1
|
Abstract
Preclinical research over the past several decades has demonstrated a role for the γ-aminobutyric acidB (GABAB) receptor in alcohol use disorder (AUD). This chapter offers an examination of preclinical evidence on the role of the GABAB receptor on alcohol-related behaviors with a particular focus on the GABAB receptor agonist baclofen, for which effects have been most extensively studied, and positive allosteric modulators (PAMs) of the GABAB receptor. Studies employing rodent and non-human primate models have shown that activation of the GABAB receptor can reduce (1) stimulating and rewarding effects of alcohol; (2) signs of alcohol withdrawal in rats made physically dependent on alcohol; (3) acquisition and maintenance of alcohol drinking under a two-bottle alcohol versus water choice procedure; (4) alcohol intake under oral operant self-administration procedures; (5) motivational properties of alcohol measured using extinction and progressive ratio procedures; (6) the increase in alcohol intake after a period of alcohol abstinence (the alcohol deprivation effect or ADE); and (7) the ability of alcohol cues and stress to reinstate alcohol seeking when alcohol is no longer available. Baclofen and GABAB PAMs reduce the abovementioned behaviors across different preclinical models, which provides strong evidence for a significant role of the GABAB receptor in alcohol-related behaviors and supports development of medications targeting GABAB receptors for the treatment of AUD. This chapter highlights the value of examining mechanisms of alcohol-related behaviors across multiple animal models to increase the confidence in identification of new therapeutic targets.
Collapse
Affiliation(s)
- August F Holtyn
- Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Elise M Weerts
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
2
|
Nieto SJ, Grodin EN, Aguirre CG, Izquierdo A, Ray LA. Translational opportunities in animal and human models to study alcohol use disorder. Transl Psychiatry 2021; 11:496. [PMID: 34588417 PMCID: PMC8481537 DOI: 10.1038/s41398-021-01615-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 08/20/2021] [Accepted: 09/03/2021] [Indexed: 12/16/2022] Open
Abstract
Animal and human laboratory paradigms offer invaluable approaches to study the complex etiologies and mechanisms of alcohol use disorder (AUD). We contend that human laboratory models provide a "bridge" between preclinical and clinical studies of AUD by allowing for well-controlled experimental manipulations in humans with AUD. As such, examining the consilience between experimental models in animals and humans in the laboratory provides unique opportunities to refine the translational utility of such models. The overall goal of the present review is to provide a systematic description and contrast of commonly used animal paradigms for the study of AUD, as well as their human laboratory analogs if applicable. While there is a wide breadth of animal species in AUD research, the paradigms discussed in this review rely predominately on rodent research. The overarching goal of this effort is to provide critical analysis of these animal models and to link them to human laboratory models of AUD. By systematically contrasting preclinical and controlled human laboratory models, we seek to identify opportunities to enhance their translational value through forward and reverse translation. We provide future directions to reconcile differences between animal and human work and to improve translational research for AUD.
Collapse
Affiliation(s)
- Steven J. Nieto
- grid.19006.3e0000 0000 9632 6718Department of Psychology, University of California at Los Angeles, Los Angeles, CA USA
| | - Erica N. Grodin
- grid.19006.3e0000 0000 9632 6718Department of Psychology, University of California at Los Angeles, Los Angeles, CA USA
| | - Claudia G. Aguirre
- grid.19006.3e0000 0000 9632 6718Department of Psychology, University of California at Los Angeles, Los Angeles, CA USA
| | - Alicia Izquierdo
- grid.19006.3e0000 0000 9632 6718Department of Psychology, University of California at Los Angeles, Los Angeles, CA USA
| | - Lara A. Ray
- grid.19006.3e0000 0000 9632 6718Department of Psychology, University of California at Los Angeles, Los Angeles, CA USA ,grid.19006.3e0000 0000 9632 6718Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, CA USA
| |
Collapse
|
3
|
Lathen DR, Merrill CB, Rothenfluh A. Flying Together: Drosophila as a Tool to Understand the Genetics of Human Alcoholism. Int J Mol Sci 2020; 21:E6649. [PMID: 32932795 PMCID: PMC7555299 DOI: 10.3390/ijms21186649] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 12/14/2022] Open
Abstract
Alcohol use disorder (AUD) exacts an immense toll on individuals, families, and society. Genetic factors determine up to 60% of an individual's risk of developing problematic alcohol habits. Effective AUD prevention and treatment requires knowledge of the genes that predispose people to alcoholism, play a role in alcohol responses, and/or contribute to the development of addiction. As a highly tractable and translatable genetic and behavioral model organism, Drosophila melanogaster has proven valuable to uncover important genes and mechanistic pathways that have obvious orthologs in humans and that help explain the complexities of addiction. Vinegar flies exhibit remarkably strong face and mechanistic validity as a model for AUDs, permitting many advancements in the quest to understand human genetic involvement in this disease. These advancements occur via approaches that essentially fall into one of two categories: (1) discovering candidate genes via human genome-wide association studies (GWAS), transcriptomics on post-mortem tissue from AUD patients, or relevant physiological connections, then using reverse genetics in flies to validate candidate genes' roles and investigate their molecular function in the context of alcohol. (2) Utilizing flies to discover candidate genes through unbiased screens, GWAS, quantitative trait locus analyses, transcriptomics, or single-gene studies, then validating their translational role in human genetic surveys. In this review, we highlight the utility of Drosophila as a model for alcoholism by surveying recent advances in our understanding of human AUDs that resulted from these various approaches. We summarize the genes that are conserved in alcohol-related function between humans and flies. We also provide insight into some advantages and limitations of these approaches. Overall, this review demonstrates how Drosophila have and can be used to answer important genetic questions about alcohol addiction.
Collapse
Affiliation(s)
- Daniel R. Lathen
- Department of Psychiatry and Neuroscience Ph.D. Program, University of Utah, Salt Lake City, UT 84108, USA;
| | - Collin B. Merrill
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA;
| | - Adrian Rothenfluh
- Department of Psychiatry and Neuroscience Ph.D. Program, University of Utah, Salt Lake City, UT 84108, USA;
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA;
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84132, USA
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
4
|
García-González J, Brock AJ, Parker MO, Riley RJ, Joliffe D, Sudwarts A, Teh MT, Busch-Nentwich EM, Stemple DL, Martineau AR, Kaprio J, Palviainen T, Kuan V, Walton RT, Brennan CH. Identification of slit3 as a locus affecting nicotine preference in zebrafish and human smoking behaviour. eLife 2020; 9:e51295. [PMID: 32209227 PMCID: PMC7096180 DOI: 10.7554/elife.51295] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 02/25/2020] [Indexed: 01/08/2023] Open
Abstract
To facilitate smoking genetics research we determined whether a screen of mutagenized zebrafish for nicotine preference could predict loci affecting smoking behaviour. From 30 screened F3 sibling groups, where each was derived from an individual ethyl-nitrosurea mutagenized F0 fish, two showed increased or decreased nicotine preference. Out of 25 inactivating mutations carried by the F3 fish, one in the slit3 gene segregated with increased nicotine preference in heterozygous individuals. Focussed SNP analysis of the human SLIT3 locus in cohorts from UK (n=863) and Finland (n=1715) identified two variants associated with cigarette consumption and likelihood of cessation. Characterisation of slit3 mutant larvae and adult fish revealed decreased sensitivity to the dopaminergic and serotonergic antagonist amisulpride, known to affect startle reflex that is correlated with addiction in humans, and increased htr1aa mRNA expression in mutant larvae. No effect on neuronal pathfinding was detected. These findings reveal a role for SLIT3 in development of pathways affecting responses to nicotine in zebrafish and smoking in humans.
Collapse
Affiliation(s)
- Judit García-González
- School of Biological and Chemical Sciences, Queen Mary, University of LondonLondonUnited Kingdom
| | - Alistair J Brock
- School of Biological and Chemical Sciences, Queen Mary, University of LondonLondonUnited Kingdom
| | - Matthew O Parker
- School of Pharmacy and Biomedical Science, University of PortsmouthPortsmouthUnited Kingdom
| | - Riva J Riley
- School of Biological and Chemical Sciences, Queen Mary, University of LondonLondonUnited Kingdom
| | - David Joliffe
- Barts and The London School of Medicine and Dentistry, Blizard InstituteLondonUnited Kingdom
| | - Ari Sudwarts
- School of Biological and Chemical Sciences, Queen Mary, University of LondonLondonUnited Kingdom
| | - Muy-Teck Teh
- Centre for Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and DentistryLondonUnited Kingdom
| | - Elisabeth M Busch-Nentwich
- Wellcome Trust Sanger InstituteCambridgeUnited Kingdom
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, University of CambridgeCambridgeUnited Kingdom
| | | | - Adrian R Martineau
- Barts and The London School of Medicine and Dentistry, Blizard InstituteLondonUnited Kingdom
| | - Jaakko Kaprio
- Institute for Molecular Medicine FIMM, HiLIFEHelsinkiFinland
- Department of Public Health, Faculty of Medicine, University of HelsinkiHelsinkiFinland
| | | | - Valerie Kuan
- Institute of Cardiovascular Science, University College LondonLondonUnited Kingdom
| | - Robert T Walton
- Barts and The London School of Medicine and Dentistry, Blizard InstituteLondonUnited Kingdom
| | - Caroline H Brennan
- School of Biological and Chemical Sciences, Queen Mary, University of LondonLondonUnited Kingdom
| |
Collapse
|
5
|
Exploratory locomotion, a predictor of addiction vulnerability, is oligogenic in rats selected for this phenotype. Proc Natl Acad Sci U S A 2019; 116:13107-13115. [PMID: 31182603 PMCID: PMC6600920 DOI: 10.1073/pnas.1820410116] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Artificially selected model organisms can reveal hidden features of the genetic architecture of the complex disorders that they model. Addictions are disease phenotypes caused by different intermediate phenotypes and pathways and thereby are potentially highly polygenic. High responder (bHR) and low responder (bLR) rat lines have been selectively bred (b) for exploratory locomotion (EL), a behavioral phenotype correlated with novelty-seeking, impulsive response to reward, and vulnerability to addiction, and is inversely correlated with spontaneous anxiety and depression-like behaviors. The rapid response to selection indicates loci of large effect for EL. Using exome sequencing of HR and LR rats, we identified alleles in gene-coding regions that segregate between the two lines. Quantitative trait locus (QTL) analysis in F2 rats derived from a bHR × bLR intercross confirmed that these regions harbored genes affecting EL. The combined effects of the seven genome-wide significant QTLs accounted for approximately one-third of the total variance in EL, and two-thirds of the variance attributable to genetic factors, consistent with an oligogenic architecture of EL estimated both from the phenotypic distribution of F2 animals and rapid response to selection. Genetic association in humans linked APBA2, the ortholog of the gene at the center of the strongest QTL, with substance use disorders and related behavioral phenotypes. Our finding is also convergent with molecular and animal behavioral studies implicating Apba2 in locomotion. These results provide multilevel evidence for genes/loci influencing EL. They shed light on the genetic architecture of oligogenicity in animals artificially selected for a phenotype modeling a more complex disorder in humans.
Collapse
|
6
|
Bell RL, Hauser S, Rodd ZA, Liang T, Sari Y, McClintick J, Rahman S, Engleman EA. A Genetic Animal Model of Alcoholism for Screening Medications to Treat Addiction. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 126:179-261. [PMID: 27055615 PMCID: PMC4851471 DOI: 10.1016/bs.irn.2016.02.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The purpose of this review is to present up-to-date pharmacological, genetic, and behavioral findings from the alcohol-preferring P rat and summarize similar past work. Behaviorally, the focus will be on how the P rat meets criteria put forth for a valid animal model of alcoholism with a highlight on its use as an animal model of polysubstance abuse, including alcohol, nicotine, and psychostimulants. Pharmacologically and genetically, the focus will be on the neurotransmitter and neuropeptide systems that have received the most attention: cholinergic, dopaminergic, GABAergic, glutamatergic, serotonergic, noradrenergic, corticotrophin releasing hormone, opioid, and neuropeptide Y. Herein, we sought to place the P rat's behavioral and neurochemical phenotypes, and to some extent its genotype, in the context of the clinical literature. After reviewing the findings thus far, this chapter discusses future directions for expanding the use of this genetic animal model of alcoholism to identify molecular targets for treating drug addiction in general.
Collapse
Affiliation(s)
- R L Bell
- Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, United States.
| | - S Hauser
- Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Z A Rodd
- Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - T Liang
- Indiana University School of Medicine, Indianapolis, IN, United States
| | - Y Sari
- University of Toledo, Toledo, OH, United States
| | - J McClintick
- Center for Medical Genomics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - S Rahman
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD, United States
| | - E A Engleman
- Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
7
|
Meyer AC, Bardo MT. Amphetamine self-administration and dopamine function: assessment of gene × environment interactions in Lewis and Fischer 344 rats. Psychopharmacology (Berl) 2015; 232:2275-85. [PMID: 25566972 PMCID: PMC4465863 DOI: 10.1007/s00213-014-3854-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 12/22/2014] [Indexed: 12/01/2022]
Abstract
RATIONALE Previous research suggests both genetic and environmental influences on substance abuse vulnerability. OBJECTIVES The current work sought to investigate the interaction of genes and environment on the acquisition of amphetamine self-administration as well as amphetamine-stimulated dopamine (DA) release in nucleus accumbens shell using in vivo microdialysis. METHODS Inbred Lewis (LEW) and Fischer (F344) rat strains were raised in either an enriched condition (EC), social condition (SC), or isolated condition (IC). Acquisition of amphetamine self-administration (0.1 mg/kg/infusion) was determined across an incrementing daily fixed ratio (FR) schedule. In a separate cohort of rats, extracellular DA and the metabolite 3,4-dihydroxyphenylacetic acid (DOPAC) were measured in the nucleus accumbens shell following an acute amphetamine injection (1 mg/kg). RESULTS "Addiction-prone" LEW rats had greater acquisition of amphetamine self-administration on a FR1 schedule compared to "addiction-resistant" F344 rats when raised in the SC environment. These genetic differences were negated in both the EC and IC environments, with enrichment buffering against self-administration and isolation enhancing self-administration in both strains. On a FR5 schedule, the isolation-induced increase in amphetamine self-administration was greater in F344 than LEW rats. While no group differences were obtained in extracellular DA, gene × environment differences were obtained in extracellular levels of the metabolite DOPAC. In IC rats only, LEW rats showed attenuation in the amphetamine-induced decrease in DOPAC compared to F344 rats. IC LEW rats also had an attenuated DOPAC response to amphetamine compared to EC LEW rats. CONCLUSIONS The current results demonstrate gene × environment interactions in amphetamine self-administration and amphetamine-induced changes in extracellular DOPAC in nucleus accumbens (NAc) shell. However, the behavioral and neurochemical differences were not related directly, indicating that mechanisms independent of DA metabolism in NAc shell likely mediate the gene × environment effects in amphetamine self-administration.
Collapse
Affiliation(s)
- Andrew C. Meyer
- Department of Psychiatry, University of Vermont, Burlington, VT, USA
| | - Michael T. Bardo
- Department of Psychology, University of Kentucky, Lexington, KY, USA,Center for Drug Abuse Research Translation, Lexington, KY, USA
| |
Collapse
|
8
|
Cunningham CL. Genetic relationship between ethanol-induced conditioned place preference and other ethanol phenotypes in 15 inbred mouse strains. Behav Neurosci 2014; 128:430-45. [PMID: 24841742 DOI: 10.1037/a0036459] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The genetic relationships between different behaviors used to index the rewarding or reinforcing effects of alcohol are poorly understood. To address this issue, ethanol-induced conditioned place preference (CPP) was tested in a genetically diverse panel of inbred mouse strains, and strain means from this study and other inbred strain studies were used to examine the genetic correlation between CPP and several ethanol-related phenotypes, including activity measures recorded during CPP training and testing. Mice from each strain were exposed to a well-characterized unbiased place conditioning procedure using ethanol doses of 2 or 4 g/kg; an additional group from each strain was exposed to saline alone on all trials. Genotype had a significant effect on CPP, basal locomotor activity, ethanol-stimulated activity, and the effect of repeated ethanol exposure on activity. Correlational analyses showed significant negative genetic correlations between CPP and sweetened ethanol intake and between CPP and test session activity, as well as a significant positive genetic correlation between CPP and chronic ethanol withdrawal severity. Moreover, there was a trend toward a positive genetic correlation between CPP and ethanol-induced conditioned taste aversion. These genetic correlations suggest overlap in the genetic mechanisms underlying CPP and each of these traits. The patterns of genetic relationships suggest a greater impact of ethanol's aversive effects on drinking and a greater impact of ethanol's rewarding effects on CPP. Overall, these data support the idea that genotype influences ethanol's rewarding effect, a factor that may contribute importantly to addictive vulnerability.
Collapse
|
9
|
Becker HC, Ron D. Animal models of excessive alcohol consumption: recent advances and future challenges. Alcohol 2014; 48:205-8. [PMID: 24811154 PMCID: PMC5081257 DOI: 10.1016/j.alcohol.2014.04.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 04/02/2014] [Indexed: 12/12/2022]
Affiliation(s)
- Howard C Becker
- Charleston Alcohol Research Center, Department of Psychiatry and Neurosciences, Medical University of South Carolina, Charleston, SC 29425, USA; RHJ Department of Veterans Affairs Medical Center, Charleston, SC 29425, USA.
| | - Dorit Ron
- Gallo Research Center, Department of Neurology, University of California San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
10
|
Bell RL, Rodd ZA, Engleman EA, Toalston JE, McBride WJ. Scheduled access alcohol drinking by alcohol-preferring (P) and high-alcohol-drinking (HAD) rats: modeling adolescent and adult binge-like drinking. Alcohol 2014; 48:225-34. [PMID: 24290311 DOI: 10.1016/j.alcohol.2013.10.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 09/12/2013] [Accepted: 10/03/2013] [Indexed: 01/05/2023]
Abstract
Binge alcohol drinking continues to be a public health concern among today's youth and young adults. Moreover, an early onset of alcohol use, which usually takes the form of binge drinking, is associated with a greater risk for developing alcohol use disorders. Given this, it is important to examine this behavior in rat models of alcohol abuse and dependence. Toward that end, the objective of this article is to review findings on binge-like drinking by selectively bred alcohol-preferring (P) and high-alcohol-drinking (HAD) lines of rats. As reviewed elsewhere in this special issue, the P line meets all, and the HAD line meets most, of the proposed criteria for an animal model of alcoholism. One model of binge drinking is scheduled ethanol access during the dark cycle, which has been used by our laboratory for over 20 years. Our laboratory has also adopted a protocol involving the concurrent presentation of multiple ethanol concentrations. When this protocol is combined with limited access, ethanol intake is maximized yielding blood ethanol levels (BELs) in excess, sometimes greatly in excess, of 80 mg%. By extending these procedures to include multiple scheduled ethanol access sessions during the dark cycle for 5 consecutive days/week, P and HAD rats consume in 3 or 4 h as much as, if not more than, the amount usually consumed in a 24 h period. Under certain conditions, using the multiple scheduled access procedure, BELs exceeding 200 mg% can be achieved on a daily basis. An overview of findings from studies with other selectively bred, inbred, and outbred rats places these findings in the context of the existing literature. Overall, the findings support the use of P and HAD rats as animal models to study binge-like alcohol drinking and reveal that scheduled access procedures will significantly increase ethanol intake by other rat lines and strains as well.
Collapse
Affiliation(s)
- Richard L Bell
- Institute of Psychiatric Research, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Zachary A Rodd
- Institute of Psychiatric Research, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Eric A Engleman
- Institute of Psychiatric Research, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jamie E Toalston
- Institute of Psychiatric Research, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - William J McBride
- Institute of Psychiatric Research, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
11
|
Linsenbardt DN, Boehm SL. Determining the heritability of ethanol-induced locomotor sensitization in mice using short-term behavioral selection. Psychopharmacology (Berl) 2013; 230:267-78. [PMID: 23732838 PMCID: PMC3809338 DOI: 10.1007/s00213-013-3151-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 05/15/2013] [Indexed: 10/26/2022]
Abstract
RATIONALE Sensitization to the locomotor stimulant effects of alcohol (ethanol) is thought to be a heritable risk factor for the development of alcoholism that reflects progressive increases in the positive motivational effects of this substance. However, very little is known about the degree to which genes influence this complex behavioral phenomenon. OBJECTIVES The primary goal of this work was to determine the heritability of ethanol-induced locomotor sensitization in mice using short-term behavioral selection. METHODS Genetically heterogeneous C57BL/6J (B6) × DBA/2J (D2) F2 mice were generated from B6D2F1 progenitors, phenotyped for the expression of locomotor sensitization, and bred for high (HLS) and low (LLS) expression of this behavior. Selective breeding was conducted in two independently generated replicate sets to increase the confidence of our heritability estimates and for future correlated trait analyses. RESULTS Large and significant differences in locomotor sensitization between HLS and LLS lines were evident by the fourth generation. Twenty-two percent of the observed line difference(s) were attributable to genes (h² = .22). Interestingly, locomotor activity in the absence of ethanol was genetically correlated with ethanol sensitization; high activity was associated with high sensitization. CONCLUSIONS That changes in ethanol sensitivity following repeated exposures are genetically regulated highlights the relevance of studies aimed at determining how genes regulate susceptibility to ethanol-induced behavioral and neural adaptations. As alcohol use and abuse disorders develop following many repeated alcohol exposures, these data emphasize the need for future studies determining the genetic basis by which changes in response to alcohol occur.
Collapse
|
12
|
Rosenwasser AM, Fixaris MC, Crabbe JC, Brooks PC, Ascheid S. Escalation of intake under intermittent ethanol access in diverse mouse genotypes. Addict Biol 2013; 18:496-507. [PMID: 22862671 DOI: 10.1111/j.1369-1600.2012.00481.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Experimental animals offered continuous 24-hour free choice access to ethanol rarely display voluntary ethanol consumption at levels sufficient to induce intoxication or to engender dependence. One of the simplest ways to increase voluntary ethanol intake is to impose temporal limitations on ethanol availability. Escalation of ethanol intake has been observed in both rats and mice under a variety of different schedules of alternating ethanol access and deprivation. Although such effects have been observed in a variety of rat and mouse genotypes, little is known concerning possible genetic correlations between responses to intermittent ethanol access and other ethanol-related phenotypes. In the present study, we examined the effects of intermittent ethanol access in mouse genotypes characterized by divergent responses to ethanol in other domains, including ethanol preference (C57BL/6J and C3H/HeJ mice), binge-like ethanol drinking (High Drinking in the Dark and HS/Npt mice) and ethanol withdrawal severity (Withdrawal Seizure-Prone and Withdrawal Seizure-Resistant mice). Although intermittent ethanol access resulted in escalated ethanol intake in all tested genotypes, the robustness of the effect varied across genotypes. On the other hand, we saw no evidence that the effects of intermittent access are correlated with either binge-like drinking or withdrawal severity, and only weak evidence for a genetic correlation with baseline ethanol preference. Thus, these different ethanol-related traits appear to depend on largely unique sets of genetic mediators.
Collapse
Affiliation(s)
| | | | | | - Peter C. Brooks
- Department of Psychology; University of Maine; Orono; ME; USA
| | - Sonja Ascheid
- Department of Psychology; University of Maine; Orono; ME; USA
| |
Collapse
|
13
|
Crabbe JC, Kendler KS, Hitzemann RJ. Modeling the diagnostic criteria for alcohol dependence with genetic animal models. Curr Top Behav Neurosci 2013; 13:187-221. [PMID: 21910077 PMCID: PMC3371181 DOI: 10.1007/7854_2011_162] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A diagnosis of alcohol dependence (AD) using the DSM-IV-R is categorical, based on an individual's manifestation of three or more symptoms from a list of seven. AD risk can be traced to both genetic and environmental sources. Most genetic studies of AD risk implicitly assume that an AD diagnosis represents a single underlying genetic factor. We recently found that the criteria for an AD diagnosis represent three somewhat distinct genetic paths to individual risk. Specifically, heavy use and tolerance versus withdrawal and continued use despite problems reflected separate genetic factors. However, some data suggest that genetic risk for AD is adequately described with a single underlying genetic risk factor. Rodent animal models for alcohol-related phenotypes typically target discrete aspects of the complex human AD diagnosis. Here, we review the literature derived from genetic animal models in an attempt to determine whether they support a single-factor or multiple-factor genetic structure. We conclude that there is modest support in the animal literature that alcohol tolerance and withdrawal reflect distinct genetic risk factors, in agreement with our human data. We suggest areas where more research could clarify this attempt to align the rodent and human data.
Collapse
Affiliation(s)
- John C Crabbe
- Portland Alcohol Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA.
| | | | | |
Collapse
|
14
|
Ponomarev I. Epigenetic control of gene expression in the alcoholic brain. Alcohol Res 2013; 35:69-76. [PMID: 24313166 PMCID: PMC3860426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Chronic alcohol exposure causes widespread changes in brain gene expression in humans and animal models. Many of these contribute to cellular adaptations that ultimately lead to behavioral tolerance and alcohol dependence. There is an emerging appreciation for the role of epigenetic processes in alcohol-induced changes in brain gene expression and behavior. For example, chronic alcohol exposure produces changes in DNA and histone methylation, histone acetylation, and microRNA expression that affect expression of multiple genes in various types of brain cells (i.e., neurons and glia) and contribute to brain pathology and brain plasticity associated with alcohol abuse and dependence. Drugs targeting the epigenetic "master regulators" are emerging as potential therapeutics for neurodegenerative disorders and drug addiction.
Collapse
|
15
|
Kendler KS, Aggen SH, Prescott CA, Crabbe J, Neale MC. Evidence for multiple genetic factors underlying the DSM-IV criteria for alcohol dependence. Mol Psychiatry 2012; 17:1306-15. [PMID: 22105626 PMCID: PMC3371163 DOI: 10.1038/mp.2011.153] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 09/12/2011] [Accepted: 10/17/2011] [Indexed: 12/19/2022]
Abstract
To determine the number of genetic factors underlying the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV) criteria for alcohol dependence (AD), we conducted structural equation twin modeling for seven AD criteria, plus two summary screening questions, in 7133 personally interviewed male and female twins from the Virginia Adult Twin Study of Psychiatric and Substance Use Disorders, who reported lifetime alcohol consumption. The best-fit twin model required three genetic and two unique environmental common factors, and criterion-specific unique environmental factors. The first genetic factor was defined by high loadings for the probe question about quantity and frequency of alcohol consumption, and tolerance criterion. The second genetic factor loaded strongly on the probe question about self-recognition of alcohol-related problems and AD criteria for loss of control, desire to quit, preoccupation and activities given up. The third genetic factor had high loadings for withdrawal and continued use despite the problems criteria. Genetic factor scores derived from these three factors differentially predicted patterns of comorbidity, educational status and other historical/clinical features of AD. The DSM-IV syndrome of AD does not reflect a single dimension of genetic liability, rather, these criteria reflect three underlying dimensions that index risk for: (i) tolerance and heavy use; (ii) loss of control with alcohol associated social dysfunction and (iii) withdrawal and continued use despite problems. While tentative and in need of replication, these results, consistent with the rodent literature, were validated by examining predictions of the genetic factor scores and have implications for gene-finding efforts in AD.
Collapse
Affiliation(s)
- K S Kendler
- Department of Psychiatry, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.
| | | | | | | | | |
Collapse
|
16
|
Sabino V, Kwak J, Rice KC, Cottone P. Pharmacological characterization of the 20% alcohol intermittent access model in Sardinian alcohol-preferring rats: a model of binge-like drinking. Alcohol Clin Exp Res 2012; 37:635-43. [PMID: 23126554 DOI: 10.1111/acer.12008] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 08/22/2012] [Indexed: 01/23/2023]
Abstract
BACKGROUND Binge drinking is defined as a pattern of alcohol drinking that brings blood alcohol levels to 80 mg/dl or above. In this study, we pharmacologically characterized the intermittent access to 20% ethanol (EtOH) model (Wise, Psychopharmacologia 1973;29:203) in Sardinian alcohol-preferring (sP) rats to determine to which of the compounds known to reduce drinking in specific animal models this binge-like drinking was sensitive to. METHODS Adult male sP rats were divided into 2 groups and allowed to drink either 20% v/v alcohol or water for 24 hours on alternate days (Monday, Wednesday, and Friday) or 10% v/v alcohol and water for 24 hours every day. After stabilization of their intake, both groups were administered 3 pharmacological agents with different mechanisms of action, naltrexone-an opioid receptor antagonist, SCH 39166-a dopamine D1 receptor antagonist, and R121919-a Corticotropin-Releasing Factor 1 (CRF1 ) receptor antagonist, and their effects on alcohol and water intake were determined. RESULTS Intermittent 20% alcohol ("Wise") procedure in sP rats led to binge-like drinking. Alcohol drinking was suppressed by naltrexone and by SCH 39166, but not by R121919. Finally, naltrexone was more potent in reducing alcohol drinking in the intermittent 20% binge-drinking group than in the 10% continuous access drinking group. CONCLUSIONS The Wise procedure in sP rats induces binge-like drinking, which appears opioid- and dopamine-receptor mediated; the CRF1 system, on the other hand, does not appear to be involved. In addition, our results suggest that naltrexone is particularly effective in reducing binge drinking. Such different pharmacological responses may apply to subtypes of alcoholic patients who differ in their motivation to drink, and may eventually contribute to treatment response.
Collapse
Affiliation(s)
- Valentina Sabino
- Laboratory of Addictive Disorders, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA.
| | | | | | | |
Collapse
|
17
|
Bell RL, Sable HJ, Colombo G, Hyytia P, Rodd ZA, Lumeng L. Animal models for medications development targeting alcohol abuse using selectively bred rat lines: neurobiological and pharmacological validity. Pharmacol Biochem Behav 2012; 103:119-55. [PMID: 22841890 PMCID: PMC3595005 DOI: 10.1016/j.pbb.2012.07.007] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 07/07/2012] [Accepted: 07/18/2012] [Indexed: 02/04/2023]
Abstract
The purpose of this review paper is to present evidence that rat animal models of alcoholism provide an ideal platform for developing and screening medications that target alcohol abuse and dependence. The focus is on the 5 oldest international rat lines that have been selectively bred for a high alcohol-consumption phenotype. The behavioral and neurochemical phenotypes of these rat lines are reviewed and placed in the context of the clinical literature. The paper presents behavioral models for assessing the efficacy of pharmaceuticals for the treatment of alcohol abuse and dependence in rodents, with particular emphasis on rats. Drugs that have been tested for their effectiveness in reducing alcohol/ethanol consumption and/or self-administration by these rat lines and their putative site of action are summarized. The paper also presents some current and future directions for developing pharmacological treatments targeting alcohol abuse and dependence.
Collapse
Affiliation(s)
- Richard L. Bell
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Helen J.K. Sable
- Department of Psychology, University of Memphis, Memphis, Tennessee, USA
| | - Giancarlo Colombo
- Neuroscience Institute, National Research Council of Italy, Section of Cagliari, Monserrato, Italy
| | - Petri Hyytia
- Institute of Biomedicine, University of Helsinki, Finland
| | - Zachary A. Rodd
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Lawrence Lumeng
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
18
|
Contet C. Gene Expression Under the Influence: Transcriptional Profiling of Ethanol in the Brain. CURRENT PSYCHOPHARMACOLOGY 2012; 1:301-314. [PMID: 24078902 PMCID: PMC3783024 DOI: 10.2174/2211556011201040301] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sensitivity to ethanol intoxication, propensity to drink ethanol and vulnerability to develop alcoholism are all influenced by genetic factors. Conversely, exposure to ethanol or subsequent withdrawal produce gene expression changes, which, in combination with environmental variables, may participate in the emergence of compulsive drinking and relapse. The present review offers an integrated perspective on brain gene expression profiling in rodent models of predisposition to differential ethanol sensitivity or consumption, in rats and mice subjected to acute or chronic ethanol exposure, as well as in human alcoholics. The functional categories over-represented among differentially expressed genes suggest that the transcriptional effects of chronic ethanol consumption contribute to the neuroplasticity and neurotoxicity characteristic of alcoholism. Importantly, ethanol produces distinct transcriptional changes within the different brain regions involved in intoxication, reinforcement and addiction. Special emphasis is put on recent profiling studies that have provided some insights into the molecular mechanisms potentially mediating genome-wide regulation of gene expression by ethanol. In particular, current evidence for a role of transcription factors, chromatin remodeling and microRNAs in coordinating the expression of large sets of genes in animals predisposed to excessive ethanol drinking or exposed to protracted abstinence, as well as in human alcoholics, is presented. Finally, studies that have compared ethanol with other drugs of abuse have highlighted common gene expression patterns that may play a central role in drug addiction. The availability of novel technologies and a focus on mechanistic approaches are shaping the future of ethanol transcriptomics.
Collapse
Affiliation(s)
- Candice Contet
- The Scripps Research Institute, Committee on the Neurobiology of Addictive Disorders, La Jolla, CA, USA
| |
Collapse
|
19
|
Crabbe JC, Kruse LC, Colville AM, Cameron AJ, Spence SE, Schlumbohm JP, Huang LC, Metten P. Ethanol sensitivity in high drinking in the dark selectively bred mice. Alcohol Clin Exp Res 2012; 36:1162-70. [PMID: 22316249 PMCID: PMC3349784 DOI: 10.1111/j.1530-0277.2012.01735.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 12/02/2011] [Indexed: 11/30/2022]
Abstract
BACKGROUND Mouse lines are being selectively bred in replicate for high blood ethanol concentrations (BECs) achieved after a short period of ethanol (EtOH) drinking early in the circadian dark phase. High Drinking in the Dark-1 (HDID-1) mice were in selected generation S18, and the replicate HDID-2 line in generation S11. METHODS To determine other traits genetically correlated with high DID, we compared naïve animals from both lines with the unselected, segregating progenitor stock, HS/Npt. Differences between HDID-1 and HS would imply commonality of genetic influences on DID and these traits. RESULTS HDID-1 mice showed less basal activity, greater EtOH stimulated activity, and greater sensitivity to EtOH-induced foot slips than HS. They showed lesser sensitivity to acute EtOH hypothermia and longer duration loss of righting reflex than HS. HDID-1 and control HS lines did not differ in sensitivity on 2 measures of intoxication, the balance beam and the accelerating rotarod. None of the acute response results could be explained by differences in EtOH metabolism. HDID-2 differed from HS on some, but not all, of the above responses. CONCLUSIONS These results show that some EtOH responses share common genetic control with reaching high BECs after DID, a finding consistent with other data regarding genetic contributions to EtOH responses.
Collapse
Affiliation(s)
- John C Crabbe
- Portland Alcohol Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University, and VA Medical Center, Portland, OR 97239, USA.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Wilhelm CJ, Mitchell SH. Acute ethanol does not always affect delay discounting in rats selected to prefer or avoid ethanol. Alcohol Alcohol 2012; 47:518-24. [PMID: 22645038 DOI: 10.1093/alcalc/ags059] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS The purpose of this study was to determine whether animals predisposed to prefer alcohol possess an altered acute response to alcohol on a delay discounting task relative to animals predisposed to avoid alcohol. METHODS We used rats selected to prefer or avoid alcohol to assess whether genotype moderates changes in delay discounting induced by acute ethanol exposure. Selectively bred rat lines of Sardinian alcohol-preferring (sP; n = 8) and non-preferring (sNP; n = 8) rats, and alko alcohol (AA, n = 8) and alko non-alcohol (ANA, n = 8) rats were trained in an adjusting amount task to assess delay discounting. RESULTS There were no significant effects of line on baseline discounting; however, both lines of alcohol-preferring rats exhibit slowed reaction times. Acute ethanol (0, 0.25, 0.5 g/kg) treatment also had no effect on delay discounting in any of the selectively bred rat lines. CONCLUSION Our data indicate that in these lines of animals, alcohol preference or avoidance has no impact on delay discounting following acute ethanol exposure. It is possible that other genetic models or lines may be differentially affected by alcohol and exhibit qualitatively and quantitatively different responses in delay discounting tasks.
Collapse
Affiliation(s)
- Clare J Wilhelm
- Department of Psychiatry, Oregon Health and Science University, Portland, OR 97239, USA.
| | | |
Collapse
|
21
|
Gene coexpression networks in human brain identify epigenetic modifications in alcohol dependence. J Neurosci 2012; 32:1884-97. [PMID: 22302827 DOI: 10.1523/jneurosci.3136-11.2012] [Citation(s) in RCA: 298] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Alcohol abuse causes widespread changes in gene expression in human brain, some of which contribute to alcohol dependence. Previous microarray studies identified individual genes as candidates for alcohol phenotypes, but efforts to generate an integrated view of molecular and cellular changes underlying alcohol addiction are lacking. Here, we applied a novel systems approach to transcriptome profiling in postmortem human brains and generated a systemic view of brain alterations associated with alcohol abuse. We identified critical cellular components and previously unrecognized epigenetic determinants of gene coexpression relationships and discovered novel markers of chromatin modifications in alcoholic brain. Higher expression levels of endogenous retroviruses and genes with high GC content in alcoholics were associated with DNA hypomethylation and increased histone H3K4 trimethylation, suggesting a critical role of epigenetic mechanisms in alcohol addiction. Analysis of cell-type-specific transcriptomes revealed remarkable consistency between molecular profiles and cellular abnormalities in alcoholic brain. Based on evidence from this study and others, we generated a systems hypothesis for the central role of chromatin modifications in alcohol dependence that integrates epigenetic regulation of gene expression with pathophysiological and neuroadaptive changes in alcoholic brain. Our results offer implications for epigenetic therapeutics in alcohol and drug addiction.
Collapse
|
22
|
Buck KJ. Discovering genes involved in alcohol dependence and other alcohol responses: role of animal models. Alcohol Res 2012; 34:367-74. [PMID: 23134054 PMCID: PMC3860408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The genetic determinants of alcoholism still are largely unknown, hindering effective treatment and prevention. Systematic approaches to gene discovery are critical if novel genes and mechanisms involved in alcohol dependence are to be identified. Although no animal model can duplicate all aspects of alcoholism in humans, robust animal models for specific alcohol-related traits, including physiological alcohol dependence and associated withdrawal, have been invaluable resources. Using a variety of genetic animal models, the identification of regions of chromosomal DNA that contain a gene or genes which affect a complex phenotype (i.e., quantitative trait loci [QTLs]) has allowed unbiased searches for candidate genes. Several QTLs with large effects on alcohol withdrawal severity in mice have been detected, and fine mapping of these QTLs has placed them in small intervals on mouse chromosomes 1 and 4 (which correspond to certain regions on human chromosomes 1 and 9). Subsequent work led to the identification of underlying quantitative trait genes (QTGs) (e.g., Mpdz) and high-quality QTG candidates (e.g., Kcnj9 and genes involved in mitochondrial respiration and oxidative stress) and their plausible mechanisms of action. Human association studies provide supporting evidence that these QTLs and QTGs may be directly relevant to alcohol risk factors in clinical populations.
Collapse
|
23
|
Abstract
Nicotine addiction is a complex process that begins with self-administration. Consequently, this process has been studied extensively using animal models. A person is usually not called "smoker" if s/he has smoked for a week or a month in a lifetime; in general, a smoker has been smoking for many years. Furthermore, a smoker has free access to cigarettes and can smoke whenever she/he wants, provided there are no social/legal restraints. Subsequently, in an animal model of tobacco addiction, it will be desirable to expose the animal to free access nicotine for 24 hours/day for many weeks, starting at different stages of development.
Collapse
Affiliation(s)
- Allan C Collins
- Institute for Behavioral Genetics, University of Colorado, Boulder, Colorado, USA
| | | | | | | |
Collapse
|
24
|
Becker HC, Lopez MF, Doremus-Fitzwater TL. Effects of stress on alcohol drinking: a review of animal studies. Psychopharmacology (Berl) 2011; 218:131-56. [PMID: 21850445 PMCID: PMC3247761 DOI: 10.1007/s00213-011-2443-9] [Citation(s) in RCA: 163] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 08/02/2011] [Indexed: 11/26/2022]
Abstract
RATIONALE While stress is often proposed to play a significant role in influencing alcohol consumption, the relationship between stress and alcohol is complex and poorly understood. Over several decades, stress effects on alcohol drinking have been studied using a variety of animal models and experimental procedures, yet this large body of literature has generally produced equivocal results. OBJECTIVES This paper reviews results from animal studies in which alcohol consumption is evaluated under conditions of acute/sub-chronic stress exposure or models of chronic stress exposure. Evidence also is presented indicating that chronic intermittent alcohol exposure serves as a stressor that consequently influences drinking. RESULTS The effects of various acute/sub-chronic stress procedures on alcohol consumption have generally been mixed, but most study outcomes suggest either no effect or decreased alcohol consumption. In contrast, most studies indicate that chronic stress, especially when administered early in development, results in elevated drinking later in adulthood. Chronic alcohol exposure constitutes a potent stressor itself, and models of chronic intermittent alcohol exposure reliably produce escalation of voluntary alcohol consumption. CONCLUSIONS A complex and dynamic interplay among a wide array of genetic, biological, and environmental factors govern stress responses, regulation of alcohol drinking, and the circumstances in which stress modulates alcohol consumption. Suggestions for future directions and new approaches are presented that may aid in developing more sensitive and valid animal models that not only better mimic the clinical situation, but also provide greater understanding of mechanisms that underlie the complexity of stress effects on alcohol drinking.
Collapse
Affiliation(s)
- Howard C Becker
- Department of Psychiatry and Behavioral Sciences, Charleston Alcohol Research Center, Center for Drug and Alcohol Programs, 67 President Street, MSC 861, Charleston, SC 29425, USA.
| | | | | |
Collapse
|
25
|
Logan RW, McCulley WD, Seggio JA, Rosenwasser AM. Effects of withdrawal from chronic intermittent ethanol vapor on the level and circadian periodicity of running-wheel activity in C57BL/6J and C3H/HeJ mice. Alcohol Clin Exp Res 2011; 36:467-76. [PMID: 22013893 DOI: 10.1111/j.1530-0277.2011.01634.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Alcohol withdrawal is associated with behavioral and chronobiological disturbances that may persist during protracted abstinence. We previously reported that C57BL/6J (B6) mice show marked but temporary reductions in running-wheel activity, and normal free-running circadian rhythms, following a 4-day chronic intermittent ethanol (CIE) vapor exposure (16 hours of ethanol vapor exposure alternating with 8 hours of withdrawal). In the present experiments, we extend these observations in 2 ways: (i) by examining post-CIE locomotor activity in C3H/HeJ (C3H) mice, an inbred strain characterized by high sensitivity to ethanol withdrawal, and (ii) by directly comparing the responses of B6 and C3H mice to a longer-duration CIE protocol. METHODS In Experiment 1, C3H mice were exposed to the same 4-day CIE protocol used in our previous study with B6 mice (referred to here as the 1-cycle CIE protocol). In Experiment 2, C3H and B6 mice were exposed to 3 successive 4-day CIE cycles, each separated by 2 days of withdrawal (the 3-cycle CIE protocol). Running-wheel activity was monitored prior to and following CIE, and post-CIE activity was recorded in constant darkness to allow assessment of free-running circadian period and phase. RESULTS C3H mice displayed pronounced reductions in running-wheel activity that persisted for the duration of the recording period (up to 30 days) following both 1-cycle (Experiment 1) and 3-cycle (Experiment 2) CIE protocols. In contrast, B6 mice showed reductions in locomotor activity that persisted for about 1 week following the 3-cycle CIE protocol, similar to the results of our previous study using a 1-cycle protocol in this strain. Additionally, C3H mice showed significant shortening of free-running period following the 3-cycle, but not the 1-cycle, CIE protocol, while B6 mice showed normal free-running rhythms. CONCLUSIONS These results reveal genetic differences in the persistence of ethanol withdrawal-induced hypo-locomotion. In addition, chronobiological alterations during extended abstinence may depend on both genetic susceptibility and an extended prior withdrawal history. The present data establish a novel experimental model for long-term behavioral and circadian disruptions associated with ethanol withdrawal.
Collapse
Affiliation(s)
- Ryan W Logan
- Graduate School of Biomedical Sciences, University of Maine, Orono, Maine 04469-5742, USA
| | | | | | | |
Collapse
|
26
|
Crabbe JC, Spence SE, Brown LL, Metten P. Alcohol preference drinking in a mouse line selectively bred for high drinking in the dark. Alcohol 2011; 45:427-40. [PMID: 21194877 DOI: 10.1016/j.alcohol.2010.12.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 11/22/2010] [Accepted: 12/03/2010] [Indexed: 12/21/2022]
Abstract
We have selectively bred mice that reach very high blood ethanol concentrations (BECs) after drinking from a single bottle of 20% ethanol. High Drinking in the Dark (HDID-1) mice drink nearly 6g/kg ethanol in 4h and reach average BECs of more than 1.0mg/mL. Previous studies suggest that DID and two-bottle preference for 10% ethanol with continuous access are influenced by many of the same genes. We therefore asked whether HDID-1 mice would differ from the HS/Npt control stock on two-bottle preference drinking. We serially offered mice access to 3-40% ethanol in tap water versus tap water. For ethanol concentrations between 3 and 20%, HDID-1 and HS/Npt controls did not differ in two-bottle preference drinking. At the highest concentrations, the HS/Npt mice drank more than the HDID-1 mice. We also tested the same mice for preference for two concentrations each of quinine, sucrose, and saccharin. Curiously, the mice showed preference ratios (volume of tastant/total fluid drunk) of about 50% for all tastants and concentrations. Thus, neither genotype showed either preference or avoidance for any tastant after high ethanol concentrations. Therefore, we compared naive groups of HDID-1 and HS/Npt mice for tastant preference. Results from this test showed that ethanol-naive mice preferred sweet fluids and avoided quinine but the genotypes did not differ. Finally, we tested HDID-1 and HS mice for an extended period for preference for 15% ethanol versus water during a 2-h access period in the dark. After several weeks, HDID-1 mice consumed significantly more than HS. We conclude that drinking in the dark shows some genetic overlap with other tests of preference drinking, but that the degree of genetic commonality depends on the model used.
Collapse
|
27
|
Abstract
Binge drinking is prevalent and has serious biomedical consequences. In children, adolescents, and young adults, it is a prominent risk factor for later development of alcohol-use disorders. Many preclinical models have been employed to study the genetic risks for and biomedical consequences of alcohol drinking. However, these models historically did not result in blood-alcohol concentrations (BACs) exceeding 80 mg%; this relatively modest level is the threshold that currently defines a binge session, according to the NIAAA and CDC. Nevertheless, in alcohol-dependent rodents, binge drinking has been well documented. Key neurobiological substrates localized to brain reward and stress systems have been identified. Studies of newer models of binge drinking without dependence are reviewed here. In these models, rodents, non-human primates, and flies will drink enough to reach high BACs. They often display observable signs of intoxication. The neurobiological consequences of these episodes of binge drinking without dependence are reviewed, and preliminary evidence for roles for GABA, glutamate, opioid peptides, and corticotropin releasing factor are discussed, as is the need for more work to identify the antecedents and consequences of binge drinking in both animal models and humans.
Collapse
Affiliation(s)
- John C Crabbe
- Portland Alcohol Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University and VA Medical Center, Portland, Oregon 97239, USA.
| | | | | |
Collapse
|
28
|
Porcu P, O'Buckley TK, Song SC, Harenza JL, Lu L, Wang X, Williams RW, Miles MF, Morrow AL. Genetic analysis of the neurosteroid deoxycorticosterone and its relation to alcohol phenotypes: identification of QTLs and downstream gene regulation. PLoS One 2011; 6:e18405. [PMID: 21494628 PMCID: PMC3072994 DOI: 10.1371/journal.pone.0018405] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 03/07/2011] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Deoxycorticosterone (DOC) is an endogenous neurosteroid found in brain and serum, precursor of the GABAergic neuroactive steroid (3α,5α)-3,21-dihydroxypregnan-20-one (tetrahydrodeoxycorticosterone, THDOC) and the glucocorticoid corticosterone. These steroids are elevated following stress or ethanol administration, contribute to ethanol sensitivity, and their elevation is blunted in ethanol dependence. METHODOLOGY/PRINCIPAL FINDINGS To systematically define the genetic basis, regulation, and behavioral significance of DOC levels in plasma and cerebral cortex we examined such levels across 47 young adult males from C57BL/6J (B6)×DBA/2J (D2) (BXD) mouse strains for quantitative trait loci (QTL) and bioinformatics analyses of behavior and gene regulation. Mice were injected with saline or 0.075 mg/kg dexamethasone sodium salt at 8:00 am and were sacrificed 6 hours later. DOC levels were measured by radioimmunoassay. Basal cerebral cortical DOC levels ranged between 1.4 and 12.2 ng/g (8.7-fold variation, p<0.0001) with a heritability of ∼0.37. Basal plasma DOC levels ranged between 2.8 and 12.1 ng/ml (4.3-fold variation, p<0.0001) with heritability of ∼0.32. QTLs for basal DOC levels were identified on chromosomes 4 (cerebral cortex) and 14 (plasma). Dexamethasone-induced changes in DOC levels showed a 4.4-fold variation in cerebral cortex and a 4.1-fold variation in plasma, but no QTLs were identified. DOC levels across BXD strains were further shown to be co-regulated with networks of genes linked to neuronal, immune, and endocrine function. DOC levels and its responses to dexamethasone were associated with several behavioral measures of ethanol sensitivity previously determined across the BXD strains by multiple laboratories. CONCLUSIONS/SIGNIFICANCE Both basal and dexamethasone-suppressed DOC levels are positively correlated with ethanol sensitivity suggesting that the neurosteroid DOC may be a putative biomarker of alcohol phenotypes. DOC levels were also strongly correlated with networks of genes associated with neuronal function, innate immune pathways, and steroid metabolism, likely linked to behavioral phenotypes.
Collapse
Affiliation(s)
- Patrizia Porcu
- Department of Psychiatry, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Moonat S, Sakharkar AJ, Zhang H, Pandey SC. The role of amygdaloid brain-derived neurotrophic factor, activity-regulated cytoskeleton-associated protein and dendritic spines in anxiety and alcoholism. Addict Biol 2011; 16:238-50. [PMID: 21182574 DOI: 10.1111/j.1369-1600.2010.00275.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Innate anxiety appears to be a robust factor in the promotion of alcohol intake, possibly due to the anxiolytic effects of self-medication with alcohol. Brain-derived neurotrophic factor (BDNF) and its downstream target, activity-regulated cytoskeleton-associated (Arc) protein, play a role in the regulation of synaptic function and structure. In order to examine the role of the BDNF-Arc system and associated dendritic spines in the anxiolytic effects of ethanol, we investigated the effects of acute ethanol exposure on anxiety-like behaviors of alcohol-preferring (P) and -nonpreferring (NP) rats. We also examined changes in the expression of BDNF and Arc, and dendritic spine density (DSD), in amygdaloid brain regions of P and NP rats with or without ethanol exposure. It was found that in comparison with NP rats, P rats displayed innate anxiety-like behaviors, and had lower mRNA and protein levels of both BDNF and Arc, and also had lower DSD in the central amygdala (CeA) and medial amygdala (MeA), but not in the basolateral amygdala (BLA). Acute ethanol treatment had an anxiolytic effect in P, but not in NP rats, and was associated with an increase in mRNA and protein levels of BDNF and Arc, and in DSD in the CeA and MeA, but not BLA. These results suggest that innate deficits in BDNF-Arc levels, and DSD, in the CeA and MeA may be involved in the anxiety-like and excessive alcohol-drinking behaviors of P rats, as ethanol increased these amygdaloid synaptic markers and produced anxiolytic effects in P rats, but not NP rats.
Collapse
Affiliation(s)
- Sachin Moonat
- Department of Psychiatry, University of Illinois at Chicago and Jesse Brown VA Medical Center, 820 S. Damen Avenue (M/C 151). Chicago, IL 60612, USA
| | | | | | | |
Collapse
|
30
|
Crabbe JC, Phillips TJ, Belknap JK. The complexity of alcohol drinking: studies in rodent genetic models. Behav Genet 2010; 40:737-50. [PMID: 20552264 DOI: 10.1007/s10519-010-9371-z] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Accepted: 05/22/2010] [Indexed: 02/01/2023]
Abstract
Risk for alcohol dependence in humans has substantial genetic contributions. Successful rodent models generally attempt to address only selected features of the human diagnosis. Most such models target the phenotype of oral administration of alcohol solutions, usually consumption of or preference for an alcohol solution versus water. Data from rats and mice for more than 50 years have shown genetic influences on preference drinking and related phenotypes. This paper summarizes some key findings from that extensive literature. Much has been learned, including the genomic location and possible identity of several genes influencing preference drinking. We report new information from congenic lines confirming QTLs for drinking on mouse chromosomes 2 and 9. There are many strengths of the various phenotypic assays used to study drinking, but there are also some weaknesses. One major weakness, the lack of drinking excessively enough to become intoxicated, has recently been addressed with a new genetic animal model, mouse lines selectively bred for their high and intoxicating blood alcohol levels after a limited period of drinking in the circadian dark. We report here results from a second replicate of that selection and compare them with the first replicate.
Collapse
Affiliation(s)
- John C Crabbe
- Portland Alcohol Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA.
| | | | | |
Collapse
|
31
|
The Neuroethics of Pleasure and Addiction in Public Health Strategies Moving Beyond Harm Reduction: Funding the Creation of Non-Addictive Drugs and Taxonomies of Pleasure. NEUROETHICS-NETH 2010. [DOI: 10.1007/s12152-010-9074-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
32
|
|
33
|
Abstract
Alcohol intake at levels posing an acute heath risk is common amongst teenagers. Alcohol abuse is the second most common mental disorder worldwide. The incidence of smoking is decreasing in the Western world but increasing in developing countries and is the leading cause of preventable death worldwide. Considering the longstanding history of alcohol and tobacco consumption in human societies, it might be surprising that the molecular mechanisms underlying alcohol and smoking dependence are still incompletely understood. Effective treatments against the risk of relapse are lacking. Drugs of abuse exert their effect manipulating the dopaminergic mesocorticolimbic system. In this brain region, alcohol has many potential targets including membranes and several ion channels, while other drugs, for example nicotine, act via specific receptors or binding proteins. Repeated consumption of drugs of abuse mediates adaptive changes within this region, resulting in addiction. The high incidence of alcohol and nicotine co-abuse complicates analysis of the molecular basis of the disease. Gene expression profiling is a useful approach to explore novel drug targets in the brain. Several groups have utilised this technology to reveal drug-sensitive pathways in the mesocorticolimbic system of animal models and in human subjects. These studies are the focus of the present review.
Collapse
|
34
|
Ehlers CL, Walter NAR, Dick DM, Buck KJ, Crabbe JC. A comparison of selected quantitative trait loci associated with alcohol use phenotypes in humans and mouse models. Addict Biol 2010; 15:185-99. [PMID: 20148779 DOI: 10.1111/j.1369-1600.2009.00195.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Evidence for genetic linkage to alcohol and other substance dependence phenotypes in areas of the human and mouse genome have now been reported with some consistency across studies. However, the question remains as to whether the genes that underlie the alcohol-related behaviors seen in mice are the same as those that underlie the behaviors observed in human alcoholics. The aims of the current set of analyses were to identify a small set of alcohol-related phenotypes in human and in mouse by which to compare quantitative trait locus (QTL) data between the species using syntenic mapping. These analyses identified that QTLs for alcohol consumption and acute and chronic alcohol withdrawal on distal mouse chromosome 1 are syntenic to a region on human chromosome 1q where a number of studies have identified QTLs for alcohol-related phenotypes. Additionally, a QTL on human chromosome 15 for alcohol dependence severity/withdrawal identified in two human studies was found to be largely syntenic with a region on mouse chromosome 9, where two groups have found QTLs for alcohol preference. In both of these cases, while the QTLs were found to be syntenic, the exact phenotypes between humans and mice did not necessarily overlap. These studies demonstrate how this technique might be useful in the search for genes underlying alcohol-related phenotypes in multiple species. However, these findings also suggest that trying to match exact phenotypes in humans and mice may not be necessary or even optimal for determining whether similar genes influence a range of alcohol-related behaviors between the two species.
Collapse
Affiliation(s)
- Cindy L Ehlers
- Department of Molecular and Integrative Neurosciences, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | | | | | |
Collapse
|
35
|
How Many Ways Can Mouse Behavioral Experiments Go Wrong? Confounding Variables in Mouse Models of Neurodegenerative Diseases and How to Control Them. ADVANCES IN THE STUDY OF BEHAVIOR 2010. [DOI: 10.1016/s0065-3454(10)41007-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
36
|
Farris SP, Wolen AR, Miles MF. Using expression genetics to study the neurobiology of ethanol and alcoholism. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2010; 91:95-128. [PMID: 20813241 PMCID: PMC3427772 DOI: 10.1016/s0074-7742(10)91004-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Recent simultaneous progress in human and animal model genetics and the advent of microarray whole genome expression profiling have produced prodigious data sets on genetic loci, potential candidate genes, and differential gene expression related to alcoholism and ethanol behaviors. Validated target genes or gene networks functioning in alcoholism are still of meager proportions. Genetical genomics, which combines genetic analysis of both traditional phenotypes and whole genome expression data, offers a potential methodology for characterizing brain gene networks functioning in alcoholism. This chapter will describe concepts, approaches, and recent findings in the field of genetical genomics as it applies to alcohol research.
Collapse
Affiliation(s)
- Sean P Farris
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | | |
Collapse
|
37
|
Le Merrer J, Becker JAJ, Befort K, Kieffer BL. Reward processing by the opioid system in the brain. Physiol Rev 2009; 89:1379-412. [PMID: 19789384 DOI: 10.1152/physrev.00005.2009] [Citation(s) in RCA: 679] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The opioid system consists of three receptors, mu, delta, and kappa, which are activated by endogenous opioid peptides processed from three protein precursors, proopiomelanocortin, proenkephalin, and prodynorphin. Opioid receptors are recruited in response to natural rewarding stimuli and drugs of abuse, and both endogenous opioids and their receptors are modified as addiction develops. Mechanisms whereby aberrant activation and modifications of the opioid system contribute to drug craving and relapse remain to be clarified. This review summarizes our present knowledge on brain sites where the endogenous opioid system controls hedonic responses and is modified in response to drugs of abuse in the rodent brain. We review 1) the latest data on the anatomy of the opioid system, 2) the consequences of local intracerebral pharmacological manipulation of the opioid system on reinforced behaviors, 3) the consequences of gene knockout on reinforced behaviors and drug dependence, and 4) the consequences of chronic exposure to drugs of abuse on expression levels of opioid system genes. Future studies will establish key molecular actors of the system and neural sites where opioid peptides and receptors contribute to the onset of addictive disorders. Combined with data from human and nonhuman primate (not reviewed here), research in this extremely active field has implications both for our understanding of the biology of addiction and for therapeutic interventions to treat the disorder.
Collapse
Affiliation(s)
- Julie Le Merrer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Département Neurobiologie et Génétique, Illkirch, France
| | | | | | | |
Collapse
|
38
|
Alcohol sensitivity in Drosophila: translational potential of systems genetics. Genetics 2009; 183:733-45, 1SI-12SI. [PMID: 19652175 DOI: 10.1534/genetics.109.107490] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Identification of risk alleles for human behavioral disorders through genomewide association studies (GWAS) has been hampered by a daunting multiple testing problem. This problem can be circumvented for some phenotypes by combining genomewide studies in model organisms with subsequent candidate gene association analyses in human populations. Here, we characterized genetic networks that underlie the response to ethanol exposure in Drosophila melanogaster by measuring ethanol knockdown time in 40 wild-derived inbred Drosophila lines. We associated phenotypic variation in ethanol responses with genomewide variation in gene expression and identified modules of correlated transcripts associated with a first and second exposure to ethanol vapors as well as the induction of tolerance. We validated the computational networks and assessed their robustness by transposon-mediated disruption of focal genes within modules in a laboratory inbred strain, followed by measurements of transcript abundance of connected genes within the module. Many genes within the modules have human orthologs, which provides a stepping stone for the identification of candidate genes associated with alcohol drinking behavior in human populations. We demonstrated the potential of this translational approach by identifying seven intronic single nucleotide polymorphisms of the Malic Enzyme 1 (ME1) gene that are associated with cocktail drinking in 1687 individuals of the Framingham Offspring cohort, implicating that variation in levels of cytoplasmic malic enzyme may contribute to variation in alcohol consumption.
Collapse
|
39
|
Criado JR, Ehlers CL. Event-related oscillations as risk markers in genetic mouse models of high alcohol preference. Neuroscience 2009; 163:506-23. [PMID: 19540906 DOI: 10.1016/j.neuroscience.2009.06.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 06/12/2009] [Accepted: 06/15/2009] [Indexed: 11/30/2022]
Abstract
Mouse models have been developed to simulate several relevant human traits associated with alcohol use and dependence. However, the neurophysiological substrates regulating these traits remain to be completely elucidated. We have previously demonstrated that differences in the event-related potential (ERP) responses can be found that distinguish high-alcohol preferring from low alcohol preferring mice that resemble differences seen in human studies of individuals with high and low risk for alcohol dependence. Recently, evidence of genes that affect event-related oscillations (EROs) and the risk for alcohol dependence has emerged, however, to date EROs have not been evaluated in genetic mouse models of high and low alcohol preference. Therefore, the objective of the present study was to characterize EROs in mouse models of high (C57BL/6 [B6] and high alcohol preference 1 [HAP-1] mice) and low (DBA/2J [D2] and low alcohol preference-1 [LAP-1] mice) alcohol preference. A time-frequency representation method was used to determine delta, theta and alpha/beta ERO energy and the degree of phase variation in these mouse models. The present results suggest that the decrease in P3 amplitudes previously shown in B6 mice, compared to D2 mice, is related to reductions in evoked delta ERO energy and delta and theta phase locking. In contrast, the increase in P1 amplitudes reported in HAP-1 mice, compared to LAP-1 mice, is associated with increases in evoked theta ERO energy. These studies suggest that differences in delta and theta ERO measures in mice mirror changes observed between groups at high- and low-risk for alcoholism where changes in EROs were found to be more significant than group differences in P3 amplitudes, further suggesting that ERO measures are more stable endophenotypes in the study of alcohol dependence. Further studies are needed to determine the relationship between expression of these neurophysiological endophenotypes and the genetic profile of these mouse models.
Collapse
Affiliation(s)
- J R Criado
- Molecular and Integrative Neurosciences Department, The Scripps Research Institute, 10550 North Torrey Pines Road, SP30-1501, La Jolla, CA 92037, USA
| | | |
Collapse
|
40
|
Crabbe JC, Metten P, Rhodes JS, Yu CH, Brown LL, Phillips TJ, Finn DA. A line of mice selected for high blood ethanol concentrations shows drinking in the dark to intoxication. Biol Psychiatry 2009; 65:662-70. [PMID: 19095222 PMCID: PMC3330756 DOI: 10.1016/j.biopsych.2008.11.002] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Revised: 09/26/2008] [Accepted: 11/05/2008] [Indexed: 10/21/2022]
Abstract
BACKGROUND Many animal models of alcoholism have targeted aspects of excessive alcohol intake (abuse) and dependence. In the rodent, models aimed at increasing alcohol self-administration have used genetic or environmental manipulations, or their combination. Strictly genetic manipulations (e.g., comparison of inbred strains or targeted mutants, selective breeding) have not yielded rat or mouse genotypes that will regularly and voluntarily drink alcohol to the point of intoxication. Although some behavioral manipulations (e.g., scheduling or limiting access to alcohol, adding a sweetener) will induce mice or rats to drink enough alcohol to become intoxicated, these typically require significant food or water restriction or a long time to develop. We report progress toward the development of a new genetic animal model for high levels of alcohol drinking. METHODS High Drinking in the Dark (HDID-1) mice have been selectively bred for high blood ethanol concentrations (BEC, ideally exceeding 100 mg%) resulting from the ingestion of a 20% alcohol solution. RESULTS After 11 generations of selection, more than 56% of the population now exceeds this BEC after a 4-hour drinking session in which a single bottle containing 20% ethanol is available. The dose of ethanol consumed also produced quantifiable signs of intoxication. CONCLUSIONS These mice will be useful for mechanistic studies of the biological and genetic contributions to excessive drinking.
Collapse
|
41
|
Abstract
Drug addiction is a common brain disorder that is extremely costly to the individual and to society. Genetics contributes significantly to vulnerability to this disorder, but identification of susceptibility genes has been slow. Recent genome-wide linkage and association studies have implicated several regions and genes in addiction to various substances, including alcohol and, more recently, tobacco. Current efforts aim not only to replicate these findings in independent samples but also to determine the functional mechanisms of these genes and variants.
Collapse
Affiliation(s)
- Ming D Li
- Department of Psychiatry and Neurobehavioural Sciences, University of Virginia, Charlottesville, Virginia 22911, USA.
| | | |
Collapse
|
42
|
Robbins TW, Everitt BJ, Nutt DJ. Introduction. The neurobiology of drug addiction: new vistas. Philos Trans R Soc Lond B Biol Sci 2008; 363:3109-11. [PMID: 18640913 PMCID: PMC2607336 DOI: 10.1098/rstb.2008.0108] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- T W Robbins
- Experimental Psychology and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK.
| | | | | |
Collapse
|