1
|
Machado Y, Rizotto LS, Entringer Jr. H, Ferreira HL, Rossi GAM, Srbek-Araujo AC. Occurrence of Adenovirus in Fecal Samples of Wild Felids ( Panthera onca and Leopardus pardalis) from Brazil: Predators as Dispersing Agents? Vet Sci 2024; 11:511. [PMID: 39453103 PMCID: PMC11512381 DOI: 10.3390/vetsci11100511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024] Open
Abstract
Wild felids are vital to maintaining the ecological balance in natural environments as they regulate prey populations at different levels of the food chain. Changes in the dynamics of predator populations can impact the entire biodiversity of an ecosystem. There are few reports of Adenovirus infections in these animals, and little is known about their epidemiology. Therefore, a deeper understanding of these viruses within a One Health framework is essential, given their importance to animal, human, and environmental health. This study aimed to detect Adenovirus DNA in fecal samples of wild felids from a remnant of the Atlantic Forest in southeastern Brazil, renowned for its high biodiversity. A total of 43 fecal samples, 11 from jaguar (Panthera onca) and 32 from ocelot (Leopardus pardalis), were collected. The samples were subjected to viral nucleic acid extraction and genetic material amplification through PCR, followed by nucleotide sequencing. All phylogenetic analyses were based on the amino acid sequences of the DNA polymerase and IV2a genes. Adenovirus DNA was detected in the feces of both species, with two samples of each feline testing positive. This study reports, for the first time, the occurrence of Adenovirus associated with feces of Panthera onca and Leopardus pardalis. All detected sequences were grouped within the Mastadenovirus genus. Based solely on phylogenetic distance criteria, the identified sequences could be classified as Mastadenovirus bosprimum and Mastadenovirus from the vampire bat Desmodus rotundus. We hypothesize that Adenoviruses were associated with the prey consumed, which may allow the felines to act as eventual viral dispersing agents in the environment, in addition to the risk of being infected. This study provides new information on the association of Adenoviruses with wild felids and their prey, and offers important insights into the ecological dynamics of these viruses in natural environments. It suggests that wild felines may play a crucial role in viral surveillance programs.
Collapse
Affiliation(s)
- Ygor Machado
- Programa de Pós-Graduação em Ciência Animal, Universidade Vila Velha, PPGCA-UVV, Vila Velha 29102-920, ES, Brazil; (Y.M.); (G.A.M.R.)
| | - Laís Santos Rizotto
- Programa de Pós-Graduação em Epidemiologia e Saúde Única, Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, FMVZ-USP, São Paulo 05508-270, SP, Brazil; (L.S.R.); (H.L.F.)
| | - Hilton Entringer Jr.
- Centro Para el Estudio de Sistemas Marinos, Centro Nacional Patagónico (CCT-CONICET), and Facultad de Ciencias Naturales y Ciencias de la Salud, Universidad Nacional de la Patagonia San Juan Bosco (UNPSJB), Puerto Madryn U9120ACD, Argentina;
| | - Helena Lage Ferreira
- Programa de Pós-Graduação em Epidemiologia e Saúde Única, Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, FMVZ-USP, São Paulo 05508-270, SP, Brazil; (L.S.R.); (H.L.F.)
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, FZEA-USP, Pirassununga 13635-000, SP, Brazil
| | - Gabriel Augusto Marques Rossi
- Programa de Pós-Graduação em Ciência Animal, Universidade Vila Velha, PPGCA-UVV, Vila Velha 29102-920, ES, Brazil; (Y.M.); (G.A.M.R.)
| | - Ana Carolina Srbek-Araujo
- Programa de Pós-Graduação em Ciência Animal, Universidade Vila Velha, PPGCA-UVV, Vila Velha 29102-920, ES, Brazil; (Y.M.); (G.A.M.R.)
| |
Collapse
|
2
|
Zhao W, Lu J, Yan H, Zhu J, Liu Y, Song X, Suo T, Miao L. Treatment of acute pharyngitis in rats with season tea decoctions from traditional Chinese medicine through a synergistic and subtle regulation of ARNTL and BHLHE40. JOURNAL OF ETHNOPHARMACOLOGY 2024; 337:118924. [PMID: 39389396 DOI: 10.1016/j.jep.2024.118924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/05/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE While the seasonal variations in the human immune function and many infectious diseases are well-known, to develop therapeutic strategies regarding such seasonality is quite challenging. However, some traditional medical practices have already taken the seasonality into account, such as the "Season Tea" (ST) decoctions investigated in the present study. AIM OF THE STUDY We present a study of the ST decoctions from traditional Chinese medicine, which include four formulae designed for the four seasons, aiming to investigate their pharmacological commonality and distinction. MATERIALS AND METHODS A rat model of acute pharyngitis was utilized for the pharmacological study, and the effects of the ST decoctions were evaluated through histology, biomedical assays, microarray analysis, real-time quantitative PCR and Western blot. RESULTS The experimental data show that all of the four ST formulae display good pharmaceutical effects on acute pharyngitis, and circadian rhythm appears to be a significant pathway for investigating their pharmacological commonality and distinction. Specifically, while all of the four ST decoctions can regulate the circadian-rhythm-related genes ARNTL and BHLHE40, the regulation is along different directions with the modification of the supplements and the substrates in each ST formula. CONCLUSION These results indicate the correlation between the acute pharyngitis and circadian rhythm, and illustrate the possibility of synergistically and subtly regulating ARNTL and BHLHE40, which is significant for relevant drug development.
Collapse
Affiliation(s)
- Wei Zhao
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine Tianjin, 301617, China
| | - Jia Lu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine Tianjin, 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Huimin Yan
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Junjie Zhu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine Tianjin, 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yang Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine Tianjin, 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xinbo Song
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine Tianjin, 301617, China; College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Tongchuan Suo
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine Tianjin, 301617, China; College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Chinese Medicine Modernization, Tianjin, 301617, China; Tianjin Key Laboratory of Intelligent and Green Pharmaceuticals for Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Lin Miao
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine Tianjin, 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Chinese Medicine Modernization, Tianjin, 301617, China.
| |
Collapse
|
3
|
Singh A, Singh R, Parganiha A, Tripathi MK. Annual rhythm in immune functions of blood leucocytes in an ophidian, Natrix piscator. Sci Rep 2024; 14:12157. [PMID: 38802537 PMCID: PMC11130258 DOI: 10.1038/s41598-024-63033-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024] Open
Abstract
Annual variations in animal's physiological functions are an essential strategy to deal with seasonal challenges which also vary according to the time of year. Information regarding annual adaptations in the immune-competence to cope with seasonal stressors in reptiles is scarce. The present research plan was designed to analyze the presence of circannual immune rhythms in defense responses of the leucocytes in an ophidian, Natrix piscator. Peripheral blood leucocytes were obtained, counted, and superoxide anion production, neutrophil phagocytosis, and nitrite release were tested to assess the innate immune functions. Peripheral blood lymphocytes were separated by centrifugation (utilizing density gradient) and the cell proliferation was measured. The Cosinor rhythmometry disclosed the presence of significant annual rhythms in the number of leucocytes, superoxide anion production, nitric oxide production, and proliferation of stimulated lymphocytes. The authors found that respiratory burst activity and proliferative responses of lymphocytes were crucial immune responses that showed the annual rhythm. It was summarized that the immune function of the N. piscator is a labile attribute that makes the animal competent to cope with the seasonal stressor by adjustment in the potency of response.
Collapse
Affiliation(s)
- Alka Singh
- Department of Zoology, Udai Pratap Autonomous College, Varanasi, Uttar Pradesh, 221002, India
| | - Ramesh Singh
- Department of Zoology, Udai Pratap Autonomous College, Varanasi, Uttar Pradesh, 221002, India
| | - Arti Parganiha
- School of Studies in Life Science, Pandit Ravishankar Shukla University, Raipur, Chhattisgarh, 492010, India
| | - Manish Kumar Tripathi
- Department of Zoology, School of Studies of Life Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, 495009, India.
- Department of Zoology, Udai Pratap Autonomous College, Varanasi, Uttar Pradesh, 221002, India.
| |
Collapse
|
4
|
Dunbar A, Drigo B, Djordjevic SP, Donner E, Hoye BJ. Impacts of coprophagic foraging behaviour on the avian gut microbiome. Biol Rev Camb Philos Soc 2024; 99:582-597. [PMID: 38062990 DOI: 10.1111/brv.13036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 03/06/2024]
Abstract
Avian gut microbial communities are complex and play a fundamental role in regulating biological functions within an individual. Although it is well established that diet can influence the structure and composition of the gut microbiota, foraging behaviour may also play a critical, yet unexplored role in shaping the composition, dynamics, and adaptive potential of avian gut microbiota. In this review, we examine the potential influence of coprophagic foraging behaviour on the establishment and adaptability of wild avian gut microbiomes. Coprophagy involves the ingestion of faeces, sourced from either self (autocoprophagy), conspecific animals (allocoprophagy), or heterospecific animals. Much like faecal transplant therapy, coprophagy may (i) support the establishment of the gut microbiota of young precocial species, (ii) directly and indirectly provide nutritional and energetic requirements, and (iii) represent a mechanism by which birds can rapidly adapt the microbiota to changing environments and diets. However, in certain contexts, coprophagy may also pose risks to wild birds, and their microbiomes, through increased exposure to chemical pollutants, pathogenic microbes, and antibiotic-resistant microbes, with deleterious effects on host health and performance. Given the potentially far-reaching consequences of coprophagy for avian microbiomes, and the dearth of literature directly investigating these links, we have developed a predictive framework for directing future research to understand better when and why wild birds engage in distinct types of coprophagy, and the consequences of this foraging behaviour. There is a need for comprehensive investigation into the influence of coprophagy on avian gut microbiotas and its effects on host health and performance throughout ontogeny and across a range of environmental perturbations. Future behavioural studies combined with metagenomic approaches are needed to provide insights into the function of this poorly understood behaviour.
Collapse
Affiliation(s)
- Alice Dunbar
- Future Industries Institute (FII), University of South Australia, Mawson Lakes Campus, GPO Box 2471 5095, Adelaide, South Australia, Australia
| | - Barbara Drigo
- Future Industries Institute (FII), University of South Australia, Mawson Lakes Campus, GPO Box 2471 5095, Adelaide, South Australia, Australia
- UniSA STEM, University of South Australia, GPO Box 2471, Adelaide, South Australia, 5001, Australia
| | - Steven P Djordjevic
- Australian Institute for Microbiology and Infection, University of Technology Sydney, PO Box 123, Ultimo, New South Wales, 2007, Australia
- Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, PO Box 123, Ultimo, New South Wales, 2007, Australia
| | - Erica Donner
- Future Industries Institute (FII), University of South Australia, Mawson Lakes Campus, GPO Box 2471 5095, Adelaide, South Australia, Australia
- Cooperative Research Centre for Solving Antimicrobial Resistance in Agribusiness, Food, and Environments (CRC SAAFE), University of South Australia, GPO Box 2471 5095, Adelaide, South Australia, Australia
| | - Bethany J Hoye
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| |
Collapse
|
5
|
Duerwachter MA, Lewis EL, French SS, Husak JF. Sex-specific effects of immune challenges on green anole lizard metabolism. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:264-271. [PMID: 38213098 DOI: 10.1002/jez.2779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/13/2024]
Abstract
Immune responses can increase survival, but they can also incur a variety of costs that may lead to phenotypic trade-offs. The nature of trade-offs between immune activity and other components of the phenotype can vary and depend on the type and magnitude of immune challenge, as well as the energetic costs of simultaneously expressing other traits. There may also be sex-specific differences in both immune activity and trade-offs, particularly with regard to energy expenditure that might differ between males and females during the breeding season. Females are generally expected to invest less in nonspecific immune responses compared to males due to differences in the allocation of resources to reproduction, which may lead to sex differences in the metabolic costs of immunity. We tested for sex-specific differences in metabolic costs of different types of immune challenges in Anolis carolinensis lizards, including lipopolysaccharide (LPS) injection and wounding. We also tested for differences in immune prioritization by measuring bacterial killing ability (BKA). We predicted males would show a greater increase in metabolism after immune challenges, with combined immune challenges eliciting the greatest response. Furthermore, we predicted that metabolic costs would result in decreased BKA. LPS injection increased the resting metabolic rate (RMR) of males but not females. Wounding did not affect RMR of either sex. However, there was an inverse relationship between BKA and wound healing in LPS-injected lizards, suggesting dynamic tradeoffs among metabolism and components of the immune system.
Collapse
Affiliation(s)
| | - Erin L Lewis
- Department of Biology, Utah State University, Logan, Utah, USA
| | | | - Jerry F Husak
- Department of Biology, University of St. Thomas, St. Paul, Minnesota, USA
| |
Collapse
|
6
|
Sandmeier FC. Quantification of Thermal Acclimation in Immune Functions in Ectothermic Animals. BIOLOGY 2024; 13:179. [PMID: 38534449 DOI: 10.3390/biology13030179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/07/2024] [Accepted: 03/07/2024] [Indexed: 03/28/2024]
Abstract
This short review focuses on current experimental designs to quantify immune acclimation in animals. Especially in the face of rapidly changing thermal regimes, thermal acclimation of immune function has the potential to impact host-pathogen relationships and the fitness of hosts. While much of the field of ecoimmunology has focused on vertebrates and insects, broad interest in how animals can acclimate to temperatures spans taxa. The literature shows a recent increase in thermal acclimation studies in the past six years. I categorized studies as focusing on (1) natural thermal variation in the environment (e.g., seasonal), (2) in vivo manipulation of animals in captive conditions, and (3) in vitro assays using biological samples taken from wild or captive animals. I detail the strengths and weaknesses of these approaches, with an emphasis on mechanisms of acclimation at different levels of organization (organismal and cellular). These two mechanisms are not mutually exclusive, and a greater combination of the three techniques listed above will increase our knowledge of the diversity of mechanisms used by animals to acclimate to changing thermal regimes. Finally, I suggest that functional assays of immune system cells (such as quantification of phagocytosis) are an accessible and non-taxa-specific way to tease apart the effects of animals upregulating quantities of immune effectors (cells) and changes in the function of immune effectors (cellular performance) due to structural changes in cells such as those of membranes and enzymes.
Collapse
|
7
|
Sueiro MC, Awruch CA, Somoza GM, Svagelj WS, Palacios MG. Links between reproduction and immunity in two sympatric wild marine fishes. Comp Biochem Physiol A Mol Integr Physiol 2024; 287:111538. [PMID: 37871889 DOI: 10.1016/j.cbpa.2023.111538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/18/2023] [Accepted: 10/18/2023] [Indexed: 10/25/2023]
Abstract
According to life-history theory, limited resources can result in trade-offs between costly physiological functions. Particularly, it can be expected that individuals present lower immune function, or an alternative immunological strategy, during their reproductive compared to their non-reproductive season. Here we investigate the link between reproduction and immunity in two sympatric marine fish species, the rockfish Sebastes oculatus and the sandperch Pinguipes brasilianus. The results showed lower values of total white blood cells and spleen index, but higher levels of natural antibodies (only in females) in reproductive rockfish compared to non-reproductive ones. On the other hand, reproductively active sandperch showed lower levels of natural antibodies and a higher neutrophil to lymphocyte ratio and spleen index (only in males), compared to non-reproductive ones. Also, negative correlations between reproductive and immune parameters were observed in female rockfish at the individual level, but not in sandperch. Our results are consistent with the presence of different immunological strategies in reproductive and non-reproductive periods, with patterns that appear to be species-specific. This specificity suggests that various aspects of immunity might respond differentially to resource limitation, which could be associated with the disparate life-history strategies of the studied species. Alternatively, though not exclusively, the observed patterns could be driven by abiotic factors that characterize the reproductive season of each species (i.e., winter for rockfish, summer for sandperch). Our study contributes to ecoimmunological knowledge on free-living fish and highlights that detection of trade-offs can depend on the combination of study species, season, sex, and specific immune components measured.
Collapse
Affiliation(s)
- María Cruz Sueiro
- Centro para el Estudio de Sistemas Marinos (CESIMAR), Centro Nacional Patagónico - Consejo Nacional de Investigaciones Científicas y Técnicas (CENPAT - CONICET), Puerto Madryn, Chubut, Argentina.
| | - Cynthia A Awruch
- Centro para el Estudio de Sistemas Marinos (CESIMAR), Centro Nacional Patagónico - Consejo Nacional de Investigaciones Científicas y Técnicas (CENPAT - CONICET), Puerto Madryn, Chubut, Argentina; School of Natural Sciences and Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Hobart, Tasmania, Australia. https://twitter.com/ca_awruch
| | - Gustavo M Somoza
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Buenos Aires, Argentina; Escuela de Bio y Nanotecnologías (UNSAM). Argentina
| | - Walter S Svagelj
- Instituto de Investigaciones Marinas y Costeras (UNMdP-CONICET), Mar del Plata, Buenos Aires, Argentina
| | - María G Palacios
- Centro para el Estudio de Sistemas Marinos (CESIMAR), Centro Nacional Patagónico - Consejo Nacional de Investigaciones Científicas y Técnicas (CENPAT - CONICET), Puerto Madryn, Chubut, Argentina
| |
Collapse
|
8
|
Chandra RK, Bhardwaj AK, Pati AK, Tripathi MK. Seasonal Immune Rhythms of head kidney and spleen cells in the freshwater Teleost, Channa punctatus. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2023; 5:100110. [PMID: 37456710 PMCID: PMC10344798 DOI: 10.1016/j.fsirep.2023.100110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/01/2023] [Accepted: 07/01/2023] [Indexed: 07/18/2023] Open
Abstract
Annual rhythms in immune function are the reflection of a crucial physiological strategy to deal with environmental stressors. The fish are pivotal animal models to study the annual rhythm and to understand the evolution of the vertebrate biological system. The current research was planned to assess the annual changes in the innate immune functions of immune cells in a teleost, Channa punctatus. Head kidney and splenic macrophage phagocytosis, superoxide generation, and nitrite release were evaluated to assess innate immunity. Cell-mediated immunity was measured through head kidney and splenic lymphocyte proliferation in presence of mitogens. The superoxide anion generation by the cells of head kidney and spleen was maximum in October. A bimodal pattern in nitrite production was observed with the first peak in November and the second in March. Cosinor analysis revealed a statistically significant annual rhythm in nitrite production. Similarly, phagocytosis and lymphocyte proliferation also showed statistically significant annual rhythms. It was concluded that animals maintain an optimum immune response in seasonally changing environments. Elevated immunity during certain times of the year might assist animals deal with seasonal environmental stressors. Further research may be focused upon measuring survival rate and reproductive success after season induced elevated immunity.
Collapse
Affiliation(s)
- Rakesh Kumar Chandra
- Department of Zoology, School of Life Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| | - Ajay Kumar Bhardwaj
- Department of Zoology, School of Life Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| | - Atanu Kumar Pati
- Executive Member, Odisha State Higher Education Council, Government of Odisha, Bhubaneswar 751 002, Odisha, India
- Former Professor of Bioscience and Dean - Life Sciences, School of Studies in Life Science, Pandit Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Manish Kumar Tripathi
- Department of Zoology, School of Life Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| |
Collapse
|
9
|
Palacios-Marquez JJ, Guevara-Fiore P. Parasitism in viviparous vertebrates: an overview. Parasitol Res 2023; 123:53. [PMID: 38100003 DOI: 10.1007/s00436-023-08083-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 12/01/2023] [Indexed: 12/18/2023]
Abstract
The reproductive mode of viviparity has independently evolved in various animal taxa. It refers to the condition in which the embryos or young develop inside the female's body during gestation, providing advantages such as protection, nutrition, and improved survival chances. However, parasites and diseases can be an evolutionary force that limit the host's resources, leading to physiological, morphological, and behavioral changes that impose additional costs on both the pregnant female and her offspring. This review integrates the primary literature published between 1980 and 2021 on the parasitism of viviparous hosts. We describe aspects such as reproductive investment in females, offspring sex ratios, lactation investment in mammals, alterations in birth intervals, current reproductive investment, variations between environments, immune system activity in response to immunological challenges, and other factors that can influence the interaction between viviparous females and parasites. Maintaining pregnancy incurs costs in managing the mother's resources and regulating the immune system's responses to the offspring, while simultaneously maintaining an adequate defense against parasites and pathogens. Parasites can significantly influence this reproductive mode: parasitized females adjust their investment in survival and reproduction based on their life history, environmental factors, and the diversity of encountered parasites.
Collapse
Affiliation(s)
- Juan J Palacios-Marquez
- Facultad de Ciencias Biológicas, Benemérita Universidad Autónoma de Puebla, Blvd. Valsequillo y Av. San Claudio, Edificio Bio-1, Ciudad Universitaria, Col. Jardines de San Manuel, 72580, Puebla, CP, Mexico
| | - Palestina Guevara-Fiore
- Facultad de Ciencias Biológicas, Benemérita Universidad Autónoma de Puebla, Blvd. Valsequillo y Av. San Claudio, Edificio Bio-1, Ciudad Universitaria, Col. Jardines de San Manuel, 72580, Puebla, CP, Mexico.
| |
Collapse
|
10
|
Villafranca N, Changsut I, Diaz de Villegas S, Womack H, Fuess LE. Characterization of trade-offs between immunity and reproduction in the coral species Astrangia poculata. PeerJ 2023; 11:e16586. [PMID: 38077420 PMCID: PMC10702360 DOI: 10.7717/peerj.16586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/14/2023] [Indexed: 12/18/2023] Open
Abstract
Background Living organisms face ubiquitous pathogenic threats and have consequently evolved immune systems to protect against potential invaders. However, many components of the immune system are physiologically costly to maintain and engage, often drawing resources away from other organismal processes such as growth and reproduction. Evidence from a diversity of systems has demonstrated that organisms use complex resource allocation mechanisms to manage competing needs and optimize fitness. However, understanding of resource allocation patterns is limited across taxa. Cnidarians, which include ecologically important organisms like hard corals, have been historically understudied in the context of resource allocations. Improving understanding of resource allocation-associated trade-offs in cnidarians is critical for understanding future ecological dynamics in the face of rapid environmental change. Methods Here, we characterize trade-offs between constitutive immunity and reproduction in the facultatively symbiotic coral Astrangia poculata. Male colonies underwent ex situ spawning and sperm density was quantified. We then examined the effects of variable symbiont density and energetic budget on physiological traits, including immune activity and reproductive investment. Furthermore, we tested for potential trade-offs between immune activity and reproductive investment. Results We found limited associations between energetic budget and immune metrics; melanin production was significantly positively associated with carbohydrate concentration. However, we failed to document any associations between immunity and reproductive output which would be indicative of trade-offs, possibly due to experimental limitations. Our results provide a preliminary framework for future studies investigating immune trade-offs in cnidarians.
Collapse
Affiliation(s)
- Natalie Villafranca
- Department of Biology, Texas State University, San Marcos, TX, United States
| | - Isabella Changsut
- Department of Biology, Texas State University, San Marcos, TX, United States
| | | | - Haley Womack
- Department of Biology, Texas State University, San Marcos, TX, United States
| | - Lauren E. Fuess
- Department of Biology, Texas State University, San Marcos, TX, United States
| |
Collapse
|
11
|
Ramírez-Otarola N, Maldonado K, Valdés-Ferranty F, Newsome SD, Sabat P. Seasonal changes in diet, immune function, and oxidative stress in three passerines inhabiting a Mediterranean climate. Oecologia 2023; 203:395-405. [PMID: 37950102 DOI: 10.1007/s00442-023-05474-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023]
Abstract
Oxidative status and immune function are energy-demanding traits closely linked to diet composition, particularly resource availability and nutritional value. In seasonal environments, nutrient availability and diet quality fluctuate, potentially influencing these traits. However, limited evidence exists regarding these dietary effects on immune function in seasonal environments. In this study, we employed stable isotope analysis to assess the impact of seasonal changes in niche width and trophic level (i.e., δ15N) on two immune variables (hemolysis and hemagglutination scores) and two oxidative status parameters (lipid peroxidation and total antioxidant capacity) in three passerine species: Zonotrichia capensis (omnivorous), Troglodytes aedon (insectivorous), and Spinus barbatus (granivorous). We found that hemolysis scores varied seasonally in Z. capensis, with higher values in winter compared to summer. Total antioxidant capacity (TAC) also increased during the winter in Z. capensis and S. barbatus. The isotopic niche width for Z. capensis and S. barbatus was smaller in winter than in summer, with the omnivorous species exhibiting a decrease in δ15N. Despite the seasonal shifts in ecological and physiological traits in Z. capensis, we identified no correlation between immune response and TAC with trophic level. In contrast, in the granivorous S. barbatus, the lower trophic level resulted in an increase in TAC without affecting immunity. Our findings revealed that dietary shifts do not uniformly impact oxidative status and immune function across bird species, highlighting species-specific responses to seasonal changes. This underscores the importance of integrating ecological and evolutionary perspectives when examining how diet shapes avian immunity and oxidative balance.
Collapse
Affiliation(s)
- Natalia Ramírez-Otarola
- Escuela de Medicina Veterinaria, Facultad de Medicina y Ciencias de la Salud, Universidad Mayor, Camino La Pirámide 5750, Huechuraba, Santiago, Chile.
| | - Karin Maldonado
- Departamento de Ciencias, Facultad de Artes Liberales, Universidad Adolfo Ibáñez, Santiago, Chile
| | - Fernanda Valdés-Ferranty
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Seth D Newsome
- Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | - Pablo Sabat
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
| |
Collapse
|
12
|
Fletcher LE, Martin LB, Downs CJ. Leukocyte Concentrations Are Isometric in Reptiles Unlike in Endotherms. Physiol Biochem Zool 2023; 96:405-417. [PMID: 38237194 DOI: 10.1086/727050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
AbstractHow do large and small reptiles defend against infections, given the consequences of body mass for physiology and disease transmission? Functionally equivalent mammalian and avian granulocytes increased disproportionately with body mass (i.e., scaled hypermetrically), such that large organisms had higher concentrations than expected by a prediction of proportional protection across sizes. However, as these scaling relationships were derived from endothermic animals, they do not necessarily inform the scaling of leukocyte concentration for ectothermic reptiles that have a different physiology and evolutionary history. Here, we asked whether and how lymphocyte and heterophil concentrations relate to body mass among more than 120 reptile species. We compared these relationships to those found in birds and mammals and to existing scaling frameworks (i.e., protecton, complexity, rate of metabolism, or safety factor hypotheses). Both lymphocyte and heterophil concentrations scaled almost isometrically among reptiles. In contrast, functionally equivalent granulocytes scaled hypermetrically and lymphocytes scaled isometrically in birds and mammals. Life history traits were also poor predictors of variation in reptilian heterophil and lymphocyte concentrations. Our results provide insight into differences in immune protection in birds and mammals relative to that in reptiles through a comparative lens. The shape of scaling relationships differs, which should be considered when modeling disease dynamics among these groups.
Collapse
|
13
|
Koller KK, Kernbach ME, Reese D, Unnasch TR, Martin LB. House Sparrows Vary Seasonally in Their Ability to Transmit West Nile Virus. Physiol Biochem Zool 2023; 96:332-341. [PMID: 37713719 DOI: 10.1086/725888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
AbstractSeasonality in infectious disease prevalence is predominantly attributed to changes in exogenous risk factors. For vectored pathogens, high abundance, activity, and/or diversity of vectors can exacerbate disease risk for hosts. Conversely, many host defenses, particularly immune responses, are seasonally variable. Seasonality in host defenses has been attributed, in part, to the proximate (i.e., metabolic) and ultimate (i.e., reproductive fitness) costs of defense. In this study, our goal was to discern whether any seasonality is observable in how a common avian host, the house sparrow (Passer domesticus), copes with a common zoonotic arbovirus, the West Nile virus (WNV), when hosts are studied under controlled conditions. We hypothesized that if host biorhythms play a role in vector-borne disease seasonality, birds would be most vulnerable to WNV when breeding and/or molting (i.e., when other costly physiological activities are underway) and thus most transmissive of WNV at these times of year (unless birds died from infection). Overall, the results only partly supported our hypothesis. Birds were most transmissive of WNV in fall (after their molt is complete and when WNV is most prevalent in the environment), but WNV resistance, WNV tolerance, and WNV-dependent mortality did not vary among seasons. These results collectively imply that natural arboviral cycles could be partially underpinned by endogenous physiological changes in hosts. However, other disease systems warrant study, as this result could be specific to the nonnative and highly commensal nature of the house sparrow or a consequence of the relative recency of the arrival of WNV to the United States.
Collapse
|
14
|
Cincotta AH. Brain Dopamine-Clock Interactions Regulate Cardiometabolic Physiology: Mechanisms of the Observed Cardioprotective Effects of Circadian-Timed Bromocriptine-QR Therapy in Type 2 Diabetes Subjects. Int J Mol Sci 2023; 24:13255. [PMID: 37686060 PMCID: PMC10487918 DOI: 10.3390/ijms241713255] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/19/2023] [Accepted: 07/27/2023] [Indexed: 09/10/2023] Open
Abstract
Despite enormous global efforts within clinical research and medical practice to reduce cardiovascular disease(s) (CVD), it still remains the leading cause of death worldwide. While genetic factors clearly contribute to CVD etiology, the preponderance of epidemiological data indicate that a major common denominator among diverse ethnic populations from around the world contributing to CVD is the composite of Western lifestyle cofactors, particularly Western diets (high saturated fat/simple sugar [particularly high fructose and sucrose and to a lesser extent glucose] diets), psychosocial stress, depression, and altered sleep/wake architecture. Such Western lifestyle cofactors are potent drivers for the increased risk of metabolic syndrome and its attendant downstream CVD. The central nervous system (CNS) evolved to respond to and anticipate changes in the external (and internal) environment to adapt survival mechanisms to perceived stresses (challenges to normal biological function), including the aforementioned Western lifestyle cofactors. Within the CNS of vertebrates in the wild, the biological clock circuitry surveils the environment and has evolved mechanisms for the induction of the obese, insulin-resistant state as a survival mechanism against an anticipated ensuing season of low/no food availability. The peripheral tissues utilize fat as an energy source under muscle insulin resistance, while increased hepatic insulin resistance more readily supplies glucose to the brain. This neural clock function also orchestrates the reversal of the obese, insulin-resistant condition when the low food availability season ends. The circadian neural network that produces these seasonal shifts in metabolism is also responsive to Western lifestyle stressors that drive the CNS clock into survival mode. A major component of this natural or Western lifestyle stressor-induced CNS clock neurophysiological shift potentiating the obese, insulin-resistant state is a diminution of the circadian peak of dopaminergic input activity to the pacemaker clock center, suprachiasmatic nucleus. Pharmacologically preventing this loss of circadian peak dopaminergic activity both prevents and reverses existing metabolic syndrome in a wide variety of animal models of the disorder, including high fat-fed animals. Clinically, across a variety of different study designs, circadian-timed bromocriptine-QR (quick release) (a unique formulation of micronized bromocriptine-a dopamine D2 receptor agonist) therapy of type 2 diabetes subjects improved hyperglycemia, hyperlipidemia, hypertension, immune sterile inflammation, and/or adverse cardiovascular event rate. The present review details the seminal circadian science investigations delineating important roles for CNS circadian peak dopaminergic activity in the regulation of peripheral fuel metabolism and cardiovascular biology and also summarizes the clinical study findings of bromocriptine-QR therapy on cardiometabolic outcomes in type 2 diabetes subjects.
Collapse
|
15
|
Jennifer T, Emily F, Neuman-Lee LA. Assessment of glucocorticoids, sex steroids, and innate immunity in wild red-eared slider turtles (Trachemys scripta elegans). Gen Comp Endocrinol 2023; 339:114288. [PMID: 37060930 DOI: 10.1016/j.ygcen.2023.114288] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 03/21/2023] [Accepted: 04/11/2023] [Indexed: 04/17/2023]
Abstract
When access to resources is limited, organisms must shift energy investment among physiological processes to survive, reproduce, and respond to unpredictable events. The shifting of these limited resources among processes may result in physiological tradeoffs, often mediated by glucocorticoids. We assessed relationships among the physiological processes of immunity, reproduction, and the stress response in wild adult red-eared slider turtles (Trachemys scripta elegans). Red-eared sliders exhibit a multi-clutching reproductive strategy that requires high energetic investment in reproduction at the beginning of the nesting season in females. Males mate in spring and undergo spermatogenesis and mating in late summer/early fall. We expected to observe tradeoffs when investment toward reproductive processes was particularly demanding. To test this, we subjected 123 individuals to a standardized acute stressor and collected blood to measure innate immunocompetence and circulating steroid hormone concentrations. Tradeoffs between female reproduction and immunocompetence occurred early in the nesting season. This high reproductive investment was evident by heightened circulating progesterone and reduced baseline innate immunity. Corticosterone (CORT) was also high during this period, indicating a role in facilitating allocation of energy. Tradeoffs were not as evident in males, though males upregulated innate immune function, baseline CORT, and testosterone prior to fall spermatogenesis and mating. Throughout the entire sampling period, both males and females increased CORT and immunocompetence following the acute standardized stressor. Taken together, we concluded that reproduction requires shifts in energy allocation in during the highest reproductive period for females but all individuals in this population remain able to respond to the standardized stressor even during increased reproductive investment. These findings reinforce the continuing evidence that physiological relationships are context-dependent and resource demands are dynamic across the reproductive season.
Collapse
Affiliation(s)
- Terry Jennifer
- Arkansas State University, PO Box 599, State University, Arkansas, 72467, USA.
| | - Field Emily
- Arkansas State University, PO Box 599, State University, Arkansas, 72467, USA; Mississippi Department of Wildlife, Fisheries, and Parks, Mississippi Museum of Natural Science, 2148 Riverside Drive Jackson, MS 39202
| | - Lorin A Neuman-Lee
- Arkansas State University, PO Box 599, State University, Arkansas, 72467, USA
| |
Collapse
|
16
|
Chen C, Zhou B, Lin J, Gong Q, Xu F, Li Z, Huang Y. Liver Transcriptome Analysis Reveals Energy Regulation and Functional Impairment of Onychostoma sima During Starvation. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:247-258. [PMID: 36790593 DOI: 10.1007/s10126-023-10201-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/03/2023] [Indexed: 05/06/2023]
Abstract
Releasing juvenile fish into resource-depleted waters is regarded as an effective way to restore fishery resources. However, during this stage, released fish are most vulnerable to long-term food deprivation due to environmental changes and low adaptability. Therefore, research regarding the energy regulation of fish under starvation stress is crucial to the optimization of release strategies. In this study, we performed a transcriptome analysis of the liver of Onychostoma sima subjected to starvation for 14 days. The results showed that, under long-term starvation, the liver regulated glucose homeostasis by activating the gluconeogenesis pathway. Meanwhile, the fatty acid metabolism pathway was activated to supply acetyl-coA to the TCA cycle, thus increasing mitochondrial ATP production and maintaining the balance of energy metabolism. Nevertheless, the activation of energy metabolism could not completely compensate for the role of exogenous nutrients, as evidenced by the downregulation of many genes involved in antioxidant defenses (e.g., cat, gpx3, mgst1, and mgst2) and immune response (e.g., c3, cd22, trnfrsf14, and a2ml). In summary, our data reveal the effects of long-term starvation on the energy metabolism and defensive regulation of starved juvenile fish, and these findings will provide important reference for the optimization of artificial release.
Collapse
Affiliation(s)
- Chunna Chen
- Fishery Institute of the Sichuan Academy of Agricultural Sciences, Sichuan, Chengdu, 611731, China
| | - Bo Zhou
- Fishery Institute of the Sichuan Academy of Agricultural Sciences, Sichuan, Chengdu, 611731, China
| | - Jue Lin
- Fishery Institute of the Sichuan Academy of Agricultural Sciences, Sichuan, Chengdu, 611731, China
| | - Quan Gong
- Fishery Institute of the Sichuan Academy of Agricultural Sciences, Sichuan, Chengdu, 611731, China
| | - Fei Xu
- Fishery Institute of the Sichuan Academy of Agricultural Sciences, Sichuan, Chengdu, 611731, China
| | - Zhengyi Li
- Fishery Institute of the Sichuan Academy of Agricultural Sciences, Sichuan, Chengdu, 611731, China
| | - Yingying Huang
- Fishery Institute of the Sichuan Academy of Agricultural Sciences, Sichuan, Chengdu, 611731, China.
| |
Collapse
|
17
|
Luisa Vissat L, Cain S, Toledo S, Spiegel O, Getz WM. Categorizing the geometry of animal diel movement patterns with examples from high-resolution barn owl tracking. MOVEMENT ECOLOGY 2023; 11:15. [PMID: 36945057 PMCID: PMC10029274 DOI: 10.1186/s40462-023-00367-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Movement is central to understanding the ecology of animals. The most robustly definable segments of an individual's lifetime track are its diel activity routines (DARs). This robustness is due to fixed start and end points set by a 24-h clock that depends on the individual's quotidian schedule. An analysis of day-to-day variation in the DARs of individuals, their comparisons among individuals, and the questions that can be asked, particularly in the context of lunar and annual cycles, depends on the relocation frequency and spatial accuracy of movement data. Here we present methods for categorizing the geometry of DARs for high frequency (seconds to minutes) movement data. METHODS Our method involves an initial categorization of DARs using data pooled across all individuals. We approached this categorization using a Ward clustering algorithm that employs four scalar "whole-path metrics" of trajectory geometry: 1. net displacement (distance between start and end points), 2. maximum displacement from start point, 3. maximum diameter, and 4. maximum width. We illustrate the general approach using reverse-GPS data obtained from 44 barn owls, Tyto alba, in north-eastern Israel. We conducted a principle components analysis (PCA) to obtain a factor, PC1, that essentially captures the scale of movement. We then used a generalized linear mixed model with PC1 as the dependent variable to assess the effects of age and sex on movement. RESULTS We clustered 6230 individual DARs into 7 categories representing different shapes and scale of the owls nightly routines. Five categories based on size and elongation were classified as closed (i.e. returning to the same roost), one as partially open (returning to a nearby roost) and one as fully open (leaving for another region). Our PCA revealed that the DAR scale factor, PC1, accounted for 86.5% of the existing variation. It also showed that PC2 captures the openness of the DAR and accounted for another 8.4% of the variation. We also constructed spatio-temporal distributions of DAR types for individuals and groups of individuals aggregated by age, sex, and seasonal quadrimester, as well as identify some idiosyncratic behavior of individuals within family groups in relation to location. Finally, we showed in two ways that DARs were significantly larger in young than adults and in males than females. CONCLUSION Our study offers a new method for using high-frequency movement data to classify animal diel movement routines. Insights into the types and distributions of the geometric shape and size of DARs in populations may well prove to be more invaluable for predicting the space-use response of individuals and populations to climate and land-use changes than other currently used movement track methods of analysis.
Collapse
Affiliation(s)
- Ludovica Luisa Vissat
- Department Environmental Science, Policy and Managemente, University of California, Berkeley, Berkeley, CA 94720 USA
| | - Shlomo Cain
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978 Israel
| | - Sivan Toledo
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
| | - Orr Spiegel
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978 Israel
| | - Wayne M. Getz
- Department Environmental Science, Policy and Managemente, University of California, Berkeley, Berkeley, CA 94720 USA
- School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Durban, KwaZulu-Natal 4000 South Africa
| |
Collapse
|
18
|
Warburton EM, Budischak SA, Jolles AE, Ezenwa VO. Within-host and external environments differentially shape β-diversity across parasite life stages. J Anim Ecol 2023; 92:665-676. [PMID: 36567629 DOI: 10.1111/1365-2656.13877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 12/09/2022] [Indexed: 12/27/2022]
Abstract
Uncovering drivers of community assembly is a key aspect of learning how biological communities function. Drivers of community similarity can be especially useful in this task as they affect assemblage-level changes that lead to differences in species diversity between habitats. Concepts of β-diversity originally developed for use in free-living communities have been widely applied to parasite communities to gain insight into how infection risk changes with local conditions by comparing parasite communities across abiotic and biotic gradients. Factors shaping β-diversity in communities of immature parasites, such as larvae, are largely unknown. This is a key knowledge gap as larvae are frequently the infective life-stage and understanding variation in these larval communities is thus key for disease prevention. Our goal was to uncover links between β-diversity of parasite communities at different life stages; therefore, we used gastrointestinal nematodes infecting African buffalo in Kruger National Park, South Africa, to investigate within-host and extra-host drivers of adult and larval parasite community similarity. We employed a cross-sectional approach using PERMANOVA that examined each worm community at a single time point to assess independent drivers of β-diversity in larvae and adults as well as a longitudinal approach with path analysis where adult and larval communities from the same host were compared to better link drivers of β-diversity between these two life stages. Using the cross-sectional approach, we generally found that intrinsic, within-host traits had significant effects on β-diversity of adult nematode communities, while extrinsic, extra-host variables had significant effects on β-diversity of larval nematode communities. However, the longitudinal approach provided evidence that intrinsic, within-host factors affected the larval community indirectly via the adult community. Our results provide key data for the comparison of community-level processes where adult and immature stages inhabit vastly different habitats (i.e. within-host vs. abiotic environment). In the context of parasitism, this helps elucidate host infection risk via larval stages and the drivers that shape persistence of adult parasite assemblages, both of which are useful for predicting and preventing infectious disease.
Collapse
Affiliation(s)
- Elizabeth M Warburton
- Center for the Ecology of Infectious Diseases, Odum School of Ecology, University of Georgia, Athens, Georgia, USA
| | - Sarah A Budischak
- W.M. Keck Department of Science, Claremont McKenna College, Claremont, California, USA
| | - Anna E Jolles
- College of Veterinary Medicine and Department of Integrative Biology, Oregon State University, Corvallis, Oregon, USA
| | - Vanessa O Ezenwa
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
19
|
Lu G, Zhang X, Li X, Zhang S. Immunity and Growth Plasticity of Asian Short-Toed Lark Nestlings in Response to Changes in Food Conditions: Can It Buffer the Challenge of Climate Change-Induced Trophic Mismatch? Animals (Basel) 2023; 13:ani13050860. [PMID: 36899717 PMCID: PMC10000144 DOI: 10.3390/ani13050860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 03/03/2023] Open
Abstract
Passerine nestlings frequently suffer from sub-optimal food conditions due to climate change-induced trophic mismatch between the nestlings and their optimal food resources. The ability of nestlings to buffer this challenge is less well understood. We hypothesized that poor food conditions might induce a higher immune response and lower growth rate of nestlings, and such physiological plasticity is conducive to nestling survival. To test this, we examined how food (grasshopper nymphs) abundance affects the expression of interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), interleukin-1 β (IL-1β) genes, plasma IGF-1 levels, body mass, and fledging rates in wild Asian short-toed lark (Alaudala cheleensis) nestlings. Linear mixed models revealed that nymph biomass significantly influenced the expression of IFN-γ, TNF-α, and IL-1β genes, and the level of plasma IGF-1. The expressions of IFN-γ, TNF-α, and IL-1β genes were negatively correlated with nymph biomass and plasma IGF-1 level. Plasma IGF-1 level, nestling body mass growth rate, was positively correlated with nymph biomass. Despite a positive correlation between the nestling fledge rate and nymph biomass, more than 60% of nestlings fledged when nymph biomass was at the lowest level. These results suggest that immunity and growth plasticity of nestlings may be an adaptation for birds to buffer the negative effects of trophic mismatch.
Collapse
Affiliation(s)
- Guang Lu
- Key Laboratory of Ecology and Environment in Minority Areas (National Ethnic Affairs Commission), Minzu University of China, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Xinjie Zhang
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Xinyu Li
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Shuping Zhang
- Key Laboratory of Ecology and Environment in Minority Areas (National Ethnic Affairs Commission), Minzu University of China, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Correspondence:
| |
Collapse
|
20
|
Hicks O, Kato A, Wisniewska DM, Marciau C, Angelier F, Ropert-Coudert Y, Hegemann A. Holding time has limited impact on constitutive innate immune function in a long-lived Antarctic seabird, the Adélie penguin: implications for field studies. Biol Open 2023; 12:286793. [PMID: 36716101 PMCID: PMC9990909 DOI: 10.1242/bio.059512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 01/05/2023] [Indexed: 01/31/2023] Open
Abstract
There is great interest in measuring immune function in wild animals. Yet, field conditions often have methodological challenges related to handling stress, which can alter physiology. Despite general consensus that immune function is influenced by handling stress, previous studies have provided equivocal results. Furthermore, few studies have focused on long-lived species, which may have different stress-immune trade-offs compared to short-lived species that have primarily been tested. Here, we investigate whether capture and handling duration impacts innate immune function in a long-lived seabird, the Adélie penguin (Pygoscelis adeliae). We found no evidence for changes in three commonly used parameters of innate immune function upon holding time of up to 2 h, suggesting that immune function in this species is more robust against handling than in other species. This opens up exciting possibilities for measuring immune function in species with similar life-histories even if samples cannot be taken directly after capture.
Collapse
Affiliation(s)
- Olivia Hicks
- Centre d'Etudes Biologiques de Chizé, CNRS, La Rochelle Université, UMR 7372, Villiers-en-Bois, France.,Department of Biology, Lund University, Ecology Building, 223 62 Lund, Sweden
| | - Akiko Kato
- Centre d'Etudes Biologiques de Chizé, CNRS, La Rochelle Université, UMR 7372, Villiers-en-Bois, France
| | | | - Coline Marciau
- Centre d'Etudes Biologiques de Chizé, CNRS, La Rochelle Université, UMR 7372, Villiers-en-Bois, France
| | - Frédéric Angelier
- Centre d'Etudes Biologiques de Chizé, CNRS, La Rochelle Université, UMR 7372, Villiers-en-Bois, France
| | - Yan Ropert-Coudert
- Centre d'Etudes Biologiques de Chizé, CNRS, La Rochelle Université, UMR 7372, Villiers-en-Bois, France
| | - Arne Hegemann
- Department of Biology, University of Southern Denmark, 5230 Odense, Denmark
| |
Collapse
|
21
|
Kásler A, Holly D, Herczeg D, Ujszegi J, Hettyey A. Chytridiomycosis and climate change: exposure to
Batrachochytrium dendrobatidis
and mild winter conditions do not increase mortality in juvenile agile frogs during hibernation. Anim Conserv 2023. [DOI: 10.1111/acv.12851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- A. Kásler
- Department of Evolutionary Ecology Centre for Agricultural Research, Plant Protection Institute, Eötvös Loránd Research Network Budapest Hungary
- Doctoral School of Biology Institute of Biology, ELTE Eötvös Loránd University Budapest Hungary
| | - D. Holly
- Department of Evolutionary Ecology Centre for Agricultural Research, Plant Protection Institute, Eötvös Loránd Research Network Budapest Hungary
- Doctoral School of Biology Institute of Biology, ELTE Eötvös Loránd University Budapest Hungary
| | - D. Herczeg
- Department of Evolutionary Ecology Centre for Agricultural Research, Plant Protection Institute, Eötvös Loránd Research Network Budapest Hungary
- ELKH‐ELTE‐MTM Integrative Ecology Research Group Budapest Hungary
| | - J. Ujszegi
- Department of Evolutionary Ecology Centre for Agricultural Research, Plant Protection Institute, Eötvös Loránd Research Network Budapest Hungary
- Department of Systematic Zoology and Ecology ELTE Eötvös Loránd University Budapest Hungary
| | - A. Hettyey
- Department of Evolutionary Ecology Centre for Agricultural Research, Plant Protection Institute, Eötvös Loránd Research Network Budapest Hungary
- Department of Systematic Zoology and Ecology ELTE Eötvös Loránd University Budapest Hungary
| |
Collapse
|
22
|
Roosta Z, Falahatkar B, Sajjadi M, Paknejad H, Akbarzadeh A, Kestemont P. Sex and reproductive development impact skin mucosal epithelium immunity, antimicrobial capacity, and up-regulation of immune-related gene of goldfish (Carassius auratus). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 138:104494. [PMID: 35940383 DOI: 10.1016/j.dci.2022.104494] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
This study evaluated the epidermis mucosal capacity of goldfish (Carassius auratus) during different stages of reproductive development in both females and males. In this regard, the activity of mucolytic immune enzymes, i.e., lysozyme, complement and peroxidase, as well as the activity of alkaline phosphatase (ALP) were evaluated. There were five stages for females i.e., immature (f1), cortical alveoli (f2), early and late-vitellogenesis (vtg) (f3 and f4) and ripe (f5); as well as two stages for males spermatogenesis (m1) and spermiation (m2). Some stages were also examined for the mucosal antimicrobial activity against specific pathogens. The results showed that the mucosal lysozyme activity increased significantly during vitellogenesis (P < 0.05), but no lysozyme activity was detected in plasma. On the contrary, the complement activity was only observed in female plasma, and it was significantly higher at f3 compared to the other developmental stages. Both the plasma and mucosal ALP and peroxidase activities showed a significant increase by female reproductive development with the highest amounts at f4. Contrary to the female, no significant changes were observed in plasma and mucosal immune agents and biochemistry of the male. The f5-staged goldfish showed the highest antimicrobial activities against Gram-positive bacteria, i.e., Streptococcus faecium, Staphylococcus aureus and Micrococcus luteus (P < 0.05). Our results also represented the up-regulation of lysozyme (c-lys) gene expression by effects of female maturational development in ovary, liver and skin, while male goldfish showed no significant changes in c-lys expression. Moreover, there were positive correlations between c-lys expression, mucosal lysozyme activity and calcium levels in females (P < 0.01). Overall, our findings revealed that vtg process improves mucosal innate immunity that leads to activate antimicrobial components at spawning season.
Collapse
Affiliation(s)
- Zahra Roosta
- Fisheries Department, Faculty of Natural Resources, University of Guilan, Sowmeh Sara, Guilan, Iran
| | - Bahram Falahatkar
- Fisheries Department, Faculty of Natural Resources, University of Guilan, Sowmeh Sara, Guilan, Iran; Department of Marine Sciences, The Caspian Sea Basin Research Center, University of Guilan, Rasht, Guilan, Iran.
| | - Mirmasoud Sajjadi
- Fisheries Department, Faculty of Natural Resources, University of Guilan, Sowmeh Sara, Guilan, Iran
| | - Hamed Paknejad
- Department of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Arash Akbarzadeh
- Department of Fisheries, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran; Fisheries and Oceans Canada, Pacific Biological Station, 3190 Hammond Bay Road, Nanaimo, British Columbia, V9T 6N7, Canada
| | - Patrick Kestemont
- Institute of Life, Earth and Environment (ILEE), Research Unit in Environmental and Evolutionary Biology, University of Namur, Namur, Belgium
| |
Collapse
|
23
|
Filip-Hutsch K, Laskowski Z, Myczka AW, Czopowicz M, Moskwa B, Demiaszkiewicz AW. The occurrence and molecular identification of Thelazia spp. in European bison (Bison bonasus) in the Bieszczady Mountains. Sci Rep 2022; 12:22508. [PMID: 36581768 PMCID: PMC9800370 DOI: 10.1038/s41598-022-27191-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 12/28/2022] [Indexed: 12/30/2022] Open
Abstract
Infection with Thelazia nematodes results in eye disease in wild and domestic animals. The aim of the present study was to describe the occurrence of Thelazia nematodes in European bison, and to subject the isolated parasites to molecular identification and phylogenetical analysis. The eyeballs of 18 European bison from the Bieszczady Mountains, culled due to dysfunctional vision, were collected for study. The conjunctival sacs, tear ducts, corneal surface and nictitating membrane were rinsed with a saline solution. Any obtained nematodes were isolated under a stereoscopic microscope, and then identified as T. gulosa or T. skrjabini by molecular analysis of partial cox1 sequences. The prevalence of infection with Thelazia spp. was found to be 61%, with a 95% confidence interval (CI 95%) of 39-80%. Thelazia skrjabini was isolated from 56% (CI 95% 34-75%) of examined animals; T. gulosa was significantly less common (p = 0.038) with the prevalence of infection reaching 22% (CI 95% 9-45%). Three European bison were cross-infected with both T. gulosa and T. skrjabini. Phylogenetic analysis found the obtained sequences to be similar to those of Thelazia species from domestic ungulates in Europe. Infection intensity ranged from 1 to 16 nematodes per individual (median of three nematodes), and was significantly higher in females (6 nematodes) than in males (1 nematode; p = 0.019). A tendency for seasonal occurrence of nematodes in European bison was also observed. Our study provides further information regarding the patterns of Thelazia transmission in European bison in Poland.
Collapse
Affiliation(s)
- Katarzyna Filip-Hutsch
- grid.13276.310000 0001 1955 7966Department of Food Hygiene and Public Health Protection, Institute of Veterinary Medicine, Warsaw University of Life Sciences–SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Zdzisław Laskowski
- grid.413454.30000 0001 1958 0162Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warsaw, Poland
| | - Anna W. Myczka
- grid.413454.30000 0001 1958 0162Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warsaw, Poland
| | - Michał Czopowicz
- grid.13276.310000 0001 1955 7966Division of Veterinary Epidemiology and Economics, Institute of Veterinary Medicine, Warsaw University of Life Sciences–SGGW, Nowoursynowska 159C, 02-776 Warsaw, Poland
| | - Bożena Moskwa
- grid.413454.30000 0001 1958 0162Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warsaw, Poland
| | - Aleksander W. Demiaszkiewicz
- grid.413454.30000 0001 1958 0162Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warsaw, Poland
| |
Collapse
|
24
|
Guo Z, Guo L, Qin J, Ye F, Sun D, Wu Q, Wang S, Crickmore N, Zhou X, Bravo A, Soberón M, Zhang Y. A single transcription factor facilitates an insect host combating Bacillus thuringiensis infection while maintaining fitness. Nat Commun 2022; 13:6024. [PMID: 36224245 PMCID: PMC9555685 DOI: 10.1038/s41467-022-33706-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/29/2022] [Indexed: 11/09/2022] Open
Abstract
Maintaining fitness during pathogen infection is vital for host survival as an excessive response can be as detrimental as the infection itself. Fitness costs are frequently associated with insect hosts countering the toxic effect of the entomopathogenic bacterium Bacillus thuringiensis (Bt), which delay the evolution of resistance to this pathogen. The insect pest Plutella xylostella has evolved a mechanism to resist Bt toxins without incurring significant fitness costs. Here, we reveal that non-phosphorylated and phosphorylated forms of a MAPK-modulated transcription factor fushi tarazu factor 1 (FTZ-F1) can respectively orchestrate down-regulation of Bt Cry1Ac toxin receptors and up-regulation of non-receptor paralogs via two distinct binding sites, thereby presenting Bt toxin resistance without growth penalty. Our findings reveal how host organisms can co-opt a master molecular switch to overcome pathogen invasion with low cost, and contribute to understanding the underlying mechanism of growth-defense tradeoffs during host-pathogen interactions in P. xylostella.
Collapse
Affiliation(s)
- Zhaojiang Guo
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China. .,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| | - Le Guo
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jianying Qin
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Fan Ye
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Dan Sun
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qingjun Wu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shaoli Wang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Neil Crickmore
- School of Life Sciences, University of Sussex, Brighton, BN1 9QE, UK
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY, 40546-0091, USA
| | - Alejandra Bravo
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, 62250, México
| | - Mario Soberón
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, 62250, México
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
25
|
Gough WT, Cade DE, Czapanskiy MF, Potvin J, Fish FE, Kahane-Rapport SR, Savoca MS, Bierlich KC, Johnston DW, Friedlaender AS, Szabo A, Bejder L, Goldbogen JA. Fast and Furious: Energetic Tradeoffs and Scaling of High-Speed Foraging in Rorqual Whales. Integr Org Biol 2022; 4:obac038. [PMID: 36127894 PMCID: PMC9475666 DOI: 10.1093/iob/obac038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/30/2022] [Accepted: 08/21/2022] [Indexed: 11/20/2022] Open
Abstract
Although gigantic body size and obligate filter feeding mechanisms have evolved in multiple vertebrate lineages (mammals and fishes), intermittent ram (lunge) filter feeding is unique to a specific family of baleen whales: rorquals. Lunge feeding is a high cost, high benefit feeding mechanism that requires the integration of unsteady locomotion (i.e., accelerations and maneuvers); the impact of scale on the biomechanics and energetics of this foraging mode continues to be the subject of intense study. The goal of our investigation was to use a combination of multi-sensor tags paired with UAS footage to determine the impact of morphometrics such as body size on kinematic lunging parameters such as fluking timing, maximum lunging speed, and deceleration during the engulfment period for a range of species from minke to blue whales. Our results show that, in the case of krill-feeding lunges and regardless of size, animals exhibit a skewed gradient between powered and fully unpowered engulfment, with fluking generally ending at the point of both the maximum lunging speed and mouth opening. In all cases, the small amounts of propulsive thrust generated by the tail were unable to overcome the high drag forces experienced during engulfment. Assuming this thrust to be minimal, we predicted the minimum speed of lunging across scale. To minimize the energetic cost of lunge feeding, hydrodynamic theory predicts slower lunge feeding speeds regardless of body size, with a lower boundary set by the ability of the prey to avoid capture. We used empirical data to test this theory and instead found that maximum foraging speeds remain constant and high (∼4 m s–1) across body size, even as higher speeds result in lower foraging efficiency. Regardless, we found an increasing relationship between body size and this foraging efficiency, estimated as the ratio of energetic gain from prey to energetic cost. This trend held across timescales ranging from a single lunge to a single day and suggests that larger whales are capturing more prey—and more energy—at a lower cost.
Collapse
Affiliation(s)
- William T Gough
- Hopkins Marine Station, Stanford University , Pacific Grove, CA 94305, USA
| | - David E Cade
- Hopkins Marine Station, Stanford University , Pacific Grove, CA 94305, USA
| | - Max F Czapanskiy
- Hopkins Marine Station, Stanford University , Pacific Grove, CA 94305, USA
| | - Jean Potvin
- Saint Louis University , Saint Louis, MO 63103, USA
| | - Frank E Fish
- West Chester University , West Chester, PA 19383, USA
| | | | - Matthew S Savoca
- Hopkins Marine Station, Stanford University , Pacific Grove, CA 94305, USA
| | - K C Bierlich
- Oregon State University , Corvallis, OR 97331, USA
| | | | | | - Andy Szabo
- Alaska Whale Foundation , Sitka, AK, 99835, USA
| | - Lars Bejder
- Hawaii Institute of Marine Biology, University of Hawaii at Manoa , Kaheohe, HI 96822, USA
- Department of Bioscience, Aarhus University , Aarhus 8000, Denmark
| | - Jeremy A Goldbogen
- Hopkins Marine Station, Stanford University , Pacific Grove, CA 94305, USA
| |
Collapse
|
26
|
Transcriptome analyses of nine endocrine tissues identifies organism-wide transcript distribution and structure in the Siberian hamster. Sci Rep 2022; 12:13552. [PMID: 35941167 PMCID: PMC9360046 DOI: 10.1038/s41598-022-16731-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/14/2022] [Indexed: 11/30/2022] Open
Abstract
Temperate zone animals exhibit seasonal variation in multiple endocrine systems. In most cases, peripheral organs display robust switches in tissue involution and recrudescence in mass. Our understanding of the molecular control of tissue-specific changes in seasonal function remains limited. Central to this problem is the lack of information on the nucleic acid structure, and distribution of transcripts across tissues in seasonal model organisms. Here we report the transcriptome profile of nine endocrine tissues from Siberian hamsters. Luteinizing hormone receptor expression was localized to gonadal tissues and confirmed previous distribution analyses. Assessment of the prolactin receptor reveal relatively high abundance across tissues involved in reproduction, energy, and water homeostasis. Neither melatonin receptor-1a, nor -1b, were found to be expressed in most tissues. Instead, the closely related G-protein coupled receptor Gpr50 was widely expressed in peripheral tissues. Epigenetic enzymes such as DNA methyltransferase 3a, was widely expressed and the predominant DNA methylation enzyme. Quantitative PCR analyses revealed some sex- and tissue-specific differences for prolactin receptor and DNA methyltransferase 3a expression. These data provide significant information on the distribution of transcripts, relative expression levels and nucleic acid sequences that will facilitate molecular studies into the seasonal programs in mammalian physiology.
Collapse
|
27
|
Kravchenko LB, Rogovin KA. Seasonal variation of immune response to heterologous erythrocytes in natural populations of red-backed ( Clethrionomys rutilus) and gray-sided ( C. rufocanus) voles in Western Siberia. Ecol Evol 2022; 12:e9178. [PMID: 35949522 PMCID: PMC9353018 DOI: 10.1002/ece3.9178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 11/09/2022] Open
Abstract
We studied the seasonal variation of adaptive humoral immunity (AHI) in northern red-backed vole (Clethrionomys rutilus Pallas, 1779, RBV) and gray-sided vole (C. rufocanus Sundevall, 1846, GSV) in Tomsk region of Western Siberia. Immunoresponsiveness (IR) to sheep red blood cells was assessed by the number of antibody-producing cells in the spleen. The use of a generalized linear model to analyze the effects of species, sex, year of research, and season of withdrawal of individuals from nature on IR showed a significant effect of species identity, season of animal capture, and the interaction of species with season. The RBV demonstrated higher immune responses during a year, and both species had higher IR in winter. Suppression of IR in spring was greater, started earlier, and lasted longer (March-May) in GSV. In RBV, immunosuppression was restricted to April. The significant negative within year correlations of IR with body mass and masses of reproductive organs in GSV indicated a trade-off between AHI and growth and reproduction processes. A probable explanation for the difference between species in the seasonal variation of AHI may be related to the difference in tropho-energetic requirements of each vole species. GSV is a predominantly herbivorous rodent and its thermoregulation seems less efficient than of RBV. The deeper spring immunosuppression in GSV may explain in part its higher mortality during the season of colds.
Collapse
|
28
|
Xu DL, Hu XK. Effect of Natural Seasonal Changes in Photoperiod and Temperature on Immune Function in Striped Hamsters. Zoolog Sci 2022; 39. [DOI: 10.2108/zs220005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/04/2022] [Indexed: 11/17/2022]
Affiliation(s)
- De-Li Xu
- College of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong Province, China
| | - Xiao-Kai Hu
- College of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong Province, China
| |
Collapse
|
29
|
Lutermann H. Socializing in an Infectious World: The Role of Parasites in Social Evolution of a Unique Rodent Family. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.879031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Transmission of parasites between hosts is facilitated by close contact of hosts. Consequently, parasites have been proposed as an important constraint to the evolution of sociality accounting for its rarity. Despite the presumed costs associated with parasitism, the majority of species of African mole-rats (Family: Bathyergidae) are social. In fact, only the extremes of sociality (i.e., solitary and singular breeding) are represented in this subterranean rodent family. But how did bathyergids overcome the costs of parasitism? Parasite burden is a function of the exposure and susceptibility of a host to parasites. In this review I explore how living in sealed burrow systems and the group defenses that can be employed by closely related group members can effectively reduce the exposure and susceptibility of social bathyergids to parasites. Evidence suggests that this can be achieved largely by investment in relatively cheap and flexible behavioral rather than physiological defense mechanisms. This also shifts the selection pressure for parasites on successful transmission between group members rather than transmission between groups. In turn, this constrains the evolution of virulence and favors socially transmitted parasites (e.g., mites and lice) further reducing the costs of parasitism for social Bathyergidae. I conclude by highlighting directions for future research to evaluate the mechanisms proposed and to consider parasites as facilitators of social evolution not only in this rodent family but also other singular breeders.
Collapse
|
30
|
Affiliation(s)
- Amy R. Sweeny
- Institute of Evolutionary Biology University of Edinburgh Edinburgh Scotland
| | - Gregory F. Albery
- Department of Biology Georgetown University Washington DC USA
- Wissenschaftskolleg zu Berlin Berlin Germany
| |
Collapse
|
31
|
Costantini D. A meta-analysis of impacts of immune response and infection on oxidative status in vertebrates. CONSERVATION PHYSIOLOGY 2022; 10:coac018. [PMID: 35492421 PMCID: PMC9040321 DOI: 10.1093/conphys/coac018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/24/2022] [Accepted: 03/11/2022] [Indexed: 05/06/2023]
Abstract
Inferring from patterns observed in biomedical research, ecoimmunological theory predicts that oxidative stress is a ubiquitous physiological cost that contributes to generating variation in immune function between individuals or species. This prediction is, however, often challenged by empirical studies testing the relationship between immune response or infection and oxidative status markers. This points out the importance of combining ecological immunology and oxidative stress ecology to further our understanding of the proximate causes and fitness consequences of individual variation in health, and adaptability to natural and anthropogenic environmental changes. I reviewed evidence and performed phylogenetic meta-analyses of changes in oxidative status markers owing to either injection of an antigen or infection in captive and free-living vertebrates (141 studies, 1262 effect sizes, 97 species). The dataset was dominated by studies on fish, birds and mammals, which provided 95.8% of effect sizes. Both antigen injection and parasite exposure were associated with changes of oxidative status. There were significant effects of taxonomic class and experimental environment (captivity vs. wild). In contrast with my predictions, age category (young vs. adult), study design (correlational vs. experimental) and proxies of pace of life (clutch size, litter size, and body mass; for birds and mammals only) were negligible in this dataset. Several methodological aspects (type of immunostimulant, laboratory assay, tissue analysed) showed significant effects on both strength and direction of effect. My results suggest that alterations of oxidative status are a widespread consequence of immune function across vertebrates. However, this work also identified heterogeneity in strength and direction of effect sizes, which suggests that immune function does not necessarily result in oxidative stress. Finally, this work identifies methodological caveats that might be relevant for the interpretation and comparability of results and for the application in conservation programs.
Collapse
Affiliation(s)
- David Costantini
- Unité Physiologie Moléculaire et Adaptation, UMR 7221, Muséum National d’Histoire Naturelle, CNRS, CP32, 57 rue Cuvier 75005 Paris, France
| |
Collapse
|
32
|
Rogers EJ, McGuire L, Longstaffe FJ, Clerc J, Kunkel E, Fraser E. Relating wing morphology and immune function to patterns of partial and differential bat migration using stable isotopes. J Anim Ecol 2022; 91:858-869. [PMID: 35218220 DOI: 10.1111/1365-2656.13681] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/26/2022] [Indexed: 11/28/2022]
Abstract
Migration is energetically expensive and is predicted to drive similar morphological adaptations and physiological trade-offs in migratory bats and birds. Previous studies suggest that fixed traits like wing morphology vary among species and individuals according to selective pressures on flight, while immune defenses can vary flexibly within individuals as energy is variably reallocated throughout the year. We assessed intraspecific variation in wing morphology and immune function in silver-haired bats (Lasionycteris noctivagans), a species that follows both partial and differential migration patterns. We hypothesized that if bats experience energy constraints associated with migration, then wing morphology and immune function should vary based on migratory tendency (sedentary or migratory) and migration distance. We predicted that long-distance migrants would have reduced immune function and more migration-adapted wing shapes compared to resident or short-distance migrating bats. We estimated breeding latitude of spring migrants using stable hydrogen isotope techniques. Our sample consisted primarily of male bats, which we categorized as residents, long-distance northern migrants, short-distance northern migrants, and southern migrants (apparent breeding location south of capture site). Controlling for individual condition and capture date, we related wing characteristics and immune indices among groups. Some, but not all, aspects of wing form and immune function varied between migrants and residents. Long-distance northern migrants had larger wings than short-distance northern migrants and lower wing loading than southern migrants. Compared with resident bats, short-distance northern migrants had reduced IgG while southern migrants had heightened neutrophils and neutrophil-to-lymphocyte ratios. Body fat, aspect ratio, wing tip shape, and bacteria killing ability did not vary with migration status or distance. In general, male silver-haired bats do not appear to mediate migration costs by substantially downregulating immune defenses or to be under stronger selection for wing forms adapted for fast, energy-efficient flight. Such phenotypic changes may be more adaptive for female silver-haired bats, which migrate farther and are more constrained by time in spring than males. Adaptations for aerial hawking and the use of heterothermy by migrating bats may also reduce the energetic cost of migration and the need for more substantial morphological and physiological trade-offs.
Collapse
Affiliation(s)
- Elizabeth J Rogers
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA.,Organismic and Evolutionary Biology Program, University of Massachusetts, Amherst, MA, USA
| | - Liam McGuire
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA.,Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Fred J Longstaffe
- Department of Earth Sciences, The University of Western Ontario, London, ON, Canada
| | - Jeff Clerc
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA.,Normandeau Associates Inc, Gainesville, FL, USA
| | - Emma Kunkel
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Erin Fraser
- Environmental Science Program, Memorial University of Newfoundland (Grenfell Campus), Corner Brook, NL, Canada
| |
Collapse
|
33
|
Raven N, Klaassen M, Madsen T, Thomas F, Hamede R, Ujvari B. Transmissible cancer influences immune gene expression in an endangered marsupial, the Tasmanian devil (Sarcophilus harrisii). Mol Ecol 2022; 31:2293-2311. [PMID: 35202488 PMCID: PMC9310804 DOI: 10.1111/mec.16408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/14/2022] [Indexed: 11/28/2022]
Abstract
Understanding the effects of wildlife diseases on populations requires insight into local environmental conditions, host defence mechanisms, host life‐history trade‐offs, pathogen population dynamics, and their interactions. The survival of Tasmanian devils (Sarcophilus harrisii) is challenged by a novel, fitness limiting pathogen, Tasmanian devil facial tumour disease (DFTD), a clonally transmissible, contagious cancer. In order to understand the devils’ capacity to respond to DFTD, it is crucial to gain information on factors influencing the devils’ immune system. By using RT‐qPCR, we investigated how DFTD infection in association with intrinsic (sex and age) and environmental (season) factors influences the expression of 10 immune genes in Tasmanian devil blood. Our study showed that the expression of immune genes (both innate and adaptive) differed across seasons, a pattern that was altered when infected with DFTD. The expression of immunogbulins IgE and IgM:IgG showed downregulation in colder months in DFTD infected animals. We also observed strong positive association between the expression of an innate immune gene, CD16, and DFTD infection. Our results demonstrate that sampling across seasons, age groups and environmental conditions are beneficial when deciphering the complex ecoevolutionary interactions of not only conventional host‐parasite systems, but also of host and diseases with high mortality rates, such as transmissible cancers.
Collapse
Affiliation(s)
- N Raven
- Deakin University, Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Waurn Ponds, Vic, 3216, Australia
| | - M Klaassen
- Deakin University, Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Waurn Ponds, Vic, 3216, Australia
| | - T Madsen
- Deakin University, Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Waurn Ponds, Vic, 3216, Australia
| | - F Thomas
- CREEC/CANECEV (CREES), Montpellier, France.,MIVEGEC, Université de Montpellier, CNRS, IRD, Montpellier, France
| | - R Hamede
- Deakin University, Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Waurn Ponds, Vic, 3216, Australia.,School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania, 7001, Australia
| | - B Ujvari
- Deakin University, Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Waurn Ponds, Vic, 3216, Australia
| |
Collapse
|
34
|
Sweeny AR, Corripio-Miyar Y, Bal X, Hayward AD, Pilkington JG, McNeilly TN, Nussey DH, Kenyon F. Longitudinal dynamics of co-infecting gastrointestinal parasites in a wild sheep population. Parasitology 2022; 149:1-12. [PMID: 35264257 PMCID: PMC10090596 DOI: 10.1017/s0031182021001980] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/09/2021] [Accepted: 11/01/2021] [Indexed: 11/07/2022]
Abstract
Within-year variation in infection is a ubiquitous feature of natural populations, but is determined by a complex interplay of environmental, parasitological and host factors. At the same time, co-infection is the norm in the wild. Longitudinal dynamics of co-infecting parasites may therefore be further complicated by covariation across multiple parasites. Here, we used fecal parasite egg and oocyst counts collected repeatedly from individually marked wild Soay sheep to investigate seasonal dynamics of six gastrointestinal parasite groups. Prevalence and abundance tended to be higher in spring and summer, and abundance was higher in lambs compared to adults. We found that within-year variation in highly prevalent strongyle nematode counts was dependent on adult reproductive status, where reproductive ewes had distinct dynamics compared to males and barren ewes. For similarly prevalent coccidia we found an overall peak in oocyst counts in spring but no differences among males, barren and pregnant ewes. Using multivariate mixed-effects models, we further show that apparent positive correlation between strongyle and coccidia counts was driven by short-term within-individual changes in both counts rather than long-term among-individual covariation. Overall, these results demonstrate that seasonality varies across demographic and parasite groups and highlight the value of investigating co-infection dynamics over time.
Collapse
Affiliation(s)
- Amy R. Sweeny
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | | | - Xavier Bal
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | | | - Jill G. Pilkington
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | | | - Daniel H. Nussey
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
35
|
Vincze O, Vágási CI, Pénzes J, Szabó K, Magonyi NM, Czirják GÁ, Pap PL. Sexual dimorphism in immune function and oxidative physiology across birds: The role of sexual selection. Ecol Lett 2022; 25:958-970. [PMID: 35106902 PMCID: PMC9305230 DOI: 10.1111/ele.13973] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 01/08/2023]
Abstract
Sex‐specific physiology is commonly reported in animals, often indicating lower immune indices and higher oxidative stress in males than in females. Sexual selection is argued to explain these differences, but empirical evidence is limited. Here, we explore sex differences in immunity, oxidative physiology and packed cell volume of wild, adult, breeding birds (97 species, 1997 individuals, 14 230 physiological measurements). We show that higher female immune indices are most common across birds (when bias is present), but oxidative physiology shows no general sex‐bias and packed cell volume is generally male‐biased. In contrast with predictions based on sexual selection, male‐biased sexual size dimorphism is associated with male‐biased immune measures. Sexual dichromatism, mating system and parental roles had no effect on sex‐specificity in physiology. Importantly, female‐biased immunity remained after accounting for sexual selection indices. We conclude that cross‐species differences in physiological sex‐bias are largely unrelated to sexual selection and alternative explanations should be explored.
Collapse
Affiliation(s)
- Orsolya Vincze
- Centre for Ecological Research, Institute of Aquatic Ecology, Debrecen, Hungary.,Evolutionary Ecology Group, Hungarian Department of Biology and Ecology, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Csongor I Vágási
- Evolutionary Ecology Group, Hungarian Department of Biology and Ecology, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Janka Pénzes
- Evolutionary Ecology Group, Hungarian Department of Biology and Ecology, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Krisztián Szabó
- Department of Ecology, University of Veterinary Medicine Budapest, Budapest, Hungary
| | - Nóra M Magonyi
- Doctoral School of Biology and Sportbiology, Faculty of Sciences, University of Pécs, Pécs, Hungary.,Centre for Agricultural Research, Plant Protection Institute, ELKH, Budapest, Hungary
| | - Gábor Á Czirják
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Péter L Pap
- Evolutionary Ecology Group, Hungarian Department of Biology and Ecology, Babeş-Bolyai University, Cluj-Napoca, Romania.,Behavioural Ecology Research Group, Department of Evolutionary Zoology and Human Biology, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
36
|
Variations in Rainbow Trout Immune Responses against A. salmonicida: Evidence of an Internal Seasonal Clock in Oncorhynchus mykiss. BIOLOGY 2022; 11:biology11020174. [PMID: 35205041 PMCID: PMC8869240 DOI: 10.3390/biology11020174] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 11/17/2022]
Abstract
In poikilothermic vertebrates, seasonality influences different immunological parameters such as leukocyte numbers, phagocytic activity, and antibody titers. This phenomenon has been described in different teleost species, with immunological parameters peaking during warmer months and decreased levels during winter. In this study, the cellular immune responses of rainbow trout (Oncorhynchus mykiss) kept under constant photoperiod and water temperature against intraperitoneally injected Aeromonas salmonicida during the summer and winter were investigated. The kinetics of different leukocyte subpopulations from peritoneal cavity, spleen, and head kidney in response to the bacteria was measured by flow cytometry. Furthermore, the kinetics of induced A. salmonicida-specific antibodies was evaluated by ELISA. Despite maintaining the photoperiod and water temperature as constant, different cell baselines were detected in all organs analyzed. During the winter months, B- and T-cell responses were decreased, contrary to what was observed during summer months. However, the specific antibody titers were similar between the two seasons. Natural antibodies, however, were greatly increased 12 h post-injection only during the wintertime. Altogether, our results suggest a bias toward innate immune responses and potential lymphoid immunosuppression in the wintertime in trout. These seasonal differences, despite photoperiod and water temperature being kept constant, suggest an internal inter-seasonal or circannual clock controlling the immune system and physiology of this teleost fish.
Collapse
|
37
|
Kravchenko LB. Influence of Social Conditions on Humoral Adaptive Immunity in Bank (Clethrionomys glareolus) and Gray-Sided (Clethrionomys rufocanus) Voles: An Experimental Study. BIOL BULL+ 2021. [DOI: 10.1134/s1062359021090120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
38
|
Beaumelle C, Redman EM, de Rijke J, Wit J, Benabed S, Debias F, Duhayer J, Pardonnet S, Poirel MT, Capron G, Chabot S, Rey B, Yannic G, Gilleard JS, Bourgoin G. Metabarcoding in two isolated populations of wild roe deer (Capreolus capreolus) reveals variation in gastrointestinal nematode community composition between regions and among age classes. Parasit Vectors 2021; 14:594. [PMID: 34863264 PMCID: PMC8642965 DOI: 10.1186/s13071-021-05087-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 11/08/2021] [Indexed: 01/04/2023] Open
Abstract
Background Gastrointestinal nematodes are ubiquitous for both domestic and wild ungulates and have varying consequences for health and fitness. They exist as complex communities of multiple co-infecting species, and we have a limited understanding of how these communities vary in different hosts, regions and circumstances or of how this affects their impacts. Methods We have undertaken ITS2 rDNA nemabiome metabarcoding with next-generation sequencing on populations of nematode larvae isolated from 149 fecal samples of roe deer of different sex and age classes in the two isolated populations of Chizé and Trois Fontaines in France not co-grazing with any domestic ungulate species. Results We identified 100 amplified sequence variants (ASVs) that were assigned to 14 gastrointestinal nematode taxa overall at either genus (29%) or species (71%) level. These taxa were dominated by parasites classically found in cervids—e.g. Ostertagia leptospicularis, Spiculopteragia spp. Higher parasite species diversity was present in the Trois Fontaines population than in the Chizé population including the presence of species more typically seen in domestic livestock (Haemonchus contortus, Bunostomum sp., Cooperia punctata, Teladorsagia circumcincta). No differences in parasite species diversity or community composition were seen in the samples collected from three zones of differing habitat quality within the Chizé study area. Young roe deer hosted the highest diversity of gastrointestinal nematodes, with more pronounced effects of age apparent in Trois Fontaines. The effect of host age differed between gastrointestinal nematode species, e.g. there was little effect on O. leptospicularis but a large effect on Trichostrongylus spp. No effect of host sex was detected in either site. Conclusions The presence of some livestock parasite species in the Trois Fontaines roe deer population was unexpected given the isolation of this population away from grazing domestic livestock since decades. Overall, our results illustrate the influence of host traits and the local environment on roe deer nemabiome and demonstrate the power of the nemabiome metabarcoding approach to elucidate the composition of gastrointestinal nematode communities in wildlife. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-05087-5.
Collapse
Affiliation(s)
- Camille Beaumelle
- Université Lyon 1, CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, 69100, Villeurbanne, France. .,Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, 38000, Grenoble, France.
| | - Elizabeth M Redman
- Comparative Biology and Experimental Medicine, Host-Parasites Interactions Program, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Jill de Rijke
- Comparative Biology and Experimental Medicine, Host-Parasites Interactions Program, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Janneke Wit
- Comparative Biology and Experimental Medicine, Host-Parasites Interactions Program, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Slimania Benabed
- Université Lyon 1, CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, 69100, Villeurbanne, France.,VetAgro Sup, Campus Vétérinaire de Lyon, Université de Lyon, 69280, Marcy l'Etoile, France
| | - François Debias
- Université Lyon 1, CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, 69100, Villeurbanne, France
| | - Jeanne Duhayer
- Université Lyon 1, CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, 69100, Villeurbanne, France
| | - Sylvia Pardonnet
- Université Lyon 1, CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, 69100, Villeurbanne, France
| | - Marie-Thérèse Poirel
- Université Lyon 1, CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, 69100, Villeurbanne, France.,VetAgro Sup, Campus Vétérinaire de Lyon, Université de Lyon, 69280, Marcy l'Etoile, France
| | - Gilles Capron
- Office Français de la Biodiversité, 75008, Paris, France
| | | | - Benjamin Rey
- Université Lyon 1, CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, 69100, Villeurbanne, France
| | - Glenn Yannic
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, 38000, Grenoble, France
| | - John S Gilleard
- Comparative Biology and Experimental Medicine, Host-Parasites Interactions Program, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Gilles Bourgoin
- Université Lyon 1, CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, 69100, Villeurbanne, France.,VetAgro Sup, Campus Vétérinaire de Lyon, Université de Lyon, 69280, Marcy l'Etoile, France
| |
Collapse
|
39
|
Rodrigues MA, Merckelbach A, Durmaz E, Kerdaffrec E, Flatt T. Transcriptomic evidence for a trade-off between germline proliferation and immunity in Drosophila. Evol Lett 2021; 5:644-656. [PMID: 34917403 PMCID: PMC8645197 DOI: 10.1002/evl3.261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/07/2021] [Accepted: 09/12/2021] [Indexed: 11/08/2022] Open
Abstract
Life-history theory posits that investment into reproduction might occur at the expense of investment into somatic maintenance, including immune function. If so, reduced or curtailed reproductive effort might be expected to increase immunity. In support of this notion, work in Caenorhabditis elegans has shown that worms lacking a germline exhibit improved immunity, but whether the antagonistic relation between germline proliferation and immunity also holds for other organisms is less well understood. Here, we report that transgenic ablation of germ cells in late development or early adulthood in Drosophila melanogaster causes elevated baseline expression and increased induction of Toll and Imd immune genes upon bacterial infection, as compared to fertile flies with an intact germline. We also identify immune genes whose expression after infection differs between fertile and germline-less flies in a manner that is conditional on their mating status. We conclude that germline activity strongly impedes the expression and inducibility of immune genes and that this physiological trade-off might be evolutionarily conserved.
Collapse
Affiliation(s)
| | | | - Esra Durmaz
- Department of BiologyUniversity of FribourgCH‐1700 FribourgSwitzerland
| | - Envel Kerdaffrec
- Department of BiologyUniversity of FribourgCH‐1700 FribourgSwitzerland
| | - Thomas Flatt
- Department of BiologyUniversity of FribourgCH‐1700 FribourgSwitzerland
| |
Collapse
|
40
|
Names GR, Schultz EM, Krause JS, Hahn TP, Wingfield JC, Heal M, Cornelius JM, Klasing KC, Hunt KE. Stress in paradise: effects of elevated corticosterone on immunity and avian malaria resilience in a Hawaiian passerine. J Exp Biol 2021; 224:272529. [PMID: 34553762 PMCID: PMC8546672 DOI: 10.1242/jeb.242951] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/20/2021] [Indexed: 11/20/2022]
Abstract
Vertebrates confronted with challenging environments often experience an increase in circulating glucocorticoids, which result in morphological, physiological and behavioral changes that promote survival. However, chronically elevated glucocorticoids can suppress immunity, which may increase susceptibility to disease. Since the introduction of avian malaria to Hawaii a century ago, low-elevation populations of Hawaii Amakihi (Chlorodrepanis virens) have undergone strong selection by avian malaria and evolved increased resilience (the ability to recover from infection), while populations at high elevation with few vectors have not undergone selection and remain susceptible. We investigated how experimentally elevated corticosterone affects the ability of high- and low-elevation male Amakihi to cope with avian malaria by measuring innate immunity, hematocrit and malaria parasitemia. Corticosterone implants resulted in a decrease in hematocrit in high- and low-elevation birds but no changes to circulating natural antibodies or leukocytes. Overall, leukocyte count was higher in low- than in high-elevation birds. Malaria infections were detected in a subset of low-elevation birds. Infected individuals with corticosterone implants experienced a significant increase in circulating malaria parasites while untreated infected birds did not. Our results suggest that Amakihi innate immunity measured by natural antibodies and leukocytes is not sensitive to changes in corticosterone, and that high circulating corticosterone may reduce the ability of Amakihi to cope with infection via its effects on hematocrit and malaria parasite load. Understanding how glucocorticoids influence a host's ability to cope with introduced diseases provides new insight into the conservation of animals threatened by novel pathogens. Summary: Amakihi innate immunity, as measured by natural antibodies and leukocytes, is not sensitive to changes in corticosterone, but high circulating corticosterone may reduce the ability of Amakihi to cope with avian malaria infection via its effects on hematocrit and malaria parasite load.
Collapse
Affiliation(s)
- Gabrielle R Names
- Animal Behavior Graduate Group, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA.,Department of Neurobiology, Physiology and Behavior, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Elizabeth M Schultz
- Department of Biology, Wittenberg University, 200 W Ward Street, Springfield, OH 45504, USA
| | - Jesse S Krause
- Department of Biology, University of Nevada Reno, 1664 North Virginia Street, Reno, NV 89557, USA
| | - Thomas P Hahn
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - John C Wingfield
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Molly Heal
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Jamie M Cornelius
- Department of Integrative Biology, Oregon State University, 2701 SW Campus Way, Corvallis, OR 97331, USA
| | - Kirk C Klasing
- Department of Animal Science, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Kathleen E Hunt
- Smithsonian-Mason School of Conservation & Department of Biology, George Mason University, 1500 Remount Rd, Front Royal, VA 22630, USA
| |
Collapse
|
41
|
Ndithia HK, Matson KD, Muchai M, Tieleman BI. Immune function differs among tropical environments but is not downregulated during reproduction in three year-round breeding equatorial lark populations. Oecologia 2021; 197:599-614. [PMID: 34636981 PMCID: PMC8585810 DOI: 10.1007/s00442-021-05052-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/28/2021] [Indexed: 11/28/2022]
Abstract
Seasonal variation in immune function can be attributed to life history trade-offs, and to variation in environmental conditions. However, because phenological stages and environmental conditions co-vary in temperate and arctic zones, their separate contributions have not been determined. We compared immune function and body mass of incubating (female only), chick-feeding (female and male), and non-breeding (female and male) red-capped larks Calandrella cinerea breeding year-round in three tropical equatorial (Kenya) environments with distinct climates. We measured four immune indices: haptoglobin, nitric oxide, agglutination, and lysis. To confirm that variation in immune function between breeding (i.e., incubating or chick-feeding) and non-breeding was not confounded by environmental conditions, we tested if rainfall, average minimum temperature (Tmin), and average maximum temperature (Tmax) differed during sampling times among the three breeding statuses per location. Tmin and Tmax differed between chick-feeding and non-breeding, suggesting that birds utilized environmental conditions differently in different locations for reproduction. Immune indices did not differ between incubating, chick-feeding and non-breeding birds in all three locations. There were two exceptions: nitric oxide was higher during incubation in cool and wet South Kinangop, and it was higher during chick-feeding in the cool and dry North Kinangop compared to non-breeding birds in these locations. For nitric oxide, agglutination, and lysis, we found among-location differences within breeding stage. In equatorial tropical birds, variation in immune function seems to be better explained by among-location climate-induced environmental conditions than by breeding status. Our findings raise questions about how within-location environmental variation relates to and affects immune function.
Collapse
Affiliation(s)
- Henry K Ndithia
- Ornithology Section, Department of Zoology, National Museums of Kenya, P.O. Box 40658, Nairobi, 00100 GPO, Kenya. .,Groningen Institute for Evolutionary Life Sciences, University of Groningen, P.O. Box 11103, 9700 CC, Groningen, The Netherlands.
| | - Kevin D Matson
- Wildlife Ecology and Conservation, Environmental Sciences Group, Wageningen University, Droevendaalsesteeg 3a, 6708 PB, Wageningen, The Netherlands
| | - Muchane Muchai
- Department of Clinical Studies (Wildlife and Conservation), College of Agriculture and Veterinary Sciences, University of Nairobi, Box 30197-00100, Nairobi, Kenya
| | - B Irene Tieleman
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, P.O. Box 11103, 9700 CC, Groningen, The Netherlands
| |
Collapse
|
42
|
Names GR, Schultz EM, Hahn TP, Hunt KE, Angelier F, Ribout C, Klasing KC. Variation in immunity and health in response to introduced avian malaria in an endemic Hawaiian songbird. Anim Conserv 2021. [DOI: 10.1111/acv.12744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- G. R. Names
- Animal Behavior Graduate Group University of California Davis Davis CA USA
- Department of Neurobiology Physiology and Behavior University of California Davis Davis CA USA
| | - E. M. Schultz
- Department of Biology Wittenberg University Springfield OH USA
| | - T. P. Hahn
- Department of Neurobiology Physiology and Behavior University of California Davis Davis CA USA
| | - K. E. Hunt
- Smithsonian‐Mason School of Conservation & Department of Biology George Mason University Front Royal VA USA
| | - F. Angelier
- Centre d'Etudes Biologiques de Chizé, CNRS‐La Rochelle Université, UMR7372 Villiers en Bois France
| | - C. Ribout
- Centre d'Etudes Biologiques de Chizé, CNRS‐La Rochelle Université, UMR7372 Villiers en Bois France
| | - K. C. Klasing
- Department of Animal Science University of California Davis Davis CA USA
| |
Collapse
|
43
|
The ecology of zoonotic parasites in the Carnivora. Trends Parasitol 2021; 37:1096-1110. [PMID: 34544647 DOI: 10.1016/j.pt.2021.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 01/08/2023]
Abstract
The order Carnivora includes over 300 species that vary many orders of magnitude in size and inhabit all major biomes, from tropical rainforests to polar seas. The high diversity of carnivore parasites represents a source of potential emerging diseases of humans. Zoonotic risk from this group may be driven in part by exceptionally high functional diversity of host species in behavioral, physiological, and ecological traits. We review global macroecological patterns of zoonotic parasites within carnivores, and explore the traits of species that serve as hosts of zoonotic parasites. We synthesize theoretical and empirical research and suggest future work on the roles of carnivores as biotic multipliers, regulators, and sentinels of zoonotic disease as timely research frontiers.
Collapse
|
44
|
Schmucker S, Hofmann T, Sommerfeld V, Huber K, Rodehutscord M, Stefanski V. Immune parameters in two different laying hen strains during five production periods. Poult Sci 2021; 100:101408. [PMID: 34530229 PMCID: PMC8450256 DOI: 10.1016/j.psj.2021.101408] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 06/23/2021] [Accepted: 07/22/2021] [Indexed: 12/21/2022] Open
Abstract
During life, the number and function of immune cells change with potential consequences for immunocompetence of an organism. In laying hens, studies have primarily focused on early development of immune competence and only few have investigated systemic and lymphatic distribution of leukocyte subsets during adolescence and the egg-laying period. The present study determined the number of various leukocyte types in blood, spleen, and cecal tonsils of 10 Lohmann Brown-Classic and 10 Lohmann LSL-Classic hens per wk of life 9/10, 15/16, 23/24, 29/30, and 59/60, encompassing important production as well as developmental stages, by flow cytometry. Although immune traits differed between the 2 hen strains, identical patterns of age-related immunological changes were found. The numbers of all investigated lymphocyte types in the spleen as well as the numbers of blood γδ T cells increased from wk 9/10 to 15/16. This suggests an ongoing release of lymphocytes from primary lymphoid tissues and an influx of blood lymphocytes into the spleen due to novel pathogen encounters during adolescence. A strong decrease in the number of CTL and γδ T cells and an increase in innate immune cells within blood and spleen were found between wk of life 15/16 and 23/24, covering the transition phase to egg-laying activity. Numbers of peripheral and splenic lymphocytes remained low during the egg-laying period or even further decreased, for example blood CD4+ T cells and splenic γδ T cells. Functional assessments showed that in vitro IFN-γ production of mitogen-stimulated splenocytes was lower in wk 60. Taken together, egg-laying activity seems to alter the immune system toward a more pronounced humoral and innate immune response, with probable consequences for the immunocompetence and thus for productivity, health and welfare of the hens.
Collapse
Affiliation(s)
- Sonja Schmucker
- Institute of Animal Science, University of Hohenheim, 70599 Stuttgart, Germany.
| | - Tanja Hofmann
- Institute of Animal Science, University of Hohenheim, 70599 Stuttgart, Germany
| | - Vera Sommerfeld
- Institute of Animal Science, University of Hohenheim, 70599 Stuttgart, Germany
| | - Korinna Huber
- Institute of Animal Science, University of Hohenheim, 70599 Stuttgart, Germany
| | - Markus Rodehutscord
- Institute of Animal Science, University of Hohenheim, 70599 Stuttgart, Germany
| | - Volker Stefanski
- Institute of Animal Science, University of Hohenheim, 70599 Stuttgart, Germany
| |
Collapse
|
45
|
Bakewell L, Kelehear C, Graham S. Impacts of temperature on immune performance in a desert anuran (
Anaxyrus punctatus
). J Zool (1987) 2021. [DOI: 10.1111/jzo.12891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
46
|
Caracalas HE, French SS, Hudson SB, Kluever BM, Webb AC, Eifler D, Lehmicke AJ, Aubry LM. Reproductive trade-offs in the colorado checkered whiptail lizard (Aspidoscelis neotesselatus): an examination of the relationship between clutch and follicle size. Evol Ecol 2021. [DOI: 10.1007/s10682-021-10131-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
47
|
The paraventricular thalamus serves as a nexus in the regulation of stress and immunity. Brain Behav Immun 2021; 95:36-44. [PMID: 33540073 DOI: 10.1016/j.bbi.2021.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/11/2021] [Accepted: 01/20/2021] [Indexed: 11/23/2022] Open
Abstract
Many temperate zone animals exhibit seasonal rhythms in physiology and behavior, including seasonal cycles of reproduction, energetics, stress responsiveness, and immune function, among many others. These rhythms are driven by seasonal changes in the duration of pineal melatonin secretion. The neural melatonin target tissues that mediate several of these rhythms have been identified, though the target(s) mediating melatonin's regulation of glucocorticoid secretion, immune cell numbers, and bacterial killing capacity remain unspecified. The present results indicate that one melatonin target tissue, the paraventricular nucleus of the thalamus (PVT), is necessary for the expression of these seasonal rhythms. Thus, while radiofrequency ablations of the PVT failed to alter testicular and body mass response to short photoperiod exposure, they did block the effect of short day lengths on cortisol secretion and bacterial killing efficacy. These results are consistent with the independent regulation by separate neural circuits of several physiological traits that vary seasonally in mammals.
Collapse
|
48
|
Names GR, Krause JS, Schultz EM, Angelier F, Parenteau C, Ribout C, Hahn TP, Wingfield JC. Relationships between avian malaria resilience and corticosterone, testosterone and prolactin in a Hawaiian songbird. Gen Comp Endocrinol 2021; 308:113784. [PMID: 33862049 DOI: 10.1016/j.ygcen.2021.113784] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/23/2021] [Accepted: 04/09/2021] [Indexed: 01/19/2023]
Abstract
Glucocorticoids, androgens, and prolactin regulate metabolism and reproduction, but they also play critical roles in immunomodulation. Since the introduction of avian malaria to Hawaii a century ago, low elevation populations of the Hawaii Amakihi (Chlorodrepanis virens) that have experienced strong selection by avian malaria have evolved increased resilience (the ability to recover from infection), while high elevation populations that have undergone weak selection remain less resilient. We investigated how variation in malaria selection has affected corticosterone, testosterone, and prolactin hormone levels in Amakihi during the breeding season. We predicted that baseline corticosterone and testosterone (which have immunosuppressive functions) would be reduced in low elevation and malaria-infected birds, while stress-induced corticosterone and prolactin (which have immunostimulatory functions) would be greater in low elevation and malaria-infected birds. As predicted, prolactin was significantly higher in malaria-infected than uninfected females (although more robust sample sizes would help to confirm this relationship), while testosterone trended higher in malaria-infected than uninfected males and, surprisingly, neither baseline nor stress-induced CORT varied with malaria infection. Contrary to our predictions, stress-induced corticosterone was significantly lower in low than high elevation birds while testosterone in males and prolactin in females did not vary by elevation, suggesting that Amakihi hormone modulation across elevation is determined by variables other than disease selection (e.g., timing of breeding, energetic challenges). Our results shed new light on relationships between introduced disease and hormone modulation, and they raise new questions that could be explored in experimental settings.
Collapse
Affiliation(s)
- Gabrielle R Names
- Department of Neurobiology, Physiology and Behavior, University of California Davis, One Shields Avenue, Davis, CA 95616, USA.
| | - Jesse S Krause
- Department of Biology, University of Nevada Reno, 1664 North Virginia Street, Reno, NV 89557, USA
| | - Elizabeth M Schultz
- Department of Biology, Wittenberg University, 200 W Ward Street, Springfield, OH 45504, USA
| | - Frédéric Angelier
- Centre d'Etudes Biologiques de Chizé, CNRS, La Rochelle Université, UMR 7372, 405 Route de Prissé la Charrière, Villiers-en-Bois, 79360 France
| | - Charline Parenteau
- Centre d'Etudes Biologiques de Chizé, CNRS, La Rochelle Université, UMR 7372, 405 Route de Prissé la Charrière, Villiers-en-Bois, 79360 France
| | - Cécile Ribout
- Centre d'Etudes Biologiques de Chizé, CNRS, La Rochelle Université, UMR 7372, 405 Route de Prissé la Charrière, Villiers-en-Bois, 79360 France
| | - Thomas P Hahn
- Department of Neurobiology, Physiology and Behavior, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - John C Wingfield
- Department of Neurobiology, Physiology and Behavior, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
49
|
Eleftheriou A, Kuenzi AJ, Luis AD. Heterospecific competitors and seasonality can affect host physiology and behavior: key factors in disease transmission. Ecosphere 2021. [DOI: 10.1002/ecs2.3494] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Andreas Eleftheriou
- Wildlife Biology Program University of Montana 32 Campus Drive, FOR 109 Missoula Montana59812USA
| | - Amy J. Kuenzi
- Department of Biology Montana Tech of the University of Montana Butte Montana59701USA
| | - Angela D. Luis
- Wildlife Biology Program University of Montana 32 Campus Drive, FOR 109 Missoula Montana59812USA
| |
Collapse
|
50
|
Mallott EK, Amato KR. Host specificity of the gut microbiome. Nat Rev Microbiol 2021; 19:639-653. [PMID: 34045709 DOI: 10.1038/s41579-021-00562-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2021] [Indexed: 02/07/2023]
Abstract
Developing general principles of host-microorganism interactions necessitates a robust understanding of the eco-evolutionary processes that structure microbiota. Phylosymbiosis, or patterns of microbiome composition that can be predicted by host phylogeny, is a unique framework for interrogating these processes. Identifying the contexts in which phylosymbiosis does and does not occur facilitates an evaluation of the relative importance of different ecological processes in shaping the microbial community. In this Review, we summarize the prevalence of phylosymbiosis across the animal kingdom on the basis of the current literature and explore the microbial community assembly processes and related host traits that contribute to phylosymbiosis. We find that phylosymbiosis is less prevalent in taxonomically richer microbiomes and hypothesize that this pattern is a result of increased stochasticity in the assembly of complex microbial communities. We also note that despite hosting rich microbiomes, mammals commonly exhibit phylosymbiosis. We hypothesize that this pattern is a result of a unique combination of mammalian traits, including viviparous birth, lactation and the co-evolution of haemochorial placentas and the eutherian immune system, which compound to ensure deterministic microbial community assembly. Examining both the individual and the combined importance of these traits in driving phylosymbiosis provides a new framework for research in this area moving forward.
Collapse
Affiliation(s)
- Elizabeth K Mallott
- Department of Anthropology, Northwestern University, Evanston, IL, USA.,Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Katherine R Amato
- Department of Anthropology, Northwestern University, Evanston, IL, USA.
| |
Collapse
|