1
|
Yero A, Goulet JP, Shi T, Costiniuk CT, Routy JP, Tremblay C, Mboumba Bouassa RS, Alexandrova Y, Pagliuzza A, Chomont N, Ancuta P, Jenabian MA. Altered memory CCR6 + Th17-polarised T-cell function and biology in people with HIV under successful antiretroviral therapy and HIV elite controllers. EBioMedicine 2024; 107:105274. [PMID: 39178742 PMCID: PMC11388266 DOI: 10.1016/j.ebiom.2024.105274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/17/2024] [Accepted: 07/27/2024] [Indexed: 08/26/2024] Open
Abstract
BACKGROUND Despite successful antiretroviral therapy (ART), frequencies and immunological functions of memory CCR6+ Th17-polarised CD4+ T-cells are not fully restored in people with HIV (PWH). Moreover, long-lived Th17 cells contribute to HIV persistence under ART. However, the molecular mechanisms underlying these observations remain understudied. METHODS mRNA-sequencing was performed using Illumina technology on freshly FACS-sorted memory CCR6+CD4+ T-cells from successfully ART-treated (ST), elite controllers (EC), and uninfected donors (HD). Gene expression validation was performed by RT-PCR, flow cytometry, and in vitro functional assays. FINDINGS Decreased Th17 cell frequencies in STs and ECs versus HDs coincided with reduced Th17-lineage cytokine production in vitro. Accordingly, the RORγt/RORC2 repressor NR1D1 was upregulated, while the RORγt/RORC2 inducer Semaphorin 4D was decreased in memory CCR6+ T-cells of STs and ECs versus HDs. The presence of HIV-DNA in memory CCR6+ T-cells of ST and EC corresponded with the downregulation of HIV restriction factors (SERINC3, KLF3, and RNF125) and HIV inhibitors (tetraspanins), along with increased expression of the HIV-dependency factor MRE11, indicative of higher susceptibility/permissiveness to HIV-1 infection. Furthermore, markers of DNA damage/modification were elevated in memory CCR6+ T-cells of STs and ECs versus HDs, in line with their increased activation (CD38/HLA-DR), senescence/exhaustion phenotype (CTLA-4/PD-1/CD57) and their decreased expression of proliferation marker Ki-67. INTERPRETATION These results reveal new molecular mechanisms of Th17 cell deficit in ST and EC PWH despite a successful control of HIV-1 replication. This knowledge points to potential therapeutic interventions to limit HIV-1 infection and restore frequencies, effector functions, and senescence/exhaustion in Th17 cells. FUNDING This study was funded by the Canadian Institutes of Health Research (CIHR, operating grant MOP 142294, and the Canadian HIV Cure Enterprise [CanCURE 2.0] Team Grant HB2 164064), and in part, by the Réseau SIDA et maladies infectieuses du Fonds de recherche du Québec-Santé (FRQ-S).
Collapse
Affiliation(s)
- Alexis Yero
- Department of Biological Sciences and CERMO-FC Research Centre, Université du Québec à Montréal (UQAM), Montreal, QC, Canada
| | | | - Tao Shi
- Department of Biological Sciences and CERMO-FC Research Centre, Université du Québec à Montréal (UQAM), Montreal, QC, Canada
| | - Cecilia T Costiniuk
- Chronic Viral Illness Service and Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Jean-Pierre Routy
- Chronic Viral Illness Service and Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Cecile Tremblay
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CR-CHUM), Montreal, QC, Canada; Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, Montreal, QC, Canada
| | - Ralph-Sydney Mboumba Bouassa
- Department of Biological Sciences and CERMO-FC Research Centre, Université du Québec à Montréal (UQAM), Montreal, QC, Canada
| | - Yulia Alexandrova
- Department of Biological Sciences and CERMO-FC Research Centre, Université du Québec à Montréal (UQAM), Montreal, QC, Canada
| | - Amélie Pagliuzza
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CR-CHUM), Montreal, QC, Canada
| | - Nicolas Chomont
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CR-CHUM), Montreal, QC, Canada; Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, Montreal, QC, Canada
| | - Petronela Ancuta
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CR-CHUM), Montreal, QC, Canada; Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, Montreal, QC, Canada
| | - Mohammad-Ali Jenabian
- Department of Biological Sciences and CERMO-FC Research Centre, Université du Québec à Montréal (UQAM), Montreal, QC, Canada; Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, Montreal, QC, Canada.
| |
Collapse
|
2
|
Tolomeo M, Cascio A. The Complex Dysregulations of CD4 T Cell Subtypes in HIV Infection. Int J Mol Sci 2024; 25:7512. [PMID: 39062756 PMCID: PMC11276885 DOI: 10.3390/ijms25147512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/04/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
Human immunodeficiency virus (HIV) infection remains an important global public health problem. About 40 million people are infected with HIV, and this infection caused about 630,000 deaths in 2022. The hallmark of HIV infection is the depletion of CD4+ T helper lymphocytes (Th cells). There are at least seven different Th subtypes, and not all are the main targets of HIV. Moreover, the effect of the virus in a specific subtype can be completely different from that of the others. Although the most compromised Th subtype in HIV infection is Th17, HIV can induce important dysregulations in other subtypes, such as follicular Th (Tfh) cells and regulatory Th cells (Treg cells or Tregs). Several studies have shown that HIV can induce an increase in the immunosuppressive activity of Tregs without causing a significant reduction in their numbers, at least in the early phase of infection. The increased activity of this Th subtype seems to play an important role in determining the immunodeficiency status of HIV-infected patients, and Tregs may represent a new target for innovative anti-HIV therapies, including the so-called "Kick and Kill" therapeutic method whose goal is the complete elimination of the virus and the healing of HIV infection. In this review, we report the most important findings on the effects of HIV on different CD4+ T cell subtypes, the molecular mechanisms by which the virus impairs the functions of these cells, and the implications for new anti-HIV therapeutic strategies.
Collapse
Affiliation(s)
- Manlio Tolomeo
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy;
- Department of Infectious Diseases, A.O.U.P. Palermo, 90127 Palermo, Italy
| | - Antonio Cascio
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy;
- Department of Infectious Diseases, A.O.U.P. Palermo, 90127 Palermo, Italy
| |
Collapse
|
3
|
Brenchley JM, Serrano-Villar S. From dysbiosis to defense: harnessing the gut microbiome in HIV/SIV therapy. MICROBIOME 2024; 12:113. [PMID: 38907315 PMCID: PMC11193286 DOI: 10.1186/s40168-024-01825-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 04/26/2024] [Indexed: 06/23/2024]
Abstract
BACKGROUND Although the microbiota has been extensively associated with HIV pathogenesis, the majority of studies, particularly those using omics techniques, are largely correlative and serve primarily as a basis for hypothesis generation. Furthermore, most have focused on characterizing the taxonomic composition of the bacterial component, often overlooking other levels of the microbiome. The intricate mechanisms by which the microbiota influences immune responses to HIV are still poorly understood. Interventional studies on gut microbiota provide a powerful tool to test the hypothesis of whether we can harness the microbiota to improve health outcomes in people with HIV. RESULTS Here, we review the multifaceted role of the gut microbiome in HIV/SIV disease progression and its potential as a therapeutic target. We explore the complex interplay between gut microbial dysbiosis and systemic inflammation, highlighting the potential for microbiome-based therapeutics to open new avenues in HIV management. These include exploring the efficacy of probiotics, prebiotics, fecal microbiota transplantation, and targeted dietary modifications. We also address the challenges inherent in this research area, such as the difficulty in inducing long-lasting microbiome alterations and the complexities of study designs, including variations in probiotic strains, donor selection for FMT, antibiotic conditioning regimens, and the hurdles in translating findings into clinical practice. Finally, we speculate on future directions for this rapidly evolving field, emphasizing the need for a more granular understanding of microbiome-immune interactions, the development of personalized microbiome-based therapies, and the application of novel technologies to identify potential therapeutic agents. CONCLUSIONS Our review underscores the importance of the gut microbiome in HIV/SIV disease and its potential as a target for innovative therapeutic strategies.
Collapse
Affiliation(s)
- Jason M Brenchley
- Barrier Immunity Section, Lab of Viral Diseases, NIAID, NIH, Bethesda, MA, USA.
| | - Sergio Serrano-Villar
- Department of Infectious Diseases, Hospital Universitario Ramon y Cajal, IRYCIS and CIBERInfec, Madrid, Spain.
| |
Collapse
|
4
|
Baltazar-Díaz TA, Andrade-Villanueva JF, Sánchez-Álvarez P, Amador-Lara F, Holguín-Aguirre T, Sánchez-Reyes K, Álvarez-Zavala M, López-Roa RI, Bueno-Topete MR, González-Hernández LA. A Two-Faced Gut Microbiome: Butyrogenic and Proinflammatory Bacteria Predominate in the Intestinal Milieu of People Living with HIV from Western Mexico. Int J Mol Sci 2024; 25:4830. [PMID: 38732048 PMCID: PMC11084381 DOI: 10.3390/ijms25094830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 05/13/2024] Open
Abstract
HIV infection results in marked alterations in the gut microbiota (GM), such as the loss of microbial diversity and different taxonomic and metabolic profiles. Despite antiretroviral therapy (ART) partially ablating gastrointestinal alterations, the taxonomic profile after successful new ART has shown wide variations. Our objective was to determine the GM composition and functions in people living with HIV (PLWHIV) under ART in comparison to seronegative controls (SC). Fecal samples from 21 subjects (treated with integrase strand-transfer inhibitors, INSTIs) and 18 SC were included. We employed 16S rRNA amplicon sequencing, coupled with PICRUSt2 and fecal short-chain fatty acid (SCFA) quantification by gas chromatography. The INSTI group showed a decreased α-diversity (p < 0.001) compared to the SC group, at the expense of increased amounts of Pseudomonadota (Proteobacteria), Segatella copri, Lactobacillus, and Gram-negative bacteria. Concurrently, we observed an enrichment in Megasphaera and Butyricicoccus, both SCFA-producing bacteria, and significant elevations in fecal butyrate in this group (p < 0.001). Interestingly, gut dysbiosis in PLWHIV was characterized by a proinflammatory environment orchestrated by Pseudomonadota and elevated levels of butyrate associated with bacterial metabolic pathways, as well as the evident presence of butyrogenic bacteria. The role of this unique GM in PLWHIV should be evaluated, as well as the use of butyrate-based supplements and ART regimens that contain succinate, such as tenofovir disoproxil succinate. This mixed profile is described for the first time in PLWHIV from Mexico.
Collapse
Affiliation(s)
- Tonatiuh Abimael Baltazar-Díaz
- Instituto de Investigación en Enfermedades Crónico-Degenerativas, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Guadalajara 44340, Mexico;
- Instituto de Investigación en Inmunodeficiencias y VIH, Departamento de Clínicas Médicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Hospital 278, Guadalajara 44280, Mexico; (J.F.A.-V.); (K.S.-R.); (M.Á.-Z.)
| | - Jaime F. Andrade-Villanueva
- Instituto de Investigación en Inmunodeficiencias y VIH, Departamento de Clínicas Médicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Hospital 278, Guadalajara 44280, Mexico; (J.F.A.-V.); (K.S.-R.); (M.Á.-Z.)
- Unidad de VIH, Hospital Civil de Guadalajara Fray Antonio Alcalde, Hospital 278, Guadalajara 44280, Mexico; (P.S.-Á.); (F.A.-L.); (T.H.-A.)
| | - Paulina Sánchez-Álvarez
- Unidad de VIH, Hospital Civil de Guadalajara Fray Antonio Alcalde, Hospital 278, Guadalajara 44280, Mexico; (P.S.-Á.); (F.A.-L.); (T.H.-A.)
| | - Fernando Amador-Lara
- Unidad de VIH, Hospital Civil de Guadalajara Fray Antonio Alcalde, Hospital 278, Guadalajara 44280, Mexico; (P.S.-Á.); (F.A.-L.); (T.H.-A.)
| | - Tania Holguín-Aguirre
- Unidad de VIH, Hospital Civil de Guadalajara Fray Antonio Alcalde, Hospital 278, Guadalajara 44280, Mexico; (P.S.-Á.); (F.A.-L.); (T.H.-A.)
| | - Karina Sánchez-Reyes
- Instituto de Investigación en Inmunodeficiencias y VIH, Departamento de Clínicas Médicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Hospital 278, Guadalajara 44280, Mexico; (J.F.A.-V.); (K.S.-R.); (M.Á.-Z.)
| | - Monserrat Álvarez-Zavala
- Instituto de Investigación en Inmunodeficiencias y VIH, Departamento de Clínicas Médicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Hospital 278, Guadalajara 44280, Mexico; (J.F.A.-V.); (K.S.-R.); (M.Á.-Z.)
| | - Rocío Ivette López-Roa
- Laboratorio de Investigación y Desarrollo Farmacéutico, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Marcelino García Barragán 1421, Guadalajara 44430, Mexico;
| | - Miriam Ruth Bueno-Topete
- Instituto de Investigación en Enfermedades Crónico-Degenerativas, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Guadalajara 44340, Mexico;
| | - Luz Alicia González-Hernández
- Instituto de Investigación en Inmunodeficiencias y VIH, Departamento de Clínicas Médicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Hospital 278, Guadalajara 44280, Mexico; (J.F.A.-V.); (K.S.-R.); (M.Á.-Z.)
- Unidad de VIH, Hospital Civil de Guadalajara Fray Antonio Alcalde, Hospital 278, Guadalajara 44280, Mexico; (P.S.-Á.); (F.A.-L.); (T.H.-A.)
| |
Collapse
|
5
|
Vellas C, Nayrac M, Collercandy N, Requena M, Jeanne N, Latour J, Dimeglio C, Cazabat M, Barange K, Alric L, Carrere N, Martin-Blondel G, Izopet J, Delobel P. Intact proviruses are enriched in the colon and associated with PD-1 +TIGIT - mucosal CD4 + T cells of people with HIV-1 on antiretroviral therapy. EBioMedicine 2024; 100:104954. [PMID: 38160480 PMCID: PMC10792747 DOI: 10.1016/j.ebiom.2023.104954] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND The persistence of intact replication-competent HIV-1 proviruses is responsible for the virological rebound off treatment. The gut could be a major reservoir of HIV-1 due to the high number of infected target cells. METHODS We collected blood samples and intestinal biopsies (duodenum, ileum, colon) from 42 people with HIV-1 receiving effective antiretroviral therapy. We used the Intact Proviral DNA Assay to estimate the frequency of intact HIV-1 proviruses in the blood and in the intestinal mucosa of these individuals. We analyzed the genetic complexity of the HIV-1 reservoir by performing single-molecule next-generation sequencing of HIV-1 env DNA. The activation/exhaustion profile of mucosal T lymphocytes was assessed by flow cytometry. FINDINGS Intact proviruses are particularly enriched in the colon. Residual HIV-1 transcription in the gut is associated with persistent mucosal and systemic immune activation. The HIV-1 intestinal reservoir appears to be shaped by the proliferation of provirus-hosting cells. The genetic complexity of the viral reservoir in the colon is positively associated with TIGIT expression but negatively with PD-1, and inversely related to its intact content. The size of the intact reservoir in the colon is associated with PD-1+TIGIT- mucosal CD4+ T cells, particularly in CD27+ memory cells, whose proliferation and survival could contribute to the enrichment of the viral reservoir by intact proviruses. INTERPRETATION Enrichment in intact proviruses makes the gut a key compartment for HIV-1 persistence on antiretroviral therapy. FUNDING This project was supported by grants from the ANRS-MIE (ANRS EP61 GALT), Sidaction, and the Institut Universitaire de France.
Collapse
Affiliation(s)
- Camille Vellas
- INSERM UMR1291-CNRS UMR5051-Université Toulouse III, Toulouse Institute for Infectious and Inflammatory Diseases, Toulouse F-31300, France
| | - Manon Nayrac
- INSERM UMR1291-CNRS UMR5051-Université Toulouse III, Toulouse Institute for Infectious and Inflammatory Diseases, Toulouse F-31300, France
| | - Nived Collercandy
- INSERM UMR1291-CNRS UMR5051-Université Toulouse III, Toulouse Institute for Infectious and Inflammatory Diseases, Toulouse F-31300, France; CHU de Toulouse, Service des Maladies Infectieuses et Tropicales, Toulouse F-31300, France
| | - Mary Requena
- INSERM UMR1291-CNRS UMR5051-Université Toulouse III, Toulouse Institute for Infectious and Inflammatory Diseases, Toulouse F-31300, France; CHU de Toulouse, Laboratoire de Virologie, Toulouse F-31300, France
| | - Nicolas Jeanne
- INSERM UMR1291-CNRS UMR5051-Université Toulouse III, Toulouse Institute for Infectious and Inflammatory Diseases, Toulouse F-31300, France; CHU de Toulouse, Laboratoire de Virologie, Toulouse F-31300, France
| | - Justine Latour
- INSERM UMR1291-CNRS UMR5051-Université Toulouse III, Toulouse Institute for Infectious and Inflammatory Diseases, Toulouse F-31300, France; CHU de Toulouse, Laboratoire de Virologie, Toulouse F-31300, France
| | - Chloé Dimeglio
- INSERM UMR1291-CNRS UMR5051-Université Toulouse III, Toulouse Institute for Infectious and Inflammatory Diseases, Toulouse F-31300, France
| | - Michelle Cazabat
- CHU de Toulouse, Laboratoire de Virologie, Toulouse F-31300, France
| | - Karl Barange
- CHU de Toulouse, Service d'Hépato-Gastro-Entérologie, Toulouse F-31400, France
| | - Laurent Alric
- Université Toulouse III Paul Sabatier, Toulouse F-31400, France; CHU de Toulouse, Service de Médecine Interne et Immunologie clinique, Toulouse F-31400, France
| | - Nicolas Carrere
- Université Toulouse III Paul Sabatier, Toulouse F-31400, France; CHU de Toulouse, Service de Chirurgie Générale et Digestive, Toulouse F-31400, France
| | - Guillaume Martin-Blondel
- INSERM UMR1291-CNRS UMR5051-Université Toulouse III, Toulouse Institute for Infectious and Inflammatory Diseases, Toulouse F-31300, France; CHU de Toulouse, Service des Maladies Infectieuses et Tropicales, Toulouse F-31300, France; Université Toulouse III Paul Sabatier, Toulouse F-31400, France
| | - Jacques Izopet
- INSERM UMR1291-CNRS UMR5051-Université Toulouse III, Toulouse Institute for Infectious and Inflammatory Diseases, Toulouse F-31300, France; CHU de Toulouse, Laboratoire de Virologie, Toulouse F-31300, France; Université Toulouse III Paul Sabatier, Toulouse F-31400, France
| | - Pierre Delobel
- INSERM UMR1291-CNRS UMR5051-Université Toulouse III, Toulouse Institute for Infectious and Inflammatory Diseases, Toulouse F-31300, France; CHU de Toulouse, Service des Maladies Infectieuses et Tropicales, Toulouse F-31300, France; Université Toulouse III Paul Sabatier, Toulouse F-31400, France.
| |
Collapse
|
6
|
Wiche Salinas TR, Zhang Y, Gosselin A, Rosario NF, El-Far M, Filali-Mouhim A, Routy JP, Chartrand-Lefebvre C, Landay AL, Durand M, Tremblay CL, Ancuta P. Alterations in Th17 Cells and Non-Classical Monocytes as a Signature of Subclinical Coronary Artery Atherosclerosis during ART-Treated HIV-1 Infection. Cells 2024; 13:157. [PMID: 38247848 PMCID: PMC10813976 DOI: 10.3390/cells13020157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/09/2024] [Accepted: 01/13/2024] [Indexed: 01/23/2024] Open
Abstract
Cardiovascular disease (CVD) remains an important comorbidity in people living with HIV-1 (PLWH) receiving antiretroviral therapy (ART). Our previous studies performed in the Canadian HIV/Aging Cohort Study (CHACS) (>40 years-old; Framingham Risk Score (FRS) > 5%) revealed a 2-3-fold increase in non-calcified coronary artery atherosclerosis (CAA) plaque burden, measured by computed tomography angiography scan (CTAScan) as the total (TPV) and low attenuated plaque volume (LAPV), in ART-treated PLWH (HIV+) versus uninfected controls (HIV-). In an effort to identify novel correlates of subclinical CAA, markers of intestinal damage (sCD14, LBP, FABP2); cell trafficking/inflammation (CCL20, CX3CL1, MIF, CCL25); subsets of Th17-polarized and regulatory (Tregs) CD4+ T-cells, classical/intermediate/non-classical monocytes, and myeloid/plasmacytoid dendritic cells were studied in relationship with HIV and TPV/LAPV status. The TPV detection/values coincided with higher plasma sCD14, FABP2, CCL20, MIF, CX3CL1, and triglyceride levels; lower Th17/Treg ratios; and classical monocyte expansion. Among HIV+, TPV+ versus TPV- exhibited lower Th17 frequencies, reduced Th17/Treg ratios, higher frequencies of non-classical CCR9lowHLADRhigh monocytes, and increased plasma fibrinogen levels. Finally, Th17/Treg ratios and non-classical CCR9lowHLADRhigh monocyte frequencies remained associated with TPV/LAPV after adjusting for FRS and HIV/ART duration in a logistic regression model. These findings point to Th17 paucity and non-classical monocyte abundance as novel immunological correlates of subclinical CAA that may fuel the CVD risk in ART-treated PLWH.
Collapse
Affiliation(s)
- Tomas Raul Wiche Salinas
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal (UdeM), Montreal, QC H2X 0A9, Canada; (T.R.W.S.); (Y.Z.); (C.L.T.)
- CRCHUM, Montreal, QC H2X 0A2, Canada; (A.G.); (N.F.R.); (M.E.-F.); (A.F.-M.); (C.C.-L.); (M.D.)
| | - Yuwei Zhang
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal (UdeM), Montreal, QC H2X 0A9, Canada; (T.R.W.S.); (Y.Z.); (C.L.T.)
- CRCHUM, Montreal, QC H2X 0A2, Canada; (A.G.); (N.F.R.); (M.E.-F.); (A.F.-M.); (C.C.-L.); (M.D.)
| | - Annie Gosselin
- CRCHUM, Montreal, QC H2X 0A2, Canada; (A.G.); (N.F.R.); (M.E.-F.); (A.F.-M.); (C.C.-L.); (M.D.)
| | - Natalia Fonseca Rosario
- CRCHUM, Montreal, QC H2X 0A2, Canada; (A.G.); (N.F.R.); (M.E.-F.); (A.F.-M.); (C.C.-L.); (M.D.)
| | - Mohamed El-Far
- CRCHUM, Montreal, QC H2X 0A2, Canada; (A.G.); (N.F.R.); (M.E.-F.); (A.F.-M.); (C.C.-L.); (M.D.)
| | - Ali Filali-Mouhim
- CRCHUM, Montreal, QC H2X 0A2, Canada; (A.G.); (N.F.R.); (M.E.-F.); (A.F.-M.); (C.C.-L.); (M.D.)
| | - Jean-Pierre Routy
- Chronic Viral Illness Service and Division of Hematology, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada;
| | - Carl Chartrand-Lefebvre
- CRCHUM, Montreal, QC H2X 0A2, Canada; (A.G.); (N.F.R.); (M.E.-F.); (A.F.-M.); (C.C.-L.); (M.D.)
- Département de Radiologie, Radio-Oncologie et Médecine Nucléaire, Faculté de Médecine, Université de Montréal (UdeM), Montreal, QC H2X 0A9, Canada
| | | | - Madeleine Durand
- CRCHUM, Montreal, QC H2X 0A2, Canada; (A.G.); (N.F.R.); (M.E.-F.); (A.F.-M.); (C.C.-L.); (M.D.)
- Département de Médecine, Faculté de Médecine, Université de Montréal (UdeM), Montreal, QC H2X 0A9, Canada
| | - Cécile L. Tremblay
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal (UdeM), Montreal, QC H2X 0A9, Canada; (T.R.W.S.); (Y.Z.); (C.L.T.)
- CRCHUM, Montreal, QC H2X 0A2, Canada; (A.G.); (N.F.R.); (M.E.-F.); (A.F.-M.); (C.C.-L.); (M.D.)
| | - Petronela Ancuta
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal (UdeM), Montreal, QC H2X 0A9, Canada; (T.R.W.S.); (Y.Z.); (C.L.T.)
- CRCHUM, Montreal, QC H2X 0A2, Canada; (A.G.); (N.F.R.); (M.E.-F.); (A.F.-M.); (C.C.-L.); (M.D.)
| |
Collapse
|
7
|
Wiche Salinas TR, Zhang Y, Gosselin A, Do Rosario NF, El-Far M, Filali-Mouhim A, Routy JP, Chartrand-Lefebvre C, Landay AL, Durand M, Tremblay CL, Ancuta P. A Blood Immunological Signature of Subclinical Coronary Artery Atherosclerosis in People Living with HIV-1 Receiving Antiretroviral Therapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.15.571922. [PMID: 38187644 PMCID: PMC10769180 DOI: 10.1101/2023.12.15.571922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Cardiovascular disease (CVD) remains an important co-morbidity in people living with HIV-1 (PLWH) receiving antiretroviral therapy (ART). Our previous studies performed on the Canadian HIV/Aging Cohort Study (CHACS) (>40 years-old; Framingham Risk Score (FRS) >5%), revealed a 2-3-fold increase in non-calcified coronary artery atherosclerosis (CAA) plaque burden, measured by Computed tomography angiography scan (CTAScan) as total (TPV) and low attenuated plaque volume (LAPV) in ART-treated PLWH (HIV+) versus uninfected controls (HIV-). In an effort to identify novel correlates of subclinical CAA, markers of intestinal damage (sCD14, LBP, FABP2); cell trafficking/inflammation (CCL20, CX3CL1, MIF, CCL25); subsets of Th17-polarized and regulatory (Tregs) CD4 + T-cells, classical/intermediate/non-classical monocytes, and myeloid/plasmacytoid dendritic cells, were studied in relationship with HIV and TPV/LAPV status. The TPV detection/values coincided with higher plasma sCD14, FABP2, CCL20, MIF, CX3CL1 and triglyceride levels, lower Th17/Treg ratios, and classical monocyte expansion. Among HIV + , TPV + versus TPV - exhibited lower Th17 frequencies, reduced Th17/Treg ratios, higher frequencies of non-classical CCR9 low HLADR high monocyte, and increased plasma fibrinogen levels. Finally, Th17/Treg ratios and non-classical CCR9 low HLADR high monocyte frequencies remained associated with TPV/LAPV after adjusting for FRS and HIV/ART duration in a logistic regression model. These findings point to Th17 paucity and non-classical monocyte abundance as novel immunological correlates of subclinical CAA that may fuel the CVD risk in ART-treated PLWH.
Collapse
|
8
|
Boby N, Williams KM, Das A, Pahar B. Toll-like Receptor 2 Mediated Immune Regulation in Simian Immunodeficiency Virus-Infected Rhesus Macaques. Vaccines (Basel) 2023; 11:1861. [PMID: 38140264 PMCID: PMC10747659 DOI: 10.3390/vaccines11121861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Toll-like receptors (TLRs) are crucial to the innate immune response. They regulate inflammatory reactions by initiating the production of pro-inflammatory cytokines and chemokines. TLRs also play a role in shaping the adaptive immune responses. While this protective response is important for eliminating infectious pathogens, persistent activation of TLRs may result in chronic immune activation, leading to detrimental effects. The role of TLR2 in regulating HIV-1 infection in vivo has yet to be well described. In this study, we used an SIV-infected rhesus macaque model to simulate HIV infection in humans. We evaluated the plasma of the macaques longitudinally and found a significant increase in the soluble TLR2 (sTLR2) level after SIV infection. We also observed an increase in membrane-bound TLR2 (mb-TLR2) in cytotoxic T cells, B cells, and NK cells in PBMC and NK cells in the gut after infection. Our results suggest that sTLR2 regulates the production of various cytokines and chemokines, including IL-18, IL-1RA, IL-15, IL-13, IL-9, TPO, FLT3L, and IL-17F, as well as chemokines, including IP-10, MCP-1, MCP-2, ENA-78, GRO-α, I-TAC, Fractalkine, SDF-1α, and MIP-3α. Interestingly, these cytokines and chemokines were also upregulated after the infection. The positive correlation between SIV copy number and sTLR2 in the plasma indicated the involvement of TLR2 in the regulation of viral replication. These cytokines and chemokines could directly or indirectly regulate viral replication through the TLR2 signaling pathways. When we stimulated PBMC with the TLR2 agonist in vitro, we observed a direct induction of various cytokines and chemokines. Some of these cytokines and chemokines, such as IL-1RA, IL-9, IL-15, GRO-α, and ENA-78, were positively correlated with sTLR2 in vivo, highlighting the direct involvement of TLR2 in the regulation of the production of these factors. Our findings suggest that TLR2 expression may be a target for developing new therapeutic strategies to combat HIV infection.
Collapse
Affiliation(s)
- Nongthombam Boby
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433, USA; (N.B.); (K.M.W.)
| | - Kelsey M. Williams
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433, USA; (N.B.); (K.M.W.)
| | - Arpita Das
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA 70433, USA;
| | - Bapi Pahar
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433, USA; (N.B.); (K.M.W.)
- School of Medicine, Tulane University, New Orleans, LA 70118, USA
| |
Collapse
|
9
|
O'Neil TR, Harman AN, Cunningham AL, Nasr N, Bertram KM. OMIP-096: A 24-color flow cytometry panel to identify and characterize CD4+ and CD8+ tissue-resident T cells in human skin, intestinal, and type II mucosal tissue. Cytometry A 2023; 103:851-856. [PMID: 37772977 PMCID: PMC10953338 DOI: 10.1002/cyto.a.24782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 04/06/2023] [Accepted: 07/24/2023] [Indexed: 09/30/2023]
Abstract
There is a great need to understand human immune cells within tissue, where disease manifests and infection occurs. Tissue-resident memory T cells (TRMs) were discovered over a decade ago, there is a great need to understand their role in human disease. We developed a 24-color flow cytometry panel to comprehensively interrogate CD4+ and CD8+ TRMs isolated from human tissues. When interrogating cells within human tissue, enzymatic methods used to liberate cells from within the tissue can cause cleavage of cell surface markers needed to phenotype these cells. Here we carefully select antibody clones and evaluate the effect of enzymatic digestion on the expression of markers relevant to the identification of T cell residency, as well as markers relevant to the activation and immunoregulation status of these cells. We have designed this panel to be applicable across a range of human tissues including skin, intestine, and type II mucosae such as the vagina.
Collapse
Affiliation(s)
- Thomas R. O'Neil
- Centre for Virus Research, The Westmead Institute for Medical ResearchWestmeadAustralia
- The Westmead Clinical School, Faculty of Medicine and HealthThe University of SydneySydneyAustralia
| | - Andrew N. Harman
- Centre for Virus Research, The Westmead Institute for Medical ResearchWestmeadAustralia
- The Westmead Clinical School, Faculty of Medicine and HealthThe University of SydneySydneyAustralia
| | - Anthony L. Cunningham
- Centre for Virus Research, The Westmead Institute for Medical ResearchWestmeadAustralia
- The Westmead Clinical School, Faculty of Medicine and HealthThe University of SydneySydneyAustralia
| | - Najla Nasr
- Centre for Virus Research, The Westmead Institute for Medical ResearchWestmeadAustralia
- The Westmead Clinical School, Faculty of Medicine and HealthThe University of SydneySydneyAustralia
| | - Kirstie M. Bertram
- Centre for Virus Research, The Westmead Institute for Medical ResearchWestmeadAustralia
- The Westmead Clinical School, Faculty of Medicine and HealthThe University of SydneySydneyAustralia
| |
Collapse
|
10
|
Torices S, Daire L, Simon S, Mendoza L, Daniels D, Joseph JA, Fattakhov N, Naranjo O, Teglas T, Toborek M. The NLRP3 inflammasome and gut dysbiosis as a putative link between HIV-1 infection and ischemic stroke. Trends Neurosci 2023; 46:682-693. [PMID: 37330380 PMCID: PMC10554647 DOI: 10.1016/j.tins.2023.05.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/26/2023] [Accepted: 05/18/2023] [Indexed: 06/19/2023]
Abstract
HIV-associated comorbidities, such as ischemic stroke, are prevalent in people with HIV (PWH). Several studies both in animal models and humans have revealed an association between activation of the inflammasome in HIV-1 infection and stroke. The gut microbiota is an important component in controlling neuroinflammation in the CNS. It has also been proposed to be involved in the pathobiology of HIV-1 infection, and has been associated with an increase in activation of the inflammasome. In this review, we provide an overview of the microbiota-gut-inflammasome-brain axis, focusing on the NLRP3 inflammasome and dysregulation of the microbiome as risk factors that may contribute to the outcome of ischemic stroke and recovery in PWH. We also focus on the potential of targeting the NLRP3 inflammasome as a novel therapeutic approach for PWH who are at risk of developing cerebrovascular diseases.
Collapse
Affiliation(s)
- Silvia Torices
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Gautier Bldg., Suite 528, 1011 NW 15th Street, Miami, FL 33136, USA.
| | - Leah Daire
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Gautier Bldg., Suite 528, 1011 NW 15th Street, Miami, FL 33136, USA
| | - Sierra Simon
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Gautier Bldg., Suite 528, 1011 NW 15th Street, Miami, FL 33136, USA
| | - Luisa Mendoza
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Gautier Bldg., Suite 528, 1011 NW 15th Street, Miami, FL 33136, USA
| | - Destiny Daniels
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Gautier Bldg., Suite 528, 1011 NW 15th Street, Miami, FL 33136, USA
| | - Joelle-Ann Joseph
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Gautier Bldg., Suite 528, 1011 NW 15th Street, Miami, FL 33136, USA
| | - Nikolai Fattakhov
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Gautier Bldg., Suite 528, 1011 NW 15th Street, Miami, FL 33136, USA
| | - Oandy Naranjo
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Gautier Bldg., Suite 528, 1011 NW 15th Street, Miami, FL 33136, USA
| | - Timea Teglas
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Gautier Bldg., Suite 528, 1011 NW 15th Street, Miami, FL 33136, USA
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Gautier Bldg., Suite 528, 1011 NW 15th Street, Miami, FL 33136, USA.
| |
Collapse
|
11
|
Moretti S, Schietroma I, Sberna G, Maggiorella MT, Sernicola L, Farcomeni S, Giovanetti M, Ciccozzi M, Borsetti A. HIV-1-Host Interaction in Gut-Associated Lymphoid Tissue (GALT): Effects on Local Environment and Comorbidities. Int J Mol Sci 2023; 24:12193. [PMID: 37569570 PMCID: PMC10418605 DOI: 10.3390/ijms241512193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/20/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
HIV-1 replication in the gastrointestinal (GI) tract causes severe CD4+ T-cell depletion and disruption of the protective epithelial barrier in the intestinal mucosa, causing microbial translocation, the main driver of inflammation and immune activation, even in people living with HIV (PLWH) taking antiretroviral drug therapy. The higher levels of HIV DNA in the gut compared to the blood highlight the importance of the gut as a viral reservoir. CD4+ T-cell subsets in the gut differ in phenotypic characteristics and differentiation status from the ones in other tissues or in peripheral blood, and little is still known about the mechanisms by which the persistence of HIV is maintained at this anatomical site. This review aims to describe the interaction with key subsets of CD4+ T cells in the intestinal mucosa targeted by HIV-1 and the role of gut microbiome and its metabolites in HIV-associated systemic inflammation and immune activation that are crucial in the pathogenesis of HIV infection and related comorbidities.
Collapse
Affiliation(s)
- Sonia Moretti
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, 00162 Rome, Italy; (S.M.); (I.S.); (G.S.); (M.T.M.); (L.S.); (S.F.)
| | - Ivan Schietroma
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, 00162 Rome, Italy; (S.M.); (I.S.); (G.S.); (M.T.M.); (L.S.); (S.F.)
| | - Giuseppe Sberna
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, 00162 Rome, Italy; (S.M.); (I.S.); (G.S.); (M.T.M.); (L.S.); (S.F.)
| | - Maria Teresa Maggiorella
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, 00162 Rome, Italy; (S.M.); (I.S.); (G.S.); (M.T.M.); (L.S.); (S.F.)
| | - Leonardo Sernicola
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, 00162 Rome, Italy; (S.M.); (I.S.); (G.S.); (M.T.M.); (L.S.); (S.F.)
| | - Stefania Farcomeni
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, 00162 Rome, Italy; (S.M.); (I.S.); (G.S.); (M.T.M.); (L.S.); (S.F.)
| | - Marta Giovanetti
- Instituto Rene Rachou, Fundação Oswaldo Cruz, Belo Horizonte 30190-009, Minas Gerais, Brazil;
- Sciences and Technologies for Sustainable Development and One Health, University Campus Bio-Medico of Rome, 00128 Rome, Italy
| | - Massimo Ciccozzi
- Unit of Medical Statistics and Molecular Epidemiology, University Campus Bio-Medico of Rome, 00128 Rome, Italy;
| | - Alessandra Borsetti
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, 00162 Rome, Italy; (S.M.); (I.S.); (G.S.); (M.T.M.); (L.S.); (S.F.)
| |
Collapse
|
12
|
Eddy J, Pham F, Chee R, Park E, Dapprich N, DeRuiter SL, Shen A. Intestinal endothelial cells increase HIV infection and latency in resting and activated CD4 + T cells, particularly affecting CCR6 + CD4 + T cells. Retrovirology 2023; 20:7. [PMID: 37202790 PMCID: PMC10197447 DOI: 10.1186/s12977-023-00621-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/29/2023] [Indexed: 05/20/2023] Open
Abstract
BACKGROUND With suppressive antiretroviral therapy, HIV infection is well-managed in most patients. However, eradication and cure are still beyond reach due to latent viral reservoirs in CD4 + T cells, particularly in lymphoid tissue environments including the gut associated lymphatic tissues. In HIV patients, there is extensive depletion of T helper cells, particularly T helper 17 cells from the intestinal mucosal area, and the gut is one of the largest viral reservoir sites. Endothelial cells line lymphatic and blood vessels and were found to promote HIV infection and latency in previous studies. In this study, we examined endothelial cells specific to the gut mucosal area-intestinal endothelial cells-for their impact on HIV infection and latency in T helper cells. RESULTS We found that intestinal endothelial cells dramatically increased productive and latent HIV infection in resting CD4 + T helper cells. In activated CD4 + T cells, endothelial cells enabled the formation of latent infection in addition to the increase of productive infection. Endothelial-cell-mediated HIV infection was more prominent in memory T cells than naïve T cells, and it involved the cytokine IL-6 but did not involve the co-stimulatory molecule CD2. The CCR6 + T helper 17 subpopulation was particularly susceptible to such endothelial-cell-promoted infection. CONCLUSION Endothelial cells, which are widely present in lymphoid tissues including the intestinal mucosal area and interact regularly with T cells physiologically, significantly increase HIV infection and latent reservoir formation in CD4 + T cells, particularly in CCR6 + T helper 17 cells. Our study highlighted the importance of endothelial cells and the lymphoid tissue environment in HIV pathology and persistence.
Collapse
Affiliation(s)
- Jessica Eddy
- Department of Biology, Calvin University, 3201 Burton St. SE, Grand Rapids, MI 49546 USA
| | - Fisher Pham
- Department of Biology, Calvin University, 3201 Burton St. SE, Grand Rapids, MI 49546 USA
| | - Rachel Chee
- Department of Biology, Calvin University, 3201 Burton St. SE, Grand Rapids, MI 49546 USA
| | - Esther Park
- Department of Biology, Calvin University, 3201 Burton St. SE, Grand Rapids, MI 49546 USA
| | - Nathan Dapprich
- Department of Biology, Calvin University, 3201 Burton St. SE, Grand Rapids, MI 49546 USA
| | - Stacy L. DeRuiter
- Department of Mathematics & Statistics, Calvin University, 3201 Burton St. SE, Grand Rapids, MI 49546 USA
| | - Anding Shen
- Department of Biology, Calvin University, 3201 Burton St. SE, Grand Rapids, MI 49546 USA
| |
Collapse
|
13
|
Mackelprang RD, Filali-Mouhim A, Richardson B, Lefebvre F, Katabira E, Ronald A, Gray G, Cohen KW, Klatt NR, Pecor T, Celum C, McElrath MJ, Hughes SM, Hladik F, Cameron MJ, Lingappa JR. Upregulation of IFN-stimulated genes persists beyond the transitory broad immunologic changes of acute HIV-1 infection. iScience 2023; 26:106454. [PMID: 37020953 PMCID: PMC10067744 DOI: 10.1016/j.isci.2023.106454] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 09/15/2022] [Accepted: 03/15/2023] [Indexed: 04/03/2023] Open
Abstract
Chronic immune activation during HIV-1 infection contributes to morbidity and mortality in people living with HIV. To elucidate the underlying biological pathways, we evaluated whole blood gene expression trajectories from before, through acute, and into chronic HIV-1 infection. Interferon-stimulated genes, including MX1, IFI27 and ISG15, were upregulated during acute infection, remained elevated into chronic infection, and were strongly correlated with plasma HIV-1 RNA as well as TNF-α and CXCL10 cytokine levels. In contrast, genes involved in cellular immune responses, such as CD8A, were upregulated during acute infection before reaching a peak and returning to near pre-infection levels in chronic infection. Our results indicate that chronic immune activation during HIV-1 infection is characterized by persistent elevation of a narrow set of interferon-stimulated genes and innate cytokines. These findings raise the prospect of devising a targeted intervention to restore healthy immune homeostasis in people living with HIV-1.
Collapse
|
14
|
Perkins MV, Joseph S, Dittmer DP, Mackman N. Cardiovascular Disease and Thrombosis in HIV Infection. Arterioscler Thromb Vasc Biol 2023; 43:175-191. [PMID: 36453273 PMCID: PMC10165851 DOI: 10.1161/atvbaha.122.318232] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/18/2022] [Indexed: 12/03/2022]
Abstract
HIV infection has transitioned from an acute, fatal disease to a chronic one managed by antiretroviral therapy. Thus, the aging population of people living with HIV (PLWH) continues to expand. HIV infection results in a dysregulated immune system, wherein CD4+ T cells are depleted, particularly in the gastrointestinal tract, disrupting the gut epithelial barrier. Long-term HIV infection is associated with chronic inflammation through potentially direct mechanisms caused by viral replication or exposure to viral proteins and indirect mechanisms resulting from increased translocation of microbial products from the intestine or exposure to antiretroviral therapy. Chronic inflammation (as marked by IL [interleukin]-6 and CRP [C-reactive protein]) in PLWH promotes endothelial cell dysfunction and atherosclerosis. PLWH show significantly increased rates of cardiovascular disease, such as myocardial infarction (risk ratio, 1.79 [95% CI, 1.54-2.08]) and stroke (risk ratio, 2.56 [95% CI, 1.43-4.61]). In addition, PLWH have increased levels of the coagulation biomarker D-dimer and have a two to ten-fold increased risk of venous thromboembolism compared with the general population. Several small clinical trials analyzed the effect of different antithrombotic agents on platelet activation, coagulation, inflammation, and immune cell activation. Although some markers for coagulation were reduced, most agents failed to reduce inflammatory markers in PLWH. More studies are needed to understand the underlying mechanisms driving inflammation in PLWH to create better therapies for lowering chronic inflammation in PLWH. Such therapies can potentially reduce atherosclerosis, cardiovascular disease, and thrombosis rates in PLWH and thus overall mortality in this population.
Collapse
Affiliation(s)
- Megan V. Perkins
- UNC Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Sarah Joseph
- UNC Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Dirk P. Dittmer
- UNC Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nigel Mackman
- UNC Blood Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Division of Hematology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
15
|
Zhang Y, Xie Z, Zhou J, Li Y, Ning C, Su Q, Ye L, Ai S, Lai J, Pan P, Liu N, Liao Y, Su Q, Li Z, Liang H, Cui P, Huang J. The altered metabolites contributed by dysbiosis of gut microbiota are associated with microbial translocation and immune activation during HIV infection. Front Immunol 2023; 13:1020822. [PMID: 36685491 PMCID: PMC9845923 DOI: 10.3389/fimmu.2022.1020822] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/28/2022] [Indexed: 01/05/2023] Open
Abstract
Background The immune activation caused by microbial translocation has been considered to be a major driver of HIV infection progression. The dysbiosis of gut microbiota has been demonstrated in HIV infection, but the interplay between gut microbiota and its metabolites in the pathogenesis of HIV is seldom reported. Methods We conducted a case-controlled study including 41 AIDS patients, 39 pre-AIDS patients and 34 healthy controls. Both AIDS group and pre-AIDS group were divided according to clinical manifestations and CD4 + T cell count. We collected stool samples for 16S rDNA sequencing and untargeted metabolomics analysis, and examined immune activation and microbial translocation for blood samples. Results The pre-AIDS and AIDS groups had higher levels of microbial translocation and immune activation. There were significant differences in gut microbiota and metabolites at different stages of HIV infection. Higher abundances of pathogenic bacteria or opportunistic pathogen, as well as lower abundances of butyrate-producing bacteria and bacteria with anti-inflammatory potential were associated with HIV severity. The metabolism of tryptophan was disordered after HIV infection. Lower level of anti-inflammatory metabolites and phosphonoacetate, and higher level of phenylethylamine and polyamines were observed in HIV infection. And microbial metabolic pathways related to altered metabolites differed. Moreover, disrupted metabolites contributed by altered microbiota were found to be correlated to microbial translocation and immune activation. Conclusions Metabolites caused by dysbiosis of gut microbiota and related metabolic function are correlated to immune activation and microbial translocation, suggesting that the effect of microbiota on metabolites is related to intestinal barrier disruption in HIV infection.
Collapse
Affiliation(s)
- Yu Zhang
- Guangxi Key Laboratory of AIDS Prevention and Treatment and Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Nanning, China
- School of Public Health, Guangxi Medical University, Nanning, China
- The Tenth Affiliated Hospital of Guangxi Medical University, Qinzhou, China
| | - Zhiman Xie
- Department of Infectious Diseases, The Fourth People's Hospital of Nanning, Nanning, China
| | - Jie Zhou
- Guangxi Key Laboratory of AIDS Prevention and Treatment and Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Nanning, China
- School of Public Health, Guangxi Medical University, Nanning, China
| | - Yanjun Li
- Department of Infectious Diseases, The Fourth People's Hospital of Nanning, Nanning, China
| | - Chuanyi Ning
- Guangxi Key Laboratory of AIDS Prevention and Treatment and Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Nanning, China
| | - Qisi Su
- Department of Infectious Diseases, The Fourth People's Hospital of Nanning, Nanning, China
| | - Li Ye
- Guangxi Key Laboratory of AIDS Prevention and Treatment and Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Nanning, China
- School of Public Health, Guangxi Medical University, Nanning, China
| | - Sufang Ai
- Department of Infectious Diseases, The Fourth People's Hospital of Nanning, Nanning, China
| | - Jingzhen Lai
- Guangxi Key Laboratory of AIDS Prevention and Treatment and Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Nanning, China
- Life Science Institute, Guangxi Medical University, Nanning, China
| | - Peijiang Pan
- Guangxi Key Laboratory of AIDS Prevention and Treatment and Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Nanning, China
- Life Science Institute, Guangxi Medical University, Nanning, China
| | - Ningmei Liu
- Department of Infectious Diseases, The Fourth People's Hospital of Nanning, Nanning, China
| | - Yanyan Liao
- Guangxi Key Laboratory of AIDS Prevention and Treatment and Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Nanning, China
- Life Science Institute, Guangxi Medical University, Nanning, China
| | - Qijian Su
- The Tenth Affiliated Hospital of Guangxi Medical University, Qinzhou, China
| | - Zhuoxin Li
- Guangxi Key Laboratory of AIDS Prevention and Treatment and Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Nanning, China
- School of Public Health, Guangxi Medical University, Nanning, China
| | - Hao Liang
- Guangxi Key Laboratory of AIDS Prevention and Treatment and Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Nanning, China
- School of Public Health, Guangxi Medical University, Nanning, China
- Life Science Institute, Guangxi Medical University, Nanning, China
| | - Ping Cui
- Guangxi Key Laboratory of AIDS Prevention and Treatment and Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Nanning, China
- Life Science Institute, Guangxi Medical University, Nanning, China
| | - Jiegang Huang
- Guangxi Key Laboratory of AIDS Prevention and Treatment and Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Nanning, China
- School of Public Health, Guangxi Medical University, Nanning, China
| |
Collapse
|
16
|
Paroli M, Caccavale R, Fiorillo MT, Spadea L, Gumina S, Candela V, Paroli MP. The Double Game Played by Th17 Cells in Infection: Host Defense and Immunopathology. Pathogens 2022; 11:pathogens11121547. [PMID: 36558881 PMCID: PMC9781511 DOI: 10.3390/pathogens11121547] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
T-helper 17 (Th17) cells represent a subpopulation of CD4+ T lymphocytes that play an essential role in defense against pathogens. Th17 cells are distinguished from Th1 and Th2 cells by their ability to produce members of the interleukin-17 (IL-17) family, namely IL-17A and IL-17F. IL-17 in turn induces several target cells to synthesize and release cytokines, chemokines, and metalloproteinases, thereby amplifying the inflammatory cascade. Th17 cells reside predominantly in the lamina propria of the mucosa. Their main physiological function is to maintain the integrity of the mucosal barrier against the aggression of infectious agents. However, in an appropriate inflammatory microenvironment, Th17 cells can transform into immunopathogenic cells, giving rise to inflammatory and autoimmune diseases. This review aims to analyze the complex mechanisms through which the interaction between Th17 and pathogens can be on the one hand favorable to the host by protecting it from infectious agents, and on the other hand harmful, potentially generating autoimmune reactions and tissue damage.
Collapse
Affiliation(s)
- Marino Paroli
- Division of Clinical Immunology, Department of Clinical, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy
- Correspondence:
| | - Rosalba Caccavale
- Division of Clinical Immunology, Department of Clinical, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Maria Teresa Fiorillo
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy
| | - Luca Spadea
- Post Graduate School of Public Health, University of Siena, 53100 Siena, Italy
| | - Stefano Gumina
- Department of Anatomy, Histology, Legal Medicine and Orthopedics, Sapienza University of Rome, 00185 Rome, Italy
| | - Vittorio Candela
- Department of Anatomy, Histology, Legal Medicine and Orthopedics, Sapienza University of Rome, 00185 Rome, Italy
| | - Maria Pia Paroli
- Eye Clinic, Department of Sense Organs, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
17
|
Fulcher JA, Li F, Tobin NH, Zabih S, Elliott J, Clark JL, D'Aquila R, Mustanski B, Kipke MD, Shoptaw S, Gorbach PM, Aldrovandi GM. Gut dysbiosis and inflammatory blood markers precede HIV with limited changes after early seroconversion. EBioMedicine 2022; 84:104286. [PMID: 36179550 PMCID: PMC9520213 DOI: 10.1016/j.ebiom.2022.104286] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Alterations in the gut microbiome have been associated with HIV infection, but the relative impact of HIV versus other factors on the gut microbiome has been difficult to determine in cross-sectional studies. METHODS To address this, we examined the gut microbiome, serum metabolome, and cytokines longitudinally within 27 individuals before and during acute HIV using samples collected from several ongoing cohort studies. Matched control participants (n=28) from the same cohort studies without HIV but at similar behavioral risk were used for comparison. FINDINGS We identified few changes in the microbiome during acute HIV infection, but did find alterations in serum metabolites involving secondary bile acid (lithocholate sulfate, glycocholenate sulfate) and amino acid metabolism (3-methyl-2-oxovalerate, serine, cysteine, N-acetylputrescine). Greater microbiome differences, including decreased Bacteroides spp and increased Megasphaera elsdenii, were seen when comparing pre-HIV infection visits to matched at-risk controls. Those who acquired HIV also had elevated inflammatory cytokines (TNF-α, B cell activating factor, IL-8) and bioactive lipids (palmitoyl-sphingosine-phosphoethanolamide and glycerophosphoinositol) prior to HIV acquisition compared to matched controls. INTERPRETATION Longitudinal sampling identified pre-existing microbiome differences in participants with acute HIV compared to matched control participants observed over the same period. These data highlight the importance of increasing understanding of the role of the microbiome in HIV susceptibility. FUNDING This work was supported by NIH/NIAID (K08AI124979; P30AI117943), NIH/NIDA (U01DA036267; U01DA036939; U01DA036926; U24DA044554), and NIH/NIMH (P30MH058107; R34MH105272).
Collapse
Affiliation(s)
- Jennifer A Fulcher
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA.
| | - Fan Li
- Division of Infectious Diseases, Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Nicole H Tobin
- Division of Infectious Diseases, Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Sara Zabih
- Division of Infectious Diseases, Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Julie Elliott
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Jesse L Clark
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Richard D'Aquila
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Brian Mustanski
- Department of Medical Social Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Institute for Sexual and Gender Minority Health and Wellbeing, Northwestern University, Chicago, IL 60611, USA
| | - Michele D Kipke
- Children's Hospital Los Angeles, Los Angeles, CA 90027, USA; Department of Pediatrics, Keck School of Medicine at the University of Southern California, Los Angeles, CA 90027, USA
| | - Steven Shoptaw
- Department of Family Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Pamina M Gorbach
- Department of Epidemiology, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Grace M Aldrovandi
- Division of Infectious Diseases, Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
18
|
Presence of Natural Killer B Cells in Simian Immunodeficiency Virus-Infected Colon That Have Properties and Functions Similar to Those of Natural Killer Cells and B Cells but Are a Distinct Cell Population. J Virol 2022; 96:e0023522. [PMID: 35311549 PMCID: PMC9006943 DOI: 10.1128/jvi.00235-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
There is low-level but significant mucosal inflammation in the gastrointestinal tract secondary to human immunodeficiency virus (HIV) infection that has long-term consequences for the infected host. This inflammation most likely originates from the immune response that appears as a consequence of HIV. Here, we show in an animal model of HIV that the chronically SIV-infected gut contains cytotoxic natural killer B cells that produce inflammatory cytokines and proliferate during infection.
Collapse
|
19
|
Mijiti Z, Song JW, Jiao YM, Gao L, Ma HM, Guo XY, Zhang Q, Guo YT, Ding JB, Zhang SB, Wang FS. α4β7 high CD4 + T cells are prone to be infected by HIV-1 and associated with HIV-1 disease progression. HIV Med 2022; 23 Suppl 1:106-114. [PMID: 35293101 DOI: 10.1111/hiv.13254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
INTRODUCTION To investigate the characteristics of β7high CD4+ T cells during HIV-1 infection and the relationship between β7high CD4+ T cells and HIV-1 disease progress. METHODS This study enrolled 124 HIV-1-infected patients, including 80 treatment naïve patients (TNs), 41 patients who underwent antiretroviral therapy (ARTs), and three long-term no progression patients (LTNPs). Nineteen matched healthy subjects were included as controls (HCs). The characteristics and frequency of β7high CD4+ T cells were analyzed using flow cytometry. An in vitro culture experiment was used to study HIV-1 infection of β7high CD4+ T cells. Real-time polymerase chain reaction was performed to quantify HIV-1 DNA and CA-RNA levels. RESULTS The frequency of β7high CD4+ T in the peripheral blood was significantly decreased and negatively correlated with disease progression during chronic HIV-1 infection. A large proportion of β7high CD4+ T cells showed Th17 phenotype. Furthermore, β7high CD4+ T cells were preferentially infected by HIV-1 in vitro and in vivo. There were no significant differences of HIV-1 DNA, and CA-RNA levels between β7high CD4+ T and β7low CD4+ T subsets in HIV-1 infected individuals after antiviral treatment. CONCLUSION The β7high CD4+ T cells were negatively correlated with disease progression during chronic HIV-1 infection. β7high CD4+ T cells are susceptible to infection with HIV-1 and HIV-1 latent cells.
Collapse
Affiliation(s)
- Zilaiguli Mijiti
- Department of Microbiology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| | - Jin-Wen Song
- Department of Infectious Diseases, the Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Yan-Mei Jiao
- Department of Infectious Diseases, the Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Lin Gao
- Department of Infectious Diseases, the Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China.,Department of Microbiology & Infectious Disease Center, School of Basic Medical Science, Peking University Health Science Center, Beijing, China
| | - Hai-Mei Ma
- Department of Microbiology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| | - Xiao-Yan Guo
- Department of Infectious Diseases, the Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Qing Zhang
- Department of Infectious Diseases, the Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Yun-Tian Guo
- Department of Infectious Diseases, the Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Jian-Bing Ding
- Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China.,State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Shi-Bin Zhang
- Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Fu-Sheng Wang
- Department of Microbiology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China.,Department of Infectious Diseases, the Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China.,Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| |
Collapse
|
20
|
Renault C, Veyrenche N, Mennechet F, Bedin AS, Routy JP, Van de Perre P, Reynes J, Tuaillon E. Th17 CD4+ T-Cell as a Preferential Target for HIV Reservoirs. Front Immunol 2022; 13:822576. [PMID: 35197986 PMCID: PMC8858966 DOI: 10.3389/fimmu.2022.822576] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/14/2022] [Indexed: 12/11/2022] Open
Abstract
Among CD4+ T-cells, T helper 17 (Th17) cells play a sentinel role in the defense against bacterial/fungal pathogens at mucosal barriers. However, Th17 cells are also highly susceptible to HIV-1 infection and are rapidly depleted from gut mucosal sites, causing an imbalance of the Th17/Treg ratio and impairing cytokines production. Consequently, damage to the gut mucosal barrier leads to an enhanced microbial translocation and systemic inflammation, a hallmark of HIV-1 disease progression. Th17 cells’ expression of mucosal homing receptors (CCR6 and α4β7), as well as HIV receptors and co-receptors (CD4, α4β7, CCR5, and CXCR4), contributes to susceptibility to HIV infection. The up-regulation of numerous intracellular factors facilitating HIV production, alongside the downregulation of factors inhibiting HIV, helps to explain the frequency of HIV DNA within Th17 cells. Th17 cells harbor long-lived viral reservoirs in people living with HIV (PLWH) receiving antiretroviral therapy (ART). Moreover, cell longevity and the proliferation of a fraction of Th17 CD4 T cells allow HIV reservoirs to be maintained in ART patients.
Collapse
Affiliation(s)
- Constance Renault
- Pathogenesis and Control of Chronic and Emerging Infections, INSERM U1058, University of Montpellier, Etablissement Français du Sang, Antilles University, Montpellier, France
| | - Nicolas Veyrenche
- Pathogenesis and Control of Chronic and Emerging Infections, INSERM U1058, University of Montpellier, Etablissement Français du Sang, Antilles University, Montpellier, France
- Virology Laboratory, CHU de Montpellier, Montpellier, France
| | - Franck Mennechet
- Pathogenesis and Control of Chronic and Emerging Infections, INSERM U1058, University of Montpellier, Etablissement Français du Sang, Antilles University, Montpellier, France
| | - Anne-Sophie Bedin
- Pathogenesis and Control of Chronic and Emerging Infections, INSERM U1058, University of Montpellier, Etablissement Français du Sang, Antilles University, Montpellier, France
| | - Jean-Pierre Routy
- Chronic Viral Illness Service and Research Institute and Division of Hematology, McGill University Health Centre, Montreal, QC, Canada
| | - Philippe Van de Perre
- Pathogenesis and Control of Chronic and Emerging Infections, INSERM U1058, University of Montpellier, Etablissement Français du Sang, Antilles University, Montpellier, France
- Virology Laboratory, CHU de Montpellier, Montpellier, France
| | - Jacques Reynes
- Virology Laboratory, CHU de Montpellier, Montpellier, France
- IRD UMI 233, INSERM U1175, University of Montpellier, Montpellier, France
- Infectious Diseases Department, CHU de Montpellier, Montpellier, France
| | - Edouard Tuaillon
- Pathogenesis and Control of Chronic and Emerging Infections, INSERM U1058, University of Montpellier, Etablissement Français du Sang, Antilles University, Montpellier, France
- Virology Laboratory, CHU de Montpellier, Montpellier, France
- *Correspondence: Edouard Tuaillon,
| |
Collapse
|
21
|
Yan J, Ouyang J, Isnard S, Zhou X, Harypursat V, Routy JP, Chen Y. Alcohol Use and Abuse Conspires With HIV Infection to Aggravate Intestinal Dysbiosis and Increase Microbial Translocation in People Living With HIV: A Review. Front Immunol 2021; 12:741658. [PMID: 34975838 PMCID: PMC8718428 DOI: 10.3389/fimmu.2021.741658] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022] Open
Abstract
The intestinal microbiome is an essential so-called human "organ", vital for the induction of innate immunity, for metabolizing nutrients, and for maintenance of the structural integrity of the intestinal barrier. HIV infection adversely influences the richness and diversity of the intestinal microbiome, resulting in structural and functional impairment of the intestinal barrier and an increased intestinal permeability. Pathogens and metabolites may thus cross the "leaky" intestinal barrier and enter the systemic circulation, which is a significant factor accounting for the persistent underlying chronic inflammatory state present in people living with HIV (PLWH). Additionally, alcohol use and abuse has been found to be prevalent in PLWH and has been strongly associated with the incidence and progression of HIV/AIDS. Recently, converging evidence has indicated that the mechanism underlying this phenomenon is related to intestinal microbiome and barrier function through numerous pathways. Alcohol acts as a "partner" with HIV in disrupting microbiome ecology, and thus impairing of the intestinal barrier. Optimizing the microbiome and restoring the integrity of the intestinal barrier is likely to be an effective adjunctive therapeutic strategy for PLWH. We herein critically review the interplay among HIV, alcohol, and the gut barrier, thus setting the scene with regards to development of effective strategies to counteract the dysregulated gut microbiome and the reduction of microbial translocation and inflammation in PLWH.
Collapse
Affiliation(s)
- Jiangyu Yan
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
| | - Jing Ouyang
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
| | - Stéphane Isnard
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montréal, QC, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montréal, QC, Canada
- Canadian HIV Trials Network (CTN), Canadian Institutes of Health Research (CIHR), Vancouver, BC, Canada
| | - Xin Zhou
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
| | - Vijay Harypursat
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
| | - Jean-Pierre Routy
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montréal, QC, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montréal, QC, Canada
- Division of Hematology, McGill University Health Centre, Montréal, QC, Canada
| | - Yaokai Chen
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
| |
Collapse
|
22
|
Th17 cell master transcription factor RORC2 regulates HIV-1 gene expression and viral outgrowth. Proc Natl Acad Sci U S A 2021; 118:2105927118. [PMID: 34819367 PMCID: PMC8640723 DOI: 10.1073/pnas.2105927118] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2021] [Indexed: 11/21/2022] Open
Abstract
HIV-1 infects CD4 T cells, and, among these, T helper 17 (Th17) cells are known to be particularly permissive for virus replication. The infection of Th17 cells is critical for AIDS pathogenesis and viral persistence. It is, however, not clear why these cells are highly permissive to HIV-1. We found that Th17 cell permissiveness depends on the expression of the hormone receptor RORC2, which is the master transcriptional regulator of Th17 cell differentiation. We identify RORC2 as a cell-specific host-dependency factor that can be targeted by small molecules. Our results suggest that RORC2 may be a cell-specific target to mitigate the loss of Th17 cells as a consequence of their preferential HIV-1 infection. Among CD4+ T cells, T helper 17 (Th17) cells are particularly susceptible to HIV-1 infection and are depleted from mucosal sites, which causes damage to the gut barrier, resulting in a microbial translocation-induced systemic inflammation, a hallmark of disease progression. Furthermore, a proportion of latently infected Th17 cells persist long term in the gastrointestinal lymphatic tract where a low-level HIV-1 transcription is observed. This residual viremia contributes to chronic immune activation. Thus, Th17 cells are key players in HIV pathogenesis and viral persistence. It is, however, unclear why these cells are highly susceptible to HIV-1 infection. Th17 cell differentiation depends on the expression of the master transcriptional regulator RORC2, a retinoic acid-related nuclear hormone receptor that regulates specific transcriptional programs by binding to promoter/enhancer DNA. Here, we report that RORC2 is a key host cofactor for HIV replication in Th17 cells. We found that specific inhibitors that bind to the RORC2 ligand-binding domain reduced HIV replication in CD4+ T cells. The depletion of RORC2 inhibited HIV-1 infection, whereas its overexpression enhanced it. RORC2 was also found to promote HIV-1 gene expression by binding to the nuclear receptor responsive element in the HIV-1 long terminal repeats (LTR). In treated HIV-1 patients, RORC2+ CD4 T cells contained more proviral DNA than RORC2− cells. Pharmacological inhibition of RORC2 potently reduced HIV-1 outgrowth in CD4+ T cells from antiretroviral-treated patients. Altogether, these results provide an explanation as to why Th17 cells are highly susceptible to HIV-1 infection and suggest that RORC2 may be a cell-specific target for HIV-1 therapy.
Collapse
|
23
|
Gabriel EM, Wiche Salinas TR, Gosselin A, Larouche-Anctil E, Durand M, Landay AL, El-Far M, Tremblay CL, Routy JP, Ancuta P. Overt IL-32 isoform expression at intestinal level during HIV-1 infection is negatively regulated by IL-17A. AIDS 2021; 35:1881-1894. [PMID: 34101628 PMCID: PMC8416712 DOI: 10.1097/qad.0000000000002972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Untreated HIV infection was previously associated with IL-32 overexpression in gut/intestinal epithelial cells (IEC). Here, we explored IL-32 isoform expression in the colon of people with HIV (PWH) receiving antiretroviral therapy (ART) and IL-32 triggers/modulators in IEC. DESIGN Sigmoid colon biopsies (SCB) and blood were collected from ART-treated PWH (HIV + ART; n = 17; mean age: 56 years; CD4+ cell counts: 679 cells/μl; time on ART: 72 months) and age-matched HIV-uninfected controls (HIVneg; n = 5). The IEC line HT-29 was used for mechanistic studies. METHODS Cells from SCB and blood were isolated by enzymatic digestion and/or gradient centrifugation. HT-29 cells were exposed to TLR1-9 agonists, TNF-α, IL-17A and HIV. IL-32α/β/γ/D/ε/θ and IL-17A mRNA levels were quantified by real-time RT-PCR. IL-32 protein levels were quantified by ELISA. RESULTS IL-32β/γ/ε isoform transcripts were detectable in the blood and SCB, with IL-32β mRNA levels being predominantly expressed in both compartments and at significantly higher levels in HIV + ART compared to HIVneg. IL-17A transcripts were only detectable in SCB, with increased IL-17A levels in HIVneg compared with HIV + ART and negatively correlated with IL-32β mRNA levels. IL-32β/γ/ε isoform mRNA were detected in HT-29 cells upon exposure to TNF-α, Poly I:C (TLR3 agonist), Flagellin (TLR-5 agonist) and HIV. IL-17A significantly decreased both IL-32 β/γ/ε mRNA and cell-associated IL-32 protein levels induced upon TNF-α and Poly I:C triggering. CONCLUSION We document IL-32 isoforms abundant in the colon of ART-treated PWH and reveal the capacity of the Th17 hallmark cytokine IL-17A to attenuate IL-32 overexpression in a model of inflamed IEC.
Collapse
Affiliation(s)
- Etiene Moreira Gabriel
- CHUM Research Centre, Montréal, Québec, Canada
- Department de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, Québec, Canada
| | - Tomas Raul Wiche Salinas
- CHUM Research Centre, Montréal, Québec, Canada
- Department de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, Québec, Canada
| | | | | | - Madeleine Durand
- CHUM Research Centre, Montréal, Québec, Canada
- Department de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, Québec, Canada
| | | | | | - Cécile L. Tremblay
- CHUM Research Centre, Montréal, Québec, Canada
- Department de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, Québec, Canada
| | - Jean-Pierre Routy
- McGill University Health Centre, Montreal, Québec, Canada
- Chronic Viral Illness Service and Hematology Department, McGill University Health Centre, Montréal, Québec, Canada
| | - Petronela Ancuta
- CHUM Research Centre, Montréal, Québec, Canada
- Department de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
24
|
Tanes C, Walker EM, Slisarenko N, Gerrets GL, Grasperge BF, Qin X, Jazwinski SM, Bushman FD, Bittinger K, Rout N. Gut Microbiome Changes Associated with Epithelial Barrier Damage and Systemic Inflammation during Antiretroviral Therapy of Chronic SIV Infection. Viruses 2021; 13:1567. [PMID: 34452432 PMCID: PMC8402875 DOI: 10.3390/v13081567] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/01/2021] [Accepted: 08/05/2021] [Indexed: 12/26/2022] Open
Abstract
Gut dysbiosis is a common feature associated with the chronic inflammation of HIV infection. Toward understanding the interplay of chronic treated HIV infection, dysbiosis, and systemic inflammation, we investigated longitudinal fecal microbiome changes and plasma inflammatory markers in the nonhuman primate model. Following simian immunodeficiency virus (SIV) infection in rhesus macaques, significant changes were observed in several members of the phylum Firmicutes along with an increase in Bacteroidetes. Viral suppression with antiretroviral therapy (ART) resulted in an early but partial recovery of compositional changes and butyrate producing genes in the gut microbiome. Over the course of chronic SIV infection and long-term ART, however, the specific loss of Faecalibacterium prausnitzii and Treponema succinifaciens significantly correlated with an increase in plasma inflammatory cytokines including IL-6, G-CSF, I-TAC, and MIG. Further, the loss of T. succinifaciens correlated with an increase in circulating biomarkers of gut epithelial barrier damage (IFABP) and microbial translocation (LBP and sCD14). As F. prausnitzii and T. succinifaciens are major short-chain fatty acid producing bacteria, their sustained loss during chronic SV-ART may contribute to gut inflammation and metabolic alterations despite effective long-term control of viremia. A better understanding of the correlations between the anti-inflammatory bacterial community and healthy gut barrier functions in the setting of long-term ART may have a major impact on the clinical management of inflammatory comorbidities in HIV-infected individuals.
Collapse
Affiliation(s)
- Ceylan Tanes
- Division of Gastroenterology, Hepatology and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (C.T.); (K.B.)
| | - Edith M. Walker
- Division of Microbiology, Tulane National Primate Research Center, Tulane University, Covington, LA 70433, USA; (E.M.W.); (N.S.); (G.L.G.)
| | - Nadia Slisarenko
- Division of Microbiology, Tulane National Primate Research Center, Tulane University, Covington, LA 70433, USA; (E.M.W.); (N.S.); (G.L.G.)
| | - Giovanni L. Gerrets
- Division of Microbiology, Tulane National Primate Research Center, Tulane University, Covington, LA 70433, USA; (E.M.W.); (N.S.); (G.L.G.)
| | - Brooke F. Grasperge
- Division of Veterinary Medicine, Tulane National Primate Research Center, Tulane University, Covington, LA 70433, USA;
| | - Xuebin Qin
- Division of Comparative Pathology, Tulane National Primate Research Center, Tulane University, Covington, LA 70433, USA;
| | - S. Michal Jazwinski
- Tulane Center for Aging, Tulane University School of Medicine, New Orleans, LA 70112, USA;
| | - Frederic D. Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Kyle Bittinger
- Division of Gastroenterology, Hepatology and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (C.T.); (K.B.)
| | - Namita Rout
- Division of Microbiology, Tulane National Primate Research Center, Tulane University, Covington, LA 70433, USA; (E.M.W.); (N.S.); (G.L.G.)
- Tulane Center for Aging, Tulane University School of Medicine, New Orleans, LA 70112, USA;
| |
Collapse
|
25
|
Lazzaro A, Innocenti GP, Santinelli L, Pinacchio C, De Girolamo G, Vassalini P, Fanello G, Mastroianni CM, Ceccarelli G, d’Ettorre G. Antiretroviral Therapy Dampens Mucosal CD4 + T Lamina Propria Lymphocytes Immune Activation in Long-Term Treated People Living with HIV-1. Microorganisms 2021; 9:microorganisms9081624. [PMID: 34442703 PMCID: PMC8402205 DOI: 10.3390/microorganisms9081624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/29/2021] [Accepted: 07/21/2021] [Indexed: 01/08/2023] Open
Abstract
HIV infection is characterized by a severe deterioration of an immune cell-mediated response due to a progressive loss of CD4+ T cells from gastrointestinal tract, with a preferential loss of IL-17 producing Th cells (Th17), a specific CD4+ T cells subset specialized in maintaining mucosal integrity and antimicrobial inflammatory responses. To address the effectiveness of antiretroviral therapy (ART) in reducing chronic immunological dysfunction and immune activation of intestinal mucosa, we conducted a cross-sectional observational study comparing total IFN-γ-expressing (Th1) and IL-17-expressing (Th17) frequencies of CD4+ T lamina propria lymphocytes (LPLs) and their immune activation status between 11 male ART-naïve and 11 male long-term ART-treated people living with HIV-1 (PLWH) who underwent colonoscopy and retrograde ileoscopy for biopsies collection. Flow cytometry for surface and intracellular staining was performed. Long-term ART-treated PLWH showed lower levels of CD38+ and/or HLA-DR+ LPLs compared to ART-naïve PLWH. Frequencies of Th1 and Th17 LPLs did not differ between the two groups. Despite ART failing to restore the Th1 and Th17 levels within the gut mucosa, it is effective in increasing overall CD4+ T LPLs frequencies and reducing mucosal immune activation.
Collapse
Affiliation(s)
- Alessandro Lazzaro
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Policlinico Umberto I of Rome, 00185 Roma, Italy; (L.S.); (C.P.); (G.D.G.); (P.V.); (C.M.M.); (G.C.); (G.d.)
- Correspondence: (A.L.); (G.P.I.)
| | - Giuseppe Pietro Innocenti
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Policlinico Umberto I of Rome, 00185 Roma, Italy; (L.S.); (C.P.); (G.D.G.); (P.V.); (C.M.M.); (G.C.); (G.d.)
- Correspondence: (A.L.); (G.P.I.)
| | - Letizia Santinelli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Policlinico Umberto I of Rome, 00185 Roma, Italy; (L.S.); (C.P.); (G.D.G.); (P.V.); (C.M.M.); (G.C.); (G.d.)
| | - Claudia Pinacchio
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Policlinico Umberto I of Rome, 00185 Roma, Italy; (L.S.); (C.P.); (G.D.G.); (P.V.); (C.M.M.); (G.C.); (G.d.)
| | - Gabriella De Girolamo
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Policlinico Umberto I of Rome, 00185 Roma, Italy; (L.S.); (C.P.); (G.D.G.); (P.V.); (C.M.M.); (G.C.); (G.d.)
| | - Paolo Vassalini
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Policlinico Umberto I of Rome, 00185 Roma, Italy; (L.S.); (C.P.); (G.D.G.); (P.V.); (C.M.M.); (G.C.); (G.d.)
| | - Gianfranco Fanello
- Department of Emergency Surgery-Emergency Endoscopic Unit, Sapienza University of Rome, Policlinico Umberto I, 00185 Roma, Italy;
| | - Claudio Maria Mastroianni
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Policlinico Umberto I of Rome, 00185 Roma, Italy; (L.S.); (C.P.); (G.D.G.); (P.V.); (C.M.M.); (G.C.); (G.d.)
| | - Giancarlo Ceccarelli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Policlinico Umberto I of Rome, 00185 Roma, Italy; (L.S.); (C.P.); (G.D.G.); (P.V.); (C.M.M.); (G.C.); (G.d.)
| | - Gabriella d’Ettorre
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Policlinico Umberto I of Rome, 00185 Roma, Italy; (L.S.); (C.P.); (G.D.G.); (P.V.); (C.M.M.); (G.C.); (G.d.)
| |
Collapse
|
26
|
Mak G, Zaunders JJ, Bailey M, Seddiki N, Rogers G, Leong L, Phan TG, Kelleher AD, Koelsch KK, Boyd MA, Danta M. Preservation of Gastrointestinal Mucosal Barrier Function and Microbiome in Patients With Controlled HIV Infection. Front Immunol 2021; 12:688886. [PMID: 34135912 PMCID: PMC8203413 DOI: 10.3389/fimmu.2021.688886] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/04/2021] [Indexed: 01/02/2023] Open
Abstract
Background Despite successful ART in people living with HIV infection (PLHIV) they experience increased morbidity and mortality compared with HIV-negative controls. A dominant paradigm is that gut-associated lymphatic tissue (GALT) destruction at the time of primary HIV infection leads to loss of gut integrity, pathological microbial translocation across the compromised gastrointestinal barrier and, consequently, systemic inflammation. We aimed to identify and measure specific changes in the gastrointestinal barrier that might allow bacterial translocation, and their persistence despite initiation of antiretroviral therapy (ART). Method We conducted a cross-sectional study of the gastrointestinal (GIT) barrier in PLHIV and HIV-uninfected controls (HUC). The GIT barrier was assessed as follows: in vivo mucosal imaging using confocal endomicroscopy (CEM); the immunophenotype of GIT and circulating lymphocytes; the gut microbiome; and plasma inflammation markers Tumour Necrosis Factor-α (TNF-α) and Interleukin-6 (IL-6); and the microbial translocation marker sCD14. Results A cohort of PLHIV who initiated ART early, during primary HIV infection (PHI), n=5), and late (chronic HIV infection (CHI), n=7) infection were evaluated for the differential effects of the stage of ART initiation on the GIT barrier compared with HUC (n=6). We observed a significant decrease in the CD4 T-cell count of CHI patients in the left colon (p=0.03) and a trend to a decrease in the terminal ileum (p=0.13). We did not find evidence of increased epithelial permeability by CEM. No significant differences were found in microbial translocation or inflammatory markers in plasma. In gut biopsies, CD8 T-cells, including resident intraepithelial CD103+ cells, did not show any significant elevation of activation in PLHIV, compared to HUC. The majority of residual circulating activated CD38+HLA-DR+ CD8 T-cells did not exhibit gut-homing integrins α4ß7, suggesting that they did not originate in GALT. A significant reduction in the evenness of species distribution in the microbiome of CHI subjects (p=0.016) was observed, with significantly higher relative abundance of the genus Spirochaeta in PHI subjects (p=0.042). Conclusion These data suggest that substantial, non-specific increases in epithelial permeability may not be the most important mechanism of HIV-associated immune activation in well-controlled HIV-positive patients on antiretroviral therapy. Changes in gut microbiota warrant further study.
Collapse
Affiliation(s)
- Gerald Mak
- St. Vincent's Clinical School, UNSW, Darlinghurst, NSW, Australia
| | - John J Zaunders
- Centre for Applied Medical Research, St Vincent's Hospital, Sydney, NSW, Australia
| | | | - Nabila Seddiki
- IDMIT Department/IBFJ, Immunology of Viral Infections and Autoimmune Diseases (IMVA), INSERM U1184, CEA, Université Paris Sud, Paris, France
| | - Geraint Rogers
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia.,Faculty of Science, Flinders University, Adelaide, SA, Australia
| | - Lex Leong
- Microbiology and Infectious Diseases, South Australia (SA) Pathology, Adelaide, SA, Australia
| | - Tri Giang Phan
- St. Vincent's Clinical School, UNSW, Darlinghurst, NSW, Australia.,Immunology Division Garvan Institute of Medical Research, Sydney, NSW, Australia
| | | | | | - Mark A Boyd
- Kirby Institute, UNSW Sydney, Sydney, NSW, Australia.,South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia.,Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Mark Danta
- St. Vincent's Clinical School, UNSW, Darlinghurst, NSW, Australia.,Department of Gastroenterology, St. Vincent's Hospital, Sydney, NSW, Australia
| |
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW Systemic inflammation increases as a consequence of aging (inflammaging) and contributes to age-related morbidities. Inflammation in people living with HIV is elevated compared with the general population even after prolonged suppression of viremia with anti-retroviral therapy. Mechanisms that contribute to inflammation during aging and in treated HIV disease are potentially interactive, leading to an exaggerated inflammatory phenotype in people with HIV. RECENT FINDINGS Recent studies highlight roles for anti-retroviral therapy, co-infections, immune system alterations, and microbiome perturbations as important contributors to HIV-associated inflammation. These factors likely contribute to increased risk of age-related morbidities in people living with HIV. Understanding mechanisms that exaggerate the inflammaging process in people with HIV may lead to improved intervention strategies, ultimately, extending both lifespan and healthspan.
Collapse
|
28
|
O’Neil TR, Hu K, Truong NR, Arshad S, Shacklett BL, Cunningham AL, Nasr N. The Role of Tissue Resident Memory CD4 T Cells in Herpes Simplex Viral and HIV Infection. Viruses 2021; 13:359. [PMID: 33668777 PMCID: PMC7996247 DOI: 10.3390/v13030359] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/05/2021] [Accepted: 02/22/2021] [Indexed: 12/15/2022] Open
Abstract
Tissue-resident memory T cells (TRM) were first described in 2009. While initially the major focus was on CD8+ TRM, there has recently been increased interest in defining the phenotype and the role of CD4+ TRM in diseases. Circulating CD4+ T cells seed CD4+ TRM, but there also appears to be an equilibrium between CD4+ TRM and blood CD4+ T cells. CD4+ TRM are more mobile than CD8+ TRM, usually localized deeper within the dermis/lamina propria and yet may exhibit synergy with CD8+ TRM in disease control. This has been demonstrated in herpes simplex infections in mice. In human recurrent herpes infections, both CD4+ and CD8+ TRM persisting between lesions may control asymptomatic shedding through interferon-gamma secretion, although this has been more clearly shown for CD8+ T cells. The exact role of the CD4+/CD8+ TRM axis in the trigeminal ganglia and/or cornea in controlling recurrent herpetic keratitis is unknown. In HIV, CD4+ TRM have now been shown to be a major target for productive and latent infection in the cervix. In HSV and HIV co-infections, CD4+ TRM persisting in the dermis support HIV replication. Further understanding of the role of CD4+ TRM and their induction by vaccines may help control sexual transmission by both viruses.
Collapse
Affiliation(s)
- Thomas R. O’Neil
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; (T.R.O.); (K.H.); (N.R.T.); (S.A.)
- Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Kevin Hu
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; (T.R.O.); (K.H.); (N.R.T.); (S.A.)
- Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Naomi R. Truong
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; (T.R.O.); (K.H.); (N.R.T.); (S.A.)
- Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Sana Arshad
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; (T.R.O.); (K.H.); (N.R.T.); (S.A.)
- Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Barbara L. Shacklett
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA 95616, USA;
| | - Anthony L. Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; (T.R.O.); (K.H.); (N.R.T.); (S.A.)
- Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Najla Nasr
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; (T.R.O.); (K.H.); (N.R.T.); (S.A.)
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2000, Australia
| |
Collapse
|
29
|
Th22 cells are efficiently recruited in the gut by CCL28 as an alternative to CCL20 but do not compensate for the loss of Th17 cells in treated HIV-1-infected individuals. Mucosal Immunol 2021; 14:219-228. [PMID: 32346082 DOI: 10.1038/s41385-020-0286-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 02/19/2020] [Accepted: 03/24/2020] [Indexed: 02/06/2023]
Abstract
Gut CD4+ T cells are incompletely restored in most HIV-1-infected individuals on antiretroviral therapy, notably Th17 cells, a key subset in mucosal homeostasis. By contrast, gut Th22 cells are usually restored at normal frequencies. Th22 cells display a CCR6+CCR10+ phenotype and could thus respond to CCL20- and CCL28-mediated chemotaxis, while Th17 cells, which express CCR6 but not CCR10, depend on CCL20. Herein, we found that CCL28 is normally expressed by duodenal enterocytes of treated HIV-1-infected individuals, while CCL20 expression is blunted. Ex vivo, we showed that Th22 cells contribute to the reduction of CCL20 production by enterocytes through an IL-22- and IL-18-dependent mechanism. Th22 cells preferentially migrate via CCL20- rather than CCL28-mediated chemotaxis when both chemokines are available in the microenvironment. However, when the CCL20/CCL28 ratio drops, as in treated HIV-1-infected individuals, Th22 cells can migrate via the CCR10-CCL28 axis, as an alternative to CCR6-CCL20. This could explain the better reconstitution of gut Th22 compared with Th17 cells on antiretroviral therapy. Lastly, we assessed the relationships between the frequencies of gut Th17 and Th22 cells and inflammatory markers related to microbial translocation, and showed that Th22 cells do not compensate for the loss of Th17 cells in treated HIV-1-infected individuals.
Collapse
|
30
|
Gómez-Mora E, Carrillo J, Urrea V, Rigau J, Alegre J, Cabrera C, Oltra E, Castro-Marrero J, Blanco J. Impact of Long-Term Cryopreservation on Blood Immune Cell Markers in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: Implications for Biomarker Discovery. Front Immunol 2020; 11:582330. [PMID: 33329554 PMCID: PMC7732598 DOI: 10.3389/fimmu.2020.582330] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/20/2020] [Indexed: 12/11/2022] Open
Abstract
Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a complex neuroimmune disorder characterized by numerous symptoms of unknown etiology. The ME/CFS immune markers reported so far have failed to generate a clinical consensus, perhaps partly due to the limitations of biospecimen biobanking. To address this issue, we performed a comparative analysis of the impact of long-term biobanking on previously identified immune markers and also explored additional potential immune markers linked to infection in ME/CFS. A correlation analysis of marker cryostability across immune cell subsets based on flow cytometry immunophenotyping of fresh blood and frozen PBMC samples collected from individuals with ME/CFS (n = 18) and matched healthy controls (n = 18) was performed. The functionality of biobanked samples was assessed on the basis of cytokine production assay after stimulation of frozen PBMCs. T cell markers defining Treg subsets and the expression of surface glycoprotein CD56 in T cells and the frequency of the effector CD8 T cells, together with CD57 expression in NK cells, appeared unaltered by biobanking. By contrast, NK cell markers CD25 and CD69 were notably increased, and NKp46 expression markedly reduced, by long-term cryopreservation and thawing. Further exploration of Treg and NK cell subsets failed to identify significant differences between ME/CFS patients and healthy controls in terms of biobanked PBMCs. Our findings show that some of the previously identified immune markers in T and NK cell subsets become unstable after cell biobanking, thus limiting their use in further immunophenotyping studies for ME/CFS. These data are potentially relevant for future multisite intervention studies and cooperative projects for biomarker discovery using ME/CFS biobanked samples. Further studies are needed to develop novel tools for the assessment of biomarker stability in cryopreserved immune cells from people with ME/CFS.
Collapse
Affiliation(s)
- Elisabet Gómez-Mora
- IrsiCaixa AIDS Research Institute, Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
| | - Jorge Carrillo
- IrsiCaixa AIDS Research Institute, Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
| | - Víctor Urrea
- IrsiCaixa AIDS Research Institute, Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
| | | | - José Alegre
- Division of Rheumatology, ME/CFS Clinical Unit, Vall d’Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Cecilia Cabrera
- IrsiCaixa AIDS Research Institute, Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
| | - Elisa Oltra
- School of Medicine, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
| | - Jesús Castro-Marrero
- Division of Rheumatology, ME/CFS Research Unit, Vall d’Hebron Hospital Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Julià Blanco
- IrsiCaixa AIDS Research Institute, Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
- Chair in Infectious Diseases and Immunity, Centre for Health and Social Care Research (CESS), Faculty of Medicine, University of Vic, Central University of Catalonia (UVic–UCC), Vic, Spain
| |
Collapse
|
31
|
Bloch M, John M, Smith D, Rasmussen TA, Wright E. Managing HIV-associated inflammation and ageing in the era of modern ART. HIV Med 2020; 21 Suppl 3:2-16. [PMID: 33022087 DOI: 10.1111/hiv.12952] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVES This paper aims to address the concerns around ongoing immune activation, inflammation, and resistance in those ageing with HIV that represent current challenges for clinicians. METHODS Presentations at a symposium addressing issues of ageing with HIV infection were reviewed and synthesised. RESULTS The changing natural history and demographics of human immunodeficiency virus (HIV)-infected individuals means new challenges in contemporary management. In the early years of the epidemic,management was focussed on acute, potentially life-threatening AIDS-related complications. From initial monotherapy with first-generation antiretroviral therapy (ART), the development of combination highly active ART (HAART) allowed HIV control but ART toxicities, treatment adherence and drug resistance emerged as major issues. Today, the availability of potent and tolerable ART has made viral suppression achievable in most people living with HIV (PLHIV), and clinicians are confronted with managing a chronic condition among an ageing population. The combination of diseases of ageing and the co-morbidities associated with HIV-infection, even when well controlled, results in a complex set of challenges for many older PLHIV. There is a growing appreciation that many non-AIDS-related co-morbidities are caused, at least in part, by persistent, low-grade immune activation, inflammation, and hypercoagulability, despite suppressive ART. CONCLUSIONS In order to further improve HIV management, it is important to understand the enduring effects of chronically suppressed HIV infection, the potential contribution of these factors to the ageing process, the possibility of drug resistance, and the impact of different treatment strategies, including early ART initiation.
Collapse
Affiliation(s)
- M Bloch
- Holdsworth House Medical Practice, Sydney, NSW, Australia.,Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - M John
- Kirby Institute, University of New South Wales, Sydney, NSW, Australia.,Royal Perth Hospital, Perth, WA, Australia.,Institute of Immunology and Infectious Disease, Perth, WA, Australia
| | - D Smith
- School of Public Health and Community Medicine, University of New South Wales, Sydney, NSW, Australia.,The Albion Centre, Sydney, NSW, Australia
| | - T A Rasmussen
- Doherty Institute for Infection and Immunity, Melbourne, Vic., Australia.,University of Melbourne, Melbourne, Vic., Australia
| | - E Wright
- The Alfred Hospital, Melbourne, Vic., Australia.,Centre for Inflammatory Diseases, Monash University, Melbourne, Vic., Australia.,The Burnett Institute, Melbourne, Vic., Australia
| |
Collapse
|
32
|
Kantamala D, Praparattanapan J, Taejaroenkul S, Srithep S, Yoosupap R, Supparatpinyo K. High microbial translocation limits gut immune recovery during short-term HAART in the area with high prevalence of foodborne infection. Cytokine 2020; 136:155257. [PMID: 32861144 DOI: 10.1016/j.cyto.2020.155257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/07/2020] [Accepted: 08/12/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Individuals residing in areas with high prevalence of foodborne infection could have a higher risk of gut microbial translocation which may affect monocyte activation, gut immune recovery and intestinal epithelial cell damage. We aimed to measure alterations in microbial translocation, monocyte activation, gut immune recovery, and intestinal epithelial cell damage in HAART treated individuals. METHODS A prospective, single-arm, longitudinal, cohort study was conducted among antiretroviral naïve HIV-1 infected Thai participants. All participants were in chronic stage of HIV-1 infection before starting HAART. Data and samples were collected prior to initiation of HAART and then after 24 and 48 weeks of HAART. Plasma biomarkers for microbial translocation (16S rDNA and LBP), monocyte activation (sCD14) and intestinal epithelial cell damage (I-FABP) were evaluated. We measured circulating gut-homing CD4+ T cells and circulating gut-homing Th17 cells to assess recoveries of gut immunity and gut immunity to microbial pathogens. RESULTS The kinetic studies showed no reduction in the levels of plasma 16S rDNA, sCD14 or I-FABP, significant decrease of plasma LBP level, and slow but significant increases in the frequencies of circulating gut-homing CD4+ T cells and circulating gut-homing Th17 cells during 48 weeks of HAART. Dividing participants into low and high microbial translocation (low and high MT) groups at baseline, both groups showed persistent plasma levels of 16S rDNA, sCD14 and I-FABP, and significantly decreased plasma level of LBP. The low MT group had significantly increased frequencies of circulating gut-homing CD4+ T cells and circulating gut-homing Th17 cells during 48 weeks of HAART but this was not observed in the high MT group. CONCLUSIONS We demonstrated persistent high microbial translocation, monocyte activation and intestinal epithelial cell damage with slow gut immune recovery during successful short-term HAART. Additionally, gut immune recovery was apparently limited by high microbial translocation. Our findings emphasize the adverse impact of high microbial translocation on gut immune recovery and the necessity of establishing a novel therapeutic intervention to inhibit microbial translocation.
Collapse
Affiliation(s)
- Doungnapa Kantamala
- Research Institute for Health Sciences, Chiang Mai University, P.O. Box 80 CMU, Chiang Mai 50202, Thailand.
| | - Jutarat Praparattanapan
- Division of Infectious Disease, Faculty of Medicine, Chiang Mai University, 110 intavaroros Road, Chiang Mai 50200, Thailand
| | - Sineenart Taejaroenkul
- Research Institute for Health Sciences, Chiang Mai University, P.O. Box 80 CMU, Chiang Mai 50202, Thailand
| | - Sarinee Srithep
- Research Institute for Health Sciences, Chiang Mai University, P.O. Box 80 CMU, Chiang Mai 50202, Thailand
| | - Rattikan Yoosupap
- Research Institute for Health Sciences, Chiang Mai University, P.O. Box 80 CMU, Chiang Mai 50202, Thailand
| | - Khuanchai Supparatpinyo
- Research Institute for Health Sciences, Chiang Mai University, P.O. Box 80 CMU, Chiang Mai 50202, Thailand; Division of Infectious Disease, Faculty of Medicine, Chiang Mai University, 110 intavaroros Road, Chiang Mai 50200, Thailand
| |
Collapse
|
33
|
Pinto DO, DeMarino C, Vo TT, Cowen M, Kim Y, Pleet ML, Barclay RA, Noren Hooten N, Evans MK, Heredia A, Batrakova EV, Iordanskiy S, Kashanchi F. Low-Level Ionizing Radiation Induces Selective Killing of HIV-1-Infected Cells with Reversal of Cytokine Induction Using mTOR Inhibitors. Viruses 2020; 12:E885. [PMID: 32823598 PMCID: PMC7472203 DOI: 10.3390/v12080885] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 12/12/2022] Open
Abstract
HIV-1 infects 39.5 million people worldwide, and cART is effective in preventing viral spread by reducing HIV-1 plasma viral loads to undetectable levels. However, viral reservoirs persist by mechanisms, including the inhibition of autophagy by HIV-1 proteins (i.e., Nef and Tat). HIV-1 reservoirs can be targeted by the "shock and kill" strategy, which utilizes latency-reversing agents (LRAs) to activate latent proviruses and immunotarget the virus-producing cells. Yet, limitations include reduced LRA permeability across anatomical barriers and immune hyper-activation. Ionizing radiation (IR) induces effective viral activation across anatomical barriers. Like other LRAs, IR may cause inflammation and modulate the secretion of extracellular vesicles (EVs). We and others have shown that cells may secrete cytokines and viral proteins in EVs and, therefore, LRAs may contribute to inflammatory EVs. In the present study, we mitigated the effects of IR-induced inflammatory EVs (i.e., TNF-α), through the use of mTOR inhibitors (mTORi; Rapamycin and INK128). Further, mTORi were found to enhance the selective killing of HIV-1-infected myeloid and T-cell reservoirs at the exclusion of uninfected cells, potentially via inhibition of viral transcription/translation and induction of autophagy. Collectively, the proposed regimen using cART, IR, and mTORi presents a novel approach allowing for the targeting of viral reservoirs, prevention of immune hyper-activation, and selectively killing latently infected HIV-1 cells.
Collapse
Affiliation(s)
- Daniel O. Pinto
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (D.O.P.); (C.D.); (T.T.V.); (M.C.); (Y.K.); (M.L.P.); (R.A.B.)
| | - Catherine DeMarino
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (D.O.P.); (C.D.); (T.T.V.); (M.C.); (Y.K.); (M.L.P.); (R.A.B.)
| | - Thy T. Vo
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (D.O.P.); (C.D.); (T.T.V.); (M.C.); (Y.K.); (M.L.P.); (R.A.B.)
| | - Maria Cowen
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (D.O.P.); (C.D.); (T.T.V.); (M.C.); (Y.K.); (M.L.P.); (R.A.B.)
| | - Yuriy Kim
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (D.O.P.); (C.D.); (T.T.V.); (M.C.); (Y.K.); (M.L.P.); (R.A.B.)
| | - Michelle L. Pleet
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (D.O.P.); (C.D.); (T.T.V.); (M.C.); (Y.K.); (M.L.P.); (R.A.B.)
| | - Robert A. Barclay
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (D.O.P.); (C.D.); (T.T.V.); (M.C.); (Y.K.); (M.L.P.); (R.A.B.)
| | - Nicole Noren Hooten
- Laboratory of Epidemiology and Population Science, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA; (N.N.H.); (M.K.E.)
| | - Michele K. Evans
- Laboratory of Epidemiology and Population Science, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA; (N.N.H.); (M.K.E.)
| | - Alonso Heredia
- Institute of Human Virology, University of Maryland School of Medicine, University of Maryland, Baltimore, MD 21201, USA;
| | - Elena V. Batrakova
- Department of Medicine, University of North Carolina HIV Cure Center; University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA;
| | - Sergey Iordanskiy
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA;
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (D.O.P.); (C.D.); (T.T.V.); (M.C.); (Y.K.); (M.L.P.); (R.A.B.)
| |
Collapse
|
34
|
Vinton CL, Starke CE, Ortiz AM, Lai SH, Flynn JK, Sortino O, Knox K, Sereti I, Brenchley JM. Biomarkers of Cellular Stress Do Not Associate with sCD14 in Progressive HIV and SIV Infections in Vivo. Pathog Immun 2020; 5:68-88. [PMID: 32426577 PMCID: PMC7224679 DOI: 10.20411/pai.v5i1.363] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/09/2020] [Indexed: 12/31/2022] Open
Abstract
Background Microbial translocation occurs after damage to the structural and/or immunological barrier of the gastrointestinal (GI) tract into circulation. Microbial components that trans-locate from the lumen of the GI tract directly stimulate the immune system and contribute to inflammation. When microbial translocation becomes chronic, the inflammation has detrimental consequences. Given that microbial translocation is an important phenomenon in many diseases, defining biomarkers that reliably reflect microbial translocation is critical. Measurement of systemic microbial products is difficult since: 1) robust assays to measure microbial antigens simultaneously are lacking; 2) confounding factors influence assays used to detect microbial products; and 3) biological clearance mechanisms limit their detection in circulation. Thus, host proteins produced in response to microbial stimulation are used as surrogates for microbial translocation; however, many of these proteins are also produced in response to host proteins expressed by dying cells. Methods We measured plasma levels of biomarkers associated with GI tract damage, immune responses to microbial products, and cell-death in people living with HIV before and after antiretroviral administration, and in macaque nonhuman primates before and after SIV infection. Results Proteins secreted during cellular stress (receptor for advanced glycation endproducts-RAGE and high motility group box 1-HMGB1), which can induce sCD14 production in vitro and in vivo, do not associate with elevated levels of biomarkers associated with microbial translocation in progressively HIV-infected individuals and SIV-infected NHPs. Conclusions Bystander cell death and generalized inflammation do not contribute to elevated levels of sCD14 observed in HIV/SIV-infected individuals.
Collapse
Affiliation(s)
- Carol L Vinton
- Barrier Immunity Section; Laboratory of Viral Diseases; NIAID, NIH; Bethesda, Maryland
| | - Carly E Starke
- Barrier Immunity Section; Laboratory of Viral Diseases; NIAID, NIH; Bethesda, Maryland
| | - Alexandra M Ortiz
- Barrier Immunity Section; Laboratory of Viral Diseases; NIAID, NIH; Bethesda, Maryland
| | - Stephen H Lai
- Barrier Immunity Section; Laboratory of Viral Diseases; NIAID, NIH; Bethesda, Maryland
| | - Jacob K Flynn
- Barrier Immunity Section; Laboratory of Viral Diseases; NIAID, NIH; Bethesda, Maryland
| | - Ornella Sortino
- HIV Pathogenesis Section; Laboratory of Immunoregulation; NIAID, NIH; Bethesda, Maryland
| | - Kenneth Knox
- Department of Medicine; University of Arizona; Tucson, Arizona
| | - Irini Sereti
- HIV Pathogenesis Section; Laboratory of Immunoregulation; NIAID, NIH; Bethesda, Maryland
| | - Jason M Brenchley
- Barrier Immunity Section; Laboratory of Viral Diseases; NIAID, NIH; Bethesda, Maryland
| |
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW People infected with HIV through injection drug use are more likely to experience progression to AIDS, death due to AIDS, and all-cause mortality even when controlling for access to care and antiretroviral therapy. While high-risk behavior and concurrent infections most certainly are contributors, chronic immune activation, downstream metabolic comorbidities may play an important role. RECENT FINDINGS Altered intestinal integrity plays a major role in HIV-related immune activation and microbial translocation markers are heightened in active heroin users. Additionally, greater injection frequency drives systemic inflammation and is associated with HIV viral rebound. Finally, important systemic inflammation markers have been linked with frailty and mortality in people who inject drugs with and without concurrent HIV infection. Heroin use may work synergistically with HIV infection to cause greater immune activation than either factor alone. Further research is needed to understand the impact on downstream metabolic comorbidities including cardiovascular disease. Medication-assisted treatment for opioid use disorder with methadone or buprenorphine may ameliorate some of this risk; however, there is presently limited research in humans, including in non-HIV populations, describing changes in immune activation on these treatments which is of paramount importance for those with HIV infection.
Collapse
|
36
|
Ryder MI, Shiboski C, Yao TJ, Moscicki AB. Current trends and new developments in HIV research and periodontal diseases. Periodontol 2000 2020; 82:65-77. [PMID: 31850628 DOI: 10.1111/prd.12321] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
With the advent of combined antiretroviral therapies, the face of HIV infection has changed dramatically from a disease with almost certain mortality from serious comorbidities, to a manageable chronic condition with an extended lifespan. In this paper we present the more recent investigations into the epidemiology, microbiology, and pathogenesis of periodontal diseases in patients with HIV, and the effects of combined antiretroviral therapies on the incidence and progression of these diseases both in adults and perinatally infected children. In addition, comparisons and potential interactions between the HIV-associated microbiome, host responses, and pathogenesis in the oral cavity with the gastrointestinal tract and other areas of the body are presented. Also, the effects of HIV and combined antiretroviral therapies on comorbidities such as hyposalivation, dementia, and osteoporosis on periodontal disease progression are discussed.
Collapse
Affiliation(s)
- Mark I Ryder
- Department of Orofacial Sciences, School of Dentistry, University of California, San Francisco, California, USA
| | - Caroline Shiboski
- Department of Orofacial Sciences, School of Dentistry, University of California, San Francisco, California, USA
| | - Tzy-Jyun Yao
- Center for Biostatistics in AIDS Research (CBAR), Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Anna-Barbara Moscicki
- Division of Adolescent Medicine, Department of Pediatrics, University of California, Los Angeles, California, USA
| |
Collapse
|
37
|
Abstract
Alterations in the gut microbiome during HIV infection have been implicated in chronic inflammation, but the role of the oral microbiome in this process is less clear. The article by M. K. Annavajhala, S. D. Khan, S. B. Sullivan, J. Alterations in the gut microbiome during HIV infection have been implicated in chronic inflammation, but the role of the oral microbiome in this process is less clear. The article by M. K. Annavajhala, S. D. Khan, S. B. Sullivan, J. Shah, et al. (mSphere 5:e00798-19, 2020, https://doi.org/10.1128/mSphere.00798-19) investigated the relationship between oral and gut microbiome diversity and immune activation in patients with HIV on antiretroviral therapy. In this study, oral microbiome diversity was inversely associated with inflammatory markers such as soluble CD14 (sCD14), but surprisingly similar associations were not seen with gut microbiome diversity. Oral microbiome diversity was also associated with periodontitis in these patients. This study highlights the importance of continuing multisite examinations in studying the gastrointestinal tract microbiome and also stimulates important directions for future research defining the role of the oral-gut axis in HIV-associated inflammation.
Collapse
|
38
|
Denton PW, Søgaard OS, Tolstrup M. Impacts of HIV Cure Interventions on Viral Reservoirs in Tissues. Front Microbiol 2019; 10:1956. [PMID: 31497010 PMCID: PMC6712158 DOI: 10.3389/fmicb.2019.01956] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 08/08/2019] [Indexed: 12/21/2022] Open
Abstract
HIV reservoirs persist in infected individuals despite combination antiretroviral therapy and can be identified in secondary lymphoid tissues, in intestinal tissues, in the central nervous system as well as in blood. Clinical trials have begun to explore effects of small molecule interventions to perturb the latent viral infection, but only limited information is available regarding the impacts of HIV cure-related clinical interventions on viral reservoirs found in tissues. Of the 14 HIV cure-related clinical trials since 2012 that have evaluated the effects of small molecule interventions in vivo, four trials have examined the impacts of the interventions in peripheral blood as well as other tissues that harbor persistent HIV. The additional tissues examined include cerebral spinal fluid, intestines and lymph nodes. We provide a comparison contrast analyses of the data across anatomical compartments tested in these studies to reveal where peripheral blood analyses reflect outcomes in other tissues as well as where the data reveal differences between tissue outcomes. We also summarize the current knowledge on these topics and highlight key open questions that need to be addressed experimentally to move the HIV cure research field closer to the development of an intervention strategy capable of eliciting long-term antiretroviral free remission of HIV disease.
Collapse
Affiliation(s)
- Paul W Denton
- Department of Biology, University of Nebraska Omaha, Omaha, NE, United States
| | - Ole S Søgaard
- Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Martin Tolstrup
- Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
39
|
Iacob S, Iacob DG. Infectious Threats, the Intestinal Barrier, and Its Trojan Horse: Dysbiosis. Front Microbiol 2019; 10:1676. [PMID: 31447793 PMCID: PMC6692454 DOI: 10.3389/fmicb.2019.01676] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 07/08/2019] [Indexed: 02/06/2023] Open
Abstract
The ecosystem of the gut microbiota consists of diverse intestinal species with multiple metabolic and immunologic activities and it is closely connected with the intestinal epithelia and mucosal immune response, with which it builds a complex barrier against intestinal pathogenic bacteria. The microbiota ensures the integrity of the gut barrier through multiple mechanisms, either by releasing antibacterial molecules (bacteriocins) and anti-inflammatory short-chain fatty acids or by activating essential cell receptors for the immune response. Experimental studies have confirmed the role of the intestinal microbiota in the epigenetic modulation of the gut barrier through posttranslational histone modifications and regulatory mechanisms induced by epithelial miRNA in the epithelial lumen. Any quantitative or functional changes of the intestinal microbiota, referred to as dysbiosis, alter the immune response, decrease epithelial permeability and destabilize intestinal homeostasis. Consequently, the overgrowth of pathobionts (Staphylococcus, Pseudomonas, and Escherichia coli) favors intestinal translocations with Gram negative bacteria or their endotoxins and could trigger sepsis, septic shock, secondary peritonitis, or various intestinal infections. Intestinal infections also induce epithelial lesions and perpetuate the risk of bacterial translocation and dysbiosis through epithelial ischemia and pro-inflammatory cytokines. Furthermore, the decline of protective anaerobic bacteria (Bifidobacterium and Lactobacillus) and inadequate release of immune modulators (such as butyrate) affects the release of antimicrobial peptides, de-represses microbial virulence factors and alters the innate immune response. As a result, intestinal germs modulate liver pathology and represent a common etiology of infections in HIV immunosuppressed patients. Antibiotic and antiretroviral treatments also promote intestinal dysbiosis, followed by the selection of resistant germs which could later become a source of infections. The current article addresses the strong correlations between the intestinal barrier and the microbiota and discusses the role of dysbiosis in destabilizing the intestinal barrier and promoting infectious diseases.
Collapse
Affiliation(s)
- Simona Iacob
- Infectious Diseases Department, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania.,National Institute of Infectious Diseases "Prof. Dr. Matei Balş", Bucharest, Romania
| | - Diana Gabriela Iacob
- Infectious Diseases Department, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
40
|
Ceccarelli G, Statzu M, Santinelli L, Pinacchio C, Bitossi C, Cavallari EN, Vullo V, Scagnolari C, d'Ettorre G. Challenges in the management of HIV infection: update on the role of probiotic supplementation as a possible complementary therapeutic strategy for cART treated people living with HIV/AIDS. Expert Opin Biol Ther 2019; 19:949-965. [PMID: 31260331 DOI: 10.1080/14712598.2019.1638907] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Recent insights show that gut-mucosal immunity and intestinal microbiota play a key role in the pathogenesis of HIV infection. Alterations in the composition of intestinal flora (dysbiosis) could be associated with an impaired intestinal epithelium barrier activity and an impaired mucosal immunity function, significantly contributing to microbial translocation which is considered a major driver of chronic immune activation. Areas covered: This article provides an overview on the novel trends in probiotic therapy application. A particular emphasis is addressed to the importance of probiotics as a novel strategy to attenuate or prevent gastrointestinal involvement and to improve gut-mucosal immunity in HIV-infected subjects. Therefore, opportunities, limits and methodological criticalities of supplementation with probiotic therapy are considered and analyzed. Expert opinion: Use of probiotics is emerging as a novel strategy to manage dysbiosis and gut-mucosal impairment, to reduce immune activation and to limit a number of non-AIDS-related disorders. However, despite the growing use of probiotic therapy, mechanisms by which oral bacteria intake exhibits its effects are strain-related and disease-specific, hence clinicians need to take these two factors into consideration when suggesting probiotic supplementation to HIV-infected patients.
Collapse
Affiliation(s)
- Giancarlo Ceccarelli
- a Department of Public Health and Infectious Diseases, Sapienza University of Rome , Rome , Italy
| | - Maura Statzu
- b Laboratory of Virology, Department of Molecular Medicine, affiliated to Istituto Pasteur Italia - Cenci Bolognetti Foundation, Sapienza University of Rome , Rome , Italy
| | - Letizia Santinelli
- b Laboratory of Virology, Department of Molecular Medicine, affiliated to Istituto Pasteur Italia - Cenci Bolognetti Foundation, Sapienza University of Rome , Rome , Italy
| | - Claudia Pinacchio
- a Department of Public Health and Infectious Diseases, Sapienza University of Rome , Rome , Italy
| | - Camilla Bitossi
- b Laboratory of Virology, Department of Molecular Medicine, affiliated to Istituto Pasteur Italia - Cenci Bolognetti Foundation, Sapienza University of Rome , Rome , Italy
| | - Eugenio Nelson Cavallari
- a Department of Public Health and Infectious Diseases, Sapienza University of Rome , Rome , Italy
| | - Vincenzo Vullo
- a Department of Public Health and Infectious Diseases, Sapienza University of Rome , Rome , Italy
| | - Carolina Scagnolari
- b Laboratory of Virology, Department of Molecular Medicine, affiliated to Istituto Pasteur Italia - Cenci Bolognetti Foundation, Sapienza University of Rome , Rome , Italy
| | - GabrieIla d'Ettorre
- a Department of Public Health and Infectious Diseases, Sapienza University of Rome , Rome , Italy
| |
Collapse
|
41
|
IL-7-induced proliferation of peripheral Th17 cells is impaired in HAART-controlled HIV infection. AIDS 2019; 33:985-991. [PMID: 30946152 DOI: 10.1097/qad.0000000000002164] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Th17 cells are key regulators of functional immunity in mucosal tissues, including the gut-associated lymphoid tissue (GALT), an important site of immune impairment in HIV infection. During HIV infection, Th17 cells are lost in large numbers from the GALT. Despite the recovery of peripheral CD4 T cells that accompanies suppression of viral replication with HAART, Th17 cells in GALT are not completely restored. IL-7 is essential for the survival and proliferation of T cells, but its signaling through its receptor IL-7Rα (CD127), is impaired in CD8 T cells and thymocytes during HIV infection. We set out to determine if decreased CD127 expression or impaired CD127 signaling may be the cause of Th17 impairment in HAART-controlled HIV infection. DESIGN Healthy and HIV donors on HAART were selected for this study of Th17 cell function in HIV. METHODS Peripheral CD4 T cells and Th17 cells were isolated using magnetic beads, then stimulated with IL-7. CD127 expression and the phosphorylation of signaling molecules was determined using flow cytometry. Proliferation was determined with a CFSE dilution assay. RESULTS CD127 was not decreased on Th17 cells from HAART-controlled HIV individuals, in fact, the percentage of Th17 cells that express CD127 was increased in treated HIV individuals. Furthermore, Th17 cells from HAART-controlled individuals, have normal IL-7-induced STAT5 and Bcl-2 responses, but vastly decreased proliferative responses. CONCLUSION This reduced IL-7 responsiveness may explain the lack of Th17 cell recovery and ongoing systemic immune activation that persists despite well treated HIV infection.
Collapse
|
42
|
Wang Z, Qi Q. Gut microbial metabolites associated with HIV infection. Future Virol 2019; 14:335-347. [PMID: 31263508 PMCID: PMC6595475 DOI: 10.2217/fvl-2019-0002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/25/2019] [Indexed: 02/06/2023]
Abstract
HIV infection has been associated with alterations in gut microbiota and related microbial metabolite production. However, the mechanisms of how these functional microbial metabolites may affect HIV immunopathogenesis and comorbidities, such as cardiovascular disease and other metabolic diseases, remain largely unknown. Here we review the current understanding of gut microbiota and related metabolites in the context of HIV infection. We focus on several bacteria-produced metabolites, including tryptophan catabolites, short-chain fatty acids and trimethylamine-N-oxide (TMAO), and discuss their implications in HIV infection and comorbidities. We also prospect future studies using integrative multiomics approaches to better understand host-microbiota-metabolites interactions in HIV infection, and facilitate integrative medicine utilizing the microbiota in HIV infection.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Qibin Qi
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
43
|
O'Connor MA, Munson PV, Tunggal HC, Hajari N, Lewis TB, Bratt D, Moats C, Smedley J, Bagley KC, Mullins JI, Fuller DH. Mucosal T Helper 17 and T Regulatory Cell Homeostasis Correlate with Acute Simian Immunodeficiency Virus Viremia and Responsiveness to Antiretroviral Therapy in Macaques. AIDS Res Hum Retroviruses 2019; 35:295-305. [PMID: 30398361 DOI: 10.1089/aid.2018.0184] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Depletion of gut T helper 17 (Th17) cells during HIV infection leads to decreased mucosal integrity and increased disease progression. Conversely, T regulatory (Treg) cells may inhibit antiviral responses or immune activation. In HIV elite controllers, a balanced Th17/Treg ratio is maintained in the blood, suggesting a role for these responses in controlling inflammation and viral replication. HIV-infected individuals exhibit a range in responsiveness to combination antiretroviral therapy (cART). Given the link between the Th17/Treg ratio and HIV disease, we reasoned these responses may play a role in cART responsiveness. In this study, we investigated the relationship between the mucosal Th17/Treg ratio to acute simian immunodeficiency virus (SIV) viremia and the response to cART. Nineteen rhesus macaques were infected with highly pathogenic SIVΔB670 virus and cART was initiated 6 weeks postinfection. Mucosal CD4 T cell subsets were assessed by intracellular cytokine staining in the colon and mesenteric lymph nodes. Higher baseline Th17/Treg ratios corresponded with increased acute SIV viremia. Th17/Treg ratios decreased during acute SIV infection and were not restored during cART, and this corresponded to increased gut immune activation (Ki67+), markers of microbial translocation (sCD14), and T cell exhaustion (TIGIT+). Animals that maintained a more balanced mucosal Th17/Treg ratio at the time of cART initiation exhibited a better virological response to cART and maintained higher peripheral CD4 counts. These results suggest mucosal Th17 and Treg homeostasis influences acute viremia and the response to cART, a result that suggests therapeutic interventions that improve the Th17/Treg ratio before or during cART may improve treatment of HIV.
Collapse
Affiliation(s)
- Megan A. O'Connor
- Department of Microbiology, University of Washington, Seattle, Washington
- Washington National Primate Research Center, Seattle, Washington
| | - Paul V. Munson
- Department of Microbiology, University of Washington, Seattle, Washington
- Washington National Primate Research Center, Seattle, Washington
| | - Hillary C. Tunggal
- Department of Microbiology, University of Washington, Seattle, Washington
- Washington National Primate Research Center, Seattle, Washington
| | - Nika Hajari
- Department of Microbiology, University of Washington, Seattle, Washington
- Washington National Primate Research Center, Seattle, Washington
| | - Thomas B. Lewis
- Department of Microbiology, University of Washington, Seattle, Washington
- Washington National Primate Research Center, Seattle, Washington
| | - Debra Bratt
- Washington National Primate Research Center, Seattle, Washington
| | - Cassie Moats
- Washington National Primate Research Center, Seattle, Washington
| | - Jeremy Smedley
- Washington National Primate Research Center, Seattle, Washington
| | | | - James I. Mullins
- Department of Microbiology, University of Washington, Seattle, Washington
| | - Deborah H. Fuller
- Department of Microbiology, University of Washington, Seattle, Washington
- Washington National Primate Research Center, Seattle, Washington
| |
Collapse
|
44
|
Kaur US, Shet A, Rajnala N, Gopalan BP, Moar P, D H, Singh BP, Chaturvedi R, Tandon R. High Abundance of genus Prevotella in the gut of perinatally HIV-infected children is associated with IP-10 levels despite therapy. Sci Rep 2018; 8:17679. [PMID: 30518941 PMCID: PMC6281660 DOI: 10.1038/s41598-018-35877-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 11/12/2018] [Indexed: 12/11/2022] Open
Abstract
Perinatal HIV infection is characterized by faster HIV disease progression and higher initial rate of HIV replication compared to adults. While antiretroviral therapy (ART) has greatly reduced HIV replication to undetectable levels, there is persistent elevated inflammation associated with HIV disease progression. Alteration of gut microbiota is associated with increased inflammation in chronic adult HIV infection. Here, we aim to study the gut microbiome and its role in inflammation in treated and untreated HIV-infected children. Examination of fecal microbiota revealed that perinatally infected children living with HIV had significantly higher levels of genus Prevotella that persisted despite ART. These children also had higher levels of soluble CD14 (sCD14), a marker of microbial translocation, and IP-10 despite therapy. The Prevotella positively correlated with IP-10 levels in both treated and untreated HIV-infected children, while genus Prevotella and species Prevotella copri was inversely associated with CD4 count. Relative abundance of genus Prevotella and species Prevotella copri showed positive correlation with sCD14 in ART-suppressed perinatally HIV-infected children. Our study suggests that gut microbiota may serve as one of the driving forces behind the persistent inflammation in children despite ART. Reshaping of microbiota using probiotics may be recommended as an adjunctive therapy along with ART.
Collapse
Affiliation(s)
- Urvinder S Kaur
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Anita Shet
- International Vaccine Access Center, Johns Hopkins School of Public Health, Baltimore, USA
| | - Niharika Rajnala
- Division of Infectious Diseases, St. John's Research Institute, St. John's National Academy of health Sciences, Bangalore, India
| | - Bindu Parachalil Gopalan
- Division of Infectious Diseases, St. John's Research Institute, St. John's National Academy of health Sciences, Bangalore, India
| | - Preeti Moar
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Himanshu D
- Department of Medicine, King Georges Medical University, Lucknow, India
| | | | - Rupesh Chaturvedi
- Host Pathogen Interaction Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Ravi Tandon
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
45
|
Li Y, Sun W. Effects of Th17/Treg cell imbalance on HIV replication in patients with AIDS complicated with tuberculosis. Exp Ther Med 2018; 15:2879-2883. [PMID: 29456692 PMCID: PMC5795545 DOI: 10.3892/etm.2018.5768] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 09/04/2017] [Indexed: 12/13/2022] Open
Abstract
The purpose of this study was to determine the effect of Th17/Treg cell imbalance on HIV replication in patients with AIDS complicated with tuberculosis (TB). We selected 32 patients with AIDS combined with TB infection in our hospital and 30 healthy individual as controls. The Th17/Treg ratio in peripheral blood lymphocytes was detected by flow cytometry. Compared with healthy subjects, Th17 cells first declined in HIV patients with TB, but gradually increased over the course of the disease. Treg showed an increasing trend in HIV patients with TB. The Th17/Treg ratio was significantly altered as the condition gradually deteriorated. ELISA showed that interleukin (IL)-17, IL-6 and IL-10 in patients with HIV complicated with TB were significantly lower than in healthy subjects. The imbalance of Th17/Treg cells can promote HIV virus replication in AIDS patients with TB infection, which can aggravate the condition.
Collapse
Affiliation(s)
- Yanshuang Li
- Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Weijia Sun
- Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
46
|
Abstract
The introduction of combination antiretroviral therapy (cART) in the 1990s has dramatically changed the course of HIV infection, decreasing the risk for both AIDS- and non-AIDS-related events. Cancers, cardiovascular disease (CVD), liver and kidney disease, neurological disorders and frailty have become of great importance lately in the clinical management as they represent the principal cause of death in people living with HIV who receive cART (Kirk et al. in Clin Infect Dis 45(1):103-10, 2007; Strategies for Management of Antiretroviral Therapy Study et al. N Engl J Med 355(22):2283-2296, 2006; Ances et al. J Infect Dis 201(3):336-340, 2010; Desquilbet et al. J Gerontol A Biol Sci Med Sci 62(11):1279-1286, 2007; Lifson et al. HIV Clin Trials 9(3):177-185, 2008). Despite the undeniable achievements of cART, we are now faced with its limitations: a considerable proportion of individuals, referred as to immunological non-responders, fails to reconstitute the immune system despite optimal treatment and viral suppression (Kelley et al. Clin Infect Dis 48(6):787-794, 2009; Robbins et al. Clin Infect Dis 48(3):350-361, 2009) and remains at high risk for opportunistic infections and non-AIDS-related events (Strategies for Management of Antiretroviral Therapy Study et al. N Engl J Med 355(22):2283-2296, 2006). Moreover, the generalized state of immune activation and inflammation, linked to serious non-AIDS events, persists despite successful HIV suppression with cART. Finally, the current strategies have so far failed to eradicate the virus, and inflammation appears a driving force in viral persistence. In the light of all this, it is of fundamental importance to investigate the pathophysiological processes that link incomplete immune recovery, immune activation and HIV persistence to design targeted therapies that could impact on the three.
Collapse
Affiliation(s)
- Elena Bruzzesi
- Laboratory of Immunoregulation, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.,Department of Infectious Diseases, IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - Irini Sereti
- Laboratory of Immunoregulation, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA. .,Department of Infectious Diseases, IRCCS, San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
47
|
IL-23 signaling in Th17 cells is inhibited by HIV infection and is not restored by HAART: Implications for persistent immune activation. PLoS One 2017; 12:e0186823. [PMID: 29091911 PMCID: PMC5665519 DOI: 10.1371/journal.pone.0186823] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 10/09/2017] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES HIV infection causes a profound depletion of gut derived Th17 cells, contributing to loss of mucosal barrier function and an increase in microbial translocation, thus driving systemic immune activation. Despite normalization of circulating CD4+ T cell counts with highly active antiretroviral therapy (HAART), Th17 frequency and function often remain impaired. Given the importance of interleukin (IL)-23 in the generation and stabilization of Th17 cells we hypothesized that impaired IL-23 signaling causes persistent Th17 dysfunction in HIV infection. METHODS The effects of in vitro HIV infection on responses to IL-23 in Th17 cells were examined. These included the production of IL-17, phosphorylated STAT3 (pSTAT3) and the transcription of retinoic acid orphan receptor C (RORC) gene. Blood derived Th17 cells from untreated and HAART-treated HIV-infected individuals were also examined for the IL-23 induced production of phosphorylated STAT3 (pSTAT3) and the expression of the IL-23 receptors. RESULTS In vitro HIV infection significantly inhibited IL-17 production and IL-23 induced pSTAT3 while expression of RORC RNA was unaffected. Th17 cells isolated from untreated and HAART-treated HIV-infected individuals showed complete loss of IL-23 induced pSTAT3 without a decrease in the expression of the IL-23 receptors. CONCLUSIONS This study is the first to demonstrate an effect of HIV on the IL-23 signaling pathway in Th17 cells. We show that in vitro and in vivo HIV infection results in impaired IL-23 signaling which is not reversed by HAART nor is it a result of reduced receptor expression, suggesting that HIV interferes with IL-23-activated signaling pathways. These findings may explain the inability of HAART to restore Th17 frequency and function and the resulting persistent chronic immune activation observed in HIV infected individuals.
Collapse
|
48
|
Khan S, Telwatte S, Trapecar M, Yukl S, Sanjabi S. Differentiating Immune Cell Targets in Gut-Associated Lymphoid Tissue for HIV Cure. AIDS Res Hum Retroviruses 2017; 33:S40-S58. [PMID: 28882067 PMCID: PMC5685216 DOI: 10.1089/aid.2017.0153] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The single greatest challenge to an HIV cure is the persistence of latently infected cells containing inducible, replication-competent proviral genomes, which constitute only a small fraction of total or infected cells in the body. Although resting CD4+ T cells in the blood are a well-known source of viral rebound, more than 90% of the body's lymphocytes reside elsewhere. Many are in gut tissue, where HIV DNA levels per million CD4+ T cells are considerably higher than in the blood. Despite the significant contribution of gut tissue to viral replication and persistence, little is known about the cell types that support persistence of HIV in the gut; importantly, T cells in the gut have phenotypic, functional, and survival properties that are distinct from T cells in other tissues. The mechanisms by which latency is established and maintained will likely depend on the location and cytokine milieu surrounding the latently infected cells in each compartment. Therefore, successful HIV cure strategies require identification and characterization of the exact cell types that support viral persistence, particularly in the gut. In this review, we describe the seeding of the latent HIV reservoir in the gut mucosa; highlight the evidence for compartmentalization and depletion of T cells; summarize the immunologic consequences of HIV infection within the gut milieu; propose how the damaged gut environment may promote the latent HIV reservoir; and explore several immune cell targets in the gut and their place on the path toward HIV cure.
Collapse
Affiliation(s)
- Shahzada Khan
- Gladstone Institute of Virology and Immunology, Gladstone Institutes, San Francisco, California
| | - Sushama Telwatte
- San Francisco VA Health Care System and University of California, San Francisco (UCSF), San Francisco, California
| | - Martin Trapecar
- Gladstone Institute of Virology and Immunology, Gladstone Institutes, San Francisco, California
| | - Steven Yukl
- San Francisco VA Health Care System and University of California, San Francisco (UCSF), San Francisco, California
| | - Shomyseh Sanjabi
- Gladstone Institute of Virology and Immunology, Gladstone Institutes, San Francisco, California
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California
| |
Collapse
|
49
|
The Th17 Lineage: From Barrier Surfaces Homeostasis to Autoimmunity, Cancer, and HIV-1 Pathogenesis. Viruses 2017; 9:v9100303. [PMID: 29048384 PMCID: PMC5691654 DOI: 10.3390/v9100303] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 10/11/2017] [Accepted: 10/13/2017] [Indexed: 12/12/2022] Open
Abstract
The T helper 17 (Th17) cells represent a subset of CD4+ T-cells with unique effector functions, developmental plasticity, and stem-cell features. Th17 cells bridge innate and adaptive immunity against fungal and bacterial infections at skin and mucosal barrier surfaces. Although Th17 cells have been extensively studied in the context of autoimmunity, their role in various other pathologies is underexplored and remains an area of open investigation. This review summarizes the history of Th17 cell discovery and the current knowledge relative to the beneficial role of Th17 cells in maintaining mucosal immunity homeostasis. We further discuss the concept of Th17 pathogenicity in the context of autoimmunity, cancer, and HIV infection, and we review the most recent discoveries on molecular mechanisms regulating HIV replication/persistence in pathogenic Th17 cells. Finally, we stress the need for novel fundamental research discovery-based Th17-specific therapeutic interventions to treat pathogenic conditions associated with Th17 abnormalities, including HIV infection.
Collapse
|
50
|
Abstract
PURPOSE OF REVIEW This review focuses on the differential effects of contemporary antiretrovirals on systemic inflammation as heightened immune activation is linked to important co-morbidities and mortality with HIV infection. RECENT FINDINGS Antiretroviral therapy (ART) reduces dramatically systemic inflammation and immune activation, but not to levels synchronous with HIV-uninfected populations. In one ART initiation trial, integrase inhibitors appear to reduce inflammation to a greater degree than non-nucleoside reverse transcriptase inhibitors (NNRTIs); however, it is not clear that there are beneficial effects on inflammation resulting from treatment with integrase inhibitors compared to PIs, between PIs and NNRTIs, between specific nucleoside reverse transcriptase inhibitors, or with maraviroc in ART-naïve patients. In ART switch studies, changing to an integrase inhibitor from a PI-, NNRTI-, or enfuvirtide-containing regimen has resulted in improvement in several markers of inflammation. Additional research is needed to conclusively state whether there are clear differences in effects of specific antiretrovirals on inflammation and immune activation in HIV.
Collapse
|