1
|
Arlt E, Kindermann A, Fritsche AK, Navarrete Santos A, Kielstein H, Bazwinsky-Wutschke I. A Flow Cytometry-Based Examination of the Mouse White Blood Cell Differential in the Context of Age and Sex. Cells 2024; 13:1583. [PMID: 39329764 PMCID: PMC11430320 DOI: 10.3390/cells13181583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/31/2024] [Revised: 09/10/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024] Open
Abstract
Analysis of the white blood cell differential as part of a flow cytometry-based approach is a common routine diagnostic tool used in clinics and research. For human blood, the methodological approach, suitable markers, and gating strategies are well-established. However, there is a lack of information regarding the mouse blood count. In this article, we deliver a fast and easy protocol for reprocessing mouse blood for the purpose of flow cytometric analysis, as well as suitable markers and gating strategies. We also present two possible applications: for the analysis of the whole blood count, with blood from a cardiac puncture, and for the analysis of a certain leukocyte subset at multiple time points in the framework of a mouse experiment, using blood from the facial vein. Additionally, we provide orientation values by applying the method to 3-month-old and 24-month-old male and female C57BL/6J mice. Our analyses demonstrate differences in the leukocyte fractions depending on age and sex. We discuss the influencing factors and limitations that can affect the results and that, therefore, need to be considered when applying this method. The present study fills the gap in the knowledge related to the rare information on flow cytometric analysis of mouse blood and, thus, lays the foundation for further investigations in this area.
Collapse
Affiliation(s)
- Elise Arlt
- Institute of Anatomy and Cell Biology, Medical Faculty, Martin-Luther-University Halle-Wittenberg, 06108 Halle (Saale), Germany; (A.K.); (A.-K.F.); (H.K.); (I.B.-W.)
| | - Andrea Kindermann
- Institute of Anatomy and Cell Biology, Medical Faculty, Martin-Luther-University Halle-Wittenberg, 06108 Halle (Saale), Germany; (A.K.); (A.-K.F.); (H.K.); (I.B.-W.)
| | - Anne-Kristin Fritsche
- Institute of Anatomy and Cell Biology, Medical Faculty, Martin-Luther-University Halle-Wittenberg, 06108 Halle (Saale), Germany; (A.K.); (A.-K.F.); (H.K.); (I.B.-W.)
- Institute of Anatomy, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany
| | - Alexander Navarrete Santos
- Core Facility Flow Cytometry, Center for Basic Medical Research, Medical Faculty, Martin-Luther-University Halle-Wittenberg, 06108 Halle (Saale), Germany;
| | - Heike Kielstein
- Institute of Anatomy and Cell Biology, Medical Faculty, Martin-Luther-University Halle-Wittenberg, 06108 Halle (Saale), Germany; (A.K.); (A.-K.F.); (H.K.); (I.B.-W.)
| | - Ivonne Bazwinsky-Wutschke
- Institute of Anatomy and Cell Biology, Medical Faculty, Martin-Luther-University Halle-Wittenberg, 06108 Halle (Saale), Germany; (A.K.); (A.-K.F.); (H.K.); (I.B.-W.)
| |
Collapse
|
2
|
Pilat JM, Jacobse J, Buendia MA, Choksi YA. Animal models of eosinophilic esophagitis. J Leukoc Biol 2024; 116:349-356. [PMID: 38507307 PMCID: PMC11518583 DOI: 10.1093/jleuko/qiae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/30/2023] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 03/22/2024] Open
Abstract
Eosinophilic esophagitis is a chronic inflammatory disorder of the esophagus. Over the past 25 yr, great strides have been made toward understanding its pathogenesis, in part due to studies in several types of animal models. The vast majority of these models have been characterized in mice. In this review, we summarize the histopathological features of eosinophilic esophagitis recapitulated by these animal models, as well as discuss their strengths and weaknesses.
Collapse
Affiliation(s)
- Jennifer M. Pilat
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, 1075 Medical Research Building IV, B-2215 Garland Ave, Nashville, TN 37232, United States
| | - Justin Jacobse
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, 1075 Medical Research Building IV, B-2215 Garland Ave, Nashville, TN 37232, United States
- Department of Pediatrics, Willem-Alexander Children’s Hospital, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, 1211 Medical Center Drive, Nashville, TN 37232, United States
- Veterans Affairs Tennessee Valley Healthcare System, 1310 24th Ave S, Nashville, TN 37232, United States
| | - Matthew A. Buendia
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Vanderbilt University Medical Center, 2200 Children’s Way, Nashville, TN 37232, United States
| | - Yash A. Choksi
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, 1075 Medical Research Building IV, B-2215 Garland Ave, Nashville, TN 37232, United States
- Veterans Affairs Tennessee Valley Healthcare System, 1310 24th Ave S, Nashville, TN 37232, United States
- Program in Cancer Biology, School of Medicine, Vanderbilt University, 1075 Medical Research Building IV, B-2215 Garland Ave, Nashville, TN 37232, United States
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, 1030 Medical Research Building IV, 2215 Garland Ave, Nashville, TN 37232, United States
| |
Collapse
|
3
|
Menard-Katcher C, Aceves S. Pathophysiology and Clinical Impact of Esophageal Remodeling and Fibrosis in Eosinophilic Esophagitis. Immunol Allergy Clin North Am 2024; 44:129-143. [PMID: 38575213 DOI: 10.1016/j.iac.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 04/06/2024]
Abstract
Most of the major clinical signs and consequences of eosinophilic esophagitis seem to be related to tissue remodeling. Important data on remodeling activity in patients with eosinophilic esophagitis are provided by a range of current and new biologic markers and diagnostics. To completely clarify the possible advantages and restrictions of therapeutic approaches, clinical studies should take into consideration the existence and reversibility of esophageal remodeling. The degree of mucosal or submucosal disease activity may not be reflected by epithelial eosinophilic inflammation, which is used to define one criterion of disease activity".
Collapse
Affiliation(s)
- Calies Menard-Katcher
- Departments of Pediatrics, Section of Pediatric Gastroenterology, Hepatology and Nutrition, University of Colorado School of Medicine, Digestive Health Institute, Childrens Hospital Colorado, Anschutz Medical Campus, 13123 East 16th Avenue, Aurora, CO 80045, USA.
| | - Seema Aceves
- Division of Pediatric Gastroenterology, Department of Pediatrics, University of California, Biomedical Research Facility 2, 4A17, 3147 Biomedical Sciences Way, La Jolla, CA, USA
| |
Collapse
|
4
|
Li D, Wei Y, Wang J, Wang B. Animal models of eosinophilic esophagitis, review and perspectives. Animal Model Exp Med 2024; 7:127-135. [PMID: 38369973 PMCID: PMC11079148 DOI: 10.1002/ame2.12391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/03/2023] [Accepted: 01/11/2024] [Indexed: 02/20/2024] Open
Abstract
Eosinophilic oesophagitis (EoE) is an allergen/immune-mediated chronic esophageal disease characterized by esophageal mucosal eosinophilic infiltration and esophageal dysfunction. Although the disease was originally attributed to a delayed allergic reaction to allergens and a Th2-type immune response, the exact pathogenesis is complex, and the efficacy of existing treatments is unsatisfactory. Therefore, the study of the pathophysiological process of EOE has received increasing attention. Animal models have been used extensively to study the molecular mechanism of EOE pathogenesis and also provide a preclinical platform for human clinical intervention studies of novel therapeutic agents. To maximize the use of existing animal models of EOE, it is important to understand the advantages or limitations of each modeling approach. This paper systematically describes the selection of experimental animals, types of allergens, and methods of sensitization and excitation during the preparation of animal models of EoE. It also discusses the utility and shortcomings of each model with the aim of providing the latest perspectives on EoE models and leading to better choices of animal models.
Collapse
Affiliation(s)
- Dong Li
- Department of DermatologyHuazhong University of Science and Technology Tongji Medical College Tongji HospitalWuhanChina
| | - Yujia Wei
- Department of DermatologyHuazhong University of Science and Technology Tongji Medical College Tongji HospitalWuhanChina
| | - Jing Wang
- Health Management CenterHuazhong University of Science and Technology Tongji Medical College Tongji HospitalWuhanChina
| | - Bo Wang
- Department of GastroenterologyHuazhong University of Science and Technology Tongji Medical College Tongji HospitalWuhanChina
| |
Collapse
|
5
|
Gioulvanidou M, Sarklioglu S, Chen X, Lebedeva IV, Inalman Y, Pohl MA, Bourne L, Andrew D, Lorenz IC, Stiles KM, Pagovich OE, Hackett NR, Kaminsky SM, de Mulder Rougvie M, Crystal RG. Vectorized Human Antibody-Mediated Anti-Eosinophil Gene Therapy. Hum Gene Ther 2024; 36:11-27. [PMID: 39725494 PMCID: PMC11839538 DOI: 10.1089/hum.2024.165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/17/2024] [Accepted: 11/04/2024] [Indexed: 12/28/2024] Open
Abstract
Chronic hypereosinophilia, defined as persistent elevated blood levels of eosinophils ≥1,500/μL, is associated with tissue infiltration of eosinophils and consequent organ damage by eosinophil release of toxic mediators. The current therapies for chronic hypereosinophilia have limited success, require repetitive administration, and are associated with a variety of adverse effects. As a novel approach to treat chronic hypereosinophilia, we hypothesized that adeno-associated virus (AAV)-mediated delivery of an anti-human eosinophil antibody would provide one-time therapy that would mediate persistent suppression of blood eosinophil levels. To assess this hypothesis, we first generated a human monoclonal antibody (mAb) directed against Siglec8, a sialic-acid binding immunoglobulin-like lectin, expressed at high levels on the cell surface of human eosinophils. Transgenic mice with a human immunoglobulin repertoire were immunized with human Siglec8 protein or DNA encoding human Siglec8. Based on target binding assessments, the 08C07 mAb was chosen for further study. The human variable regions of 08C07 were joined to the human Ig constant region, creating H08C07 (hAntiEos), a fully human anti-human eosinophil mAb. Using the gene sequence of hAntiEos, we created AAVrh.10hAntiEos, an AAVrh.10-based vector expressing the heavy and light chains of H08C07. Intravenous administration of AAVrh.10hAntiEos (1011 genome copies or gc) to C57Bl/6 mice resulted in persistent elevated serum levels of hAntiEos. In vivo gene therapy generated hAntiEos bound to recombinant human Siglec8 protein in a dose-dependent manner and to human eosinophils, mediated apoptosis of human eosinophils, and antibody-dependent cellular cytotoxicity activity against human eosinophils. Consistent with these data, administration of AAVrh.10hAntiEos to human CD34+ transplanted NSG-SGM3 immunodeficient mice suppressed levels of human eosinophils in vivo. AAVrh.10hAntiEos holds the potential to offer therapeutic benefit to patients with chronic hypereosinophilia.
Collapse
Affiliation(s)
- Maria Gioulvanidou
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Selenay Sarklioglu
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Xinlei Chen
- Sanders Tri-Institutional Therapeutics Discovery Institute, New York, New York, USA
| | - Irina V. Lebedeva
- Sanders Tri-Institutional Therapeutics Discovery Institute, New York, New York, USA
| | - Yeliz Inalman
- Sanders Tri-Institutional Therapeutics Discovery Institute, New York, New York, USA
| | - Mary Ann Pohl
- Sanders Tri-Institutional Therapeutics Discovery Institute, New York, New York, USA
| | - Lloyd Bourne
- Sanders Tri-Institutional Therapeutics Discovery Institute, New York, New York, USA
| | - David Andrew
- Sanders Tri-Institutional Therapeutics Discovery Institute, New York, New York, USA
| | - Ivo C. Lorenz
- Sanders Tri-Institutional Therapeutics Discovery Institute, New York, New York, USA
| | - Katie M. Stiles
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Odelya E. Pagovich
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Neil R. Hackett
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Stephen M. Kaminsky
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, USA
| | | | - Ronald G. Crystal
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
6
|
Ptaschinski C, Zhu D, Fonseca W, Lukacs NW. Stem cell factor inhibition reduces Th2 inflammation and cellular infiltration in a mouse model of eosinophilic esophagitis. Mucosal Immunol 2023; 16:727-739. [PMID: 37557983 PMCID: PMC10680063 DOI: 10.1016/j.mucimm.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/27/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/11/2023]
Abstract
Eosinophilic esophagitis (EoE) is a T helper (Th)2-mediated inflammatory disorder characterized endoscopically by eosinophilic infiltration leading to fibrosis of the esophagus. Stem cell factor (SCF), a multifunctional cytokine, is upregulated in several allergic diseases, including in patients with EoE. Mast cells and eosinophils express c-kit, the cell surface receptor for SCF, and have been found to play an important role in EoE. Therefore, we investigated whether blocking SCF represents a potential therapeutic approach for EoE. Esophageal inflammation was induced in mice using peanut allergen. In mice with experimental EoE, we found that SCF was upregulated in the esophageal tissue. In EoE mice injected with a polyclonal antibody specific for SCF, we observed a decrease in both mast cells and eosinophils by histological and flow cytometric analysis. Furthermore, Th2 cytokines in the esophagus were decreased in anti-SCF treated mice, as were levels of Th2 cytokines from lung-draining and esophageal lymph nodes. Serum levels of peanut-specific immunoglobulin E were reduced following treatment with anti-SCF. In Kitlf/f-Col1-Cre-ERT mice, which have SCF deleted primarily in myofibroblasts that develop in EoE, we observed similar results as the anti-SCF treated animals for inflammatory cell accumulation, cytokines, and histopathology. These results indicate that therapeutic treatments targeting SCF can reduce allergic inflammation in EoE.
Collapse
Affiliation(s)
- Catherine Ptaschinski
- Department of Pathology, University of Michigan, Ann Arbor, USA; Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, USA.
| | - Diana Zhu
- Department of Pathology, University of Michigan, Ann Arbor, USA
| | - Wendy Fonseca
- Department of Pathology, University of Michigan, Ann Arbor, USA
| | - Nicholas W Lukacs
- Department of Pathology, University of Michigan, Ann Arbor, USA; Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, USA
| |
Collapse
|
7
|
Egan H, Treacy O, Lynch K, Leonard NA, O'Malley G, Reidy E, O'Neill A, Corry SM, De Veirman K, Vanderkerken K, Egan LJ, Ritter T, Hogan AM, Redmond K, Peng L, Che J, Gatlin W, Jayaraman P, Sheehan M, Canney A, Hynes SO, Kerr EM, Dunne PD, O'Dwyer ME, Ryan AE. Targeting stromal cell sialylation reverses T cell-mediated immunosuppression in the tumor microenvironment. Cell Rep 2023; 42:112475. [PMID: 37167967 DOI: 10.1016/j.celrep.2023.112475] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/05/2021] [Revised: 02/03/2023] [Accepted: 04/19/2023] [Indexed: 05/13/2023] Open
Abstract
Immunosuppressive tumor microenvironments (TMEs) reduce the effectiveness of immune responses in cancer. Mesenchymal stromal cells (MSCs), precursors to cancer-associated fibroblasts (CAFs), promote tumor progression by enhancing immune cell suppression in colorectal cancer (CRC). Hyper-sialylation of glycans promotes immune evasion in cancer through binding of sialic acids to their receptors, Siglecs, expressed on immune cells, which results in inhibition of effector functions. The role of sialylation in shaping MSC/CAF immunosuppression in the TME is not well characterized. In this study, we show that tumor-conditioned stromal cells have increased sialyltransferase expression, α2,3/6-linked sialic acid, and Siglec ligands. Tumor-conditioned stromal cells and CAFs induce exhausted immunomodulatory CD8+ PD1+ and CD8+ Siglec-7+/Siglec-9+ T cell phenotypes. In vivo, targeting stromal cell sialylation reverses stromal cell-mediated immunosuppression, as shown by infiltration of CD25 and granzyme B-expressing CD8+ T cells in the tumor and draining lymph node. Targeting stromal cell sialylation may overcome immunosuppression in the CRC TME.
Collapse
Affiliation(s)
- Hannah Egan
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Oliver Treacy
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Kevin Lynch
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Niamh A Leonard
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Grace O'Malley
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Eileen Reidy
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland
| | - Aoise O'Neill
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Shania M Corry
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Kim De Veirman
- Laboratory for Haematology and Immunology (HEIM), Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Karin Vanderkerken
- Laboratory for Haematology and Immunology (HEIM), Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Laurence J Egan
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Thomas Ritter
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland
| | - Aisling M Hogan
- Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Department of Colorectal Surgery, Galway University Hospital, Galway, Ireland
| | - Keara Redmond
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Li Peng
- Palleon Pharmaceuticals, Waltham, MA 02451, USA
| | - Jenny Che
- Palleon Pharmaceuticals, Waltham, MA 02451, USA
| | | | | | - Margaret Sheehan
- Division of Anatomical Pathology, Galway University Hospital, Galway, Ireland
| | - Aoife Canney
- Division of Anatomical Pathology, Galway University Hospital, Galway, Ireland
| | - Sean O Hynes
- Division of Anatomical Pathology, Galway University Hospital, Galway, Ireland; Discipline of Pathology, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Emma M Kerr
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Philip D Dunne
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK; Cancer Research UK Beatson Institute, Glasgow, UK
| | - Michael E O'Dwyer
- Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Blood Cancer Network of Ireland (BCNI), Galway, Ireland; Department of Hematology, Galway University Hospital, Galway, Ireland
| | - Aideen E Ryan
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland.
| |
Collapse
|
8
|
Bochner BS, O'Sullivan JA, Chang AT, Youngblood BA. Siglecs in allergy and asthma. Mol Aspects Med 2023; 90:101104. [PMID: 35835621 PMCID: PMC10757266 DOI: 10.1016/j.mam.2022.101104] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/14/2022] [Revised: 06/28/2022] [Accepted: 07/03/2022] [Indexed: 01/21/2023]
Abstract
The term "allergic diseases" encompasses several common, IgE-mediated conditions that range from being annoying to those that are life-threatening. Available treatments include active avoidance of the instigating allergen and the use of a variety of oral, inhaled, intranasal, intraocular and injected agents. While most individuals with allergies do well with existing therapies, there are still unmet therapeutic needs. Siglecs (sialic acid-binding, immunoglobulin-like lectins) are a family of single-pass transmembrane I-type lectins found on various subsets of cells, especially those of the immune system. All Siglecs have extracellular domains recognizing sialoside ligands, and most contain cytoplasmic domains with inhibitory signaling activity. This review focuses on Siglecs that likely play a role in regulating allergic and asthmatic responses, and how specific Siglecs, expressed on cells such as eosinophils and mast cells, are being targeted for therapeutic benefit.
Collapse
Affiliation(s)
- Bruce S Bochner
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Jeremy A O'Sullivan
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | | |
Collapse
|
9
|
Laky K, Kinard JL, Li JM, Moore IN, Lack J, Fischer ER, Kabat J, Latanich R, Zachos NC, Limkar AR, Weissler KA, Thompson RW, Wynn TA, Dietz HC, Guerrerio AL, Frischmeyer-Guerrerio PA. Epithelial-intrinsic defects in TGFβR signaling drive local allergic inflammation manifesting as eosinophilic esophagitis. Sci Immunol 2023; 8:eabp9940. [PMID: 36608150 PMCID: PMC10106118 DOI: 10.1126/sciimmunol.abp9940] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/09/2023]
Abstract
Allergic diseases are a global health challenge. Individuals harboring loss-of-function variants in transforming growth factor-β receptor (TGFβR) genes have an increased prevalence of allergic disorders, including eosinophilic esophagitis. Allergic diseases typically localize to mucosal barriers, implicating epithelial dysfunction as a cardinal feature of allergic disease. Here, we describe an essential role for TGFβ in the control of tissue-specific immune homeostasis that provides mechanistic insight into these clinical associations. Mice expressing a TGFβR1 loss-of-function variant identified in atopic patients spontaneously develop disease that clinically, immunologically, histologically, and transcriptionally recapitulates eosinophilic esophagitis. In vivo and in vitro, TGFβR1 variant-expressing epithelial cells are hyperproliferative, fail to differentiate properly, and overexpress innate proinflammatory mediators, which persist in the absence of lymphocytes or external allergens. Together, our results support the concept that TGFβ plays a fundamental, nonredundant, epithelial cell-intrinsic role in controlling tissue-specific allergic inflammation that is independent of its role in adaptive immunity.
Collapse
Affiliation(s)
- Karen Laky
- Food Allergy Research Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jessica L Kinard
- Food Allergy Research Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jenny Min Li
- Food Allergy Research Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ian N Moore
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Justin Lack
- Collaborative Bioinformatics Resource, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.,Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Elizabeth R Fischer
- Electron Microscopy Unit, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Juraj Kabat
- Biological Imaging Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rachel Latanich
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Nicholas C Zachos
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Ajinkya R Limkar
- Inflammation Immunobiology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Katherine A Weissler
- Food Allergy Research Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Robert W Thompson
- Immunopathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Thomas A Wynn
- Immunopathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Harry C Dietz
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Anthony L Guerrerio
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Pamela A Frischmeyer-Guerrerio
- Food Allergy Research Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
10
|
Maskey A, Srivastava K, Soffer G, Dunkin D, Yuan Q, Li XM. Induction of Severe Eosinophilic Esophagitis and Multi-Organ Inflammation by Airborne Allergens is Associated with IL-4/IL-13 and CCL11 but Not IgE in Genetic Susceptible Mice. J Inflamm Res 2022; 15:5527-5540. [PMID: 36176352 PMCID: PMC9514888 DOI: 10.2147/jir.s372449] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/12/2022] [Accepted: 08/18/2022] [Indexed: 11/23/2022] Open
Abstract
Background Eosinophilic Esophagitis (EoE) is an increasingly common chronic inflammatory disease. The pathological mechanisms underlying EoE are largely unknown. Objective We sought to understand the mechanisms underlying aeroallergen-induced EoE in Sharpin gene deficient (Sharpin-/-) mice that is prone to inflammatory response. Methods Sharpin-/-mice were exposed with Aspergillus fumigatus and ovalbumin intranasally every alternate day for 4 weeks. Wild type (WT) naïve mice, WT exposed, and un-exposed Sharpin-/- mice were controls. Histopathological analysis was performed by H&E, trichrome and major basic protein staining. Total and specific IgE, IgG, and IgA levels were measured by ELISA and Th2 cytokine and CCL11 chemokine gene expression were determined. Results Airborne allergen exposed Sharpin-/- mice showed severe eosinophilic inflammation in the esophagus (p < 0.001), and markedly increased epithelial thickening (p < 0.0001) compared to WT normal controls, whereas airborne allergen exposed WT mice and unexposed Sharpin-/- mice only showed mild eosinophilic inflammation in the esophagus. These exposed Sharpin-/- mice also showed over 7-fold increase in blood eosinophils (p < 0.0001), 60-fold increase in eosinophils in bronchoalveolar lavage fluid (p < 0.0001) and 4-fold increase in eosinophils in the skin (p < 0.0001) compared to normal controls. Surprisingly, exposed Sharpin-/- mice did not show elevation of serum total or antigen-specific IgE levels but reduced total IgA and IgG levels than normal controls There was a marked increase in IL-4, IL-13 and CCL11 gene expression in esophageal tissue (p < 0.001) in exposed Sharpin-/- mice compared to WT normal mice. Conclusion Th2 cytokines and chemokines, but not IgE may play an important pathologic role in aeroallergen-induced EoE. This study may provide insight into new therapeutics for EoE.
Collapse
Affiliation(s)
- Anish Maskey
- Department of Pathology, Microbiology & Immunology, New York Medical College, Valhalla, NY, USA
| | - Kamal Srivastava
- Department of Pathology, Microbiology & Immunology, New York Medical College, Valhalla, NY, USA.,General Nutraceutical Technology, LLC, Elmsford, NY, USA
| | - Gary Soffer
- Department of Allergy and Immunology, Yale University, New Haven, CT, USA
| | - David Dunkin
- Division of Pediatric Gastroenterology and Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Qian Yuan
- Pediatric Gastroenterology and Nutrition, Mass General Hospital for Children, Boston, MA, USA
| | - Xiu-Min Li
- Department of Pathology, Microbiology & Immunology, New York Medical College, Valhalla, NY, USA.,Department of Otolaryngology, New York Medical College, Valhalla, NY, USA
| |
Collapse
|
11
|
Khokhar D, Marella S, Idelman G, Chang JW, Chehade M, Hogan SP. Eosinophilic esophagitis: Immune mechanisms and therapeutic targets. Clin Exp Allergy 2022; 52:1142-1156. [PMID: 35778876 PMCID: PMC9547832 DOI: 10.1111/cea.14196] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/18/2022] [Revised: 06/08/2022] [Accepted: 06/20/2022] [Indexed: 01/26/2023]
Abstract
Eosinophilic esophagitis (EoE) is an emerging chronic inflammatory disease of the oesophagus and is clinically characterized by upper gastrointestinal (GI) symptoms including dysphagia and esophageal food impaction. Histopathologic manifestations, which include intraepithelial eosinophilic inflammation and alterations of the esophageal squamous epithelium, such as basal zone hyperplasia (BZH) and dilated intercellular spaces (DIS), are thought to contribute to esophageal dysfunction and disease symptoms. Corroborative clinical and discovery science-based studies have established that EoE is characterized by an underlying allergic inflammatory response, in part, related to the IL-13/CCL26/eosinophil axis driving dysregulation of several key epithelial barrier and proliferative regulatory genes including kallikrein (KLK) serine proteases, calpain 14 (CAPN14) and anoctamin 1 (ANO1). The contribution of these inflammatory and proliferative processes to the clinical and histological manifestations of disease are not fully elucidated. Herein, we discuss the immune molecules and cells that are thought to underlie the clinical and pathologic manifestations of EoE and the emerging therapeutics targeting these processes for the treatment of EoE.
Collapse
Affiliation(s)
- Dilawar Khokhar
- Division of Allergy and ImmunologyUniversity of MichiganAnn ArborMichiganUSA
- Mary H Weiser Food Allergy CenterUniversity of MichiganAnn ArborMichiganUSA
| | - Sahiti Marella
- Mary H Weiser Food Allergy CenterUniversity of MichiganAnn ArborMichiganUSA
- Department of PathologyUniversity of MichiganAnn ArborMichiganUSA
| | - Gila Idelman
- Mary H Weiser Food Allergy CenterUniversity of MichiganAnn ArborMichiganUSA
| | - Joy W. Chang
- Division of Gastroenterology, Department of Internal MedicineUniversity of MichiganAnn ArborMichiganUSA
| | - Mirna Chehade
- Mount Sinai Center for Eosinophilic DisordersIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Simon P. Hogan
- Mary H Weiser Food Allergy CenterUniversity of MichiganAnn ArborMichiganUSA
- Department of PathologyUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
12
|
Chehade M, Falk GW, Aceves S, Lee JK, Mehta V, Leung J, Shumel B, Jacob-Nara JA, Deniz Y, Rowe PJ, Cunoosamy D, Khodzhayev A. Examining the Role of Type 2 Inflammation in Eosinophilic Esophagitis. GASTRO HEP ADVANCES 2022; 1:720-732. [PMID: 39131849 PMCID: PMC11307682 DOI: 10.1016/j.gastha.2022.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 12/15/2021] [Accepted: 05/06/2022] [Indexed: 08/13/2024]
Abstract
Eosinophilic esophagitis (EoE) is a chronic type 2 inflammatory disease characterized by an eosinophilic inflammatory infiltrate in the esophagus, leading to remodeling, stricture formation, and fibrosis. Triggered by food and aeroallergens, type 2 cytokines interleukin (IL)-4, IL-13, IL-5 produced by CD4+ T helper 2 cells (Th2), eosinophils, mast cells, basophils, and type 2 innate lymphoid cells alter the esophageal epithelial barrier and increase inflammatory cell tissue infiltration. Clustering analysis based on the expression of type 2 inflammatory genes demonstrated the diversity of EoE endotypes. Despite the availability of treatment options for patients with EoE, which include dietary restriction, proton pump inhibitors, swallowed topical steroids, and esophageal dilation, there are still no Food and Drug Administration-approved medications for this disease; as such, there are clear unmet medical needs for these patients. A number of novel biologic therapies currently in clinical trials represent a promising avenue for targeted therapeutic approaches in EoE. This review summarizes our current knowledge on the role of type 2 inflammatory cells and mediators in EoE disease pathogenesis, as well as the future treatment landscape targeting underlying inflammation in EoE.
Collapse
Affiliation(s)
- Mirna Chehade
- Deparment of Pediatrics and Medicine, Mount Sinai Center for Eosinophilic Disorders, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Gary W. Falk
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Seema Aceves
- Deparment of Pediatrics and Medicine, University of California, San Diego, California
| | - Jason K. Lee
- Deparment of Clinical Immunology and Allergy and Internal Medicine, Toronto Allergy and Asthma Clinic, Toronto, Ontario, Canada
| | - Vinay Mehta
- Allergy, Asthma & Immunology Associates, P.C., Lincoln, Nebraska
| | - John Leung
- Boston Specialists, Boston, Massachusetts
| | - Brad Shumel
- Regeneron Pharmaceuticals, Inc, Tarrytown, New York
| | | | - Yamo Deniz
- Regeneron Pharmaceuticals, Inc, Tarrytown, New York
| | | | | | | |
Collapse
|
13
|
Racca F, Pellegatta G, Cataldo G, Vespa E, Carlani E, Pelaia C, Paoletti G, Messina MR, Nappi E, Canonica GW, Repici A, Heffler E. Type 2 Inflammation in Eosinophilic Esophagitis: From Pathophysiology to Therapeutic Targets. Front Physiol 2022; 12:815842. [PMID: 35095572 PMCID: PMC8790151 DOI: 10.3389/fphys.2021.815842] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/15/2021] [Accepted: 12/09/2021] [Indexed: 12/11/2022] Open
Abstract
Eosinophilic esophagitis (EoE) is a chronic immune-mediated disease of the esophagus characterized clinically by symptoms related to esophageal dysfunction and histologically by eosinophil-predominant inflammation, whose incidence is rising. It significantly affects patients’ quality of life and, if left untreated, results in fibrotic complications. Although broad consensus has been achieved on first-line therapy, a subset of patients remains non-responder to standard therapy. The pathogenesis of EoE is multifactorial and results from the complex, still mostly undefined, interaction between genetics and intrinsic factors, environment, and antigenic stimuli. A deep understanding of the pathophysiology of this disease is pivotal for the development of new therapies. This review provides a comprehensive description of the pathophysiology of EoE, starting from major pathogenic mechanisms (genetics, type 2 inflammation, epithelial barrier dysfunction, gastroesophageal reflux, allergens, infections and microbiota) and subsequently focusing on the single protagonists of type 2 inflammation (involved cells, cytokines, soluble effectors, surface proteins and transcription factors) that could represent present and future therapeutic targets, while summarizing previous therapeutic approaches in literature.
Collapse
Affiliation(s)
- Francesca Racca
- Personalized Medicine, Asthma and Allergy, IRCCS Humanitas Research Hospital, Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- *Correspondence: Francesca Racca,
| | - Gaia Pellegatta
- Digestive Endoscopy Unit, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Giuseppe Cataldo
- Personalized Medicine, Asthma and Allergy, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Edoardo Vespa
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- Digestive Endoscopy Unit, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Elisa Carlani
- Digestive Endoscopy Unit, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Corrado Pelaia
- Department of Medical and Surgical Sciences, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Giovanni Paoletti
- Personalized Medicine, Asthma and Allergy, IRCCS Humanitas Research Hospital, Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Maria Rita Messina
- Personalized Medicine, Asthma and Allergy, IRCCS Humanitas Research Hospital, Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Emanuele Nappi
- Personalized Medicine, Asthma and Allergy, IRCCS Humanitas Research Hospital, Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Giorgio Walter Canonica
- Personalized Medicine, Asthma and Allergy, IRCCS Humanitas Research Hospital, Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Alessandro Repici
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- Digestive Endoscopy Unit, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Enrico Heffler
- Personalized Medicine, Asthma and Allergy, IRCCS Humanitas Research Hospital, Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| |
Collapse
|
14
|
Camilleri AE, Nag S, Russo AR, Stiles KM, Crystal RG, Pagovich OE. Gene therapy for a murine model of eosinophilic esophagitis. Allergy 2021; 76:2740-2752. [PMID: 33748982 DOI: 10.1111/all.14822] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/16/2020] [Revised: 01/05/2021] [Accepted: 01/15/2021] [Indexed: 01/07/2023]
Abstract
BACKGROUND Eosinophils are specialized granulocytic effector cells that store and release highly active mediators used in immune defense. Eosinophils are also implicated in the pathogenesis of allergic disorders, including eosinophilic esophagitis (EoE), a chronic disorder characterized by infiltration of eosinophils into the esophagus and release of mediators that damage tissue, resulting in gastrointestinal morbidity, food impaction, and dysphagia. Treatment with elimination diets and/or topical corticosteroid therapy slow disease progression, but are complicated by adverse effects, limited compliance, and loss of response to therapy. We hypothesized that a single administration of an adeno-associated virus (AAV) coding for an anti-eosinophil monoclonal antibody that induces eosinophil clearance (anti-Siglec-F) would treat on a persistent basis a murine model of EoE. METHODS A mouse model of peanut-induced EoE that mimics the human disease was established by sensitization and challenge with peanut extract. After challenge, these mice exhibited an EoE phenotype demonstrated by elevated levels of blood eosinophils, infiltration of eosinophils in the esophagus with associated esophageal remodeling and food impaction. RESULTS The mice were treated with a single intravenous administration (1011 genome copies) of AAVrh.10mAnti-Eos, a serotype rh.10 AAV vector coding for an anti-Siglec-F monoclonal antibody. Vector administration resulted in persistent, high levels of anti-Siglec-F antibody expression. Administration of AAVrh.10mAnti-Eos to the mouse model of EoE reduced blood (P < 0.02) and esophageal eosinophil numbers (P < 0.002) protected from esophageal tissue remodeling and minimized food impaction. CONCLUSION These results suggest that a single treatment with AAVrh.10mAnti-Eos has the potential to provide persistent therapeutic benefit to patients with EoE.
Collapse
Affiliation(s)
- Anna E. Camilleri
- Department of Genetic Medicine Weill Cornell Medical College New York NY USA
| | - Saparja Nag
- Department of Genetic Medicine Weill Cornell Medical College New York NY USA
| | - Anthony R. Russo
- Department of Genetic Medicine Weill Cornell Medical College New York NY USA
| | - Katie M. Stiles
- Department of Genetic Medicine Weill Cornell Medical College New York NY USA
| | - Ronald G. Crystal
- Department of Genetic Medicine Weill Cornell Medical College New York NY USA
| | - Odelya E. Pagovich
- Department of Genetic Medicine Weill Cornell Medical College New York NY USA
| |
Collapse
|
15
|
Azouz NP, Klingler AM, Pathre P, Besse JA, Baruch-Morgenstern NB, Ballaban AY, Osswald GA, Brusilovsky M, Habel JE, Caldwell JM, Ynga-Durand MA, Abonia PJ, Hu YC, Wen T, Rothenberg ME. Functional role of kallikrein 5 and proteinase-activated receptor 2 in eosinophilic esophagitis. Sci Transl Med 2021; 12:12/545/eaaz7773. [PMID: 32461336 DOI: 10.1126/scitranslmed.aaz7773] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/08/2019] [Accepted: 04/09/2020] [Indexed: 12/12/2022]
Abstract
Eosinophilic esophagitis (EoE) is a chronic, food antigen-driven, inflammatory disease of the esophagus and is associated with impaired barrier function. Evidence is emerging that loss of esophageal expression of the serine peptidase inhibitor, kazal type 7 (SPINK7), is an upstream event in EoE pathogenesis. Here, we provide evidence that loss of SPINK7 mediates its pro-EoE effects via kallikrein 5 (KLK5) and its substrate, protease-activated receptor 2 (PAR2). Overexpression of KLK5 in differentiated esophageal epithelial cells recapitulated the effect of SPINK7 gene silencing, including barrier impairment and loss of desmoglein-1 expression. Conversely, KLK5 deficiency attenuated allergen-induced esophageal protease activity, modified commensal microbiome composition, and attenuated eosinophilia in a murine model of EoE. Inhibition of PAR2 blunted the cytokine production associated with loss of SPINK7 in epithelial cells and attenuated the allergen-induced esophageal eosinophilia in vivo. Clinical samples substantiated dysregulated PAR2 expression in the esophagus of patients with EoE, and delivery of the clinically approved drug α1 antitrypsin (A1AT, a protease inhibitor) inhibited experimental EoE. These findings demonstrate a role for the balance between KLK5 and protease inhibitors in the esophagus and highlight EoE as a protease-mediated disease. We suggest that antagonizing KLK5 and/or PAR2 has potential to be therapeutic for EoE.
Collapse
Affiliation(s)
- Nurit P Azouz
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA
| | - Andrea M Klingler
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA
| | - Purnima Pathre
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA
| | - John A Besse
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA
| | - Netali Ben Baruch-Morgenstern
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA
| | - Adina Y Ballaban
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA
| | - Garrett A Osswald
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA
| | - Michael Brusilovsky
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA
| | - Jeff E Habel
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA
| | - Julie M Caldwell
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA
| | - Mario A Ynga-Durand
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA.,Laboratorio de Inmunidad de Mucosas, Sección de Investigación y Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Pablo J Abonia
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA
| | - Yueh-Chiang Hu
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA
| | - Ting Wen
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA
| | - Marc E Rothenberg
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA.
| |
Collapse
|
16
|
Abstract
The growing recognition of eosinophilic gastrointestinal disorders has revealed the limitations of current treatment (mainly based on dietary modification and corticosteroids), and include refractoriness, high recurrence rates, and the need for long-term therapy. Research efforts, mainly in eosinophilic esophagitis (EoE), have unveiled essential pathophysiological mechanisms leading to these disorders, which bear some similarities to those of atopic manifestations and are shared by eosinophilic gastroenteritis (EGE) and eosinophilic colitis (EC). Novel targeted therapies, some imported from bronchial asthma and atopic dermatitis, are currently being assessed in EoE. The most promising are monoclonal antibodies, including those targeting interleukin (IL)-13 (cendakimab) and IL-4 (dupilumab), with phase 3 trials currently ongoing. The potential of anti-integrin therapy (vedolizumab) and Siglec-8 blockers (antolimab) in EGE are also promising. Non-biological therapies for eosinophilic gut disorders, which include preventing the activation of Janus kinase (JAK)-signal transducer and activator of transcription (STAT) and chemoattractant receptor expressed on T helper 2 cells (CRTH2) signaling pathways, and other potential targets that deserve investigation in eosinophilic gut disorders, are reviewed.
Collapse
Affiliation(s)
- Alfredo J Lucendo
- Department of Gastroenterology, Hospital General de Tomelloso, Vereda de Socuéllamos, s/n.,, 13700, Tomelloso, Ciudad Real, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain. .,Instituto de Investigación Sanitaria La Princesa, Madrid, Spain.
| | | |
Collapse
|
17
|
Functions and therapeutic targets of Siglec-mediated infections, inflammations and cancers. J Formos Med Assoc 2021; 120:5-24. [DOI: 10.1016/j.jfma.2019.10.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/13/2019] [Revised: 06/11/2019] [Accepted: 10/28/2019] [Indexed: 12/20/2022] Open
|
18
|
Discovery, Function, and Therapeutic Targeting of Siglec-8. Cells 2020; 10:cells10010019. [PMID: 33374255 PMCID: PMC7823959 DOI: 10.3390/cells10010019] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/30/2020] [Revised: 12/18/2020] [Accepted: 12/20/2020] [Indexed: 12/11/2022] Open
Abstract
Siglecs (sialic acid-binding immunoglobulin-like lectins) are single-pass cell surface receptors that have inhibitory activities on immune cells. Among these, Siglec-8 is a CD33-related family member selectively expressed on human mast cells and eosinophils, and at low levels on basophils. These cells can participate in inflammatory responses by releasing mediators that attract or activate other cells, contributing to the pathogenesis of allergic and non-allergic diseases. Since its discovery in 2000, initial in vitro studies have found that the engagement of Siglec-8 with a monoclonal antibody or with selective polyvalent sialoglycan ligands induced the cell death of eosinophils and inhibited mast cell degranulation. Anti-Siglec-8 antibody administration in vivo to humanized and transgenic mice selectively expressing Siglec-8 on mouse eosinophils and mast cells confirmed the in vitro findings, and identified additional anti-inflammatory effects. AK002 (lirentelimab) is a humanized non-fucosylated IgG1 antibody against Siglec-8 in clinical development for mast cell- and eosinophil-mediated diseases. AK002 administration has safely demonstrated the inhibition of mast cell activity and the depletion of eosinophils in several phase 1 and phase 2 trials. This article reviews the discovery and functions of Siglec-8, and strategies for its therapeutic targeting for the treatment of eosinophil- and mast cell-associated diseases.
Collapse
|
19
|
Ghisa M, Laserra G, Maniero D, Marabotto E, Barberio B, Pelizzaro F, Barbuscio I, Zingone F, Savarino V, Savarino E. Eosinophilic esophagitis: from pathophysiology to management. Minerva Gastroenterol (Torino) 2020; 68:40-48. [PMID: 33267562 DOI: 10.23736/s2724-5985.20.02780-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 01/02/2023]
Abstract
Eosinophilic esophagitis (EoE) incidence and prevalence have sharply increased in the last decade; so, the management of these patients is changing rapidly. Standard regimens as elimination diet, proton pump inhibitors and topical swallowed steroids are not able to achieve remission in all patients. Moreover, loss of efficacy and safety concerns for long-term medical treatments are rising questions. As for other chronic immune-mediated diseases, biologics have been evaluated for the treatment of EoE. Several targets in the Th2-mediated inflammatory cascade with eosinophilic mucosal infiltration, have been tested with alternating results. This review provides a comprehensive discussion of the available studies evaluating biologics in EoE and the possible future options most desirable for these patients.
Collapse
Affiliation(s)
- Matteo Ghisa
- Unit of Gastroenterology, Department of Surgery, Oncology and Gastroenterology, Padua, Italy -
| | - Giorgio Laserra
- Unit of Gastroenterology, Department of Surgery, Oncology and Gastroenterology, Padua, Italy
| | - Daria Maniero
- Unit of Gastroenterology, Department of Surgery, Oncology and Gastroenterology, Padua, Italy
| | - Elisa Marabotto
- Unit of Gastroenterology, Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Brigida Barberio
- Unit of Gastroenterology, Department of Surgery, Oncology and Gastroenterology, Padua, Italy
| | - Filippo Pelizzaro
- Unit of Gastroenterology, Department of Surgery, Oncology and Gastroenterology, Padua, Italy
| | - Ilenia Barbuscio
- Unit of Gastroenterology, San Bortolo Hospital, Azienda ULSS 8 Berica, Vicenza, Italy
| | - Fabiana Zingone
- Unit of Gastroenterology, Department of Surgery, Oncology and Gastroenterology, Padua, Italy
| | - Vincenzo Savarino
- Unit of Gastroenterology, Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Edoardo Savarino
- Unit of Gastroenterology, Department of Internal Medicine, University of Genoa, Genoa, Italy
| |
Collapse
|
20
|
Ryu S, Lee KH, Tizaoui K, Terrazzino S, Cargnin S, Effenberger M, Shin JI, Kronbichler A. Pathogenesis of Eosinophilic Esophagitis: A Comprehensive Review of the Genetic and Molecular Aspects. Int J Mol Sci 2020; 21:ijms21197253. [PMID: 33008138 PMCID: PMC7582808 DOI: 10.3390/ijms21197253] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/01/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 01/21/2023] Open
Abstract
Eosinophilic esophagitis (EoE) is a relatively new condition described as an allergic-mediated disease of the esophagus. Clinically, it is characterized by dysphagia, food impaction, and reflux-like symptoms. Multiple genome-wide association studies (GWAS) have been conducted to identify genetic loci associated with EoE. The integration of numerous studies investigating the genetic polymorphisms in EoE and the Mendelian diseases associated with EoE are discussed to provide insights into the genetic risk of EoE, notably focusing on CCL26 and CAPN14. We focus on the genetic loci investigated thus far, and their classification according to whether the function near the loci is known. The pathophysiology of EoE is described by separately presenting the known function of each cell and molecule, with the major contributors being eosinophils, Th2 cells, thymic stromal lymphopoietin (TSLP), transforming growth factor (TGF)-β1, and interleukin (IL)-13. This review aims to provide detailed descriptions of the genetics and the comprehensive pathophysiology of EoE.
Collapse
Affiliation(s)
- Seohyun Ryu
- Yonsei University College of Medicine, Seoul 03722, Korea;
| | - Keum Hwa Lee
- Department of Pediatrics, Yonsei University College of Medicine, Seoul 03722, Korea;
| | - Kalthoum Tizaoui
- Laboratory Microorganismes and Active Biomolecules, Sciences Faculty of Tunis, University Tunis El Manar, 1068 Tunis, Tunisia;
| | - Salvatore Terrazzino
- Department of Pharmaceutical Sciences and Interdepartmental Research Center of Pharmacogenetics and Pharmacogenomics (CRIFF), University of Piemonte Orientale, 28100 Novara, Italy; (S.T.); (S.C.)
| | - Sarah Cargnin
- Department of Pharmaceutical Sciences and Interdepartmental Research Center of Pharmacogenetics and Pharmacogenomics (CRIFF), University of Piemonte Orientale, 28100 Novara, Italy; (S.T.); (S.C.)
| | - Maria Effenberger
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - Jae Il Shin
- Department of Pediatrics, Yonsei University College of Medicine, Seoul 03722, Korea;
- Correspondence: ; Tel.: +82-2-2228-2050
| | - Andreas Kronbichler
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, 6020 Innsbruck, Austria;
| |
Collapse
|
21
|
Knuplez E, Krier-Burris R, Cao Y, Marsche G, O’Sullivan J, Bochner BS. Frontline Science: Superior mouse eosinophil depletion in vivo targeting transgenic Siglec-8 instead of endogenous Siglec-F: Mechanisms and pitfalls. J Leukoc Biol 2020; 108:43-58. [PMID: 32134149 PMCID: PMC7585130 DOI: 10.1002/jlb.3hi0120-381r] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/26/2019] [Revised: 01/30/2020] [Accepted: 02/05/2020] [Indexed: 01/02/2023] Open
Abstract
Eosinophils are important multifunctional granulocytes. When studying eosinophil function and its contribution to diseases, mouse models are often used. Mouse eosinophils selectively express sialic acid-binding immunoglobulin-like lectin (Siglec)-F. Its closest functional paralog on human eosinophils is Siglec-8. These Siglecs are being used to target eosinophils when exploring their mechanistic roles in disease and for potential therapeutic benefit. In order to facilitate preclinical studies of human Siglec-8, we developed transgenic mouse strains expressing human Siglec-8 only on the surface of eosinophils with or without endogenous Siglec-F and have begun characterizing various cellular functions in vitro and in vivo. Eosinophils from Siglec-8+ mice, with or without Siglec-F, responded to Siglec-8 antibody engagement in vitro by up-regulating surface CD11b, whereas Siglec-F antibody had no such effect. Engagement of Siglec-F or Siglec-8 with respective antibodies in vitro resulted in only modest increases in cell death. Administration of rat Siglec-F antibodies to mice led to a significant decrease in Siglec-F surface expression on eosinophils due to internalization, and thus appeared to decrease eosinophil numbers based on Siglec-F+ cells, but with proper gaiting strategies did not in fact result in significant eosinophil depletion. In marked contrast, administration of mouse Siglec-8 antibodies rapidly and effectively depleted eosinophils from blood and spleens of mice, but an F(ab')2 version did not, indicating an Fc-mediated mechanism for eosinophil depletion in vivo. Siglec-8 expressing mice with or without endogenous Siglec-F will be useful to study Siglec-8-based therapeutics, and may be a preferred approach when acute or chronic eosinophil depletion is needed.
Collapse
Affiliation(s)
- Eva Knuplez
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Austria
| | - Rebecca Krier-Burris
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Yun Cao
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Gunther Marsche
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Austria
| | - Jeremy O’Sullivan
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Bruce S. Bochner
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
22
|
Jacobsen EA. Divergent Siglec-F(eights) of mouse and human eosinophil death. J Leukoc Biol 2020; 108:9-11. [PMID: 32557797 DOI: 10.1002/jlb.5ce0520-108r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/14/2020] [Revised: 05/01/2020] [Accepted: 05/19/2020] [Indexed: 11/06/2022] Open
Abstract
Discussion on the differences between mouse and human eosinophil induced death by antibody ligation to human Siglec-8 and mouse Siglec-F.
Collapse
Affiliation(s)
- Elizabeth A Jacobsen
- Division of Allergy, Asthma and Clinical Immunology, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| |
Collapse
|
23
|
Silva FMDCE, de Oliveira EE, Ambrósio MGE, Ayupe MC, de Souza VP, Menegati LM, Reis DRDL, Machado MA, Macedo GC, Ferreira AP. Disodium cromoglycate treatment reduces T H2 immune response and immunohistopathological features in a murine model of Eosinophilic Esophagitis. Int Immunopharmacol 2020; 83:106422. [PMID: 32251959 DOI: 10.1016/j.intimp.2020.106422] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/14/2019] [Revised: 02/28/2020] [Accepted: 03/17/2020] [Indexed: 02/06/2023]
Abstract
Eosinophilic esophagitis (EoE) is an emergent chronic disease of the esophagus. The immunopathological process in EoE is characterized by Th2 immune response and prominent eosinophilic influx, in response to common food allergens. The classical treatment consists of allergen elimination diet and systemic/topical corticosteroid therapy. Nevertheless, patients do not always comply to treatment, and the prolonged corticosteroid therapy can cause side effects, therefore, there is an immediate need for new therapeutic approach for EoE. Disodium cromoglicate (DSCG) is a substance broadly used in allergic asthma treatment, and a well-known mast cell activation stabilizer. However, its effect in EoE have not been evaluated yet. This study aimed to assess the effects of DSCG treatment in an EoE experimental model. Male Balb/C mice were subcutaneously sensitized for five days with OVA, and subsequently orally OVA-challenged, DSCG administration was performed between the OVA-challenges. DSCG treatment not only reduced eosinophilic and mast cell influx, as well as reduced fibrosis. In addition, tslp, GATA3, IL-5, FoxP3 and IL-10 mRNA expression were reduced in esophageal mucosa, associated with lower Th2 (CD3+CD4+GATA3+IL4+) and B cells (CD19+CD40+) number in peripheral lymphoid organs. In conclusion, the data demonstrate DSCG treatment was effective in reducing mast cell activation and Th2 immune response, important immunopathological EoE features. Therefore, the use of DSCG as an EoE treatment can be considered a promising therapeutic approach to treat this disease.
Collapse
Affiliation(s)
- Flávia Márcia de Castro E Silva
- Departamento de Parasitologia, Microbiologia e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, MG, Brazil
| | - Erick Esteves de Oliveira
- Departamento de Parasitologia, Microbiologia e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, MG, Brazil
| | | | - Marina Caçador Ayupe
- Departamento de Parasitologia, Microbiologia e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, MG, Brazil
| | - Viviane Passos de Souza
- Departamento de Parasitologia, Microbiologia e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, MG, Brazil
| | - Laura Machado Menegati
- Departamento de Parasitologia, Microbiologia e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, MG, Brazil
| | | | | | - Gilson Costa Macedo
- Departamento de Parasitologia, Microbiologia e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, MG, Brazil
| | - Ana Paula Ferreira
- Departamento de Parasitologia, Microbiologia e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, MG, Brazil.
| |
Collapse
|
24
|
Läubli H, Varki A. Sialic acid-binding immunoglobulin-like lectins (Siglecs) detect self-associated molecular patterns to regulate immune responses. Cell Mol Life Sci 2020; 77:593-605. [PMID: 31485715 PMCID: PMC7942692 DOI: 10.1007/s00018-019-03288-x] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/03/2019] [Revised: 08/11/2019] [Accepted: 08/28/2019] [Indexed: 12/12/2022]
Abstract
The mammalian immune system evolved to tightly regulate the elimination of pathogenic microbes and neoplastic transformed cells while tolerating our own healthy cells. Here, we summarize experimental evidence for the role of Siglecs-in particular CD33-related Siglecs-as self-receptors and their sialoglycan ligands in regulating this balance between recognition of self and non-self. Sialoglycans are found in the glycocalyx and extracellular fluids and matrices of all mammalian cells and can be considered as self-associated molecular patterns (SAMPs). We also provide an overview of the known interactions of Siglec receptors and sialoglycan-SAMPs. Manipulation of the Siglec-SAMP axis offers new therapeutic opportunities for the treatment of inflammatory conditions, autoimmune diseases and also cancer immunotherapy.
Collapse
Affiliation(s)
- Heinz Läubli
- Laboratory for Cancer Immunotherapy, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland.
| | - Ajit Varki
- Department of Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA, 92093-0687, USA.
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA, 92093-0687, USA.
| |
Collapse
|
25
|
Abstract
The human eosinophil has long been thought to favorably influence innate mucosal immunity but at times has also been incriminated in disease pathophysiology. Research into eosinophil biology has uncovered a number of interesting contributions by eosinophils to health and disease. However, it appears that not all eosinophils from all species are created equal. It remains unclear, for example, exactly how having eosinophils benefits the human host when helminth infections in the developed world have become scarce. This review focuses on our current state of knowledge as it relates to human eosinophils. When information is lacking, we discuss lessons learned from mouse studies that may or may not directly apply to human biology and disease. It is an exciting time to be an "eosinophilosopher" because the use of biologic agents that selectively target eosinophils provides an unprecedented opportunity to define the contribution of this cell to eosinophil-associated human diseases.
Collapse
Affiliation(s)
- Amy D Klion
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Steven J Ackerman
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois 60607, USA;
| | - Bruce S Bochner
- Department of Medicine, Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA;
| |
Collapse
|
26
|
Silva FMDCE, Oliveira EED, Ambrósio MGE, Ayupe MC, Souza VPD, Gameiro J, Reis DRDL, Machado MA, Macedo GC, Mattes J, Ferreira AP. High-fat diet-induced obesity worsens TH2 immune response and immunopathologic characteristics in murine model of eosinophilic oesophagitis. Clin Exp Allergy 2019; 50:244-255. [PMID: 31837231 DOI: 10.1111/cea.13533] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/30/2019] [Revised: 10/11/2019] [Accepted: 11/04/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Eosinophilic oesophagitis (EoE) is an emergent chronic immune-mediated disease of the oesophagus, which affects both children and adults. It is clinically characterized by dysphagia, food impaction and oesophageal eosinophilia. Epidemiological studies indicate that obesity can worsen allergic symptoms; however, its effect on EoE immunopathological response has not been evaluated yet. This study aimed to assess the effect of obesity on allergic inflammation and T helper-2 profile in an EoE experimental model. METHODS Obesity was induced by high-fat feeding. After 7 weeks of diet, male BALB/c mice were subcutaneously sensitized and orally challenged with OVA. RESULTS Obesity itself induced a significant mast cell and eosinophil accumulation in the oesophagus, trachea, gut and lung. After allergy induction, this number was higher, when compared to lean-allergic mice. Moreover, obese-allergic mice showed higher remodelling area, in the oesophagus, associated with higher IL-5 and TSLP mRNA expression. In contrast, FoxP3 and IL-10 were less expressed in comparison with lean-allergic mice. In addition, the amount of CD11c+ MHCII+ PDL1+ dendritic cells was reduced, while the number of CD11c+ MHCII+ CD80+ DCs and CD3+ CD4+ GATA3 + IL-4+ cells was increased in obese-allergic mice in the spleen and lymph nodes when compared to lean-allergic mice. CONCLUSION Obesity aggravated the immune histopathological characteristics in the EoE experimental model, which was associated with the reduction in the regulatory profile, and the increased inflammatory cells influx, related to the TH 2 profile. Altogether, the data provide new knowledge about obesity as a risk factor, worsening EoE symptoms, and contribute for future treatment strategies for this specific profile.
Collapse
Affiliation(s)
- Flávia Márcia de Castro E Silva
- Department of Parasitology, Microbiology and Immunology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Erick Esteves de Oliveira
- Department of Parasitology, Microbiology and Immunology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Marcilene Gomes Evangelista Ambrósio
- Department of Parasitology, Microbiology and Immunology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Marina Caçador Ayupe
- Department of Parasitology, Microbiology and Immunology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Viviane Passos de Souza
- Department of Parasitology, Microbiology and Immunology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Jacy Gameiro
- Department of Parasitology, Microbiology and Immunology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | | | | | - Gilson Costa Macedo
- Department of Parasitology, Microbiology and Immunology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Joerg Mattes
- Centre for Asthma and Respiratory Diseases, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
| | - Ana Paula Ferreira
- Department of Parasitology, Microbiology and Immunology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| |
Collapse
|
27
|
Future therapies for eosinophilic gastrointestinal disorders. Ann Allergy Asthma Immunol 2019; 124:219-226. [PMID: 31778820 DOI: 10.1016/j.anai.2019.11.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/18/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 12/26/2022]
Abstract
OBJECTIVE To review novel therapeutics in development for treatment of eosinophilic gastrointestinal disorders (EGIDs). DATA SOURCES Clinical trial data (clinicaltrials.gov) and literature search on PubMed. STUDY SELECTIONS Studies on treatment and clinical trials in EGIDs were included in this review. RESULTS During the past decade, significant progress has been made in understanding disease mechanisms in EGIDs. As a result, a variety of novel therapeutics have been developed for treatment of these disorders. Several monoclonal antibodies against targets, including interleukin (IL) 4, IL-5, IL-13, integrins, and siglec-8, have shown promise in early trials. Novel formulations of corticosteroids are also in development. CONCLUSION The field of EGID research has advanced rapidly, and disease-modifying therapeutics are closer to clinical application.
Collapse
|
28
|
Youngblood BA, Brock EC, Leung J, Falahati R, Bochner BS, Rasmussen HS, Peterson K, Bebbington C, Tomasevic N. Siglec-8 antibody reduces eosinophils and mast cells in a transgenic mouse model of eosinophilic gastroenteritis. JCI Insight 2019; 4:126219. [PMID: 31465299 DOI: 10.1172/jci.insight.126219] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/15/2018] [Accepted: 08/23/2019] [Indexed: 01/18/2023] Open
Abstract
Aberrant accumulation and activation of eosinophils and potentially mast cells (MCs) contribute to the pathogenesis of eosinophilic gastrointestinal diseases (EGIDs), including eosinophilic esophagitis (EoE), gastritis (EG), and gastroenteritis (EGE). Current treatment options, such as diet restriction and corticosteroids, have limited efficacy and are often inappropriate for chronic use. One promising new approach is to deplete eosinophils and inhibit MCs with a monoclonal antibody (mAb) against sialic acid-binding immunoglobulin-like lectin 8 (Siglec-8), an inhibitory receptor selectively expressed on MCs and eosinophils. Here, we characterize MCs and eosinophils from human EG and EoE biopsies using flow cytometry and evaluate the effects of an anti-Siglec-8 mAb using a potentially novel Siglec-8-transgenic mouse model in which EG/EGE was induced by ovalbumin sensitization and intragastric challenge. MCs and eosinophils were significantly increased and activated in human EG and EoE biopsies compared with healthy controls. Similar observations were made in EG/EGE mice. In Siglec-8-transgenic mice, anti-Siglec-8 mAb administration significantly reduced eosinophils and MCs in the stomach, small intestine, and mesenteric lymph nodes and decreased levels of inflammatory mediators. In summary, these findings suggest a role for both MCs and eosinophils in EGID pathogenesis and support the evaluation of anti-Siglec-8 as a therapeutic approach that targets both eosinophils and MCs.
Collapse
Affiliation(s)
| | | | - John Leung
- Allakos, Inc., Redwood City, California, USA
| | | | - Bruce S Bochner
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | | | - Kathryn Peterson
- Division of Gastroenterology, Department of Medicine, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
| | | | | |
Collapse
|
29
|
|
30
|
Kwee BJ, Seo BR, Najibi AJ, Li AW, Shih TY, White D, Mooney DJ. Treating ischemia via recruitment of antigen-specific T cells. SCIENCE ADVANCES 2019; 5:eaav6313. [PMID: 31392268 PMCID: PMC6669016 DOI: 10.1126/sciadv.aav6313] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/04/2018] [Accepted: 06/25/2019] [Indexed: 05/18/2023]
Abstract
Ischemic diseases are a leading cause of mortality and can result in autoamputation of lower limbs. We explored the hypothesis that implantation of an antigen-releasing scaffold, in animals previously vaccinated with the same antigen, can concentrate TH2 T cells and enhance vascularization of ischemic tissue. This approach may be clinically relevant, as all persons receiving childhood vaccines recommended by the Centers for Disease Control and Prevention have vaccines that contain aluminum, a TH2 adjuvant. To test the hypothesis, mice with hindlimb ischemia, previously vaccinated with ovalbumin (OVA) and aluminum, received OVA-releasing scaffolds. Vaccinated mice receiving OVA-releasing scaffolds locally concentrated antigen-specific TH2 T cells in the surrounding ischemic tissue. This resulted in local angiogenesis, increased perfusion in ischemic limbs, and reduced necrosis and enhanced regenerating myofibers in the muscle. These findings support the premise that antigen depots may provide a treatment for ischemic diseases in patients previously vaccinated with aluminum-containing adjuvants.
Collapse
Affiliation(s)
- Brian J. Kwee
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Wyss Institute Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Bo Ri Seo
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Wyss Institute Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Alexander J. Najibi
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Wyss Institute Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Aileen W. Li
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Wyss Institute Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Ting-Yu Shih
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Wyss Institute Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Des White
- Wyss Institute Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - David J. Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Wyss Institute Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| |
Collapse
|
31
|
Inage E, Furuta GT, Menard-Katcher C, Masterson JC. Eosinophilic esophagitis: pathophysiology and its clinical implications. Am J Physiol Gastrointest Liver Physiol 2018; 315:G879-G886. [PMID: 30212252 PMCID: PMC6293259 DOI: 10.1152/ajpgi.00174.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 02/07/2023]
Abstract
Classically, eosinophilic esophagitis is an antigen-mediated chronic disease distinct from gastroesophageal reflux disease. Eosinophilic esophagitis is an emerging clinical problem that is growing in recognition. It is characterized clinically by feeding dysfunction, dysphagia, and reflux-like symptoms. Histologically, eosinophilic esophagitis is identifiable by a dense epithelial eosinophilic infiltrate. Experimental modeling and clinical studies over the last decade have greatly improved mechanistic insights and led to improvements in clinical understanding and the assessment of therapeutic options for patients and their clinicians who manage this disease. Here, we review the clinicopathologic diagnostic criteria and our understanding of eosinophilic esophagitis as an allergic disease with genetic and immunological components. We present studies defining the importance of the epithelial barrier and the concept of barrier dysfunction as an initiating or perpetuating factor for this disease. We discuss the relationship between the symptoms of dysphagia and feeding dysfunction, our current knowledge of the underlying pathophysiologic mechanisms, and advances in clinical assessment of esophageal distensibility and narrowing in eosinophilic esophagitis patients. Finally, therapeutic implications relating to the advances that have led to our current understanding of the pathophysiology of eosinophilic esophagitis are explored.
Collapse
Affiliation(s)
- Eisuke Inage
- 1Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan,2Digestive Health Institute, Section of Pediatric Gastroenterology, Hepatology, and Nutrition, Children’s Hospital Colorado, Gastrointestinal Eosinophilic Diseases Program, Department of Pediatrics, Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado
| | - Glenn T. Furuta
- 2Digestive Health Institute, Section of Pediatric Gastroenterology, Hepatology, and Nutrition, Children’s Hospital Colorado, Gastrointestinal Eosinophilic Diseases Program, Department of Pediatrics, Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado
| | - Calies Menard-Katcher
- 2Digestive Health Institute, Section of Pediatric Gastroenterology, Hepatology, and Nutrition, Children’s Hospital Colorado, Gastrointestinal Eosinophilic Diseases Program, Department of Pediatrics, Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado
| | - Joanne C. Masterson
- 2Digestive Health Institute, Section of Pediatric Gastroenterology, Hepatology, and Nutrition, Children’s Hospital Colorado, Gastrointestinal Eosinophilic Diseases Program, Department of Pediatrics, Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado,3Department of Biology, Maynooth University, Kildare, Ireland
| |
Collapse
|
32
|
Abstract
Eosinophilic esophagitis (EoE) is a chronic inflammatory disease of the esophagus associated with an atopic predisposition which appears to be increasing in prevalence over the last few decades. Symptoms stem from fibrosis, swelling, and smooth muscle dysfunction. In the past two decades, the etiology of EoE has been and is continuing to be revealed. This review provides an overview of the effects of genetics, environment, and immune function including discussions that touch on microbiome, the role of diet, food allergy, and aeroallergy. The review further concentrates on the pathophysiology of the disease with particular focus on the important concepts of the molecular etiology of EoE including barrier dysfunction and allergic hypersensitivity.
Collapse
Affiliation(s)
- Benjamin P Davis
- Department of Internal Medicine, Division of Immunology, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, Iowa City, IA, 52246, USA.
| |
Collapse
|
33
|
Anyane-Yeboa A, Wang W, Kavitt RT. The Role of Allergy Testing in Eosinophilic Esophagitis. Gastroenterol Hepatol (N Y) 2018; 14:463-469. [PMID: 30302061 PMCID: PMC6170891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 06/08/2023]
Abstract
Eosinophilic esophagitis (EoE) is defined as a chronic, immune/antigen-mediated esophageal disease that can lead to symptoms of esophageal dysfunction. This disease is seen in both children and adults. Approximately 70% of patients with EoE have food antigen sensitization or other atopic conditions, suggesting an allergic etiology in the pathogenesis of the disease. The role of allergy testing to identify foods that lead to EoE is unclear. Three types of allergy tests currently exist: skin prick testing, atopy patch testing, and immunoassays for serum food-specific immunoglobulin E. It is important for gastroenterologists to work in conjunction with allergist colleagues in the care of patients with EoE, particularly in the management of comorbid atopic conditions.
Collapse
Affiliation(s)
- Adjoa Anyane-Yeboa
- Dr Anyane-Yeboa is a gastroenterology fellow and Dr Kavitt is an assistant professor of medicine and director of the Center for Esophageal Diseases in the Section of Gastroenterology, Hepatology, and Nutrition at the University of Chicago in Chicago, Illinois
- Dr Wang is an internal medicine resident at the University of Chicago
| | - Wenfei Wang
- Dr Anyane-Yeboa is a gastroenterology fellow and Dr Kavitt is an assistant professor of medicine and director of the Center for Esophageal Diseases in the Section of Gastroenterology, Hepatology, and Nutrition at the University of Chicago in Chicago, Illinois
- Dr Wang is an internal medicine resident at the University of Chicago
| | - Robert T Kavitt
- Dr Anyane-Yeboa is a gastroenterology fellow and Dr Kavitt is an assistant professor of medicine and director of the Center for Esophageal Diseases in the Section of Gastroenterology, Hepatology, and Nutrition at the University of Chicago in Chicago, Illinois
- Dr Wang is an internal medicine resident at the University of Chicago
| |
Collapse
|
34
|
Abstract
INTRODUCTION Eosinophilic esophagitis (EoE) is rare but incidence and prevalence is increasing. EoE is characterized by eosinophilic inflammation of the esophagus causing gastrointestinal symptoms such as abdominal pain, vomiting, reflux, dysphagia, and food impactions. If untreated, remodeling and fibrosis of the esophagus can occur and stricture formation may result. Current treatment options are limited to food-restriction diets or medications including proton pump inhibitors (PPIs) or swallowed corticosteroids. Significant progress has been made in understanding the underlying mechanisms of EoE allowing for development of drugs that target specific points in EoE pathways. Investigation of these drugs is early with few controlled studies, but many show promise as future treatments. Areas covered: This review will provide an up to date discussion of current therapies and investigational drugs for EoE. Articles used in this review were retrieved from PubMed. Ongoing or completed clinical trials were obtained through clinicaltrials.gov and review of the PharmaProjects database. Expert Opinion: Multiple therapeutic targets have been identified and several have shown efficacy. Work is needed to define appropriate trial outcome measures. Collaboration between government agencies, patient advocacy groups, and investigator-led consortia is critical for completing new clinical trials which should pave the way for new therapies in clinical practice.
Collapse
Affiliation(s)
- Robert D Pesek
- a Department of Pediatrics and Division of Allergy and Immunology , University of Arkansas for Medical Sciences and Arkansas Children's Hospital , Little Rock , AR , United States
| | - Sandeep K Gupta
- b Division of Pediatric Gastroenterology, Hepatology and Nutrition, Children's Hospital of Illinois , University of Illinois College of Medicine , Peoria , IL , United States
| |
Collapse
|
35
|
Wechsler JB, Hirano I. Biological therapies for eosinophilic gastrointestinal diseases. J Allergy Clin Immunol 2018; 142:24-31.e2. [PMID: 29859203 DOI: 10.1016/j.jaci.2018.05.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/15/2018] [Revised: 05/24/2018] [Accepted: 05/24/2018] [Indexed: 02/06/2023]
Abstract
The scientific basis and the clinical application of mAb therapies that target specific immunologic pathways for eosinophilic gastrointestinal diseases are areas of active interest. There is a growing recognition of a subset of patients with eosinophilic esophagitis whose disease does not respond well to topical steroids or elimination diets. In addition, long-term use of corticosteroids presents possible risks that are currently being evaluated. Systemic therapy with a biologic agent offers potential advantages as a global approach that could limit the need for multiple, locally active medical therapies and allergen avoidance. The identification of novel biologic strategies is ongoing, and the recent validation of instruments and outcome measures to assess disease activity has proved essential in demonstrating efficacy. Studies using biologics that target IL-13 pathways in the treatment of eosinophilic esophagitis have demonstrated substantial promise.
Collapse
Affiliation(s)
- Joshua B Wechsler
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Ill.
| | - Ikuo Hirano
- Division of Gastroenterology and Hepatology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| |
Collapse
|
36
|
Lin B, Xie F, Xiao Z, Hong X, Tian L, Liu K. Basal progenitor cells bridge the development, malignant cancers, and multiple diseases of esophagus. J Cell Physiol 2017; 233:3855-3866. [PMID: 28777465 DOI: 10.1002/jcp.26136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/12/2017] [Accepted: 08/03/2017] [Indexed: 12/19/2022]
Abstract
The esophagus is a pivotal organ originating from anterior foregut that links the mouth and stomach. Moreover, its development involves precise regulation of multiple signal molecules and signal transduction pathways. After abnormal regulation of these molecules in the basal cells of the esophagus occurs, multiple diseases, including esophageal atresia with or without tracheoesophageal fistula, Barrett esophagus, gastroesophageal reflux, and eosinophilic esophagitis, will take place as a result. Furthermore, expression changes of signal molecules or signal pathways in basal cells and the microenvironment around basal cells both can initiate the switch of malignant transformation. In this review, we highlight the molecular events underlying the transition of normal development to multiple esophageal diseases. Additionally, the animal models of esophageal development and related diseases, challenges, and strategies are extensively discussed.
Collapse
Affiliation(s)
- Baoshun Lin
- Institute for Laboratory Medicine, Fuzhou General Hospital, PLA, Fuzhou, Fujian, P. R. China
| | - Fuan Xie
- Institute for Laboratory Medicine, Fuzhou General Hospital, PLA, Fuzhou, Fujian, P. R. China
| | - Zhangwu Xiao
- Emergency Department of the 476 Hospital, Fuzhou General Hospital, PLA, Fuzhou, Fujian, P. R. China
| | - Xiaoqian Hong
- Dong fang Hospital, Xiamen University, Fuzhou, Fujian, P. R. China
| | - Liming Tian
- Dong fang Hospital, Xiamen University, Fuzhou, Fujian, P. R. China
| | - Kuancan Liu
- Institute for Laboratory Medicine, Fuzhou General Hospital, PLA, Fuzhou, Fujian, P. R. China.,Dong fang Hospital, Xiamen University, Fuzhou, Fujian, P. R. China.,Department of Medicine, Columbia University Medical Center, New York, New York
| |
Collapse
|
37
|
Nhu QM, Aceves SS. Tissue Remodeling in Chronic Eosinophilic Esophageal Inflammation: Parallels in Asthma and Therapeutic Perspectives. Front Med (Lausanne) 2017; 4:128. [PMID: 28831387 PMCID: PMC5549614 DOI: 10.3389/fmed.2017.00128] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/10/2017] [Accepted: 07/21/2017] [Indexed: 12/20/2022] Open
Abstract
Chronic eosinophilic inflammation is associated with tissue remodeling and fibrosis in a number of chronic T-helper 2 (Th2)-mediated diseases including eosinophilic esophagitis (EoE) and asthma. Chronic inflammation results in dysregulated tissue healing, leading to fibrosis and end organ dysfunction, manifesting clinically as irreversible airway obstruction in asthma and as esophageal rigidity, strictures, narrowing, dysmotility, dysphagia, and food impactions in EoE. Current therapies for EoE and asthma center on reducing inflammation-driven tissue remodeling and fibrosis with corticosteroids, coupled with symptomatic control and allergen avoidance. Additional control of Th2 inflammation can be achieved in select asthma patients with biologic therapies such as anti-IL-5 and anti-IL-13 antibodies, which have also been trialed in EoE. Recent molecular analysis suggests an emerging role for structural cell dysfunction, either inherited or acquired, in the pathogenesis and progression of EoE and asthma tissue remodeling. In addition, new data suggest that inflammation-independent end organ rigidity can alter structural cell function. Herein, we review emerging data and concepts for the pathogenesis of tissue remodeling and fibrosis primarily in EoE and relevant pathogenetic parallels in asthma, focusing additionally on emerging disease-specific therapies and the ability of these therapies to reduce tissue remodeling in subsets of patients.
Collapse
Affiliation(s)
- Quan M Nhu
- Scripps Translational Science Institute, The Scripps Research Institute, La Jolla, CA, United States.,Division of Gastroenterology and Hepatology, Department of Medicine, Scripps Clinic - Scripps Green Hospital, La Jolla, CA, United States.,Division of Allergy and Immunology, Department of Medicine, Scripps Clinic-Scripps Green Hospital, La Jolla, CA, United States.,Division of Allergy and Immunology, Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States.,Division of Allergy and Immunology, Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Seema S Aceves
- Division of Allergy and Immunology, Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States.,Division of Allergy and Immunology, Department of Medicine, University of California, San Diego, La Jolla, CA, United States.,Rady Children's Hospital - San Diego, San Diego, CA, United States
| |
Collapse
|
38
|
O’Sullivan JA, Carroll DJ, Bochner BS. Glycobiology of Eosinophilic Inflammation: Contributions of Siglecs, Glycans, and Other Glycan-Binding Proteins. Front Med (Lausanne) 2017; 4:116. [PMID: 28824909 PMCID: PMC5539825 DOI: 10.3389/fmed.2017.00116] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/24/2017] [Accepted: 07/10/2017] [Indexed: 12/31/2022] Open
Abstract
The historical focus on protein-protein interactions in biological systems, at the expense of attention given to interactions between other classes of molecules, has overlooked important and clinically relevant processes and points of potential clinical intervention. For example, the significance of protein-carbohydrate interactions, especially in the regulation of immune responses, has recently received greater recognition and appreciation. This review discusses several ways by which cell-surface lectin-glycan interactions can modulate eosinophil function, particularly at the levels of eosinophil recruitment and survival, and how such interactions can be exploited therapeutically. A primary focus is on discoveries concerning Siglec-8, a glycan-binding protein selectively expressed on human eosinophils, and its closest functional paralog in the mouse, Siglec-F. Recent advances in the synthesis of polymeric ligands, the identification of physiological ligands for Siglec-8 and Siglec-F in the airway, and the determination of the basis of glycan ligand discrimination of Siglec-8 are discussed. Important similarities and differences between these siglecs are outlined. Eosinophil expression of additional glycan-binding proteins or their glycan ligands, including interactions involving members of the selectin, galectin, and siglec families, is summarized. The roles of these molecules in eosinophil recruitment, survival, and inflammation are described. Finally, the modulation of these interactions and potential therapeutic exploitation of glycan-binding proteins and their ligands to ameliorate eosinophil-associated diseases are considered.
Collapse
Affiliation(s)
- Jeremy A. O’Sullivan
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Daniela J. Carroll
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Bruce S. Bochner
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
39
|
Muir AB, Benitez AJ, Dods K, Spergel JM, Fillon SA. Microbiome and its impact on gastrointestinal atopy. Allergy 2016; 71:1256-63. [PMID: 27240281 DOI: 10.1111/all.12943] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 05/28/2016] [Indexed: 01/01/2023]
Abstract
The prevalence of allergic conditions has continuously increased in the last few decades in Westernized countries. A dysbiotic gut microbiome may play an important role in the development of allergic diseases. Genetic, environmental, and dietary factors may alter the commensal microbiota leading to inflammatory dysregulation of homeostasis. Murine and human studies have begun to elucidate the role of the microbiota in the pathogenesis of atopic diseases including asthma, atopic dermatitis, and food allergies. However, the role of the microbiome in most eosinophilic gastrointestinal diseases (EGIDs) is not yet known. This review provides an overview of what is currently known about the development of tolerance from both molecular and clinical standpoints. We also look at the gut-specific microbiome and its role in atopic conditions with the hope of applying this knowledge to the understanding, prevention, and treatment of EGIDs, particularly EoE.
Collapse
Affiliation(s)
- A. B. Muir
- Division of Gastroenterology, Hepatology, and Nutrition; The Children's Hospital of Philadelphia; Philadelphia PA USA
- Department of Pediatrics; Perelman School of Medicine at the University of Pennsylvania; Philadelphia PA USA
| | - A. J. Benitez
- Division of Allergy and Immunology; The Children's Hospital of Philadelphia; Philadelphia PA USA
| | - K. Dods
- Division of Gastroenterology, Hepatology, and Nutrition; The Children's Hospital of Philadelphia; Philadelphia PA USA
| | - J. M. Spergel
- Department of Pediatrics; Perelman School of Medicine at the University of Pennsylvania; Philadelphia PA USA
- Division of Allergy and Immunology; The Children's Hospital of Philadelphia; Philadelphia PA USA
| | - S. A. Fillon
- University of Colorado School of Medicine; Aurora CO USA
- Digestive Health Institute; Section of Pediatric Gastroenterology, Hepatology and Nutrition; Gastrointestinal Eosinophilic Diseases Program; Mucosal Inflammation Program; Children's Hospital Colorado; Aurora CO USA
| |
Collapse
|
40
|
The extremely narrow-caliber esophagus is a treatment-resistant subphenotype of eosinophilic esophagitis. Gastrointest Endosc 2016; 83:1142-8. [PMID: 26608127 PMCID: PMC4875811 DOI: 10.1016/j.gie.2015.11.019] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 09/21/2015] [Accepted: 11/10/2015] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS Some patients with eosinophilic esophagitis (EoE) have an extremely narrow esophagus, but the characteristics of this group have not been extensively described. We aimed to characterize the narrow-caliber phenotype of EoE, determine associated risk factors, and identify differences in treatment response in this subgroup of patients. METHODS This retrospective cohort study from 2001 to 2014 included subjects with a new diagnosis of EoE per consensus guidelines. Demographic, endoscopic, histologic, and treatment response data were extracted from medical records. An extremely narrow-caliber esophagus was defined when a neonatal endoscope was required to traverse the esophagus due to the inability to pass an adult endoscope. Patients with and without an extremely narrow-caliber esophagus were compared. Multivariable logistical regression was performed to assess treatment outcomes. RESULTS Of 513 patients with EoE, 46 (9%) had an extremely narrow-caliber esophagus. These patients were older (33 vs 22 years; P < .01), had longer symptom duration (11 vs 3 years; P < .01), more dysphagia (98% vs 66%; P < .01), and food impactions (53% vs 31%; P < .01). Dilation was more common with extreme narrowing (69% vs 17%; P < .01). Patients with a narrow-caliber esophagus were more refractory to steroid treatment, with lower symptom (56% vs 85%), endoscopic (52% vs 76%), and histologic (33% vs 63%) responses (P < .01 for all), and these differences persisted after multivariate analysis. CONCLUSION The extremely narrow-caliber esophagus is a more treatment-resistant subphenotype of EoE and is characterized by longer symptom duration and the need for multiple dilations. Recognition of an extremely narrow-caliber esophagus at diagnosis of EoE can provide important prognostic information.
Collapse
|
41
|
Davis BP, Rothenberg ME. Mechanisms of Disease of Eosinophilic Esophagitis. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2016; 11:365-93. [PMID: 26925500 DOI: 10.1146/annurev-pathol-012615-044241] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Academic Contribution Register] [Indexed: 12/19/2022]
Abstract
Eosinophilic esophagitis (EoE) is a recently recognized inflammatory disease of the esophagus with clinical symptoms derived from esophageal dysfunction. The etiology of EoE is now being elucidated, and food hypersensitivity is emerging as the central cornerstone of disease pathogenesis. Herein, we present a thorough picture of the current clinical, pathologic, and molecular understanding of the disease with a focus on disease mechanisms.
Collapse
Affiliation(s)
- Benjamin P Davis
- Division of Immunology, Department of Internal Medicine, University of Iowa Hospitals and Clinics, Iowa City, Iowa 52242;
| | - Marc E Rothenberg
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229;
| |
Collapse
|
42
|
Bochner BS. "Siglec"ting the allergic response for therapeutic targeting. Glycobiology 2016; 26:546-52. [PMID: 26911285 DOI: 10.1093/glycob/cww024] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/19/2016] [Accepted: 02/20/2016] [Indexed: 01/09/2023] Open
Abstract
As a physician-scientist, I have pursued research related to translational immunology with the goal of improving our ability to diagnose and treat allergic, immunologic and other diseases involving eosinophils, basophils and mast cells. We have tried to delineate novel mechanisms of human disease, working whenever possible with primary human cells and tissues, attempting to identify targets that might be amenable to the development of new therapies. As a general strategy, we have compared eosinophils, basophils, mast cells and neutrophils to look for pathways in inflammation that were unique to distinct subsets of these cells. In doing so, the concepts of glycobiology did not enter my mind until we began noticing some intriguing functional differences involving selectins and their ligands among these cell types. One simple observation, that neutrophils were coated with a glycan that allowed them to interact with an endothelial adhesion molecule while eosinophils lacked this structure, pried open the glyco-door for me. Fruitful collaborations with card-carrying glycobiologists soon followed that have forever positively influenced our science, and have enhanced our hypotheses, experimental design, research opportunities and discoveries. Within a few years, we helped to discover Siglec-8, an I-type lectin expressed only on human eosinophils, basophils, mast cells. This receptor, together with its closest mouse counterpart Siglec-F, has been the primary focus of our work now for over a decade. If not for those in the fields of glycobiology and glycoimmunology, my lab would not have made much progress toward the goal of leveraging Siglec-8 for therapeutic purposes.
Collapse
Affiliation(s)
- Bruce S Bochner
- Department of Medicine, Division of Allergy-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
43
|
Angata T, Nycholat CM, Macauley MS. Therapeutic Targeting of Siglecs using Antibody- and Glycan-Based Approaches. Trends Pharmacol Sci 2015; 36:645-660. [PMID: 26435210 PMCID: PMC4593978 DOI: 10.1016/j.tips.2015.06.008] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/06/2015] [Revised: 06/24/2015] [Accepted: 06/25/2015] [Indexed: 01/01/2023]
Abstract
The sialic acid-binding immunoglobulin-like lectins (Siglecs) are a family of immunomodulatory receptors whose functions are regulated by their glycan ligands. Siglecs are attractive therapeutic targets because of their cell type-specific expression pattern, endocytic properties, high expression on certain lymphomas/leukemias, and ability to modulate receptor signaling. Siglec-targeting approaches with therapeutic potential encompass antibody- and glycan-based strategies. Several antibody-based therapies are in clinical trials and continue to be developed for the treatment of lymphoma/leukemia and autoimmune disease, while the therapeutic potential of glycan-based strategies for cargo delivery and immunomodulation is a promising new approach. Here we review these strategies with special emphasis on emerging approaches and disease areas that may benefit from targeting the Siglec family.
Collapse
Affiliation(s)
- Takashi Angata
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Corwin M Nycholat
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Matthew S Macauley
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
44
|
Leung J, Beukema KR, Shen AH. Allergic mechanisms of Eosinophilic oesophagitis. Best Pract Res Clin Gastroenterol 2015; 29:709-720. [PMID: 26552770 PMCID: PMC4919901 DOI: 10.1016/j.bpg.2015.09.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 05/19/2015] [Revised: 06/25/2015] [Accepted: 09/02/2015] [Indexed: 02/06/2023]
Abstract
Eosinophilic oesophagitis (EoE) is characterized by oesophageal dysfunction and oesophageal eosinophilia refractory to proton-pump-inhibitor treatment. EoE is a food allergy, as elimination of food trigger(s) abrogates the disease, while trigger reintroduction causes recurrence. The allergic mechanism of EoE involves both IgE and non-IgE processes. There is a break in oral tolerance, the immune mechanism allowing enteric exposure to food and micro-organisms without causing deleterious immune responses. Changes in life-style, alterations in gut flora and use of antibiotics may be increasing disease prevalence. Mouse models of EoE and human studies revealed the role of regulatory T-cells and iNKT-cells in the pathogenesis. Th2-cytokines like IL-4, IL-5 and IL-13, and other cytokines like TGFβ and TSLP are involved, but perhaps no one cytokine is critically important for driving the disease. Control of EoE may require a pharmaceutical approach that blocks more than one target in the Th2-inflammatory pathway.
Collapse
|
45
|
Abstract
The mechanisms underlying eosinophilic esophagitis (EoE) have been intensely investigated, and significant advances have been made in understanding the pathogenesis of EoE. EoE is defined as a chronic immune/antigen-mediated disease, characterized clinically by symptoms of esophageal dysfunction and histologically by an esophageal eosinophilic infiltrate. In this paper, we will review the current knowledge of EoE pathophysiology based on both animal and human data and discuss possible etiologic mechanisms from the genetic and environmental perspectives. EoE is a Th2-predominant inflammatory process triggered by allergens. Proinflammatory cytokines and chemokines recruit eosinophils and other effector cells, such as mast cells, into the esophageal epithelium, where they cause direct damage and promote esophageal remodeling. The genetic expression profile of EoE has been described, and several single nucleotide polymorphisms have been identified and associated with EoE. While this genetic contribution is important, it is difficult to postulate that EoE is primarily a genetic disease. Given the rapid epidemiologic changes in the incidence and prevalence of EoE over the past two decades, environmental factors may be the driving force. While it is not known what causes EoE in an individual patient at a specific time, the current hypothesis is that there is a complex interaction between genetic factors and environmental exposures that remains to be elucidated.
Collapse
Affiliation(s)
- Thomas M. Runge
- Center for Esophageal Diseases and Swallowing, Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC
| | - Evan S. Dellon
- Center for Esophageal Diseases and Swallowing, Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC
- Center for Gastrointestinal Biology and Disease, Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC
| |
Collapse
|
46
|
Chien SJ, Silva KA, Kennedy VE, HogenEsch H, Sundberg JP. The pathogenesis of chronic eosinophilic esophagitis in SHARPIN-deficient mice. Exp Mol Pathol 2015; 99:460-7. [PMID: 26321245 DOI: 10.1016/j.yexmp.2015.08.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/21/2015] [Accepted: 08/24/2015] [Indexed: 12/19/2022]
Abstract
Increased numbers of eosinophils in the esophagus are common in several esophageal and systemic diseases, and a prominent feature of eosinophilic esophagitis. Mouse models can provide insight into the mechanisms of eosinophil infiltration and their pathogenic role. SHARPIN-deficient cpdm mice develop a chronic proliferative dermatitis and an esophagitis characterized by epithelial hyperplasia and the accumulation of eosinophils in the serosa, submucosa, lamina propria and epithelium of the esophagus. We conducted a detailed investigation of the pathogenesis of the esophagitis by light microscopy, immunohistochemistry, and gene expression as the mice aged from 4 to 10 weeks. The thickness of the esophageal epithelium and the number of eosinophils in the esophagus both increased with age. There were scattered apoptotic epithelial cells in mice at 6-10 weeks of age that reacted with antibodies to activated caspase 3 and caspase 9. The expression of CCL11 (eotaxin-1), IL4, IL13 and TSLP was increased in cpdm mice compared with wild type (WT) mice, and there was no change in the expression of CCL24 (eotaxin-2), IL5 and IL33. The expression of chitinase-like 3 and 4 (YM1 and YM2) proteins, markers of type 2 inflammation, was greatly increased in cpdm mice, and this was replicated in vitro by incubation of WT esophagus in the presence of IL4 and IL13. Immunohistochemistry showed that these proteins were localized in esophageal epithelial cells. The severity of the esophagitis was not affected by crossing SHARPIN-deficient mice with lymphocyte-deficient Rag1 null mice indicating that the inflammation is independent of B and T lymphocytes.
Collapse
Affiliation(s)
- Syu-Jhe Chien
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, United States
| | | | | | - Harm HogenEsch
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, United States.
| | | |
Collapse
|
47
|
Travers J, Rothenberg ME. Eosinophils in mucosal immune responses. Mucosal Immunol 2015; 8:464-75. [PMID: 25807184 PMCID: PMC4476057 DOI: 10.1038/mi.2015.2] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/30/2014] [Accepted: 12/28/2014] [Indexed: 02/06/2023]
Abstract
Eosinophils, multifunctional cells that contribute to both innate and adaptive immunity, are involved in the initiation, propagation, and resolution of immune responses, including tissue repair. They achieve this multifunctionality by expression of a diverse set of activation receptors, including those that directly recognize pathogens and opsonized targets, and by their ability to store and release preformed cytotoxic mediators that participate in host defense, to produce a variety of de novo pleotropic mediators and cytokines, and to interact directly and indirectly with diverse cell types, including adaptive and innate immunocytes and structural cells. Herein, we review the basic biology of eosinophils and then focus on new emerging concepts about their role in mucosal immune homeostasis, particularly maintenance of intestinal IgA. We review emerging data about their development and regulation and describe new concepts concerning mucosal eosinophilic diseases. We describe recently developed therapeutic strategies to modify eosinophil levels and function and provide collective insight about the beneficial and detrimental functions of these enigmatic cells.
Collapse
|
48
|
Rothenberg ME. Molecular, genetic, and cellular bases for treating eosinophilic esophagitis. Gastroenterology 2015; 148:1143-57. [PMID: 25666870 PMCID: PMC4409569 DOI: 10.1053/j.gastro.2015.02.002] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 10/06/2014] [Revised: 01/28/2015] [Accepted: 02/02/2015] [Indexed: 12/17/2022]
Abstract
Eosinophilic esophagitis (EoE) was historically distinguished from gastroesophageal reflux disease on the basis of histology and lack of responsiveness to acid suppressive therapy, but it is now appreciated that esophageal eosinophilia can respond to proton pump inhibitors. Genetic and environmental factors contribute to risk for EoE, particularly early-life events. Disease pathogenesis involves activation of epithelial inflammatory pathways (production of eotaxin-3 [encoded by CCL26]), impaired barrier function (mediated by loss of desmoglein-1), increased production and/or activity of transforming growth factor-β, and induction of allergic inflammation by eosinophils and mast cells. Susceptibility has been associated with variants at 5q22 (TSLP) and 2p23 (CAPN14), indicating roles for allergic sensitization and esophageal specific protease pathways. We propose that EoE is a unique disease characterized by food hypersensitivity; strong hereditability influenced by early-life exposures and esophageal-specific genetic risk variants; and allergic inflammation and that the disease is remitted by disrupting inflammatory and T-helper type 2 cytokine-mediated responses and through dietary elimination therapy.
Collapse
Affiliation(s)
- Marc E. Rothenberg
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
49
|
Cheng E. Translating new developments in eosinophilic esophagitis pathogenesis into clinical practice. ACTA ACUST UNITED AC 2015; 13:30-46. [PMID: 25598233 DOI: 10.1007/s11938-014-0041-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/16/2022]
Abstract
OPINION STATEMENT New developments in eosinophilic esophagitis (EoE) pathogenesis are shaping our current therapeutic and management strategies. EoE is a chronic allergic inflammatory disease with progression to fibrostenotic disease. The disease warrants early diagnosis and long-term maintenance therapy. The diagnosis of EoE should be based on the concept of an allergy-mediated disease with esophageal dysfunction and esophageal eosinophilia. Recent findings suggest that proton pump inhibitor (PPI)-responsive esophageal eosinophilia (PPI-REE) is likely a continuum of EoE or a similar T-helper 2 (Th2)-mediated allergic process. PPIs have therapeutic properties that can benefit both gastroesophageal reflux disease (GERD) and EoE. Therefore, PPIs should be considered not a diagnostic tool but, rather, a therapeutic option for EoE. If patients are PPI nonresponsive, then dietary therapy or steroid therapy should be considered. Dilation can be reserved as adjuvant therapy for severe fibrostenotic lesions.
Collapse
Affiliation(s)
- Edaire Cheng
- Esophageal Diseases Center, Pediatric Gastroenterology, Department of Pediatrics, Children's Medical Center and the University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA,
| |
Collapse
|
50
|
Bochner BS, Zimmermann N. Role of siglecs and related glycan-binding proteins in immune responses and immunoregulation. J Allergy Clin Immunol 2015; 135:598-608. [PMID: 25592986 DOI: 10.1016/j.jaci.2014.11.031] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/01/2014] [Revised: 11/14/2014] [Accepted: 11/25/2014] [Indexed: 12/16/2022]
Abstract
Virtually all cells and extracellular material are heavily decorated by various glycans, yet our understanding of the structure and function of these moieties lags behind the understanding of nucleic acids, lipids, and proteins. Recent years have seen a tremendous acceleration of knowledge in the field of glycobiology, revealing many intricacies and functional contributions that were previously poorly appreciated or even unrecognized. This review highlights several topics relevant to glycoimmunology in which mammalian and pathogen-derived glycans displayed on glycoproteins and other scaffolds are recognized by specific glycan-binding proteins (GBPs), leading to a variety of proinflammatory and anti-inflammatory cellular responses. The focus for this review is mainly on 2 families of GBPs, sialic acid-binding immunoglobulin-like lectins (siglecs) and selectins, that are involved in multiple steps of the immune response, including distinguishing pathogens from self, cell trafficking to sites of inflammation, fine-tuning of immune responses leading to activation or tolerance, and regulation of cell survival. Importantly for the clinician, accelerated rates of discovery in the field of glycoimmunology are being translated into innovative medical approaches that harness the interaction of glycans and GBPs to the benefit of the host and might soon lead to novel diagnostics and therapeutics.
Collapse
Affiliation(s)
- Bruce S Bochner
- Department of Medicine, Division of Allergy-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Ill.
| | - Nives Zimmermann
- Department of Pediatrics, Division of Allergy and Immunology, Children's Hospital Medical Center, and Department of Pathology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|