1
|
Ducros L, Lavoie-Rochon AS, Pichaud N, Lamarre SG. Metabolic rate and mitochondrial physiology adjustments in Arctic char (Salvelinus alpinus) during cyclic hypoxia. J Exp Biol 2024; 227:jeb247834. [PMID: 39319396 DOI: 10.1242/jeb.247834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 09/10/2024] [Indexed: 09/26/2024]
Abstract
Diel fluctuations of oxygen levels characterize cyclic hypoxia and pose a significant challenge to wild fish populations. Although recent research has been conducted on the effects of hypoxia and reoxygenation, mechanisms by which fish acclimatize to cyclic hypoxia remain unclear, especially in hypoxia-sensitive species. We hypothesized that acclimation to cyclic hypoxia requires a downregulation of aerobic metabolic rate and an upregulation of mitochondrial respiratory capacities to mitigate constraints on aerobic metabolism and the elevated risk of oxidative stress upon reoxygenation. We exposed Arctic char (Salvelinus alpinus) to 10 days of cyclic hypoxia and measured their metabolic rate and mitochondrial physiology to determine how they cope with fluctuating oxygen concentrations. We measured oxygen consumption as a proxy of metabolic rate and observed that Arctic char defend their standard metabolic rate but decrease their routine metabolic rate during hypoxic phases, presumably through the repression of spontaneous swimming activities. At the mitochondrial level, acute cyclic hypoxia increases oxygen consumption without ADP (CI-LEAK) in the liver and heart. Respiration in the presence of ADP (OXPHOS) temporarily increases in the liver and decreases in the heart. Cytochrome c oxidase oxygen affinity also increases at day 3 in the liver. However, no change occurs in the brain, which is likely primarily preserved through preferential perfusion (albeit not measured in this study). Finally, in vivo measurements of reactive oxygen species revealed the absence of an oxidative burst in mitochondria in the cyclic hypoxia group. Our study shows that Arctic char acclimatize to cyclic hypoxia through organ-specific mitochondrial adjustments.
Collapse
Affiliation(s)
- Loïck Ducros
- Département de Biologie, Université de Moncton, Moncton, NB, Canada, E1A 3E9
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB, Canada, E1A 3E9
| | - A S Lavoie-Rochon
- Département de Biologie, Université de Moncton, Moncton, NB, Canada, E1A 3E9
| | - N Pichaud
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB, Canada, E1A 3E9
| | - S G Lamarre
- Département de Biologie, Université de Moncton, Moncton, NB, Canada, E1A 3E9
| |
Collapse
|
2
|
Rivers ML, McKenzie CH, McGaw IJ. Physiological Responses of the Green Shore Crab, Carcinus maenas, During Acute and Chronic Low Temperature Exposure. Animals (Basel) 2024; 14:3049. [PMID: 39518771 PMCID: PMC11545636 DOI: 10.3390/ani14213049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
The green shore crab (Carcinus maenas) is native to Western Europe but has spread around the globe and is described as one of the top 100 worst invasive species. On the east coast of North America, their northern-most limit is the island of Newfoundland, Canada, where they can experience water temperatures as low as -1 °C. We investigated the physiological responses of C. maenas to a temperature reduction regime as well as to long-term acclimation to temperatures representative of winter (2 °C) and summer (12 °C) in Newfoundland. Heart rate, oxygen consumption and estimated energy expenditure declined steadily with decreasing temperature, but a marked change was observed between 6 and 4 °C, with lowest levels recorded in 2 °C. After long-term acclimation to 2 °C there was a sustained reduction in physiological parameters. Even though these physiological parameters were very low in 2 °C, the crabs still exhibited intermittent activity. This supports the presence of a dormancy, rather than true torpor/hibernation below 5 °C, in which crabs will continue to actively move and feed, albeit much more slowly. The population in Newfoundland contains haplotypes from both the invasive northern and southern lineages, and they appear to retain a similar low temperature response compared with most other populations of green crab from both their native and expanded range.
Collapse
Affiliation(s)
- Molly L. Rivers
- Department of Ocean Sciences, Memorial University of Newfoundland, 0 Marine Lab Rd., St. John’s, NL A1C 5S7, Canada; (C.H.M.); (I.J.M.)
| | - Cynthia H. McKenzie
- Department of Ocean Sciences, Memorial University of Newfoundland, 0 Marine Lab Rd., St. John’s, NL A1C 5S7, Canada; (C.H.M.); (I.J.M.)
- Northwest Atlantic Fisheries Centre, Fisheries and Oceans Canada, 80 East White Hills Rd., St. John’s, NL A1C 5X1, Canada
| | - Iain J. McGaw
- Department of Ocean Sciences, Memorial University of Newfoundland, 0 Marine Lab Rd., St. John’s, NL A1C 5S7, Canada; (C.H.M.); (I.J.M.)
| |
Collapse
|
3
|
Amiya N, Nakano N, Tanaka C, Hibino S, Takakura R, Amano M, Yoshinaga T. Leptin gene expression in the brain is associated with the physiological onset of estivation in western sand lance Ammodytes japonicus. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:913-924. [PMID: 38946665 DOI: 10.1002/jez.2850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/15/2024] [Accepted: 06/19/2024] [Indexed: 07/02/2024]
Abstract
Dormancy is an essential ecological characteristic for the survival of organisms that experience harsh environments. Although factors that initiate dormancy vary, suppression or cessation of feeding activities are common among taxa. To distinguish between extrinsic and intrinsic causes of metabolic reduction, we focused on estivation, which occurs in summer when the feeding activity is generally enhanced. Sand lances (genus Ammodytes) are a unique marine fish with a long estivation period from early summer to late autumn. In the present study, we aimed to elucidate the control mechanisms of estivation in western sand lance (A. japonicus), and firstly examined behavioral changes in 8 months including a transition between active and dormant phases. We found that swimming/feeding behavior gradually decreased from June, and completely disappeared by late August, indicating all individuals had entered estivation. Next, we focused on leptin, known as a feeding suppression hormone in various organisms, and examined leptin-A gene (AjLepA) expression in the brain that may regulate the seasonal behavioral pattern. AjLepA expression decreased after 7 days of fasting, suggesting that leptin has a function to regulate feeding in this species. The monthly expression dynamics of AjLepA during the feeding (active) and non-feeding (estivation) periods showed that the levels gradually increased with the onset of estivation and reached its peak when all the experimental fish had estivated. The present study suggests that the suppression of feeding activity by leptin causes shift in the physiological modes of A. japonicus before estivation.
Collapse
Affiliation(s)
- Noriko Amiya
- School of Marine Biosciences, Kitasato University, Kanagawa, Japan
| | - Nayu Nakano
- School of Marine Biosciences, Kitasato University, Kanagawa, Japan
| | - Chikaya Tanaka
- Department of Biology, Tokyo Medical University, Tokyo, Japan
| | - Shizuha Hibino
- School of Marine Biosciences, Kitasato University, Kanagawa, Japan
| | - Ryota Takakura
- Fisheries Technology Institute, Hyogo Prefectural Technology Center for Agriculture, Forestry and Fisheries, Hyogo, Japan
| | - Masafumi Amano
- School of Marine Biosciences, Kitasato University, Kanagawa, Japan
| | | |
Collapse
|
4
|
Terry CE, Liebzeit JA, Purvis EM, Dowd WW. Interactive effects of temperature and salinity on metabolism and activity of the copepod Tigriopus californicus. J Exp Biol 2024; 227:jeb248040. [PMID: 39155685 PMCID: PMC11418200 DOI: 10.1242/jeb.248040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/05/2024] [Indexed: 08/20/2024]
Abstract
In natural environments, two or more abiotic parameters often vary simultaneously, and interactions between co-varying parameters frequently result in unpredictable, non-additive biological responses. To better understand the mechanisms and consequences of interactions between multiple stressors, it is important to study their effects on not only fitness (survival and reproduction) but also performance and intermediary physiological processes. The splash-pool copepod Tigriopus californicus tolerates extremely variable abiotic conditions and exhibits a non-additive, antagonistic interaction resulting in higher survival when simultaneously exposed to high salinity and acute heat stress. Here, we investigated the response of T. californicus in activity and oxygen consumption under simultaneous manipulation of salinity and temperature to identify whether this interaction also arises in these sublethal measures of performance. Oxygen consumption and activity rates decreased with increasing assay salinity. Oxygen consumption also sharply increased in response to acute transfer to lower salinities, an effect that was absent upon transfer to higher salinities. Elevated temperature led to reduced rates of activity overall, resulting in no discernible impact of increased temperature on routine metabolic rates. This suggests that swimming activity has a non-negligible effect on the metabolic rates of copepods and must be accounted for in metabolic studies. Temperature also interacted with assay salinity to affect activity, and with acclimation salinity to affect routine metabolic rates upon acute salinity transfer, implying that the sublethal impacts of these co-varying factors are also not predictable from experiments that study them in isolation.
Collapse
Affiliation(s)
- Caroline E. Terry
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - Josie A. Liebzeit
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - Ella M. Purvis
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - W. Wesley Dowd
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
5
|
Birrell JH, Verberk WC, Woods HA. Consistent differences in tissue oxygen levels across 15 insect species reflect a balance between oxygen supply and demand and highlight a hitherto unknown adaptation for extracting sufficient oxygen from water. CURRENT RESEARCH IN INSECT SCIENCE 2024; 6:100095. [PMID: 39308896 PMCID: PMC11416605 DOI: 10.1016/j.cris.2024.100095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 07/15/2024] [Accepted: 08/22/2024] [Indexed: 09/25/2024]
Abstract
Animals, including insects, need oxygen for aerobic respiration and eventually asphyxiate without it. Aerobic respiration, however, produces reactive oxygen species (ROS), which contribute to dysfunction and aging. Animals appear to balance risks of asphyxiation and ROS by regulating internal oxygen relatively low and stable, but sufficient levels. How much do levels vary among species, and how does variation depend on environment and life history? We predicted that lower internal oxygen levels occur in insects with either limited access to environmental oxygen (i.e., insects dependent on aquatic respiration, where low internal levels facilitate diffusive oxygen uptake, and reduce asphyxiation risks) or consistently low metabolic rates (i.e., inactive insects, requiring limited internal oxygen stores). Alternatively, we predicted insects with long life-stage durations would have internal oxygen levels > 1 kPa (preventing high ROS levels that are believed to occur under tissue hypoxia). We tested these predictions by measuring partial pressures of oxygen (PO2) in tissues from juvenile and adult stages across 15 species comprising nine insect orders. Tissue PO2 varied greatly (from 0 to 18.8 kPa) and variation across species and life stages was significantly related to differences in habitat, activity level, and life stage duration. Individuals with aquatic respiration sustained remarkably low PO2 (mean = 0.88 kPa) across all species from Ephemeroptera (mayflies), Plecoptera (stoneflies), Trichoptera (caddisflies), and Diptera (true flies), possibly reflecting a widespread, but hitherto unknown, adaptation for extracting sufficient oxygen from water. For Odonata (dragonflies), aquatic juveniles had higher PO2 levels (mean = 6.12 kPa), but these were still lower compared to terrestrial adults (mean = 13.3 kPa). Follow-up tests in juvenile stoneflies showed that tissue PO2 remained low even when exposed to hyperoxia, suggesting that levels were down-regulated. This was further corroborated since levels could be modulated by ambient oxygen levels in dead individuals. In addition, tissue PO2 was positively related to activity levels of insect life stages across all species and was highest in stages with short durations. Combined, our results support the idea that internal PO2 is an evolutionarily labile trait that reflects the balance between oxygen supply and demand within the context of the environment and life-history of an insect.
Collapse
Affiliation(s)
| | - Wilco C.E.P. Verberk
- Department of Animal Ecology and Physiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, AJ, Nijmegen 6525 The Netherlands
| | - H. Arthur Woods
- Department of Biology, University of Montana, Missoula, MT 59812 USA
| |
Collapse
|
6
|
Wang G, Huang L, Zhuang S, Han F, Huang Q, Hao M, Lin G, Chen L, Shen B, Li F, Li X, Chen C, Gao Y, Mock T, Liang J. Resting cell formation in the marine diatom Thalassiosira pseudonana. THE NEW PHYTOLOGIST 2024; 243:1347-1360. [PMID: 38402560 DOI: 10.1111/nph.19646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/08/2024] [Indexed: 02/26/2024]
Abstract
Resting cells represent a survival strategy employed by diatoms to endure prolonged periods of unfavourable conditions. In the oceans, many diatoms sink at the end of their blooming season and therefore need to endure cold and dark conditions in the deeper layers of the water column. How they survive these conditions is largely unknown. We conducted an integrative analysis encompassing methods from histology, physiology, biochemistry, and genetics to reveal the biological mechanism of resting-cell formation in the model diatom Thalassiosira pseudonana. Resting-cell formation was triggered by a decrease in light and temperature with subsequent catabolism of storage compounds. Resting cells were characterised by an acidic and viscous cytoplasm and altered morphology of the chloroplast ultrastructure. The formation of resting cells in T. pseudonana is an energy demanding process required for a biophysical alteration of the cytosol and chloroplasts to endure the unfavourable conditions of the deeper ocean as photosynthetic organisms. However, most resting cells (> 90%) germinate upon return to favorable growth conditions.
Collapse
Affiliation(s)
- Guangning Wang
- School of Life Sciences, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen Key Laboratory of Plant Genetics, Xiamen University, Xiamen, 361102, Fujian, China
| | - Lu Huang
- School of Life Sciences, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen Key Laboratory of Plant Genetics, Xiamen University, Xiamen, 361102, Fujian, China
| | - Shanshan Zhuang
- School of Life Sciences, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen Key Laboratory of Plant Genetics, Xiamen University, Xiamen, 361102, Fujian, China
| | - Fang Han
- School of Life Sciences, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen Key Laboratory of Plant Genetics, Xiamen University, Xiamen, 361102, Fujian, China
| | - Qianqian Huang
- School of Life Sciences, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen Key Laboratory of Plant Genetics, Xiamen University, Xiamen, 361102, Fujian, China
| | - Mengyuan Hao
- School of Life Sciences, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen Key Laboratory of Plant Genetics, Xiamen University, Xiamen, 361102, Fujian, China
| | - Guifang Lin
- School of Life Sciences, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen Key Laboratory of Plant Genetics, Xiamen University, Xiamen, 361102, Fujian, China
| | - Longnan Chen
- School of Life Sciences, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen Key Laboratory of Plant Genetics, Xiamen University, Xiamen, 361102, Fujian, China
| | - Biying Shen
- School of Life Sciences, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen Key Laboratory of Plant Genetics, Xiamen University, Xiamen, 361102, Fujian, China
| | - Feng Li
- School of Life Sciences, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen Key Laboratory of Plant Genetics, Xiamen University, Xiamen, 361102, Fujian, China
| | - Xuesong Li
- School of Life Sciences, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen Key Laboratory of Plant Genetics, Xiamen University, Xiamen, 361102, Fujian, China
| | - Changping Chen
- School of Life Sciences, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen Key Laboratory of Plant Genetics, Xiamen University, Xiamen, 361102, Fujian, China
| | - Yahui Gao
- School of Life Sciences, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen Key Laboratory of Plant Genetics, Xiamen University, Xiamen, 361102, Fujian, China
- State Key Laboratory of Marine Environment Science, Xiamen University, Xiamen, 361102, Fujian, China
| | - Thomas Mock
- School of Environmental Sciences, University of East Anglia (UEA), Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Junrong Liang
- School of Life Sciences, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen Key Laboratory of Plant Genetics, Xiamen University, Xiamen, 361102, Fujian, China
| |
Collapse
|
7
|
Zhan L, He J, Meng S, Guo Z, Chen Y, Storey KB, Zhang J, Yu D. Mitochondrial Protein-Coding Gene Expression in the Lizard Sphenomorphus incognitus (Squamata:Scincidae) Responding to Different Temperature Stresses. Animals (Basel) 2024; 14:1671. [PMID: 38891717 PMCID: PMC11170996 DOI: 10.3390/ani14111671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/25/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
In the context of global warming, the frequency of severe weather occurrences, such as unexpected cold spells and heat waves, will grow, as well as the intensity of these natural disasters. Lizards, as a large group of reptiles, are ectothermic. Their body temperatures are predominantly regulated by their environment and temperature variations directly impact their behavior and physiological activities. Frequent cold periods and heat waves can affect their biochemistry and physiology, and often their ability to maintain their body temperature. Mitochondria, as the center of energy metabolism, are crucial for maintaining body temperature, regulating metabolic rate, and preventing cellular oxidative damage. Here, we used RT-qPCR technology to investigate the expression patterns and their differences for the 13 mitochondrial PCGs in Sphenomorphus incognitus (Squamata:Scincidae), also known as the brown forest skink, under extreme temperature stress at 4 °C, 8 °C, 34 °C, and 38 °C for 24 h, compared to the control group at 25 °C. In southern China, for lizards, 4 °C is close to lethal, and 8 °C induces hibernation, while 34/38 °C is considered hot and environmentally realistic. Results showed that at a low temperature of 4 °C for 24 h, transcript levels of ATP8, ND1, ND4, COI, and ND4L significantly decreased, to values of 0.52 ± 0.08, 0.65 ± 0.04, 0.68 ± 0.10, 0.28 ± 0.02, and 0.35 ± 0.02, respectively, compared with controls. By contrast, transcript levels of COIII exhibited a significant increase, with a mean value of 1.86 ± 0.21. However, exposure to 8 °C for 24 h did not lead to an increase in transcript levels. Indeed, transcript levels of ATP6, ATP8, ND1, ND3, and ND4 were significantly downregulated, to 0.48 ± 0.11, 0.68 ± 0.07, 0.41 ± 0.08, 0.54 ± 0.10, and 0.52 ± 0.07, respectively, as compared with controls. Exposure to a hot environment of 34 °C for 24 h led to an increase in transcript levels of COI, COII, COIII, ND3, ND5, CYTB, and ATP6, with values that were 3.3 ± 0.24, 2.0 ± 0.2, 2.70 ± 1.06, 1.57 ± 0,08, 1.47 ± 0.13, 1.39 ± 0.56, and 1.86 ± 0.12, respectively, over controls. By contrast, ND4L exhibited a significant decrease (to 0.31 ± 0.01) compared with controls. When exposed to 38 °C, the transcript levels of the 13 PCGs significantly increased, ranging from a 2.04 ± 0.23 increase in ND1 to a 6.30 ± 0.96 rise in ND6. Under two different levels of cold and heat stress, the expression patterns of mitochondrial genes in S. incognitus vary, possibly associated with different strategies employed by this species in response to low and high temperatures, allowing for rapid compensatory adjustments in mitochondrial electron transport chain proteins in response to temperature changes. Furthermore, this underscores once again the significant role of mitochondrial function in determining thermal plasticity in reptiles.
Collapse
Affiliation(s)
- Lemei Zhan
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (L.Z.)
| | - Jingyi He
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (L.Z.)
| | - Siqi Meng
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (L.Z.)
| | - Zhiqiang Guo
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (L.Z.)
| | - Yuxin Chen
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (L.Z.)
| | - Kenneth B. Storey
- Department of Biology, Carleton University, Ottawa, ON K1S5B6, Canada;
| | - Jiayong Zhang
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (L.Z.)
| | - Danna Yu
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (L.Z.)
- Key Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
8
|
Du X, Tian J, Huang Y, Ye Y, Yang Y, Xu W, Zhao Y, Li Y. Effects of stock enhancement on the macrobenthic community and ecological health in the intertidal zone of the estuarine wetland in Nanhui, China. MARINE POLLUTION BULLETIN 2024; 203:116492. [PMID: 38754324 DOI: 10.1016/j.marpolbul.2024.116492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 05/09/2024] [Accepted: 05/09/2024] [Indexed: 05/18/2024]
Abstract
Nanhui Dongtan Wetland is an important part of Yangtze Estuary Wetland, and its species diversity has been affected by reclamation in recent years. To increase the diversity of species in reclamation areas, stock enhancement was implemented in the Nanhui Dongtan Wetland in May 2020 as a method of ecological restoration. We investigated macrobenthos before and after release, analysed changes in the macrobenthos and evaluated the ecological health of the sampled area. The diversity index showed species were more abundant and community structure were more diversified after release. Functional groups and redundancy analysis showed that the effects of stock enhancement on macrobenthos in Nanhui Dongtan wetland may be based on changes in secondary productivity. Stock enhancement may promote the resistance of macrobenthic communities to organic pollution without negatively affecting ecological health. As a method of ecological restoration, stock enhancement will play a positive role in the restoration of macrobenthic communities.
Collapse
Affiliation(s)
- Xinglin Du
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Jiangtao Tian
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Yizhou Huang
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Yucong Ye
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Ying Yang
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Wenyue Xu
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Yunlong Zhao
- School of Life Science, East China Normal University, Shanghai 200241, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China.
| | - Yiming Li
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai 200092, China.
| |
Collapse
|
9
|
Norin T, Rowsey LE, Houslay TM, Reeve C, Speers-Roesch B. Among-individual variation in thermal plasticity of fish metabolic rates causes profound variation in temperature-specific trait repeatability, but does not co-vary with behavioural plasticity. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220488. [PMID: 38186278 PMCID: PMC10772605 DOI: 10.1098/rstb.2022.0488] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/17/2023] [Indexed: 01/09/2024] Open
Abstract
Conspecifics of the same age and size differ consistently in the pace with which they expend energy. This among-individual variation in metabolic rate is thought to influence behavioural variation, since differences in energy requirements should motivate behaviours that facilitate energy acquisition, such as being bold or active in foraging. While there is evidence for links between metabolic rate and behaviour in constant environments, we know little about whether metabolic rate and behaviour change together when the environment changes-that is, if metabolic and behavioural plasticity co-vary. We investigated this using a fish that becomes dormant in winter and strongly reduces its activity when the environment cools, the cunner (Tautogolabrus adspersus). We found strong and predictable among-individual variation in thermal plasticity of metabolic rates, from resting to maximum levels, but no evidence for among-individual variation in thermal plasticity of movement activity, meaning that these key physiological and behavioural traits change independently when the environment changes. The strong among-individual variation in metabolic rate plasticity resulted in much higher repeatability (among-individual consistency) of metabolic rates at warm than cold temperatures, indicating that the potential for metabolic rate to evolve under selection is temperature-dependent, as repeatability can set the upper limit to heritability. This article is part of the theme issue 'The evolutionary significance of variation in metabolic rates'.
Collapse
Affiliation(s)
- Tommy Norin
- DTU Aqua: National Institute of Aquatic Resources, Technical University of Denmark, Henrik Dams Allé 202, 2800 Kgs. Lyngby, Denmark
- Department of Biological Sciences, University of New Brunswick, Saint John, New Brunswick, Canada E2L 4L5
| | - Lauren E. Rowsey
- Department of Biological Sciences, University of New Brunswick, Saint John, New Brunswick, Canada E2L 4L5
| | - Thomas M. Houslay
- Centre of Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Penryn, Cornwall, TR10 9FE, UK
| | - Connor Reeve
- Department of Biological Sciences, University of New Brunswick, Saint John, New Brunswick, Canada E2L 4L5
- Department of Biology, Carleton University, Ottawa, Ontario, Canada K1S 5B6
| | - Ben Speers-Roesch
- Department of Biological Sciences, University of New Brunswick, Saint John, New Brunswick, Canada E2L 4L5
| |
Collapse
|
10
|
Middleton EK, Gilbert MJH, Landry T, Lamarre SG, Speers-Roesch B. Environmental variation associated with overwintering elicits marked metabolic plasticity in a temperate salmonid, Salvelinus fontinalis. J Exp Biol 2024; 227:jeb246743. [PMID: 38235572 PMCID: PMC10911287 DOI: 10.1242/jeb.246743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/10/2024] [Indexed: 01/19/2024]
Abstract
Poleward winters commonly expose animals, including fish, to frigid temperatures and low food availability. Fishes that remain active over winter must therefore balance trade-offs between conserving energy and maintaining physiological performance in the cold, yet the extent and underlying mechanisms of these trade-offs are not well understood. We investigated the metabolic plasticity of brook char (Salvelinus fontinalis), a temperate salmonid, from the biochemical to whole-animal level in response to cold and food deprivation. Acute cooling (1°C day-1) from 14°C to 2°C had no effect on food consumption but reduced activity by 77%. We then assessed metabolic performance and demand over 90 days with exposure to warm (8°C) or cold winter (2°C) temperatures while fish were fed or starved. Resting metabolic rate (RMR) decreased substantially during initial cooling from 8°C to 2°C (Q10=4.2-4.5) but brook char exhibited remarkable thermal compensation during acclimation (Q10=1.4-1.6). Conversely, RMR was substantially lower (40-48%) in starved fish, conserving energy. Thus, the absolute magnitude of thermal plasticity may be masked or modified under food restriction. This reduction in RMR was associated with atrophy and decreases in in vivo protein synthesis rates, primarily in non-essential tissues. Remarkably, food deprivation had no effect on maximum oxygen uptake rates and thus aerobic capacity, supporting the notion that metabolic capacity can be decoupled from RMR in certain contexts. Overall, our study highlights the multi-faceted energetic flexibility of Salvelinus spp. that likely contributes to their success in harsh and variable environments and may be emblematic of winter-active fishes more broadly.
Collapse
Affiliation(s)
- Ella K. Middleton
- Department of Biological Sciences, University of New Brunswick, Saint John, Canada, E2K 5E2
| | - Matthew J. H. Gilbert
- Department of Biological Sciences, University of New Brunswick, Saint John, Canada, E2K 5E2
| | - Thomas Landry
- Département de Biologie, Université de Moncton, Moncton, Canada, E1A 3E9
| | - Simon G. Lamarre
- Département de Biologie, Université de Moncton, Moncton, Canada, E1A 3E9
| | - Ben Speers-Roesch
- Department of Biological Sciences, University of New Brunswick, Saint John, Canada, E2K 5E2
| |
Collapse
|
11
|
Rowsey LE, Reeve C, Savoy T, Speers-Roesch B. Thermal constraints on exercise and metabolic performance do not explain the use of dormancy as an overwintering strategy in the cunner (Tautogolabrus adspersus). J Exp Biol 2024; 227:jeb246741. [PMID: 38044850 PMCID: PMC10906487 DOI: 10.1242/jeb.246741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/24/2023] [Indexed: 12/05/2023]
Abstract
Winter cold slows ectotherm physiology, potentially constraining activities and ecological opportunities at poleward latitudes. Yet, many fishes are winter-active, facilitated by thermal compensation that improves cold performance. Conversely, winter-dormant fishes (e.g. cunner, Tautogolabrus adspersus) become inactive and non-feeding overwinter. Why are certain fishes winter-dormant? We hypothesized that winter dormancy is an adaptive behavioural response arising in poleward species that tolerate severe, uncompensated constraints of cold on their physiological performance. We predicted that below their dormancy threshold of 7--8°C, exercise and metabolic performance of cunner are greatly decreased, even after acclimation (i.e. shows above-normal, uncompensated thermal sensitivity, Q10>1-3). We measured multiple key performance metrics (e.g. C-start maximum velocity, chase swimming speed, aerobic scope) in cunner after acute exposure to 26-2°C (3°C intervals using 14°C-acclimated fish) or acclimation (5-8 weeks) to 14-2°C (3°C intervals bracketing the dormancy threshold). Performance declined with cooling, and the acute Q10 of all six performance rate metrics was significantly greater below the dormancy threshold temperature (Q10,acute8-2°C=1.5-4.9, mean=3.3) than above (Q10,acute14-8°C=1.1-1.9, mean=1.5), inferring a cold constraint. However, 2°C acclimation (temporally more relevant to seasonal cooling) improved performance, abolishing the acute constraint (Q10,acclimated8-2°C=1.4-3.0, mean=2.0; also cf. Q10,acclimated14-8°C=1.2-2.9, mean=1.7). Thus, dormant cunner show partial cold-compensation of exercise and metabolic performance, similar to winter-active species. However, responsiveness to C-start stimuli was greatly cold-constrained even following acclimation, suggesting dormancy involves sensory limitation. Thermal constraints on metabolic and exercise physiology are not significant drivers of winter dormancy in cunner. In fact, compensatory plasticity at frigid temperatures is retained even in a dormant fish.
Collapse
Affiliation(s)
- Lauren E. Rowsey
- Department of Biological Sciences, University of New Brunswick Saint John, 100 Tucker Park Road, Saint John, NB E2L 4L5, Canada
| | - Connor Reeve
- Department of Biological Sciences, University of New Brunswick Saint John, 100 Tucker Park Road, Saint John, NB E2L 4L5, Canada
| | - Tyler Savoy
- Department of Biological Sciences, University of New Brunswick Saint John, 100 Tucker Park Road, Saint John, NB E2L 4L5, Canada
| | - Ben Speers-Roesch
- Department of Biological Sciences, University of New Brunswick Saint John, 100 Tucker Park Road, Saint John, NB E2L 4L5, Canada
| |
Collapse
|
12
|
Kottmann JS, Berge GM, Kousoulaki K, Østbye TKK, Ytteborg E, Gjerde B, Lein I. Welfare and performance of ballan wrasse (Labrus bergylta) reared at two different temperatures after a preparatory feeding trial with enhanced dietary eicosapentaenoic acid. JOURNAL OF FISH BIOLOGY 2023; 103:906-923. [PMID: 37321978 DOI: 10.1111/jfb.15482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/14/2023] [Indexed: 06/17/2023]
Abstract
Concerns have long been raised about the welfare of ballan wrasse (Labrus bergylta) used for the biological control of sea lice in Atlantic salmon (Salmo salar) aquaculture. This study assessed the effect of increased dietary eicosapentaenoic acid (EPA) levels and initial condition factor (CF) on the subsequent performance and welfare of ballan wrasse farmed in high and low water temperatures. Fish were fed a diet with either commercial or high EPA levels for 3 months at 15°C. Subsequently, fish were tagged with a passive integrated transponder, measured for their CF and divided into two groups consisting of fish from both treatments and reared for 4.5 months at either 15 or 6°C fed a commercial diet. Each fish was categorized as high (≥2.7) or low CF (<2.7) fish based on the calculated average CF of the population. Dietary composition influenced the fatty acid (FA) profile of the stored lipids without affecting the growth or welfare of ballan wrasse. Fish reared at 15°C showed higher growth, more fat and energy reserves and less ash content. Fish reared at 6°C lost weight, using up their body lipids at the end of the temperature trial. Gene expression analyses showed upregulation of the positive growth marker (GHrα) and two genes involved in the synthesis and oxidation of FAs (elovl5, cpt1) and downregulation of the negative growth marker (mstn) in fish reared at 15°C compared to those reared at 6°C. Fish reared at 6°C showed upregulated levels of il-6 compared to those reared at 15°C, suggesting an enhanced immune reaction in response to low temperature. Fish with high CF showed better survival, growth and performance compared to those with low CF. External welfare scoring showed higher prevalence and severity in emaciation, scale loss and the sum index score (of all measured welfare parameters) in fish reared at 6°C compared to those reared at 15°C and better welfare in fish with high CF compared to those with low CF. Histological examination of the skin showed that fish reared at 6°C had decreased epidermal thickness, a lower overall number of mucous cells in the inner and outer epidermis and a different organization of mucous cells compared to fish reared at 15°C, indicating stress in fish reared at 6°C. Overall, low water temperatures had profound effects on the performance and external and internal welfare parameters of ballan wrasse and can be considered a stressor likely affecting the delousing efficacy. These findings support the seasonal use of different cleaner fish species. High CF, but not increased dietary EPA levels, appeared to help fish cope better with low water temperatures and should thus be assessed and considered before deploying them in salmon cages.
Collapse
Affiliation(s)
- Johanna S Kottmann
- Department of Aquaculture Production Technology, Nofima, Sunndalsøra, Norway
| | - Gerd M Berge
- Department of Nutrition and Feed Technology, Nofima, Sunndalsøra, Norway
| | | | | | | | - Bjarne Gjerde
- Department of Breeding and Genetics, Nofima, Ås, Norway
| | - Ingrid Lein
- Department of Aquaculture Production Technology, Nofima, Sunndalsøra, Norway
| |
Collapse
|
13
|
Wang JY, Zhang LH, Hong YH, Cai LN, Storey KB, Zhang JY, Zhang SS, Yu DN. How Does Mitochondrial Protein-Coding Gene Expression in Fejervarya kawamurai (Anura: Dicroglossidae) Respond to Extreme Temperatures? Animals (Basel) 2023; 13:3015. [PMID: 37835622 PMCID: PMC10571990 DOI: 10.3390/ani13193015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/22/2023] [Accepted: 09/23/2023] [Indexed: 10/15/2023] Open
Abstract
Unusual climates can lead to extreme temperatures. Fejervarya kawamurai, one of the most prevalent anurans in the paddy fields of tropical and subtropical regions in Asia, is sensitive to climate change. The present study focuses primarily on a single question: how do the 13 mitochondrial protein-coding genes (PCGs) respond to extreme temperature change compared with 25 °C controls? Thirty-eight genes including an extra tRNA-Met gene were identified and sequenced from the mitochondrial genome of F. kawamurai. Evolutionary relationships were assessed within the Dicroglossidae and showed that Dicroglossinae is monophyletic and F. kawamurai is a sister group to the clade of (F. multistriata + F. limnocharis). Transcript levels of mitochondrial genes in liver were also evaluated to assess responses to 24 h exposure to low (2 °C and 4 °C) or high (40 °C) temperatures. Under 2 °C, seven genes showed significant changes in liver transcript levels, among which transcript levels of ATP8, ND1, ND2, ND3, ND4, and Cytb increased, respectively, and ND5 decreased. However, exposure to 4 °C for 24 h was very different in that the expressions of ten mitochondrial protein-coding genes, except ND1, ND3, and Cytb, were significantly downregulated. Among them, the transcript level of ND5 was most significantly downregulated, decreasing by 0.28-fold. Exposure to a hot environment at 40 °C for 24 h resulted in a marked difference in transcript responses with strong upregulation of eight genes, ranging from a 1.52-fold increase in ND4L to a 2.18-fold rise in Cytb transcript levels, although COI and ND5 were reduced to 0.56 and 0.67, respectively, compared with the controls. Overall, these results suggest that at 4 °C, F. kawamurai appears to have entered a hypometabolic state of hibernation, whereas its mitochondrial oxidative phosphorylation was affected at both 2 °C and 40 °C. The majority of mitochondrial PCGs exhibited substantial changes at all three temperatures, indicating that frogs such as F. kawamurai that inhabit tropical or subtropical regions are susceptible to ambient temperature changes and can quickly employ compensating adjustments to proteins involved in the mitochondrial electron transport chain.
Collapse
Affiliation(s)
- Jing-Yan Wang
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Li-Hua Zhang
- Taishun County Forestry Bureau, Wenzhou 325000, China
| | - Yue-Huan Hong
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Ling-Na Cai
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Kenneth B. Storey
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Jia-Yong Zhang
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
- Key Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China
| | - Shu-Sheng Zhang
- Key Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China
- Zhejiang Wuyanling National Nature Reserve, Wenzhou 325500, China
| | - Dan-Na Yu
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
- Key Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
14
|
Nugent CM, Kess T, Brachmann MK, Langille BL, Duffy SJ, Lehnert SJ, Wringe BF, Bentzen P, Bradbury IR. Whole-genome sequencing reveals fine-scale environment-associated divergence near the range limits of a temperate reef fish. Mol Ecol 2023; 32:4742-4762. [PMID: 37430462 DOI: 10.1111/mec.17063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 07/12/2023]
Abstract
Environmental variation is increasingly recognized as an important driver of diversity in marine species despite the lack of physical barriers to dispersal and the presence of pelagic stages in many taxa. A robust understanding of the genomic and ecological processes involved in structuring populations is lacking for most marine species, often hindering management and conservation action. Cunner (Tautogolabrus adspersus) is a temperate reef fish with both pelagic early life-history stages and strong site-associated homing as adults; the species is also of interest for use as a cleaner fish in salmonid aquaculture in Atlantic Canada. We aimed to characterize genomic and geographic differentiation of cunner in the Northwest Atlantic. To achieve this, a chromosome-level genome assembly for cunner was produced and used to characterize spatial population structure throughout Atlantic Canada using whole-genome sequencing. The genome assembly spanned 0.72 Gbp and 24 chromosomes; whole-genome sequencing of 803 individuals from 20 locations from Newfoundland to New Jersey identified approximately 11 million genetic variants. Principal component analysis revealed four regional Atlantic Canadian groups. Pairwise FST and selection scans revealed signals of differentiation and selection at discrete genomic regions, including adjacent peaks on chromosome 10 across multiple pairwise comparisons (i.e. FST 0.5-0.75). Redundancy analysis suggested association of environmental variables related to benthic temperature and oxygen range with genomic structure. Results suggest regional scale diversity in this temperate reef fish and can directly inform the collection and translocation of cunner for aquaculture applications and the conservation of wild populations throughout the Northwest Atlantic.
Collapse
Affiliation(s)
- Cameron M Nugent
- Fisheries and Oceans Canada, Northwest Atlantic Fisheries Centre, St. John's, Newfoundland, Canada
| | - Tony Kess
- Fisheries and Oceans Canada, Northwest Atlantic Fisheries Centre, St. John's, Newfoundland, Canada
| | - Matthew K Brachmann
- Fisheries and Oceans Canada, Northwest Atlantic Fisheries Centre, St. John's, Newfoundland, Canada
| | - Barbara L Langille
- Fisheries and Oceans Canada, Northwest Atlantic Fisheries Centre, St. John's, Newfoundland, Canada
| | - Steven J Duffy
- Fisheries and Oceans Canada, Northwest Atlantic Fisheries Centre, St. John's, Newfoundland, Canada
| | - Sarah J Lehnert
- Fisheries and Oceans Canada, Northwest Atlantic Fisheries Centre, St. John's, Newfoundland, Canada
| | - Brendan F Wringe
- Fisheries and Oceans Canada, Bedford Institute of Oceanography, Dartmouth, Nova Scotia, Canada
| | - Paul Bentzen
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Ian R Bradbury
- Fisheries and Oceans Canada, Northwest Atlantic Fisheries Centre, St. John's, Newfoundland, Canada
| |
Collapse
|
15
|
Swanson DL, Stager M, Vézina F, Liu JS, McKechnie AE, Amirkhiz RG. Evidence for a maintenance cost for birds maintaining highly flexible basal, but not summit, metabolic rates. Sci Rep 2023; 13:8968. [PMID: 37268715 DOI: 10.1038/s41598-023-36218-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 05/31/2023] [Indexed: 06/04/2023] Open
Abstract
Reversible phenotypic flexibility allows organisms to better match phenotypes to prevailing environmental conditions and may produce fitness benefits. Costs and constraints of phenotypic flexibility may limit the capacity for flexible responses but are not well understood nor documented. Costs could include expenses associated with maintaining the flexible system or with generating the flexible response. One potential cost of maintaining a flexible system is an energetic cost reflected in the basal metabolic rate (BMR), with elevated BMR in individuals with more flexible metabolic responses. We accessed data from thermal acclimation studies of birds where BMR and/or Msum (maximum cold-induced metabolic rate) were measured before and after acclimation, as a measure of metabolic flexibility, to test the hypothesis that flexibility in BMR (ΔBMR), Msum (ΔMsum), or metabolic scope (Msum - BMR; ΔScope) is positively correlated with BMR. When temperature treatments lasted at least three weeks, three of six species showed significant positive correlations between ΔBMR and BMR, one species showed a significant negative correlation, and two species showed no significant correlation. ΔMsum and BMR were not significantly correlated for any species and ΔScope and BMR were significantly positively correlated for only one species. These data suggest that support costs exist for maintaining high BMR flexibility for some bird species, but high flexibility in Msum or metabolic scope does not generally incur elevated maintenance costs.
Collapse
Affiliation(s)
- David L Swanson
- Department of Biology, University of South Dakota, Vermillion, SD, USA.
| | - Maria Stager
- Department of Biology, University of Massachusetts, Amherst, MA, USA
| | - François Vézina
- Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, Rimouski, QC, Canada
| | - Jin-Song Liu
- School of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Andrew E McKechnie
- DST‑NRF Centre of Excellence at the Percy FitzPatrick Institute, Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield, South Africa
- South African Research Chair in Conservation Physiology, South African National Biodiversity Institute, P.O. Box 754, Pretoria, 0001, South Africa
| | | |
Collapse
|
16
|
Molina JM, Kunzmann A, Reis JP, Guerreiro PM. Metabolic Responses and Resilience to Environmental Challenges in the Sedentary Batrachoid Halobatrachus didactylus (Bloch & Schneider, 1801). Animals (Basel) 2023; 13:ani13040632. [PMID: 36830420 PMCID: PMC9951689 DOI: 10.3390/ani13040632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
In the context of climate change, warming of the seas and expansion of hypoxic zones are challenges that most species of fish are, or will be subjected to. Understanding how different species cope with these changes in their environment at the individual level can shed light on how populations and ecosystems will be affected. We provide first-time estimates on the metabolic rates, thermal, and oxygen-related limits for Halobatrachus didactylus, a coastal sedentary fish that lives in intertidal environments of the Northeast Atlantic. Using respirometry in different experimental designs, we found that this species is highly resistant to acute thermal stress (CTmax: 34.82 ± 0.66 °C) and acute hypoxia (Pcrit: 0.59-1.97 mg O2 L-1). We found size-specific differences in this stress response, with smaller individuals being more sensitive. We also quantified its aerobic scope and daily activity patterns, finding this fish to be extremely sedentary, with one of the lowest standard metabolic rates found in temperate fish (SMR: 14.96 mg O2 kg-1h-1). H. didactylus activity increases at night, when its metabolic rate increases drastically (RMR: 36.01 mg O2 kg-1h-1). The maximum metabolic rate of H. didactylus was estimated to be 67.31 mg O2 kg-1h-1, producing an aerobic scope of 52.35 mg O2 kg-1h-1 (77.8% increase). The metrics obtained in this study prove that H. didactylus is remarkably resilient to acute environmental variations in temperature and oxygen content, which might enable it to adapt to the extreme abiotic conditions forecasted for the world's oceans in the near future.
Collapse
Affiliation(s)
- Juan Manuel Molina
- Instituto Argentino de Oceanografía (CONICET), Bahía Blanca B8000, Argentina
- Leibniz-Zentrum für Marine Tropenforschung (ZMT), 28359 Bremen, Germany
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, 8005-139 Faro, Portugal
- Correspondence:
| | - Andreas Kunzmann
- Leibniz-Zentrum für Marine Tropenforschung (ZMT), 28359 Bremen, Germany
| | - João Pena Reis
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, 8005-139 Faro, Portugal
| | | |
Collapse
|
17
|
Effect of a temperature gradient on the behaviour of an endangered Mexican topminnow and an invasive freshwater fish. Sci Rep 2022; 12:20584. [PMID: 36446867 PMCID: PMC9709034 DOI: 10.1038/s41598-022-24755-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022] Open
Abstract
Climate change and biological invasions are two of the major threats to biodiversity. They could act synergistically to the detriment of natives as non-native species may be more plastic and resilient when facing changing environments. The twoline skiffia (Skiffia bilineata) is an endangered Mexican topminnow that cohabits with invasive guppies (Poecilia reticulata) in some areas in central Mexico. Guppies have been found to take advantage from associating with the twoline skiffia and are considered partially responsible for the decline of its populations. Refuge use and exploratory behaviours are trade-offs between being safe from the unknown and the opportunity to explore novel areas in search for better resources or to disperse. The aim of this study is to investigate how a change in temperature affects the refuge use and exploratory behaviours for both species. We found that temperature affects the refuge use of twoline skiffias, and the swimming activity of both species. Skiffias explored the rock more than guppies regardless of the temperature scenario. Also, smaller fish spent more time performing exploratory behaviours than bigger ones. Our study is the first to test the effect of temperature on the refuge use and exploratory behaviour of a goodeid species, and our results contribute to the idea that some natives could be more affected by climate change than some invaders.
Collapse
|
18
|
Bloomfield EJ, Guzzo MM, Middel TA, Ridgway MS, McMeans BC. Seasonality can affect ecological interactions between fishes of different thermal guilds. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.986459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Seasonality could play a crucial role in structuring species interactions. For example, many ectotherms alter their activity, habitat, and diet in response to seasonal temperature variation. Species also vary widely in physiological traits, like thermal preference, which may mediate their response to seasonal variation. How behavioral responses to seasonality differ between competing species and alter their overlap along multiple niche axes in space and time, remains understudied. Here, we used bulk carbon and nitrogen stable isotopes combined with stomach content analysis to determine the seasonal diet overlap between a native cold-water species [lake trout (Salvelinus namaycush)] and a range-expanding warm-water species [smallmouth bass (Micropterus dolomieu)] in two north-temperate lakes over 2 years. We coupled these analyses with fine-scale acoustic telemetry from one of the lakes to determine seasonal overlap in habitat use and activity levels. We found that dietary niche overlap was higher in the spring, when both species were active and using more littoral resources, compared to the summer, when the cold-water lake trout increased their reliance on pelagic resources. Telemetry data revealed that activity rates diverged in the winter, when lake trout remained active, but the warm-water smallmouth bass reduced their activity. Combining stable isotopes and stomach contents with acoustic telemetry was a powerful approach for demonstrating that species interactions are temporally and spatially dynamic. In our case, the study species diverged in their diet, habitat, and activity more strongly during certain times of the year than others, in ways that were consistent with their thermal preferences. Despite large differences in thermal preference, however, there were times of year when both species were active and sharing a common habitat and prey source (i.e., resource overlap was greater in spring than summer). Based on our findings, important ecological processes are occurring during all seasons, which would be missed by summer sampling alone. Our study stresses that quantifying multiple niche axes in both space and time is important for understanding the possible outcomes of altered seasonal conditions, including shorter winters, already arising under a changing climate.
Collapse
|
19
|
Gerber L, MacSween CE, Staples JF, Gamperl AK. Cold-induced metabolic depression in cunner (Tautogolabrus adspersus): A multifaceted cellular event. PLoS One 2022; 17:e0271086. [PMID: 35917356 PMCID: PMC9345476 DOI: 10.1371/journal.pone.0271086] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/22/2022] [Indexed: 11/19/2022] Open
Abstract
Metabolic depression and dormancy (i.e., stopping/greatly reducing activity and feeding) are strategies used by many animals to survive winter conditions characterized by food shortages and cold temperatures. However, controversy exists on whether the reduced metabolism of some fishes at cold temperatures is due to dormancy alone, or also involves active metabolic depression. Thus, we acclimated winter-dormant cunner [Tautogolabrus adspersus, a north temperate wrasse which in Newfoundland is at the northern limit of its distribution] and winter-active Atlantic salmon (Salmo salar) to winter (0°C; 8h light: 16h dark) and summer (10°C; 16h light: 8 h dark) conditions, and measured the thermal sensitivity of ATP-producing and O2-consuming processes in isolated liver mitochondria and hepatocytes when exposed in vitro to temperatures from 20 to 0°C and 10 to 0°C, respectively. We found that: 1) liver mitochondrial State 3 respiration and hepatocyte O2 consumption in cunner were only ~ one-third and two-thirds of that measured in salmon, respectively, at all measurement temperatures; 2) cunner mitochondria also have proton conductance and leak respiration (State 4) values that are only approximately one-third of those in salmon; 3) the mitochondria of cunner show a dramatic reduction in respiratory control ratio (from ~ 8 to 3), and a much greater drop in State 3 respiration, between 10 and 5°C (Q10 values in 10- and 0°C-acclimated fish of 14.5 and 141.2, respectively), as compared with salmon (3.9 and 9.6, respectively); and 4) lowering temperature from 5 to 0°C resulted in ~ 40 and 30% reductions in hepatocyte O2 consumption due to non-mitochondrial respiration and Na+-K+-ATPase activity, respectively, in cunner, but not in salmon. Collectively, these results highlight the intrinsic capacity for metabolic depression in hepatocytes and mitochondria of cunner, and clearly suggest that several cellular processes play a role in the reduced metabolic rates exhibited by some fishes at cold temperatures.
Collapse
Affiliation(s)
- Lucie Gerber
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John’s, NL, Canada
| | - Courtney E. MacSween
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John’s, NL, Canada
| | - James F. Staples
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - A. Kurt Gamperl
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John’s, NL, Canada
- * E-mail:
| |
Collapse
|
20
|
Rossi GS, Labbé D, Wright PA. Out of water in the dark: Plasticity in visual structures and function in an amphibious fish. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2022; 337:776-784. [PMID: 35727120 DOI: 10.1002/jez.2636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/20/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Many fishes encounter periods of prolonged darkness within their lifetime, yet the consequences for the visual system are poorly understood. We used an amphibious fish (Kryptolebias marmoratus) that occupies dark terrestrial environments during seasonal droughts to test whether exposure to prolonged darkness diminishes visual performance owing to reduced optic tectum (OT) size and/or neurogenesis. We performed a 3-week acclimation with a 2 ×$\times $ 2 factorial design, in which fish were either acclimated to a 12 h:12 h or 0 h:24 h light:dark photoperiod in water or in air. We found that water-exposed fish had poorer visual acuity when acclimated to the dark, while air-acclimated fish had poorer visual acuity regardless of photoperiod. The ability of K. marmoratus to capture aerial prey from water followed a similar trend, suggesting that good vision is important for hunting effectively. Changes in visual acuity did not result from changes in OT size, but air-acclimated fish had 37% fewer proliferating cells in the OT than water-acclimated fish. As K. marmoratus are unable to eat on land, reducing cell proliferation in the OT may serve as a mechanism to reduce maintenance costs associated with the visual system. Overall, we suggest that prolonged darkness and air exposure can impair vision in K. marmoratus, and that changes in visual performance may be mediated, in part, by OT neurogenesis. More broadly, we show that plastic changes to the visual system of fishes can have potential consequences for organismal performance and fitness.
Collapse
Affiliation(s)
- Giulia S Rossi
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
- Department of Biological Sciences, University of Toronto Scarborough, Scarborough, Ontario, Canada
| | - Daniel Labbé
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
- School of Earth and Ocean Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Patricia A Wright
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
21
|
Wheeler CR, Kneebone J, Heinrich D, Strugnell JM, Mandelman JW, Rummer JL. Diel Rhythm and Thermal Independence of Metabolic Rate in a Benthic Shark. J Biol Rhythms 2022; 37:484-497. [PMID: 35822624 DOI: 10.1177/07487304221107843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Biological rhythms that are mediated by exogenous factors, such as light and temperature, drive the physiology of organisms and affect processes ranging from cellular to population levels. For elasmobranchs (i.e. sharks, rays, and skates), studies documenting diel activity and movement patterns indicate that many species are crepuscular or nocturnal in nature. However, few studies have investigated the rhythmicity of elasmobranch physiology to understand the mechanisms underpinning these distinct patterns. Here, we assess diel patterns of metabolic rates in a small meso-predator, the epaulette shark (Hemiscyllium ocellatum), across ecologically relevant temperatures and upon acutely removing photoperiod cues. This species possibly demonstrates behavioral sleep during daytime hours, which is supported herein by low metabolic rates during the day and a 1.7-fold increase in metabolic rates at night. From spring to summer seasons, where average average water temperature temperatures for this species range 24.5 to 28.5 °C, time of day, and not temperature, had the strongest influence on metabolic rate. These results indicate that this species, and perhaps other similar species from tropical and coastal environments, may have physiological mechanisms in place to maintain metabolic rate on a seasonal time scale regardless of temperature fluctuations that are relevant to their native habitats.
Collapse
Affiliation(s)
- Carolyn R Wheeler
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia.,School for the Environment, The University of Massachusetts Boston, Boston, Massachusetts
| | - Jeff Kneebone
- Anderson Cabot Center for Ocean Life, New England Aquarium, Boston, Massachusetts
| | - Dennis Heinrich
- College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| | - Jan M Strugnell
- Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, Queensland, Australia.,Department of Ecology, Environment and Evolution, La Trobe University, Melbourne, Victoria, Australia
| | - John W Mandelman
- School for the Environment, The University of Massachusetts Boston, Boston, Massachusetts.,Anderson Cabot Center for Ocean Life, New England Aquarium, Boston, Massachusetts
| | - Jodie L Rummer
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia.,College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| |
Collapse
|
22
|
Jin WT, Guan JY, Dai XY, Wu GJ, Zhang LP, Storey KB, Zhang JY, Zheng RQ, Yu DN. Mitochondrial gene expression in different organs of Hoplobatrachus rugulosus from China and Thailand under low-temperature stress. BMC ZOOL 2022; 7:24. [PMID: 37170336 PMCID: PMC10127437 DOI: 10.1186/s40850-022-00128-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 04/29/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Hoplobatrachus rugulosus (Anura: Dicroglossidae) is distributed in China and Thailand and the former can survive substantially lower temperatures than the latter. The mitochondrial genomes of the two subspecies also differ: Chinese tiger frogs (CT frogs) display two identical ND5 genes whereas Thai tiger frogs (TT frogs) have two different ND5 genes. Metabolism of ectotherms is very sensitive to temperature change and different organs have different demands on energy metabolism at low temperatures. Therefore, we conducted studies to understand: (1) the differences in mitochondrial gene expression of tiger frogs from China (CT frogs) versus Thailand (TT frogs); (2) the differences in mitochondrial gene expression of tiger frogs (CT and TT frogs) under short term 24 h hypothermia exposure at 25 °C and 8 °C; (3) the differences in mitochondrial gene expression in three organs (brain, liver and kidney) of CT and TT frogs.
Results
Utilizing RT-qPCR and comparing control groups at 25 °C with low temperature groups at 8 °C, we came to the following results. (1) At the same temperature, mitochondrial gene expression was significantly different in two subspecies. The transcript levels of two identical ND5 of CT frogs were observed to decrease significantly at low temperatures (P < 0.05) whereas the two different copies of ND5 in TT frogs were not. (2) Under low temperature stress, most of the genes in the brain, liver and kidney were down-regulated (except for COI and ATP6 measured in brain and COI measured in liver of CT frogs). (3) For both CT and TT frogs, the changes in overall pattern of mitochondrial gene expression in different organs under low temperature and normal temperature was brain > liver > kidney.
Conclusions
We mainly drew the following conclusions: (1) The differences in the structure and expression of the ND5 gene between CT and TT frogs could result in the different tolerances to low temperature stress. (2) At low temperatures, the transcript levels of most of mitochondrial protein-encoding genes were down-regulated, which could have a significant effect in reducing metabolic rate and supporting long term survival at low temperatures. (3) The expression pattern of mitochondrial genes in different organs was related to mitochondrial activity and mtDNA replication in different organs.
Collapse
|
23
|
Reeve C, Rowsey LE, Speers-Roesch B. Inactivity and the passive slowing effect of cold on resting metabolism as the primary drivers of energy savings in overwintering fishes. J Exp Biol 2022; 225:275086. [PMID: 35315489 PMCID: PMC9124485 DOI: 10.1242/jeb.243407] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 03/07/2022] [Indexed: 11/20/2022]
Abstract
Winter dormancy is a seasonal survival strategy common among temperate ectotherms, characterized by inactivity, fasting, and low metabolic rates. Previous reports of metabolic rate depression (MRD) in winter-dormant ectotherms, including many fishes, may result from confounding influences of temperature-dependent variation in activity on metabolic rate measurements. We hypothesize that, as demonstrated recently in the winter-dormant cunner (Tautogolabrus adspersus), inactivity and the passive physicochemical (Arrhenius) effect of cold on standard metabolic rate (SMR) are the common primary mechanisms underlying the low metabolic rates among winter-dormant fishes. Using automated video tracking, we investigated threshold temperatures for winter dormancy onset (major reductions in activity, increased sheltering, and fasting) in four phylogenetically-diverse teleost species reported to be winter dormant: cunner, pumpkinseed sunfish (Lepomis gibbosus), American eel (Anguilla rostrata), and mummichog (Fundulus heteroclitus). All species showed large activity and feeding reductions, but the magnitude of change and dormancy threshold temperature was species-specific. We propose that a continuum of overwintering responses exists among fishes from dormant to lethargic to active. The relationship between activity and metabolic rate was then measured using video-recorded automated respirometry during acute cooling and following cold acclimation in pumpkinseed, mummichog, and eel. In all species, activity and metabolic rate were strongly correlated at all temperatures, and cooling caused reduced activity and metabolic rate. When variation in activity was controlled for across temperatures spanning the dormancy thresholds, the thermal sensitivity of metabolic rate including SMR indicated the predominance of passive physicochemical influences (mean Q10<3.5), rather than active MRD. Activity reductions and physicochemical slowing of metabolism due to cold appear to be the primary energy saving mechanisms in overwintering fishes.
Collapse
Affiliation(s)
- Connor Reeve
- Department of Biological Sciences, University of New Brunswick, Saint John, New Brunswick, E2L 4L5, Canada
| | - Lauren E Rowsey
- Department of Biological Sciences, University of New Brunswick, Saint John, New Brunswick, E2L 4L5, Canada
| | - Ben Speers-Roesch
- Department of Biological Sciences, University of New Brunswick, Saint John, New Brunswick, E2L 4L5, Canada
| |
Collapse
|
24
|
Henriksen O, Rindorf A, Mosegaard H, Payne MR, van Deurs M. Get up early: Revealing behavioral responses of sandeel to ocean warming using commercial catch data. Ecol Evol 2021; 11:16786-16805. [PMID: 34938473 PMCID: PMC8668760 DOI: 10.1002/ece3.8310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/28/2021] [Accepted: 10/05/2021] [Indexed: 11/26/2022] Open
Abstract
Warming of the oceans and shifts in the timing of annual key events are likely to cause behavioral changes in species showing a high degree of site fidelity. While this is well studied in terrestrial systems, there are fewer examples from the marine environment. Sandeel (Ammodytes marinus) is a small eel-shaped teleost fish with strong behavioral attachment to sandy habitats in which they are buried from late summer through winter. When spring arrives, the sandeel emerge to feed during the day for several of months before returning to the sand for overwintering refuge.Using fisheries data from the North Sea, we investigated whether catch rates reflect the timing of emergence and if seasonal patterns are related to temperature and primary production.Catch per unit effort (CPUE) was used to describe sandeel emergence. We developed indicators of the relative timing of the emergence from the winter sand refuge and the subsequent growth period. Different modeling approaches were used to investigate the relationship with bottom temperature and primary production.Variation in emergence behavior was correlated with variation in sea bottom temperature. Warmer years were characterized by earlier emergence. Significant warming over the last three decades was evident in all sandeel habitats in the North Sea throughout most of their adult life history, though no net shift in the phenology of emergence was detected. Minimum temperature during spring was a better predictor of emergence behavior than, for example, degree days.This study emphasizes how temperature-induced changes in behavior may have implications for predators and fisheries of sandeel. The method can be applied to other species for which the timing of exploitation (i.e., fisheries) and species life history are well matched.
Collapse
Affiliation(s)
- Ole Henriksen
- National Institute for Aquatic ResourcesTechnical University of DenmarkKgs LyngbyDenmark
| | - Anna Rindorf
- National Institute for Aquatic ResourcesTechnical University of DenmarkKgs LyngbyDenmark
| | - Henrik Mosegaard
- National Institute for Aquatic ResourcesTechnical University of DenmarkKgs LyngbyDenmark
| | - Mark R. Payne
- National Institute for Aquatic ResourcesTechnical University of DenmarkKgs LyngbyDenmark
| | - Mikael van Deurs
- National Institute for Aquatic ResourcesTechnical University of DenmarkKgs LyngbyDenmark
| |
Collapse
|
25
|
Schleger IC, Pereira DMC, Resende AC, Romão S, Herrerias T, Neundorf AKA, Sloty AM, Guimarães IM, de Souza MRDP, Carster GP, Donatti L. Cold and warm waters: energy metabolism and antioxidant defenses of the freshwater fish Astyanax lacustris (Characiformes: Characidae) under thermal stress. J Comp Physiol B 2021; 192:77-94. [PMID: 34591144 DOI: 10.1007/s00360-021-01409-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/19/2021] [Accepted: 09/20/2021] [Indexed: 12/27/2022]
Abstract
Subtropical fish are exposed to seasonal variations in temperature that impose a set of adaptations on their metabolism necessary for the maintenance of homeostasis. In this study, we addressed the effects of temperature variation on the metabolism of Astyanax lacustris, a species of freshwater fish common in the subtropical region of Brazil. Biomarkers of carbohydrate and protein metabolism, antioxidant defense, and oxidative damage were evaluated in the liver of A. lacustris exposed to low (15 °C) and high (31 °C) temperature thermal shock, with controls at 23 °C for 2, 6, 12, 24, 48, 72, and 96 h. A high energy demand was observed during the first 48 h of exposure to 15 °C, which is necessary for metabolic adjustment at low temperatures, with an increase in glycolysis, citric acid cycle, and amino acid catabolism. In addition, at 31 °C, glucose was exported in the first 12 h of exposure, and an increase in the citric acid cycle suggested acetyl-CoA as the pathway substrate, originating from the oxidation of lipids. The antioxidant defenses did not change at 15 °C, as opposed to 31 °C, in which there were changes in several antioxidant defense markers, indicating a response to the production of ROS. However, oxidative stress was observed at both temperatures, with oxidative damage detected by lipid peroxidation at 15 °C and protein carbonylation at 31 °C.
Collapse
Affiliation(s)
- Ieda Cristina Schleger
- Adaptive Biology Laboratory, Department of Cell Biology, Federal University of Paraná, Av. Cel. Francisco H. dos Santos, s/n, Jardim das Américas, CEP 81531-970, Curitiba, Paraná, 19031, Brazil
| | - Diego Mauro Carneiro Pereira
- Adaptive Biology Laboratory, Department of Cell Biology, Federal University of Paraná, Av. Cel. Francisco H. dos Santos, s/n, Jardim das Américas, CEP 81531-970, Curitiba, Paraná, 19031, Brazil
| | - Anna Carolina Resende
- Adaptive Biology Laboratory, Department of Cell Biology, Federal University of Paraná, Av. Cel. Francisco H. dos Santos, s/n, Jardim das Américas, CEP 81531-970, Curitiba, Paraná, 19031, Brazil
| | - Silvia Romão
- Federal University of Fronteira Sul, Laranjeiras do Sul, Paraná, Brazil
| | | | - Ananda Karla Alves Neundorf
- Adaptive Biology Laboratory, Department of Cell Biology, Federal University of Paraná, Av. Cel. Francisco H. dos Santos, s/n, Jardim das Américas, CEP 81531-970, Curitiba, Paraná, 19031, Brazil
| | | | - Ivan Moyses Guimarães
- Adaptive Biology Laboratory, Department of Cell Biology, Federal University of Paraná, Av. Cel. Francisco H. dos Santos, s/n, Jardim das Américas, CEP 81531-970, Curitiba, Paraná, 19031, Brazil
| | - Maria Rosa Dmengeon Pedreiro de Souza
- Adaptive Biology Laboratory, Department of Cell Biology, Federal University of Paraná, Av. Cel. Francisco H. dos Santos, s/n, Jardim das Américas, CEP 81531-970, Curitiba, Paraná, 19031, Brazil
| | - Guilherme Prosperi Carster
- Adaptive Biology Laboratory, Department of Cell Biology, Federal University of Paraná, Av. Cel. Francisco H. dos Santos, s/n, Jardim das Américas, CEP 81531-970, Curitiba, Paraná, 19031, Brazil
| | - Lucélia Donatti
- Adaptive Biology Laboratory, Department of Cell Biology, Federal University of Paraná, Av. Cel. Francisco H. dos Santos, s/n, Jardim das Américas, CEP 81531-970, Curitiba, Paraná, 19031, Brazil.
| |
Collapse
|
26
|
Killen SS, Christensen EAF, Cortese D, Závorka L, Norin T, Cotgrove L, Crespel A, Munson A, Nati JJH, Papatheodoulou M, McKenzie DJ. Guidelines for reporting methods to estimate metabolic rates by aquatic intermittent-flow respirometry. J Exp Biol 2021; 224:jeb242522. [PMID: 34520540 PMCID: PMC8467026 DOI: 10.1242/jeb.242522] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Interest in the measurement of metabolic rates is growing rapidly, because of the importance of metabolism in advancing our understanding of organismal physiology, behaviour, evolution and responses to environmental change. The study of metabolism in aquatic animals is undergoing an especially pronounced expansion, with more researchers utilising intermittent-flow respirometry as a research tool than ever before. Aquatic respirometry measures the rate of oxygen uptake as a proxy for metabolic rate, and the intermittent-flow technique has numerous strengths for use with aquatic animals, allowing metabolic rate to be repeatedly estimated on individual animals over several hours or days and during exposure to various conditions or stimuli. There are, however, no published guidelines for the reporting of methodological details when using this method. Here, we provide the first guidelines for reporting intermittent-flow respirometry methods, in the form of a checklist of criteria that we consider to be the minimum required for the interpretation, evaluation and replication of experiments using intermittent-flow respirometry. Furthermore, using a survey of the existing literature, we show that there has been incomplete and inconsistent reporting of methods for intermittent-flow respirometry over the past few decades. Use of the provided checklist of required criteria by researchers when publishing their work should increase consistency of the reporting of methods for studies that use intermittent-flow respirometry. With the steep increase in studies using intermittent-flow respirometry, now is the ideal time to standardise reporting of methods, so that - in the future - data can be properly assessed by other scientists and conservationists.
Collapse
Affiliation(s)
- Shaun S. Killen
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Emil A. F. Christensen
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Daphne Cortese
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, UK
- PSL Université Paris: EPHE-UPVD-CNRS, USR 3278 CRIOBE, BP 1013, 98729 Papetoai, Moorea, French Polynesia
| | - Libor Závorka
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, UK
- WasserCluster Lunz–Inter-university Centre for Aquatic Ecosystem Research, A-3293 Lunz am See, Austria
| | - Tommy Norin
- DTU Aqua: National Institute of Aquatic Resources, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Lucy Cotgrove
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Amélie Crespel
- Department of Biology, University of Turku, 20500 Turku, Finland
| | - Amelia Munson
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, UK
- Department of Environmental Science and Policy, University of California, Davis, CA 95615, USA
| | - Julie J. H. Nati
- MARBEC, Université Montpellier, CNRS, Ifremer, IRD, 34000 Montpellier, France
| | - Magdalene Papatheodoulou
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, UK
- Enalia Physis Environmental Research Centre (ENALIA), 2101 Nicosia, Cyprus
| | - David J. McKenzie
- MARBEC, Université Montpellier, CNRS, Ifremer, IRD, 34000 Montpellier, France
| |
Collapse
|
27
|
Hypoxia Performance Curve: Assess a Whole-Organism Metabolic Shift from a Maximum Aerobic Capacity towards a Glycolytic Capacity in Fish. Metabolites 2021; 11:metabo11070447. [PMID: 34357341 PMCID: PMC8307916 DOI: 10.3390/metabo11070447] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 11/16/2022] Open
Abstract
The utility of measuring whole-animal performance to frame the metabolic response to environmental hypoxia is well established. Progressively reducing ambient oxygen (O2) will initially limit maximum metabolic rate as a result of a hypoxemic state and ultimately lead to a time-limited, tolerance state supported by substrate-level phosphorylation when the O2 supply can no longer meet basic needs (standard metabolic rate, SMR). The metabolic consequences of declining ambient O2 were conceptually framed for fishes initially by Fry's hypoxic performance curve, which characterizes the hypoxemic state and its consequences to absolute aerobic scope (AAS), and Hochachka's concept of scope for hypoxic survival, which characterizes time-limited life when SMR cannot be supported by O2 supply. Yet, despite these two conceptual frameworks, the toolbox to assess whole-animal metabolic performance remains rather limited. Here, we briefly review the ongoing debate concerning the need to standardize the most commonly used assessments of respiratory performance in hypoxic fishes, namely critical O2 (the ambient O2 level below which maintenance metabolism cannot be sustained) and the incipient lethal O2 (the ambient O2 level at which a fish loses the ability to maintain upright equilibrium), and then we advance the idea that the most useful addition to the toolbox will be the limiting-O2 concentration (LOC) performance curve. Using Fry & Hart's (1948) hypoxia performance curve concept, an LOC curve was subsequently developed as an eco-physiological framework by Neil et al. and derived for a group of fish during a progressive hypoxia trial by Claireaux and Lagardère (1999). In the present review, we show how only minor modifications to available respirometry tools and techniques are needed to generate an LOC curve for individual fish. This individual approach to the LOC curve determination then increases its statistical robustness and importantly opens up the possibility of examining individual variability. Moreover, if peak aerobic performance at a given ambient O2 level of each individual is expressed as a percentage of its AAS, the water dissolved O2 that supports 50% of the individual's AAS (DOAAS-50) can be interpolated much like the P50 for an O2 hemoglobin dissociation curve (when hemoglobin is 50% saturated with O2). Thus, critical O2, incipient lethal O2, DOAAS-50 and P50 and can be directly compared within and across species. While an LOC curve for individual fish represents a start to an ongoing need to seamlessly integrate aerobic to anaerobic capacity assessments in a single, multiplexed respirometry trial, we close with a comparative exploration of some of the known whole-organism anaerobic and aerobic capacity traits to examine for correlations among them and guide the next steps.
Collapse
|
28
|
Mangold-Döring A, Grimard C, Green D, Petersen S, Nichols JW, Hogan N, Weber L, Hollert H, Hecker M, Brinkmann M. A Novel Multispecies Toxicokinetic Modeling Approach in Support of Chemical Risk Assessment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:9109-9118. [PMID: 34165962 PMCID: PMC9066611 DOI: 10.1021/acs.est.1c02055] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Standardized laboratory tests with a limited number of model species are a key component of chemical risk assessments. These surrogate species cannot represent the entire diversity of native species, but there are practical and ethical objections against testing chemicals in a large variety of species. In previous research, we have developed a multispecies toxicokinetic model to extrapolate chemical bioconcentration across species by combining single-species physiologically based toxicokinetic (PBTK) models. This "top-down" approach was limited, however, by the availability of fully parameterized single-species models. Here, we present a "bottom-up" multispecies PBTK model based on available data from 69 freshwater fishes found in Canada. Monte Carlo-like simulations were performed using statistical distributions of model parameters derived from these data to predict steady-state bioconcentration factors (BCFs) for a set of well-studied chemicals. The distributions of predicted BCFs for 1,4-dichlorobenzene and dichlorodiphenyltrichloroethane largely overlapped those of empirical data, although a tendency existed toward overestimation of measured values. When expressed as means, predicted BCFs for 26 of 34 chemicals (82%) deviated by less than 10-fold from measured data, indicating an accuracy similar to that of previously published single-species models. This new model potentially enables more environmentally relevant predictions of bioconcentration in support of chemical risk assessments.
Collapse
Affiliation(s)
- Annika Mangold-Döring
- Department for Ecosystem Analysis, Institute for Environmental Research (Biology V), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Aachen, 52074, Germany
- Toxicology Centre, University of Saskatchewan, Saskatoon, S7N 5B3, Canada
| | - Chelsea Grimard
- Toxicology Centre, University of Saskatchewan, Saskatoon, S7N 5B3, Canada
| | - Derek Green
- Toxicology Centre, University of Saskatchewan, Saskatoon, S7N 5B3, Canada
| | - Stephanie Petersen
- Toxicology Centre, University of Saskatchewan, Saskatoon, S7N 5B3, Canada
| | - John W. Nichols
- US Environmental Protection Agency, Duluth, Minnesota, 55804, USA
| | - Natacha Hogan
- Toxicology Centre, University of Saskatchewan, Saskatoon, S7N 5B3, Canada
- Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, S7N 5A8, Canada
| | - Lynn Weber
- Toxicology Centre, University of Saskatchewan, Saskatoon, S7N 5B3, Canada
- Western College of Veterinary Medicine, Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, S7N 5B4, Canada
| | - Henner Hollert
- Department for Ecosystem Analysis, Institute for Environmental Research (Biology V), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Aachen, 52074, Germany
- Department Evolutionary Ecology and Environmental Toxicology, Faculty Biological Sciences Goethe University Frankfurt, Frankfurt, 60438, Germany
| | - Markus Hecker
- Toxicology Centre, University of Saskatchewan, Saskatoon, S7N 5B3, Canada
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, S7N 5C8, Canada
| | - Markus Brinkmann
- Toxicology Centre, University of Saskatchewan, Saskatoon, S7N 5B3, Canada
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, S7N 5C8, Canada
- Global Institute for Water Security, University of Saskatchewan, Saskatoon, S7N 3H5, Canada
- Corresponding author: Dr. Markus Brinkmann, 44 Campus Drive, S7N 5B3 Canada, Phone: +1 (306) 966 1204,
| |
Collapse
|
29
|
Morash AJ, Speers-Roesch B, Andrew S, Currie S. The physiological ups and downs of thermal variability in temperate freshwater ecosystems. JOURNAL OF FISH BIOLOGY 2021; 98:1524-1535. [PMID: 33349944 DOI: 10.1111/jfb.14655] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
Freshwater fish face a variety of spatiotemporal thermal challenges throughout their life. On a broad scale, temperature is an important driver of physiological, behavioural and ecological patterns and ultimately affects populations and overall distribution. These broad patterns are partly underpinned by the small-scale local effects of temperature on individuals within the population. Climate change is increasing the range of daily thermal variation in most freshwater ecosystems, altering behaviour and performance of resident fishes. The aim of this review is understanding how daily thermal variation in temperate rivers affects individual fish physiology, behaviour and overall performance. The following are highlighted in this study: (a) the physical characteristics of rivers that can either buffer or exacerbate thermal variability, (b) the effects of thermal variability on growth and metabolism, (c) the approaches for quantifying thermal variation and thermal stress and (d) how fish may acclimatize or adapt to our changing climate.
Collapse
Affiliation(s)
- Andrea J Morash
- Department of Biology, Mount Allison University, Sackville, New Brunswick, Canada
| | - Ben Speers-Roesch
- Department of Biological Sciences, University of New Brunswick, Saint John, New Brunswick, Canada
| | - Sean Andrew
- Department of Biology, Mount Allison University, Sackville, New Brunswick, Canada
| | - Suzanne Currie
- Department of Biology, Acadia University, Wolfville, Nova Scotia, Canada
| |
Collapse
|
30
|
The Use of Winter Water Temperature and Food Composition by the Copepod Cyclops vicinus (Uljanin, 1875) to Provide a Temporal Refuge from Fish Predation. BIOLOGY 2021; 10:biology10050393. [PMID: 34062893 PMCID: PMC8147285 DOI: 10.3390/biology10050393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/16/2021] [Accepted: 04/28/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Predator avoidance mechanisms play a critical role in the survival and stable population growth of prey. Here, we describe a new defense strategy for Cyclops vicinus, which is vulnerable to fish predation. Long-term data (January 2014 to February 2019) showed that C. vicinus was abundant in winter when the foraging activity of fish was lower. This pattern was reversed in spring, summer, and autumn. C. vicinus is consumed frequently by fish because it has a body size larger than that of other cyclopoid copepods (Mescyclops leuckarti and Thermocyclop sp.). In this respect, winter formed a seasonal refuge when C. vicinus populations could grow efficiently. In addition, there was an abundant phytoplankton presence (Cyclotella sp. and Rhodomonas sp.) in winter. These species formed a food source that supported the population growth of C. vicinus. The evolution of the predator avoidance mechanisms of prey contributes significantly to the security of local biodiversity and the stability of the freshwater food web. Abstract Frequent predation induces various defense strategies in prey, including morphological changes or migration patterns in zooplankton. We hypothesized that the winter dominance of Cyclops vicinus in the Upo Wetlands, South Korea, is an evolved temporal defense mechanism to avoid fish predation. Long-term data (2014–2019) showed that fish consumed the most cyclopoid copepods from spring to autumn. Lepomis macrochirus preferentially consumed C. vicinus; thus, C. vicinus density was lower from spring to autumn. However, C. vicinus was abundant in winter when fish consumed fewer copepods. Nauplii density began to increase in late autumn (October–November), and their population growth was fueled through consumption of Cyclotella sp. and Rhodomonas sp. Culture experiments showed that Cyclotella sp. contributed more to the growth stage (copepodite or subadult) after nauplii than Rhodomonas sp. C. vicinus density was lower in the winters of 2013 and 2016 when the densities of these phytoplankton prey species were lower. In summary, although winter conditions were suitable for copepod survival and population growth, C. vicinus relied heavily on the diversity and species composition of its food sources. The winter dominance of C. vicinus could increase regional biodiversity and contribute significantly to the stability of the freshwater food web.
Collapse
|
31
|
Studd EK, Bates AE, Bramburger AJ, Fernandes T, Hayden B, Henry HAL, Humphries MM, Martin R, McMeans BC, Moise ERD, O'Sullivan AM, Sharma S, Sinclair BJ, Sutton AO, Templer PH, Cooke SJ. Nine Maxims for the Ecology of Cold-Climate Winters. Bioscience 2021. [DOI: 10.1093/biosci/biab032] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Frozen winters define life at high latitudes and altitudes. However, recent, rapid changes in winter conditions have highlighted our relatively poor understanding of ecosystem function in winter relative to other seasons. Winter ecological processes can affect reproduction, growth, survival, and fitness, whereas processes that occur during other seasons, such as summer production, mediate how organisms fare in winter. As interest grows in winter ecology, there is a need to clearly provide a thought-provoking framework for defining winter and the pathways through which it affects organisms. In the present article, we present nine maxims (concise expressions of a fundamentally held principle or truth) for winter ecology, drawing from the perspectives of scientists with diverse expertise. We describe winter as being frozen, cold, dark, snowy, less productive, variable, and deadly. Therefore, the implications of winter impacts on wildlife are striking for resource managers and conservation practitioners. Our final, overarching maxim, “winter is changing,” is a call to action to address the need for immediate study of the ecological implications of rapidly changing winters.
Collapse
Affiliation(s)
- Emily K Studd
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Amanda E Bates
- Department of Ocean Sciences at Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Andrew J Bramburger
- Department of Ocean Sciences at Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Timothy Fernandes
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Brian Hayden
- Canadian Rivers Institute, Biology Department, University of New Brunswick, Fredericton, New Brunswick, Canada
| | - Hugh A L Henry
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Murray M Humphries
- Department of Natural Resource Sciences, Macdonald Campus, McGill University, Ste-Anne-de-Bellevue, Québec, Canada
| | - Rosemary Martin
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Bailey C McMeans
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Eric R D Moise
- Natural Resources Canada's Canadian Forest Service, Corner Brook, Newfoundland, Canada
| | - Antóin M O'Sullivan
- Canadian Rivers Institute, Biology Department, University of New Brunswick, Fredericton, New Brunswick, Canada
| | - Sapna Sharma
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Brent J Sinclair
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Alex O Sutton
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Pamela H Templer
- Department of Biology, Boston University, Boston, Massachusetts, United States
| | - Steven J Cooke
- Department of Biology and the Institute of Environmental and Interdisciplinary Science, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
32
|
Collins M, Clark MS, Spicer JI, Truebano M. Transcriptional frontloading contributes to cross-tolerance between stressors. Evol Appl 2021; 14:577-587. [PMID: 33664796 PMCID: PMC7896706 DOI: 10.1111/eva.13142] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/08/2020] [Accepted: 09/15/2020] [Indexed: 12/01/2022] Open
Abstract
The adaptive value of phenotypic plasticity for performance under single stressors is well documented. However, plasticity may only truly be adaptive in the natural multifactorial environment if it confers resilience to stressors of a different nature, a phenomenon known as cross-tolerance. An understanding of the mechanistic basis of cross-tolerance is essential to aid prediction of species resilience to future environmental change. Here, we identified mechanisms underpinning cross-tolerance between two stressors predicted to increasingly challenge aquatic ecosystems under climate change, chronic warming and hypoxia, in an ecologically-important aquatic invertebrate. Warm acclimation improved hypoxic performance through an adaptive hypometabolic strategy and changes in the expression of hundreds of genes that are important in the response to hypoxia. These 'frontloaded' genes showed a reduced reaction to hypoxia in the warm acclimated compared to the cold acclimated group. Frontloaded genes included stress indicators, immune response and protein synthesis genes that are protective at the cellular level. We conclude that increased constitutive gene expression as a result of warm acclimation reduced the requirement for inducible stress responses to hypoxia. We propose that transcriptional frontloading contributes to cross-tolerance between stressors and may promote fitness of organisms in environments increasingly challenged by multiple anthropogenic threats.
Collapse
Affiliation(s)
- Michael Collins
- Marine Biology and Ecology Research Centre, School of Biological and Marine SciencesUniversity of PlymouthPlymouthUK
- British Antarctic SurveyNatural Environment Research CouncilCambridgeUK
| | - Melody S. Clark
- British Antarctic SurveyNatural Environment Research CouncilCambridgeUK
| | - John I. Spicer
- Marine Biology and Ecology Research Centre, School of Biological and Marine SciencesUniversity of PlymouthPlymouthUK
| | - Manuela Truebano
- Marine Biology and Ecology Research Centre, School of Biological and Marine SciencesUniversity of PlymouthPlymouthUK
| |
Collapse
|
33
|
Predator presence affects activity patterns but not food consumption or growth of juvenile corkwing wrasse (Symphodus melops). Behav Ecol Sociobiol 2021. [DOI: 10.1007/s00265-020-02947-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
34
|
Gervais CR, Huveneers C, Rummer JL, Brown C. Population variation in the thermal response to climate change reveals differing sensitivity in a benthic shark. GLOBAL CHANGE BIOLOGY 2021; 27:108-120. [PMID: 33118308 DOI: 10.1111/gcb.15422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/12/2020] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Abstract
Many species with broad distributions are exposed to different thermal regimes which often select for varied phenotypes. This intraspecific variation is often overlooked but may be critical in dictating the vulnerability of different populations to environmental change. We reared Port Jackson shark (Heterodontus portusjacksoni) eggs from two thermally discrete populations (i.e. Jervis Bay and Adelaide) under each location's present-day mean temperatures, predicted end-of-century temperatures and under reciprocal-cross conditions to establish intraspecific thermal sensitivity. Rearing temperatures strongly influenced ṀO2 Max and critical thermal limits, regardless of population, indicative of acclimation processes. However, there were significant population-level effects, such that Jervis Bay sharks, regardless of rearing temperature, did not exhibit differences in ṀO2 Rest , but under elevated temperatures exhibited reduced maximum swimming activity with step-wise increases in temperature. In contrast, Adelaide sharks reared under elevated temperatures doubled their ṀO2 Rest , relative to their present-day temperature counterparts; however, maximum swimming activity was not influenced. With respect to reciprocal-cross comparisons, few differences were detected between Jervis Bay and Adelaide sharks reared under ambient Jervis Bay temperatures. Similarly, juveniles (from both populations) reared under Adelaide conditions had similar thermal limits and swimming activity (maximum volitional velocity and distance) to each other, indicative of conserved acclimation capacity. However, under Adelaide temperatures, the ṀO2 Rest of Jervis Bay sharks was greater than that of Adelaide sharks. This indicates that the energetics of cooler water population (Adelaide) is likely more thermally sensitive than that of the warmer population (Jervis Bay). While unique to elasmobranchs, these data provide further support that by treating species as static, homogeneous populations, we ignore the impacts of thermal history and intraspecific variation on thermal sensitivity. With climate change, intraspecific variation will manifest as populations move, demographics change or extirpations occur, starting with the most sensitive populations.
Collapse
Affiliation(s)
- Connor R Gervais
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Charlie Huveneers
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | - Jodie L Rummer
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia
| | - Culum Brown
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
35
|
Moran CJ, Jebb KE, Travitz L, Coughlin DJ, Gerry SP. Thermal acclimation leads to variable muscle responses in two temperate labrid fishes. J Exp Biol 2020; 223:jeb235226. [PMID: 33106300 DOI: 10.1242/jeb.235226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/22/2020] [Indexed: 11/20/2022]
Abstract
Temperature can be a key abiotic factor in fish distribution, as it affects most physiological processes. Specifically, temperature can affect locomotor capabilities, especially as species are exposed to temperatures nearing their thermal limits. In this study, we aimed to understand the effects of temperature on muscle in two labrids that occupy the Northwest Atlantic Ocean. When exposed to cold temperatures in autumn, cunner (Tautogolabrus adspersus) and tautog (Tautoga onitis) go into a state of winter dormancy. Transitions into dormancy vary slightly, where tautog will make short migrations to overwintering habitats while cunner overwinter in year-round habitats. To understand how muscle function changes with temperature, we held fish for 4 weeks at either 5 or 20°C and then ran muscle kinetic and workloop experiments at 5, 10 and 20°C. Following experiments, we used immunohistochemistry staining to identify acclimation effects on myosin isoform expression. Muscle taken from warm-acclimated cunner performed the best, whereas there were relatively few differences among the other three groups. Cunner acclimated at both temperatures downregulated the myosin heavy chain, suggesting a transition in fiber type from slow-oxidative to fast-glycolytic. This change did not amount to a detectable difference in muscle power production and kinetics. However, overall poor performance at cold temperatures could force these fishes into torpor to overwinter. Tautog, alternatively, retained myosin heavy chains, which likely increases locomotor capabilities when making short migrations to overwintering habitats.
Collapse
Affiliation(s)
- Clinton J Moran
- The Citadel Biology Department, 171 Moultrie Street, Charleston, SC 29409, USA
- Biology Department, Fairfield University, 1073 N. Benson Road, Fairfield, CT 06824, USA
| | - Kamryn E Jebb
- Biology Department, Fairfield University, 1073 N. Benson Road, Fairfield, CT 06824, USA
| | - Leksi Travitz
- Widener University, Department of Biology, One University Place, Chester, PA 19013, USA
| | - David J Coughlin
- Widener University, Department of Biology, One University Place, Chester, PA 19013, USA
| | - Shannon P Gerry
- Biology Department, Fairfield University, 1073 N. Benson Road, Fairfield, CT 06824, USA
| |
Collapse
|
36
|
Raby GD, Doherty CLJ, Mokdad A, Pitcher TE, Fisk AT. Post-exercise respirometry underestimates maximum metabolic rate in juvenile salmon. CONSERVATION PHYSIOLOGY 2020; 8:coaa063. [PMID: 34354836 PMCID: PMC7399229 DOI: 10.1093/conphys/coaa063] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/12/2020] [Accepted: 06/26/2020] [Indexed: 05/24/2023]
Abstract
Experimental biologists now routinely quantify maximum metabolic rate (MMR) in fishes using respirometry, often with the goal of calculating aerobic scope and answering important ecological and evolutionary questions. Methods used for estimating MMR vary considerably, with the two most common methods being (i) the 'chase method', where fish are manually chased to exhaustion and immediately sealed into a respirometer for post-exercise measurement of oxygen consumption rate (Ṁ O2), and (ii) the 'swim tunnel method', whereby Ṁ O2 is measured while the fish swims at high speed in a swim tunnel respirometer. In this study, we compared estimates for MMR made using a 3-min exhaustive chase (followed by measurement of Ṁ O2 in a static respirometer) versus those made via maximal swimming in a swim tunnel respirometer. We made a total of 134 estimates of MMR using the two methods with juveniles of two salmonids (Atlantic salmon Salmo salar and Chinook salmon Oncorhynchus tshawytscha) across a 6°C temperature range. We found that the chase method underestimated 'true' MMR (based on the swim tunnel method) by ca. 20% in these species. The gap in MMR estimates between the two methods was not significantly affected by temperature (range of ca. 15-21°C) nor was it affected by body mass (overall range of 53.5-236 g). Our data support some previous studies that have suggested the use of a swim tunnel respirometer generates markedly higher estimates of MMR than does the chase method, at least for species in which a swim tunnel respirometer is viable (e.g. 'athletic' ram ventilating fishes). We recommend that the chase method could be used as a 'proxy' (i.e. with a correction factor) for MMR in future studies if supported by a species-specific calibration with a relevant range of temperatures, body sizes or other covariates of interest.
Collapse
Affiliation(s)
- Graham D Raby
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, Canada
| | - Claire L J Doherty
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, Canada
| | - Ali Mokdad
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, Canada
| | - Trevor E Pitcher
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, Canada
- Department of Integrative Biology, University of Windsor, Windsor, ON, Canada
| | - Aaron T Fisk
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, Canada
- School of the Environment, University of Windsor, Windsor, ON, Canada
| |
Collapse
|
37
|
Wolfe BW, Fitzgibbon QP, Semmens JM, Tracey SR, Pecl GT. Physiological mechanisms linking cold acclimation and the poleward distribution limit of a range-extending marine fish. CONSERVATION PHYSIOLOGY 2020; 8:coaa045. [PMID: 32494362 PMCID: PMC7248536 DOI: 10.1093/conphys/coaa045] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 03/18/2020] [Accepted: 05/07/2020] [Indexed: 06/11/2023]
Abstract
Extensions of species' geographical distributions, or range extensions, are among the primary ecological responses to climate change in the oceans. Considerable variation across the rates at which species' ranges change with temperature hinders our ability to forecast range extensions based on climate data alone. To better manage the consequences of ongoing and future range extensions for global marine biodiversity, more information is needed on the biological mechanisms that link temperatures to range limits. This is especially important at understudied, low relative temperatures relevant to poleward range extensions, which appear to outpace warm range edge contractions four times over. Here, we capitalized on the ongoing range extension of a teleost predator, the Australasian snapper Chrysophrys auratus, to examine multiple measures of ecologically relevant physiological performance at the population's poleward range extension front. Swim tunnel respirometry was used to determine how mid-range and poleward range edge winter acclimation temperatures affect metabolic rate, aerobic scope, swimming performance and efficiency and recovery from exercise. Relative to 'optimal' mid-range temperature acclimation, subsequent range edge minimum temperature acclimation resulted in absolute aerobic scope decreasing while factorial aerobic scope increased; efficiency of swimming increased while maximum sustainable swimming speed decreased; and recovery from exercise required a longer duration despite lower oxygen payback. Cold-acclimated swimming faster than 0.9 body lengths sec-1 required a greater proportion of aerobic scope despite decreased cost of transport. Reduced aerobic scope did not account for declines in recovery and lower maximum sustainable swimming speed. These results suggest that while performances decline at range edge minimum temperatures, cold-acclimated snapper are optimized for energy savings and range edge limitation may arise from suboptimal temperature exposure throughout the year rather than acute minimum temperature exposure. We propose incorporating performance data with in situ behaviour and environmental data in bioenergetic models to better understand how thermal tolerance determines range limits.
Collapse
Affiliation(s)
- Barrett W Wolfe
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Quinn P Fitzgibbon
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Jayson M Semmens
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Sean R Tracey
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Gretta T Pecl
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania 7001, Australia
| |
Collapse
|
38
|
Volkoff H, Rønnestad I. Effects of temperature on feeding and digestive processes in fish. Temperature (Austin) 2020; 7:307-320. [PMID: 33251280 PMCID: PMC7678922 DOI: 10.1080/23328940.2020.1765950] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/29/2020] [Accepted: 05/03/2020] [Indexed: 12/11/2022] Open
Abstract
As most fish are ectotherms, their physiology is strongly affected by temperature. Temperature affects their metabolic rate and thus their energy balance and behavior, including locomotor and feeding behavior. Temperature influences the ability/desire of the fish to obtain food, and how they process food through digestion, absorb nutrients within the gastrointestinal tract, and store excess energy. As fish display a large variability in habitats, feeding habits, and anatomical and physiological features, the effects of temperature are complex and species-specific. The effects of temperature depend on the timing, intensity, and duration of exposure as well as the speed at which temperature changes occur. Whereas acute short-term variations of temperature might have drastic, often detrimental, effects on fish physiology, long-term gradual variations might lead to acclimation, e.g. variations in metabolic and digestive enzyme profiles. The goal of this review is to summarize our current knowledge on the effects of temperature on energy homeostasis, with specific focus on metabolism, feeding, digestion, and how fish are often able to "adapt" to changing environments through phenotypic and physiological changes.
Collapse
Affiliation(s)
- Helene Volkoff
- Departments of Biology and Biochemistry, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Ivar Rønnestad
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|
39
|
Gilbert MJH, Harris LN, Malley BK, Schimnowski A, Moore JS, Farrell AP. The thermal limits of cardiorespiratory performance in anadromous Arctic char ( Salvelinus alpinus): a field-based investigation using a remote mobile laboratory. CONSERVATION PHYSIOLOGY 2020; 8:coaa036. [PMID: 32346481 PMCID: PMC7176916 DOI: 10.1093/conphys/coaa036] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/17/2020] [Accepted: 03/24/2020] [Indexed: 05/31/2023]
Abstract
Despite immense concern over amplified warming in the Arctic, physiological research to address related conservation issues for valuable cold-adapted fish, such as the Arctic char (Salvelinus alpinus), is lacking. This crucial knowledge gap is largely attributable to the practical and logistical challenges of conducting sensitive physiological investigations in remote field settings. Here, we used an innovative, mobile aquatic-research laboratory to assess the effects of temperature on aerobic metabolism and maximum heart rate (f Hmax) of upriver migrating Arctic char in the Kitikmeot region of Nunavut in the central Canadian Arctic. Absolute aerobic scope was unchanged at temperatures from 4 to 16°C, while f Hmax increased with temperature (Q 10 = 2.1), as expected. However, f Hmax fell precipitously below 4°C and it began to plateau above ~ 16°C, reaching a maximum at ~ 19°C before declining and becoming arrhythmic at ~ 21°C. Furthermore, recovery from exhaustive exercise appeared to be critically impaired above 16°C. The broad thermal range (~4-16°C) for increasing f Hmax and maintaining absolute aerobic scope matches river temperatures commonly encountered by migrating Arctic char in this region. Nevertheless, river temperatures can exceed 20°C during warm events and our results confirm that such temperatures would limit exercise performance and thus impair migration in this species. Thus, unless Arctic char can rapidly acclimatize or alter its migration timing or location, which are both open questions, these impairments would likely impact population persistence and reduce lifetime fitness. As such, future conservation efforts should work towards quantifying and accounting for the impacts of warming, variable river temperatures on migration and reproductive success.
Collapse
Affiliation(s)
- Matthew J H Gilbert
- Department of Zoology, University of British Columbia, #4200-6270 University Blvd, Vancouver, BC, V6T 1Z4, Canada
| | - Les N Harris
- Freshwater Institute, Fisheries and Oceans Canada, 501 University Crescent, Winnipeg, MB, R3T 2N6, Canada
| | - Brendan K Malley
- Freshwater Institute, Fisheries and Oceans Canada, 501 University Crescent, Winnipeg, MB, R3T 2N6, Canada
| | - Adrian Schimnowski
- Arctic Research Foundation, 1505 Charleswood Road, Winnipeg, MB, R3S 1C2, Canada
| | - Jean-Sébastien Moore
- Institut de Biologie Intégrative et des Systèmes and Département de Biologie, Université Laval, 1030 Avenue de la Médecine, Quebec City, QC, Québec G1V 0A6, Canada
| | - Anthony P Farrell
- Department of Zoology, University of British Columbia, #4200-6270 University Blvd, Vancouver, BC, V6T 1Z4, Canada
- Faculty of Land and Food Systems, University of British Columbia, #4200-6270 University Blvd, Vancouver, BC, V6T 1Z4
| |
Collapse
|
40
|
Meskendahl L, Fontes RP, Herrmann JP, Temming A. Metabolic costs of spontaneous swimming in Sprattus sprattus L., at different water temperatures. PLoS One 2019; 14:e0225568. [PMID: 31756238 PMCID: PMC6874314 DOI: 10.1371/journal.pone.0225568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 11/07/2019] [Indexed: 11/25/2022] Open
Abstract
Oxygen uptake (MO2; mgO2 fish-1h-1) of fish groups was measured at temperatures between 10–19°C in an intermittent-flow respirometer to quantify the metabolic costs of spontaneous swimming patterns in the small clupeid Sprattus sprattus. Movements of individual fish within the school were tracked automatically during respirometry. Oxygen uptake was then related to mean swimming speeds and the number of sharp turns (>90°), which are common behavioural elements of spontaneous swimming in clupeid fish. Different possible model formulations for describing the relationship between respiration and swimming patterns were compared via the AIC. The final model revealed that costs for sharp turns at a frequency of 1 s-1 doubled the metabolic costs compared to those with zero turns but with likewise a moderate swimming speed of 0.28 body length -1. The cost for swimming doubled if the swimming speed was doubled from 0.28 to 0.56 BLs-1 but increased by a factor of 4.5 if tripled to 0.84 BLs-1. Costs for transport were minimal at a speed of 0.4 body lengths s-1 at all temperatures. New basic input parameters to estimate energy losses during spontaneous movements, which occur typically during foraging in this small pelagic fish, are provided.
Collapse
Affiliation(s)
- Laura Meskendahl
- Institute for Marine Ecosystem- and Fisheries Science, University of Hamburg, Olbersweg, Hamburg, Germany
| | | | - Jens-Peter Herrmann
- Institute for Marine Ecosystem- and Fisheries Science, University of Hamburg, Olbersweg, Hamburg, Germany
| | - Axel Temming
- Institute for Marine Ecosystem- and Fisheries Science, University of Hamburg, Olbersweg, Hamburg, Germany
- * E-mail:
| |
Collapse
|
41
|
Zamora‐Camacho FJ, Medina‐Gálvez L, Zambrano‐Fernández S. The roles of sex and morphology in burrowing depth of Iberian spadefoot toads in different biotic and abiotic environments. J Zool (1987) 2019. [DOI: 10.1111/jzo.12715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
Campbell LA, Gormley PT, Bennett JC, Murimboh JD, MacCormack TJ. Functionalized silver nanoparticles depress aerobic metabolism in the absence of overt toxicity in brackish water killifish, Fundulus heteroclitus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 213:105221. [PMID: 31207537 DOI: 10.1016/j.aquatox.2019.105221] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/04/2019] [Accepted: 06/08/2019] [Indexed: 06/09/2023]
Abstract
Engineered nanomaterials (ENMs) tend to precipitate in saline waters so the majority of aquatic toxicity studies have focused on freshwaters, where bioavailability is presumed to be higher. Recent studies have illustrated that some ENM formulations are bioavailable and bioactive in salt water and that their effects are more pronounced at the physiological than biochemical level. These findings raise concerns regarding the effects of ENMs on marine organisms. Therefore, our goal was to characterize the effects of polyvinylpyrolidone-functionalized silver ENMs (nAg) on aerobic performance in the killifish (Fundulus heteroclitus), a common euryhaline teleost. Fish were exposed to 80 μg L-1 of 5 nm nAg for 48 h in brackish water (12 ppt) and routine (ṀO2min) and maximum (ṀO2max) rates of oxygen consumption were quantified. Silver dissolution was minimal and nAg remained well dispersed in brackish water, with a hydrodynamic diameter of 21.0 nm, compared to 19.3 in freshwater. Both ṀO2min and ṀO2max were significantly lower (by 53 and 30%, respectively) in killifish exposed to nAg and a reduction in ṀO2 variability suggested spontaneous activity was suppressed. Neither gill Na+/K+-ATPase activity, nor various other biochemical markers were affected by nAg exposure. The results illustrate that a common ENM formulation is bioactive in salt water and, as in previous studies on functionalized copper ENMs, that effects are more pronounced at the whole animal than the biochemical level.
Collapse
Affiliation(s)
- L A Campbell
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada
| | - P T Gormley
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada
| | - J C Bennett
- Department of Physics, Acadia University, Wolfville, NS, Canada
| | - J D Murimboh
- Department Chemistry, Acadia University, Wolfville, NS, Canada
| | - T J MacCormack
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada.
| |
Collapse
|
43
|
Ern R. A mechanistic oxygen- and temperature-limited metabolic niche framework. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180540. [PMID: 31203757 DOI: 10.1098/rstb.2018.0540] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The abundance and distribution of fishes and other water-breathing ectotherms are partially shaped by the capacities of individuals to perform ecologically relevant functions, which collectively determine whole-organism performance. Aerobic scope (AS) quantifies the capacity of the cardiorespiratory system to supply tissues with oxygen for fuelling such functions. Aquatic hypoxia and water temperature are principal environmental factors affecting the AS of water-breathing ectotherms. Although it is intuitive that animal energetics will be of ecological significance, many studies argue against a hypothesized overarching link between AS, whole-organism performance, and shifts in the abundance and distribution of water-breathing ectotherms with environmental change. Consequently, relationships between AS and ecologically relevant performance traits must be established for individual species. This article proposes a mechanistic framework for integrating and correlating experimental traits for assessing the AS, anaerobic capacity (AC) and range boundaries of water-breathing ectotherms exposed to progressive aquatic hypoxia and rising water temperature. The framework also describes cardiorespiratory thermal tolerance and proposes an empirical definition of the mechanism underlying the critical thermal maximum in species with oxygen-dependent upper thermal limits. Incorporating performance traits, exemplified with preference and avoidance responses, may provide information about the role of metabolism in shaping whole-organism performance, and the potential applicability of AS and AC in species distribution models. This article is part of the theme issue 'Physiological diversity, biodiversity patterns and global climate change: testing key hypotheses involving temperature and oxygen'.
Collapse
Affiliation(s)
- Rasmus Ern
- Department of Chemistry and Bioscience, Aalborg University , Fredrik Bajers Vej 7H, Aalborg 9220 , Denmark
| |
Collapse
|
44
|
Saaristo M, Lagesson A, Bertram MG, Fick J, Klaminder J, Johnstone CP, Wong BBM, Brodin T. Behavioural effects of psychoactive pharmaceutical exposure on European perch (Perca fluviatilis) in a multi-stressor environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 655:1311-1320. [PMID: 30577123 DOI: 10.1016/j.scitotenv.2018.11.228] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/14/2018] [Accepted: 11/15/2018] [Indexed: 05/14/2023]
Abstract
With the ability to resist biodegradation and exert therapeutic effects at low concentrations, pharmaceutical contaminants have become environmental stressors for wildlife. One such contaminant is the anxiolytic oxazepam, a psychoactive pharmaceutical that is frequently detected in surface waters globally. Despite growing interest in understanding how wildlife respond to anxiolytics, synergistic effects of pharmaceuticals and other abiotic (e.g. temperature) and biotic (e.g. predation risk) stressors remain unclear. Here, using a multi-stressor approach, we investigated effects of 7-day oxazepam exposure (6.5 μg/L) on anxiety-related behaviours in juvenile European perch (Perca fluviatilis). The multi-stressor approach was achieved by exposing perch to oxazepam at two temperatures (10 °C and 18 °C), and at two predation risk regimes-generated using chemical cues from the northern pike (Esox lucius). Our exposures resulted in a successful uptake of the drug from the water, i.e., oxazepam was measured in perch muscle tissue at 50 ± 17 ng/g (mean ± SD). We found significant oxazepam-induced effects on boldness, with 76.7% of the treated fish entering the white background (i.e. 'exposed' area where exposure to presumed risks are higher) within the first 5 min, compared to 66.6% of the control fish. We also found a significant effect of temperature on total time spent freezing (i.e. staying motionless). Specifically, fish in the low temperature treatments (oxazepam, predation) froze for longer than fish in high temperatures. Our multi-stressor study is the first to uncover how anxiety-related behaviours in wild juvenile fish are altered by changes in water temperature and perceived predation risk. Importantly, our findings highlight the need to focus on multiple stressors to improve understanding of how organisms not only survive, but adapt to, human-induced environmental change.
Collapse
Affiliation(s)
- Minna Saaristo
- School of Biological Sciences, Monash University, Victoria, Australia; Department of Biosciences, Åbo Akademi University, Turku, Finland.
| | - Annelie Lagesson
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
| | - Michael G Bertram
- School of Biological Sciences, Monash University, Victoria, Australia
| | - Jerker Fick
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - Jonatan Klaminder
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
| | | | - Bob B M Wong
- School of Biological Sciences, Monash University, Victoria, Australia
| | - Tomas Brodin
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden; Department of Wildlife, Fish, and Environmental Studies, SLU, Umeå, Sweden
| |
Collapse
|
45
|
Beltramino LE, Venerus LA, Trobbiani GA, Wilson RP, Ciancio JE. Activity budgets for the sedentary Argentine sea bassAcanthistius patachonicusinferred from accelerometer data loggers. AUSTRAL ECOL 2018. [DOI: 10.1111/aec.12696] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lucas E. Beltramino
- Centro para el Estudio de Sistemas Marinos (CONICET); Edificio CCT CONICET - CENPAT; Blvd. Brown 2915 U9120ACD Puerto Madryn Chubut Argentina
| | - Leonardo A. Venerus
- Centro para el Estudio de Sistemas Marinos (CONICET); Edificio CCT CONICET - CENPAT; Blvd. Brown 2915 U9120ACD Puerto Madryn Chubut Argentina
| | - Gastón A. Trobbiani
- Centro para el Estudio de Sistemas Marinos (CONICET); Edificio CCT CONICET - CENPAT; Blvd. Brown 2915 U9120ACD Puerto Madryn Chubut Argentina
| | - Rory P. Wilson
- Swansea Lab for Animal Movement, Biosciences; College of Science; Swansea University; Swansea Wales UK
| | - Javier E. Ciancio
- Centro para el Estudio de Sistemas Marinos (CONICET); Edificio CCT CONICET - CENPAT; Blvd. Brown 2915 U9120ACD Puerto Madryn Chubut Argentina
| |
Collapse
|