1
|
Traine J, Rusman Q, Schiestl FP. Too hot to handle: temperature-induced plasticity influences pollinator behaviour and plant fitness. THE NEW PHYTOLOGIST 2024; 243:1571-1585. [PMID: 38922897 DOI: 10.1111/nph.19918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/15/2024] [Indexed: 06/28/2024]
Abstract
Increased temperature can induce plastic changes in many plant traits. However, little is known about how these changes affect plant interactions with insect pollinators and herbivores, and what the consequences for plant fitness and selection are. We grew fast-cycling Brassica rapa plants at two temperatures (ambient and increased temperature) and phenotyped them (floral traits, scent, colour and glucosinolates). We then exposed plants to both pollinators (Bombus terrestris) and pollinating herbivores (Pieris rapae). We measured flower visitation, oviposition of P. rapae, herbivore development and seed output. Plants in the hot environment produced more but smaller flowers, with lower UV reflectance and emitted a different volatile blend with overall lower volatile emission. Moreover, these plants received fewer first-choice visits by bumblebees and butterflies, and fewer flower visits by butterflies. Seed production was lower in hot environment plants, both because of a reduction in flower fertility due to temperature and because of the reduced visitation of pollinators. The selection on plant traits changed in strength and direction between temperatures. Our study highlights an important mechanism by which global warming can change plant-pollinator interactions and negatively impact plant fitness, as well as potentially alter plant evolution through changes in phenotypic selection.
Collapse
Affiliation(s)
- Juan Traine
- Department of Systematic and Evolutionary Botany, University of Zürich, Zollikerstrasse 107, Zürich, 8008, Switzerland
| | - Quint Rusman
- Department of Systematic and Evolutionary Botany, University of Zürich, Zollikerstrasse 107, Zürich, 8008, Switzerland
| | - Florian P Schiestl
- Department of Systematic and Evolutionary Botany, University of Zürich, Zollikerstrasse 107, Zürich, 8008, Switzerland
| |
Collapse
|
2
|
Hederström V, Ekroos J, Friberg M, Krausl T, Opedal ØH, Persson AS, Petrén H, Quan Y, Smith HG, Clough Y. Pollinator-mediated effects of landscape-scale land use on grassland plant community composition and ecosystem functioning - seven hypotheses. Biol Rev Camb Philos Soc 2024; 99:675-698. [PMID: 38118437 DOI: 10.1111/brv.13040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/22/2023]
Abstract
Environmental change is disrupting mutualisms between organisms worldwide. Reported declines in insect populations and changes in pollinator community compositions in response to land use and other environmental drivers have put the spotlight on the need to conserve pollinators. While this is often motivated by their role in supporting crop yields, the role of pollinators for reproduction and resulting taxonomic and functional assembly in wild plant communities has received less attention. Recent findings suggest that observed and experimental gradients in pollinator availability can affect plant community composition, but we know little about when such shifts are to be expected, or the impact they have on ecosystem functioning. Correlations between plant traits related to pollination and plant traits related to other important ecosystem functions, such as productivity, nitrogen uptake or palatability to herbivores, lead us to expect non-random shifts in ecosystem functioning in response to changes in pollinator communities. At the same time, ecological and evolutionary processes may counteract these effects of pollinator declines, limiting changes in plant community composition, and in ecosystem functioning. Despite calls to investigate community- and ecosystem-level impacts of reduced pollination, the study of pollinator effects on plants has largely been confined to impacts on plant individuals or single-species populations. With this review we aim to break new ground by bringing together aspects of landscape ecology, ecological and evolutionary plant-insect interactions, and biodiversity-ecosystem functioning research, to generate new ideas and hypotheses about the ecosystem-level consequences of pollinator declines in response to land-use change, using grasslands as a focal system. Based on an integrated set of seven hypotheses, we call for more research investigating the putative pollinator-mediated links between landscape-scale land use and ecosystem functioning. In particular, future research should use combinations of experimental and observational approaches to assess the effects of changes in pollinator communities over multiple years and across species on plant communities and on trait distributions both within and among species.
Collapse
Affiliation(s)
- Veronica Hederström
- Centre for Environmental and Climate Science, Lund University, Sölvegatan 37, Lund, 223 62, Sweden
| | - Johan Ekroos
- Centre for Environmental and Climate Science, Lund University, Sölvegatan 37, Lund, 223 62, Sweden
| | - Magne Friberg
- Department of Biology, Lund University, Sölvegatan 37, Lund, 223 62, Sweden
| | - Theresia Krausl
- Centre for Environmental and Climate Science, Lund University, Sölvegatan 37, Lund, 223 62, Sweden
| | - Øystein H Opedal
- Department of Biology, Lund University, Sölvegatan 37, Lund, 223 62, Sweden
| | - Anna S Persson
- Centre for Environmental and Climate Science, Lund University, Sölvegatan 37, Lund, 223 62, Sweden
| | - Hampus Petrén
- Department of Biology, Lund University, Sölvegatan 37, Lund, 223 62, Sweden
| | - Yuanyuan Quan
- Centre for Environmental and Climate Science, Lund University, Sölvegatan 37, Lund, 223 62, Sweden
| | - Henrik G Smith
- Centre for Environmental and Climate Science, Lund University, Sölvegatan 37, Lund, 223 62, Sweden
- Department of Biology, Lund University, Sölvegatan 37, Lund, 223 62, Sweden
| | - Yann Clough
- Centre for Environmental and Climate Science, Lund University, Sölvegatan 37, Lund, 223 62, Sweden
| |
Collapse
|
3
|
Hou M, Opedal ØH, Zhao ZG. Sexually concordant selection on floral traits despite greater opportunity for selection through male fitness. THE NEW PHYTOLOGIST 2024; 241:926-936. [PMID: 37899633 DOI: 10.1111/nph.19370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/16/2023] [Indexed: 10/31/2023]
Abstract
Pollinators are important drivers of floral trait evolution, yet plant populations are not always perfectly adapted to their pollinators. Such apparent maladaptation may result from conflicting selection through male and female sexual functions in hermaphrodites. We studied sex-specific mating patterns and phenotypic selection on floral traits in Aconitum gymnandrum. After genotyping 1786 offspring, we partitioned individual fitness into sex-specific selfed and outcrossed components and estimated phenotypic selection acting through each. Relative fitness increased with increasing mate number, and more so for male function. This led to greater opportunity for selection through outcrossed male fitness, though patterns of phenotypic selection on floral traits tended to be similar, and with better support for selection through female rather than male fitness components. We detected directional selection through one or more fitness component for larger flower number, larger flowers, and more negative nectar gradients within inflorescences. Our results are consistent with Bateman's principles for sex-specific mating patterns and illustrate that, despite the expected difference in opportunity for selection, patterns of variation in selection across traits can be rather similar for the male and female sexual functions. These results shed new light on the effect of sexual selection on the evolution of floral traits.
Collapse
Affiliation(s)
- Meng Hou
- College of Ecology, Lanzhou University, 730000, Lanzhou, China
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 130102, Changchun, China
| | | | - Zhi-Gang Zhao
- College of Ecology, Lanzhou University, 730000, Lanzhou, China
| |
Collapse
|
4
|
McCarren S, Johnson SD, Theron GL, Coetzee A, Turner R, Midgley J. Flower orientation and corolla length as reproductive barriers in the pollinator-driven divergence of Erica shannonea and Erica ampullacea. PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:1083-1090. [PMID: 37676744 DOI: 10.1111/plb.13575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/08/2023] [Indexed: 09/09/2023]
Abstract
A variety of reproductive barriers can enable reproductive isolation and stable coexistence of plant species. Differing floral traits might play an important role in reproductive isolation imposed by pollinators. Such shifts in pollinator use have been hypothesized to contribute to the radiation of Erica (Ericaceae) in the Cape Floristic Region, South Africa. The sister species Erica shannonea and Erica ampullacea co-occur and overlap in flowering phenology. Both have unscented long-tubed flowers consistent with adaptations for pollination by long-proboscid flies (LPFs), but differences in flower orientation and corolla tube length are indicative of a shift in pollinator species. We conducted controlled pollination experiments and pollinator observations to determine the breeding system and pollinators of the two species. Both species are self-incompatible and require pollinator visits for seed production, suggesting that pollinators could strongly influence flower evolution. The horizontally orientated flowers of E. shannonea were found to be pollinated by Philoliche rostrata (Tabanidae), which has a long, fixed forward-pointing proboscis, while the vertically upright orientated flowers of E. ampullacea were found to be pollinated by Prosoeca westermanni (Nemestrinidae), which has a shorter proboscis that can swivel downwards. The nemestrinid fly's proboscis is too short to access the nectar in the relative long-tubed flowers of E. shannonea and the tabanid fly's proboscis cannot swivel down to access the upright flowers of E. ampullacea. Consequently, these traits are likely to act as reproductive barriers between the two Erica species and thereby might have contributed to speciation and enable stable coexistence.
Collapse
Affiliation(s)
- S McCarren
- Department of Biological Sciences, University of Cape Town, Cape Town, South Africa
| | - S D Johnson
- Centre for Functional Biodiversity, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - G L Theron
- Department of Natural Sciences, KwaZulu-Natal Museum, Pietermaritzburg, South Africa
| | - A Coetzee
- Nelson-Mandela University, George, South Africa
| | - R Turner
- Department of Biological Sciences, University of Cape Town, Cape Town, South Africa
| | - J Midgley
- Department of Biological Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
5
|
Tianle C, Yunhan F, Delong L, Haitao X, Lanting M, Xueqing S, Liuxu Y, Yu H, Guizhi W. Transcriptomic analysis to elucidate the response of Apis mellifera ligustica brain tissue to fluvalinate exposure. Anim Biotechnol 2023; 34:4175-4186. [PMID: 35436166 DOI: 10.1080/10495398.2022.2061506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
As a commonly used acaricide in apiculture, fluvalinate is used to kill Varroa mites, while it also damages the nervous system of honeybees. To date, the transcriptomic characteristics associated with fluvalinate-induced neuronal injury in the bee brain have not been reported. Here, we performed transcriptome sequencing on Apis mellifera ligustica (A. mellifera ligustica) brain tissues collected before and after fluvalinate treatment. A total of 546 differentially expressed genes (DEGs) were detected, and these DEGs mainly showed 4 different expression patterns. Further analysis revealed that DEGs with different expression patterns were mainly involved in lipid metabolism, amino acid metabolism, visual transduction, and neural response-related GO terms and KEGG pathways. Moreover, protein-protein interaction network analysis revealed five protein-coding DEGs as key genes, which may play important roles in the resistance to fluvalinate-induced honeybee brain nerve tissue damage. In summary, this study is the first to perform a detailed characterization and functional analysis of genes related to fluvalinate stimulation in honeybee brains.
Collapse
Affiliation(s)
- Chao Tianle
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, Shandong, China
| | - Fan Yunhan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, Shandong, China
| | - Lou Delong
- Comprehensive Testing and Inspection Center, Shandong Provincial Animal Husbandry and Veterinary Bureau, Jinan, Shandong, China
| | - Xia Haitao
- Animal Husbandry Development Center of Linqu County, Weifang, Shandong, China
| | - Ma Lanting
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, Shandong, China
| | - Shan Xueqing
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, Shandong, China
| | - Yang Liuxu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, Shandong, China
| | - He Yu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, Shandong, China
| | - Wang Guizhi
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, Shandong, China
| |
Collapse
|
6
|
Brown KS, Caruso CM. The effect of experimental pollinator decline on pollinator-mediated selection on floral traits. Ecol Evol 2023; 13:e10706. [PMID: 37953983 PMCID: PMC10636310 DOI: 10.1002/ece3.10706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 10/22/2023] [Indexed: 11/14/2023] Open
Abstract
Human-mediated environmental change, by reducing mean fitness, is hypothesized to strengthen selection on traits that mediate interactions among species. For example, human-mediated declines in pollinator populations are hypothesized to reduce mean seed production by increasing the magnitude of pollen limitation and thus strengthen pollinator-mediated selection on floral traits that increase pollinator attraction or pollen transfer efficiency. To test this hypothesis, we measured two female fitness components and six floral traits of Lobelia siphilitica plants exposed to supplemental hand-pollination, ambient open-pollination, or reduced open-pollination treatments. The reduced treatment simulated pollinator decline, while the supplemental treatment was used to estimate pollen limitation and pollinator-mediated selection. We found that plants in the reduced pollination treatment were significantly pollen limited, resulting in pollinator-mediated selection for taller inflorescences and more vibrant petals, both traits that could increase pollinator attraction. This contrasts with plants in the ambient pollination treatment, where reproduction was not pollen limited and there was not significant pollinator-mediated selection on any floral trait. Our results support the hypothesis that human-mediated environmental change can strengthen selection on traits of interacting species and suggest that these traits have the potential to evolve in response to changing environments.
Collapse
Affiliation(s)
- Kaitlyn S. Brown
- Department of Integrative BiologyUniversity of GuelphGuelphOntarioCanada
| | | |
Collapse
|
7
|
García Y, Dow BS, Parachnowitsch AL. Water deficit changes patterns of selection on floral signals and nectar rewards in the common morning glory. AOB PLANTS 2023; 15:plad061. [PMID: 37899982 PMCID: PMC10601024 DOI: 10.1093/aobpla/plad061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 08/24/2023] [Indexed: 10/31/2023]
Abstract
Understanding whether and how resource limitation alters phenotypic selection on floral traits is key to predict the evolution of plant-pollinator interactions under climate change. Two important resources predicted to decline with our changing climate are pollinators and water in the form of increased droughts. Most work, however, has studied these selective agents separately and in the case of water deficit, studies are rare. Here, we use the common morning glory (Ipomoea purpurea) to investigate the effects of experimental reduction in pollinator access and water availability on floral signals and nectar rewards and their effects on phenotypic selection on these traits. We conducted a manipulative experiment in a common garden, where we grew plants in three treatments: (1) pollinator restriction, (2) water reduction and (3) unmanipulated control. Plants in pollinator restriction and control treatments were well-watered compared to water deficit. We found that in contrast to pollinator restriction, water deficit had strong effects altering floral signals and nectar rewards but also differed in the direction and strength of selection on these traits compared to control plants. Water deficit increased the opportunity for selection, and selection in this treatment favoured lower nectar volumes and larger floral sizes, which might further alter pollinator visitation. In addition, well-watered plants, both in control and pollinator deficit, showed similar patterns of selection to increase nectar volume suggesting non-pollinator-mediated selection on nectar. Our study shows that floral traits may evolve in response to reduction in water access faster than to declines in pollinators and reinforces that abiotic factors can be important agents of selection for floral traits. Although only few experimental selection studies have manipulated access to biotic and abiotic resources, our results suggest that this approach is key for understanding how pollination systems may evolve under climate change.
Collapse
Affiliation(s)
- Yedra García
- Department of Biology, University of New Brunswick, 10 Bailey Dr, Fredericton, NB E3B 5A3, Canada
| | - Benjamin S Dow
- Department of Biology, University of New Brunswick, 10 Bailey Dr, Fredericton, NB E3B 5A3, Canada
| | - Amy L Parachnowitsch
- Department of Biology, University of New Brunswick, 10 Bailey Dr, Fredericton, NB E3B 5A3, Canada
| |
Collapse
|
8
|
van der Niet T, Egan PA, Schlüter PM. Evolutionarily inspired solutions to the crop pollination crisis. Trends Ecol Evol 2023; 38:435-445. [PMID: 36737302 DOI: 10.1016/j.tree.2022.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 02/04/2023]
Abstract
The global decline in insect diversity threatens pollination services, potentially impacting crop production and food security. Here, we argue that this looming pollination crisis is generally approached from an ecological standpoint, and that consideration of evolutionary principles offers a novel perspective. First, we outline that wild plant species have overcome 'pollination crises' throughout evolutionary history, and show how associated principles can be applied to crop pollination. We then highlight technological advances that can be used to adapt crop flowers for optimal pollination by local wild pollinators, especially by increasing generalization in pollination systems. Thus, synergies among fundamental evolutionary research, genetic engineering, and agro-ecological science provide a promising template for addressing a potential pollination crisis, complementing much-needed strategies focused on pollinator conservation.
Collapse
Affiliation(s)
- Timotheüs van der Niet
- Centre for Functional Biodiversity, School of Life Sciences, University of KwaZulu-Natal, P. Bag X01, 3209, Scottsville, Pietermaritzburg, South Africa.
| | - Paul A Egan
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, 230 53 Alnarp, Sweden
| | - Philipp M Schlüter
- Department of Plant Evolutionary Biology, Institute of Biology, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
| |
Collapse
|
9
|
Zhao X, Yang G, Hou Q, Min W, Wang T, Bao X. Effects of continuous variation in vertical and lateral herkogamy on reproductive success in Euphorbia fischeriana (Euphorbiaceae). Ecol Evol 2023; 13:e9836. [PMID: 36818532 PMCID: PMC9929625 DOI: 10.1002/ece3.9836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/17/2023] Open
Abstract
Continuous variation in herkogamy has been well reported, however, less attention has been paid to the phenomena that the consecutive expression of two types of herkogamy in the same flower. Euphorbia fischeriana, which have both vertical and lateral herkogamy, show vertical herkogamy during the female phase. However, their gynophores bend to one side with the male phase and show lateral herkogamy. In this study, we observed the effect of successive sexual organs movement on variation in herkogamy traits. By artificially manipulating the flower to present gynophore straightened in the floral center or bend to one side, we attempted to investigate whether herkogamy movement affects pollinator access efficiency, pollen removal and deposition, and seed set ratio. Furthermore, we conducted artificial pollination in the female phase to evaluate the effect of changes in pollination environment on the variations in herkogamy traits. The results showed that gynophore straightened in female phase favors pollen deposition, whereas gynophore bending in male phase was conducive to the removal of pollen. Visitation frequency, pollen deposition and removal, and seed set ratio decreased significantly when the gynophore movement was manipulated. Finally, the bending of gynophore was obviously promoted by pollination. Therefore, the continuous variation of herkogamy in the same flower of E. fischeriana caused by the bending of the gynophore could improve the accuracy of pollination and avoid the interference of the ovary with access efficiency. That may be an adaptive strategy when pollinators are scarce. Furthermore, our study also provides good support for the hypothesis that variations in herkogamy traits are strongly selected by differences in pollination environments.
Collapse
Affiliation(s)
- Xiang Zhao
- College of Life SciencesNorthwest Normal UniversityLanzhouChina
| | - Guang Yang
- College of Life SciencesNorthwest Normal UniversityLanzhouChina
| | - Qinzheng Hou
- College of Life SciencesNorthwest Normal UniversityLanzhouChina
| | - Wenrui Min
- College of Life SciencesNorthwest Normal UniversityLanzhouChina
| | - Taihong Wang
- College of Life SciencesNorthwest Normal UniversityLanzhouChina
| | - Xiaoyan Bao
- College of Life SciencesNorthwest Normal UniversityLanzhouChina
| |
Collapse
|
10
|
Waterman R, Sahli H, Koelling VA, Karoly K, Conner JK. Strong evidence for positive and negative correlational selection revealed by recreating ancestral variation. Evolution 2023; 77:264-275. [PMID: 36622224 DOI: 10.1093/evolut/qpac001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 09/27/2022] [Accepted: 10/06/2022] [Indexed: 01/10/2023]
Abstract
The study of adaptation helps explain biodiversity and predict future evolution. Yet the process of adaptation can be difficult to observe due to limited phenotypic variation in contemporary populations. Furthermore, the scarcity of male fitness estimates has made it difficult to both understand adaptation and evaluate sexual conflict hypotheses. We addressed both issues in our study of two anther position traits in wild radish (Raphanus raphanistrum): anther exsertion (long filament - corolla tube lengths) and anther separation (long - short filament lengths). These traits affect pollination efficiency and are particularly interesting due to the unusually high correlations among their component traits. We measured selection through male and female fitness on wild radish plants from populations artificially selected to recreate ancestral variation in each anther trait. We found little evidence for conflicts between male and female function. We found strong evidence for stabilizing selection on anther exsertion and disruptive selection on anther separation, indicating positive and negative correlational selection on the component traits. Intermediate levels of exsertion are likely an adaptation to best contact small bees. The function of anther separation is less clear, but future studies might investigate pollen placement on pollinators and compare species possessing multiple stamen types.
Collapse
Affiliation(s)
- Robin Waterman
- Kellogg Biological Station and Department of Plant Biology, Michigan State University, Hickory Corners, MI, United States
| | - Heather Sahli
- Kellogg Biological Station and Department of Plant Biology, Michigan State University, Hickory Corners, MI, United States.,Department of Biology, Shippensburg University, Shippensburg, PA 17257, United States
| | - Vanessa A Koelling
- Biology Department, Reed College, Portland, OR, United States.,Current Address: Department of Biology and Environmental Science, Auburn University at Montgomery, Montgomery, AL, United States
| | - Keith Karoly
- Biology Department, Reed College, Portland, OR, United States
| | - Jeffrey K Conner
- Kellogg Biological Station and Department of Plant Biology, Michigan State University, Hickory Corners, MI, United States
| |
Collapse
|
11
|
Rodríguez-Otero C, Hedrén M, Friberg M, Opedal ØH. Analysis of trait-performance-fitness relationships reveals pollinator-mediated selection on orchid pollination traits. AMERICAN JOURNAL OF BOTANY 2023:e16128. [PMID: 36655508 DOI: 10.1002/ajb2.16128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 07/24/2022] [Accepted: 08/01/2022] [Indexed: 06/17/2023]
Abstract
PREMISE The role of pollinators in evolutionary floral divergence has spurred substantial effort into measuring pollinator-mediated phenotypic selection and its variation in space and time. For such estimates, the fitness consequences of pollination processes must be separated from other factors affecting fitness. METHODS We built a fitness function linking phenotypic traits of food-deceptive orchids to female reproductive success by including pollinator visitation and pollen deposition as intermediate performance components and used the fitness function to estimate the strength of pollinator-mediated selection through female reproductive success. We also quantified male performance as pollinarium removal and assessed similarity in trait effects on male and female performance. RESULTS The proportion of plants visited at least once by an effective pollinator was moderate to high, ranging from 53.7% to 85.1%. Tall, many-flowered plants were often more likely to be visited and pollinated. Given effective pollination, pollen deposition onto stigmas tended to be more likely for taller plants. Pollen deposition further depended on traits affecting the physical fit of pollinators to flowers (flower size, spur length), though the exact relationships varied in time and space. Using the fitness function to assess pollinator-mediated selection through female reproductive success acting on multiple traits, we found that selection varied detectably among taxa after accounting for sampling uncertainty. Across taxa, selection on most traits was stronger on average and more variable when pollination was less reliable. CONCLUSIONS These results support pollination-related trait-performance-fitness relationships and thus pollinator-mediated selection on traits functionally involved in the pollination process.
Collapse
Affiliation(s)
| | - Mikael Hedrén
- Department of Biology, Biodiversity Unit, Lund University, SE, 22362, Lund, Sweden
| | - Magne Friberg
- Department of Biology, Biodiversity Unit, Lund University, SE, 22362, Lund, Sweden
| | - Øystein H Opedal
- Department of Biology, Biodiversity Unit, Lund University, SE, 22362, Lund, Sweden
| |
Collapse
|
12
|
Koski MH. Pollinators exert selection on floral traits in a pollen-limited, narrowly endemic spring ephemeral. AMERICAN JOURNAL OF BOTANY 2023; 110:e16101. [PMID: 36371765 PMCID: PMC10108127 DOI: 10.1002/ajb2.16101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
PREMISE Floral traits are frequently under pollinator-mediated selection, especially in taxa subject to strong pollen-limitation, such as those reliant on pollinators. However, antagonists can be agents of selection on floral traits as well. The causes of selection acting on spring ephemerals are understudied though these species can experience particularly strong pollen-limitation. I examined pollinator- and antagonist-mediated selection in a narrowly endemic spring ephemeral, Trillium discolor. METHODS I measured pollen limitation in T. discolor across two years and evaluated its breeding system. I compared selection on floral traits (display height, petal size, petal color, flowering time) between open-pollinated, and pollen-supplemented plants to measure the strength and mode of pollinator-mediated selection. I assessed whether natural levels of antagonism impacted selection on floral traits. RESULTS Trillium discolor was self-incompatible and experienced pollen limitation in both years of the study. Pollinators exerted negative disruptive selection on display height and petals size. In one year, pollinator-mediated selection favored lighter petals but in the second year pollinators favored darker petals. Antagonist damage did not alter selection on floral traits. CONCLUSIONS Results demonstrate that pollinators mediate the strength and mode of selection on floral traits in T. discolor. Interannual variation in the strength, mode, and direction of pollinator-mediated selection on floral traits could be important for maintaining of floral diversity in this system. Observed levels of antagonism were weak agents of selection on floral traits.
Collapse
Affiliation(s)
- Matthew H. Koski
- Department of Biological SciencesClemson UniversityClemsonSouth Carolina29634USA
| |
Collapse
|
13
|
Hossack GC, Caruso CM. Simulated pollinator decline has similar effects on seed production of female and hermaphrodite Lobelia siphilitica, but different effects on selection on floral traits. AMERICAN JOURNAL OF BOTANY 2023; 110:e16106. [PMID: 36401558 DOI: 10.1002/ajb2.16106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 11/06/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
PREMISE Pollinator decline, by reducing seed production, is predicted to strengthen natural selection on floral traits. However, the effect of pollinator decline on gender dimorphic species (such as gynodioecious species, where plants produce female or hermaphrodite flowers) may differ between the sex morphs: if pollinator decline reduces the seed production of females more than hermaphrodites, then it should also have a larger effect on selection on floral traits in females than in hermaphrodites. METHODS To simulate pollinator decline, we experimentally reduced pollinator access to female and hermaphrodite Lobelia siphilitica plants. We compared the seed production of plants in the reduced pollination treatment to plants that were exposed to ambient pollination conditions. Within each treatment, we also measured directional selection on four floral traits of females and hermaphrodites. RESULTS Experimentally reducing pollination decreased seed production of both females and hermaphrodites by ~21%. Reducing pollination also strengthened selection on floral traits, but this effect was not larger in females than in hermaphrodites. Instead, reducing pollination intensified selection for taller inflorescences in hermaphrodites, but did not intensify selection on any floral trait in females. CONCLUSIONS Our results suggest that pollinator decline will not have a larger effect on either seed production or selection on floral traits of female plants. As such, any effect of pollinator decline on seed production may be similar for gender dimorphic and monomorphic species. However, the potential for floral traits of females (and thus of gender dimorphic species) to evolve in response to pollinator decline may be limited.
Collapse
Affiliation(s)
| | - Christina M Caruso
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
14
|
Barbot E, Dufaÿ M, Tonnabel J, Godé C, De Cauwer I. On the function of flower number: disentangling fertility from pollinator-mediated selection. Proc Biol Sci 2022; 289:20221987. [PMID: 36448279 PMCID: PMC9709571 DOI: 10.1098/rspb.2022.1987] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/03/2022] [Indexed: 12/03/2022] Open
Abstract
In animal-pollinated angiosperms, the 'male-function' hypothesis claims that male reproductive success (RS) should benefit from large floral displays, through pollinator attraction, while female RS is expected to be mainly limited by resource availability. As appealing as this theory might be, studies comparing selection strength on flower number in both sexes rarely document the expected asymmetry. This discrepancy could arise because flower number impacts both pollinator attraction and overall gamete number. In this study, we artificially manipulate floral displays to disentangle the fertility versus pollinator attraction components of selection, both in terms of mating and RS. In females, flower number was under strong fertility selection, as predicted in the absence of pollen limitation. By contrast, in males, flower number was mainly under sexual selection, which in turn increased male RS. However, these selection patterns were not different in males with artificially increased floral displays. This suggests that sexual selection acting on flower number in males does not occur because flower number increases pollinator attraction, but rather because more pollen is available to disperse on more mates. Our study illustrates the power of disentangling various components of selection with potentially sex-specific effects for understanding the evolution of sexual dimorphism.
Collapse
Affiliation(s)
- Estelle Barbot
- Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France
- ISEM, Univ. Montpellier, CNRS, IRD, Montpellier, France
| | - Mathilde Dufaÿ
- CEFE, Univ. Montpellier, CNRS, Univ. Paul Valéry Montpellier 3, EPHE, IRD, Montpellier, France
| | - Jeanne Tonnabel
- ISEM, Univ. Montpellier, CNRS, IRD, Montpellier, France
- CEFE, Univ. Montpellier, CNRS, Univ. Paul Valéry Montpellier 3, EPHE, IRD, Montpellier, France
| | - Cécile Godé
- Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France
| | | |
Collapse
|
15
|
Chen M, Zhao XY, Yue P, Guo XX, Qiao JJ, Li XY. Effect of grazing disturbance on floral display, pollen limitation and plant pollination efficiency in the desert steppe. BMC PLANT BIOLOGY 2022; 22:514. [PMID: 36329386 PMCID: PMC9635133 DOI: 10.1186/s12870-022-03899-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Grazing disturbance usually affects floral display and pollination efficiency in the desert steppe, which may cause pollen limitation in insect-pollinated plants. Effective pollination is essential for the reproductive success of insect-pollinated plants and insufficient pollen transfer may result in pollen limitation. Caragana microphylla Lam is an arid region shrub with ecological importance. Few studies have been conducted on how grazing disturbance influences pollen limitation and pollination efficiency of C. microphylla. Here, we quantify the effect of different grazing intensities on floral display, pollinator visitation frequency and seed production in the Urat desert steppe. RESULTS In C. microphylla, supplemental hand pollination increased the seed set, and pollen limitation was the predominant limiting factor. As the heavy grazing significantly reduced the seed set in plants that underwent open-pollination, but there was no significant difference in the seed set between plants in the control plots and plants in the moderate grazing plots. Furthermore, there was a higher pollinator visitation frequency in plants in the control plots than in plants in the heavy grazing plots. CONCLUSIONS We found that pollinator visitation frequency was significantly associated with the number of open flowers. Our findings also demonstrated that seed production is associated with pollinator visitation frequency, as indicated by increased seed production in flowers with higher pollinator visitation frequency. Therefore, this study provides insight into the effect of different grazing intensities on floral display that are important for influencing pollinator visitation frequency and pollination efficiency in desert steppes.
Collapse
Affiliation(s)
- Min Chen
- Northwest Institute of Eco-Environment and Resources, CAS, Lanzhou, 730000, China.
- Urat Desert-Grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Lanzhou, 730000, Gansu Province, China.
| | - Xue-Yong Zhao
- Northwest Institute of Eco-Environment and Resources, CAS, Lanzhou, 730000, China
- Urat Desert-Grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Ping Yue
- Northwest Institute of Eco-Environment and Resources, CAS, Lanzhou, 730000, China
- Urat Desert-Grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Lanzhou, 730000, Gansu Province, China
| | - Xin-Xin Guo
- Northwest Institute of Eco-Environment and Resources, CAS, Lanzhou, 730000, China
- Urat Desert-Grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Jing-Juan Qiao
- Northwest Institute of Eco-Environment and Resources, CAS, Lanzhou, 730000, China
- Urat Desert-Grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Xiang-Yun Li
- Northwest Institute of Eco-Environment and Resources, CAS, Lanzhou, 730000, China
- Urat Desert-Grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| |
Collapse
|
16
|
Simón‐Porcar VI, Muñoz‐Pajares AJ, de Castro A, Arroyo J. Direct evidence supporting Darwin's hypothesis of cross-pollination promoted by sex organ reciprocity. THE NEW PHYTOLOGIST 2022; 235:2099-2110. [PMID: 35596603 PMCID: PMC9546006 DOI: 10.1111/nph.18266] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/09/2022] [Indexed: 05/28/2023]
Abstract
The floral phenotype plays a main role in the attraction and fit of pollinators. Both perianth traits and the positioning of sex organs can be subjected to natural selection and determine nonrandom mating patterns in populations. In stylar-polymorphic species, the Darwinian hypothesis predicts increased mating success between individuals with sex organs at equivalent heights (i.e. with higher reciprocity). We used paternity analyses in experimental populations of a stylar-dimorphic species. By comparing the observed mating patterns with those expected under random mating, we tested the effects of sex organ reciprocity and perianth traits on mating success. We also analysed phenotypic selection on perianth traits through female and male functions. The (dis)similarity of parental perianth traits had no direct effects on the mating patterns. Sex organ reciprocity had a positive effect on mating success. Narrow floral tubes increased this effect in upper sex organs. Perianth traits showed little signs of phenotypic selection. Female and absolute fitness measures resulted in different patterns of phenotypic selection. We provide precise empirical evidence of the Darwinian hypothesis about the functioning of stylar polymorphisms, demonstrating that mating patterns are determined by sex organ reciprocity and only those perianth traits which are critical to pollinator fit.
Collapse
Affiliation(s)
| | - A. Jesús Muñoz‐Pajares
- Department of GeneticsUniversity of GranadaE‐18071GranadaSpain
- Research Centre in Biodiversity and Genetic Resources (CIBIO)Campus Agrário de Vairão4485‐661VairãoPortugal
| | - Alejandra de Castro
- Department of Plant Biology and EcologyUniversity of SevilleE‐41080SevilleSpain
| | - Juan Arroyo
- Department of Plant Biology and EcologyUniversity of SevilleE‐41080SevilleSpain
| |
Collapse
|
17
|
Zhao X, Hou Q, Su X, Qu B, Fan B, Zhang H, Sun K. Variation of the floral traits and sexual allocation patterns of Clematis tangutica to the altitudinal gradient of the eastern Qinghai- Tibet Plateau. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01178-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
18
|
Egan PA, Stevenson PC, Stout JC. Pollinator selection against toxic nectar as a key facilitator of a plant invasion. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210168. [PMID: 35491597 DOI: 10.1098/rstb.2021.0168] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Plant compounds associated with herbivore defence occur widely in floral nectar and can impact pollinator health. We showed previously that Rhododendron ponticum nectar contains grayanotoxin I (GTX I) at concentrations that are lethal or sublethal to honeybees and a solitary bee in the plant's non-native range in Ireland. Here we further examined this conflict and tested the hypotheses that nectar GTX I is subject to negative pollinator-mediated selection in the non-native range, but that phenotypic linkage between GTX I levels in nectar and leaves acts as a constraint on independent evolution. We found that nectar GTX I experienced negative directional selection in the non-native range, in contrast to the native Iberian range, and that the magnitude and frequency of pollinator limitation indicated that selection was pollinator-mediated. Surprisingly, nectar GTX I levels were decoupled from those of leaves in the non-native range, which may have assisted post-invasion evolution of nectar without compromising the anti-herbivore function of GTX I (here demonstrated in bioassays with an ecologically relevant herbivore). Our study emphasizes the centrality of pollinator health as a concept linked to the invasion process, and how post-invasion evolution can be targeted toward minimizing lethal or sub-lethal effects on pollinators. This article is part of the theme issue 'Natural processes influencing pollinator health: from chemistry to landscapes'.
Collapse
Affiliation(s)
- Paul A Egan
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, PO Box 102, Alnarp 23053, Sweden
| | - Philip C Stevenson
- Royal Botanic Gardens, Kew, Kew Green, Richmond, Surrey TW9 3AE, UK.,Natural Resources Institute, University of Greenwich, Chatham, Kent ME4 4TB, UK
| | - Jane C Stout
- Department of Botany, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
19
|
Carlson ML, Fulkerson JR. Phenotypic selection on floral traits in the arctic plant
Parrya nudicaulis
(Brassicaceae). Ecol Evol 2022; 12:e8624. [PMID: 35261739 PMCID: PMC8888260 DOI: 10.1002/ece3.8624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 10/20/2021] [Accepted: 10/29/2021] [Indexed: 11/06/2022] Open
Abstract
The evolution of floral traits is often attributed to pollinator‐mediated selection; however, the importance of pollinators as selective agents in arctic environments is poorly resolved. In arctic and subarctic regions that are thought to be pollen limited, selection is expected to either favor floral traits that increase pollinator attraction or promote reproductive assurance through selfing. We quantified phenotypic selection on floral traits in two arctic and two subarctic populations of the self‐compatible, but largely pollinator‐dependent, Parrya nudicaulis. Additionally, we measured selection in plants in both open pollination and pollen augmentation treatments to estimate selection imposed by pollinators in one population. Seed production was found to be limited by pollen availability and strong directional selection on flower number was observed. We did not detect consistently greater magnitudes of selection on floral traits in the arctic relative to the subarctic populations. Directional selection for more pigmented flowers in one arctic population was observed, however. In some populations, selection on flower color was found to interact with other traits. We did not detect consistently stronger selection gradients across all traits for plants exposed to pollinator selection relative to those in the pollen augmentation treatment; however, directional selection tended to be higher for some floral traits in open‐pollinated plants.
Collapse
Affiliation(s)
- Matthew L. Carlson
- Alaska Center for Conservation Science University of Alaska Anchorage Anchorage Alaska USA
- Biological Sciences Department University of Alaska Anchorage Anchorage Alaska USA
| | - Justin R. Fulkerson
- Alaska Center for Conservation Science University of Alaska Anchorage Anchorage Alaska USA
- Biological Sciences Department University of Alaska Anchorage Anchorage Alaska USA
| |
Collapse
|
20
|
Wu Y, Barrett SCH, Duan X, Zhang J, Cha Y, Tu C, Li Q. Herbivore-Mediated Selection on Floral Display Covaries Nonlinearly With Plant-Antagonistic Interaction Intensity Among Primrose Populations. FRONTIERS IN PLANT SCIENCE 2021; 12:727957. [PMID: 34868113 PMCID: PMC8636000 DOI: 10.3389/fpls.2021.727957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
Quantifying the relations between plant-antagonistic interactions and natural selection among populations is important for predicting how spatial variation in ecological interactions drive adaptive differentiation. Here, we investigate the relations between the opportunity for selection, herbivore-mediated selection, and the intensity of plant-herbivore interaction among 11 populations of the insect-pollinated plant Primula florindae over 2 years. We experimentally quantified herbivore-mediated directional selection on three floral traits (two display and one phenological) within populations and found evidence for herbivore-mediated selection for a later flowering start date and a greater number of flowers per plant. The opportunity for selection and strength of herbivore-mediated selection on number of flowers varied nonlinearly with the intensity of herbivory among populations. These parameters increased and then decreased with increasing intensity of plant-herbivore interactions, defined as an increase in the ratio of herbivore-damaged flowers per individual. Our results provide novel insights into how plant-antagonistic interactions can shape spatial variation in selection on floral traits and contribute toward understanding the mechanistic basis of geographic variation in angiosperm flowers.
Collapse
Affiliation(s)
- Yun Wu
- School of Civil Engineering, Architecture and Environment, Xihua University, Chengdu, China
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
- Laboratory of Ecology and Evolutionary Biology, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Spencer C. H. Barrett
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Xuyu Duan
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Jie Zhang
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
- Laboratory of Ecology and Evolutionary Biology, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Yongpeng Cha
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
- Laboratory of Ecology and Evolutionary Biology, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Chengyi Tu
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
- Laboratory of Ecology and Evolutionary Biology, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Qingjun Li
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
- Laboratory of Ecology and Evolutionary Biology, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| |
Collapse
|
21
|
Chen M, Zhao XY, Zuo XA, Wang SK, Qu H, Ping Y, Ma XJ, Liu LX. Comparative effects of pollen limitation, floral traits and pollinators on reproductive success of Hedysarum scoparium Fisch. et Mey. in different habitats. BMC PLANT BIOLOGY 2021; 21:426. [PMID: 34537013 PMCID: PMC8449482 DOI: 10.1186/s12870-021-03211-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Reproduction in most flowering plants may be limited because of the decreased visitation or activity of pollinators in fragmented habitats. Hedysarum scoparium Fisch. et Mey. is an arid region shrub with ecological importance. We explored the pollen limitation and seed set of Hedysarum scoparium in fragmented and restored environments, and examined whether pollen limitation is a significant limiting factor for seed set. We also compared floral traits and pollinator visitation between both habitats, and we determined the difference of floral traits and pollinators influenced reproductive success in Hedysarum scoparium. RESULTS Our results indicated that supplementation with pollen significantly increased seed set per flower, which is pollen-limited in this species. Furthermore, there was greater seed set of the hand cross-pollination group in the restored habitat compared to the fragmented environment. More visits by Apis mellifera were recorded in the restored habitats, which may explain the difference in seed production between the fragmented and restored habitats. CONCLUSIONS In this study, a positive association between pollinator visitation frequency and open flower number was observed. The findings of this study are important for experimentally quantifying the effects of floral traits and pollinators on plant reproductive success in different habitats.
Collapse
Affiliation(s)
- Min Chen
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China.
- Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.
- Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.
| | - Xue-Yong Zhao
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
- Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Xiao-An Zuo
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
- Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Gansu Province, Lanzhou, 730000, China
| | - Shao-Kun Wang
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
- Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Hao Qu
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
- Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Yue Ping
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
- Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Xu-Jun Ma
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
- Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Liang-Xu Liu
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
- Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| |
Collapse
|
22
|
Brody AK, Burnham PA, Smith B. Feeding friend and foe: ample pollen mitigates the effects of pollen theft for a gynodioecious plant, Polemonium foliosissimum (Polemoniaceae). ANNALS OF BOTANY 2021; 128:127-134. [PMID: 33849077 PMCID: PMC8318250 DOI: 10.1093/aob/mcab050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND AND AIMS Most angiosperms rely on pollinators to transport pollen and effect fertilization. While some floral visitors are effective pollinators, others act as thieves, consuming pollen but effecting little pollination in return. The importance of pollen theft in male and female reproductive success has received little attention. Here, we examined if pollen consumption by flies altered pollen receipt and exacerbated pollen limitation for a bumblebee-pollinated plant, Polemonium foliosissimum (Polemoniaceae). METHODS To examine the effect of pollen-thieving flies, we took a three-pronged approach. First, we used single-visit observations to quantify pollen removal and pollen deposition by flies and bumblebees. Second, we manipulated pollen in the neighbourhood around focal plants in two years to test whether pollen reduction reduced pollen receipt. Third, we combined pollen reduction with hand-pollination to test whether pollen thieving exacerbated pollen limitation. Polemonium foliosissimum is gynodioecious in most populations in the Elk Mountains of central Colorado, USA. Thus, we also tested whether pollen theft affected hermaphrodites and females differently. RESULTS Flies removed significantly more pollen and deposited less pollen per visit than did bumblebees. Reduction of pollen in the neighbourhood around focal plants reduced pollen receipt in both years but only nearly significantly so in 2015. In 2016, plants were significantly pollen-limited; hand-pollination significantly increased seeds per fruit for both hermaphrodites and females. However, the reduction of pollen around focal plants did not exacerbate pollen limitation for either hermaphrodites or females. CONCLUSIONS Our results suggest that plants tolerate significant consumption of pollen by thieves and pollinators by producing ample pollen to feed both and fertilize available ovules. Our results demonstrate that pollen limitation in P. foliosissimum is driven by lack of effective pollinators rather than lack of pollen. Teasing out these effects elucidates the relative importance of drivers of reproductive success and thus the expected response to selection by different floral visitors.
Collapse
Affiliation(s)
- Alison K Brody
- Department of Biology, University of Vermont, Burlington, VT, USA
- Rocky Mountain Biological Laboratory, Crested Butte, CO, USA
| | | | - Brittany Smith
- Rocky Mountain Biological Laboratory, Crested Butte, CO, USA
| |
Collapse
|
23
|
Ratnieks FLW, Balfour NJ. Plants and pollinators: Will natural selection cause an imbalance between nectar supply and demand? Ecol Lett 2021; 24:1741-1749. [PMID: 34170608 DOI: 10.1111/ele.13823] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/05/2020] [Accepted: 05/03/2021] [Indexed: 12/01/2022]
Abstract
Pollination is an important ecological process. However, plant and pollinator needs are not always met. Commonly, pollen limitation reduces seed set or bees experience nectar dearth. Using a cost-benefit approach, we show that natural selection will lead to lower nectar production when pollinators are abundant, and vice-versa. At the community level, competition among plants for pollinators causes positive feedback that exacerbates pre-existing seasonal imbalances between nectar supply and demand. When pollinators are scarce, plants will be selected to produce more nectar to outcompete other plants in attracting pollinators, and when pollinators are abundant, plants will be selected to produce less nectar. We suggest ways to test this positive feedback hypothesis and note that evidence for seasonal variation in nectar availability provides preliminary empirical support. If correct, our hypothesis indicates that pollination faces a particular challenge in balancing nectar supply with pollinator demand and is a further example of the underappreciated role of positive feedback in ecology and evolution.
Collapse
Affiliation(s)
- Francis L W Ratnieks
- Laboratory of Apiculture & Social Insects (LASI), School of Life Sciences, University of Sussex, Brighton, UK
| | - Nicholas J Balfour
- Laboratory of Apiculture & Social Insects (LASI), School of Life Sciences, University of Sussex, Brighton, UK
| |
Collapse
|
24
|
Essenberg CJ. Intraspecific relationships between floral signals and rewards with implications for plant fitness. AOB PLANTS 2021; 13:plab006. [PMID: 33708371 PMCID: PMC7937183 DOI: 10.1093/aobpla/plab006] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
Within-species variation in traits such as petal size or colour often provides reliable information to pollinators about the rewards offered to them by flowers. In spite of potential disadvantages of allowing pollinators to discriminate against less-rewarding flowers, examples of informative floral signals are diverse in form and widely distributed across plant taxa, apparently having evolved repeatedly in different lineages. Although hypotheses about the adaptive value of providing reward information have been proposed and tested in a few cases, a unified effort to understand the evolutionary mechanisms favouring informative floral signals has yet to emerge. This review describes the diversity of ways in which floral signals can be linked with floral rewards within plant species and discusses the constraints and selective pressures on floral signal-reward relationships. It focuses particularly on how information about floral rewards can influence pollinator behaviour and how those behavioural changes may, in turn, affect plant fitness, selecting either for providing or withholding reward information. Most of the hypotheses about the evolution of floral signal-reward relationships are, as yet, untested, and the review identifies promising research directions for addressing these considerable gaps in knowledge. The advantages and disadvantages of sharing floral reward information with pollinators likely play an important role in floral trait evolution, and opportunities abound to further our understanding of this neglected aspect of floral signalling.
Collapse
|
25
|
Chen M, Zuo XA, Zhao XY. Comparative Floral Characters, Pollinator Limitation, and Pollination Success in Different Habitats of Caragana microphylla Lam. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
26
|
Eisen KE, Wruck AC, Geber MA. Floral density and co‐occurring congeners alter patterns of selection in annual plant communities*. Evolution 2020; 74:1682-1698. [DOI: 10.1111/evo.13960] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 02/13/2020] [Accepted: 03/01/2020] [Indexed: 11/29/2022]
Affiliation(s)
- Katherine E. Eisen
- Department of Ecology and Evolutionary Biology Cornell University Ithaca New York 14853
| | - Amy C. Wruck
- Department of Ecology and Evolutionary Biology Cornell University Ithaca New York 14853
| | - Monica A. Geber
- Department of Ecology and Evolutionary Biology Cornell University Ithaca New York 14853
| |
Collapse
|
27
|
Christopher DA, Mitchell RJ, Karron JD. Pollination intensity and paternity in flowering plants. ANNALS OF BOTANY 2020; 125:1-9. [PMID: 31586397 PMCID: PMC6948204 DOI: 10.1093/aob/mcz159] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/06/2019] [Accepted: 10/01/2019] [Indexed: 05/10/2023]
Abstract
BACKGROUND Siring success plays a key role in plant evolution and reproductive ecology, and variation among individuals creates an opportunity for selection to act. Differences in male reproductive success can be caused by processes that occur during two stages, the pollination and post-pollination phases of reproduction. In the pollination phase, heritable variation in floral traits and floral display affect pollinator visitation patterns, which in turn affect variation among plants in the amount of pollen exported and deposited on recipient stigmas. In the post-pollination phase, differences among individuals in pollen grain germination success and pollen tube growth may cause realized paternity to differ from patterns of pollen receipt. The maternal plant can also preferentially provision some developing seeds or fruits to further alter variation in siring success. SCOPE In this review, we describe studies that advance our understanding of the dynamics of the pollination and post-pollination phases, focusing on how variation in male fitness changes in response to pollen limitation. We then explore the interplay between pollination and post-pollination success, and how these processes respond to ecological factors such as pollination intensity. We also identify pressing questions at the intersection of pollination and paternity and describe novel experimental approaches to elucidate the relative importance of pollination and post-pollination factors in determining male reproductive success. CONCLUSIONS The relative contribution of pollination and post-pollination processes to variation in male reproductive success may not be constant, but rather may vary with pollination intensity. Studies that quantify the effects of pollination and post-pollination phases in concert will be especially valuable as they will enable researchers to more fully understand the ecological conditions influencing male reproductive success.
Collapse
Affiliation(s)
- Dorothy A Christopher
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | | | - Jeffrey D Karron
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| |
Collapse
|
28
|
Teixido AL, Valladares F. Heat and drought determine flower female allocation in a hermaphroditic Mediterranean plant family. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21:1024-1030. [PMID: 31282088 DOI: 10.1111/plb.13031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 07/03/2019] [Indexed: 06/09/2023]
Abstract
In animal-pollinated hermaphroditic species, larger and xenogamous flowers increase male-biased resource allocation, whereas smaller and selfing flowers invest disproportionally more resources to female function. In Cistaceae, an entomophilous and hermaphroditic Mediterranean family, this pattern generally follows a phylogenetic signal. However, resource allocation to carpels is independent of phylogeny, which suggests trait divergences among closely related species during the diversification into different environmental conditions. We tested this hypothesis across 37 species of Cistaceae along a temperature and precipitation gradient, including semiarid, dry, subhumid and humid sites. We quantified the proportions of dry mass and nutrient investment to carpels and tested the influence of the climatic gradient and site-specific precipitation on the interspecific variation in carpel resource allocation. Lowest and highest percentages of resource allocation to carpels ranged from 1.5-4.2% to 24.2-36.6%, respectively. The proportion of resources comprised in carpels significantly decreased with increasing precipitation/decreasing temperature. Thus, carpels comprised proportionally more resources under drier and hotter conditions, especially in semiarid sites. Our results demonstrate how the extent of climatic constraints is more important than phylogenetic relationships in determining stress-induced differences in carpel resource allocation across species of Cistaceae in a Mediterranean environment. We suggest that allocation of proportionally more resources to carpels in drier and hotter sites lies within a strategy to deal with the most stressful conditions by means of a high reproductive effort.
Collapse
Affiliation(s)
- A L Teixido
- Área de Biodiversidad y Conservación, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, Madrid, Spain
| | - F Valladares
- Museo Nacional de Ciencias Naturales, MNCN-CSIC, Madrid, Spain
| |
Collapse
|
29
|
Rebolleda-Gómez M, Forrester NJ, Russell AL, Wei N, Fetters AM, Stephens JD, Ashman TL. Gazing into the anthosphere: considering how microbes influence floral evolution. THE NEW PHYTOLOGIST 2019; 224:1012-1020. [PMID: 31442301 DOI: 10.1111/nph.16137] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 08/13/2019] [Indexed: 06/10/2023]
Abstract
The flower is the hallmark of angiosperms and its evolution is key to their diversification. As knowledge of ecological interactions between flowers and their microbial communities (the anthosphere) expands, it becomes increasingly important to consider the evolutionary impacts of these associations and their potential eco-evolutionary dynamics. In this Viewpoint we synthesize current knowledge of the anthosphere within a multilevel selection framework and illustrate the potential for the extended floral phenotype (the phenotype expressed from the genes of the plant and its associated flower microbes) to evolve. We argue that flower microbes are an important, but understudied, axis of variation that shape floral trait evolution and angiosperm reproductive ecology. We highlight knowledge gaps and discuss approaches that are critical for gaining a deeper understanding of the role microbes play in mediating plant reproduction, ecology, and evolution.
Collapse
Affiliation(s)
- María Rebolleda-Gómez
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06520, USA
| | - Nicole J Forrester
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Avery L Russell
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Na Wei
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Andrea M Fetters
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Jessica D Stephens
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Tia-Lynn Ashman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| |
Collapse
|
30
|
Castilla AR, Garrote PJ, Żywiec M, Calvo G, Suárez-Esteban A, Delibes M, Godoy JA, Picó FX, Fedriani JM. Genetic rescue by distant trees mitigates qualitative pollen limitation imposed by fine-scale spatial genetic structure. Mol Ecol 2019; 28:4363-4374. [PMID: 31495974 DOI: 10.1111/mec.15233] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 07/17/2019] [Accepted: 07/22/2019] [Indexed: 11/26/2022]
Abstract
Restricted seed dispersal frequently leads to fine-scale spatial genetic structure (i.e., FSGS) within plant populations. Depending on its spatial extent and the mobility of pollinators, this inflated kinship at the immediate neighbourhood can critically impoverish pollen quality. Despite the common occurrence of positive FSGS within plant populations, our knowledge regarding the role of long-distance pollination preventing reproductive failure is still limited. Using microsatellite markers, we examined the existence of positive FSGS in two low-density populations of the tree Pyrus bourgaeana. We also designed controlled crosses among trees differing in their kinship to investigate the effects of increased local kinship on plant reproduction. We used six pollination treatments and fully monitored fruit production, fruit and seed weight, proportion of mature seeds per fruit, and seed germination. Our results revealed positive FSGS in both study populations and lower fruit initiation in flowers pollinated with pollen from highly-genetically related individuals within the neighbourhood, with this trend intensifying as the fruit development progressed. Besides, open-pollinated flowers exhibited lower performance compared to those pollinated by distant pollen donors, suggesting intense qualitative pollen limitation in natural populations. We found positive fine-scale spatial genetic structure is translated into impoverished pollen quality from nearby pollen donors which negatively impacts the reproductive success of trees in low-density populations. Under this scenario of intrapopulation genetic rescue by distant pollen donors, the relevance of highly-mobile pollinators for connecting spatially and genetically distant patches of trees may be crucial to safeguarding population recruitment.
Collapse
Affiliation(s)
- Antonio R Castilla
- Instituto Superior of Agronomy, Centre for Applied Ecology "Prof. Baeta Neves"/INBIO, University of Lisbon, Lisbon, Portugal.,Departamento de Ecología Integrativa, Estación Biológica de Doñana (EBD), Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| | - Pedro J Garrote
- Instituto Superior of Agronomy, Centre for Applied Ecology "Prof. Baeta Neves"/INBIO, University of Lisbon, Lisbon, Portugal.,Departamento de Biología de la Conservación, Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| | - Magdalena Żywiec
- Instituto Superior of Agronomy, Centre for Applied Ecology "Prof. Baeta Neves"/INBIO, University of Lisbon, Lisbon, Portugal.,W. Szafer Institute of Botany, Polish Academy of Sciences, Krakow, Poland
| | - Gemma Calvo
- Departamento de Biología de la Conservación, Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| | - Alberto Suárez-Esteban
- Departamento de Biología de la Conservación, Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| | - Miguel Delibes
- Departamento de Biología de la Conservación, Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| | - José A Godoy
- Departamento de Ecología Integrativa, Estación Biológica de Doñana (EBD), Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| | - F Xavier Picó
- Departamento de Ecología Integrativa, Estación Biológica de Doñana (EBD), Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| | - Jose M Fedriani
- Instituto Superior of Agronomy, Centre for Applied Ecology "Prof. Baeta Neves"/INBIO, University of Lisbon, Lisbon, Portugal.,Departamento de Biología de la Conservación, Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain.,Centro de Investigaciones sobre Desertificación CIDE, CSIC-UVEG-GV, Moncada, Spain
| |
Collapse
|
31
|
Is there spatial variation in phenotypic selection on floral traits in a generalist plant–pollinator system? Evol Ecol 2019. [DOI: 10.1007/s10682-019-10002-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
32
|
Impact of floral characters, pollen limitation, and pollinator visitation on pollination success in different populations of Caragana korshinskii Kom. Sci Rep 2019; 9:9741. [PMID: 31278340 PMCID: PMC6611805 DOI: 10.1038/s41598-019-46271-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 06/26/2019] [Indexed: 11/22/2022] Open
Abstract
Caragana korshinskii Kom. has a significant function in desert-grassland revegetation in arid regions. Plant reproduction in arid regions can be restricted due to inadequate pollen receipt and reduced pollen transfer. An assessment of pollination success as a result of pollen limitation and pollinator visitation in various C. korshinskii populations is presently lacking. We thus tested three different treatments (pollen addition, control, and procedural control) to elucidate how pollen limitation affects seed numbers per flower in C. korshinskii. We also determined the effect of pollinator visit frequency on seeds per flower. Our results demonstrated that there was a higher proportion of open flowers and mature fruits in the managed population than in the natural population. Pollen addition significantly increased seed number per flower, and pollen limitation was determined to be a significant limiting factor in seed production. Furthermore, Apis mellifera was determined to be the principal pollinator, and pollinator visitation frequency was significantly correlated with open flower number. Our findings also demonstrated that pollinator visitation rate and seed production were positively correlated. Management and pollinator visitation could affect seed production, which may explain the higher seeds per flower in the managed population compared with the natural population.
Collapse
|
33
|
Chen M, Zuo XA. Effect of Pollen Limitation and Pollinator Visitation on Pollination Success of Haloxylon ammodendron (C. A. Mey.) Bunge in Fragmented Habitats. FRONTIERS IN PLANT SCIENCE 2019; 10:327. [PMID: 30984212 PMCID: PMC6448003 DOI: 10.3389/fpls.2019.00327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 02/28/2019] [Indexed: 06/09/2023]
Abstract
Haloxylon ammodendron (C. A. Mey.) Bunge is an ecologically important species in arid regions. Pollen limitation may decrease plant reproduction due to low levels of pollen transfer and inadequate pollen receipt. In arid regions, pollen limitations of many plant species may be influenced by habitat fragmentation. However, whether pollen limitation and pollinator visitation affect the pollination success of H. ammodendron (Amaranthaceae) in fragmented habitats still needs further study. In this study, we calculated the pollen limitation in natural and fragmented habitats to estimate the effect of habitat fragmentation on pollen limitation. In different habitats, we investigated the relationship between the number of open flowers and pollinator visiting frequency. In addition, we examined how habitat fragmentation affects pollination success through the influence of pollinator visitation rate on seed set. Our results indicated that pollen limitation was the important limiting factor for seed set in fragmented and natural habitats. The results showed higher pollinator visitation rates resulted in a higher percentage of seeds in both habitats. In H. ammodendron, Apis mellifera was found to be the dominant pollinator. These results may support the assertion that plants evolve traits to attract pollinators and pollinators increase their visiting frequency to better exploit the floral resources. We also determined that outcrossing was dominant in the breeding system and that wind pollination played an important role in pollination success. This study aims to contribute to a better understanding of how environmental heterogeneity affects pollen limitation, pollinator visitation, and pollination success in arid regions.
Collapse
|
34
|
Chen M, Zhao XY, Zuo XA. Comparative pollen limitation and pollinator activity of Caragana korshinskii Kom in natural and fragmented habitats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 654:1056-1063. [PMID: 30841380 DOI: 10.1016/j.scitotenv.2018.11.148] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 11/09/2018] [Accepted: 11/10/2018] [Indexed: 06/09/2023]
Abstract
In many flowering plants, fragmented habitats may affect pollen limitation, pollinator behavior, and plant-pollinator interactions. Pollen limitation may decrease plant reproduction due to low levels of pollen transfer and inadequate pollen receipt. However, how fragmented habitats affect the pollen limitation and pollinator activity of Caragana korshinskii Kom. still needs further study. We designed a pollen supplementation treatment to understand how pollen limitation affects seed set. We calculated the visiting patterns and frequency of pollinators in different habitat types (natural and fragmented) to determine the effect of fragmented habitats on pollinator activity and on the pollination success of a desert-grassland shrub. Our results demonstrated that pollen supplementation was found to significantly increase seed set per flower, which is pollen-limited in the studied species. Moreover, the pollen limitation index in fragmented habitats was increased compared to that of natural habitats. Apis mellifera was found to be the dominant pollinator, with more pollinators and a higher visitation frequency of A. mellifera found in natural habitats compared to fragmented habitats. Our results showed that pollen limitation intensity was significantly correlated with the pollinator visitation frequency in the both habitats. Outcrossing was dominant in the breeding system, and insect pollination played a critical role in outcrossing. We found that fragmented habitats could affect pollinator activity, which might reduce pollen dispersal among flowers and the probability of outcrossing in the studied habitats.
Collapse
Affiliation(s)
- Min Chen
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, 730000 Lanzhou, China.
| | - Xue-Yong Zhao
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, 730000 Lanzhou, China.
| | - Xiao-An Zuo
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, 730000 Lanzhou, China
| |
Collapse
|
35
|
Trunschke J, Sletvold N, Ågren J. The independent and combined effects of floral traits distinguishing two pollination ecotypes of a moth-pollinated orchid. Ecol Evol 2019; 9:1191-1201. [PMID: 30805152 PMCID: PMC6374684 DOI: 10.1002/ece3.4808] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/22/2018] [Accepted: 11/01/2018] [Indexed: 11/26/2022] Open
Abstract
Identifying traits and agents of selection involved in local adaptation is important for understanding population divergence. In southern Sweden, the moth-pollinated orchid Platanthera bifolia occurs as a woodland and a grassland ecotype that differ in dominating pollinators. The woodland ecotype is taller (expected to influence pollinator attraction) and produces flowers with longer spurs (expected to influence efficiency of pollen transfer) compared to the grassland ecotype. We examined whether plant height and spur length affect pollination and reproductive success in a woodland population, and whether effects are non-additive, as expected for traits influencing two multiplicative components of pollen transfer. We reduced plant height and spur length to match trait values observed in the grassland ecotype and determined the effects on pollen removal, pollen receipt, and fruit production. In addition, to examine the effects of naturally occurring variation, we quantified pollinator-mediated selection through pollen removal and seed production in the same population. Reductions of plant height and spur length decreased pollen removal, number of flowers receiving pollen, mean pollen receipt per pollinated flower, and fruit production per plant, but no significant interaction effect was detected. The selection analysis demonstrated pollinator-mediated selection for taller plants via female fitness. However, there was no current selection mediated by pollinators on spur length, and pollen removal was not related to plant height or spur length. The results show that, although both traits are important for pollination success and female fitness in the woodland habitat, only plant height was sufficiently variable in the study population for current pollinator-mediated selection to be detected. More generally, the results illustrate how a combination of experimental approaches can be used to identify both traits and agents of selection.
Collapse
Affiliation(s)
- Judith Trunschke
- Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology CentreUppsala UniversityUppsalaSweden
| | - Nina Sletvold
- Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology CentreUppsala UniversityUppsalaSweden
| | - Jon Ågren
- Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology CentreUppsala UniversityUppsalaSweden
| |
Collapse
|
36
|
Park B, Sinnott-Armstrong M, Schlutius C, Zuluaga JCP, Spriggs EL, Simpson RG, Benavides E, Landis MJ, Sweeney PW, Eaton DAR, Donoghue MJ. Sterile marginal flowers increase visitation and fruit set in the hobblebush (Viburnum lantanoides, Adoxaceae) at multiple spatial scales. ANNALS OF BOTANY 2019; 123:381-390. [PMID: 29982369 PMCID: PMC6344212 DOI: 10.1093/aob/mcy117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 06/05/2018] [Indexed: 05/13/2023]
Abstract
BACKGROUND AND AIMS Enlarged sterile flowers on the periphery of inflorescences increase the attractiveness of floral displays, and previous studies have generally demonstrated that these have positive effects on insect visitation and/or reproductive success. However, experiments have not specifically been designed to examine the benefits of sterile flowers under conditions that reflect the early stages in their evolution, i.e. when plants that produce sterile flowers are at low frequency. METHODS Over three years, three experiments were performed in natural populations of Viburnum lantanoides, which produces sterile marginal flowers (SMFs). The first experiment established that fruit production in V. lantanoides increases with the receipt of outcross pollen. The second tested the role of SMFs under extant conditions, comparing fruit production in two populations composed entirely of intact plants or entirely of plants with the SMFs removed. The third was designed to mimic the presumed context in which SMFs first evolved; here, SMFs were removed from all but a few plants in a population, and rates of insect visitation and fruit set were compared between plants with intact and denuded SMFs. KEY RESULTS In comparing whole populations, the presence of SMFs nearly doubled fruit set. Under simulated 'ancestral' conditions within a population, plants with intact SMFs received double the insect visits and produced significantly more fruits than denuded plants. There was no significant effect of the number of inflorescences or fertile flowers on insect visitation or fruit set, indicating that the presence of SMFs accounted for these differences. CONCLUSIONS The presence of SMFs significantly increased pollinator attraction and female reproductive success both in contemporary and simulated ancestral contexts, indicating that stabilizing selection is responsible for their maintenance, and directional selection likely drove their evolution when they first appeared. This study demonstrates a novel approach to incorporating historically relevant scenarios into experimental studies of floral evolution.
Collapse
Affiliation(s)
- Brian Park
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
- For correspondence. E-mail
| | | | - Caroline Schlutius
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| | | | | | - Raymond G Simpson
- Peabody Museum of Natural History, Yale University, New Haven, CT, USA
| | - Edgar Benavides
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| | - Michael J Landis
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| | - Patrick W Sweeney
- Peabody Museum of Natural History, Yale University, New Haven, CT, USA
| | - Deren A R Eaton
- Department of Ecology, Evolution, and Environment, Columbia University, New York, NY, USA
| | - Michael J Donoghue
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| |
Collapse
|
37
|
GloPL, a global data base on pollen limitation of plant reproduction. Sci Data 2018; 5:180249. [PMID: 30457567 PMCID: PMC6244188 DOI: 10.1038/sdata.2018.249] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 09/24/2018] [Indexed: 11/08/2022] Open
Abstract
Plant reproduction relies on transfer of pollen from anthers to stigmas, and the majority of flowering plants depend on biotic or abiotic agents for this transfer. A key metric for characterizing if pollen receipt is insufficient for reproduction is pollen limitation, which is assessed by pollen supplementation experiments. In a pollen supplementation experiment, fruit or seed production by flowers exposed to natural pollination is compared to that following hand pollination either by pollen supplementation (i.e. manual outcross pollen addition without bagging) or manual outcrossing of bagged flowers, which excludes natural pollination. The GloPL database brings together data from 2969 unique pollen supplementation experiments reported in 927 publications published from 1981 to 2015, allowing assessment of the strength and variability of pollen limitation in 1265 wild plant species across all biomes and geographic regions globally. The GloPL database will be updated and curated with the aim of enabling the continued study of pollen limitation in natural ecosystems and highlighting significant gaps in our understanding of pollen limitation.
Collapse
|
38
|
Santangelo JS, Thompson KA, Johnson MTJ. Herbivores and plant defences affect selection on plant reproductive traits more strongly than pollinators. J Evol Biol 2018; 32:4-18. [PMID: 30339305 DOI: 10.1111/jeb.13392] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 10/10/2018] [Accepted: 10/15/2018] [Indexed: 01/14/2023]
Abstract
Pollinators and herbivores can both affect the evolutionary diversification of plant reproductive traits. However, plant defences frequently alter antagonistic and mutualistic interactions, and therefore, variation in plant defences may alter patterns of herbivore- and pollinator-mediated selection on plant traits. We tested this hypothesis by conducting a common garden field experiment using 50 clonal genotypes of white clover (Trifolium repens) that varied in a Mendelian-inherited chemical antiherbivore defence-the production of hydrogen cyanide (HCN). To evaluate whether plant defences alter herbivore- and/or pollinator-mediated selection, we factorially crossed chemical defence (25 cyanogenic and 25 acyanogenic genotypes), herbivore damage (herbivore suppression) and pollination (hand pollination). We found that herbivores weakened selection for increased inflorescence production, suggesting that large displays are costly in the presence of herbivores. In addition, herbivores weakened selection on flower size but only among acyanogenic plants, suggesting that plant defences reduce the strength of herbivore-mediated selection. Pollinators did not independently affect selection on any trait, although pollinators weakened selection for later flowering among cyanogenic plants. Overall, cyanogenic plant defences consistently increased the strength of positive directional selection on reproductive traits. Herbivores and pollinators both strengthened and weakened the strength of selection on reproductive traits, although herbivores imposed ~2.7× stronger selection than pollinators across all traits. Contrary to the view that pollinators are the most important agents of selection on reproductive traits, our data show that selection on reproductive traits is driven primarily by variation in herbivory and plant defences in this system.
Collapse
Affiliation(s)
- James S Santangelo
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada.,Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Ken A Thompson
- Biodiversity Research Centre & Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Marc T J Johnson
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| |
Collapse
|
39
|
Silva-Luz CLD, Pirani JR, Mitchell JD, Daly D, Capelli NDV, Demarco D, Pell SK, Plunkett GM. Phylogeny of Schinus L. (Anacardiaceae) with a new infrageneric classification and insights into evolution of spinescence and floral traits. Mol Phylogenet Evol 2018; 133:302-351. [PMID: 30326286 DOI: 10.1016/j.ympev.2018.10.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 10/09/2018] [Accepted: 10/09/2018] [Indexed: 01/09/2023]
Abstract
Schinus, best known by its few cultivated and invasive species, is the largest genus of Anacardiaceae in southern South America. It is remarkably diverse compared to closely related genera, with approximately 42 species, most of which occur in several arid vegetation types and extend into Andean and Atlantic moist forests. The most comprehensive taxonomic revision of the genus dates to 1957, recognizing S. subg. Schinus and S. subg. Duvaua, the latter of which were further divided into two sections. Subsequent studies have highlighted morphological inconsistencies in this infrageneric classification, and species delimitation remains a challenge. Schinus has been poorly sampled in previous phylogenetic studies of Anacardiaceae, and thus any assumptions about its monophyly and relationships remain untested. We investigated the phylogenetic relationships of 44 Schinus taxa and sampled 122 specimens, including the outgroup, using nine nuclear and two plastid DNA sequence regions, most of them developed recently for Commiphora (Burseraceae, sister to Anacardiaceae). We used maximum parsimony, maximum likelihood, and Bayesian inference to infer relationships among species. We also constructed a morphological dataset, including vegetative anatomical features, and compared these characters to hypotheses based on molecular evidence in order to achieve a better understanding of the relationships among the species of Schinus and to related genera, aiming also to identify morphological characters and putative synapomorphies for major clades, and to discuss hypotheses regarding the evolution of structural traits in the genus. Our analyses strongly support the monophyly of Schinus, but also indicate that S. subg. Schinus and the sections of S. subg. Duvaua are polyphyletic. The phylogenetic relationships that emerged from our analyses include eight relatively well-supported lineages, but relationships among closely related species remain unclear in some clades. Ancestral state reconstructions demonstrate that several morphological and leaf-anatomical characters are valuable in characterizing some lineages. By contrast, most of the traits that have traditionally been used to circumscribe groups in Schinus show high levels of homoplasy. In light of these results, we present a novel sectional classification of Schinus based on a combination of character states associated with geographic distribution, corresponding to lineages that are mostly allopatric or at least ecologically distinct.
Collapse
Affiliation(s)
- Cíntia Luíza da Silva-Luz
- Departamento de Botânica, Universidade de São Paulo, Herbário SPF, Rua do Matão 277, São Paulo 05508-900, Brazil.
| | - José Rubens Pirani
- Departamento de Botânica, Universidade de São Paulo, Herbário SPF, Rua do Matão 277, São Paulo 05508-900, Brazil
| | - John Daniel Mitchell
- Institute of Systematic Botany, The New York Botanical Garden, 2900 Southern Blvd., Bronx, NY 10458-5126, USA
| | - Douglas Daly
- Institute of Systematic Botany, The New York Botanical Garden, 2900 Southern Blvd., Bronx, NY 10458-5126, USA
| | - Natalie do Valle Capelli
- Departamento de Botânica, Universidade de São Paulo, Herbário SPF, Rua do Matão 277, São Paulo 05508-900, Brazil
| | - Diego Demarco
- Departamento de Botânica, Universidade de São Paulo, Herbário SPF, Rua do Matão 277, São Paulo 05508-900, Brazil
| | - Susan K Pell
- United States Botanic Garden, 245 First St. SW, Washington, DC 20515, USA
| | - Gregory M Plunkett
- Cullman Program for Molecular Systematics, The New York Botanical Garden, 2900 Southern Blvd., Bronx, NY 10458-5126, USA
| |
Collapse
|
40
|
Wu Y, Zhong T, Zhang ZQ, Li QJ. Pollinator-mediated selection on floral traits varies in space and between morphs in Primula secundiflora. AOB PLANTS 2018; 10:ply059. [PMID: 30393517 PMCID: PMC6205359 DOI: 10.1093/aobpla/ply059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 09/28/2018] [Indexed: 06/08/2023]
Abstract
Elucidating how variation in selection shapes the evolution of flowers is key to understanding adaptive differentiation processes. We estimated pollinator-mediated selection through female function in L-morph (long-style and short-anther phenotype) and S-morph (short-style and long-anther phenotype) flowers among four Primula secundiflora populations with different pollinator assemblages. Variation in pollinator assemblage strongly contributed to differences in reproductive success among populations and between morphs of the primrose species. A wider corolla tube width was selected in the bumblebee-dominated populations, whereas shorter corolla tube length and wider corolla tube width were selected in the syrphid fly-dominated populations. Morph-specific variation in pollinator-mediated selection on corolla tube length was detected in the syrphid fly-dominated populations. A shorter corolla tube was selected in the L-morph flowers. However, similar selective pressure on this trait was not observed in the S-morph flowers. These results show that variation in pollinator assemblage leads to variation in selection in space and between morphs. The findings highlight the potential forces of different pollinator agents in driving floral evolution in this primrose species.
Collapse
Affiliation(s)
- Yun Wu
- School of Civil Engineering, Architecture and Environment, Xihua University, Chengdu, China
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tao Zhong
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Zhi-Qiang Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Laboratory of Ecology and Evolutionary Biology, Yunnan University, Kunming, China
| | - Qing-Jun Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Laboratory of Ecology and Evolutionary Biology, Yunnan University, Kunming, China
| |
Collapse
|
41
|
Chen M, Zhao X, Zuo X. Pollinator activity and pollination success of Medicago sativa L. in a natural and a managed population. Ecol Evol 2018; 8:9007-9016. [PMID: 30271562 PMCID: PMC6157694 DOI: 10.1002/ece3.4256] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 03/13/2018] [Accepted: 05/15/2018] [Indexed: 11/07/2022] Open
Abstract
Medicago sativa L. is an important cash crop in the arid region of northwest China. Pollinator activity is an essential aspect of pollination success, but the relationships between pollinator visitation rate and seed set still need further study of M. sativa. We investigated the following characteristics of M. sativa in natural and managed populations: floral traits, pollinator activity, and breeding system. Our results indicated the management could affect the number of flowers produced; however, there was no detectable effect on the seed set per flower. We found the percentage of seeds among pollinated flowers in the managed population was significantly higher than that in the natural population. Moreover, the increase in the proportion of pollinated flowers could significantly increase seed set per flower, and pollinator visitation rate was the important limiting factor for seed set in both populations. Andrena lebedevi Popov was found to be the most frequent pollinator in both populations. Outcrossing was dominant in the breeding system and insect pollination played an important role in outcrossing. Our study suggested that proper management (artificial selection) could promote pollination success of M. sativa.
Collapse
Affiliation(s)
- Min Chen
- Northwest Institute of Eco‐Environment and ResourcesCASLanzhouChina
| | - Xue‐Yong Zhao
- Northwest Institute of Eco‐Environment and ResourcesCASLanzhouChina
| | - Xiao‐An Zuo
- Northwest Institute of Eco‐Environment and ResourcesCASLanzhouChina
| |
Collapse
|
42
|
Chen M, Zhao XY. Effect of pollen and resource limitation on reproduction of Zygophyllum xanthoxylum in fragmented habitats. Ecol Evol 2017; 7:9076-9084. [PMID: 29152199 PMCID: PMC5677495 DOI: 10.1002/ece3.3465] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 09/01/2017] [Indexed: 12/04/2022] Open
Abstract
Limitations on pollen and resources may significantly affect plant reproduction in fragmented habitats. In this study, phenology and pollinator frequency and activity were investigated to estimate the role of pollinators in Zygophyllum xanthoxylum reproduction, and this species is ecologically important in northwest China. In addition, the relative impact of restrictive amounts of pollen and resources on the seed set per flower was evaluated. It was found that adding pollen boosted the size of the seed set per flower, but had no significant effect on the number of flowers. By contrast, the addition of resources increased flower numbers as well as had a slight impact on the seed set per flower. These results indicate the amount of available pollen is a limiting factor for reproductive success. Moreover, Apis mellifera was identified as the most effective pollinator of Z. xanthoxylum, and there were more overall pollinators and visitations in the control than in the fragmented habitats. Furthermore, the limitations in pollen were more restrictive in the fragmented area than in the control. This was due to increased pollinator visitations in the control that could ameliorate the effects of lower pollen levels. When there is a limited availability of suitable pollinators, self‐pollination is critical in fragmented habitats. Z. xanthoxylum has reproductive strategies that aid in adapting to harsh environments, including protogyny and delayed selfing.
Collapse
Affiliation(s)
- Min Chen
- Northwest Institute of Eco-Environment and Resources CAS Lanzhou China
| | - Xue-Yong Zhao
- Northwest Institute of Eco-Environment and Resources CAS Lanzhou China
| |
Collapse
|
43
|
The Floral Biology, Breeding System and Pollination Efficiency of Schima superba Gardn. et Champ. (Theaceae). FORESTS 2017. [DOI: 10.3390/f8100404] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
44
|
Chen L, Zhang B, Li Q. Pollinator-mediated selection on flowering phenology and floral display in a distylous herb Primula alpicola. Sci Rep 2017; 7:13157. [PMID: 29030594 PMCID: PMC5640686 DOI: 10.1038/s41598-017-13340-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 09/12/2017] [Indexed: 12/17/2022] Open
Abstract
The targets and causes of phenotypic selection are crucial to understanding evolutionary ecology. However, few studies have examined selection quantitatively from multiple sources on the same trait identified the agent of natural selection experimentally. Here we quantified phenotypic selection on traits, including flowering phenology and aspects of floral display via female fitness, in the distylous perennial herb Primula alpicola. To determine the role of pollinators in generating selection effects on floral traits, we compared the phenotypic selection gradients in open-pollinated and hand-pollinated plants. Our results show that pollinator-mediated linear selection on flowering start and correlational selection on the number of flowers and scape height explains most of the net phenotypic selection on these traits suggesting pollinators played an important role in shaping floral diversity. We used path analysis and structural equation modeling (SEM) to examine how herbivores affected the relationship between floral traits and female fitness, but no significant selection was caused by seed predators. These results suggest pollinators, not herbivores maybe the significant agent of selection on flora traits.
Collapse
Affiliation(s)
- Lingling Chen
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Science, Mengla, 666303, China.,University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Bo Zhang
- College of Pratacultural Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Qingjun Li
- Laboratory of Ecology and Evolution Biology, State Key Laboratory in Conservation and Utilization of Bioresources in Yunnan, Yunnan University, Kunming, Yunnan, 650091, China.
| |
Collapse
|
45
|
Zhang G, Meng L, Wu Z, Zhang Z, Yin L, Yang Y, Duan Y. Natural selection on floral traits of Caltha scaposa (Ranunculaceae), an alpine perennial with generalized pollination system from Northwest Yunnan. PLANT DIVERSITY 2017; 39:202-207. [PMID: 30159512 PMCID: PMC6112295 DOI: 10.1016/j.pld.2017.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/16/2017] [Indexed: 05/23/2023]
Abstract
Floral traits, including those invisible to humans but visible to pollinators, that increase pollination efficiency may be selected by pollinators in plant species with pollen limitation of seed production, but the importance of pollinators as selective agents on different floral traits needs to be further quantified experimentally. In the present study, we examined selective strength on flower diameter, flower height, UV bulls-eye size, sepal size and UV proportion via female fitness in Caltha scaposa, based on open-pollinated and hand-pollinated flowers, through which pollinator-mediated selection was calculated for each of floral traits. Our results suggest that seed production of C. scaposa is pollen limited in natural conditions. There was directional selection (Δβpollinator = -0.12) for larger flowers in open-pollinated flowers, while no significant selection was found in flower height, UV bulls-eye size, sepal size or UV proportion. Statistically significant selection was found in UV bulls-eye size, sepal size and UV proportion in hand-pollinated flowers, but interactions with pollinators contributed only to flower diameter. We conclude that in C. scaposa, floral traits that are subjected to selection might be driven by multiple selective agents, and suggest the importance of investigating floral traits that are invisible to human but visible to pollinators in measuring pollinator-mediated selection via male fitness.
Collapse
Affiliation(s)
- Guopeng Zhang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China
- School of Life Sciences, Yunnan Normal University, Kunming 650092, PR China
| | - Lihua Meng
- School of Life Sciences, Yunnan Normal University, Kunming 650092, PR China
| | - Zhikun Wu
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China
| | - Zhiqiang Zhang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China
| | - Lingjuan Yin
- National Technical Secondary School of Lijiang, Lijiang 674119, PR China
| | - Yongping Yang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China
| | - Yuanwen Duan
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China
| |
Collapse
|
46
|
Emel SL, Franks SJ, Spigler RB. Phenotypic selection varies with pollination intensity across populations of Sabatia angularis. THE NEW PHYTOLOGIST 2017; 215:813-824. [PMID: 28542815 DOI: 10.1111/nph.14608] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 04/05/2017] [Indexed: 06/07/2023]
Abstract
Pollinators are considered primary selective agents acting on plant traits, and thus variation in the strength of the plant-pollinator interaction might drive variation in the opportunity for selection and selection intensity across plant populations. Here, we examine whether these critical evolutionary parameters covary with pollination intensity across wild populations of the biennial Sabatia angularis. We quantified pollination intensity in each of nine S. angularis populations as mean stigmatic pollen load per population. For female fitness and three components, fruit number, fruit set (proportion of flowers setting fruit) and number of seeds per fruit, we evaluated whether the opportunity for selection varied with pollination intensity. We used phenotypic selection analyses to test for interactions between pollination intensity and selection gradients for five floral traits, including flowering phenology. The opportunity for selection via fruit set and seeds per fruit declined significantly with increasing pollen receipt, as expected. We demonstrated significant directional selection on multiple traits across populations. We also found that selection intensity for all traits depended on pollination intensity. Consistent with general theory about the relationship between biotic interaction strength and the intensity of selection, our study suggests that variation in pollination intensity drives variation in selection across S. angularis populations.
Collapse
Affiliation(s)
- Sarah L Emel
- Department of Biology, Temple University, BioLife Building, 1900 N. 12th St, Philadelphia, PA, 19122, USA
| | - Steven J Franks
- Department of Biological Sciences, Fordham University, Larkin Hall, 441 E. Fordham Road, Bronx, NY, 20458, USA
| | - Rachel B Spigler
- Department of Biology, Temple University, BioLife Building, 1900 N. 12th St, Philadelphia, PA, 19122, USA
| |
Collapse
|
47
|
Jiang XF, Li QJ. Self- and intra-morph incompatibility and selection analysis of an inconspicuous distylous herb growing on the Tibetan plateau ( Primula tibetica). Ecol Evol 2017; 7:5746-5753. [PMID: 28811881 PMCID: PMC5552904 DOI: 10.1002/ece3.3151] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 05/11/2017] [Accepted: 05/17/2017] [Indexed: 11/09/2022] Open
Abstract
There is discussion over whether pollen limitation exerts selection on floral traits to increase floral display or selects for traits that promote autonomous self‐fertilization. Some studies have indicated that pollen limitation does not mediate selection on traits associated with either pollinator attraction or self‐fertilization. Primula tibetica is an inconspicuous cross‐fertilized plant that may suffer from pollen limitation. We conducted a selection analysis on P. tibetica to investigate whether pollen limitation results in selection for an increased floral display in case the evolution of autonomous self‐fertilization has been difficult for this plant. The self‐ and intra‐morph incompatibility features, the capacity for autonomous self‐fertilization, and the magnitude of pollen limitation were examined through hand‐pollination experiments. In 2016, we applied selection analysis on the flowering time, corolla width, stalk height, flower tube length, and flower number in P. tibetica by tagging 76 open‐pollinated plants and 37 hand‐pollinated plants in the field. Our results demonstrated that P. tibetica was strictly self‐ and intra‐morph incompatible. Moreover, the study population underwent severe pollen limitation during the 2016 flowering season. The selection gradients were found to be significantly positive for flowering time, flower number, and corolla width, and marginally significant for the stalk height. Pollinator‐mediated selection was found to be significant on the flower number and corolla width, and marginally significant on stalk height. Our results indicate that the increased floral display may be a vital strategy for small distylous species that have faced difficulty in evolving autonomous self‐fertilization.
Collapse
Affiliation(s)
- Xian-Feng Jiang
- Key Laboratory of Tropical Forest Ecology Xishuangbanna Tropical Botanical Garden Chinese Academy of Sciences Mengla China.,University of Chinese Academy of Sciences Beijing China
| | - Qing-Jun Li
- Laboratory of Ecology and Evolutionary Biology State Key Laboratory in Conservation and Utilization of Bioresources in Yunnan Yunnan University Kunming Yunnan China
| |
Collapse
|
48
|
Thomsen CJM, Sargent RD. Evidence that a herbivore tolerance response affects selection on floral traits and inflorescence architecture in purple loosestrife (Lythrum salicaria). ANNALS OF BOTANY 2017; 119:1295-1303. [PMID: 28369263 PMCID: PMC5604591 DOI: 10.1093/aob/mcx026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 02/22/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND AND AIMS The study of the evolution of floral traits has generally focused on pollination as the primary driver of selection. However, herbivores can also impose selection on floral traits through a variety of mechanisms, including florivory and parasitism. Less well understood is whether floral and inflorescence architecture traits that influence a plant's tolerance to herbivory, such as compensatory regrowth, alter pollinator-mediated selection. METHODS Because herbivore damage to Lythrum salicaria meristems typically leads to an increase in the number of inflorescences and the size of the floral display, an experiment was conducted to test whether simulated herbivory (i.e. clipping the developing meristem) could alter the magnitude or direction of pollinator-mediated selection on a suite of floral and inflorescence architecture traits. Using a pollen supplementation protocol, pollen limitation was compared in the presence and absence of meristem damage in order to quantify any interaction between pollinator and herbivore-mediated selection on floral traits. KEY RESULTS Surprisingly, in spite of an obvious impact on floral display and architecture, with clipped plants producing more inflorescences and more flowers, there was no difference in pollen limitation between clipped and unclipped plants. Correspondingly, there was no evidence that imposing herbivore damage altered pollinator-mediated selection in this system. Rather, the herbivory treatment alone was found to alter direct selection on floral display, with clipped plants experiencing greater selection for earlier flowering and weaker selection for number of inflorescences when compared with unclipped plants. CONCLUSIONS These findings imply that herbivory on its own can drive selection on plant floral traits and inflorescence architecture in this species, even more so than pollinators. Specifically, herbivory can impose selection on floral traits if such traits influence a plant's tolerance to herbivory, such as through the timing of flowering and/or the compensatory regrowth response.
Collapse
Affiliation(s)
- Christina J. M. Thomsen
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, Ontario, K1N 6N5, Canada
| | - Risa D. Sargent
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, Ontario, K1N 6N5, Canada
| |
Collapse
|
49
|
Johnston MO, Bartkowska MP. Individual pollen limitation, phylogeny and selection. THE NEW PHYTOLOGIST 2017; 214:909-912. [PMID: 28397359 DOI: 10.1111/nph.14562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Affiliation(s)
- Mark O Johnston
- Department of Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | | |
Collapse
|
50
|
Briscoe Runquist RD, Geber MA, Pickett-Leonard M, Moeller DA. Mating System Evolution under Strong Pollen Limitation: Evidence of Disruptive Selection through Male and Female Fitness in Clarkia xantiana. Am Nat 2017; 189:549-563. [DOI: 10.1086/691192] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|