactivated form of the pathogen, or a purified material such as a protein. However, no vaccine is completely safe; therefore, vaccine safety research and monitoring are necessary to minimize vaccine related harms. From the formulation point of view, the goal continues to be to improve the quality and global availability of vaccine delivery systems. This chapter provides an introduction to vaccine formulation, describes the delivery routes that are utilized, and discusses the factors that affect the safety and stability of a vaccine formulation.
Collapse
|
28
|
Kim SH, Jung DI, Yang IY, Kim J, Lee KY, Nochi T, Kiyono H, Jang YS. M cells expressing the complement C5a receptor are efficient targets for mucosal vaccine delivery. Eur J Immunol 2011; 41:3219-29. [PMID: 21887786 DOI: 10.1002/eji.201141592] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 07/21/2011] [Accepted: 08/26/2011] [Indexed: 11/10/2022]
Abstract
In the mucosal immune system, M cells are known as specialized epithelial cells that take up luminal antigens, although the receptors on M cells and the mechanism of antigen uptake into M cells are not well-understood. Here, we report the expression of the complement C5a receptor (C5aR) on the apical surface of M cells. C5ar mRNA expression in co-cultured Caco-2 human M-like cells was six-fold higher than in mono-cultured cells. C5aR expression was detected together with glycoprotein 2, an M-cell-specific protein, on the apical surface of M-like cells and mouse Peyer's patch M cells. Interestingly, after oral administration of Yersinia enterocolitica which expresses outer membrane protein H (OmpH) that is homologous to the Skp α1 domain of Escherichia coli, a ligand of C5aR, dense clustering and phosphorylation of C5aR were detected in M cells. Finally, targeted antigen delivery to M cells using C5aR as a receptor was achieved using the OmpH α1 of Y. enterocolitica such that the induction of ligand-conjugated antigen-specific immune responses was confirmed in mice after oral immunization of the OmpH β1α1-conjugated antigen. Collectively, we identified C5aR expression on M cells and suggest that C5aR could be used as a target receptor for mucosal antigen delivery.
Collapse
Affiliation(s)
- Sae-Hae Kim
- Department of Molecular Biology and Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju, Korea
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Pniewski T, Kapusta J, Bociąg P, Wojciechowicz J, Kostrzak A, Gdula M, Fedorowicz-Strońska O, Wójcik P, Otta H, Samardakiewicz S, Wolko B, Płucienniczak A. Low-dose oral immunization with lyophilized tissue of herbicide-resistant lettuce expressing hepatitis B surface antigen for prototype plant-derived vaccine tablet formulation. J Appl Genet 2011; 52:125-36. [PMID: 21107787 PMCID: PMC3088802 DOI: 10.1007/s13353-010-0001-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 10/11/2010] [Accepted: 10/12/2010] [Indexed: 02/07/2023]
Abstract
Efficient immunization against hepatitis B virus (HBV) and other pathogens with plant-based oral vaccines requires appropriate plant expressors and the optimization of vaccine compositions and administration protocols. Previous immunization studies were mainly based on a combination of the injection of a small surface antigen of HBV (S-HBsAg) and the feeding with raw tissue containing the antigen, supplemented with an adjuvant, and coming from plants conferring resistance to kanamycin. The objective of this study was to develop a prototype oral vaccine formula suitable for human immunization. Herbicide-resistant lettuce was engineered, stably expressing through progeny generation micrograms of S-HBsAg per g of fresh weight and formed into virus-like particles (VLPs). Lyophilized tissue containing a relatively low, 100-ng VLP-assembled antigen dose, administered only orally to mice with a long, 60-day interval between prime and boost immunizations and without exogenous adjuvant, elicited mucosal and systemic humoral anti-HBs responses at the nominally protective level. Lyophilized tissue was converted into tablets, which preserved S-HBsAg content for at least one year of room temperature storage. The results of the study provide indications on immunization methodology using a durable, efficacious, and convenient plant-derived prototype oral vaccine against hepatitis B.
Collapse
Affiliation(s)
- Tomasz Pniewski
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Mestecky J, Alexander RC, Wei Q, Moldoveanu Z. Methods for evaluation of humoral immune responses in human genital tract secretions. Am J Reprod Immunol 2011; 65:361-7. [PMID: 21087333 PMCID: PMC3057909 DOI: 10.1111/j.1600-0897.2010.00923.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The compilation of epidemiological, virological, and immunological data clearly indicates that HIV-1 infection must be considered primarily as a disease of the mucosal immune system. The earliest and most dramatic alterations of the immune system occur in the mucosal compartment. However, the mucosal immune systems of the genital and intestinal tracts display remarkable immunological differences that must be considered in the evaluation of humoral immune responses in HIV-1-infected individuals or in volunteers immunized with experimental HIV vaccines. In this regard, marked differences in the dominant Ig isotypes, molecular forms of HIV-1-specific antibodies, and their distinct effector functions in the genital versus intestinal tracts must be carefully evaluated and considered in the measurement and interpretation of humoral immune responses. Appropriate controls and alternative immunochemical assays should be used to complement and confirm results generated by ELISA, which are prone to false positivity. Special precautions and rigorous controls must be used in the evaluation of antibody-mediated virus neutralization in external secretions of the genital and intestinal tracts.
Collapse
Affiliation(s)
- Jiri Mestecky
- Departments of Microbiology and Medicine, University of Alabama at Birmingham, 845 19th Street, South, Birmingham, AL 35294-2170,
| | | | | | | |
Collapse
|
31
|
HUR J, LEE JH. Immune Responses to New Vaccine Candidates Constructed by a Live Attenuated Salmonella Typhimurium Delivery System Expressing Escherichia coli F4, F5, F6, F41 and Intimin Adhesin Antigens in a Murine Model. J Vet Med Sci 2011; 73:1265-73. [DOI: 10.1292/jvms.11-0087] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Jin HUR
- Veterinary Public Health, College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University
| | - John Hwa LEE
- Veterinary Public Health, College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University
| |
Collapse
|
32
|
Lau OS, Ng DWK, Chan WWL, Chang SP, Sun SSM. Production of the 42-kDa fragment of Plasmodium falciparum merozoite surface protein 1, a leading malaria vaccine antigen, in Arabidopsis thaliana seeds. PLANT BIOTECHNOLOGY JOURNAL 2010; 8:994-1004. [PMID: 20444208 DOI: 10.1111/j.1467-7652.2010.00526.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Malaria is widely associated with poverty, and a low-cost vaccine against malaria is highly desirable for implementing comprehensive vaccination programmes in developing countries. Production of malaria antigens in plants is a promising approach, but its development has been hindered by poor expression of the antigens in plant cells. In the present study, we targeted plant seeds as a low-cost vaccine production platform and successfully expressed the Plasmodium falciparum 42-kDa fragment of merozoite surface protein 1 (MSP1₄₂), a leading malaria vaccine candidate, at a high level in transgenic Arabidopsis seeds. We overcame hurdles of transcript and protein instabilities of MSP1₄₂ in plants by synthesizing a plant-optimized MSP1₄₂ cDNA and either targeting the recombinant protein to protein storage vacuoles or fusing it with a stable plant storage protein. An exceptional improvement in MSP1₄₂ expression, from an undetectable level to 5% of total extractable protein, was achieved with these combined strategies. Importantly, the plant-derived MSP1₄₂ maintains its natural antigenicity and can be recognized by immune sera from malaria-infected patients. Our results provide a strong basis for the development of a plant-based, low-cost malaria vaccine.
Collapse
Affiliation(s)
- On Sun Lau
- Department of Biology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | | | | | | | | |
Collapse
|
33
|
Azizi A, Kumar A, Diaz-Mitoma F, Mestecky J. Enhancing oral vaccine potency by targeting intestinal M cells. PLoS Pathog 2010; 6:e1001147. [PMID: 21085599 PMCID: PMC2978714 DOI: 10.1371/journal.ppat.1001147] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The immune system in the gastrointestinal tract plays a crucial role in the control of infection, as it constitutes the first line of defense against mucosal pathogens. The attractive features of oral immunization have led to the exploration of a variety of oral delivery systems. However, none of these oral delivery systems have been applied to existing commercial vaccines. To overcome this, a new generation of oral vaccine delivery systems that target antigens to gut-associated lymphoid tissue is required. One promising approach is to exploit the potential of microfold (M) cells by mimicking the entry of pathogens into these cells. Targeting specific receptors on the apical surface of M cells might enhance the entry of antigens, initiating the immune response and consequently leading to protection against mucosal pathogens. In this article, we briefly review the challenges associated with current oral vaccine delivery systems and discuss strategies that might potentially target mouse and human intestinal M cells.
Collapse
Affiliation(s)
- Ali Azizi
- Infectious Disease and Vaccine Research Center, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada.
| | | | | | | |
Collapse
|
34
|
Saluja V, Visser M, van Roosmalen M, Leenhouts K, Huckriede A, Hinrichs W, Frijlink H. Gastro-intestinal delivery of influenza subunit vaccine formulation adjuvanted with Gram-positive enhancer matrix (GEM) particles. Eur J Pharm Biopharm 2010; 76:470-4. [DOI: 10.1016/j.ejpb.2010.08.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 08/09/2010] [Accepted: 08/10/2010] [Indexed: 11/16/2022]
|
35
|
Abstract
Research has yielded an abundance of vaccine candidates against mucosal infections, but only few mucosal vaccines have been registered for human use. Extensive research is being carried out to identify new and safe adjuvants for mucosal immunization, novel delivery systems, including live vectors and reporter molecules for tissue- and cell-specific targeting of vaccine antigens. If these candidates are to reach those in need, several lessons from clinical and field research carried out under resource-poor settings must be considered. These lessons include the need to develop new vaccines that can be administered topically onto the skin or to the mucosa, without needles or expensive delivery devices. Such topical vaccines must be able to protect all age groups at risk, be safe and effective in immunocompromised people, and be able to contain epidemics following complex emergencies. The anatomical compartmentalization of immune responses imposes constraints on the selection of topical route(s) of vaccine administration and on strategies for measuring these responses, especially in young infants. Thus, the selection of any particular route of immunization is critical when designing and formulating vaccines against organ-specific infections.
Collapse
Affiliation(s)
- C Czerkinsky
- International Vaccine Institute, Seoul, South Korea.
| | | |
Collapse
|
36
|
Kim SH, Seo KW, Kim J, Lee KY, Jang YS. The M cell-targeting ligand promotes antigen delivery and induces antigen-specific immune responses in mucosal vaccination. THE JOURNAL OF IMMUNOLOGY 2010; 185:5787-95. [PMID: 20952686 DOI: 10.4049/jimmunol.0903184] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Oral mucosal immunization can induce protective immunity in both systemic compartments and the mucosa. Successful mucosal immunization depends on Ag delivery to the mucosal immune induction site. The high transcytotic activity of M cells within the mucosa makes these cells attractive targets for mucosal Ag delivery, although it remains unclear whether delivery of Ag to M cells only can guarantee the induction of effective immune responses. In this study, we evaluated the ability of an M cell-targeting ligand with adjuvant activity to induce immunity against ligand-fused Ag. We selected M cell-targeting ligands through biopanning of a phage display library against differentiated in vitro M-like cells and produced the recombinant Ags fused to the selected ligands using the model Ag. One of the selected peptide ligands, Co1, promoted the binding of ligand-fused Ag to mouse Peyer's patch M cells and human M-like cells that had been defined by binding with the M cell-specific and anti-GP2 Abs. In addition, Co1 ligand enhanced the uptake of fused Ag by immunogenic tissue in an ex vivo loop assay and in vivo oral administration experiments. After oral administration, the ligand-fused Ag enhanced immune responses against the fused Ag compared with those of the control Ag without ligand. In addition, this use of the ligand supported a skewed Th2-type immune response against the fused Ag. Collectively, these results suggest that the ligand selected through biopanning against cultured M-like cells could be used as an adjuvant for targeted Ag delivery into the mucosal immune system to enhance immune induction.
Collapse
Affiliation(s)
- Sae-Hae Kim
- Division of Biological Sciences, Chonbuk National University, Jeonju, South Korea
| | | | | | | | | |
Collapse
|
37
|
Abstract
Oral vaccines offer significant advantages over needle-based vaccines for achieving universal childhood vaccination goals. The expression of vaccine antigens in transgenic plants has the potential to provide a convenient, safe approach for oral vaccination and thus a feasible alternative to traditional parenteral vaccines. Many developments in the field have ushered in improvements such as enhanced protein antigen expression for the use of plants as factories for vaccine production, and facilitated studies pertaining to immunogenicity of candidate vaccines. Oral delivery of plant-based vaccines offers the benefit of antigen protection within the harsh intestinal environment. Within the gut, mucosal immune cells are poised to respond to pathogens, but can also be exploited to elicit protective immune responses to oral vaccines. Inclusion of mucosal adjuvants during immunization with the vaccine antigen has been an important step towards the success of plant-based vaccines. This review discusses the mechanisms that control mucosal immune responses and highlights some of the studies and the results achieved following immunization with transgenic plants.
Collapse
Affiliation(s)
- Amit A Lugade
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| | | | | | | |
Collapse
|
38
|
Primard C, Rochereau N, Luciani E, Genin C, Delair T, Paul S, Verrier B. Traffic of poly(lactic acid) nanoparticulate vaccine vehicle from intestinal mucus to sub-epithelial immune competent cells. Biomaterials 2010; 31:6060-8. [PMID: 20471085 DOI: 10.1016/j.biomaterials.2010.04.021] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Accepted: 04/12/2010] [Indexed: 11/17/2022]
Abstract
Mucosal immunization is designed to induce strong immune responses at portal of pathogen entry. Unfortunately, mechanisms underlying the fate of the vaccine vector co-administered with antigens are still partially uncovered and limit further development of mucosal vaccines. Hence, poly(lactic acid) (PLA) nanoparticles being a versatile vaccine vehicle, we have analyzed the fate of these PLA nanoparticles during their uptake at intestinal mucosal sites, both in vivo and ex vivo, to decipher the mechanisms involved during this process. We first designed specific fluorescent PLA nanoparticles exhibiting strong colloidal stability after encapsulation of either 6-coumarin or CellTrace BODIPY before monitoring their transport through mucosa in the mouse ligated ileal loop model. The journey of the particles appears to follow a three-step process. Most particles are first entrapped in the mucus. Then, crossing of the epithelial barrier takes place exclusively through M-cells, leading to an accumulation in Peyer's patches (PP). Lastly, we noticed specific interaction of these PLA nanoparticles with underlying B cells and dendritic cells (DCs) of PP. Furthermore, we could document that DCs engulfing some nanoparticles could exhibit a TLR8+ specific expression. Specific targeting of these two cell types strongly supports the use of PLA nanoparticles as a vaccine delivery system for oral use. Indeed, following oral gavage of mice with PLA nanoparticles, we were able to observe the same biodistribution patterns, indicating that these nanoparticles specifically reach immune target required for oral immunization.
Collapse
Affiliation(s)
- Charlotte Primard
- Institut de Biologie et Chimie des Protéines, UMR5086 CNRS, University of Lyon 1, Lyon, France
| | | | | | | | | | | | | |
Collapse
|
39
|
Liang S, Hajishengallis G. Heat-Labile Enterotoxins as Adjuvants or Anti-Inflammatory Agents. Immunol Invest 2010; 39:449-67. [DOI: 10.3109/08820130903563998] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Shuang Liang
- University of Louisville School of Dentistry, Oral Health and Systemic Disease, Louisville, KY, USA
| | - George Hajishengallis
- University of Louisville School of Dentistry, Oral Health and Systemic Disease, Louisville, KY, USA
- University of Louisville School of Medicine, Department of Microbiology and Immunology, Louisville, KY, USA
| |
Collapse
|
40
|
Lee CH, Nawar HF, Mandell L, Liang S, Hajishengallis G, Connell TD. Enhanced antigen uptake by dendritic cells induced by the B pentamer of the type II heat-labile enterotoxin LT-IIa requires engagement of TLR2. Vaccine 2010; 28:3696-705. [PMID: 20332049 DOI: 10.1016/j.vaccine.2010.03.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 03/01/2010] [Accepted: 03/09/2010] [Indexed: 11/19/2022]
Abstract
The potent mucosal adjuvant properties of the type II heat-labile enterotoxin LT-IIa of Escherichia coli are dependent upon binding of the B pentamer of the enterotoxin (LT-IIa-B(5)) to ganglioside receptors on immunocompetent cells. To evaluate the immunomodulatory activities of LT-IIa-B(5), in vitro experiments employing bone marrow-derived dendritic cells (BMDC) were performed. Uptake of OVA-FITC, a model antigen (Ag), was enhanced by treatment of BMDC with LT-IIa-B5, but not by treatment of cells with the B pentamer of cholera toxin (CTB). Expression of co-stimulatory molecules (CD40, CD80, CD86, and MHC-II) and cytokines (IL-12p40, TNF-alpha, and IFN-gamma) was increased in BMDC treated with LT-IIa-B(5). The capacity of LT-IIa-B(5) to enhance Ag uptake and to induce expression of co-stimulatory receptors and cytokines by BMDC was dependent upon expression of TLR2 by the cell. Increased Ag uptake induced by LT-IIa-B(5) was correlated with increased Ag-specific proliferation of CD4(+) T cells in an in vitro syngeneic DO11.10 CD4(+) T cell proliferation assay. These experiments confirm that LT-IIa-B(5) exhibits potent immunomodulatory properties which may be exploitable as a non-toxic mucosal adjuvant.
Collapse
Affiliation(s)
- Chang Hoon Lee
- The Department of Microbiology and Immunology, The University at Buffalo, NY 14214, USA
| | | | | | | | | | | |
Collapse
|
41
|
|
42
|
Nanogram doses of alum-adjuvanted HBs antigen induce humoral immune response in mice when orally administered. Arch Immunol Ther Exp (Warsz) 2010; 58:143-51. [PMID: 20165988 DOI: 10.1007/s00005-010-0065-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Accepted: 08/04/2009] [Indexed: 12/23/2022]
Abstract
Mucosal immunity elicited by plant-based and other orally administered vaccines can serve as the first line of defense against most pathogens infecting through mucosal surfaces, but it is also considered for systemic immunity against blood-borne diseases such as hepatitis B (HB). Previous oral immunization trials based on multiple administration of high doses of HBs antigen elicited an immune response; however, a reproducible and long-lasting immunization protocol was difficult to design. The objective of this study was to evaluate the effect of dose and timing of orally delivered alum-adsorbed antigen on the magnitude of the anti-HBs humoral response. Mice were immunized orally by gavage intubation or parenterally by intramuscular injection three times, once every 2 weeks, with doses of 5, 50, or 500 ng alum-adjuvanted HBsAg. A low dose (10 ng) of HBsAg was orally administered three times in different time intervals: 2, 4, 6, and 8 weeks. The three consecutive 5-ng oral doses of the antigen induced immune response at the protective level (>or=10 mIU/ml), significantly higher than the reaction elicited by three 50 or 500 ng doses. In contrast, intramuscular delivery of these doses did not differ significantly; however, they induced a five to six times higher immune response than oral immunization. The 8-week period between each of the three oral immunizations appeared to be favorable to the anti-HBs humoral responses compared with the shorter schedules. The results presented here clearly identify the importance of low doses of antigen administered orally in extended intervals for a significantly higher anti-HBs response. This finding provides some indications concerning the strategy of orally administered vaccines, including plant-based ones.
Collapse
|
43
|
Kostrzak A, Cervantes Gonzalez M, Guetard D, Nagaraju DB, Wain-Hobson S, Tepfer D, Pniewski T, Sala M. Oral administration of low doses of plant-based HBsAg induced antigen-specific IgAs and IgGs in mice, without increasing levels of regulatory T cells. Vaccine 2009; 27:4798-807. [PMID: 19539581 DOI: 10.1016/j.vaccine.2009.05.092] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Revised: 05/26/2009] [Accepted: 05/28/2009] [Indexed: 10/20/2022]
Abstract
Plant-based oral vaccines run the risk of activating regulatory T cells (Tregs) and suppressing the antigen-specific immune response via oral tolerance. Mice humanized for two HLA alleles (HLA-A2.1 and HLA-DR1) were used to measure changes in Tregs and antigen-specific immune responses induced by the oral administration of tobacco (Nicotiana tabacum), expressing the hepatitis B surface antigen (HBsAg). Antigen-specific CD8+ T cell activation was not detected, but the plant-based oral immunization, without adjuvant, resulted in humoral responses comparable to those obtained by adjuvanted DNA immunization. Treg titers did not increase with DNA immunization. In contrast, with plant immunization, Tregs increased linearly to reach a plateau at high antigen doses. The highest humoral IgA and IgG responses correlated with the lowest plant antigen dose (0.5 ng), while for DNA immunization the best antibody responses were obtained at higher antigen doses. These experiments suggest that plant-based oral vaccines could be adjusted to minimize tolerance, while still inducing an immune response. Oral tolerance and adjuvant engineering in plants are discussed.
Collapse
Affiliation(s)
- Anna Kostrzak
- Institut Pasteur (IP), Unité de Rétrovirologie Moléculaire, CNRS URA 3015, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Shin EA, Park YK, Lee KO, Langridge WHR, Lee JY. Synthesis and assembly of Porphyromonas gingivalis fimbrial protein in potato tissues. Mol Biotechnol 2009; 43:138-47. [PMID: 19507071 DOI: 10.1007/s12033-009-9181-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Accepted: 05/05/2009] [Indexed: 10/20/2022]
Abstract
Periodontal disease caused by the gram-negative oral anaerobic bacterium Porphyromonas gingivalis is thought to be initiated by the binding of P. gingivalis fimbrial protein to saliva-coated oral surfaces. To assess whether biologically active fimbrial antigen can be synthesized in edible plants, a cDNA fragment encoding the C-terminal binding portion of P. gingivalis fimbrial protein, fimA (amino acids 266-337), was cloned behind the mannopine synthase promoter in plant expression vector pPCV701. The plasmid was transferred into potato (Solanum tuberosum) leaf cells by Agrobacterium tumefaciens in vivo transformation methods. The fimA cDNA fragment was detected in transformed potato leaf genomic DNA by PCR amplification methods. Further, a novel immunoreactive protein band of ~6.5 kDa was detected in boiled transformed potato tuber extracts by acrylamide gel electrophoresis and immunoblot analysis methods using primary antibodies to fimbrillin, a monomeric P. gingivalis fimbrial subunit. Antibodies generated against native P. gingivalis fimbriae detected a dimeric form of bacterial-synthesized recombinant FimA(266-337) protein. Further, a protein band of ~160 kDa was recognized by anti-FimA antibodies in undenatured transformed tuber extracts, suggesting that oligomeric assembly of plant-synthesized FimA may occur in transformed plant cells. Based on immunoblot analysis, the maximum amount of FimA protein synthesized in transformed potato tuber tissues was approximately 0.03% of total soluble tuber protein. Biosynthesis of immunologically detectable FimA protein and assembly of fimbrial antigen subunits into oligomers in transformed potato tuber tissues demonstrate the feasibility of producing native FimA protein in edible plant cells for construction of plant-based oral subunit vaccines against periodontal disease caused by P. gingivalis.
Collapse
Affiliation(s)
- Eun-Ah Shin
- Department of Biochemistry and Microbiology, Center for Health Disparities and Molecular Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | | | | | | | | |
Collapse
|
45
|
New horizon of mucosal immunity and vaccines. Curr Opin Immunol 2009; 21:352-8. [PMID: 19493665 DOI: 10.1016/j.coi.2009.04.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Accepted: 04/27/2009] [Indexed: 11/23/2022]
Abstract
Progress in the past quarter-century on understanding the molecular, cellular, and in vivo components of the mucosal immune system have allowed us to develop a practical strategy for a novel mucosal vaccine. The mucosal immune system can induce secretory IgA (SIgA) and serum IgG responses to provide two layers of defense against mucosal pathogens. For SIgA-mediated immunity in the gastrointestinal tract, the gut-associated lymphoid tissue contains both the tissue-dependent and tissue-independent IgA components. Harnessing the mucosal immune system for vaccine development may help prevent the global health problems caused by enteric infectious diseases. We have therefore combined mucosal immunology and plant biology to create a rice-based mucosal vaccine that requires neither needles and syringes nor refrigeration.
Collapse
|
46
|
Pathangey L, Kohler JJ, Isoda R, Brown TA. Effect of expression level on immune responses to recombinant oral Salmonella enterica serovar Typhimurium vaccines. Vaccine 2009; 27:2707-11. [PMID: 19428883 DOI: 10.1016/j.vaccine.2009.02.072] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Revised: 01/30/2009] [Accepted: 02/05/2009] [Indexed: 10/21/2022]
Abstract
Live, attenuated Salmonella has been used to express heterologous antigens for development of oral vaccines. Often, expression must be regulated because of deleterious effects on the Salmonella vector. The effect of varying expression levels on immune response parameters has not been well defined. In this study we introduced mutations in the -10 region of the trc promoter in the expression plasmid to generate series of vaccine strains with different levels of expression of a model antigen, the hemagglutinin HagB from Porphyromonas gingivalis. There was no difference in growth rates of the Salmonella vaccine strains containing the wild-type, the mutant plasmids or the empty expression vector. The primary IgG response in serum in mice orally immunized with the wild-type strain peaked 3-4 weeks earlier than the intermediate expression level strains, suggesting that high expression levels may favor an earlier response. While there was a trend for anti-HagB recall responses to correlate with higher expression level, the peak levels were not significantly different even for expression levels as low as 33% of wild-type. A similar trend in terms of response level was seen with serum and salivary IgA. The subclass of the IgG response was predominately IgG2a regardless of expression level, consistent with a Th1 response. These data suggest that isotype distribution, immune response level and T helper cell profile are largely unaffected over a wide range of expression levels.
Collapse
Affiliation(s)
- Latha Pathangey
- Department of Oral Biology, University of Florida, Gainesville, FL 32610, United States
| | | | | | | |
Collapse
|