1
|
Tóth B, Berek L, Gulácsi L, Péntek M, Zrubka Z. Automation of systematic reviews of biomedical literature: a scoping review of studies indexed in PubMed. Syst Rev 2024; 13:174. [PMID: 38978132 PMCID: PMC11229257 DOI: 10.1186/s13643-024-02592-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 06/20/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND The demand for high-quality systematic literature reviews (SRs) for evidence-based medical decision-making is growing. SRs are costly and require the scarce resource of highly skilled reviewers. Automation technology has been proposed to save workload and expedite the SR workflow. We aimed to provide a comprehensive overview of SR automation studies indexed in PubMed, focusing on the applicability of these technologies in real world practice. METHODS In November 2022, we extracted, combined, and ran an integrated PubMed search for SRs on SR automation. Full-text English peer-reviewed articles were included if they reported studies on SR automation methods (SSAM), or automated SRs (ASR). Bibliographic analyses and knowledge-discovery studies were excluded. Record screening was performed by single reviewers, and the selection of full text papers was performed in duplicate. We summarized the publication details, automated review stages, automation goals, applied tools, data sources, methods, results, and Google Scholar citations of SR automation studies. RESULTS From 5321 records screened by title and abstract, we included 123 full text articles, of which 108 were SSAM and 15 ASR. Automation was applied for search (19/123, 15.4%), record screening (89/123, 72.4%), full-text selection (6/123, 4.9%), data extraction (13/123, 10.6%), risk of bias assessment (9/123, 7.3%), evidence synthesis (2/123, 1.6%), assessment of evidence quality (2/123, 1.6%), and reporting (2/123, 1.6%). Multiple SR stages were automated by 11 (8.9%) studies. The performance of automated record screening varied largely across SR topics. In published ASR, we found examples of automated search, record screening, full-text selection, and data extraction. In some ASRs, automation fully complemented manual reviews to increase sensitivity rather than to save workload. Reporting of automation details was often incomplete in ASRs. CONCLUSIONS Automation techniques are being developed for all SR stages, but with limited real-world adoption. Most SR automation tools target single SR stages, with modest time savings for the entire SR process and varying sensitivity and specificity across studies. Therefore, the real-world benefits of SR automation remain uncertain. Standardizing the terminology, reporting, and metrics of study reports could enhance the adoption of SR automation techniques in real-world practice.
Collapse
Affiliation(s)
- Barbara Tóth
- Doctoral School of Innovation Management, Óbuda University, Bécsi út 96/B, Budapest, 1034, Hungary
| | - László Berek
- Doctoral School for Safety and Security, Óbuda University, Bécsi út 96/B, Budapest, 1034, Hungary
- University Library, Óbuda University, Bécsi út 96/B, Budapest, 1034, Hungary
| | - László Gulácsi
- HECON Health Economics Research Center, University Research, and Innovation Center, Óbuda University, Bécsi út 96/B, Budapest, 1034, Hungary
| | - Márta Péntek
- HECON Health Economics Research Center, University Research, and Innovation Center, Óbuda University, Bécsi út 96/B, Budapest, 1034, Hungary
| | - Zsombor Zrubka
- HECON Health Economics Research Center, University Research, and Innovation Center, Óbuda University, Bécsi út 96/B, Budapest, 1034, Hungary.
| |
Collapse
|
2
|
Koyama E, Kant T, Takata A, Kennedy JL, Zai CC. Genetics of child aggression, a systematic review. Transl Psychiatry 2024; 14:252. [PMID: 38862490 PMCID: PMC11167064 DOI: 10.1038/s41398-024-02870-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 06/13/2024] Open
Abstract
Excessive and persistent aggressiveness is the most common behavioral problem that leads to psychiatric referrals among children. While half of the variance in childhood aggression is attributed to genetic factors, the biological mechanism and the interplay between genes and environment that results in aggression remains elusive. The purpose of this systematic review is to provide an overview of studies examining the genetics of childhood aggression irrespective of psychiatric diagnosis. PubMed, PsycINFO, and MEDLINE databases were searched using predefined search terms for aggression, genes and the specific age group. From the 652 initially yielded studies, eighty-seven studies were systematically extracted for full-text review and for further quality assessment analyses. Findings show that (i) investigation of candidate genes, especially of MAOA (17 studies), DRD4 (13 studies), and COMT (12 studies) continue to dominate the field, although studies using other research designs and methods including genome-wide association and epigenetic studies are increasing, (ii) the published articles tend to be moderate in sizes, with variable methods of assessing aggressive behavior and inconsistent categorizations of tandem repeat variants, resulting in inconclusive findings of genetic main effects, gene-gene, and gene-environment interactions, (iii) the majority of studies are conducted on European, male-only or male-female mixed, participants. To our knowledge, this is the first study to systematically review the effects of genes on youth aggression. To understand the genetic underpinnings of childhood aggression, more research is required with larger, more diverse sample sets, consistent and reliable assessments and standardized definition of the aggression phenotypes. The search for the biological mechanisms underlying child aggression will also benefit from more varied research methods, including epigenetic studies, transcriptomic studies, gene system and genome-wide studies, longitudinal studies that track changes in risk/ameliorating factors and aggression-related outcomes, and studies examining causal mechanisms.
Collapse
Affiliation(s)
- Emiko Koyama
- Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Laboratory for Molecular Pathology of Psychiatric Disorders, RIKEN Center for Brain Science, Wako, Japan
| | - Tuana Kant
- Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Atsushi Takata
- Laboratory for Molecular Pathology of Psychiatric Disorders, RIKEN Center for Brain Science, Wako, Japan
| | - James L Kennedy
- Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Clement C Zai
- Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
3
|
Martínez-Levy GA, Maya-Martínez M, García-Marín LM, Díaz-Torres S, Gómez LM, Benjet C, Rentería ME, Cruz-Fuentes CS, Rabinowitz JA. Associations of externalizing polygenic scores with externalizing disorders among Mexican youth. J Psychiatr Res 2024; 171:346-353. [PMID: 38354668 DOI: 10.1016/j.jpsychires.2024.01.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/21/2023] [Accepted: 01/15/2024] [Indexed: 02/16/2024]
Abstract
Several studies have examined the association of externalizing polygenic scores (PGS) with externalizing symptoms in samples of European ancestry. However, less is known about the associations of externalizing polygenic vulnerability in relation to phenotypic externalizing disorders among individuals of different ancestries, such as Mexican youth. Here, we leveraged the largest genome-wide association study on externalizing behaviors that included over 1 million individuals of European ancestry to examine associations of externalizing PGS with a range of externalizing disorders in Mexican adolescents, and investigated whether adversity exposure in childhood moderated these associations. Participants (N = 1064; age range 12-17 years old; 58.8% female) were adolescents recruited for a general population survey on adolescent mental health in the Mexico City Metropolitan region and were genotyped. Childhood adversity exposure and externalizing disorders, specifically attention-deficit hyperactivity disorder (ADHD), conduct disorder, oppositional defiant disorder, and substance use disorder, were assessed via the computer-assisted World Mental Health Composite International Diagnostic Interview for adolescents. A greater externalizing PGS was associated with a greater odds of any externalizing disorder (OR = 1.29 [1.12, 1.48]; p < 0.01) and ADHD (OR = 1.40 [1.15, 1.70]; p < 0.01) in the whole sample, and in females in particular. There were no main effects of the externalizing PGS on conduct disorder, oppositional defiant disorder, or substance use disorder, nor did adversity exposure moderate these associations. Our results suggest that greater genetic propensity for externalizing disorders is associated with increased odds of any externalizing disorders and ADHD among Mexican adolescents, furthering our understanding of externalizing disorder manifestation in this population.
Collapse
Affiliation(s)
- Gabriela A Martínez-Levy
- Departamento de Genética, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñíz", Ciudad de México, Mexico
| | - Mateo Maya-Martínez
- Licenciatura en Ciencias Genómicas, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Luis M García-Marín
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Santiago Díaz-Torres
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Lina M Gómez
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Corina Benjet
- Epidemiological and Psychosocial Research, Center for Global Mental Health, Instituto Nacional de Psiquiatria Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Miguel E Rentería
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Carlos S Cruz-Fuentes
- Departamento de Genética, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñíz", Ciudad de México, Mexico
| | - Jill A Rabinowitz
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, 624 N. Broadway, Baltimore MD 21205, USA.
| |
Collapse
|
4
|
Weidler C, Hofhansel L, Regenbogen C, Müller D, Clemens B, Montag C, Reif A, Habel U. The influence of the COMT Val158Met polymorphism on prefrontal TDCS effects on aggression. Sci Rep 2024; 14:3437. [PMID: 38341445 PMCID: PMC10858895 DOI: 10.1038/s41598-024-53930-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 02/06/2024] [Indexed: 02/12/2024] Open
Abstract
Increasing dorsolateral prefrontal cortex (DLPFC) activity by anodal transcranial direct current stimulation (tDCS) enhances cognitive control and might reduce aggression. The Val158Met polymorphism within the catechol-O-methyltransferase gene (rs4680) plays a pivotal role in prefrontal dopamine signaling, displaying associations with aggressive behavior, and potentially influencing the effects of tDCS. In a double-blind, sham-controlled study, we investigated the influence of rs4680 on tDCS effects on aggression. While undergoing functional magnetic resonance imaging, 89 healthy male participants performed the Taylor aggression paradigm before and immediately after tDCS. Actively stimulated participants (n = 45) received anodal tDCS (1.5 mA) for 20 min targeting the right DLPFC. Carriers of the val-allele (val+; n = 46; active tDCS n = 23) were compared to met-allele homozygotes (val-; n = 43; active tDCS n = 22). Analysis revealed decreased aggressive behavior in the val- group following active tDCS (p < 0.001). The val+ group showed increased aggression during the second session (p < 0.001) with an even higher increase following active as compared to sham tDCS (p < 0.001). No effects of stimulation or rs4680 on brain activation were found. Our study provides evidence for opposite tDCS effects on aggressive behavior in val-carriers and val-noncarriers. By shedding light on genetic factors predicting tDCS responsivity, the study will help to pave the way toward individualized-and thus more effective-tDCS treatment options.
Collapse
Affiliation(s)
- Carmen Weidler
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.
| | - Lena Hofhansel
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Institute of Neuroscience and Medicine: JARA-Institute Brain Structure Function Relationship (INM 10), Research Center Jülich, Jülich, Germany
| | - Christina Regenbogen
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Dario Müller
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Benjamin Clemens
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Christian Montag
- Department of Molecular Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Ute Habel
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Institute of Neuroscience and Medicine: JARA-Institute Brain Structure Function Relationship (INM 10), Research Center Jülich, Jülich, Germany
| |
Collapse
|
5
|
Mušálková D, Přistoupilová A, Jedličková I, Hartmannová H, Trešlová H, Nosková L, Hodaňová K, Bittmanová P, Stránecký V, Jiřička V, Langmajerová M, Woodbury‐Smith M, Zarrei M, Trost B, Scherer SW, Bleyer AJ, Vevera J, Kmoch S. Increased burden of rare protein-truncating variants in constrained, brain-specific and synaptic genes in extremely impulsively violent males with antisocial personality disorder. GENES, BRAIN, AND BEHAVIOR 2024; 23:e12882. [PMID: 38359179 PMCID: PMC10869132 DOI: 10.1111/gbb.12882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 12/11/2023] [Accepted: 01/03/2024] [Indexed: 02/17/2024]
Abstract
The genetic correlates of extreme impulsive violence are poorly understood, and there have been few studies that have characterized a large group of affected individuals both clinically and genetically. We performed whole exome sequencing (WES) in 290 males with the life-course-persistent, extremely impulsively violent form of antisocial personality disorder (APD) and analyzed the spectrum of rare protein-truncating variants (rPTVs). Comparisons were made with 314 male controls and publicly available genotype data. Functional annotation tools were used for biological interpretation. Participants were significantly more likely to harbor rPTVs in genes that are intolerant to loss-of-function variants (odds ratio [OR] 2.06; p < 0.001), specifically expressed in brain (OR 2.80; p = 0.036) and enriched for those involved in neurotransmitter transport and synaptic processes. In 60 individuals (20%), we identified rPTVs that we classified as clinically relevant based on their clinical associations, biological function and gene expression patterns. Of these, 37 individuals harbored rPTVs in 23 genes that are associated with a monogenic neurological disorder, and 23 individuals harbored rPTVs in 20 genes reportedly intolerant to loss-of-function variants. The analysis presents evidence in support of a model where presence of either one or several private, functionally relevant mutations contribute significantly to individual risk of life-course-persistent APD and reveals multiple individuals who could be affected by clinically unrecognized neuropsychiatric Mendelian disease. Thus, Mendelian diseases and increased rPTV burden may represent important factors for the development of extremely impulsive violent life-course-persistent forms of APD irrespective of their clinical presentation.
Collapse
Affiliation(s)
- Dita Mušálková
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of MedicineCharles University in Prague and General University Hospital in PraguePragueCzech Republic
| | - Anna Přistoupilová
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of MedicineCharles University in Prague and General University Hospital in PraguePragueCzech Republic
| | - Ivana Jedličková
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of MedicineCharles University in Prague and General University Hospital in PraguePragueCzech Republic
| | - Hana Hartmannová
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of MedicineCharles University in Prague and General University Hospital in PraguePragueCzech Republic
| | - Helena Trešlová
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of MedicineCharles University in Prague and General University Hospital in PraguePragueCzech Republic
| | - Lenka Nosková
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of MedicineCharles University in Prague and General University Hospital in PraguePragueCzech Republic
| | - Kateřina Hodaňová
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of MedicineCharles University in Prague and General University Hospital in PraguePragueCzech Republic
| | - Petra Bittmanová
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of MedicineCharles University in Prague and General University Hospital in PraguePragueCzech Republic
| | - Viktor Stránecký
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of MedicineCharles University in Prague and General University Hospital in PraguePragueCzech Republic
| | - Václav Jiřička
- Department of PsychologyPrison Service of the Czech RepublicPragueCzech Republic
- Department of Psychiatry, Faculty of Medicine in PilsenCharles UniversityPilsenCzech Republic
| | - Michaela Langmajerová
- Department of Psychiatry, Faculty of Medicine in PilsenCharles UniversityPilsenCzech Republic
| | - Marc Woodbury‐Smith
- The Centre for Applied Genomics and Program in Genetics and Genome Biology, The Hospital for Sick ChildrenTorontoOntarioCanada
- Faculty of Medical Sciences, Biosciences InstituteNewcastle UniversityNewcastle upon TyneUK
| | - Mehdi Zarrei
- The Centre for Applied Genomics and Program in Genetics and Genome Biology, The Hospital for Sick ChildrenTorontoOntarioCanada
| | - Brett Trost
- The Centre for Applied Genomics and Program in Genetics and Genome Biology, The Hospital for Sick ChildrenTorontoOntarioCanada
| | - Stephen W. Scherer
- The Centre for Applied Genomics and Program in Genetics and Genome Biology, The Hospital for Sick ChildrenTorontoOntarioCanada
- Department of Molecular Genetics and McLaughlin CentreUniversity of TorontoTorontoOntarioCanada
| | - Anthony J. Bleyer
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of MedicineCharles University in Prague and General University Hospital in PraguePragueCzech Republic
- Section on Nephrology, Wake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Jan Vevera
- Department of Psychiatry, Faculty of Medicine in PilsenCharles UniversityPilsenCzech Republic
- Department of PsychiatryUniversity Hospital PilsenPilsenCzech Republic
| | - Stanislav Kmoch
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of MedicineCharles University in Prague and General University Hospital in PraguePragueCzech Republic
- Department of Psychiatry, Faculty of Medicine in PilsenCharles UniversityPilsenCzech Republic
| |
Collapse
|
6
|
van der Laan CM, van de Weijer SG, Pool R, Hottenga JJ, van Beijsterveldt TC, Willemsen G, Bartels M, Nivard MG, Boomsma DI. Direct and Indirect Genetic Effects on Aggression. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:958-968. [PMID: 37881547 PMCID: PMC10593934 DOI: 10.1016/j.bpsgos.2023.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 10/27/2023] Open
Abstract
Background Family members resemble each other in their propensity for aggression. In twin studies, approximately 50% of the variance in aggression can be explained by genetic influences. However, if there are genotype-environment correlation mechanisms, such as environmental manifestations of parental and sibling genotypes, genetic influences may partly reflect environmental influences. In this study, we investigated the importance of indirect polygenic score (PGS) effects on aggression. Methods We modeled the effect of PGSs based on 3 genome-wide association studies: early-life aggression, educational attainment, and attention-deficit/hyperactivity disorder (ADHD). The associations with aggression were tested in a within- and between-family design (37,796 measures from 7740 individuals, ages 3-86 years [mean = 14.20 years, SE = 12.03], from 3107 families, 55% female) and in a transmitted/nontransmitted PGS design (42,649 measures from 6653 individuals, ages 3-61 years [mean = 11.81 years, SE = 8.68], from 3024 families, 55% female). All participants are enrolled in the Netherlands Twin Register. Results We found no evidence for contributions of indirect PGS effects on aggression in either a within- and between-family design or a transmitted/nontransmitted PGS design. Results indicate significant direct effects on aggression for the PGSs based on early-life aggression, educational attainment, and ADHD, although explained variance was low (within- and between-family: early-life aggression R2 = 0.3%, early-life ADHD R2 = 0.6%, educational attainment R2 = 0.7%; transmitted/nontransmitted PGSs: early-life aggression R2 = 0.2%, early-life ADHD R2 = 0.9%, educational attainment R2 = 0.5%). Conclusions PGSs included in the current study had a direct (but no indirect) effect on aggression, consistent with results of previous twin and family studies. Further research involving other PGSs for aggression and related phenotypes is needed to determine whether this conclusion generalizes to overall genetic influences on aggression.
Collapse
Affiliation(s)
- Camiel M. van der Laan
- Department of Biological Psychology, Vrije Universiteit, Amsterdam, the Netherlands
- Netherlands Institute for the Study of Crime and Law Enforcement, Amsterdam, the Netherlands
| | | | - René Pool
- Department of Biological Psychology, Vrije Universiteit, Amsterdam, the Netherlands
| | - Jouke-Jan Hottenga
- Department of Biological Psychology, Vrije Universiteit, Amsterdam, the Netherlands
| | | | - Gonneke Willemsen
- Department of Biological Psychology, Vrije Universiteit, Amsterdam, the Netherlands
| | - Meike Bartels
- Department of Biological Psychology, Vrije Universiteit, Amsterdam, the Netherlands
| | - Michel G. Nivard
- Department of Biological Psychology, Vrije Universiteit, Amsterdam, the Netherlands
| | - Dorret I. Boomsma
- Department of Biological Psychology, Vrije Universiteit, Amsterdam, the Netherlands
| |
Collapse
|
7
|
Burgard T, Bittermann A. Reducing Literature Screening Workload With Machine Learning. ZEITSCHRIFT FUR PSYCHOLOGIE-JOURNAL OF PSYCHOLOGY 2023. [DOI: 10.1027/2151-2604/a000509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Abstract. In our era of accelerated accumulation of knowledge, the manual screening of literature for eligibility is increasingly becoming too labor-intensive for summarizing the current state of knowledge in a timely manner. Recent advances in machine learning and natural language processing promise to reduce the screening workload by automatically detecting unseen references with a high probability of inclusion. As a variety of tools have been developed, the current review provides an overview of their characteristics and performance. A systematic search in various databases yielded 488 eligible reports, revealing 15 tools for screening automation that differed in methodology, features, and accessibility. For the review on the performance of screening tools, 21 studies could be included. In comparison to sampling records randomly, active screening with prioritization approximately halves the screening workload. However, a comparison of tools under equal or at least similar conditions is needed to derive clear recommendations.
Collapse
Affiliation(s)
- Tanja Burgard
- Research Synthesis Methods, Leibniz Institute for Psychology (ZPID), Trier, Germany
| | - André Bittermann
- Big Data, Leibniz Institute for Psychology (ZPID), Trier, Germany
| |
Collapse
|
8
|
Hagenbeek FA, van Dongen J, Pool R, Roetman PJ, Harms AC, Hottenga JJ, Kluft C, Colins OF, van Beijsterveldt CEM, Fanos V, Ehli EA, Hankemeier T, Vermeiren RRJM, Bartels M, Déjean S, Boomsma DI. Integrative Multi-omics Analysis of Childhood Aggressive Behavior. Behav Genet 2023; 53:101-117. [PMID: 36344863 PMCID: PMC9922241 DOI: 10.1007/s10519-022-10126-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/25/2022] [Indexed: 11/09/2022]
Abstract
This study introduces and illustrates the potential of an integrated multi-omics approach in investigating the underlying biology of complex traits such as childhood aggressive behavior. In 645 twins (cases = 42%), we trained single- and integrative multi-omics models to identify biomarkers for subclinical aggression and investigated the connections among these biomarkers. Our data comprised transmitted and two non-transmitted polygenic scores (PGSs) for 15 traits, 78,772 CpGs, and 90 metabolites. The single-omics models selected 31 PGSs, 1614 CpGs, and 90 metabolites, and the multi-omics model comprised 44 PGSs, 746 CpGs, and 90 metabolites. The predictive accuracy for these models in the test (N = 277, cases = 42%) and independent clinical data (N = 142, cases = 45%) ranged from 43 to 57%. We observed strong connections between DNA methylation, amino acids, and parental non-transmitted PGSs for ADHD, Autism Spectrum Disorder, intelligence, smoking initiation, and self-reported health. Aggression-related omics traits link to known and novel risk factors, including inflammation, carcinogens, and smoking.
Collapse
Affiliation(s)
- Fiona A. Hagenbeek
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Van der Boechorststraat 7-10, 1081 BT Amsterdam, The Netherlands ,Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Jenny van Dongen
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Van der Boechorststraat 7-10, 1081 BT Amsterdam, The Netherlands ,Amsterdam Public Health Research Institute, Amsterdam, The Netherlands ,Amsterdam Reproduction & Development (AR&D) Research Institute, Amsterdam, The Netherlands
| | - René Pool
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Van der Boechorststraat 7-10, 1081 BT Amsterdam, The Netherlands ,Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Peter J. Roetman
- Department of Child and Adolescent Psychiatry, LUMC-Curium, Leiden University Medical Center, Leiden, The Netherlands
| | - Amy C. Harms
- Division of Analytical Biosciences, Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands ,The Netherlands Metabolomics Centre, Leiden, The Netherlands
| | - Jouke Jan Hottenga
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Van der Boechorststraat 7-10, 1081 BT Amsterdam, The Netherlands
| | | | - Olivier F. Colins
- Department of Child and Adolescent Psychiatry, LUMC-Curium, Leiden University Medical Center, Leiden, The Netherlands ,Department Special Needs Education, Ghent University, Ghent, Belgium
| | | | - Vassilios Fanos
- Department of Surgical Sciences, University of Cagliari and Neonatal Intensive Care Unit, Cagliari, Italy
| | - Erik A. Ehli
- Avera Institute for Human Genetics, Sioux Falls, South Dakota USA
| | - Thomas Hankemeier
- Division of Analytical Biosciences, Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands ,The Netherlands Metabolomics Centre, Leiden, The Netherlands
| | - Robert R. J. M. Vermeiren
- Department of Child and Adolescent Psychiatry, LUMC-Curium, Leiden University Medical Center, Leiden, The Netherlands ,Youz, Parnassia Psychiatric Institute, The Hague, The Netherlands
| | - Meike Bartels
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Van der Boechorststraat 7-10, 1081 BT Amsterdam, The Netherlands ,Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Sébastien Déjean
- Toulouse Mathematics Institute, University of Toulouse, CNRS, Toulouse, France
| | - Dorret I. Boomsma
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Van der Boechorststraat 7-10, 1081 BT Amsterdam, The Netherlands ,Amsterdam Public Health Research Institute, Amsterdam, The Netherlands ,Amsterdam Reproduction & Development (AR&D) Research Institute, Amsterdam, The Netherlands
| |
Collapse
|
9
|
van de Weijer S. Intergenerational continuity of crime: A comparison between children of discordant siblings. CRIMINAL BEHAVIOUR AND MENTAL HEALTH : CBMH 2022; 32:308-319. [PMID: 36039034 DOI: 10.1002/cbm.2259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Various studies have shown that fathers and children show similarities in criminal behaviour, but little is known about the nature of this relationship. By using a family-based research design, this study controls for familial confounders and gives a better estimate of the extent to which paternal crime has a direct effect on offspring offending. AIMS To test the extent of any relationship between paternal offending during the childhood of offspring and adolescent offending by those offspring and to examine the effect of potential confounders of this relationship. METHODS Data were from records held by Statistics Netherlands for 1,155,771 individuals born in the Netherlands between 1996 and 2001. Police data were used to measure paternal offending during the childhood (age 0-11) of this cohort and their adolescent offending (age 12-18). Logistic regression analyses were used to estimate the bivariate relationship between paternal and offspring offending, as well as this relationship after controlling for various demographic and socio-economic variables. Conditional logistic regression analyses were used to compare children of discordant brothers (N = 9232). By comparing within families rather than between unrelated individuals, all unmeasured familial factors that are shared between these cousins were controlled for. RESULTS Offending during adolescence was about three times as likely among offspring whose fathers had offended while they were 11 years old or younger than among adolescents with no such paternal problem (OR: 3.21, CI 3.17-3.26). This relationship was attenuated after controlling for measured confounders (OR: 1.78, CI 1.75-1.81) and for unmeasured familial confounders (OR: 1.47, CI 1.36-1.59), but remained significant. CONCLUSIONS Paternal offending has an association with offspring offending, but this is small after controlling for measured socio-economic and unmeasured familial confounders. Previous studies that did not control for unmeasured familial confounders seem likely to have overestimated the effect of paternal crime on their offspring's offending. This has implications for interventions for the offspring. If confined to mitigating the negative consequences of paternal offending, they are likely to have limited effectiveness.
Collapse
Affiliation(s)
- Steve van de Weijer
- Netherlands Institute for the Study of Crime and Law Enforcement (NSCR), Amsterdam, The Netherlands
| |
Collapse
|
10
|
Peng SX, Pei J, Rinaldi B, Chen J, Ge YH, Jia M, Wang J, Delahaye-Duriez A, Sun JH, Zang YY, Shi YY, Zhang N, Gao X, Milani D, Xu X, Sheng N, Gerard B, Zhang C, Bayat A, Liu N, Yang JJ, Shi YS. Dysfunction of AMPA receptor GluA3 is associated with aggressive behavior in human. Mol Psychiatry 2022; 27:4092-4102. [PMID: 35697757 DOI: 10.1038/s41380-022-01659-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 05/17/2022] [Accepted: 06/01/2022] [Indexed: 02/07/2023]
Abstract
Inappropriate aggression in humans hurts the society, families and individuals. The genetic basis for aggressive behavior, however, remains largely elusive. In this study, we identified two rare missense variants in X-linked GRIA3 from male patients who showed syndromes featuring aggressive outbursts. Both G630R and E787G mutations in AMPA receptor GluA3 completely lost their ion channel functions. Furthermore, a guanine-repeat single nucleotide polymorphism (SNP, rs3216834) located in the first intron of human GRIA3 gene was found to regulate GluA3 expression with longer guanine repeats (rs3216834-10G/-11G) suppressing transcription compared to the shorter ones (-7G/-8G/-9G). Importantly, the distribution of rs3216834-10G/-11G was elevated in a male violent criminal sample from Chinese Han population. Using GluA3 knockout mice, we showed that the excitatory neurotransmission and neuronal activity in the medial prefrontal cortex (mPFC) was impaired. Expressing GluA3 back into the mPFC alleviated the aggressive behavior of GluA3 knockout mice, suggesting that the defects in mPFC explained, at least partially, the neural mechanisms underlying the aggressive behavior. Therefore, our study provides compelling evidence that dysfunction of AMPA receptor GluA3 promotes aggressive behavior.
Collapse
Affiliation(s)
- Shi-Xiao Peng
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Department of Neurology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210032, China.,Department of Anesthesiology and Perioperative Medicine, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.,Ministry of Education Key Laboratory of Model Animal for Disease Study, National Resource Center for Mutant Mice, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, 210032, China
| | - Jingwen Pei
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Department of Neurology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210032, China.,Ministry of Education Key Laboratory of Model Animal for Disease Study, National Resource Center for Mutant Mice, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, 210032, China
| | - Berardo Rinaldi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, 20122, Italy
| | - Jiang Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Department of Neurology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210032, China
| | - Yu-Han Ge
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Department of Neurology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210032, China.,Ministry of Education Key Laboratory of Model Animal for Disease Study, National Resource Center for Mutant Mice, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, 210032, China
| | - Min Jia
- Department of Anesthesiology and Perioperative Medicine, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jun Wang
- Minister of Education Key Laboratory of Modern Toxicology, Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Andrée Delahaye-Duriez
- Consultations de génétique, Hôpital Jean Verdier, Assistance Publique des Hôpitaux de Paris, Bondy, 93140, France.,NeuroDiderot, UMR 1141, Inserm, Université de Paris, Paris, 75019, France.,UFR SMBH, Université Sorbonne Paris Nord, Bobigny, 93000, France
| | - Jia-Hui Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Department of Neurology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210032, China.,Ministry of Education Key Laboratory of Model Animal for Disease Study, National Resource Center for Mutant Mice, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, 210032, China
| | - Yan-Yu Zang
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Department of Neurology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210032, China.,Ministry of Education Key Laboratory of Model Animal for Disease Study, National Resource Center for Mutant Mice, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, 210032, China
| | - Yong-Yun Shi
- Department of Orthopaedics, Luhe People's Hospital Affiliated to Yangzhou University, Nanjing, 211500, China
| | - Ning Zhang
- Department of Medical Psychology, Nanjing Medical University affiliated Nanjing Brain Hospital, Nanjing, 210029, China
| | - Xiang Gao
- Ministry of Education Key Laboratory of Model Animal for Disease Study, National Resource Center for Mutant Mice, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, 210032, China
| | - Donatella Milani
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, 20122, Italy
| | - Xijia Xu
- Department of Medical Psychology, Nanjing Medical University affiliated Nanjing Brain Hospital, Nanjing, 210029, China
| | - Nengyin Sheng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Benedicte Gerard
- Laboratoires de diagnostic genetique, Institut de genetique Medicale d'Alsace, Hopitaux Universitaires de Strasbourg, Strasbourg, 67000, France
| | - Chen Zhang
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Allan Bayat
- Danish Epilepsy Centre, Department of Genetics and Personalized Medicine, Dianalund, 4293, Denmark.,Institute for Regional Health Services Research, University of Southern Denmark, Odense, 5000, Denmark
| | - Na Liu
- Department of Medical Psychology, Nanjing Medical University affiliated Nanjing Brain Hospital, Nanjing, 210029, China.
| | - Jian-Jun Yang
- Department of Anesthesiology and Perioperative Medicine, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Yun Stone Shi
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Department of Neurology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210032, China. .,Ministry of Education Key Laboratory of Model Animal for Disease Study, National Resource Center for Mutant Mice, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, 210032, China. .,Guangdong Institute of Intelligence Science and Technology, Zhuhai, 519031, China.
| |
Collapse
|
11
|
Weijer SVD. No causal relationship between early motherhood and offspring adolescent offending: Empirical evidence from a genetically-informed study. Psychiatry Res 2022; 316:114788. [PMID: 35987065 DOI: 10.1016/j.psychres.2022.114788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/28/2022] [Accepted: 08/12/2022] [Indexed: 10/15/2022]
Abstract
Previous studies have consistently shown that young maternal age at birth is associated with an increased risk for problematic behavior in offspring. Less is known about the mechanisms underlying this association, as it could either reflect a causal effect or a spurious relationship. This study aims to gain more insights in these underlying mechanisms by studying the relationship between early motherhood and offspring adolescent offending. The sample includes all individuals who were born in the Netherlands between 1991 and 2001 (N=2,098,815). All variables were extracted from register data of Statistics Netherlands, including police registrations to measure adolescent offending. Logistic regression analyses were used to examine the relationship between maternal age at birth and offspring adolescent offending, with and without control variables. Moreover, a children of discordant siblings model was applied to further control for unmeasured familial confounders (i.e., shared environmental and genetic confounders). In line with previous studies, the results show a significant negative relationship between early motherhood and offspring offending. However, no significant effect was found in the children of discordant siblings analysis, which suggests that this relationship is confounded by unmeasured familial factors. These results illustrate the importance of applying genetically informed research designs when studying intergenerational relationships.
Collapse
Affiliation(s)
- Steve van de Weijer
- Netherlands Institute for the Study of Crime and Law Enforcement (NSCR), PO BOX 71304, 1008 BH, Amsterdam, the Netherlands.
| |
Collapse
|
12
|
Kleine Deters R, Ruisch IH, Faraone SV, Hartman CA, Luman M, Franke B, Oosterlaan J, Buitelaar JK, Naaijen J, Dietrich A, Hoekstra PJ. Polygenic risk scores for antisocial behavior in relation to amygdala morphology across an attention deficit hyperactivity disorder case-control sample with and without disruptive behavior. Eur Neuropsychopharmacol 2022; 62:63-73. [PMID: 35914510 DOI: 10.1016/j.euroneuro.2022.07.182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 11/04/2022]
Abstract
Antisocial and aggressive behaviors show considerable heritability and are central to disruptive behavior disorders (DBDs), but are also frequently observed in attention deficit hyperactivity disorder (ADHD). While the amygdala is implicated as a key neural structure, it remains unclear whether common genetic variants underlie this brain-behavior association. We hypothesized that polygenic (risk) scores for antisocial and aggressive behaviors (ASB-PRS) would be related to amygdala morphology. Using the Broad Antisocial Behavior Consortium genome-wide association study (GWAS; mostly population based cohorts), we calculated ASB-PRS in the NeuroIMAGE I ADHD case-control sample with varying levels of DBD symptomatology (n=679 from 379 families, aged 7 - 29). We first investigated associations of several ASB-PRS p value thresholds with the presence of DBD symptoms and self-reported antisocial behavior (ASB) to determine the threshold for further analyses. This PRS was then related to amygdala volume and shape using regression and vertex-wise analyses. Our results showed associations of ASB-PRS with the presence of DBD symptoms, self-reported ASB, and left basolateral amygdala shape, independent of ADHD symptom severity and ADHD-PRS, with a relative outward displacement of the vertices. No associations of ASB-PRS, DBD symptoms or self-reported ASB with amygdala volume were found. Our results indicate that genetic risk for antisocial and aggressive behaviors is related to amygdala shape alterations, and point to genetic sharing across different DBD and ASB and aggression-related phenotypes as a spectrum of genetically related quantitative traits. Additionally, our findings support the utility of vertex-based shape analyses in genetic studies of ASB, aggression, and DBDs.
Collapse
Affiliation(s)
- Renee Kleine Deters
- University of Groningen, University Medical Center Groningen, Department of Child and Adolescent Psychiatry, Groningen, the Netherlands; Accare Child Study Center, Groningen, the Netherlands.
| | - I Hyun Ruisch
- University of Groningen, University Medical Center Groningen, Department of Child and Adolescent Psychiatry, Groningen, the Netherlands; Accare Child Study Center, Groningen, the Netherlands
| | - Stephen V Faraone
- Departments of Psychiatry and of Neuroscience and Physiology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
| | - Catharina A Hartman
- Department of Psychiatry, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Marjolein Luman
- Emma Children's Hospital Amsterdam UMC, University of Amsterdam, Department of Pediatrics, Emma Neuroscience Group, Amsterdam Reproduction & Development research institute, Amsterdam, the Netherlands; Vrije Universiteit Amsterdam, Clinical Neuropsychology Section, Amsterdam, the Netherlands
| | - Barbara Franke
- Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands; Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands
| | - Jaap Oosterlaan
- Emma Children's Hospital Amsterdam UMC, University of Amsterdam, Department of Pediatrics, Emma Neuroscience Group, Amsterdam Reproduction & Development research institute, Amsterdam, the Netherlands; Vrije Universiteit Amsterdam, Clinical Neuropsychology Section, Amsterdam, the Netherlands
| | - Jan K Buitelaar
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands; Karakter Child and Adolescent Psychiatry University Center, Nijmegen, the Netherlands; Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Jilly Naaijen
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands; Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Andrea Dietrich
- University of Groningen, University Medical Center Groningen, Department of Child and Adolescent Psychiatry, Groningen, the Netherlands; Accare Child Study Center, Groningen, the Netherlands
| | - Pieter J Hoekstra
- University of Groningen, University Medical Center Groningen, Department of Child and Adolescent Psychiatry, Groningen, the Netherlands; Accare Child Study Center, Groningen, the Netherlands
| |
Collapse
|
13
|
Dark Triad traits mediate the interaction between childhood abuse and COMT Val158Met polymorphism on aggression among incarcerated Chinese males. CURRENT PSYCHOLOGY 2022. [DOI: 10.1007/s12144-022-03092-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
14
|
Paribello P, Manchia M, Bosia M, Pinna F, Carpiniello B, Comai S. Melatonin and aggressive behavior: A systematic review of the literature on preclinical and clinical evidence. J Pineal Res 2022; 72:e12794. [PMID: 35192237 PMCID: PMC9285357 DOI: 10.1111/jpi.12794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/04/2022] [Accepted: 02/18/2022] [Indexed: 11/27/2022]
Abstract
The melatonin system and circadian disruption have well-established links with aggressive behaviors; however, the biological underpinnings have not been thoroughly investigated. Here, we aimed at examining the current knowledge regarding the neurobiological and psychopharmacological involvement of the melatonin system in aggressive/violent behaviors. To this end, we performed a systematic review on Embase and Pubmed/MEDLINE of preclinical and clinical evidence linking the melatonin system, melatonin, and melatoninergic drugs with aggressive/violent behaviors. Two blinded raters performed an independent screening of the relevant literature. Overall, this review included 38 papers distributed between clinical and preclinical models. Eleven papers specifically addressed the existing evidence in rodent models, five in fish models, and 21 in humans. The data indicate that depending on the species, model, and timing of administration, melatonin may exert a complex influence on aggressive/violent behaviors. Particularly, the apparent contrasting findings on the link between the melatonin system and aggression/violence (with either increased, no, or decreased effect) shown in preclinical models underscore the need for further research to develop more accurate and fruitful translational models. Likewise, the significant heterogeneity found in the results of clinical studies does not allow yet to draw any firm conclusion on the efficacy of melatonin or melatonergic drugs on aggressive/violent behaviors. However, findings in children and in traits associated with aggressive/violent behavior, including irritability and anger, are emerging and deserve empirical attention given the low toxicity of melatonin and melatonergic drugs.
Collapse
Affiliation(s)
- Pasquale Paribello
- Section of Psychiatry, Department of Medical Sciences and Public HealthUniversity of CagliariCagliariItaly
- Unit of Clinical PsychiatryUniversity Hospital Agency of CagliariCagliariItaly
| | - Mirko Manchia
- Section of Psychiatry, Department of Medical Sciences and Public HealthUniversity of CagliariCagliariItaly
- Unit of Clinical PsychiatryUniversity Hospital Agency of CagliariCagliariItaly
- Department of PharmacologyDalhousie UniversityHalifaxNova ScotiaCanada
| | - Marta Bosia
- Division of NeuroscienceSan Raffaele Scientific InstituteMilanItaly
- School of MedicineVita Salute San Raffaele UniversityMilanItaly
| | - Federica Pinna
- Section of Psychiatry, Department of Medical Sciences and Public HealthUniversity of CagliariCagliariItaly
- Unit of Clinical PsychiatryUniversity Hospital Agency of CagliariCagliariItaly
| | - Bernardo Carpiniello
- Section of Psychiatry, Department of Medical Sciences and Public HealthUniversity of CagliariCagliariItaly
- Unit of Clinical PsychiatryUniversity Hospital Agency of CagliariCagliariItaly
| | - Stefano Comai
- Division of NeuroscienceSan Raffaele Scientific InstituteMilanItaly
- Department of PsychiatryMcGill UniversityMontrealQuebecCanada
- Department of Pharmaceutical and Pharmacological SciencesUniversity of PaduaPaduaItaly
- Department of Biomedical SciencesUniversity of PaduaPaduaItaly
| |
Collapse
|
15
|
Teeuw J, Klein M, Mota NR, Brouwer RM, van ‘t Ent D, Al-Hassaan Z, Franke B, Boomsma DI, Hulshoff Pol HE. Multivariate Genetic Structure of Externalizing Behavior and Structural Brain Development in a Longitudinal Adolescent Twin Sample. Int J Mol Sci 2022; 23:ijms23063176. [PMID: 35328598 PMCID: PMC8949114 DOI: 10.3390/ijms23063176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/10/2022] [Accepted: 03/10/2022] [Indexed: 12/10/2022] Open
Abstract
Externalizing behavior in its more extreme form is often considered a problem to the individual, their families, teachers, and society as a whole. Several brain structures have been linked to externalizing behavior and such associations may arise if the (co)development of externalizing behavior and brain structures share the same genetic and/or environmental factor(s). We assessed externalizing behavior with the Child Behavior Checklist and Youth Self Report, and the brain volumes and white matter integrity (fractional anisotropy [FA] and mean diffusivity [MD]) with magnetic resonance imaging in the BrainSCALE cohort, which consisted of twins and their older siblings from 112 families measured longitudinally at ages 10, 13, and 18 years for the twins. Genetic covariance modeling based on the classical twin design, extended to also include siblings of twins, showed that genes influence externalizing behavior and changes therein (h2 up to 88%). More pronounced externalizing behavior was associated with higher FA (observed correlation rph up to +0.20) and lower MD (rph up to −0.20), with sizeable genetic correlations (FA ra up to +0.42; MD ra up to −0.33). The cortical gray matter (CGM; rph up to −0.20) and cerebral white matter (CWM; rph up to +0.20) volume were phenotypically but not genetically associated with externalizing behavior. These results suggest a potential mediating role for global brain structures in the display of externalizing behavior during adolescence that are both partially explained by the influence of the same genetic factor.
Collapse
Affiliation(s)
- Jalmar Teeuw
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (R.M.B.); (Z.A.-H.); (H.E.H.P.)
- Correspondence: ; Tel.: +31-(088)-75-53-387
| | - Marieke Klein
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA;
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (N.R.M.); (B.F.)
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 XZ Nijmegen, The Netherlands
| | - Nina Roth Mota
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (N.R.M.); (B.F.)
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 XZ Nijmegen, The Netherlands
| | - Rachel M. Brouwer
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (R.M.B.); (Z.A.-H.); (H.E.H.P.)
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Dennis van ‘t Ent
- Department of Biological Psychology, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (D.v.‘t.E.); (D.I.B.)
| | - Zyneb Al-Hassaan
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (R.M.B.); (Z.A.-H.); (H.E.H.P.)
| | - Barbara Franke
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (N.R.M.); (B.F.)
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 XZ Nijmegen, The Netherlands
- Department of Psychiatry, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Dorret I. Boomsma
- Department of Biological Psychology, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (D.v.‘t.E.); (D.I.B.)
- Amsterdam Public Health (APH) Research Institute, 1081 BT Amsterdam, The Netherlands
| | - Hilleke E. Hulshoff Pol
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (R.M.B.); (Z.A.-H.); (H.E.H.P.)
- Department of Psychology, Utrecht University, 3584 CS Utrecht, The Netherlands
| |
Collapse
|
16
|
Punzi G, Ursini G, Chen Q, Radulescu E, Tao R, Huuki LA, Carlo PD, Torres LC, Shin JH, Catanesi R, Jaffe AE, Hyde TM, Kleinman JE, Mackay TFC, Weinberger DR. Genetics and Brain Transcriptomics of Completed Suicide. Am J Psychiatry 2022; 179:226-241. [PMID: 35236118 PMCID: PMC8908792 DOI: 10.1176/appi.ajp.2021.21030299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The authors sought to study the transcriptomic and genomic features of completed suicide by parsing the method chosen, to capture molecular correlates of the distinctive frame of mind of individuals who die by suicide, while reducing heterogeneity. METHODS The authors analyzed gene expression (RNA sequencing) from postmortem dorsolateral prefrontal cortex of patients who died by suicide with violent compared with nonviolent means, nonsuicide patients with the same psychiatric disorders, and a neurotypical group (total N=329). They then examined genomic risk scores (GRSs) for each psychiatric disorder included, and GRSs for cognition (IQ) and for suicide attempt, testing how they predict diagnosis or traits (total N=888). RESULTS Patients who died by suicide by violent means showed a transcriptomic pattern remarkably divergent from each of the other patient groups but less from the neurotypical group; consistently, their genomic profile of risk was relatively low for their diagnosed illness as well as for suicide attempt, and relatively high for IQ: they were more similar to the neurotypical group than to other patients. Differentially expressed genes (DEGs) associated with patients who died by suicide by violent means pointed to purinergic signaling in microglia, showing similarities to a genome-wide association study of Drosophila aggression. Weighted gene coexpression network analysis revealed that these DEGs were coexpressed in a context of mitochondrial metabolic activation unique to suicide by violent means. CONCLUSIONS These findings suggest that patients who die by suicide by violent means are in part biologically separable from other patients with the same diagnoses, and their behavioral outcome may be less dependent on genetic risk for conventional psychiatric disorders and be associated with an alteration of purinergic signaling and mitochondrial metabolism.
Collapse
Affiliation(s)
- Giovanna Punzi
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, Maryland, USA
| | - Gianluca Ursini
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, Maryland, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore. Maryland, USA
| | - Qiang Chen
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, Maryland, USA
| | - Eugenia Radulescu
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, Maryland, USA
| | - Ran Tao
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, Maryland, USA
| | - Louise A. Huuki
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, Maryland, USA
| | - Pasquale Di Carlo
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, Maryland, USA
| | - Leonardo Collado Torres
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, Maryland, USA
| | - Joo Heon Shin
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, Maryland, USA
| | - Roberto Catanesi
- Section of Forensic Psychiatry and Criminology, Institute of Legal Medicine, D.I.M., University of Bari ‘Aldo Moro’, Bari, Italy
| | - Andrew E. Jaffe
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, Maryland, USA
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Thomas M. Hyde
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, Maryland, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore. Maryland, USA
- Departments of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Joel E. Kleinman
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, Maryland, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore. Maryland, USA
| | - Trudy F. C. Mackay
- Department of Genetics and Biochemistry and Center for Human Genetics, Clemson University, Greenwood, South Carolina, USA
| | - Daniel R. Weinberger
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, Maryland, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore. Maryland, USA
- Departments of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Departments of Neuroscience, and Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
17
|
Wagels L, Habel U, Raine A, Clemens B. Neuroimaging, hormonal and genetic biomarkers for pathological aggression — success or failure? Curr Opin Behav Sci 2022. [DOI: 10.1016/j.cobeha.2021.08.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
18
|
Borinskaya SA, Rubanovich AV, Larin AK, Kazantseva AV, Davydova YD, Generozov EV, Khusnutdinova EK, Yankovsky NK. Epigenome-Wide Association Study of CpG Methylation in Aggressive Behavior. RUSS J GENET+ 2021. [DOI: 10.1134/s1022795421120048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
van der Laan CM, Morosoli-García JJ, van de Weijer SGA, Colodro-Conde L, Lupton MK, Mitchell BL, McAloney K, Parker R, Burns JM, Hickie IB, Pool R, Hottenga JJ, Martin NG, Medland SE, Nivard MG, Boomsma DI. Continuity of Genetic Risk for Aggressive Behavior Across the Life-Course. Behav Genet 2021; 51:592-606. [PMID: 34390460 PMCID: PMC8390412 DOI: 10.1007/s10519-021-10076-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/23/2021] [Indexed: 11/24/2022]
Abstract
We test whether genetic influences that explain individual differences in aggression in early life also explain individual differences across the life-course. In two cohorts from The Netherlands (N = 13,471) and Australia (N = 5628), polygenic scores (PGSs) were computed based on a genome-wide meta-analysis of childhood/adolescence aggression. In a novel analytic approach, we ran a mixed effects model for each age (Netherlands: 12-70 years, Australia: 16-73 years), with observations at the focus age weighted as 1, and decaying weights for ages further away. We call this approach a 'rolling weights' model. In The Netherlands, the estimated effect of the PGS was relatively similar from age 12 to age 41, and decreased from age 41-70. In Australia, there was a peak in the effect of the PGS around age 40 years. These results are a first indication from a molecular genetics perspective that genetic influences on aggressive behavior that are expressed in childhood continue to play a role later in life.
Collapse
Affiliation(s)
- Camiel M van der Laan
- Biological Psychology, Vrije Universiteit, Van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands.
- The Netherlands Institute for the Study of Crime and Law Enforcement, Amsterdam, The Netherlands.
| | | | - Steve G A van de Weijer
- The Netherlands Institute for the Study of Crime and Law Enforcement, Amsterdam, The Netherlands
| | | | | | | | - Kerrie McAloney
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Richard Parker
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Jane M Burns
- Faculty of Health Sciences, The University of Sydney, Sydney, Australia
| | - Ian B Hickie
- Brain and Mind Centre, University of Sydney, Camperdown, Australia
| | - René Pool
- Biological Psychology, Vrije Universiteit, Van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands
| | - Jouke-Jan Hottenga
- Biological Psychology, Vrije Universiteit, Van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands
| | | | - Sarah E Medland
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Michel G Nivard
- Biological Psychology, Vrije Universiteit, Van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands
| | - Dorret I Boomsma
- Biological Psychology, Vrije Universiteit, Van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands
| |
Collapse
|
20
|
Womack SR, Clifford S, Wilson MN, Shaw DS, Lemery-Chalfant K. Genetic Moderation of the Association Between Early Family Instability and Trajectories of Aggressive Behaviors from Middle Childhood to Adolescence. Behav Genet 2021; 51:476-491. [PMID: 34085180 DOI: 10.1007/s10519-021-10069-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/28/2021] [Indexed: 12/23/2022]
Abstract
The present study tested models of polygenic by environment interaction between early childhood family instability and polygenic risk for aggression predicting developmental trajectories of aggression from middle childhood to adolescence. With a longitudinal sample of 515 racially and ethnically diverse children from low-income families, primary caregivers reported on multiple components of family instability annually from child ages 2-5 years. A conservative polygenic risk score (p = 0.05) was generated based on a prior meta-genome wide association study. Trajectories of aggression were identified using a curve of factors model based on a composite of primary caregiver, alternate caregiver, and teacher reports at five ages from 7.5 to 14 years. The family instability by polygenic interaction predicted growth in children's aggression such that children with lower levels of family instability and lower polygenic risk exhibited a steeper decline in aggression from 7.5 to 14. Findings support the need to model gene-environment interplay to elucidate the role of genetics in the development of aggressive behaviors.
Collapse
Affiliation(s)
- Sean R Womack
- Department of Psychology, University of Virginia, Millmont Building 316, 1023 Millmont Street, Charlottesville, VA, 22904, USA.
| | - Sierra Clifford
- Department of Psychology, Arizona State University, Tempe, AZ, USA
| | - Melvin N Wilson
- Department of Psychology, University of Virginia, Millmont Building 316, 1023 Millmont Street, Charlottesville, VA, 22904, USA
| | - Daniel S Shaw
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | | |
Collapse
|
21
|
Ip HF, van der Laan CM, Krapohl EML, Brikell I, Sánchez-Mora C, Nolte IM, St Pourcain B, Bolhuis K, Palviainen T, Zafarmand H, Colodro-Conde L, Gordon S, Zayats T, Aliev F, Jiang C, Wang CA, Saunders G, Karhunen V, Hammerschlag AR, Adkins DE, Border R, Peterson RE, Prinz JA, Thiering E, Seppälä I, Vilor-Tejedor N, Ahluwalia TS, Day FR, Hottenga JJ, Allegrini AG, Rimfeld K, Chen Q, Lu Y, Martin J, Soler Artigas M, Rovira P, Bosch R, Español G, Ramos Quiroga JA, Neumann A, Ensink J, Grasby K, Morosoli JJ, Tong X, Marrington S, Middeldorp C, Scott JG, Vinkhuyzen A, Shabalin AA, Corley R, Evans LM, Sugden K, Alemany S, Sass L, Vinding R, Ruth K, Tyrrell J, Davies GE, Ehli EA, Hagenbeek FA, De Zeeuw E, Van Beijsterveldt TCEM, Larsson H, Snieder H, Verhulst FC, Amin N, Whipp AM, Korhonen T, Vuoksimaa E, Rose RJ, Uitterlinden AG, Heath AC, Madden P, Haavik J, Harris JR, Helgeland Ø, Johansson S, Knudsen GPS, Njolstad PR, Lu Q, Rodriguez A, Henders AK, Mamun A, Najman JM, Brown S, Hopfer C, Krauter K, Reynolds C, Smolen A, Stallings M, Wadsworth S, Wall TL, Silberg JL, Miller A, Keltikangas-Järvinen L, Hakulinen C, Pulkki-Råback L, Havdahl A, Magnus P, Raitakari OT, Perry JRB, Llop S, Lopez-Espinosa MJ, Bønnelykke K, Bisgaard H, Sunyer J, Lehtimäki T, Arseneault L, Standl M, Heinrich J, Boden J, Pearson J, Horwood LJ, Kennedy M, Poulton R, Eaves LJ, Maes HH, Hewitt J, Copeland WE, Costello EJ, Williams GM, Wray N, Järvelin MR, McGue M, Iacono W, Caspi A, Moffitt TE, Whitehouse A, Pennell CE, Klump KL, Burt SA, Dick DM, Reichborn-Kjennerud T, Martin NG, Medland SE, Vrijkotte T, Kaprio J, Tiemeier H, Davey Smith G, Hartman CA, Oldehinkel AJ, Casas M, Ribasés M, Lichtenstein P, Lundström S, Plomin R, Bartels M, Nivard MG, Boomsma DI. Genetic association study of childhood aggression across raters, instruments, and age. Transl Psychiatry 2021; 11:413. [PMID: 34330890 PMCID: PMC8324785 DOI: 10.1038/s41398-021-01480-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 04/11/2021] [Accepted: 05/20/2021] [Indexed: 01/15/2023] Open
Abstract
Childhood aggressive behavior (AGG) has a substantial heritability of around 50%. Here we present a genome-wide association meta-analysis (GWAMA) of childhood AGG, in which all phenotype measures across childhood ages from multiple assessors were included. We analyzed phenotype assessments for a total of 328 935 observations from 87 485 children aged between 1.5 and 18 years, while accounting for sample overlap. We also meta-analyzed within subsets of the data, i.e., within rater, instrument and age. SNP-heritability for the overall meta-analysis (AGGoverall) was 3.31% (SE = 0.0038). We found no genome-wide significant SNPs for AGGoverall. The gene-based analysis returned three significant genes: ST3GAL3 (P = 1.6E-06), PCDH7 (P = 2.0E-06), and IPO13 (P = 2.5E-06). All three genes have previously been associated with educational traits. Polygenic scores based on our GWAMA significantly predicted aggression in a holdout sample of children (variance explained = 0.44%) and in retrospectively assessed childhood aggression (variance explained = 0.20%). Genetic correlations (rg) among rater-specific assessment of AGG ranged from rg = 0.46 between self- and teacher-assessment to rg = 0.81 between mother- and teacher-assessment. We obtained moderate-to-strong rgs with selected phenotypes from multiple domains, but hardly with any of the classical biomarkers thought to be associated with AGG. Significant genetic correlations were observed with most psychiatric and psychological traits (range [Formula: see text]: 0.19-1.00), except for obsessive-compulsive disorder. Aggression had a negative genetic correlation (rg = ~-0.5) with cognitive traits and age at first birth. Aggression was strongly genetically correlated with smoking phenotypes (range [Formula: see text]: 0.46-0.60). The genetic correlations between aggression and psychiatric disorders were weaker for teacher-reported AGG than for mother- and self-reported AGG. The current GWAMA of childhood aggression provides a powerful tool to interrogate the rater-specific genetic etiology of AGG.
Collapse
Affiliation(s)
- Hill F Ip
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Camiel M van der Laan
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Netherlands Institute for the Study of Crime and Law Enforcement, Amsterdam, The Netherlands
| | - Eva M L Krapohl
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Isabell Brikell
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Cristina Sánchez-Mora
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Barcelona, Spain
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ilja M Nolte
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Beate St Pourcain
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Koen Bolhuis
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Teemu Palviainen
- Institute for Molecular Medicine FIMM, HiLife, University of Helsinki, Helsinki, Finland
| | - Hadi Zafarmand
- Department of Public Health, Amsterdam Public Health Research Institute, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam Public Health Research Institute, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Scott Gordon
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Tetyana Zayats
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Fazil Aliev
- Department of Psychology, Virginia Commonwealth University, Richmond, VA, USA
- Faculty of Business, Karabuk University, Karabuk, Turkey
| | - Chang Jiang
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA
- Department of Biostatistics, University of Florida, Gainesville, FL, USA
| | - Carol A Wang
- Faculty of Medicine and Health, School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW, Australia
| | - Gretchen Saunders
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Ville Karhunen
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Anke R Hammerschlag
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Child Health Research Centre, the University of Queensland, Brisbane, QLD, Australia
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Daniel E Adkins
- Department of Sociology, College of Social and Behavioral Science, University of Utah, Salt Lake City, UT, USA
- Department of Psychiatry, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Richard Border
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
- Department of Applied Mathematics, University of Colorado Boulder, Boulder, CO, USA
| | - Roseann E Peterson
- Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Joseph A Prinz
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Elisabeth Thiering
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Division of Metabolic Diseases and Nutritional Medicine, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Ilkka Seppälä
- Department of Clinical Chemistry, Fimlab Laboratories, and Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Natàlia Vilor-Tejedor
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Barcelona Beta Brain Research Center, Pasqual Maragall Foundation (FPM), Barcelona, Spain
| | - Tarunveer S Ahluwalia
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Felix R Day
- MRC Epidemiology Unit, Institute of Metabolic Science, Cambridge Biomedical Campus, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Jouke-Jan Hottenga
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Andrea G Allegrini
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Kaili Rimfeld
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Qi Chen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Yi Lu
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Joanna Martin
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - María Soler Artigas
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Barcelona, Spain
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Paula Rovira
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Barcelona, Spain
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Rosa Bosch
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Barcelona, Spain
- Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Gemma Español
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Josep Antoni Ramos Quiroga
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Barcelona, Spain
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Alexander Neumann
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada
| | - Judith Ensink
- Department of Child and Adolescent Psychiatry, Academic Medical Center, Amsterdam, The Netherlands
- De Bascule, Academic Centre for Child and Adolescent Psychiatry, Amsterdam, The Netherlands
| | - Katrina Grasby
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - José J Morosoli
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Xiaoran Tong
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA
- Department of Biostatistics, University of Florida, Gainesville, FL, USA
| | - Shelby Marrington
- School of Public Health, Faculty of Medicine, The University of Queensland, Herston, QLD, Australia
| | - Christel Middeldorp
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Child Health Research Centre, the University of Queensland, Brisbane, QLD, Australia
- Children's Health Queensland Hospital and Health Service, Child and Youth Mental Health Service, Brisbane, QLD, Australia
| | - James G Scott
- School of Public Health, Faculty of Medicine, The University of Queensland, Herston, QLD, Australia
- Metro North Mental Health, University of Queensland, St Lucia, QLD, Australia
- Queensland Centre for Mental Health Research, St Lucia, QLD, Australia
| | - Anna Vinkhuyzen
- Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD, Australia
| | - Andrey A Shabalin
- Department of Psychiatry, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Robin Corley
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Luke M Evans
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Karen Sugden
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
- Department of Psychology and Neuroscience and Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Silvia Alemany
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Lærke Sass
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Rebecca Vinding
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Kate Ruth
- Genetics of Complex Traits, Royal Devon & Exeter Hospital, University of Exeter Medical School, Exeter, UK
| | - Jess Tyrrell
- Genetics of Complex Traits, Royal Devon & Exeter Hospital, University of Exeter Medical School, Exeter, UK
| | | | - Erik A Ehli
- Avera Institute for Human Genetics, Sioux Falls, SD, USA
| | - Fiona A Hagenbeek
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Eveline De Zeeuw
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | - Henrik Larsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- School of Medical Sciences, Orebro University, Orebro, Sweden
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Frank C Verhulst
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Child and Adolescent Mental Health Centre, Mental Health Services Capital Region, Research Unit, Copenhagen University Hospital, Copenhagen, Denmark
| | - Najaf Amin
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Alyce M Whipp
- Institute for Molecular Medicine FIMM, HiLife, University of Helsinki, Helsinki, Finland
| | - Tellervo Korhonen
- Institute for Molecular Medicine FIMM, HiLife, University of Helsinki, Helsinki, Finland
| | - Eero Vuoksimaa
- Institute for Molecular Medicine FIMM, HiLife, University of Helsinki, Helsinki, Finland
| | - Richard J Rose
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - André G Uitterlinden
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
- Netherlands Genomics Initiative (NGI)-sponsored Netherlands Consortium for Healthy Aging (NCHA), Leiden, The Netherlands
| | | | | | - Jan Haavik
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Jennifer R Harris
- Division of Health Data and Digitalisation, The Norwegian Institute of Public Health, Oslo, Norway
| | - Øyvind Helgeland
- Department of Genetics and Bioinformatics, Division of Health Data and Digitalization, The Norwegian Institute of Public Health, Bergen, Norway
| | - Stefan Johansson
- Department of Biomedicine, University of Bergen, Bergen, Norway
- K.G. Jebsen Centre for Neuropsychiatric Disorders, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Gun Peggy S Knudsen
- Division of Health Data and Digitalisation, The Norwegian Institute of Public Health, Oslo, Norway
| | | | - Qing Lu
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA
- Department of Biostatistics, University of Florida, Gainesville, FL, USA
| | - Alina Rodriguez
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- School of Psychology, University of Lincoln, Lincolnshire, UK
| | - Anjali K Henders
- Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD, Australia
| | - Abdullah Mamun
- Institute for Social Science Research, University of Queensland, Long Pocket, QLD, Australia
| | - Jackob M Najman
- School of Public Health, Faculty of Medicine, The University of Queensland, Herston, QLD, Australia
| | - Sandy Brown
- Department of Psychiatry, University of California, San Diego, CA, USA
| | | | - Kenneth Krauter
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Chandra Reynolds
- Department of Psychology, University of California Riverside, Riverside, CA, USA
| | - Andrew Smolen
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
| | - Michael Stallings
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Sally Wadsworth
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
| | - Tamara L Wall
- Department of Psychiatry, University of California, San Diego, CA, USA
| | - Judy L Silberg
- Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA
- Department of Human & Molecular Genetics, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Allison Miller
- Department of Pathology and Biomedical Science, and Carney Centre for Pharmacogenomics, University of Otago Christchurch, Christchurch Central City, New Zealand
| | | | - Christian Hakulinen
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Laura Pulkki-Råback
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Alexandra Havdahl
- Nic Waals Institute, Lovisenberg Diaconal Hospital, Oslo, Norway
- Department of Mental Disorders, Norwegian Institute of Public Health, Oslo, Norway
| | - Per Magnus
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Olli T Raitakari
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
| | - John R B Perry
- MRC Epidemiology Unit, Institute of Metabolic Science, Cambridge Biomedical Campus, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Sabrina Llop
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Maria-Jose Lopez-Espinosa
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Faculty of Nursing and Chiropody, Universitat de València, Valencia, Spain
| | - Klaus Bønnelykke
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Hans Bisgaard
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Jordi Sunyer
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, and Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Louise Arseneault
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Marie Standl
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Joachim Heinrich
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Institute and Outpatient Clinic for Occupational, Social and Environmental Medicine, University of Munich Medical Center, Ludwig-Maximilians-Universität München, Munich, Germany
- Allergy and Lung Health Unit, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, VIC, Australia
| | - Joseph Boden
- Christchurch Health and Development Study, Department of Psychological Medicine, University of Otago Christchurch, Christchurch Central City, New Zealand
| | - John Pearson
- Biostatistics and Computational Biology Unit, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch Central City, New Zealand
| | - L John Horwood
- Christchurch Health and Development Study, Department of Psychological Medicine, University of Otago Christchurch, Christchurch Central City, New Zealand
| | - Martin Kennedy
- Department of Pathology and Biomedical Science, and Carney Centre for Pharmacogenomics, University of Otago Christchurch, Christchurch Central City, New Zealand
| | - Richie Poulton
- Dunedin Multidisciplinary Health and Development Research Unit, University of Otago, Dunedin, New Zealand
| | - Lindon J Eaves
- Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA
- Department of Human & Molecular Genetics, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Hermine H Maes
- Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA
- Department of Human & Molecular Genetics, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - John Hewitt
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - William E Copeland
- Department of Psychiatry, College of Medicine, University of Vermont, Burlington, VT, USA
| | | | - Gail M Williams
- School of Public Health, Faculty of Medicine, The University of Queensland, Herston, QLD, Australia
| | - Naomi Wray
- Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD, Australia
- Queensland Brain Institute, Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD, Australia
| | - Marjo-Riitta Järvelin
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Matt McGue
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - William Iacono
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Avshalom Caspi
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
- Department of Psychology and Neuroscience and Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
- Social, Genetic, and Developmental Psychiatry Research Centre, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Terrie E Moffitt
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
- Department of Psychology and Neuroscience and Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
- Social, Genetic, and Developmental Psychiatry Research Centre, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Andrew Whitehouse
- Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia
| | - Craig E Pennell
- Faculty of Medicine and Health, School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW, Australia
| | - Kelly L Klump
- Department of Psychology, Michigan State University, East Lansing, MI, USA
| | - S Alexandra Burt
- Department of Psychology, Michigan State University, East Lansing, MI, USA
| | - Danielle M Dick
- Department of Psychology, Virginia Commonwealth University, Richmond, VA, USA
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA
- College Behavioral and Emotional Health Institute, Virginia Commonwealth University, Richmond, VA, USA
| | - Ted Reichborn-Kjennerud
- Department of Mental Disorders, Norwegian Institute of Public Health, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | - Sarah E Medland
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Tanja Vrijkotte
- Department of Public Health, Amsterdam Public Health Research Institute, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Jaakko Kaprio
- Institute for Molecular Medicine FIMM, HiLife, University of Helsinki, Helsinki, Finland
- Department of Public Health, Medical Faculty, University of Helsinki, Helsinki, Finland
| | - Henning Tiemeier
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Social and Behavioral Science, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - George Davey Smith
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Catharina A Hartman
- Department of Psychiatry, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Albertine J Oldehinkel
- Department of Psychiatry, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Miquel Casas
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Barcelona, Spain
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marta Ribasés
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Barcelona, Spain
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Paul Lichtenstein
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Sebastian Lundström
- Gillberg Neuropsychiatry Centre, University of Gothenburg, Gothenburg, Sweden
- Centre for Ethics, Law and Mental Health, University of Gothenburg, Gothenburg, Sweden
| | - Robert Plomin
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Meike Bartels
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands.
| | - Michel G Nivard
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| | - Dorret I Boomsma
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands.
| |
Collapse
|
22
|
van Dongen J, Hagenbeek FA, Suderman M, Roetman PJ, Sugden K, Chiocchetti AG, Ismail K, Mulder RH, Hafferty JD, Adams MJ, Walker RM, Morris SW, Lahti J, Küpers LK, Escaramis G, Alemany S, Jan Bonder M, Meijer M, Ip HF, Jansen R, Baselmans BML, Parmar P, Lowry E, Streit F, Sirignano L, Send TS, Frank J, Jylhävä J, Wang Y, Mishra PP, Colins OF, Corcoran DL, Poulton R, Mill J, Hannon E, Arseneault L, Korhonen T, Vuoksimaa E, Felix JF, Bakermans-Kranenburg MJ, Campbell A, Czamara D, Binder E, Corpeleijn E, Gonzalez JR, Grazuleviciene R, Gutzkow KB, Evandt J, Vafeiadi M, Klein M, van der Meer D, Ligthart L, Kluft C, Davies GE, Hakulinen C, Keltikangas-Järvinen L, Franke B, Freitag CM, Konrad K, Hervas A, Fernández-Rivas A, Vetro A, Raitakari O, Lehtimäki T, Vermeiren R, Strandberg T, Räikkönen K, Snieder H, Witt SH, Deuschle M, Pedersen NL, Hägg S, Sunyer J, Franke L, Kaprio J, Ollikainen M, Moffitt TE, Tiemeier H, van IJzendoorn MH, Relton C, Vrijheid M, Sebert S, Jarvelin MR, Caspi A, Evans KL, McIntosh AM, Bartels M, Boomsma DI. DNA methylation signatures of aggression and closely related constructs: A meta-analysis of epigenome-wide studies across the lifespan. Mol Psychiatry 2021; 26:2148-2162. [PMID: 33420481 PMCID: PMC8263810 DOI: 10.1038/s41380-020-00987-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 11/04/2020] [Accepted: 12/04/2020] [Indexed: 01/06/2023]
Abstract
DNA methylation profiles of aggressive behavior may capture lifetime cumulative effects of genetic, stochastic, and environmental influences associated with aggression. Here, we report the first large meta-analysis of epigenome-wide association studies (EWAS) of aggressive behavior (N = 15,324 participants). In peripheral blood samples of 14,434 participants from 18 cohorts with mean ages ranging from 7 to 68 years, 13 methylation sites were significantly associated with aggression (alpha = 1.2 × 10-7; Bonferroni correction). In cord blood samples of 2425 children from five cohorts with aggression assessed at mean ages ranging from 4 to 7 years, 83% of these sites showed the same direction of association with childhood aggression (r = 0.74, p = 0.006) but no epigenome-wide significant sites were found. Top-sites (48 at a false discovery rate of 5% in the peripheral blood meta-analysis or in a combined meta-analysis of peripheral blood and cord blood) have been associated with chemical exposures, smoking, cognition, metabolic traits, and genetic variation (mQTLs). Three genes whose expression levels were associated with top-sites were previously linked to schizophrenia and general risk tolerance. At six CpGs, DNA methylation variation in blood mirrors variation in the brain. On average 44% (range = 3-82%) of the aggression-methylation association was explained by current and former smoking and BMI. These findings point at loci that are sensitive to chemical exposures with potential implications for neuronal functions. We hope these results to be a starting point for studies leading to applications as peripheral biomarkers and to reveal causal relationships with aggression and related traits.
Collapse
Affiliation(s)
- Jenny van Dongen
- Department of Biological Psychology, Amsterdam Public Health Research Institute, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| | - Fiona A Hagenbeek
- Department of Biological Psychology, Amsterdam Public Health Research Institute, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Matthew Suderman
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- MRC Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Peter J Roetman
- Curium-LUMC, Department of Child and Adolescent Psychiatry, Leiden University Medical Center, Oegstgeest, The Netherlands
| | - Karen Sugden
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Andreas G Chiocchetti
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, Goethe-Universität, Frankfurt am Main, Germany
| | - Khadeeja Ismail
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Rosa H Mulder
- Institute of Education and Child Studies, Leiden University, Leiden, The Netherlands
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | - Mark J Adams
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - Rosie M Walker
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Stewart W Morris
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Jari Lahti
- Turku Institute for Advanced Studies, University of Turku, Turku, Finland
- Department of Psychology and logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Leanne K Küpers
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, Groningen, The Netherlands
| | - Georgia Escaramis
- CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
- Department of Biomedical Science, Faculty of Medicine and Health Science, University of Barcelona, Barcelona, Spain
- Research Group on Statistics, Econometrics and Health (GRECS), UdG, Girona, Spain
| | - Silvia Alemany
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Marc Jan Bonder
- Department of Genetics, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Mandy Meijer
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Hill F Ip
- Department of Biological Psychology, Amsterdam Public Health Research Institute, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Rick Jansen
- Department of Psychiatry, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Bart M L Baselmans
- Department of Biological Psychology, Amsterdam Public Health Research Institute, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Priyanka Parmar
- Center for Life Course Health Research, University of Oulu, P.O. Box 5000, 90014, Oulu, Finland
- Biocenter Oulu, University of Oulu, P.O. Box 5000, 90014, Oulu, Finland
| | - Estelle Lowry
- Center for Life Course Health Research, University of Oulu, P.O. Box 5000, 90014, Oulu, Finland
- Queen's University Belfast, Belfast, UK
| | - Fabian Streit
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Lea Sirignano
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Tabea S Send
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Josef Frank
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Juulia Jylhävä
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Yunzhang Wang
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Pashupati Prasad Mishra
- Department of Clinical Chemistry, Fimlab Laboratories, and Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, 33520, Finland
| | - Olivier F Colins
- Curium-LUMC, Department of Child and Adolescent Psychiatry, Leiden University Medical Center, Oegstgeest, The Netherlands
- Department of Special Needs Education, Ghent University, Ghent, Belgium
| | - David L Corcoran
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Richie Poulton
- Dunedin Multidisciplinary Health and Development Research Unit, Department of Psychology, University of Otago, Dunedin, New Zealand
| | - Jonathan Mill
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Eilis Hannon
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Louise Arseneault
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Tellervo Korhonen
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Eero Vuoksimaa
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Janine F Felix
- Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Darina Czamara
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804, Munich, Germany
| | - Elisabeth Binder
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804, Munich, Germany
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 12 Executive Park Dr, Atlanta, GA, 30329, USA
| | - Eva Corpeleijn
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, Groningen, The Netherlands
| | - Juan R Gonzalez
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Regina Grazuleviciene
- Department of Environmental Sciences, Vytautas Magnus University, K. Donelaicio str. 58, 44248, Kaunas, Lithuania
| | - Kristine B Gutzkow
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Jorunn Evandt
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Marina Vafeiadi
- Department of Social Medicine, University of Crete, Heraklion, Greece
| | - Marieke Klein
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- University Medical Center Utrecht, UMC Utrecht Brain Center, Department of Psychiatry, Utrecht, The Netherlands
| | - Dennis van der Meer
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Lannie Ligthart
- Department of Biological Psychology, Amsterdam Public Health Research Institute, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | - Gareth E Davies
- Avera Institute for Human Genetics, 3720 W. 69th Street, Sioux Falls, SD, 57108, USA
| | - Christian Hakulinen
- Department of Psychology and logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | | | - Barbara Franke
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Christine M Freitag
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, Goethe-Universität, Frankfurt am Main, Germany
| | - Kerstin Konrad
- University Hospital, RWTH Aachen, Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Aachen, Germany
- JARA-Brain Institute II, Molecular Neuroscience and Neuroimaging (INM-11), RWTH Aachen & Research Centre Juelich, Juelich, Germany
| | - Amaia Hervas
- Hospital Universitario Mutua de Terrassa, Child and Adolescent Mental Health Service, Barcelona, Spain
| | | | - Agnes Vetro
- Szeged University, Department of Pediatrics and Pediatrics health center, Child and Adolescent Psychiatry, Szeged, Hungary
| | - Olli Raitakari
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, and Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, 33520, Finland
| | - Robert Vermeiren
- Curium-LUMC, Department of Child and Adolescent Psychiatry, Leiden University Medical Center, Oegstgeest, The Netherlands
- Youz, Parnassia Group, The Hague, The Netherlands
| | - Timo Strandberg
- Helsinki University Central Hospital, Geriatrics, Helsinki, Finland
| | - Katri Räikkönen
- Department of Psychology and logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Harold Snieder
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, Groningen, The Netherlands
| | - Stephanie H Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Michael Deuschle
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Nancy L Pedersen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Sara Hägg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Jordi Sunyer
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Lude Franke
- Department of Genetics, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Jaakko Kaprio
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Miina Ollikainen
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Terrie E Moffitt
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Henning Tiemeier
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Social and Behavioral Science, Harvard TH Chan School of Public Health, Boston, USA
| | - Marinus H van IJzendoorn
- Department of Psychology, Education and Child Studies, Erasmus University Rotterdam, Rotterdam, The Netherlands
- Department of Clinical, Educational and Health Psychology, UCL, University of London, London, UK
| | - Caroline Relton
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- MRC Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Martine Vrijheid
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Sylvain Sebert
- Center for Life Course Health Research, University of Oulu, P.O. Box 5000, 90014, Oulu, Finland
- Biocenter Oulu, University of Oulu, P.O. Box 5000, 90014, Oulu, Finland
- Section of Genomics of Common Disease, Department of Medicine, Imperial College London, Hammersmith Hospital Campus, Burlington Danes Building, Du Cane Road, London, W12 0NN, UK
| | - Marjo-Riitta Jarvelin
- Center for Life Course Health Research, University of Oulu, P.O. Box 5000, 90014, Oulu, Finland
- Biocenter Oulu, University of Oulu, P.O. Box 5000, 90014, Oulu, Finland
- MRC-PHE Centre for Environment and Health, Imperial College London, Hammersmith Hospital Campus, Burlington Danes Building, Du Cane Road, London, W12 0NN, UK
| | - Avshalom Caspi
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Kathryn L Evans
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | | | - Meike Bartels
- Department of Biological Psychology, Amsterdam Public Health Research Institute, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Dorret I Boomsma
- Department of Biological Psychology, Amsterdam Public Health Research Institute, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
23
|
Boomsma DI, van Beijsterveldt TCEM, Odintsova VV, Neale MC, Dolan CV. Genetically Informed Regression Analysis: Application to Aggression Prediction by Inattention and Hyperactivity in Children and Adults. Behav Genet 2021; 51:250-263. [PMID: 33259025 PMCID: PMC8093158 DOI: 10.1007/s10519-020-10025-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 10/06/2020] [Indexed: 12/11/2022]
Abstract
We present a procedure to simultaneously fit a genetic covariance structure model and a regression model to multivariate data from mono- and dizygotic twin pairs to test for the prediction of a dependent trait by multiple correlated predictors. We applied the model to aggressive behavior as an outcome trait and investigated the prediction of aggression from inattention (InA) and hyperactivity (HA) in two age groups. Predictions were examined in twins with an average age of 10 years (11,345 pairs), and in adult twins with an average age of 30 years (7433 pairs). All phenotypes were assessed by the same, but age-appropriate, instruments in children and adults. Because of the different genetic architecture of aggression, InA and HA, a model was fitted to these data that specified additive and non-additive genetic factors (A and D) plus common and unique environmental (C and E) influences. Given appropriate identifying constraints, this ADCE model is identified in trivariate data. We obtained different results for the prediction of aggression in children, where HA was the more important predictor, and in adults, where InA was the more important predictor. In children, about 36% of the total aggression variance was explained by the genetic and environmental components of HA and InA. Most of this was explained by the genetic components of HA and InA, i.e., 29.7%, with 22.6% due to the genetic component of HA. In adults, about 21% of the aggression variance was explained. Most was this was again explained by the genetic components of InA and HA (16.2%), with 8.6% due to the genetic component of InA.
Collapse
Affiliation(s)
- Dorret I Boomsma
- Netherlands Twin Register, Department of Biological Psychology, Vrije Universiteit, Amsterdam, The Netherlands.
- Amsterdam Public Health (APH) and Amsterdam Reproduction and Development Research Institutes, Amsterdam, The Netherlands.
| | | | - Veronika V Odintsova
- Netherlands Twin Register, Department of Biological Psychology, Vrije Universiteit, Amsterdam, The Netherlands
- Amsterdam Public Health (APH) and Amsterdam Reproduction and Development Research Institutes, Amsterdam, The Netherlands
| | - Michael C Neale
- Departments of Psychiatry and Human & Molecular Genetics, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, 1-156, P.O. Box 980126, Richmond, VA, 23298-0126, USA
| | - Conor V Dolan
- Netherlands Twin Register, Department of Biological Psychology, Vrije Universiteit, Amsterdam, The Netherlands
- Amsterdam Public Health (APH) and Amsterdam Reproduction and Development Research Institutes, Amsterdam, The Netherlands
| |
Collapse
|
24
|
Whipp AM, Vuoksimaa E, Korhonen T, Pool R, But A, Ligthart L, Hagenbeek FA, Bartels M, Bogl LH, Pulkkinen L, Rose RJ, Boomsma DI, Kaprio J. Ketone body 3-hydroxybutyrate as a biomarker of aggression. Sci Rep 2021; 11:5813. [PMID: 33712630 PMCID: PMC7955062 DOI: 10.1038/s41598-021-84635-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 02/09/2021] [Indexed: 01/05/2023] Open
Abstract
Human aggression is a complex behaviour, the biological underpinnings of which remain poorly known. To gain insights into aggression biology, we studied relationships with aggression of 11 low-molecular-weight metabolites (amino acids, ketone bodies), processed using 1H nuclear magnetic resonance spectroscopy. We used a discovery sample of young adults and an independent adult replication sample. We studied 725 young adults from a population-based Finnish twin cohort born 1983-1987, with aggression levels rated in adolescence (ages 12, 14, 17) by multiple raters and blood plasma samples at age 22. Linear regression models specified metabolites as the response variable and aggression ratings as predictor variables, and included several potential confounders. All metabolites showed low correlations with aggression, with only one-3-hydroxybutyrate, a ketone body produced during fasting-showing significant (negative) associations with aggression. Effect sizes for different raters were generally similar in magnitude, while teacher-rated (age 12) and self-rated (age 14) aggression were both significant predictors of 3-hydroxybutyrate in multi-rater models. In an independent replication sample of 960 adults from the Netherlands Twin Register, higher aggression (self-rated) was also related to lower levels of 3-hydroxybutyrate. These exploratory epidemiologic results warrant further studies on the role of ketone metabolism in aggression.
Collapse
Affiliation(s)
- A M Whipp
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland.
| | - E Vuoksimaa
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - T Korhonen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - R Pool
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Amsterdam Public Health (APH) Research Institute, Amsterdam, The Netherlands
| | - A But
- Clinicum, Department of Public Health, University of Helsinki, Helsinki, Finland
| | - L Ligthart
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - F A Hagenbeek
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Amsterdam Public Health (APH) Research Institute, Amsterdam, The Netherlands
| | - M Bartels
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Amsterdam Public Health (APH) Research Institute, Amsterdam, The Netherlands
| | - L H Bogl
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland.,Department of Epidemiology, Centre for Public Health, Medical University of Vienna, Vienna, Austria
| | - L Pulkkinen
- Department of Psychology, University of Jyvaskyla, Jyvaskyla, Finland
| | - R J Rose
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, USA
| | - D I Boomsma
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Amsterdam Public Health (APH) Research Institute, Amsterdam, The Netherlands
| | - J Kaprio
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland.,Clinicum, Department of Public Health, University of Helsinki, Helsinki, Finland
| |
Collapse
|
25
|
Qadeer MI, Amar A, Huang YY, Min E, Galfalvy H, Hasnain S, Mann JJ. Association of serotonin system-related genes with homicidal behavior and criminal aggression in a prison population of Pakistani Origin. Sci Rep 2021; 11:1670. [PMID: 33462318 PMCID: PMC7813852 DOI: 10.1038/s41598-021-81198-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 11/26/2020] [Indexed: 12/27/2022] Open
Abstract
The serotonin transporter (SLC6A4), 5-HT2A (HTR2A) and 5-HT2B (HTR2B) recepter genes, express proteins that are important regulators of serotonin reuptake and signaling, and thereby may contribute to the pathogenesis of aggressive criminal behavior. 370 sentenced murderers in Pakistani prisons and 359 men without any history of violence or criminal delinquency were genotyped for six candidate polymorphisms in SLC6A4, HTR2A and HTR2B genes. An association of higher expressing L/L and LA/LA variants of the 5-HTTLPR polymorphism was observed with homicidal behavior (bi-allelic: OR = 1.29, p = 0.016, tri-allelic: OR = 1.32, p = 0.015) and in the murderer group only with response to verbal abuse (OR = 2.11, p = 0.015), but not with other measures of self-reported aggression. L/L and LA/LA genotypes of the 5-HTTLPR polymorphism were associated with higher aggression scores on STAX1 scale of aggression compared to lower expressing genotypes (S/S, S/LG, LG/LG) in prison inmates. No associations were apparent for other serotonergic gene polymorphisms analyzed. Using the Braineac and GTEx databases, we demonstrated significant eQTL based functional effects for rs25531 in HTTLPR and other serotonergic polymorphisms analyzed in different brain regions and peripheral tissues. In conclusion, these findings implicate SLC6A4* HTTLPR as a major genetic determinant associated with criminal aggression. Future studies are needed to replicate this finding and establish the biologic intermediate phenotypes mediating this relationship.
Collapse
Affiliation(s)
- Muhammad Imran Qadeer
- Department of Microbiology and Molecular Genetics, University of the Punjab, Khyaban-e-Jamia Punjab, Lahore, 54600, Pakistan. .,Division of Molecular Imaging and Neuropathology, Department of Psychiatry, New York State Psychiatric Institute, Columbia University, New York, NY, USA.
| | - Ali Amar
- Department of Human Genetics and Molecular Biology, University of Health Sciences, Lahore, Pakistan
| | - Yung-Yu Huang
- Division of Molecular Imaging and Neuropathology, Department of Psychiatry, New York State Psychiatric Institute, Columbia University, New York, NY, USA
| | - Eli Min
- Division of Molecular Imaging and Neuropathology, Department of Psychiatry, New York State Psychiatric Institute, Columbia University, New York, NY, USA
| | - Hanga Galfalvy
- Mental Health Data Science Division, Department of Psychiatry, Columbia University, New York, NY, USA
| | - Shahida Hasnain
- Department of Microbiology and Molecular Genetics, University of the Punjab, Khyaban-e-Jamia Punjab, Lahore, 54600, Pakistan
| | - J John Mann
- Division of Molecular Imaging and Neuropathology, Department of Psychiatry, New York State Psychiatric Institute, Columbia University, New York, NY, USA
| |
Collapse
|
26
|
Hendriks AM, Ip HF, Nivard MG, Finkenauer C, Van Beijsterveldt CE, Bartels M, Boomsma DI. Content, diagnostic, correlational, and genetic similarities between common measures of childhood aggressive behaviors and related psychiatric traits. J Child Psychol Psychiatry 2020; 61:1328-1338. [PMID: 32080854 PMCID: PMC7754303 DOI: 10.1111/jcpp.13218] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 12/19/2019] [Accepted: 01/03/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Given the role of childhood aggressive behavior (AGG) in everyday child development, precise and accurate measurement is critical in clinical practice and research. This study aims to quantify agreement among widely used measures of childhood AGG regarding item content, clinical concordance, correlation, and underlying genetic construct. METHODS We analyzed data from 1254 Dutch twin pairs (age 8-10 years, 51.1% boys) from a general population sample for whom both parents completed the A-TAC, CBCL, and SDQ at the same occasion. RESULTS There was substantial variation in item content among AGG measures, ranging from .00 (i.e., mutually exclusive) to .50 (moderate agreement). Clinical concordance (i.e., do the same children score above a clinical threshold among AGG measures) was very weak to moderate with estimates ranging between .01 and .43 for mother-reports and between .12 and .42 for father-reports. Correlations among scales were weak to strong, ranging from .32 to .70 for mother-reports and from .32 to .64 for father-reports. We found weak to very strong genetic correlations among the measures, with estimates between .65 and .84 for mother-reports and between .30 and .87 for father-reports. CONCLUSIONS Our results demonstrated that degree of agreement between measures of AGG depends on the type (i.e., item content, clinical concordance, correlation, genetic correlation) of agreement considered. Because agreement was higher for correlations compared to clinical concordance (i.e., above or below a clinical cutoff), we propose the use of continuous scores to assess AGG, especially for combining data with different measures. Although item content can be different and agreement among observed measures may not be high, the genetic correlations indicate that the underlying genetic liability for childhood AGG is consistent across measures.
Collapse
Affiliation(s)
- Anne M. Hendriks
- Department of Biological PsychologyVrije Universiteit AmsterdamAmsterdamThe Netherlands
- Amsterdam Public Health Research InstituteAmsterdamThe Netherlands
| | - Hill F. Ip
- Department of Biological PsychologyVrije Universiteit AmsterdamAmsterdamThe Netherlands
- Amsterdam Public Health Research InstituteAmsterdamThe Netherlands
| | - Michel G. Nivard
- Department of Biological PsychologyVrije Universiteit AmsterdamAmsterdamThe Netherlands
- Amsterdam Public Health Research InstituteAmsterdamThe Netherlands
| | - Catrin Finkenauer
- Department of Biological PsychologyVrije Universiteit AmsterdamAmsterdamThe Netherlands
- Department of Interdisciplinary Social Sciences: Youth StudiesUtrecht UniversityUtrechtThe Netherlands
| | | | - Meike Bartels
- Department of Biological PsychologyVrije Universiteit AmsterdamAmsterdamThe Netherlands
- Amsterdam Public Health Research InstituteAmsterdamThe Netherlands
| | - Dorret I. Boomsma
- Department of Biological PsychologyVrije Universiteit AmsterdamAmsterdamThe Netherlands
- Amsterdam Public Health Research InstituteAmsterdamThe Netherlands
| |
Collapse
|
27
|
Hagenbeek FA, Roetman PJ, Pool R, Kluft C, Harms AC, van Dongen J, Colins OF, Talens S, van Beijsterveldt CEM, Vandenbosch MMLJZ, de Zeeuw EL, Déjean S, Fanos V, Ehli EA, Davies GE, Hottenga JJ, Hankemeier T, Bartels M, Vermeiren RRJM, Boomsma DI. Urinary Amine and Organic Acid Metabolites Evaluated as Markers for Childhood Aggression: The ACTION Biomarker Study. Front Psychiatry 2020; 11:165. [PMID: 32296350 PMCID: PMC7138132 DOI: 10.3389/fpsyt.2020.00165] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 02/21/2020] [Indexed: 01/05/2023] Open
Abstract
Biomarkers are of interest as potential diagnostic and predictive instruments in personalized medicine. We present the first urinary metabolomics biomarker study of childhood aggression. We aim to examine the association of urinary metabolites and neurotransmitter ratios involved in key metabolic and neurotransmitter pathways in a large cohort of twins (N = 1,347) and clinic-referred children (N = 183) with an average age of 9.7 years. This study is part of ACTION (Aggression in Children: Unraveling gene-environment interplay to inform Treatment and InterventiON strategies), in which we developed a standardized protocol for large-scale collection of urine samples in children. Our analytical design consisted of three phases: a discovery phase in twins scoring low or high on aggression (N = 783); a replication phase in twin pairs discordant for aggression (N = 378); and a validation phase in clinical cases and matched twin controls (N = 367). In the discovery phase, 6 biomarkers were significantly associated with childhood aggression, of which the association of O-phosphoserine (β = 0.36; SE = 0.09; p = 0.004), and gamma-L-glutamyl-L-alanine (β = 0.32; SE = 0.09; p = 0.01) remained significant after multiple testing. Although non-significant, the directions of effect were congruent between the discovery and replication analyses for six biomarkers and two neurotransmitter ratios and the concentrations of 6 amines differed between low and high aggressive twins. In the validation analyses, the top biomarkers and neurotransmitter ratios, with congruent directions of effect, showed no significant associations with childhood aggression. We find suggestive evidence for associations of childhood aggression with metabolic dysregulation of neurotransmission, oxidative stress, and energy metabolism. Although replication is required, our findings provide starting points to investigate causal and pleiotropic effects of these dysregulations on childhood aggression.
Collapse
Affiliation(s)
- Fiona A. Hagenbeek
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, Netherlands
| | - Peter J. Roetman
- Curium-LUMC, Department of Child and Adolescent Psychiatry, Leiden University Medical Center, Leiden, Netherlands
| | - René Pool
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, Netherlands
| | | | - Amy C. Harms
- Division of Analytical Biosciences, Leiden Academic Center for Drug Research, Leiden University, Leiden, Netherlands
- The Netherlands Metabolomics Centre, Leiden, Netherlands
| | - Jenny van Dongen
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, Netherlands
| | - Olivier F. Colins
- Curium-LUMC, Department of Child and Adolescent Psychiatry, Leiden University Medical Center, Leiden, Netherlands
- Department Special Needs Education, Ghent University, Ghent, Belgium
| | | | | | | | - Eveline L. de Zeeuw
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, Netherlands
| | - Sébastien Déjean
- Toulouse Mathematics Institute, University of Toulouse, CNRS, Toulouse, France
| | - Vassilios Fanos
- Department of Surgical Sciences, University of Cagliari and Neonatal Intensive Care Unit, Cagliari, Italy
| | - Erik A. Ehli
- Avera Institute for Human Genetics, Sioux Falls, SD, United States
| | - Gareth E. Davies
- Avera Institute for Human Genetics, Sioux Falls, SD, United States
| | - Jouke Jan Hottenga
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Thomas Hankemeier
- Division of Analytical Biosciences, Leiden Academic Center for Drug Research, Leiden University, Leiden, Netherlands
- The Netherlands Metabolomics Centre, Leiden, Netherlands
| | - Meike Bartels
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, Netherlands
- Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Robert R. J. M. Vermeiren
- Curium-LUMC, Department of Child and Adolescent Psychiatry, Leiden University Medical Center, Leiden, Netherlands
| | - Dorret I. Boomsma
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, Netherlands
- Amsterdam Neuroscience, Amsterdam, Netherlands
| |
Collapse
|