1
|
Mathew D, Marmarelis ME, Foley C, Bauml JM, Ye D, Ghinnagow R, Ngiow SF, Klapholz M, Jun S, Zhang Z, Zorc R, Davis CW, Diehn M, Giles JR, Huang AC, Hwang WT, Zhang NR, Schoenfeld AJ, Carpenter EL, Langer CJ, Wherry EJ, Minn AJ. Combined JAK inhibition and PD-1 immunotherapy for non-small cell lung cancer patients. Science 2024; 384:eadf1329. [PMID: 38900877 PMCID: PMC11327955 DOI: 10.1126/science.adf1329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 05/05/2024] [Indexed: 06/22/2024]
Abstract
Persistent inflammation driven by cytokines such as type-one interferon (IFN-I) can cause immunosuppression. We show that administration of the Janus kinase 1 (JAK1) inhibitor itacitinib after anti-PD-1 (programmed cell death protein 1) immunotherapy improves immune function and antitumor responses in mice and results in high response rates (67%) in a phase 2 clinical trial for metastatic non-small cell lung cancer. Patients who failed to respond to initial anti-PD-1 immunotherapy but responded after addition of itacitinib had multiple features of poor immune function to anti-PD-1 alone that improved after JAK inhibition. Itacitinib promoted CD8 T cell plasticity and therapeutic responses of exhausted and effector memory-like T cell clonotypes. Patients with persistent inflammation refractory to itacitinib showed progressive CD8 T cell terminal differentiation and progressive disease. Thus, JAK inhibition may improve the efficacy of anti-PD-1 immunotherapy by pivoting T cell differentiation dynamics.
Collapse
Affiliation(s)
- Divij Mathew
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Melina E Marmarelis
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Caitlin Foley
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Mark Foundation Center for Immunotherapy, Immune Signaling, and Radiation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joshua M Bauml
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Darwin Ye
- Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Mark Foundation Center for Immunotherapy, Immune Signaling, and Radiation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Reem Ghinnagow
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Mark Foundation Center for Immunotherapy, Immune Signaling, and Radiation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shin Foong Ngiow
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Max Klapholz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Mark Foundation Center for Immunotherapy, Immune Signaling, and Radiation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Soyeong Jun
- Department of Radiation Oncology and Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Zhaojun Zhang
- Department of Statistics, The Wharton School, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert Zorc
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christiana W Davis
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Maximillian Diehn
- Department of Radiation Oncology and Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Josephine R Giles
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alexander C Huang
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wei-Ting Hwang
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nancy R Zhang
- Department of Statistics, The Wharton School, University of Pennsylvania, Philadelphia, PA, USA
| | - Adam J Schoenfeld
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Erica L Carpenter
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Corey J Langer
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - E John Wherry
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Mark Foundation Center for Immunotherapy, Immune Signaling, and Radiation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Andy J Minn
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Mark Foundation Center for Immunotherapy, Immune Signaling, and Radiation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
2
|
Identification of Immune Cell Infiltration in Murine Pheochromocytoma during Combined Mannan-BAM, TLR Ligand, and Anti-CD40 Antibody-Based Immunotherapy. Cancers (Basel) 2021; 13:cancers13163942. [PMID: 34439097 PMCID: PMC8393500 DOI: 10.3390/cancers13163942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/24/2021] [Accepted: 07/30/2021] [Indexed: 11/16/2022] Open
Abstract
Immunotherapy has become an essential component in cancer treatment. However, the majority of solid metastatic cancers, such as pheochromocytoma, are resistant to this approach. Therefore, understanding immune cell composition in primary and distant metastatic tumors is important for therapeutic intervention and diagnostics. Combined mannan-BAM, TLR ligand, and anti-CD40 antibody-based intratumoral immunotherapy (MBTA therapy) previously resulted in the complete eradication of murine subcutaneous pheochromocytoma and demonstrated a systemic antitumor immune response in a metastatic model. Here, we further evaluated this systemic effect using a bilateral pheochromocytoma model, performing MBTA therapy through injection into the primary tumor and using distant (non-injected) tumors to monitor size changes and detailed immune cell infiltration. MBTA therapy suppressed the growth of not only injected but also distal tumors and prolonged MBTA-treated mice survival. Our flow cytometry analysis showed that MBTA therapy led to increased recruitment of innate and adaptive immune cells in both tumors and the spleen. Moreover, adoptive CD4+ T cell transfer from successfully MBTA-treated mice (i.e., subcutaneous pheochromocytoma) demonstrates the importance of these cells in long-term immunological memory. In summary, this study unravels further details on the systemic effect of MBTA therapy and its use for tumor and metastasis reduction or even elimination.
Collapse
|
3
|
Lucas TA, Zhu L, Buckwalter MS. Spleen glia are a transcriptionally unique glial subtype interposed between immune cells and sympathetic axons. Glia 2021; 69:1799-1815. [DOI: 10.1002/glia.23993] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 02/24/2021] [Accepted: 03/02/2021] [Indexed: 12/11/2022]
Affiliation(s)
- Tawaun A. Lucas
- Department of Neurology and Neurological Sciences Stanford School of Medicine Stanford California USA
| | - Li Zhu
- Department of Neurology and Neurological Sciences Stanford School of Medicine Stanford California USA
| | - Marion S. Buckwalter
- Department of Neurology and Neurological Sciences Stanford School of Medicine Stanford California USA
- Department of Neurosurgery Stanford School of Medicine Stanford California USA
| |
Collapse
|
4
|
Mendoza JL, Fischer S, Gee MH, Lam LH, Brackenridge S, Powrie FM, Birnbaum M, McMichael AJ, Garcia KC, Gillespie GM. Interrogating the recognition landscape of a conserved HIV-specific TCR reveals distinct bacterial peptide cross-reactivity. eLife 2020; 9:58128. [PMID: 32716298 PMCID: PMC7384859 DOI: 10.7554/elife.58128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/01/2020] [Indexed: 11/20/2022] Open
Abstract
T cell cross-reactivity ensures that diverse pathogen-derived epitopes encountered during a lifetime are recognized by the available TCR repertoire. A feature of cross-reactivity where previous exposure to one microbe can alter immunity to subsequent, non-related pathogens has been mainly explored for viruses. Yet cross-reactivity to additional microbes is important to consider, especially in HIV infection where gut-intestinal barrier dysfunction could facilitate T cell exposure to commensal/pathogenic microbes. Here we evaluated the cross-reactivity of a ‘public’, HIV-specific, CD8 T cell-derived TCR (AGA1 TCR) using MHC class I yeast display technology. Via screening of MHC-restricted libraries comprising ~2×108 sequence-diverse peptides, AGA1 TCR specificity was mapped to a central peptide di-motif. Using the top TCR-enriched library peptides to probe the non-redundant protein database, bacterial peptides that elicited functional responses by AGA1-expressing T cells were identified. The possibility that in context-specific settings, MHC class I proteins presenting microbial peptides influence virus-specific T cell populations in vivo is discussed.
Collapse
Affiliation(s)
- Juan L Mendoza
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
| | - Suzanne Fischer
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
| | - Marvin H Gee
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
| | - Lilian H Lam
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom.,Translational Gastroenterology Unit, Nuffield Department of Medicine, John Radcliffe Hospital, Oxford, United Kingdom
| | - Simon Brackenridge
- Nuffield Department of Medicine, University of Oxford, NDM Research Building, Old Road Campus, Headington, Oxford, United Kingdom
| | - Fiona M Powrie
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom.,Translational Gastroenterology Unit, Nuffield Department of Medicine, John Radcliffe Hospital, Oxford, United Kingdom
| | - Michael Birnbaum
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States.,Koch Institute at MIT, Cambridge, United States
| | - Andrew J McMichael
- Nuffield Department of Medicine, University of Oxford, NDM Research Building, Old Road Campus, Headington, Oxford, United Kingdom
| | - K Christopher Garcia
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States.,Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, United States
| | - Geraldine M Gillespie
- Nuffield Department of Medicine, University of Oxford, NDM Research Building, Old Road Campus, Headington, Oxford, United Kingdom
| |
Collapse
|
5
|
Deshmukh SK, Srivastava SK, Poosarla T, Dyess DL, Holliday NP, Singh AP, Singh S. Inflammation, immunosuppressive microenvironment and breast cancer: opportunities for cancer prevention and therapy. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:593. [PMID: 31807574 DOI: 10.21037/atm.2019.09.68] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Breast cancer is the most commonly diagnosed malignancy and a leading cause of cancer-related death in women worldwide. It also exhibits pronounced racial disparities in terms of incidence and clinical outcomes. There has been a growing interest in research community to better understand the role of the microenvironment in cancer. Several lines of evidence have highlighted the significance of chronic inflammation at the local and/or systemic level in breast tumor pathobiology. Inflammation can influence breast cancer progression, metastasis and therapeutic outcome by establishing a tumor supportive immune microenvironment. These processes are mediated through a variety of cytokines and hormones that exert their biological actions either locally or distantly via systemic circulation. Targeting of immune and inflammatory pathways has met tremendous success in some cancers underscoring the importance of research to further our understanding of these systems in breast cancer. This knowledge can be helpful not only in the development of novel prevention and therapeutic strategies, but also help in better prediction of therapeutic responses in patients. This review summarizes some of the significant findings on the role of inflammation in breast cancer to gain collective molecular and mechanistic insights. We also discuss ongoing efforts and future outlook to exploit the existing knowledge for improved breast cancer management.
Collapse
Affiliation(s)
- Sachin Kumar Deshmukh
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA.,Department of Pathology, University of South Alabama, Mobile, AL, USA
| | - Sanjeev Kumar Srivastava
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA.,Department of Pathology, University of South Alabama, Mobile, AL, USA
| | - Teja Poosarla
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Donna Lynn Dyess
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | | | - Ajay Pratap Singh
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA.,Department of Pathology, University of South Alabama, Mobile, AL, USA.,Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Seema Singh
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA.,Department of Pathology, University of South Alabama, Mobile, AL, USA.,Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL, USA
| |
Collapse
|
6
|
Dynamical footprint of cross-reactivity in a human autoimmune T-cell receptor. Sci Rep 2017; 7:42496. [PMID: 28195200 PMCID: PMC5307354 DOI: 10.1038/srep42496] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 01/09/2017] [Indexed: 12/19/2022] Open
Abstract
The present work focuses on the dynamical aspects of cross-reactivity between myelin based protein (MBP) self-peptide and two microbial peptides (UL15, PMM) for Hy.1B11 T-cell receptor (TCR). This same TCR was isolated from a patient suffering from multiple sclerosis (MS). The study aims at highlighting the chemical interactions underlying recognition mechanisms between TCR and the peptides presented by Major Histocompatibility Complex (MHC) proteins, which form a crucial component in adaptive immune response against foreign antigens. Since the ability of a TCR to recognize different peptide antigens presented by MHC depends on its cross-reactivity, we used molecular dynamics methods to obtain atomistic detail on TCR-peptide-MHC complexes. Our results show how the dynamical basis of Hy.1B11 TCR’s cross-reactivity is rooted in a similar bridging interaction pattern across the TCR-peptide-MHC interface. Our simulations confirm the importance of TCR CDR3α E98 residue interaction with MHC and a predominant role of P6 peptide residue in MHC binding affinity. Altogether, our study provides energetic and dynamical insights into factors governing peptide recognition by the cross-reactive Hy.1B11 TCR, found in MS patient.
Collapse
|
7
|
Abstract
Supplemental digital content is available in the text. During sepsis, CD4+ T cells express activation markers within the first 24 h. In the present study, the mechanisms of T-cell activation and its consequences were addressed in an acute peritonitis model in mice. The response of CD4+ T cells to sepsis induction was compared between OTII mice, characterized by ovalbumin-specific T-cell receptor–transgenic T cells, and C57BL/6 controls (wild type [WT] mice). Because ovalbumin was absent during peritonitis, the OTII CD4+ T cells could not be activated by canonical antigen recognition. In both OTII and WT control mice, CD4+ T effector cells and CD4+ Foxp3+ regulatory T cells (Tregs) expressed the activation marker CD69 early after sepsis onset. However, full activation with upregulation of CD25 and proliferation took place only in the presence of the antigen. Besides this, the fraction of Tregs was lower in OTII than that in WT mice. Sepsis mortality was increased in OTII mice. Our data show that, in sepsis, partial activation of CD4+ T cells is induced by a T-cell receptor–independent pathway, whereas full stimulation and proliferation require a specific antigen. Antigen-dependent T-cell effector functions as well as Treg activity may contribute to sepsis survival.
Collapse
|
8
|
Boivin N, Baillargeon J, Doss PMIA, Roy AP, Rangachari M. Interferon-β suppresses murine Th1 cell function in the absence of antigen-presenting cells. PLoS One 2015; 10:e0124802. [PMID: 25885435 PMCID: PMC4401451 DOI: 10.1371/journal.pone.0124802] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 03/19/2015] [Indexed: 01/08/2023] Open
Abstract
Interferon (IFN)-β is a front-line therapy for the treatment of the relapsing-remitting form of multiple sclerosis. However, its immunosuppressive mechanism of function remains incompletely understood. While it has been proposed that IFN-β suppresses the function of inflammatory myelin antigen-reactive T cells by promoting the release of immunomodulatory cytokines such as IL-27 from antigen-presenting cells (APCs), its direct effects on inflammatory CD4+ Th1 cells are less clear. Here, we establish that IFN-β inhibits mouse IFN-γ+ Th1 cell function in the absence of APCs. CD4+ T cells express the type I interferon receptor, and IFN-β can suppress Th1 cell proliferation under APC-free stimulation conditions. IFN-β-treated myelin antigen-specific Th1 cells are impaired in their ability to induce severe experimental autoimmune encephalomyelitis (EAE) upon transfer to lymphocyte-deficient Rag1-/- mice. Polarized Th1 cells downregulate IFN-γ and IL-2, and upregulate the negative regulatory receptor Tim-3, when treated with IFN-β in the absence of APCs. Further, IFN-β treatment of Th1 cells upregulates phosphorylation of Stat1, and downregulates phosphorylation of Stat4. Our data indicate that IFN-γ-producing Th1 cells are directly responsive to IFN-β and point to a novel mechanism of IFN-β-mediated T cell suppression that is independent of APC-derived signals.
Collapse
Affiliation(s)
- Nicolas Boivin
- Department of Neuroscience, Centre de recherche du CHU de Québec—Université Laval, Québec QC, Canada G1V 4G2
| | - Joanie Baillargeon
- Department of Neuroscience, Centre de recherche du CHU de Québec—Université Laval, Québec QC, Canada G1V 4G2
| | - Prenitha Mercy Ignatius Arokia Doss
- Department of Neuroscience, Centre de recherche du CHU de Québec—Université Laval, Québec QC, Canada G1V 4G2
- Graduate Programme in Microbiology and Immunology, Faculty of Medicine, Université Laval, Québec QC, Canada G1V 0A6
| | - Andrée-Pascale Roy
- Department of Neuroscience, Centre de recherche du CHU de Québec—Université Laval, Québec QC, Canada G1V 4G2
- Graduate Programme in Microbiology and Immunology, Faculty of Medicine, Université Laval, Québec QC, Canada G1V 0A6
| | - Manu Rangachari
- Department of Neuroscience, Centre de recherche du CHU de Québec—Université Laval, Québec QC, Canada G1V 4G2
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec QC, Canada G1V 0A6
- * E-mail:
| |
Collapse
|
9
|
Babb R, Chan J, Khairat JE, Furuya Y, Alsharifi M. Gamma-Irradiated Influenza A Virus Provides Adjuvant Activity to a Co-Administered Poorly Immunogenic SFV Vaccine in Mice. Front Immunol 2014; 5:267. [PMID: 24959166 PMCID: PMC4050334 DOI: 10.3389/fimmu.2014.00267] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 05/24/2014] [Indexed: 11/16/2022] Open
Abstract
Many currently available inactivated vaccines require “adjuvants” to maximize the protective immune responses generated against the antigens of interest. Recent studies in mice with gamma-irradiated influenza A virus (γ-FLU) have shown its superior efficacy compared to other forms of inactivated FLU vaccines and its ability to induce both potent interferon type-I (IFN-I) responses and the IFN-I-associated partial lymphocyte activation. Commonly, IFN-I responses induced by adjuvants, combined in vaccine preparations, have been shown to effectively enhance the immunogenicity of the antigens of interest. Therefore, we investigated the potential adjuvant activity of γ-FLU and the possible effect on antibody responses against co-administrated antigens, using gamma-irradiated Semliki Forest virus (γ-SFV) as the experimental vaccine in mice. Our data show that co-vaccination with γ-FLU and γ-SFV resulted in enhanced SFV-specific antibody responses in terms of increased titers by sixfold and greater neutralization efficacy, when compared to vaccination with γ-SFV alone. This study provides promising evidence related to the possible use of γ-FLU as an adjuvant to poorly immunogenic vaccines without compromising the vaccine efficacy of γ-FLU.
Collapse
Affiliation(s)
- Rachelle Babb
- Vaccine Research Laboratory, School of Molecular and Biomedical Science, Centre for Molecular Pathology, The University of Adelaide , Adelaide, SA , Australia
| | - Jennifer Chan
- Vaccine Research Laboratory, School of Molecular and Biomedical Science, Centre for Molecular Pathology, The University of Adelaide , Adelaide, SA , Australia
| | - Jasmine E Khairat
- Vaccine Research Laboratory, School of Molecular and Biomedical Science, Centre for Molecular Pathology, The University of Adelaide , Adelaide, SA , Australia
| | - Yoichi Furuya
- Department of Immunology, The John Curtin School of Medical Research, Australian National University , Canberra, ACT , Australia
| | - Mohammed Alsharifi
- Vaccine Research Laboratory, School of Molecular and Biomedical Science, Centre for Molecular Pathology, The University of Adelaide , Adelaide, SA , Australia
| |
Collapse
|
10
|
Tatari-Calderone Z, Fasano RM, Miles MR, Pinto LA, Luban NLC, Vukmanovic S. High multi-cytokine levels are not a predictive marker of alloimmunization in transfused sickle cell disease patients. Cytokine 2014; 68:59-64. [PMID: 24746244 DOI: 10.1016/j.cyto.2014.03.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 02/10/2014] [Accepted: 03/24/2014] [Indexed: 11/18/2022]
Abstract
Patients with sickle cell disease (SCD) receive multiple red blood cell (RBC) transfusions for both prevention of and therapy for disease-related complications. In some patients, transfusion results in development of both allo- and auto-antibodies to RBC antigens. What precipitates the antibody formation is currently unclear. It has been hypothesized that a pro-inflammatory state preceding the therapeutic transfusion may be a predisposing factor. Plasma levels of ten cytokines were evaluated upon recruitment to the study of 83 children with SCD undergoing therapeutic RBC transfusions. The levels of cytokines were correlated with development of anti-RBC antibodies prior, or during seven years post recruitment. Twelve subjects displayed significantly higher levels of all cytokines examined, with pro-, as well as anti-inflammatory properties. Surprisingly, the elevated levels of cytokines were preferentially found in patients without anti-RBC allo- and/or auto-antibodies. Further, presence of high cytokine levels was not predictive of anti-RBC antibody development during the subsequent seven year follow up. These data suggest that the increased concentration of multiple cytokines is not a biomarker of either the presence of or susceptibility to the development of RBC alloimmunization.
Collapse
Affiliation(s)
- Zohreh Tatari-Calderone
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Medical Center, 111 Michigan Avenue NW, Washington, DC, United States; Department of Pediatrics, George Washington University School of Medicine, Washington, DC, United States
| | - Ross M Fasano
- Department of Pediatrics, George Washington University School of Medicine, Washington, DC, United States; Division of Hematology and Oncology, Children's National Medical Center, Washington, DC, United States; Division of Laboratory Medicine, Children's National Medical Center, Washington, DC, United States
| | - Megan R Miles
- Division of Laboratory Medicine, Children's National Medical Center, Washington, DC, United States
| | - Ligia A Pinto
- HPV Immunology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Naomi L C Luban
- Department of Pediatrics, George Washington University School of Medicine, Washington, DC, United States; Division of Hematology and Oncology, Children's National Medical Center, Washington, DC, United States; Division of Laboratory Medicine, Children's National Medical Center, Washington, DC, United States
| | - Stanislav Vukmanovic
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Medical Center, 111 Michigan Avenue NW, Washington, DC, United States; Department of Pediatrics, George Washington University School of Medicine, Washington, DC, United States.
| |
Collapse
|
11
|
Xu W, Jones M, Liu B, Zhu X, Johnson CB, Edwards AC, Kong L, Jeng EK, Han K, Marcus WD, Rubinstein MP, Rhode PR, Wong HC. Efficacy and mechanism-of-action of a novel superagonist interleukin-15: interleukin-15 receptor αSu/Fc fusion complex in syngeneic murine models of multiple myeloma. Cancer Res 2013; 73:3075-86. [PMID: 23644531 DOI: 10.1158/0008-5472.can-12-2357] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
ALT-803, a complex of an interleukin (IL)-15 superagonist mutant and a dimeric IL-15 receptor αSu/Fc fusion protein, was found to exhibit significantly stronger in vivo biologic activity on NK and T cells than IL-15. In this study, we show that a single dose of ALT-803, but not IL-15 alone, eliminated well-established 5T33P and MOPC-315P myeloma cells in the bone marrow of tumor-bearing mice. ALT-803 treatment also significantly prolonged survival of myeloma-bearing mice and provided resistance to rechallenge with the same tumor cells through a CD8(+) T-cell-dependent mechanism. ALT-803 treatment stimulated CD8(+) T cells to secrete large amounts of IFN-γ and promoted rapid expansion of CD8(+)CD44(high) memory T cells in vivo. These memory CD8(+) T cells exhibited ALT-803-mediated upregulation of NKG2D (KLRK1) but not PD-1 (PDCD1) or CD25 (IL2RA) on their cell surfaces. ALT-803-activated CD8(+) memory T cells also exhibited nonspecific cytotoxicity against myeloma and other tumor cells in vitro, whereas IFN-γ had no direct effect on myeloma cell growth. ALT-803 lost its antimyeloma activity in tumor-bearing IFN-γ knockout mice but retained the ability to promote CD8(+)CD44(high) memory T-cell proliferation, indicating that ALT-803-mediated stimulation of CD8(+)CD44(high) memory T cells is IFN-γ-independent. Thus, besides well-known IL-15 biologic functions in host immunity, this study shows that IL-15-based ALT-803 could activate CD8(+)CD44(high) memory T cells to acquire a unique innate-like phenotype and secrete IFN-γ for nonspecific tumor cell killing. This unique immunomodulatory property of ALT-803 strongly supports its clinical development as a novel immunotherapeutic agent against cancer and viral infections.
Collapse
Affiliation(s)
- Wenxin Xu
- Altor BioScience Corporation, Miramar, FL 33025, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Alari-Pahissa E, Vega-Ramos J, Zhang JG, Castaño AR, Turley SJ, Villadangos JA, Lauzurica P. Differential effect of CD69 targeting on bystander and antigen-specific T cell proliferation. J Leukoc Biol 2012; 92:145-58. [PMID: 22544938 DOI: 10.1189/jlb.1011499] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
In spite of an initially proposed role as a costimulatory molecule for CD69, in vivo studies showed it as a regulator of immune responses and lymphocyte egress. We found constitutive CD69 expression by T cell subsets and pDC. We examined a possible effect of CD69 on T cell proliferation using transfer models and in vitro assays. In mice locally expressing or receiving antigen, anti-CD692.2 treatment did not affect the proliferation of antigen-specific transgenic T cells in ADLN, although we observed the presence of proliferated T cells in non-ADLN and spleen. This was not affected by FTY720 treatment and thus, not contributed by increased egress of proliferated lymphocytes from ADLN. In the absence of antigen, anti-CD69 2.2 treatment induced bystander proliferation of transferred memory phenotype T cells. This proliferation was mediated by IL-2, as it was inhibited by anti-IL-2 or anti-CD25 antibodies in vitro and by anti-CD25 antibodies in vivo. It was also dependent on CD69 expression by donor T cells and recipient cells. CD69 targeting on T cells enhanced IL-2-mediated proliferation and CD25 expression. However, it did not lead to increased early IL-2 production by T cells. No T cell subset was found to be specifically required in the recipient. Instead, CD69 targeting on pDC induced their expression of IL-2 and CD25, and pDC depletion showed that this subset was involved in the proliferation induction. These results indicate that CD69 targeting induces bystander T cell proliferation through pDC IL-2 production and T cell sensitization to IL-2 without affecting antigen-driven T cell proliferation.
Collapse
|
13
|
Delineation of antigen-specific and antigen-nonspecific CD8(+) memory T-cell responses after cytokine-based cancer immunotherapy. Blood 2012; 119:3073-83. [PMID: 22251483 DOI: 10.1182/blood-2011-07-369736] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Memory T cells exhibit tremendous antigen specificity within the immune system and accumulate with age. Our studies reveal an antigen-independent expansion of memory, but not naive, CD8(+) T cells after several immunotherapeutic regimens for cancer resulting in a distinctive phenotype. Signaling through T-cell receptors (TCRs) or CD3 in both mouse and human memory CD8(+) T cells markedly up-regulated programmed death-1 (PD-1) and CD25 (IL-2 receptor α chain), and led to antigen-specific tumor cell killing. In contrast, exposure to cytokine alone in vitro or with immunotherapy in vivo did not up-regulate these markers but resulted in expanded memory CD8(+) T cells expressing NKG2D, granzyme B, and possessing broadly lytic capabilities. Blockade of NKG2D in mice also resulted in significantly diminished antitumor effects after immunotherapy. Treatment of TCR-transgenic mice bearing nonantigen expressing tumors with immunotherapy still resulted in significant antitumor effects. Human melanoma tissue biopsies obtained from patients after topically applied immunodulatory treatment resulted in increased numbers of these CD8(+) CD25(-) cells within the tumor site. These findings demonstrate that memory CD8(+) T cells can express differential phenotypes indicative of adaptive or innate effectors based on the nature of the stimuli in a process conserved across species.
Collapse
|
14
|
Solid-state capture and real-time analysis of individual T cell activation via self-assembly of binding multimeric proteins on functionalized materials surfaces. Acta Biomater 2012; 8:99-107. [PMID: 21945827 DOI: 10.1016/j.actbio.2011.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 08/16/2011] [Accepted: 09/01/2011] [Indexed: 11/21/2022]
Abstract
Polyfunctional T cell responses are increasingly underpinning new and improved vaccination regimens. Studies of the nature and extent of these T cell responses may be facilitated if specific T cell populations can be assessed from mixed populations by ligand-mediated capture in a solid-state assay format. Accordingly, we report here the development of a novel strategy for the solid-state capture and real-time activation analyses of individual cognate T cells which utilizes a spontaneous self-assembly process for generating multimers of biotinylated class I major histocompatibility-peptide complex (MHCp) directly on the solid-state assay surface while also ensuring stability by covalent interfacial binding. The capture surface was constructed by the fabrication of multilayer coatings onto standard slides. The first layer was a thin polymer coating with surface aldehyde groups, onto which streptavidin was covalently immobilized, followed by the docking of multimers of biotinylated MHCp or biotinylated anti-CD45.1 monoclonal antibody. The high binding strength at each step of this immobilization sequence aims to ensure that artefacts such as (partial) detachment, or displacement by proteins from solution, would not interfere with the intended biological assays. The multilayer coating steps were monitored by X-ray photoelectron spectroscopy; data indicated that the MHCp proteins self-assembled in a multimeric form onto the streptavidin surface. Immobilized multimeric MHCp demonstrated the capacity to bind and retain antigen-specific T cells from mixed populations of cells onto the solid carrier. Furthermore, real-time confocal microscopic detection and quantification of subsequent calcium flux using paired fluorescent ratiometric probes facilitated the analysis of individual T cell response profiles, as well as population analyses using a combination of individual T cell events.
Collapse
|
15
|
Bili H, Fleva A, Pados G, Argyriou T, Tsolakidis D, Pavlitou A, Tarlatzis BC. Regulatory Τ-cell differentiation between maternal and cord blood samples in pregnancies with spontaneous vaginal delivery and with elective cesarian section. Am J Reprod Immunol 2010; 65:173-9. [PMID: 20726962 DOI: 10.1111/j.1600-0897.2010.00910.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
PROBLEM The immunological mechanisms preventing fetal antigenic rejection during normal pregnancy and the extent to which the type of delivery influences lymphocyte reactions are elusive. METHOD OF STUDY Maternal peripheral blood and neonatal umbilical cord blood (CB) was collected upon labor after vaginal delivery or cesarian section. Leukocytes were analyzed with flow cytometry, focusing on regulatory and γ/δ T-cells. RESULTS In CB from neonates delivered by vaginal delivery, natural killer cells were increased. On the other hand, in maternal blood, γ/δ T-cells were increased, and activated T-cells (cluster of differentiation [CD]4+/25(dim) /122+ cells) were decreased. Moreover, maternal blood presented increased levels of T regulatory cell subsets like CD4+/25(high) /45RO+, CD4+/25(high) /DR+, CD4+/25(high) /CD38+ and CD4+/25(high) /71+. In CB, CD19+, CD4+/25(high) /45RA+ and CD4+/25(high) /122+ cells were increased. CONCLUSION The effect of delivery type on lymphocyte immunophenotype was minimal. Mothers' and neonates' lymphocyte subsets differed significantly. Mothers' phenotype comprised significantly of lymphocytes involved in tolerance (memory and activated regulatory T-cells, γ/δ T-cells).
Collapse
Affiliation(s)
- Helen Bili
- First Department of Obstetrics and Gynaecology, Papageorgiou General Hospital, Aristotle University, Thessaloniki, Greece.
| | | | | | | | | | | | | |
Collapse
|
16
|
Sandalova E, Laccabue D, Boni C, Tan AT, Fink K, Ooi EE, Chua R, Shafaeddin Schreve B, Ferrari C, Bertoletti A. Contribution of herpesvirus specific CD8 T cells to anti-viral T cell response in humans. PLoS Pathog 2010; 6:e1001051. [PMID: 20808900 PMCID: PMC2924358 DOI: 10.1371/journal.ppat.1001051] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 07/20/2010] [Indexed: 11/18/2022] Open
Abstract
Herpesviruses infect most humans. Their infections can be associated with pathological conditions and significant changes in T cell repertoire but evidences of symbiotic effects of herpesvirus latency have never been demonstrated. We tested the hypothesis that HCMV and EBV-specific CD8 T cells contribute to the heterologous anti-viral immune response. Volume of activated/proliferating virus-specific and total CD8 T cells was evaluated in 50 patients with acute viral infections: 20 with HBV, 12 with Dengue, 12 with Influenza, 3 with Adenovirus infection and 3 with fevers of unknown etiology. Virus-specific (EBV, HCMV, Influenza) pentamer+ and total CD8 T cells were analyzed for activation (CD38/HLA-DR), proliferation (Ki-67/Bcl-2(low)) and cytokine production. We observed that all acute viral infections trigger an expansion of activated/proliferating CD8 T cells, which differs in size depending on the infection but is invariably inflated by CD8 T cells specific for persistent herpesviruses (HCMV/EBV). CD8 T cells specific for other non-related non persistent viral infection (i.e. Influenza) were not activated. IL-15, which is produced during acute viral infections, is the likely contributing mechanism driving the selective activation of herpesvirus specific CD8 T cells. In addition we were able to show that herpesvirus specific CD8 T cells displayed an increased ability to produce the anti-viral cytokine interferon-gamma during the acute phase of heterologous viral infection. Taken together, these data demonstrated that activated herpesvirus specific CD8 T cells inflate the activated/proliferating CD8 T cells population present during acute viral infections in human and can contribute to the heterologous anti-viral T cell response.
Collapse
Affiliation(s)
- Elena Sandalova
- Singapore Institute for Clinical Sciences, A*STAR, Singapore
| | - Diletta Laccabue
- Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Carolina Boni
- Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Anthony T. Tan
- Singapore Institute for Clinical Sciences, A*STAR, Singapore
| | - Katja Fink
- Singapore Immunology Network, A*STAR, Singapore
| | - Eng Eong Ooi
- Emerging Viral Diseases, Duke – NUS Graduate Medical School, Singapore
| | - Robert Chua
- Emerging Viral Diseases, Duke – NUS Graduate Medical School, Singapore
| | - Bahar Shafaeddin Schreve
- Singapore Institute for Clinical Sciences, A*STAR, Singapore
- Emerging Viral Diseases, Duke – NUS Graduate Medical School, Singapore
| | - Carlo Ferrari
- Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Antonio Bertoletti
- Singapore Institute for Clinical Sciences, A*STAR, Singapore
- Emerging Viral Diseases, Duke – NUS Graduate Medical School, Singapore
- * E-mail:
| |
Collapse
|
17
|
Wijesundara DK, Kumar S, Alsharifi M, Müllbacher A, Regner M. Antigen-specific activation thresholds of CD8+ T cells are independent of IFN-I-mediated partial lymphocyte activation. Int Immunol 2010; 22:757-67. [PMID: 20682547 DOI: 10.1093/intimm/dxq064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Type-I IFN (IFN-I) are highly pleiotropic cytokines known to modulate immune responses and play an early central role in mediating antiviral defenses. We have shown that IFN-I mediate transient up-regulation of a distinct subset of lymphocyte surface activation markers on both B and T cells in vivo independent of cognate antigen: a state referred to as 'partial lymphocyte activation'. Here we investigated in vitro the possibility that partial lymphocyte activation may serve to lower the antigen-specific activation thresholds for T cells. We found that the kinetics of Ca(2+) flux in T cells responding to TCR cross-linking was not enhanced in partially activated T cells. Furthermore, following TCR stimulation with anti-cluster of differentiation (CD) 3 epsilon, a lower proportion of partially activated than naive T cells proliferated. In contrast, the proliferation of partially activated and naive ovalbumin peptide (OVAp, SIINFEKL) specific CD8(+) T cells (OT-I CD8(+) T cells) was similar when stimulated with OVAp. Surprisingly, using an enzyme-linked immunospot (ELISPOT) assay for IFN-gamma secretion, we found that a higher number of partially activated OT-I CD8(+) T cells expressed effector functions than did naive OT-I CD8(+) T cells. This is most readily explained by an increased survival of activated antigen-specific CD8(+) T cells from a pool of partially activated T cells than naive T cells. Overall, when examining the effects of early (Ca(2+) flux), intermediate (proliferation) or late events (IFN-gamma secretion) of T-cell activation, we found that partial activation promotes the survival but does not alter the antigen-specific activation thresholds of CD8(+) T cells.
Collapse
Affiliation(s)
- Danushka K Wijesundara
- Viral Immunology, Emerging Pathogens and Vaccines Program, John Curtin School of Medical Research, Acton, ACT 0200, Canberra, Australia.
| | | | | | | | | |
Collapse
|
18
|
Golshayan D, Wyss JC, Buckland M, Hernandez-Fuentes M, Lechler RI. Differential role of naïve and memory CD4 T-cell subsets in primary alloresponses. Am J Transplant 2010; 10:1749-59. [PMID: 20659087 DOI: 10.1111/j.1600-6143.2010.03180.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The T cell response to major histocompatibility complex (MHC) alloantigens occurs via two main pathways. The direct pathway involves the recognition of intact allogeneic MHC:peptide complexes on donor cells and provokes uniquely high frequencies of responsive T cells. The indirect response results from alloantigens being processed like any other protein antigen and presented as peptide by autologous antigen-presenting cells. The frequencies of T cells with indirect allospecificity are orders of magnitude lower and comparable to other peptide-specific responses. In this study, we explored the contributions of naïve and memory CD4(+) T cells to these two pathways. Using an adoptive transfer and skin transplantation model we found that naive and memory CD4(+) T cells, both naturally occurring and induced by sensitization with multiple third-party alloantigens, contributed equally to graft rejection when only the direct pathway was operative. In contrast, the indirect response was predominantly mediated by the naïve subset. Elimination of regulatory CD4(+)CD25(+) T cells enabled memory cells to reject grafts through the indirect pathway, but at a much slower tempo than for naïve cells. These findings have implications for better targeting of immunosuppression to inhibit immediate and later forms of alloimmunity.
Collapse
Affiliation(s)
- D Golshayan
- Department of Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne University, Lausanne, Switzerland.
| | | | | | | | | |
Collapse
|
19
|
Chiriva-Internati M, Yu Y, Mirandola L, Jenkins MR, Chapman C, Cannon M, Cobos E, Kast WM. Cancer testis antigen vaccination affords long-term protection in a murine model of ovarian cancer. PLoS One 2010; 5:e10471. [PMID: 20485677 PMCID: PMC2868870 DOI: 10.1371/journal.pone.0010471] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2010] [Accepted: 04/12/2010] [Indexed: 12/24/2022] Open
Abstract
Sperm protein (Sp17) is an attractive target for ovarian cancer (OC) vaccines because of its over-expression in primary as well as in metastatic lesions, at all stages of the disease. Our studies suggest that a Sp17-based vaccine can induce an enduring defense against OC development in C57BL/6 mice with ID8 cells, following prophylactic and therapeutic treatments. This is the first time that a mouse counterpart of a cancer testis antigen (Sp17) was shown to be expressed in an OC mouse model, and that vaccination against this antigen significantly controlled tumor growth. Our study shows that the CpG-adjuvated Sp17 vaccine overcomes the issue of immunologic tolerance, the major barrier to the development of effective immunotherapy for OC. Furthermore, this study provides a better understanding of OC biology by showing that Th-17 cells activation and contemporary immunosuppressive T-reg cells inhibition is required for vaccine efficacy. Taken together, these results indicate that prophylactic and therapeutic vaccinations can induce long-standing protection against OC and delay tumor growth, suggesting that this strategy may provide additional treatments of human OC and the prevention of disease onset in women with a family history of OC.
Collapse
Affiliation(s)
- Maurizio Chiriva-Internati
- Division of Hematology and Oncology, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Gosling KM, Goodnow CC, Verma NK, Fahrer AM. Defective T-cell function leading to reduced antibody production in a kleisin-beta mutant mouse. Immunology 2008; 125:208-17. [PMID: 18397266 DOI: 10.1111/j.1365-2567.2008.02831.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The recently described nessy (Ncaph2nes/nes) mutant mouse strain has a defect in T-cell development caused by a mutation in the ubiquitous kleisin-beta (also known as Ncaph2). Kleisin-beta is a subunit of the condensin II complex involved in chromosome condensation during mitosis. The nessy phenotype is characterized by CD44hi CD8+ peripheral T cells, 10-20% of normal thymocyte numbers and 2.5-fold fewer alphabeta T cells in the spleen compared with wild-type mice. In this study we examined the effect of the nessy mutation in kleisin-beta on the immune response by challenging mice with an attenuated strain of Salmonella. Results showed that nessy mice control bacterial load as effectively as wild-type mice but exhibit a reduced antibody titre. Further experiments revealed that while the T-dependent antibody response was diminished in nessy mice the T-independent response was normal, suggesting that the defect was the result of T-cell function and not B-cell function. In vitro activation assays showed that nessy T cells have a lower capacity to up-regulate the early activation marker CD69 than wild-type T cells. Upon transfer into RAG-/- mice, nessy and wild-type CD4 T cells showed equivalent homeostatic proliferation, while nessy CD8 T cells proliferated more than their wild-type counterparts. When cultured with anti-T-cell receptor beta or concanavalin A, nessy T cells were found to die faster than wild-type T cells. These data indicate that kleisin-beta is required for a normal immune response, and represent the first demonstration of a role for kleisin-beta in T-cell function.
Collapse
Affiliation(s)
- Katharine M Gosling
- School of Biochemistry and Molecular Biology, The Australian National University, Canberra, Australia
| | | | | | | |
Collapse
|
21
|
Alsharifi M, Müllbacher A, Regner M. Interferon type I responses in primary and secondary infections. Immunol Cell Biol 2008; 86:239-45. [PMID: 18180794 DOI: 10.1038/sj.icb.7100159] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The mammalian host responds to a microbial infection with a rapid innate immune reaction that is dominated by type I interferon (IFN-I) release. Most cells of vertebrates can respond to microbial attack with IFN-I production, but the cell type responsible for most of the systemic IFN-I release is thought to be plasmacytoid dendritic cells (pDCs). Besides its anti-microbial and especially anti-viral properties IFN-I also exerts a regulatory role on many facets of the sequential adaptive immune response. One of these is being the recently described partial, systemic activation of the vast majority of B and T lymphocytes in mice, irrespective of antigen reactivity. The biological significance of this partial activation of lymphocytes is at present speculative. Secondary infections occurring within a short time span of a primary infection fail to elicit a similar lymphocyte activation response due to a refractory period in systemic IFN-I production. This period of exhaustion in IFN-I responses is associated with an increased susceptibility of the host to secondary infections. The latter correlates with well-established clinical observations of heightened susceptibility of patients to secondary microbial infections after viral episodes.
Collapse
Affiliation(s)
- Mohammed Alsharifi
- Division of Immunology and Genetics, The John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia.
| | | | | |
Collapse
|
22
|
Marschner A, Rothenfusser S, Hornung V, Prell D, Krug A, Kerkmann M, Wellisch D, Poeck H, Greinacher A, Giese T, Endres S, Hartmann G. CpG ODN enhance antigen-specific NKT cell activation via plasmacytoid dendritic cells. Eur J Immunol 2005; 35:2347-57. [PMID: 16025562 DOI: 10.1002/eji.200425721] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Human Valpha24+ Vbeta11+ natural killer T cells (NKT cells) are "natural memory" T cells that detect glycolipid antigens such as alpha-galactosylceramide (alpha-GalCer) presented on CD1d. In the present study we found that highly purified Valpha24+ NKT cells lack TLR9 mRNA, and thus are not sensitive towards stimulation with CpG oligodeoxynucleotides (ODN). Within PBMC, however, CpG ODN synergistically activated NKT cells stimulated with their cognate antigen alpha-GalCer. Depletion of plasmacytoid dendritic cells (PDC) or myeloid dendritic cells (MDC) revealed that both DC subsets were necessary for the synergistic activation of NKT cells by alpha-GalCer and CpG ODN. While PDC were responsible for the stimulation of NKT cells with CpG ODN, MDC but not PDC presented alpha-GalCer via CD1d. Partial activation of NKT cells was mediated by PDC-derived IFN-alpha, whereas full activation of NKT cells as indicated by IFN-gamma production required cell-to-cell contact of PDC and NKT cells in addition to IFN-alpha; OX40 was involved in this interaction. We conclude that CpG-activated PDC enhance alpha-GalCer-specific NKT cell activation, and bias activated NKT cells towards a Th1 phenotype. Our results lead to a novel concept of PDC function: to regulate effector activity of antigen-stimulated T cells in a cell contact-dependent manner without the need of simultaneous presentation of the cognate T cell antigen.
Collapse
Affiliation(s)
- Anja Marschner
- Department of Internal Medicine, Division of Clinical Pharmacology, University of Munich, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Hossain MS, Roback JD, Lezhava L, Hillyer CD, Waller EK. Amotosalen-treated donor T cells have polyclonal antigen-specific long-term function without graft-versus-host disease after allogeneic bone marrow transplantation. Biol Blood Marrow Transplant 2005; 11:169-80. [PMID: 15744235 DOI: 10.1016/j.bbmt.2004.12.332] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
We have previously shown that amotosalen HCl (S-59 psoralen)-treated donor splenocytes, which have limited proliferative capacity in vitro, can protect major histocompatibility complex-mismatched bone marrow transplant (BMT) recipients from lethal murine cytomegalovirus infection without causing graft-versus-host disease. In this study, we further investigated the effects of amotosalen-treated donor T cells on immune reconstitution after allogeneic BMT. We were surprised to find that amotosalen-treated donor T cells persisted long-term in vivo, comprising 6% to 10% on average of the T-cell compartment of transplant recipients at 4 months after transplantation. Donor T cells derived from amotosalen-treated splenocytes were predominantly polyclonal CD44 hi/int CD8 + memory T cells and were functionally active, synthesizing interferon gamma in response to stimulation with murine cytomegalovirus antigen. Amotosalen-treated donor T cells, reisolated from BMT recipients' spleens >/=4 months after transplantation, proliferated in vitro, thus indicating repair of amotosalen-mediated DNA cross-links. Compared with infusion of untreated donor splenocytes, amotosalen-treated cells enhanced thymopoiesis by bone marrow-derived stem cells in BMT recipients. However, amotosalen treatment abrogated the thymopoietic activity of lymphoid progenitor cells among the donor splenocytes. Thus, infusion of amotosalen-treated donor T cells produced rapid immune reconstitution after major histocompatibility complex-mismatched BMT by transferring long-lived polyclonal memory T cells with antiviral activity and also by enhancing bone marrow-derived thymopoiesis. This is a novel approach to adoptive immunotherapy in allogeneic BMT.
Collapse
Affiliation(s)
- Mohammad Sohrab Hossain
- Department of Hematology and Oncology, Division of Stem Cell and Bone Marrow Transplantation, Winship Cancer Institute, Emory Universiy School of Medicine, Atlanta, Georgia, USA
| | | | | | | | | |
Collapse
|
24
|
Abstract
Vaccination, or the deliberate induction of protective immunity by administering nonpathogenic forms of a microbe or its antigens to induce a memory immune response, is the world's most cost-effective medical procedure for preventing morbidity and mortality caused by infectious disease. Historically, most vaccines have worked by eliciting long-lived plasma cells. These cells produce antibodies that limit disease by neutralizing a toxin or blocking the spread of the infectious agent. For these 'B cell vaccines,' the immunological marker, or correlate, for protection is the titer of protective antibodies. With the discovery of HIV/AIDS, vaccine development has been confronted by an agent that is not easily blocked by antibody. To overcome this, researchers who are developing HIV/AIDS vaccines have turned to the elicitation of cellular immunity, or 'T cell vaccines,' which recognize and kill infected cells.
Collapse
Affiliation(s)
- Harriet L Robinson
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329, USA.
| | | |
Collapse
|
25
|
Prell RA, Li B, Lin JM, VanRoey M, Jooss K. Administration of IFN-alpha enhances the efficacy of a granulocyte macrophage colony stimulating factor-secreting tumor cell vaccine. Cancer Res 2005; 65:2449-56. [PMID: 15781661 DOI: 10.1158/0008-5472.can-04-1975] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
IFN-alpha is approved for the treatment of multiple cancers. Its pleiotropic properties include inhibition of proliferation and angiogenesis and induction of apoptosis. Type I IFNs also exert immunomodulatory effects, which make it an appropriate candidate to combine with cancer vaccines. The studies reported herein show that 50% of mice reject established B16 tumors following treatment with the combination of a granulocyte macrophage colony-stimulating factor-secreting tumor cell vaccine (B16.GM) and subclinical doses of recombinant murine IFN-alpha delivered at the vaccine site. Similarly, 80% of mice treated with the combination reject established B16 tumors when recombinant murine IFN-alpha is given at the challenge site, suggesting that in the latter case its antiproliferative, proapoptotic, and antiangiogenic properties may be involved in controlling tumor growth. In contrast, fewer than 10% of mice reject the tumors when either one is used as a monotherapy. Furthermore, a 30-fold increase in the frequency of melanoma-associated antigen (Trp-2 and gp100) specific T cells was observed in mice treated with the combination when compared with unvaccinated controls. These data show that IFN-alpha combined with a granulocyte macrophage colony-stimulating factor-secreting tumor cell vaccine significantly enhances vaccine potency and may represent a potential new approach for tumor immunotherapy.
Collapse
Affiliation(s)
- Rodney A Prell
- Department of Preclinical Oncology and Immunology, Cell Genesys, Inc., South San Francisco, CA 94080, USA
| | | | | | | | | |
Collapse
|
26
|
Matheu V, Treschow A, Teige I, Navikas V, Issazadeh-Navikas S. Local therapy with CpG motifs in a murine model of allergic airway inflammation in IFN-beta knock-out mice. Respir Res 2005; 6:25. [PMID: 15748290 PMCID: PMC555575 DOI: 10.1186/1465-9921-6-25] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2004] [Accepted: 03/05/2005] [Indexed: 12/02/2022] Open
Abstract
Background CpG oligodeoxynucleotides (CpG-ODN) are capable of inducing high amounts of type I IFNs with many immunomodulatory properties. Furthermore, type-I IFNs have been proposed to play a key role in mediating effects of CpG-ODN. The precise role of IFN-β in the immunomodulatory effects of CpG-ODN is not known. Objective Here, we aimed to elucidate the role of IFN-β in the anti-allergic effect of CpG motifs. Methods We assessed the immune response in OVA-primed/OVA-challenged IFN-β knockout (-/-) mice compared to wild type (WT) control, after intranasal and systemic treatment with synthetic CpG motifs. Results Vaccination with CpG-ODN reduced the number of cells in airways of OVA-sensitized WT but not IFN-β-/- mice. Although airway eosinophilia was reduced in both treated groups, they were significantly higher in IFN-β-/- mice. Other inflammatory cells, such as lymphocytes and macrophages were enhanced in airways by CpG treatment in IFN-β-/- mice. The ratio of IFN-γ/IL-4 cytokines in airways was significantly skewed to a Th1 response in WT compared to IFN-β-/- group. In contrast, IL-4 and IgE were reduced with no differences between groups. Ag-specific T-cell proliferation, Th1-cytokines such as IFN-γ, IL-2 and also IL-12 were significantly lower in IFN-β-/- mice. Surprisingly, we discovered that intranasal treatment of mice with CpG-ODN results in mild synovitis particularly in IFN-β-/- mice. Conclusion Our results indicate that induction of Th1 response by therapy with CpG-ODN is only slightly and partially dependent on IFN-β, while IFN-β is not an absolute requirement for suppression of airway eosinophilia and IgE. Furthermore, our finding of mild synovitis is a warning for possible negative effects of CpG-ODN vaccination.
Collapse
Affiliation(s)
- Victor Matheu
- Section of Medical Inflammation Research, Department of Cell & Molecular Biology; Lund University; Sweden
- Fundación Rafael Clavijo de Investigación Biomédica, Tenerife, Spain
| | - Alexandra Treschow
- Section of Medical Inflammation Research, Department of Cell & Molecular Biology; Lund University; Sweden
| | - Ingrid Teige
- Section of Medical Inflammation Research, Department of Cell & Molecular Biology; Lund University; Sweden
| | - Vaidrius Navikas
- Section of Medical Inflammation Research, Department of Cell & Molecular Biology; Lund University; Sweden
| | - Shohreh Issazadeh-Navikas
- Section of Medical Inflammation Research, Department of Cell & Molecular Biology; Lund University; Sweden
| |
Collapse
|
27
|
Wagner U, Pierer M, Wahle M, Moritz F, Kaltenhäuser S, Häntzschel H. Ex vivo homeostatic proliferation of CD4+ T cells in rheumatoid arthritis is dysregulated and driven by membrane-anchored TNFalpha. THE JOURNAL OF IMMUNOLOGY 2004; 173:2825-33. [PMID: 15295001 DOI: 10.4049/jimmunol.173.4.2825] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The systemic CD4(+) T cell compartment in patients with rheumatoid arthritis (RA) is characterized by TCR repertoire contraction, shortened telomere lengths, and decreased numbers of recent thymic emigrants, suggesting a disturbed CD4(+) T cell homeostasis. In mice, homeostatic proliferation of peripheral CD4(+) T cells is regulated by TCR interaction with self peptide-MHC complexes (pMHC) and can be reproduced in vitro. We have established an ex vivo model of homeostatic proliferation, in which self-replication of human CD4(+) T cells is induced by cell-cell contact with autologous monocytes. In healthy individuals, blockade of TCR-pMHC class II contact resulted in decreased CD4(+) T cell division. In contrast, homeostatic proliferation in RA patients was not inhibited by pMHC blockade, but increased during the initial culture period. The anti-TNF-alpha Ab cA2 inhibited homeostasis-driven ex vivo proliferation in healthy controls and in RA patients. In addition, treatment of RA patients with infliximab decreased the ex vivo rate of homeostatic proliferation of CD4(+) T cells. Our results suggest a disturbed regulation of CD4(+) T cell homeostasis leading to the repertoire aberrations reported in RA. Membrane-anchored TNF-alpha appears to be a cell-cell contact-dependent stimulus of homeostatic proliferation of CD4(+) T cells, possibly favoring self-replication of autoreactive CD4(+) T cells in patients with RA.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Antibodies, Monoclonal/pharmacology
- Antirheumatic Agents/pharmacology
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/immunology
- Arthritis, Rheumatoid/physiopathology
- CD4-Positive T-Lymphocytes/drug effects
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Cell Communication/immunology
- Cell Division/drug effects
- Cell Division/immunology
- Cell Membrane/chemistry
- Cell Membrane/immunology
- Cells, Cultured
- Coculture Techniques
- Female
- Flow Cytometry
- Histocompatibility Antigens Class II/immunology
- Histocompatibility Antigens Class II/metabolism
- Homeostasis
- Humans
- Infliximab
- Lipopolysaccharide Receptors/metabolism
- Lymphocyte Activation/immunology
- Male
- Middle Aged
- Monocytes/immunology
- Monocytes/metabolism
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- Ulf Wagner
- Department of Medicine IV, University of Leipzig, Leipzig, Germany.
| | | | | | | | | | | |
Collapse
|
28
|
Auerbuch V, Brockstedt DG, Meyer-Morse N, O'Riordan M, Portnoy DA. Mice lacking the type I interferon receptor are resistant to Listeria monocytogenes. ACTA ACUST UNITED AC 2004; 200:527-33. [PMID: 15302899 PMCID: PMC2211930 DOI: 10.1084/jem.20040976] [Citation(s) in RCA: 363] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Listeria monocytogenes is a facultative intracellular pathogen that induces a cytosolic signaling cascade resulting in expression of interferon (IFN)-β. Although type I IFNs are critical in viral defense, their role in immunity to bacterial pathogens is much less clear. In this study, we addressed the role of type I IFNs by examining the infection of L. monocytogenes in BALB/c mice lacking the type I IFN receptor (IFN-α/βR−/−). During the first 24 h of infection in vivo, IFN-α/βR−/− and wild-type mice were similar in terms of L. monocytogenes survival. In addition, the intracellular fate of L. monocytogenes in macrophages cultured from IFN-α/βR−/− and wild-type mice was indistinguishable. However, by 72 h after inoculation in vivo, IFN-α/βR−/− mice were ∼1,000-fold more resistant to a high dose L. monocytogenes infection. Resistance was correlated with elevated levels of interleukin 12p70 in the blood and increased numbers of CD11b+ macrophages producing tumor necrosis factor α in the spleen of IFN-α/βR−/− mice. The results of this study suggest that L. monocytogenes might be exploiting an innate antiviral response to promote its pathogenesis.
Collapse
Affiliation(s)
- Victoria Auerbuch
- Department of Molecular and Cell Biology, 508 Barker Hall, University of California, Berkeley, 94720, USA
| | | | | | | | | |
Collapse
|
29
|
Gao X, Tewari K, Svaren J, Suresh M. Role of cell cycle regulator E2F1 in regulating CD8 T cell responses during acute and chronic viral infection. Virology 2004; 324:567-76. [PMID: 15207641 DOI: 10.1016/j.virol.2004.04.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2004] [Revised: 03/12/2004] [Accepted: 04/09/2004] [Indexed: 11/24/2022]
Abstract
To determine the role of cell cycle regulatory protein E2F1 in T cell immunity, we compared antigen-specific CD8 T cell responses between wild type (+/+) and E2F1-deficient (E2F1-/-) mice following an acute and chronic infection with lymphocytic choriomeningitis virus (LCMV). During an acute LCMV infection, although LCMV-specific effector CD8 T cells from E2F1-/- mice were less susceptible to activation-induced cell death (AICD) in vitro, E2F1 deficiency had no significant effect on the: (1) expansion or contraction of virus-specific CD8 T cell responses; (2) proliferative renewal of memory CD8 T cells in both lymphoid and non-lymphoid organs. Importantly, under conditions of repeated antigenic stimulation in the setting of a chronic LCMV infection, E2F1 deficiency did not preclude the exhaustion of CD8 T cells specific to the immunodominant epitope nucleoprotein 396-404 (NP396-404). Taken together, our studies show that E2F1, an important tumor suppressor and cell cycle regulator, may not have a non-redundant role in regulating CD8 T cell responses in acute and chronic LCMV infections.
Collapse
Affiliation(s)
- Xiaoyan Gao
- Department of Pathobiological Sciences, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706-1102, USA
| | | | | | | |
Collapse
|
30
|
Lenz DC, Kurz SK, Lemmens E, Schoenberger SP, Sprent J, Oldstone MBA, Homann D. IL-7 regulates basal homeostatic proliferation of antiviral CD4+T cell memory. Proc Natl Acad Sci U S A 2004; 101:9357-62. [PMID: 15197277 PMCID: PMC438981 DOI: 10.1073/pnas.0400640101] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2004] [Accepted: 05/11/2004] [Indexed: 11/18/2022] Open
Abstract
Heightened protection from infectious disease as conferred by vaccination or pathogen exposure relies on the effective generation and preservation of specific immunological memory. T cells are irreducibly required for the control of most viral infections, and maintenance of CD8(+)T cell memory is regulated by at least two cytokines, IL-7 and IL-15, which support survival (IL-7, IL-15) and basal homeostatic proliferation (IL-15) of specific CD8(+) memory T cells (T(M)). In contrast, the factors governing the homeostasis of pathogen-specific CD4(+)T(M) remain at present unknown. Here, we used a physiologic in vivo model system for viral infection to delineate homeostatic features and mechanisms of antiviral CD4(+)T(M) preservation in direct juxtaposition to CD8(+)T cell memory. Basal homeostatic proliferation is comparable between specific CD4(+) and CD8(+)T(M) and independent of immunodominant determinants and functional avidities but regulated in a tissue-specific fashion. IL-7, identified as the dominant cytokine, and IL-15, an accessory cytokine, regulate basal homeostatic proliferation and survival of antiviral CD4(+)T(M). Interestingly, a role for these cytokines in regulation of CD4(+)T cell memory is not readily discernible in the generic "memory-phenotype" population, apparently a consequence of its heterogeneous composition. We also describe a prominent, nonredundant role for IL-7 in supporting basal homeostatic proliferation of CD8(+)T(M). We propose that homeostatic control of antiviral CD4(+) and CD8(+) T cell memory is fundamentally similar and characterized by quantitative, rather than qualitative, differences.
Collapse
Affiliation(s)
- Derek C Lenz
- Departments of Immunology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Nakagawa R, Inui T, Nagafune I, Tazunoki Y, Motoki K, Yamauchi A, Hirashima M, Habu Y, Nakashima H, Seki S. Essential Role of Bystander Cytotoxic CD122+CD8+ T Cells for the Antitumor Immunity Induced in the Liver of Mice by α-Galactosylceramide. THE JOURNAL OF IMMUNOLOGY 2004; 172:6550-7. [PMID: 15153469 DOI: 10.4049/jimmunol.172.11.6550] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We recently reported that NK cells and CD8(+) T cells contribute to the antimetastatic effect in the liver induced by alpha-galactosylceramide (alpha-GalCer). In the present study, we further investigated how CD8(+) T cells contribute to the antimetastatic effect induced by alpha-GalCer. The injection of anti-CD8 Ab into mice 3 days before alpha-GalCer injection (2 days before intrasplenic injection of B16 tumors) did not inhibit IFN-gamma production nor did it reduce the NK activity of liver mononuclear cells after alpha-GalCer stimulation. However, it did cause a reduction in the proliferation of liver mononuclear cells and mouse survival time. Furthermore, although the depletion of NK and NKT cells (by anti-NK1.1 Ab) 2 days after alpha-GalCer injection no longer decreased the survival rate of B16 tumor-injected mice, the depletion of CD8(+) T cells did. CD122(+)CD8(+) T cells in the liver increased after alpha-GalCer injection, and antitumor cytotoxicity of CD8(+) T cells in the liver gradually increased until day 6. These CD8(+) T cells exhibited an antitumor cytotoxicity toward not only B16 cells, but also EL-4 cells, and their cytotoxicity significantly decreased by the depletion of CD122(+)CD8(+) T cells. The critical, but bystander role of CD122(+)CD8(+) T cells was further confirmed by adoptive transfer experiments into CD8(+) T cell-depleted mice. Furthermore, it took 14 days after the first intrasplenic B16/alpha-GalCer injection for the mice to generate CD8(+) T cells that can reject s.c. rechallenged B16 cells. These findings suggest that alpha-GalCer activates bystander antitumor CD122(+)CD8(+) T cells following NK cells and further induces an adaptive antitumor immunity due to tumor-specific memory CD8(+) CTLs.
Collapse
Affiliation(s)
- Ryusuke Nakagawa
- Department of Cell Regulation, Kagawa Medical University, Kagawa, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Ortiz-Suárez A, Miller RA. Antigen-independent expansion of CD28hi CD8 cells from aged mice: cytokine requirements and signal transduction pathways. J Gerontol A Biol Sci Med Sci 2003; 58:B1063-73. [PMID: 14684702 DOI: 10.1093/gerona/58.12.b1063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Memory CD8+ T cells from old mice can proliferate in nonirradiated recipients. Transfer of labeled cells from aged donors into young recipients showed that proliferation of aged donor CD8 cells requires host cells that can both respond to interferon-gamma and produce interleukin-15. Reisolation of transferred CD8 cells from host mice showed that LAT (linker for activated T cells) translocation to the immunological synapse, and translocation of NF (nuclear factor)-kappaB to the nucleus were diminished in recovered CD8 T cells from old donors, whether they had divided in vivo or not. Cells able to proliferate in vivo could be isolated based on their unusually high levels of CD28 expression, but were found not to differ from other aged CD8 cells in their low levels of LAT and protein kinase C-theta (PKC-theta) translocation to the immunological synapse. Thus in vivo proliferation of CD28hi CD8 cells from aged mice cannot be attributed to retention of T-cell receptor signaling.
Collapse
Affiliation(s)
- Anavelys Ortiz-Suárez
- Cellular and Molecular Biology Graduate Program, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | | |
Collapse
|
33
|
Jiang J, Lau LL, Shen H. Selective Depletion of Nonspecific T Cells During the Early Stage of Immune Responses to Infection. THE JOURNAL OF IMMUNOLOGY 2003; 171:4352-8. [PMID: 14530360 DOI: 10.4049/jimmunol.171.8.4352] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Transient T cell depletion occurs before the development of an effective immune response to infection. In this study we show that most T cells, regardless of specificity, are induced to express early activation markers soon after infection with Listeria monocytogenes or lymphocytic choriomeningitis virus. Ag-specific T cells are further activated to display late activation markers and undergo extensive proliferation. As Ag-specific T cells begin to expand, nonspecific T cells are depleted en masse and exhibit no sign of further activation or proliferation before their depletion. This selective depletion of nonspecific T cells is due to in situ death via apoptosis, as visualized by confocal microscopy. Thus, early activation and subsequent depletion of nonspecific T cells are integral parts of the immune response to proinflammatory infections. These results have important implications for our understanding of early events in the development of a robust T cell response.
Collapse
Affiliation(s)
- Jiu Jiang
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6076, USA
| | | | | |
Collapse
|
34
|
Singh P, Tripathy DN. Fowlpox virus infection causes a lymphoproliferative response in chickens. Viral Immunol 2003; 16:223-7. [PMID: 12828873 DOI: 10.1089/088282403322017956] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
While attenuated fowlpox virus (FPV) strains are widely used for vaccination of chickens and turkeys for prevention of fowlpox, recombinant FPV expressing various foreign genes have been evaluated for their ability to offer protection against various diseases in poultry as well as mammals. Little is known regarding the cell-mediated immune responses to FPV infection. In this study, immune response in chickens infected with a virulent and a vaccine strain of FPV were compared by a lymphoproliferation assay. Interestingly, a lymphoproliferative response was seen during 2-4 weeks post-infection irrespective of the FPV strain used in this study. Analyses of the buffy coat cultures with (35)S-methionine pulse labeling revealed an elevated protein of approximately 48-50 kDa in the culture supernatants. Furthermore, those supernatants could stimulate naive, non-adherent cells of the buffy coat cultures, in a dose dependant manner, suggestive of stimulatory cytokines. FPV, a complex virus presumably stimulates a variety of cytokines in vivo causing a proliferative cellular response. Knowledge of those cytokines or a better understanding of the proliferative responses is pivotal in evaluation of FPV vaccines and in the design of FPV-based recombinant vaccines.
Collapse
Affiliation(s)
- Pratik Singh
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037, USA.
| | | |
Collapse
|
35
|
Cham CM, Xu H, O'Keefe JP, Rivas FV, Zagouras P, Gajewski TF. Gene array and protein expression profiles suggest post-transcriptional regulation during CD8+ T cell differentiation. J Biol Chem 2003; 278:17044-52. [PMID: 12582156 DOI: 10.1074/jbc.m212741200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Peripheral CD8(+) T cells circulate in a quiescent naive state until they are primed by specific antigen and differentiate into effector cells. In the effector state, CD8(+) T cells acquire cytolytic activity and produce increased levels of cytokines such as interferon-gamma. They also exhibit increased T cell receptor sensitivity, decreased CD28 dependence, and become inhibitable by CTLA-4 and other negative regulatory pathways. We hypothesized that one mechanism by which these two states are regulated is via differential expression of specific genes. To this end, basal gene expression profiles of naive and effector 2C TCR transgenic x RAG2(-/-) CD8(+) T cells were analyzed using Affymetrix arrays representing 11,000 genes. Of the 177 differentially expressed known genes, 68 were expressed at higher levels in effector cells, but 109 were more abundant in naive cells, supporting the notion that the naive state is not passive. Expression of genes related to metabolism, actin cytoskeletal dynamics, and effector function increased with priming, whereas expression of putative anti-proliferative genes decreased. Semiquantitative reverse transcription-PCR was utilized as a secondary validation for selected transcripts, and Western blot analysis was used to examine protein expression for molecules of interest. Surprisingly, for 24 genes examined, 12 showed discordant protein versus mRNA expression. In summary, our study indicates that: 1) not only does the expression of some genes in naive CD8(+) T cells become up-regulated upon priming, but the expression of other genes is down-regulated as well and 2) the complexities of T cell differentiation include regulation at the post-transcriptional level.
Collapse
Affiliation(s)
- Candace M Cham
- Committee on Cancer Biology, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | |
Collapse
|
36
|
Walker EB, Disis MLN. Monitoring immune responses in cancer patients receiving tumor vaccines. Int Rev Immunol 2003; 22:283-319. [PMID: 12745643 DOI: 10.1080/08830180305226] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Clinical evaluation of therapeutic tumor vaccines has resulted in examination and comparison of the types of immune function assays required to monitor tumor antigen-stimulated T cell effector function in immunized patients. Three of the most commonly used assays include ELISPOT, tetramer assay, and cytokine flow cytometry (CFC). Discussed are the method and principles for each assay and an assessment of important methodological, reagent, and data acquisition issues that are relevant for the accurate and effective use of the assays. The sensitivity and utility of the assays and present arguments advocating their integrated use in future immunomonitoring studies are also discussed.
Collapse
Affiliation(s)
- Edwin B Walker
- Providence Portland Medical Center, Earle A Chiles Research Institute, Robert W Franz Cancer Research Center, Portland, Oregon 97213, USA.
| | | |
Collapse
|
37
|
Sprent J, Judge AD, Zhang X. Cytokines and memory-phenotype CD8+ cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 512:147-53. [PMID: 12405199 DOI: 10.1007/978-1-4615-0757-4_20] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Jonathan Sprent
- Jonathan Sprent, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
38
|
Abstract
Memory-phenotype (CD44(hi)) T cells are presumed to represent the long-lived progeny of T cells responding to various environmental antigens. For CD8+ T cells, the background rate of proliferation (turnover) of memory-phenotype cells is increased following exposure to infectious agents. This increase in turnover is controlled by interferons (IFN-I and IFN-gamma) and is mediated by IL-15. Unlike IFNs, IL-15 is directly stimulatory for CD44(hi) CD8+ cells. In addition to controlling proliferation of these cells, IL-15 may also play a vital role in keeping CD44(hi) CD8+ cells alive.
Collapse
Affiliation(s)
- Jonathan Sprent
- Department of Immunology, IMM4, The Scripps Research Institute, 10550 N. Torrey Pine Road, La Jolla, CA 92037, USA.
| |
Collapse
|
39
|
Judge AD, Zhang X, Fujii H, Surh CD, Sprent J. Interleukin 15 controls both proliferation and survival of a subset of memory-phenotype CD8(+) T cells. J Exp Med 2002; 196:935-46. [PMID: 12370255 PMCID: PMC2194030 DOI: 10.1084/jem.20020772] [Citation(s) in RCA: 271] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Previous work has shown that memory-phenotype CD44(hi) CD8(+) cells are controlled by a cytokine, interleukin (IL)-15. However, the dependency of CD44(hi) CD8(+) cells on IL-15 is partial rather than complete. Here, evidence is presented that CD44(hi) CD8(+) cells comprise a mixed population of IL-15-dependent and IL-15-independent cells. The major subset of CD122(hi) CD44(hi) CD8(+) cells is heavily dependent on IL-15 by three different parameters, namely (1) "bystander" proliferation induced via IFN-induced stimulation of the innate immune system, (2) normal "background" proliferation, and (3) T cell survival; IL-15 dependency is most extreme for the Ly49(+) subset of CD122(hi) CD44(hi) CD8(+) cells. In contrast to CD122(hi) cells, the CD122(lo) subset of CD44(hi) CD8(+) cells is IL-15 independent; likewise, being CD122(lo), CD44(hi) CD4(+) cells are IL-15 independent. Thus, subsets of memory-phenotype T cells differ radically in their sensitivity to IL-15.
Collapse
Affiliation(s)
- Adam D Judge
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
40
|
Abstract
Typical immune responses lead to prominent clonal expansion of antigen-specific T and B cells followed by differentiation into effector cells. Most effector cells die at the end of the immune response but some of these cells survive and form long-lived memory cells. The factors controlling the formation and survival of memory T cells are reviewed.
Collapse
Affiliation(s)
- Jonathan Sprent
- Department of Immunology, IMM4, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, USA.
| | | |
Collapse
|
41
|
Khan IA, Moretto M, Wei XQ, Williams M, Schwartzman JD, Liew FY. Treatment with soluble interleukin-15Ralpha exacerbates intracellular parasitic infection by blocking the development of memory CD8+ T cell response. J Exp Med 2002; 195:1463-70. [PMID: 12045244 PMCID: PMC2193543 DOI: 10.1084/jem.20011915] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Interferon (IFN)-gamma-producing CD8+ T cells are important for the successful resolution of the obligate intracellular parasite Toxoplasma gondii by preventing the reactivation or controlling a repeat infection. Previous reports from our laboratory have shown that exogenous interleukin (IL)-15 treatment augments the CD8+ T cell response against the parasite. However, the role of endogenous IL-15 in the proliferation of activated/memory CD8+ T cells during toxoplasma or any other infection is unknown. In this study, we treated T. gondii immune mice with soluble IL-15 receptor alpha (sIL-15Ralpha) to block the host endogenous IL-15. The treatment markedly reduced the ability of the immune animals to control a lethal infection. CD8+ T cell activities in the sIL-15Ralpha-administered mice were severely reduced as determined by IFN-gamma release and target cell lysis assays. The loss of CD8+ T cell immunity due to sIL-15Ralpha treatment was further demonstrated by adoptive transfer experiments. Naive recipients transferred with CD44(hi) activated/memory CD8+ T cells and treated with sIL-15Ralpha failed to resist a lethal T. gondii infection. Moreover, sIL-15Ralpha treatment of the recipients blocked the ability of donor CD44(hi) activated/memory CD8+ T cells to replicate in response to T. gondii challenge. To our knowledge, this is the first demonstration of the important role of host IL-15 in the development of antigen-specific memory CD8+ T cells against an intracellular infection.
Collapse
Affiliation(s)
- Imtiaz A Khan
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Science Center, New Orleans, LA 70112, USA.
| | | | | | | | | | | |
Collapse
|
42
|
Kaech SM, Wherry EJ, Ahmed R. Effector and memory T-cell differentiation: implications for vaccine development. Nat Rev Immunol 2002; 2:251-62. [PMID: 12001996 DOI: 10.1038/nri778] [Citation(s) in RCA: 1340] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recent work shows that after stimulation with antigen, CD4+ and CD8+ T cells embark on a programme of proliferation that is closely linked with the acquisition of effector functions and leads ultimately to memory-cell formation. Here, we discuss the signals required for commitment to this programme of development and the factors that might influence its progression. Models of the pathways of effector and memory T-cell differentiation are discussed, and we highlight the implications of this new understanding for the optimization of vaccine strategies.
Collapse
Affiliation(s)
- Susan M Kaech
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | |
Collapse
|
43
|
Abstract
Lichen planus is a disorder characterized by lesions of the skin and oral mucous membranes. Although many patients have involvement of both skin and oral mucosa at some stage during the progress of the disease, a larger group has oral involvement alone. It has been reported that oral lichen planus (OLP) affects one to two percent of the general population and has the potential for malignant transformation in some cases (1, 2). Like many chronic inflammatory skin diseases, it often persists for many years. Numerous disorders may be associated with OLP such as graft-vs.-host disease and Hepatitis C virus infection (3), however, it is unclear how such diverse influences elicit the disease and indeed whether they are identical to idiopathic OLP. Available evidence supports the view that OLP is a cell-mediated immunological response to an induced antigenic change in the mucosa (4-6). Studies of the immunopathogenesis of OLP aim to provide specific novel treatments as well as contributing to our understanding of other cell-mediated inflammatory diseases. In this paper, the interactions between mast cells and T cells are explored from the standpoint of immune regulation. From these data, a unifying hypothesis for the immunopathogenesis of OLP is then developed and presented.
Collapse
Affiliation(s)
- Z Z Zhao
- School of Dentistry, The University of Queensland, Brisbane, Australia
| | | | | | | |
Collapse
|
44
|
Abstract
Typical T cells are long-lived resting cells. Despite their quiescent appearance, there is increasing evidence that T cells are subjected to continuous stimulation through contact with various stimuli, notably by self peptide/MHC complexes and cytokines. These stimuli keep T cells alive and also cause intermittent entry into cell cycle.
Collapse
Affiliation(s)
- J Sprent
- Department of Immunology, IMM4, The Scripps Research Institute, La Jolla, California 92037, USA.
| |
Collapse
|
45
|
Marshall DR, Turner SJ, Belz GT, Wingo S, Andreansky S, Sangster MY, Riberdy JM, Liu T, Tan M, Doherty PC. Measuring the diaspora for virus-specific CD8+ T cells. Proc Natl Acad Sci U S A 2001; 98:6313-8. [PMID: 11344265 PMCID: PMC33465 DOI: 10.1073/pnas.101132698] [Citation(s) in RCA: 250] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2001] [Indexed: 11/18/2022] Open
Abstract
The CD8(+) T cell diaspora has been analyzed after secondary challenge with an influenza A virus that replicates only in the respiratory tract. Numbers of D(b)NP(366)- and D(b)PA(224)-specific CD8(+) T cells were measured by tetramer staining at the end of the recall response, then followed sequentially in the lung, lymph nodes, spleen, blood, and other organs. The extent of clonal expansion did not reflect the sizes of the preexisting memory T cell pools. Although the high-frequency CD8(+) tetramer(+) populations in the pneumonic lung and mediastinal lymph nodes fell rapidly from peak values, the "whole mouse" virus-specific CD8(+) T cell counts decreased only 2-fold over the 4 weeks after infection, then subsided at a fairly steady rate to reach a plateau at about 2 months. The largest numbers were found throughout in the spleen, then the bone marrow. The CD8(+)D(b)NP(366)+ and CD8(+)D(b)PA(224)+ sets remained significantly enlarged for at least 4 months, declining at equivalent rates while retaining the nucleoprotein > acid polymerase immunodominance hierarchy characteristic of the earlier antigen-driven phase. Lowest levels of the CD69 "activation marker" were detected consistently on virus-specific CD8(+) T cells in the blood, then the spleen. Those in the bone marrow and liver were intermediate, and CD69(hi) T cells were very prominent in the regional lymph nodes and the nasal-associated lymphoid tissue. Any population of "resting" CD8(+) memory T cells is thus phenotypically heterogeneous, widely dispersed, and subject to broad homeostatic and local environmental effects irrespective of epitope specificity or magnitude.
Collapse
Affiliation(s)
- D R Marshall
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Typical immune responses lead to the prominent clonal expansion of antigen-specific T cells followed by their differentiation into effector cells. Most effector cells die at the end of the immune response but some of the responding cells survive and form long-lived memory cells. The factors controlling the formation and survival of memory T cells are discussed. Recent evidence suggests that T memory cells arise from a subset of effector cells. The longevity of T memory cells may require continuous contact with cytokines, notably IL-15 for CD8(+) cells.
Collapse
Affiliation(s)
- J Sprent
- Department of Immunology, IMM4, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | |
Collapse
|