1
|
von Groll VG, Leeuwis N, Rimbert S, Roc A, Pillette L, Lotte F, Alimardani M. Large scale investigation of the effect of gender on mu rhythm suppression in motor imagery brain-computer interfaces. BRAIN-COMPUTER INTERFACES 2024; 11:87-97. [PMID: 39355516 PMCID: PMC11441392 DOI: 10.1080/2326263x.2024.2345449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 04/16/2024] [Indexed: 10/03/2024]
Abstract
The utmost issue in Motor Imagery Brain-Computer Interfaces (MI-BCI) is the BCI poor performance known as 'BCI inefficiency'. Although past research has attempted to find a solution by investigating factors influencing users' MI-BCI performance, the issue persists. One of the factors that has been studied in relation to MI-BCI performance is gender. Research regarding the influence of gender on a user's ability to control MI-BCIs remains inconclusive, mainly due to the small sample size and unbalanced gender distribution in past studies. To address these issues and obtain reliable results, this study combined four MI-BCI datasets into one large dataset with 248 subjects and equal gender distribution. The datasets included EEG signals from healthy subjects from both gender groups who had executed a right- vs. left-hand motor imagery task following the Graz protocol. The analysis consisted of extracting the Mu Suppression Index from C3 and C4 electrodes and comparing the values between female and male participants. Unlike some of the previous findings which reported an advantage for female BCI users in modulating mu rhythm activity, our results did not show any significant difference between the Mu Suppression Index of both groups, indicating that gender may not be a predictive factor for BCI performance.
Collapse
Affiliation(s)
| | - Nikki Leeuwis
- Department of Cognitive Science and AI, Tilburg University, Tilburg, Netherlands
| | | | - Aline Roc
- Inria Center at the University of Bordeaux / LaBRI, Talence, France
| | - Léa Pillette
- Department of Virtual Reality, Virtual Humans, Interactions and Robotics, University of Rennes, Inria, CNRS, France
| | - Fabien Lotte
- Inria Center at the University of Bordeaux / LaBRI, Talence, France
| | - Maryam Alimardani
- Department of Cognitive Science and AI, Tilburg University, Tilburg, Netherlands
| |
Collapse
|
2
|
Joel D, Smith CJ, Veenema AH. Beyond the binary: Characterizing the relationships between sex and neuropeptide receptor binding density measures in the rat brain. Horm Behav 2024; 159:105471. [PMID: 38128247 DOI: 10.1016/j.yhbeh.2023.105471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/30/2023] [Accepted: 12/09/2023] [Indexed: 12/23/2023]
Abstract
Sex differences exist in numerous parameters of the brain. Yet, sex-related factors are part of a large set of variables that interact to affect many aspects of brain structure and function. This raises questions regarding how to interpret findings of sex differences at the level of single brain measures and the brain as a whole. In the present study, we reanalyzed two datasets consisting of measures of oxytocin, vasopressin V1a, and mu opioid receptor binding densities in multiple brain regions in rats. At the level of single brain measures, we found that sex differences were rarely dimorphic and were largely persistent across estrous stage and parental status but not across age or context. At the level of aggregates of brain measures showing sex differences, we tested whether individual brains are 'mosaics' of female-typical and male-typical measures or are internally consistent, having either only female-typical or only male-typical measures. We found mosaicism for measures showing overlap between females and males. Mosaicism was higher a) with a larger number of measures, b) with smaller effect sizes of the sex difference in these measures, and c) in rats with more diverse life experiences. Together, these results highlight the limitations of the binary framework for interpreting sex effects on the brain and suggest two complementary pathways to studying the contribution of sex to brain function: (1) focusing on measures showing dimorphic and persistent sex differences and (2) exploring the relations between specific brain mosaics and specific endpoints.
Collapse
Affiliation(s)
- Daphna Joel
- School of Psychological Sciences and Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel.
| | - Caroline J Smith
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, MA, USA.
| | - Alexa H Veenema
- Neurobiology of Social Behavior Laboratory, Department of Psychology & Neuroscience Program, Michigan State University, East Lansing, USA.
| |
Collapse
|
3
|
Arraiza Zabalegui M. After the trans brain: a critique of the neurobiological accounts of embodied trans* identities. HISTORY AND PHILOSOPHY OF THE LIFE SCIENCES 2024; 46:10. [PMID: 38305812 PMCID: PMC10837215 DOI: 10.1007/s40656-023-00602-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 12/13/2023] [Indexed: 02/03/2024]
Abstract
This paper critically analyses three main neurobiological hypotheses on trans* identities: the neurobiological theory about the origin of gender dysphoria, the neurodevelopmental cortical hypothesis, and the alternative hypothesis of self-referential thinking and body perception. In this study I focus then the attention on three elements: the issue of (de)pathologisation, the idea of the trans brain, and the aetiology of trans* identities. While the neurobiological theory about the origin of gender dysphoria and the neurodevelopmental cortical hypothesis claim the existence of the trans brain, each offering its own neurobiological depiction, the hypothesis of self-referential thinking and body perception doesn't postulate a distinctive neurobiological trait for all trans* people. I problematize both portrayals of the trans brain departing from the findings and conceptualizations of the paradigm shifting brain mosaicism. Unlike the hypothesis of self-referential thinking and body perception that keeps the question of causation open, both the neurobiological theory about the origin of gender dysphoria and the neurodevelopmental cortical hypothesis situate the origin of trans* identities in the neurobiological domain. I challenge the biological deterministic framework in which this aetiology is inscribed from a dynamic processual entanglement perspective. Finally, concerning the issue of (de)pathologisation of trans* identities, an evolution can be seen in each of the hypothesis and among them, from the least to the most depathologising. However, I question their complete departure from a pathologising framework.
Collapse
Affiliation(s)
- Maite Arraiza Zabalegui
- Department of Philosophy, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Donostia/San Sebastián, Spain.
| |
Collapse
|
4
|
Rich-Edwards JW, Maney DL. Best practices to promote rigor and reproducibility in the era of sex-inclusive research. eLife 2023; 12:e90623. [PMID: 37917121 PMCID: PMC10622144 DOI: 10.7554/elife.90623] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/26/2023] [Indexed: 11/03/2023] Open
Abstract
To enhance inclusivity and rigor, many funding agencies and journals now mandate the inclusion of females as well as males in biomedical studies. These mandates have enhanced generalizability and created unprecedented opportunities to discover sex differences. However, education in sound methods to consider sex as a subgroup category has lagged behind, resulting in a problematic literature in which study designs, analyses, and interpretations of results are often flawed. Here, we outline best practices for complying with sex-inclusive mandates, both for studies in which sex differences are a primary focus and for those in which they are not. Our recommendations are organized within the "4 Cs of Studying Sex to Strengthen Science: Consideration, Collection, Characterization and Communication," a framework developed by the Office of Research on Women's Health at the National Institutes of Health in the United States. Following these guidelines should help researchers include females and males in their studies while at the same time upholding high standards of rigor.
Collapse
Affiliation(s)
- Janet W Rich-Edwards
- Division of Women’s Health, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical SchoolBostonUnited States
- Department of Epidemiology, Harvard TH Chan School of Public HealthBostonUnited States
| | - Donna L Maney
- Department of Psychology, Emory UniversityAtlantaUnited States
- Radcliffe Institute for Advanced Study, Harvard UniversityCambridgeUnited States
| |
Collapse
|
5
|
Massa MG, Aghi K, Hill MJ. Deconstructing sex: Strategies for undoing binary thinking in neuroendocrinology and behavior. Horm Behav 2023; 156:105441. [PMID: 37862978 DOI: 10.1016/j.yhbeh.2023.105441] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 10/06/2023] [Accepted: 10/06/2023] [Indexed: 10/22/2023]
Abstract
The scientific community widely recognizes that "sex" is a complex category composed of multiple physiologies. Yet in practice, basic scientific research often treats "sex" as a single, internally consistent, and often binary variable. This practice occludes important physiological factors and processes, and thus limits the scientific value of our findings. In human-oriented biomedical research, the use of simplistic (and often binary) models of sex ignores the existence of intersex, trans, non-binary, and gender non-conforming people and contributes to a medical paradigm that neglects their needs and interests. More broadly, our collective reliance on these models legitimizes a false paradigm of human biology that undergirds harmful medical practices and anti-trans political movements. Herein, we continue the conversations begun at the SBN 2022 Symposium on Hormones and Trans Health, providing guiding questions to help scientists deconstruct and rethink the use of "sex" across the stages of the scientific method. We offer these as a step toward a scientific paradigm that more accurately recognizes and represents sexed physiologies as multiple, interacting, variable, and unbounded by gendered preconceptions. We hope this paper will serve as a useful resource for scientists who seek a new paradigm for researching and understanding sexed physiologies that improves our science, widens the applicability of our findings, and deters the misuse of our research against marginalized groups.
Collapse
Affiliation(s)
- Megan G Massa
- Department of Neuroscience and Behavioral Biology, Emory University, Atlanta, GA, United States of America.
| | - Krisha Aghi
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, United States of America.
| | - M J Hill
- Department of Sociology, University of California Los Angeles, Los Angeles, CA, United States of America.
| |
Collapse
|
6
|
Salinas-Quiroz F, Sweder N. Authentic gender development in non-binary children. FRONTIERS IN SOCIOLOGY 2023; 8:1177766. [PMID: 37408998 PMCID: PMC10318433 DOI: 10.3389/fsoc.2023.1177766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/05/2023] [Indexed: 07/07/2023]
Abstract
At present, the conceptualization of gender as a spectrum as well as non-binary identities have become increasingly visible and embraced. We are using non-binary as an umbrella term that refers to individuals who self-identify as a gender outside the gender binary, and/or who do not identify as always and completely being just a man or a woman. Our goal is to begin to create a framework for understanding gender development in non-binary children ages 0 to 8, since previous models have operated on cissupremacist assumptions, not applicable to non-binary people. As there is virtually no empirical data on the subject, we conducted a thorough literature review of current gender development theories and used our positionality as non-binary researchers to postulate two minimum criteria for non-binary gender identification: that a child learns about the existence of non-binary identities, and that they do not identify with the definitions they have been taught of what a boy or girl is. Children can learn about non-binary identities through media and knowledgeable community members and can develop "gender traits" authentically and come to identify as non-binary through biological predispositions, parental support, modeling, and being in peer groups that are supportive of identity exploration. Yet, children are not simply a product of their nature and nurture, as evidence has shown that humans are active agents in their gender development from a young age.
Collapse
|
7
|
Putkinen V, Nazari-Farsani S, Karjalainen T, Santavirta S, Hudson M, Seppälä K, Sun L, Karlsson HK, Hirvonen J, Nummenmaa L. Pattern recognition reveals sex-dependent neural substrates of sexual perception. Hum Brain Mapp 2023; 44:2543-2556. [PMID: 36773282 PMCID: PMC10028630 DOI: 10.1002/hbm.26229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/13/2022] [Accepted: 01/16/2023] [Indexed: 02/12/2023] Open
Abstract
Sex differences in brain activity evoked by sexual stimuli remain elusive despite robust evidence for stronger enjoyment of and interest toward sexual stimuli in men than in women. To test whether visual sexual stimuli evoke different brain activity patterns in men and women, we measured hemodynamic brain activity induced by visual sexual stimuli in two experiments with 91 subjects (46 males). In one experiment, the subjects viewed sexual and nonsexual film clips, and dynamic annotations for nudity in the clips were used to predict hemodynamic activity. In the second experiment, the subjects viewed sexual and nonsexual pictures in an event-related design. Men showed stronger activation than women in the visual and prefrontal cortices and dorsal attention network in both experiments. Furthermore, using multivariate pattern classification we could accurately predict the sex of the subject on the basis of the brain activity elicited by the sexual stimuli. The classification generalized across the experiments indicating that the sex differences were task-independent. Eye tracking data obtained from an independent sample of subjects (N = 110) showed that men looked longer than women at the chest area of the nude female actors in the film clips. These results indicate that visual sexual stimuli evoke discernible brain activity patterns in men and women which may reflect stronger attentional engagement with sexual stimuli in men.
Collapse
Affiliation(s)
- Vesa Putkinen
- Turku PET Centre, University of Turku, Turku, Finland
- Turku University Hospital, Turku, Finland
| | - Sanaz Nazari-Farsani
- Turku PET Centre, University of Turku, Turku, Finland
- Turku University Hospital, Turku, Finland
| | - Tomi Karjalainen
- Turku PET Centre, University of Turku, Turku, Finland
- Turku University Hospital, Turku, Finland
| | - Severi Santavirta
- Turku PET Centre, University of Turku, Turku, Finland
- Turku University Hospital, Turku, Finland
| | - Matthew Hudson
- Turku PET Centre, University of Turku, Turku, Finland
- School of Psychology, University of Plymouth, Plymouth, UK
| | - Kerttu Seppälä
- Turku PET Centre, University of Turku, Turku, Finland
- Turku University Hospital, Turku, Finland
- Department of Medical Physics, Turku University Hospital, Turku, Finland
| | - Lihua Sun
- Turku PET Centre, University of Turku, Turku, Finland
- Turku University Hospital, Turku, Finland
| | - Henry K Karlsson
- Turku PET Centre, University of Turku, Turku, Finland
- Turku University Hospital, Turku, Finland
| | - Jussi Hirvonen
- Turku PET Centre, University of Turku, Turku, Finland
- Turku University Hospital, Turku, Finland
- Department of Radiology, Turku University Hospital, Turku, Finland
| | - Lauri Nummenmaa
- Turku PET Centre, University of Turku, Turku, Finland
- Turku University Hospital, Turku, Finland
- Department of Psychology, University of Turku, Turku, Finland
| |
Collapse
|
8
|
Majno M. “The two voices,” or more? Music and gender from myth and conquests to the neurosciences. J Neurosci Res 2023; 101:604-632. [PMID: 36971041 DOI: 10.1002/jnr.25175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 11/18/2022] [Accepted: 01/20/2023] [Indexed: 03/29/2023]
Abstract
Music is a unique phenomenon, constantly eliciting interest from a variety of viewpoints, several of which intersect the universal trait of musicality with sex/gender studies and the neurosciences. Its unparalleled power and physical, social, aesthetic, as well as cognitive, emotional and clinical ramifications make it a specially promising terrain for studies and reflections on sex and gender differences and their impact. This overview wishes to enhance awareness of such issues, also fostering an interdisciplinary exchange between the natural sciences, the humanities, and the arts. Over the centuries, different associations of music with the feminine gender have contributed to a pendulum between progressive recognition and stereotypical setbacks requiring to be overcome. Against this backdrop, music-related neurophysiological and psychological studies on sex and gender specificities are reviewed in their multiple approaches and results, exposing or questioning differences in structural, auditory, hormonal, cognitive, and behavioral areas, also in relation to abilities, treatment, and pedagogy. Thus, the bridging potential of music as universal yet diverse language, art, and practice, recommends its gender-aware integration into education, protective endeavors, and therapeutic interventions, to promote equality and well-being.
Collapse
Affiliation(s)
- Maria Majno
- Mariani Foundation for Child Neurology, Milan, Italy
| |
Collapse
|
9
|
Holm MC, Leonardsen EH, Beck D, Dahl A, Kjelkenes R, de Lange AMG, Westlye LT. Linking brain maturation and puberty during early adolescence using longitudinal brain age prediction in the ABCD cohort. Dev Cogn Neurosci 2023; 60:101220. [PMID: 36841180 PMCID: PMC9972398 DOI: 10.1016/j.dcn.2023.101220] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 12/23/2022] [Accepted: 02/18/2023] [Indexed: 02/24/2023] Open
Abstract
The temporal characteristics of adolescent neurodevelopment are shaped by a complex interplay of genetic, biological, and environmental factors. Using a large longitudinal dataset of children aged 9-13 from the Adolescent Brain Cognitive Development (ABCD) study we tested the associations between pubertal status and brain maturation. Brain maturation was assessed using brain age prediction based on convolutional neural networks and minimally processed T1-weighted structural MRI data. Brain age prediction provided highly accurate and reliable estimates of individual age, with an overall mean absolute error of 0.7 and 1.4 years at the two timepoints respectively, and an intraclass correlation of 0.65. Linear mixed effects (LME) models accounting for age and sex showed that on average, a one unit increase in pubertal maturational level was associated with a 2.22 months higher brain age across time points (β = 0.10, p < .001). Moreover, annualized change in pubertal development was weakly related to the rate of change in brain age (β = .047, p = 0.04). These results demonstrate a link between sexual development and brain maturation in early adolescence, and provides a basis for further investigations of the complex sociobiological impacts of puberty on life outcomes.
Collapse
Affiliation(s)
- Madelene C Holm
- Department of Psychology, University of Oslo, Oslo, Norway; NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Esten H Leonardsen
- Department of Psychology, University of Oslo, Oslo, Norway; NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Dani Beck
- Department of Psychology, University of Oslo, Oslo, Norway; NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Andreas Dahl
- Department of Psychology, University of Oslo, Oslo, Norway; NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Rikka Kjelkenes
- Department of Psychology, University of Oslo, Oslo, Norway; NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ann-Marie G de Lange
- Department of Psychology, University of Oslo, Oslo, Norway; NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway; LREN, Centre for Research in Neurosciences, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland; Department of Psychiatry, University of Oxford, Oxford, UK
| | - Lars T Westlye
- Department of Psychology, University of Oslo, Oslo, Norway; NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway; KG Jebsen Center for Neurodevelopmental Disorders, University of Oslo, Norway
| |
Collapse
|
10
|
Rodríguez Holguín S, Folgueira-Ares R, Crego A, López-Caneda E, Corral M, Cadaveira F, Doallo S. Neurocognitive effects of binge drinking on verbal episodic memory. An ERP study in university students. Front Pharmacol 2023; 14:1034248. [PMID: 36825155 PMCID: PMC9941344 DOI: 10.3389/fphar.2023.1034248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/27/2023] [Indexed: 02/09/2023] Open
Abstract
Background: Verbal memory may be affected by engagement in alcohol binge drinking during youth, according to the findings of neuropsychological studies. However, little is known about the dynamics of the neural activity underlying this cognitive process in young, heavy drinkers. Aims: To investigate brain event-related potentials associated with cued recall from episodic memory in binge drinkers and controls. Methods: Seventy first-year university students were classified as binge drinkers (32: 17 female) or controls (38: 18 female). The participants completed a verbal paired associates learning task during electroencephalogram (EEG) recording. ERPs elicited by old and new word pairs were extracted from the cued-recall phase of the task by using Principal Component Analysis. Subjects also performed a standardized neuropsychological verbal learning test. Results: Two of the three event-related potentials components indicating old/new memory effects provided evidence for anomalies associated with binge drinking. The old/new effects were absent in the binge drinkers in the two subsequent posterior components, identified with the late parietal component and the late posterior negativity The late frontal component revealed similar old/new effects in both groups. Binge drinkers showed similar behavioural performance to controls in the verbal paired associates task, but performed poorly in the more demanding short-term cued-recall trial of a neuropsychological standardized test. Conclusion: Event-related potentials elicited during a verbal cued-recall task revealed differences in brain functioning between young binge drinkers and controls that may underlie emergent deficits in episodic memory linked to alcohol abuse. The brain activity of binge drinkers suggests alterations in the hippocampal - posterior parietal cortex circuitry subserving recognition and recollection of the cue context and generation of the solution, in relation to verbal information shallowly memorised.
Collapse
Affiliation(s)
- Socorro Rodríguez Holguín
- Department of Clinical Psychology and Psychobiology, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Rocío Folgueira-Ares
- Department of Clinical Psychology and Psychobiology, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Alberto Crego
- Psychological Neuroscience Laboratory (PNL), Research Center in Psychology (CIPsi), School of Psychology, University of Minho, Campus de Gualtar, Gualtar, Portugal
| | - Eduardo López-Caneda
- Psychological Neuroscience Laboratory (PNL), Research Center in Psychology (CIPsi), School of Psychology, University of Minho, Campus de Gualtar, Gualtar, Portugal
| | - Montserrat Corral
- Department of Clinical Psychology and Psychobiology, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Fernando Cadaveira
- Department of Clinical Psychology and Psychobiology, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Sonia Doallo
- Department of Clinical Psychology and Psychobiology, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
| |
Collapse
|
11
|
Mijalkov M, Veréb D, Jamialahmadi O, Canal-Garcia A, Gómez-Ruiz E, Vidal-Piñeiro D, Romeo S, Volpe G, Pereira JB. Sex differences in multilayer functional network topology over the course of aging in 37543 UK Biobank participants. Netw Neurosci 2023; 7:351-376. [PMID: 37334001 PMCID: PMC10275214 DOI: 10.1162/netn_a_00286] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 10/06/2022] [Indexed: 07/27/2023] Open
Abstract
Aging is a major risk factor for cardiovascular and neurodegenerative disorders, with considerable societal and economic implications. Healthy aging is accompanied by changes in functional connectivity between and within resting-state functional networks, which have been associated with cognitive decline. However, there is no consensus on the impact of sex on these age-related functional trajectories. Here, we show that multilayer measures provide crucial information on the interaction between sex and age on network topology, allowing for better assessment of cognitive, structural, and cardiovascular risk factors that have been shown to differ between men and women, as well as providing additional insights into the genetic influences on changes in functional connectivity that occur during aging. In a large cross-sectional sample of 37,543 individuals from the UK Biobank cohort, we demonstrate that such multilayer measures that capture the relationship between positive and negative connections are more sensitive to sex-related changes in the whole-brain connectivity patterns and their topological architecture throughout aging, when compared to standard connectivity and topological measures. Our findings indicate that multilayer measures contain previously unknown information on the relationship between sex and age, which opens up new avenues for research into functional brain connectivity in aging.
Collapse
Affiliation(s)
- Mite Mijalkov
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Dániel Veréb
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Oveis Jamialahmadi
- Department of Molecular and Clinical Medicine, Goteborg University, Goteborg, Sweden
| | - Anna Canal-Garcia
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | | | | | - Stefano Romeo
- Department of Molecular and Clinical Medicine, Goteborg University, Goteborg, Sweden
- Cardiology Department, Sahlgrenska University Hospital, Gothenburg, Sweden
- Clinical Nutrition Unit, University Magna Graecia, Catanzaro, Italy
| | - Giovanni Volpe
- Department of Physics, Goteborg University, Goteborg, Sweden
| | - Joana B. Pereira
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| |
Collapse
|
12
|
Friedrichs K, Kellmeyer P. Neurofeminism: Feminist critiques of research on sex/gender differences in the neurosciences. Eur J Neurosci 2022; 56:5987-6002. [PMID: 36180041 DOI: 10.1111/ejn.15834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 12/29/2022]
Abstract
Over the last three decades, the human brain and its role in determining behavior have been receiving a growing amount of attention in academia as well as in society more generally. Neuroscientific explanations of human behavior or other phenomena are often especially appealing to lay people. Therefore, neuroscientific explanations that can affect individuals, groups, or social relations in general should be formulated in a careful and responsible way. One field in which especially feminist scholars request more caution is the neuroscientific examination of sex/gender differences. Feminist scholars have described various ways in which sexist bias might be present in neuroscientific research on sex/gender differences. In this context, they coined the term "neurosexism" to describe the entanglement between neuroscientific work and sexist ideology, and "neurofeminism" as a response to that. Here, we aim to give an overview over the contemporary neurofeminist literature. In the first part, common levels of analysis in the neurofeminist literature are presented and the research level is explored in more detail. In the second part, some common developments in more recent neurofeminist scholarship are discussed. For this, we review recent publications with the aim to provide neuroscientists with a solid understanding of neurofeminist criticism so that they may evaluate neuroscientific claims about on sex/gender differences from this critical perspective.
Collapse
Affiliation(s)
- Kassandra Friedrichs
- University College Freiburg, Albert-Ludwigs-University of Freiburg, Freiburg im Breisgau, Germany
| | - Philipp Kellmeyer
- Human-Technology Interaction Lab, Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg im Breisgau, Germany.,Freiburg Institute for Advanced Studies, Albert-Ludwigs-University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
13
|
Fine C. Fairly Criticized, or Politicized? Conflicts in the Neuroscience of Sex Differences in the Human Brain. Cold Spring Harb Perspect Biol 2022; 14:a039115. [PMID: 34872970 PMCID: PMC9341467 DOI: 10.1101/cshperspect.a039115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Investigations of sex differences in the human brain take place on politically sensitive terrain. While some scholars express concern that gendered biases and stereotypes remain embedded in scientific research, others are alarmed about the politicization of science. To help better understand these debates, this review sets out three kinds of conflicts that can arise in the neuroscience of sex differences: academic freedom versus gender equality; frameworks, background assumptions, and dominant methodologies; and inductive risk and social values. The boundaries between fair criticism and politicization are explored for each kind of conflict, pointing to ways in which the academic community can facilitate fair criticism while protecting against politicization.
Collapse
Affiliation(s)
- Cordelia Fine
- History & Philosophy of Science Programme, School of Historical & Philosophical Studies, The University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
14
|
Casto KV, Leininger EC, Tan T. Teaching About Sex and Gender in Neuroscience: More Than Meets the "XY". JOURNAL OF UNDERGRADUATE NEUROSCIENCE EDUCATION : JUNE : A PUBLICATION OF FUN, FACULTY FOR UNDERGRADUATE NEUROSCIENCE 2022; 20:A191-A206. [PMID: 38323054 PMCID: PMC10653250 DOI: 10.59390/azvz2988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/06/2021] [Accepted: 08/09/2021] [Indexed: 02/08/2024]
Abstract
Offering courses on the neuroscience of sex and gender can help support an inclusive curriculum in neuroscience. At the same time, developing and teaching such courses can be daunting to even the most enthusiastic educators, given the subject's complexities, nuances, and the difficult conversations that it invites. The authors of this article have all developed and taught such courses from different perspectives. Our aim is to provide educators with an overview of important conceptual topics as well as a comprehensive, but non-exhaustive, guide to resources for teaching about sex/gender in neuroscience based on our collective experience teaching courses on the topic. After defining vital terminology and briefly reviewing the biology of sex and sex determination, we describe some common topics within the field and contrast our current nuanced understandings from outdated misconceptions in the field. We review how (mis)representation of the neuroscience of sex/gender serves as a case study for how scientific results are communicated and disseminated. We consider how contextualization of sex/gender neuroscience research within a broader historical and societal framework can give students a wider perspective on the enterprise of science. Finally, we conclude with a brief discussion on how to choose learning goals for your course and implementation notes.
Collapse
Affiliation(s)
- Kathleen V Casto
- Division of Social Sciences, New College of Florida, Sarasota, FL 34243
| | | | - Taralyn Tan
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
- PhD Program in Neuroscience, Harvard University, Cambridge, MA 02138
| |
Collapse
|
15
|
Al Zoubi O, Misaki M, Tsuchiyagaito A, Zotev V, White E, Paulus M, Bodurka J. Machine Learning Evidence for Sex Differences Consistently Influences Resting-State Functional Magnetic Resonance Imaging Fluctuations Across Multiple Independently Acquired Data Sets. Brain Connect 2022; 12:348-361. [PMID: 34269609 PMCID: PMC9131354 DOI: 10.1089/brain.2020.0878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background/Introduction: Sex classification using functional connectivity from resting-state functional magnetic resonance imaging (rs-fMRI) has shown promising results. This suggested that sex difference might also be embedded in the blood-oxygen-level-dependent properties such as the amplitude of low-frequency fluctuation (ALFF) and the fraction of ALFF (fALFF). This study comprehensively investigates sex differences using a reliable and explainable machine learning (ML) pipeline. Five independent cohorts of rs-fMRI with over than 5500 samples were used to assess sex classification performance and map the spatial distribution of the important brain regions. Methods: Five rs-fMRI samples were used to extract ALFF and fALFF features from predefined brain parcellations and then were fed into an unbiased and explainable ML pipeline with a wide range of methods. The pipeline comprehensively assessed unbiased performance for within-sample and across-sample validation. In addition, the parcellation effect, classifier selection, scanning length, spatial distribution, reproducibility, and feature importance were analyzed and evaluated thoroughly in the study. Results: The results demonstrated high sex classification accuracies from healthy adults (area under the curve >0.89), while degrading for nonhealthy subjects. Sex classification showed moderate to good intraclass correlation coefficient based on parcellation. Linear classifiers outperform nonlinear classifiers. Sex differences could be detected even with a short rs-fMRI scan (e.g., 2 min). The spatial distribution of important features overlaps with previous results from studies. Discussion: Sex differences are consistent in rs-fMRI and should be considered seriously in any study design, analysis, or interpretation. Features that discriminate males and females were found to be distributed across several different brain regions, suggesting a complex mosaic for sex differences in rs-fMRI. Impact statement The presented study unraveled that sex differences are embedded in the blood-oxygen-level dependent (BOLD) and can be predicted using unbiased and explainable machine learning pipeline. The study revealed that psychiatric disorders and demographics might influence the BOLD signal and interact with the classification of sex. The spatial distribution of the important features presented here supports the notion that the brain is a mosaic of male and female features. The findings emphasize the importance of controlling for sex when conducting brain imaging analysis. In addition, the presented framework can be adapted to classify other variables from resting-state BOLD signals.
Collapse
Affiliation(s)
- Obada Al Zoubi
- Laureate Institute for Brain Research, Tulsa, Oklahoma, USA
- Department of Psychiatry, Harvard Medical School/McLean Hospital, Boston, Massachusetts, USA
| | - Masaya Misaki
- Laureate Institute for Brain Research, Tulsa, Oklahoma, USA
| | | | - Vadim Zotev
- Laureate Institute for Brain Research, Tulsa, Oklahoma, USA
| | - Evan White
- Laureate Institute for Brain Research, Tulsa, Oklahoma, USA
| | - Martin Paulus
- Laureate Institute for Brain Research, Tulsa, Oklahoma, USA
| | - Jerzy Bodurka
- Laureate Institute for Brain Research, Tulsa, Oklahoma, USA
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, USA
| |
Collapse
|
16
|
Sadler CM, Peters KJ, Santangelo CM, Maslovat D, Carlsen AN. Retrospective composite analysis of StartReact data indicates sex differences in simple reaction time are not attributable to response preparation. Behav Brain Res 2022; 426:113839. [DOI: 10.1016/j.bbr.2022.113839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 03/01/2022] [Accepted: 03/08/2022] [Indexed: 11/02/2022]
|
17
|
Junker A, Wang J, Gouspillou G, Ehinger JK, Elmér E, Sjövall F, Fisher-Wellman KH, Neufer PD, Molina AJA, Ferrucci L, Picard M. Human studies of mitochondrial biology demonstrate an overall lack of binary sex differences: A multivariate meta-analysis. FASEB J 2022; 36:e22146. [PMID: 35073429 PMCID: PMC9885138 DOI: 10.1096/fj.202101628r] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 02/01/2023]
Abstract
Mitochondria are maternally inherited organelles that play critical tissue-specific roles, including hormone synthesis and energy production, that influence human development, health, and aging. However, whether mitochondria from women and men exhibit consistent biological differences remains unclear, representing a major gap in knowledge. This meta-analysis systematically examined four domains and six subdomains of mitochondrial biology (total 39 measures), including mitochondrial content, respiratory capacity, reactive oxygen species (ROS) production, morphometry, and mitochondrial DNA copy number. Standardized effect sizes (Hedge's g) of sex differences were computed for each measure using data in 2258 participants (51.5% women) from 50 studies. Only two measures demonstrated aggregate binary sex differences: higher mitochondrial content in women's WAT and isolated leukocyte subpopulations (g = 0.20, χ2 p = .01), and higher ROS production in men's skeletal muscle (g = 0.49, χ2 p < .0001). Sex differences showed weak to no correlation with age or BMI. Studies with small sample sizes tended to overestimate effect sizes (r = -.17, p < .001), and sex differences varied by tissue examined. Our findings point to a wide variability of findings in the literature concerning possible binary sex differences in mitochondrial biology. Studies specifically designed to capture sex- and gender-related differences in mitochondrial biology are needed, including detailed considerations of physical activity and sex hormones.
Collapse
Affiliation(s)
- Alex Junker
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, New York, USA
| | - Jennifer Wang
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, New York, USA
| | - Gilles Gouspillou
- Département des Sciences de l’Activité Physique, Faculté des Sciences, Université du Québec à Montréal (UQAM), Montreal, Québec, Canada
| | - Johannes K. Ehinger
- Mitochondrial Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden,Otorhinolaryngology Head and Neck Surgery, Department of Clinical Sciences, Skåne University Hospital, Lund University, Lund, Sweden
| | - Eskil Elmér
- Mitochondrial Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Fredrik Sjövall
- Mitochondrial Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Kelsey H. Fisher-Wellman
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina, USA,Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - P. Darrell Neufer
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina, USA,Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Anthony J. A. Molina
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Martin Picard
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, New York, USA,Department of Neurology, H. Houston Merritt Center, Columbia University Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, New York, USA,NewYork State Psychiatric Institute, New York, New York, USA
| |
Collapse
|
18
|
Fitsch H, Lysen F, Choudhury S. Editorial: Challenges of Interdisciplinary Research in the Field of Critical (Sex/Gender) Neuroscience. FRONTIERS IN SOCIOLOGY 2022; 6:797089. [PMID: 35097062 PMCID: PMC8790657 DOI: 10.3389/fsoc.2021.797089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 10/27/2021] [Indexed: 06/14/2023]
Affiliation(s)
- Hannah Fitsch
- Zentrum für Interdisziplinäre Frauen- und Geschlechterforschung, Technical University of Berlin, Berlin, Germany
| | - Flora Lysen
- Department Society Studies, Maastricht University, Maastricht, Netherlands
| | - Suparna Choudhury
- Division of Social and Transcultural Psychiatry Montreal, McGill University, Montreal, QC, Canada
| |
Collapse
|
19
|
Wierenga LM, Doucet GE, Dima D, Agartz I, Aghajani M, Akudjedu TN, Albajes‐Eizagirre A, Alnæs D, Alpert KI, Andreassen OA, Anticevic A, Asherson P, Banaschewski T, Bargallo N, Baumeister S, Baur‐Streubel R, Bertolino A, Bonvino A, Boomsma DI, Borgwardt S, Bourque J, den Braber A, Brandeis D, Breier A, Brodaty H, Brouwer RM, Buitelaar JK, Busatto GF, Calhoun VD, Canales‐Rodríguez EJ, Cannon DM, Caseras X, Castellanos FX, Chaim‐Avancini TM, Ching CRK, Clark VP, Conrod PJ, Conzelmann A, Crivello F, Davey CG, Dickie EW, Ehrlich S, van't Ent D, Fisher SE, Fouche J, Franke B, Fuentes‐Claramonte P, de Geus EJC, Di Giorgio A, Glahn DC, Gotlib IH, Grabe HJ, Gruber O, Gruner P, Gur RE, Gur RC, Gurholt TP, de Haan L, Haatveit B, Harrison BJ, Hartman CA, Hatton SN, Heslenfeld DJ, van den Heuvel OA, Hickie IB, Hoekstra PJ, Hohmann S, Holmes AJ, Hoogman M, Hosten N, Howells FM, Hulshoff Pol HE, Huyser C, Jahanshad N, James AC, Jiang J, Jönsson EG, Joska JA, Kalnin AJ, Klein M, Koenders L, Kolskår KK, Krämer B, Kuntsi J, Lagopoulos J, Lazaro L, Lebedeva IS, Lee PH, Lochner C, Machielsen MWJ, Maingault S, Martin NG, Martínez‐Zalacaín I, Mataix‐Cols D, Mazoyer B, McDonald BC, McDonald C, McIntosh AM, McMahon KL, McPhilemy G, van der Meer D, Menchón JM, Naaijen J, Nyberg L, Oosterlaan J, Paloyelis Y, Pauli P, Pergola G, Pomarol‐Clotet E, Portella MJ, Radua J, Reif A, Richard G, Roffman JL, Rosa PGP, Sacchet MD, Sachdev PS, Salvador R, Sarró S, Satterthwaite TD, Saykin AJ, Serpa MH, Sim K, Simmons A, Smoller JW, Sommer IE, Soriano‐Mas C, Stein DJ, Strike LT, Szeszko PR, Temmingh HS, Thomopoulos SI, Tomyshev AS, Trollor JN, Uhlmann A, Veer IM, Veltman DJ, Voineskos A, Völzke H, Walter H, Wang L, Wang Y, Weber B, Wen W, West JD, Westlye LT, Whalley HC, Williams SCR, Wittfeld K, Wolf DH, Wright MJ, Yoncheva YN, Zanetti MV, Ziegler GC, de Zubicaray GI, Thompson PM, Crone EA, Frangou S, Tamnes CK. Greater male than female variability in regional brain structure across the lifespan. Hum Brain Mapp 2022; 43:470-499. [PMID: 33044802 PMCID: PMC8675415 DOI: 10.1002/hbm.25204] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/10/2020] [Accepted: 09/05/2020] [Indexed: 12/25/2022] Open
Abstract
For many traits, males show greater variability than females, with possible implications for understanding sex differences in health and disease. Here, the ENIGMA (Enhancing Neuro Imaging Genetics through Meta-Analysis) Consortium presents the largest-ever mega-analysis of sex differences in variability of brain structure, based on international data spanning nine decades of life. Subcortical volumes, cortical surface area and cortical thickness were assessed in MRI data of 16,683 healthy individuals 1-90 years old (47% females). We observed significant patterns of greater male than female between-subject variance for all subcortical volumetric measures, all cortical surface area measures, and 60% of cortical thickness measures. This pattern was stable across the lifespan for 50% of the subcortical structures, 70% of the regional area measures, and nearly all regions for thickness. Our findings that these sex differences are present in childhood implicate early life genetic or gene-environment interaction mechanisms. The findings highlight the importance of individual differences within the sexes, that may underpin sex-specific vulnerability to disorders.
Collapse
Affiliation(s)
- Lara M Wierenga
- Institute of PsychologyLeiden UniversityLeidenThe Netherlands
- Leiden Institute for Brain and CognitionLeidenThe Netherlands
| | - Gaelle E Doucet
- Department of PsychiatryIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Boys Town National Research HospitalOmahaNebraskaUSA
| | - Danai Dima
- Department of Psychology, School of Arts and Social Sciences, CityUniversity of LondonLondonUK
- Department of Neuroimaging, Institute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUK
| | - Ingrid Agartz
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Institute of Clinical MedicineUniversity of OsloOsloNorway
- Department of Psychiatric ResearchDiakonhjemmet HospitalOsloNorway
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, & Stockholm Health Care ServicesStockholm County CouncilStockholmSweden
| | - Moji Aghajani
- Department of Psychiatry, Amsterdam Neuroscience, Amsterdam UMCVrije UniversiteitAmsterdamThe Netherlands
- Department of Research & InnovationGGZ inGeestAmsterdamThe Netherlands
- Institute of Education and Child Studies, Forensic Family and Youth CareLeiden UniversityLeidenThe Netherlands
| | - Theophilus N Akudjedu
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health SciencesNational University of Ireland GalwayGalwayIreland
- Institute of Medical Imaging & Visualisation, Faculty of Health & Social SciencesBournemouth UniversityBournemouthUK
| | - Anton Albajes‐Eizagirre
- FIDMAG Germanes Hospitalàries Research FoundationBarcelonaSpain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM)MadridSpain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - Dag Alnæs
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Institute of Clinical MedicineUniversity of OsloOsloNorway
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and AddictionOslo University HospitalOsloNorway
| | - Kathryn I Alpert
- Department of Psychiatry and Behavioral SciencesNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Institute of Clinical MedicineUniversity of OsloOsloNorway
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and AddictionOslo University HospitalOsloNorway
| | - Alan Anticevic
- Department of PsychiatryYale UniversityNew HavenConnecticutUSA
| | - Philip Asherson
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUK
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental HealthUniversity of Heidelberg, Medical Faculty MannheimMannheimGermany
| | - Nuria Bargallo
- Imaging Diagnostic CenterHospital ClínicBarcelonaSpain
- Magnetic Resonance Image Core FacilityIDIBAPSBarcelonaSpain
| | - Sarah Baumeister
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental HealthUniversity of Heidelberg, Medical Faculty MannheimMannheimGermany
| | | | - Alessandro Bertolino
- Department of Basic Medical Science, Neuroscience and Sense OrgansUniversity of Bari Aldo MoroBariItaly
| | - Aurora Bonvino
- Department of Basic Medical Science, Neuroscience and Sense OrgansUniversity of Bari Aldo MoroBariItaly
| | - Dorret I Boomsma
- Department of Biological PsychologyVU University AmsterdamAmsterdamThe Netherlands
| | - Stefan Borgwardt
- Department of PsychiatryUniversity of BaselBaselSwitzerland
- Department of PsychiatryUniversity of LübeckLübeckGermany
| | - Josiane Bourque
- Department of PsychiatryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- CHU Sainte‐Justine Research CenterMontrealQuebecCanada
| | - Anouk den Braber
- Department of Biological PsychologyVU University AmsterdamAmsterdamThe Netherlands
- Alzheimer CenterAmsterdam UMC, Location VUMCAmsterdamThe Netherlands
| | - Daniel Brandeis
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental HealthUniversity of Heidelberg, Medical Faculty MannheimMannheimGermany
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric HospitalUniversity of ZurichZurichSwitzerland
- Zurich Center for Integrative Human PhysiologyUniversity of ZurichZurichSwitzerland
- Neuroscience Centre ZurichUniversity and ETH ZurichZurichSwitzerland
| | - Alan Breier
- Department of PsychiatryIndiana University School of MedicineIndianapolisIndianaUSA
| | - Henry Brodaty
- Centre for Healthy Brain Ageing, School of PsychiatryUniversity of New South WalesSydneyNew South WalesAustralia
- Dementia Centre for Research Collaboration, School of PsychiatryUniversity of New South WalesSydneyNew South WalesAustralia
| | - Rachel M Brouwer
- Department of Psychiatry, University Medical Center Utrecht Brain CenterUtrecht UniversityUtrechtThe Netherlands
| | - Jan K Buitelaar
- Department of Cognitive NeuroscienceRadboud University Medical CentreNijmegenThe Netherlands
- Karakter Child and Adolescent Psychiatry University CentreNijmegenThe Netherlands
| | - Geraldo F Busatto
- Laboratory of Psychiatric Neuroimaging (LIM‐21), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de MedicinaUniversidade de São PauloSão PauloBrazil
| | - Vince D Calhoun
- Tri‐institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS)Georgia State, Georgia TechAtlantaGeorgiaUSA
| | - Erick J Canales‐Rodríguez
- FIDMAG Germanes Hospitalàries Research FoundationBarcelonaSpain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM)MadridSpain
| | - Dara M Cannon
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health SciencesNational University of Ireland GalwayGalwayIreland
| | - Xavier Caseras
- MRC Centre for Neuropsychiatric Genetics and GenomicsCardiff UniversityCardiffUK
| | - Francisco X Castellanos
- Department of Child and Adolescent PsychiatryNYU Grossman School of MedicineNew YorkNew YorkUSA
- Nathan Kline Institute for Psychiatric ResearchOrangeburgNew YorkUSA
| | - Tiffany M Chaim‐Avancini
- Laboratory of Psychiatric Neuroimaging (LIM‐21), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de MedicinaUniversidade de São PauloSão PauloBrazil
| | - Christopher RK Ching
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Vincent P Clark
- Psychology Clinical Neuroscience Center, Department of PsychologyUniversity of New MexicoAlbuquerqueNew MexicoUSA
- Mind Research NetworkAlbuquerqueNew MexicoUSA
| | - Patricia J Conrod
- CHU Sainte‐Justine Research CenterMontrealQuebecCanada
- Department of PsychiatryUniversity of MontrealMontrealCanada
| | - Annette Conzelmann
- Department of Child and Adolescent Psychiatry, Psychosomatics and PsychotherapyUniversity of TübingenTübingenGermany
- Department of Psychology (Clinical Psychology II)PFH – Private University of Applied SciencesGöttingenGermany
| | - Fabrice Crivello
- Groupe d'Imagerie NeurofonctionnelleInstitut des Maladies NeurodégénérativesBordeauxFrance
| | - Christopher G Davey
- Centre for Youth Mental HealthUniversity of MelbourneParkvilleVictoriaAustralia
- OrygenParkvilleVictoriaAustralia
| | - Erin W Dickie
- Campbell Family Mental Health Institute, Centre for Addiction and Mental Health, Department of PsychiatryUniversity of TorontoTorontoCanada
- Department of PsychiatryUniversity of TorontoTorontoOntarioCanada
| | - Stefan Ehrlich
- Division of Psychological & Social Medicine and Developmental Neurosciences; Technische Universität Dresden, Faculty of MedicineUniversity Hospital C.G. CarusDresdenGermany
| | - Dennis van't Ent
- Department of Biological PsychologyVU University AmsterdamAmsterdamThe Netherlands
| | - Simon E Fisher
- Language and Genetics DepartmentMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
- Donders Institute for Brain, Cognition and BehaviourRadboud UniversityNijmegenThe Netherlands
| | - Jean‐Paul Fouche
- Department of Psychiatry and Neuroscience InstituteUniversity of Cape TownCape TownWestern CapeSouth Africa
| | - Barbara Franke
- Donders Institute for Brain, Cognition and BehaviourRadboud UniversityNijmegenThe Netherlands
- Department of Human GeneticsRadboud University Medical CenterNijmegenThe Netherlands
- Department of PsychiatryRadboud University Medical CenterNijmegenThe Netherlands
| | - Paola Fuentes‐Claramonte
- FIDMAG Germanes Hospitalàries Research FoundationBarcelonaSpain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM)MadridSpain
| | - Eco JC de Geus
- Department of Biological PsychologyVU University AmsterdamAmsterdamThe Netherlands
| | | | - David C Glahn
- Tommy Fuss Center for Neuropsychiatric Disease Research, Department of PsychiatryBoston Children's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
- Olin Center for Neuropsychiatric Research, Institute of LivingHartford HospitalHartfordConnecticutUSA
| | - Ian H Gotlib
- Department of PsychologyStanford UniversityStanfordCaliforniaUSA
| | - Hans J Grabe
- Department of Psychiatry and PsychotherapyUniversity Medicine GreifswaldGreifswaldGermany
- German Center for Neurodegenerative Diseases (DZNE)Site Rostock/GreifswaldGreifswaldGermany
| | - Oliver Gruber
- Section for Experimental Psychopathology and Neuroimaging, Department of General PsychiatryHeidelberg University HospitalHeidelbergGermany
| | - Patricia Gruner
- Department of PsychiatryYale UniversityNew HavenConnecticutUSA
| | - Raquel E Gur
- Department of PsychiatryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Lifespan Brain InstituteChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Ruben C Gur
- Department of PsychiatryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Tiril P Gurholt
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Institute of Clinical MedicineUniversity of OsloOsloNorway
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and AddictionOslo University HospitalOsloNorway
| | - Lieuwe de Haan
- Department of Early PsychosisAmsterdam UMCAmsterdamThe Netherlands
| | - Beathe Haatveit
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Institute of Clinical MedicineUniversity of OsloOsloNorway
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and AddictionOslo University HospitalOsloNorway
| | - Ben J Harrison
- Melbourne Neuropsychiatry Centre, Department of PsychiatryThe University of Melbourne & Melbourne HealthMelbourneAustralia
| | - Catharina A Hartman
- Interdisciplinary Center Psychopathology and Emotion regulationUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Sean N Hatton
- Brain and Mind CentreUniversity of SydneySydneyNew South WalesAustralia
- Department of NeurosciencesUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Dirk J Heslenfeld
- Departments of Experimental and Clinical PsychologyVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Odile A van den Heuvel
- Department of Psychiatry, Amsterdam Neuroscience, Amsterdam UMCVrije UniversiteitAmsterdamThe Netherlands
- Department of Anatomy & Neurosciences, Amsterdam NeuroscienceAmsterdam UMC, Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Ian B Hickie
- Brain and Mind CentreUniversity of SydneySydneyNew South WalesAustralia
| | - Pieter J Hoekstra
- Department of PsychiatryUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Sarah Hohmann
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental HealthUniversity of Heidelberg, Medical Faculty MannheimMannheimGermany
| | - Avram J Holmes
- Department of PsychiatryYale UniversityNew HavenConnecticutUSA
- Department of PsychologyYale UniversityNew HavenConnecticutUSA
- Department of PsychiatryMassachusetts General HospitalBostonMassachusettsUSA
| | - Martine Hoogman
- Donders Institute for Brain, Cognition and BehaviourRadboud UniversityNijmegenThe Netherlands
- Department of Human GeneticsRadboud University Medical CenterNijmegenThe Netherlands
| | - Norbert Hosten
- Institute of Diagnostic Radiology and NeuroradiologyUniversity Medicine GreifswaldGreifswaldGermany
| | - Fleur M Howells
- Neuroscience InstituteUniversity of Cape TownCape TownWestern CapeSouth Africa
- Department of Psychiatry and Mental HealthUniversity of Cape TownCape TownWestern CapeSouth Africa
| | - Hilleke E Hulshoff Pol
- Department of Psychiatry, University Medical Center Utrecht Brain CenterUtrecht UniversityUtrechtThe Netherlands
| | - Chaim Huyser
- De Bascule, Academic center child and adolescent psychiatryDuivendrechtThe Netherlands
- Amsterdam UMC Department of Child and Adolescent PsychiatryAmsterdamThe Netherlands
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Anthony C James
- Department of PsychiatryWarneford HospitalOxfordUK
- Highfield UnitWarneford HospitalOxfordUK
| | - Jiyang Jiang
- Centre for Healthy Brain Ageing, School of PsychiatryUniversity of New South WalesSydneyNew South WalesAustralia
| | - Erik G Jönsson
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Institute of Clinical MedicineUniversity of OsloOsloNorway
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, & Stockholm Health Care ServicesStockholm County CouncilStockholmSweden
| | - John A Joska
- Department of Psychiatry and Mental HealthUniversity of Cape TownCape TownWestern CapeSouth Africa
| | - Andrew J Kalnin
- Department of RadiologyThe Ohio State University College of MedicineColumbusOhioUSA
| | | | - Marieke Klein
- Department of Psychiatry, University Medical Center Utrecht Brain CenterUtrecht UniversityUtrechtThe Netherlands
- Donders Institute for Brain, Cognition and BehaviourRadboud UniversityNijmegenThe Netherlands
- Department of Human GeneticsRadboud University Medical CenterNijmegenThe Netherlands
| | - Laura Koenders
- Department of Early PsychosisAmsterdam UMCAmsterdamThe Netherlands
| | - Knut K Kolskår
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and AddictionOslo University HospitalOsloNorway
- Department of PsychologyUniversity of OsloOsloNorway
- Sunnaas Rehabilitation Hospital HTNesoddenNorway
| | - Bernd Krämer
- Section for Experimental Psychopathology and Neuroimaging, Department of General PsychiatryHeidelberg University HospitalHeidelbergGermany
| | - Jonna Kuntsi
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUK
| | - Jim Lagopoulos
- Sunshine Coast Mind and Neuroscience Thompson InstituteBirtinyaQueenslandAustralia
- University of the Sunshine CoastSunshine CoastQueenslandAustralia
| | - Luisa Lazaro
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM)MadridSpain
- Department of Child and Adolescent Psychiatry and PsychologyHospital ClínicBarcelonaSpain
- August Pi i Sunyer Biomedical Research Institut (IDIBAPS)BarcelonaSpain
- Department of MedicineUniversity of BarcelonaBarcelonaSpain
| | - Irina S Lebedeva
- Laboratory of Neuroimaging and Multimodal AnalysisMental Health Research CenterMoscowRussia
| | - Phil H Lee
- Department of PsychiatryMassachusetts General HospitalBostonMassachusettsUSA
- Department of PsychiatryHarvard Medical SchoolBostonMassachusettsUSA
| | - Christine Lochner
- SA MRC Unit on Risk and Resilience in Mental Disorders, Department of PsychiatryStellenbosch UniversityCape TownWestern CapeSouth Africa
| | | | - Sophie Maingault
- Institut des maladies neurodégénérativesUniversité de BordeauxBordeauxFrance
| | - Nicholas G Martin
- Genetic EpidemiologyQIMR Berghofer Medical Research InstituteBrisbaneQueenslandAustralia
| | - Ignacio Martínez‐Zalacaín
- Department of Psychiatry, Bellvitge University HospitalBellvitge Biomedical Research Institute‐IDIBELLBarcelonaSpain
- Department of Clinical SciencesUniversity of BarcelonaBarcelonaSpain
| | - David Mataix‐Cols
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, & Stockholm Health Care ServicesStockholm County CouncilStockholmSweden
| | - Bernard Mazoyer
- University of BordeauxBordeauxFrance
- Bordeaux University HospitalBordeauxFrance
| | - Brenna C McDonald
- Department of Radiology and Imaging SciencesIndiana University School of MedicineIndianapolisIndianaUSA
| | - Colm McDonald
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health SciencesNational University of Ireland GalwayGalwayIreland
| | | | - Katie L McMahon
- Herston Imaging Research Facility and School of Clinical SciencesQueensland University of Technology (QUT)BrisbaneQueenslandAustralia
- Faculty of Health, Institute of Health and Biomedical InnovationQueensland University of Technology (QUT)BrisbaneQueenslandAustralia
| | - Genevieve McPhilemy
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health SciencesNational University of Ireland GalwayGalwayIreland
| | - Dennis van der Meer
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Institute of Clinical MedicineUniversity of OsloOsloNorway
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and AddictionOslo University HospitalOsloNorway
- School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life SciencesMaastricht UniversityMaastrichtThe Netherlands
| | - José M Menchón
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM)MadridSpain
- Department of Psychiatry, Bellvitge University HospitalBellvitge Biomedical Research Institute‐IDIBELLBarcelonaSpain
- Department of Clinical SciencesUniversity of BarcelonaBarcelonaSpain
| | - Jilly Naaijen
- Department of Cognitive NeuroscienceRadboud University Medical CentreNijmegenThe Netherlands
| | - Lars Nyberg
- Department of Radiation SciencesUmeå UniversityUmeåSweden
- Department of Integrative Medical BiologyUmeå UniversityUmeåSweden
| | - Jaap Oosterlaan
- Emma Children's Hospital, Amsterdam UMC University of Amsterdam and Vrije Universiteit AmsterdamEmma Neuroscience Group, Department of Pediatrics, Amsterdam Reproduction & DevelopmentAmsterdamThe Netherlands
- Clinical Neuropsychology SectionVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Yannis Paloyelis
- Department of Neuroimaging, Institute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUK
| | - Paul Pauli
- Department of PsychologyUniversity of WürzburgWürzburgGermany
- Centre of Mental Health, Medical FacultyUniversity of WürzburgWürzburgGermany
| | - Giulio Pergola
- Department of Basic Medical Science, Neuroscience and Sense OrgansUniversity of Bari Aldo MoroBariItaly
- Lieber Institute for Brain DevelopmentJohns Hopkins Medical CampusBaltimoreMary LandUSA
| | - Edith Pomarol‐Clotet
- FIDMAG Germanes Hospitalàries Research FoundationBarcelonaSpain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM)MadridSpain
| | - Maria J Portella
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM)MadridSpain
- Department of PsychiatryInstitut d'Investigació Biomèdica Sant PauBarcelonaSpain
| | - Joaquim Radua
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, & Stockholm Health Care ServicesStockholm County CouncilStockholmSweden
- FIDMAG Germanes Hospitalàries Research FoundationBarcelonaSpain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM)MadridSpain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
- Early Psychosis: Interventions and Clinical‐detection (EPIC) lab, Department of Psychosis StudiesInstitute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and PsychotherapyUniversity Hospital FrankfurtFrankfur am MaintGermany
| | - Geneviève Richard
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Institute of Clinical MedicineUniversity of OsloOsloNorway
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and AddictionOslo University HospitalOsloNorway
| | - Joshua L Roffman
- Department of PsychiatryMassachusetts General Hospital and Harvard Medical SchoolCharlestownMassachusettsUSA
| | - Pedro GP Rosa
- Laboratory of Psychiatric Neuroimaging (LIM‐21), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de MedicinaUniversidade de São PauloSão PauloBrazil
| | - Matthew D Sacchet
- Center for Depression, Anxiety, and Stress ResearchMcLean Hospital, Harvard Medical SchoolBelmontMassachusettsUSA
| | - Perminder S Sachdev
- Centre for Healthy Brain Ageing, School of PsychiatryUniversity of New South WalesSydneyNew South WalesAustralia
- Neuropsychiatric InstituteThe Prince of Wales HospitalRandwickNew South WalesAustralia
| | - Raymond Salvador
- FIDMAG Germanes Hospitalàries Research FoundationBarcelonaSpain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM)MadridSpain
| | - Salvador Sarró
- FIDMAG Germanes Hospitalàries Research FoundationBarcelonaSpain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM)MadridSpain
| | | | - Andrew J Saykin
- Department of Radiology and Imaging SciencesIndiana University School of MedicineIndianapolisIndianaUSA
- Indiana Alzheimer Disease CenterIndianapolisIndianaUSA
| | - Mauricio H Serpa
- Laboratory of Psychiatric Neuroimaging (LIM‐21), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de MedicinaUniversidade de São PauloSão PauloBrazil
| | - Kang Sim
- West Region, Institute of Mental HealthSingaporeSingapore
- Yong Loo Lin School of MedicineNational University of SingaporeSingapore
| | - Andrew Simmons
- Department of Neuroimaging, Institute of PsychiatryPsychology and Neurology, King's College LondonLondonUK
| | - Jordan W Smoller
- Department of PsychiatryMassachusetts General HospitalBostonMassachusettsUSA
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic MedicineMassachusetts General HospitalBostonMassachusettsUSA
| | - Iris E Sommer
- Department of Biomedical Sciences of Cells and Systems, Rijksuniversiteit GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - Carles Soriano‐Mas
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM)MadridSpain
- Department of Psychiatry, Bellvitge University HospitalBellvitge Biomedical Research Institute‐IDIBELLBarcelonaSpain
- Department of Psychobiology and Methodology in Health SciencesUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - Dan J Stein
- SAMRC Unit on Risk & Resilience in Mental Disorders, Dept of Psychiatry & Neuroscience InstituteUniversity of Cape TownCape TownWestern CapeSouth Africa
| | - Lachlan T Strike
- Queensland Brain InstituteUniversity of QueenslandBrisbaneQueenslandAustralia
| | - Philip R Szeszko
- Department of PsychiatryIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Mental Illness Research, Education and Clinical Center (MIRECC)James J. Peters VA Medical CenterNew YorkNew YorkUSA
| | - Henk S Temmingh
- Department of Psychiatry and Mental HealthUniversity of Cape TownCape TownWestern CapeSouth Africa
| | - Sophia I Thomopoulos
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Alexander S Tomyshev
- Laboratory of Neuroimaging and Multimodal AnalysisMental Health Research CenterMoscowRussia
| | - Julian N Trollor
- Centre for Healthy Brain Ageing, School of PsychiatryUniversity of New South WalesSydneyNew South WalesAustralia
| | - Anne Uhlmann
- Department of Psychiatry and Mental HealthUniversity of Cape TownCape TownWestern CapeSouth Africa
- Department of Child and Adolescent Psychiatry and PsychotherapyFaculty of Medicine Carl Gustav Carus of TU DresdenDresdenGermany
| | - Ilya M Veer
- Department of Psychiatry and Psychotherapy CCM, Charité ‐ Universitätsmedizin Berlin, corporate member of Freie Universität BerlinHumboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - Dick J Veltman
- Department of Psychiatry & Amsterdam NeuroscienceAmsterdam UMC, location VUMCAmsterdamThe Netherlands
| | - Aristotle Voineskos
- Campbell Family Mental Health Institute, Centre for Addiction and Mental Health, Department of PsychiatryUniversity of TorontoTorontoCanada
| | - Henry Völzke
- Institute for Community MedicineUniversity Medicine GreifswaldGreifswaldGermany
- DZHK (German Centre for Cardiovascular Research), partner site GreifswaldGreifswaldGermany
- DZD (German Center for Diabetes Research), partner site GreifswaldGreifswaldGermany
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy CCM, Charité ‐ Universitätsmedizin Berlin, corporate member of Freie Universität BerlinHumboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - Lei Wang
- Department of Psychiatry and Behavioral SciencesNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Yang Wang
- Department of RadiologyMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Bernd Weber
- Institute for Experimental Epileptology and Cognition ResearchUniversity Hospital BonnBonnGermany
| | - Wei Wen
- Centre for Healthy Brain Ageing, School of PsychiatryUniversity of New South WalesSydneyNew South WalesAustralia
| | - John D West
- Department of Radiology and Imaging SciencesIndiana University School of MedicineIndianapolisIndianaUSA
| | - Lars T Westlye
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Institute of Clinical MedicineUniversity of OsloOsloNorway
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and AddictionOslo University HospitalOsloNorway
- Department of PsychologyUniversity of OsloOsloNorway
| | - Heather C Whalley
- Division of PsychiatryUniversity of EdinburghEdinburghUK
- Division of PsychiatryRoyal Edinburgh HospitalEdinburghUK
| | | | - Katharina Wittfeld
- Department of Psychiatry and PsychotherapyUniversity Medicine GreifswaldGreifswaldGermany
- German Center for Neurodegenerative Diseases (DZNE)Site Rostock/GreifswaldGreifswaldGermany
| | - Daniel H Wolf
- Department of PsychiatryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Margaret J Wright
- Queensland Brain InstituteUniversity of QueenslandBrisbaneQueenslandAustralia
- Centre for Advanced ImagingUniversity of QueenslandBrisbaneQueenslandAustralia
| | - Yuliya N Yoncheva
- Department of Child and Adolescent Psychiatry, NYU Child Study CenterHassenfeld Children's Hospital at NYU LangoneNew YorkNew YorkUSA
| | - Marcus V Zanetti
- Laboratory of Psychiatric Neuroimaging (LIM‐21), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de MedicinaUniversidade de São PauloSão PauloBrazil
- Instituto de Ensino e PesquisaHospital Sírio‐LibanêsSão PauloBrazil
| | - Georg C Ziegler
- Division of Molecular Psychiatry, Center of Mental HealthUniversity of WürzburgWürzburgGermany
| | - Greig I de Zubicaray
- Faculty of Health, Institute of Health and Biomedical InnovationQueensland University of Technology (QUT)BrisbaneQueenslandAustralia
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Eveline A Crone
- Institute of PsychologyLeiden UniversityLeidenThe Netherlands
- Leiden Institute for Brain and CognitionLeidenThe Netherlands
- Department of Psychology, Education and Child Studies (DPECS), Erasmus School of Social and Behavioral SciencesErasmus University RotterdamThe Netherlands
| | - Sophia Frangou
- Department of PsychiatryIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Centre for Brain HealthUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Christian K Tamnes
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Institute of Clinical MedicineUniversity of OsloOsloNorway
- Department of Psychiatric ResearchDiakonhjemmet HospitalOsloNorway
- PROMENTA Research Center, Department of PsychologyUniversity of OsloOsloNorway
| |
Collapse
|
20
|
Gervais SJ, Baildon AE, Lorenz TK. On Methods and Marshmallows: A Roadmap for Science That Is Openly Feminist and Radically Open. PSYCHOLOGY OF WOMEN QUARTERLY 2021. [DOI: 10.1177/03616843211032632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this commentary, we argue that feminist science and open science can benefit from each other’s wisdom and critiques in service of creating systems that produce the highest quality science with the maximum potential for improving the lives of women. To do this, we offer a constructive analysis, focusing on common methods used in open science, including open materials and data, preregistration, and large sample sizes, and illuminate potential benefits and costs from a feminist science perspective. We also offer some solutions and deeper questions both for individual researchers and the feminist psychology and open science communities. By broadening our focus from a myopic prioritization of certain methodological and analytic approaches in open science, we hope to give a balanced perspective of science that emerges from each movement’s strengths and is openly feminist and radically open.
Collapse
|
21
|
Joel D. Beyond sex differences and a male-female continuum: Mosaic brains in a multidimensional space. HANDBOOK OF CLINICAL NEUROLOGY 2021; 175:13-24. [PMID: 33008521 DOI: 10.1016/b978-0-444-64123-6.00002-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In the last two decades, the 60 years old view that in utero exposure to testosterone irreversibly masculinizes the brain of males away from a default female form has been replaced by a complex scenario according to which sex affects the brains of both females and males via multiple mechanisms, which are susceptible to internal and external factors. These observations led to the "mosaic" hypothesis-the expectation that the degree of "maleness"/"femaleness" of different features within a single brain would not be internally consistent. Following a short review of the animal studies providing the basis of the mosaic hypothesis, I describe three studies conducted in humans that assessed internal consistency in regional volume, cortical thickness, and connectivity as revealed by magnetic resonance imaging (MRI); in neuronal numbers in the postmortem hypothalamus; and in changes in regional volume and cortical thickness (assessed with MRI) following exposure to extreme real-life stress. The conclusion from these studies, that human brains are largely composed of unique mosaics of female-typical and male-typical features, was supported by recent findings that the brain "types" typical of women are also typical of men, and vice versa. Lastly, I discuss criticism of the mosaic hypothesis and suggest replacing the framework of a male-female continuum with thinking about mosaic brains residing in a multidimensional space.
Collapse
Affiliation(s)
- Daphna Joel
- School of Psychological Sciences and Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
22
|
Fitsch H. Reflections on Binary Sex/Gender Categorization in Magnetic Resonance Tomography and its Future Challenges. FRONTIERS IN SOCIOLOGY 2021; 6:705106. [PMID: 34368294 PMCID: PMC8333285 DOI: 10.3389/fsoc.2021.705106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
This paper examines the role of technical, methodological conditions in functional magnetic imaging (fMRI) in the production of binary sex/gender differences. The aim is to investigate the scanning process with a focus on the statistical parameter of gendered markers within the technology, in order to make visible the problems entangled in typical research routines. It is especially important to elaborate this because the computer models currently being used and Big Data studies are reproducing and reapplying outdated and rigid concepts of sex/gender differences with the goal of improving science considerably. Therefore, the paper discusses the empirical methodologies and epistemic underpinnings of differentiation through statistics, and argues that counter-counting, weighing and sizing might not help to substantiate the idea of "equality" (not only for the sex/gender category) in brain studies. In relation to the topic of this special issue, I argue that in order to develop an interdisciplinary approach to criticizing dimorphism and differentiation by groups, a wider understanding of the technical and theoretical foundations used in brain research is needed.
Collapse
|
23
|
Poeschl G. A hundred years of debates on sex differences: Developing research for social change. JOURNAL OF SOCIAL AND POLITICAL PSYCHOLOGY 2021. [DOI: 10.5964/jspp.6399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
After women secured the right to vote some hundred years ago, the assertions about their innate inferiority gradually began to vanish, giving way to theories about the countless aspects which apparently differentiated them from men. In this paper, we follow the evolution of research on sex differences, starting with the work of the first female psychologists who questioned the theories that justified women’s subordinate positions in society. We trace the main developments of the studies on sex differences, their relationship with social roles, gender stereotypes, and gender identity, and describe the strategies used to highlight the role of society rather than of biology in shaping men and women’s personalities and behaviors. We describe the controversies this area of research gave rise to, the debates over its political implications, and the changes observed over time in women’s social positions and within research perspectives. Finally, we discuss the mutually reinforcing effects of social organization and lay conceptions of gender and reflect on how the field of research on sex differences has contributed to building a fairer society.
Collapse
|
24
|
Henze GI, Konzok J, Kreuzpointner L, Bärtl C, Giglberger M, Peter H, Streit F, Kudielka BM, Kirsch P, Wüst S. Sex-Specific Interaction Between Cortisol and Striato-Limbic Responses to Psychosocial Stress. Soc Cogn Affect Neurosci 2021; 16:972-984. [PMID: 33961049 PMCID: PMC8421693 DOI: 10.1093/scan/nsab062] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 04/15/2021] [Accepted: 05/07/2021] [Indexed: 11/13/2022] Open
Abstract
Although women and men differ in psychological and endocrine stress responses as well as in the prevalence rates of stress-related disorders, knowledge on sex differences regarding stress regulation in the brain is scarce. Therefore, we performed an in-depth analysis of data from 67 healthy participants (31 women, taking oral contraceptives), who were exposed to the ScanSTRESS paradigm in a functional magnetic resonance imaging study. Changes in cortisol, affect, heart rate and neural activation in response to psychosocial stress were examined in women and men as well as potential sex-specific interactions between stress response domains. Stress exposure led to significant cortisol increases, with men exhibiting higher levels than women. Depending on sex, cortisol elevations were differently associated with stress-related responses in striato-limbic structures: higher increases were associated with activations in men but with deactivations in women. Regarding affect or heart rate responses, no sex differences emerged. Although women and men differ in their overall stress reactivity, our findings do not support the idea of distinct neural networks as the base of this difference. Instead, we found differential stress reactions for women and men in identical structures. We propose considering quantitative predictors such as sex-specific cortisol increases when exploring neural response differences of women and men.
Collapse
Affiliation(s)
| | - Julian Konzok
- Institute of Psychology, University of Regensburg, Regensburg, Germany
| | | | - Christoph Bärtl
- Institute of Psychology, University of Regensburg, Regensburg, Germany
| | - Marina Giglberger
- Institute of Psychology, University of Regensburg, Regensburg, Germany
| | - Hannah Peter
- Institute of Psychology, University of Regensburg, Regensburg, Germany
| | - Fabian Streit
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | | | - Peter Kirsch
- Department of Clinical Psychology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Institute of Psychology, Heidelberg University, Heidelberg, Germany
| | - Stefan Wüst
- Institute of Psychology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
25
|
Diekhof EK, Richter A, Brodmann K, Gruber O. Dopamine multilocus genetic profiles predict sex differences in reactivity of the human reward system. Brain Struct Funct 2021; 226:1099-1114. [PMID: 33580321 DOI: 10.1007/s00429-021-02227-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 01/21/2021] [Indexed: 11/30/2022]
Abstract
Sex differences in the neural processing of decision-making are of high interest as they may have pronounced effects on reward- and addiction-related processes. In these, the neurotransmitter dopamine plays a central role by modulating the responsiveness of the reward circuitry. The present functional magnetic resonance imaging study aimed to explore sex and dopamine transmission interactions in decision-making. 172 subjects (111 women) performed a behavioral self-control task assessing reward-related activation during acceptance and rejection of conditioned rewards. Participants were genotyped for six key genetic polymorphisms in the dopamine system that have previously been associated with individual differences in reward sensitivity or dopaminergic transmission in the human striatum, such as rs7118900 (dopamine receptor D2 (DRD2) Taq1A), rs1554929 (DRD2 C957T), rs907094 (DARPP-32), rs12364283 (DRD2), rs6278 (DRD2), and rs107656 (DRD2). The selected polymorphisms were combined in a so-called multilocus genetic composite (MGC) score reflecting the additive effect of different alleles conferring relative increased dopamine transmission in every individual. We successfully demonstrated that reward-related activation in the ventral striatum and ventral tegmental area (VTA) was significantly modulated by biologically informed MGC profiles and sex. When comparing men and women with low MGC profiles that may indicate lower dopamine transmission, only women displayed a reduced down-regulation of activation in the mesolimbic system during reward rejection and additionally, a significant non-linear u-shape relationship between MGC score and VTA activation. Taken together, by integrating neuroimaging and genetics, the present findings contribute to a better understanding of the effects of sex differences on the human brain.
Collapse
Affiliation(s)
- Esther K Diekhof
- Section for Neuroendocrinology, Department of Biology, University of Hamburg, Hamburg, Germany.,Center for Translational Research in Systems Neuroscience and Psychiatry, Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Anja Richter
- Section for Experimental Psychopathology and Neuroimaging, Department of General Psychiatry, Heidelberg University Hospital, Heidelberg, Germany. .,Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 16 De Crespigny Park, London, SE5 8AF, UK.
| | - Katja Brodmann
- Center for Translational Research in Systems Neuroscience and Psychiatry, Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Oliver Gruber
- Center for Translational Research in Systems Neuroscience and Psychiatry, Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany.,Section for Experimental Psychopathology and Neuroimaging, Department of General Psychiatry, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
26
|
Joel D. Beyond the binary: Rethinking sex and the brain. Neurosci Biobehav Rev 2021; 122:165-175. [PMID: 33440198 DOI: 10.1016/j.neubiorev.2020.11.018] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 11/12/2020] [Accepted: 11/14/2020] [Indexed: 01/06/2023]
Abstract
The paper reviews the relations between sex and brain in light of the binary conceptualization of these relations and the challenges posed to it by the 'mosaic' hypothesis. Recent formulations of the binary framework range from arguing that the typical male brain is different from the typical female brain to claiming that brains are typically male or female because brain structure can be used to predict the sex category (female/male) of the brain's owner. These formulations are challenged by evidence that sex effects on the brain may be opposite under different conditions, that human brains are comprised of mosaics of female-typical and male-typical features, and that sex category explains only a small part of the variability in human brain structure. These findings led to a new, non-binary, framework, according to which mosaic brains reside in a multi-dimensional space that cannot meaningfully be reduced to a male-female continuum or to a binary variable. This framework may also apply to sex-related variables and has implications for research.
Collapse
Affiliation(s)
- Daphna Joel
- School of Psychological Sciences and Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
27
|
Sex differences in health and disease: A review of biological sex differences relevant to cancer with a spotlight on glioma. Cancer Lett 2020; 498:178-187. [PMID: 33130315 DOI: 10.1016/j.canlet.2020.07.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/16/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022]
Abstract
The influence of biological sex differences on human health and disease, while being increasingly recognized, has long been underappreciated and underexplored. While humans of all sexes are more alike than different, there is evidence for sex differences in the most basic aspects of human biology and these differences have consequences for the etiology and pathophysiology of many diseases. In a disease like cancer, these consequences manifest in the sex biases in incidence and outcome of many cancer types. The ability to deliver precise, targeted therapies to complex cancer cases is limited by our current understanding of the underlying sex differences. Gaining a better understanding of the implications and interplay of sex differences in diseases like cancer will thus be informative for clinical practice and biological research. Here we review the evidence for a broad array of biological sex differences in humans and discuss how these differences may relate to observed sex differences in various diseases, including many cancers and specifically glioblastoma. We focus on areas of human biology that play vital roles in healthy and disease states, including metabolism, development, hormones, and the immune system, and emphasize that the intersection of sex differences in these areas should not go overlooked. We further propose that mathematical approaches can be useful for exploring the extent to which sex differences affect disease outcomes and accounting for those in the development of therapeutic strategies.
Collapse
|
28
|
Jones BA, Arcelus J, Bouman WP, Haycraft E. Authors' Reply to Richardson and Chen: Comment on "Sport and Transgender People: A Systematic Review of the Literature Relating to Sport Participation and Competitive Sport Policies". Sports Med 2020; 50:1861-1862. [PMID: 32710429 DOI: 10.1007/s40279-020-01324-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Bethany A Jones
- School of Social Sciences, Nottingham Trent University, Nottingham, UK.
| | - Jon Arcelus
- Nottingham Centre for Transgender Health, Nottingham, UK
- Division of Psychiatry and Applied Psychology, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| | - Walter Pierre Bouman
- Nottingham Centre for Transgender Health, Nottingham, UK
- Division of Psychiatry and Applied Psychology, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| | - Emma Haycraft
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| |
Collapse
|
29
|
Trejo-Sánchez I, Pérez-Monter C, Huerta-Pacheco S, Gutiérrez-Ospina G. Male Ejaculatory Endophenotypes: Revealing Internal Inconsistencies of the Concept in Heterosexual Copulating Rats. Front Behav Neurosci 2020; 14:90. [PMID: 32670030 PMCID: PMC7332778 DOI: 10.3389/fnbeh.2020.00090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 05/14/2020] [Indexed: 12/17/2022] Open
Abstract
Distinct manifestations of sexual behavior are conceived as separate phenotypes. Each sexual phenotype is assumed to be associated with a characteristic brain. These notions have justified the phenotyping of heterosexual copulator males based upon their ejaculation's latencies (EL) or frequencies (i.e., cumulative ejaculation number; EN). For instance, men and male rats showing premature, normal or retarded ejaculation are assumed to be distinctive endophenotypes. This concept, nonetheless, contradicts past and recent evidence that supports that sexual behavior is highly variable within each sex, and that the brain sexual functional morphology represents an intricate sexual phenotypic mosaic. Hence, for ejaculatory male endophenotypes to be considered as a valid biological concept, it must show internal consistency at various levels of organization (including genetic architectures), after being challenged by intrinsic and/or extrinsic factors. We then judged the internal consistency of the presumed ejaculatory endophenotypes by assessing whether copulatory behavior and the expression of copulation relevant genes and brain limbic structures are specific to each of the presumed EL- or EN-ejaculatory endophenotypes. To do this, copulating male rats were first phenotyped in groups consistently displaying short, average or long ejaculation latencies or very high, high, average, low or very low EN, based in their copulatory performance. Then, the internal consistency of the presumed EL- or EN-endophenotypes was tested by introducing as covariates of phenotyping other copulatory parameters (e.g., number of intromissions) in addition to EL or EN, or by analyzing the expression levels of genes encoding for estrogen receptor alpha, progesterone receptor, androgen receptor, aromatase, DNA methyl-transferase 3a and DNA methyl-transferase 1 in the amygdala, medial preoptic area, ventromedial hypothalamus and olfactory bulb. We found that even though there were group-level differences in all the variables that were studied, these differences did not add-up to create the presumed EL- or EN-ejaculatory endophenotypes. In fact, the extensive overlapping of copulatory parameters and expression levels of copulation relevant genes in limbic structures across EL- or EN-phenotyped copulating male rats, is not consistent with the hypothesis that distinct ejaculatory endophenotypes exist and that they are associated with specific brain characteristics.
Collapse
Affiliation(s)
- Itztli Trejo-Sánchez
- Laboratorio de Biología de Sistemas, Instituto de Investigaciones Biomédicas, Departamento de Biología Celular y Fisiología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Programa de Doctorado en Ciencias Biomédicas, Unidad de Posgrado, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Carlos Pérez-Monter
- Departamento de Gastroenterología, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City, Mexico
| | - Sofía Huerta-Pacheco
- Consejo Nacional de Ciencia y Tecnología, Ciencia Forense, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Gabriel Gutiérrez-Ospina
- Laboratorio de Biología de Sistemas, Instituto de Investigaciones Biomédicas, Departamento de Biología Celular y Fisiología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Coordinación de Psicobiología y Neurociencias, Facultad de Psicología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
30
|
Weis S, Patil KR, Hoffstaedter F, Nostro A, Yeo BTT, Eickhoff SB. Sex Classification by Resting State Brain Connectivity. Cereb Cortex 2020; 30:824-835. [PMID: 31251328 PMCID: PMC7444737 DOI: 10.1093/cercor/bhz129] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 05/03/2019] [Accepted: 05/28/2019] [Indexed: 12/15/2022] Open
Abstract
A large amount of brain imaging research has focused on group studies delineating differences between males and females with respect to both cognitive performance as well as structural and functional brain organization. To supplement existing findings, the present study employed a machine learning approach to assess how accurately participants' sex can be classified based on spatially specific resting state (RS) brain connectivity, using 2 samples from the Human Connectome Project (n1 = 434, n2 = 310) and 1 fully independent sample from the 1000BRAINS study (n = 941). The classifier, which was trained on 1 sample and tested on the other 2, was able to reliably classify sex, both within sample and across independent samples, differing both with respect to imaging parameters and sample characteristics. Brain regions displaying highest sex classification accuracies were mainly located along the cingulate cortex, medial and lateral frontal cortex, temporoparietal regions, insula, and precuneus. These areas were stable across samples and match well with previously described sex differences in functional brain organization. While our data show a clear link between sex and regionally specific brain connectivity, they do not support a clear-cut dimorphism in functional brain organization that is driven by sex alone.
Collapse
Affiliation(s)
- Susanne Weis
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - Kaustubh R Patil
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - Felix Hoffstaedter
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - Alessandra Nostro
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Art and Sciences (KNAW), Amsterdam, the Netherlands
| | - B T Thomas Yeo
- ECE, CIRC, N.1, MNP and NGS, National University of Singapore, Singapore
| | - Simon B Eickhoff
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| |
Collapse
|
31
|
Synthesizing Views to Understand Sex Differences in Response to Early Life Adversity. Trends Neurosci 2020; 43:300-310. [PMID: 32353334 DOI: 10.1016/j.tins.2020.02.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/11/2020] [Accepted: 02/18/2020] [Indexed: 02/06/2023]
Abstract
Sex as a biological variable (SABV) is critical for understanding the broad range of physiological, neurobiological, and behavioral consequences of early life adversity(ELA). The study of the interaction of SABV and ELA ties into several current debates, including the importance of taking into account SABV in research, differing strategies employed by males and females in response to adversity, and the possible evolutionary and developmental mechanisms of altered development in response to adversity. This review highlights the importance of studying both sexes, of understanding sex differences (and similarities) in response to ELA, and provides a context for the debate surrounding whether the response to ELA may be an adaptive process.
Collapse
|
32
|
A mosaic of sex-related structural changes in the human brain following exposure to real-life stress. Brain Struct Funct 2019; 225:461-466. [DOI: 10.1007/s00429-019-01995-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 11/23/2019] [Indexed: 12/22/2022]
|
33
|
Electrophysiological Correlates of an Alcohol-Cued Go/NoGo Task: A Dual-Process Approach to Binge Drinking in University Students. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16224550. [PMID: 31752082 PMCID: PMC6888589 DOI: 10.3390/ijerph16224550] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/10/2019] [Accepted: 11/14/2019] [Indexed: 11/16/2022]
Abstract
Binge drinking is a common pattern of alcohol consumption in adolescence and youth. Neurocognitive dual-process models attribute substance use disorders and risk behaviours during adolescence to an imbalance between an overactivated affective-automatic system (involved in motivational and affective processing) and a reflective system (involved in cognitive inhibitory control). The aim of the present study was to investigate at the electrophysiological level the degree to which the motivational value of alcohol-related stimuli modulates the inhibition of a prepotent response in binge drinkers. First-year university students (n = 151, 54 % females) classified as binge drinkers (n = 71, ≥6 binge drinking episodes, defined as 5/7 standard drinks per occasion in the last 180 days) and controls (n = 80, <6 binge drinking episodes in the last 180 days) performed a beverage Go/NoGo task (pictures of alcoholic and nonalcoholic drinks were presented according to the condition as Go or NoGo stimuli; Go probability = 0.75) during event-related potential recording. In binge drinkers but not controls, the amplitude of the anterior N2-NoGo was larger in response to nonalcohol than in response to alcohol pictures. No behavioural difference in task performance was observed. In terms of dual-process models, binge drinkers may require increased activation to monitor conflict in order to compensate for overactivation of the affective-automatic system caused by alcohol-related bias.
Collapse
|
34
|
VanRyzin JW, Marquardt AE, Pickett LA, McCarthy MM. Microglia and sexual differentiation of the developing brain: A focus on extrinsic factors. Glia 2019; 68:1100-1113. [PMID: 31691400 DOI: 10.1002/glia.23740] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/09/2019] [Accepted: 10/11/2019] [Indexed: 12/16/2022]
Abstract
Microglia, the innate immune cells of the brain, have recently been removed from the position of mere sentinels and promoted to the role of active sculptors of developing circuits and cells. Alongside their functions in normal brain development, microglia coordinate sexual differentiation of the brain, a set of processes which vary by region and endpoint like that of microglia function itself. In this review, we highlight the ways microglia are both targets and drivers of brain sexual differentiation. We examine the factors that may drive sex differences in microglia, with a special focus on how changing microenvironments in the developing brain dictate microglia phenotypes and discuss how their diverse functions sculpt lasting sex-specific changes in the brain. Finally, we consider how sex-specific early life environments contribute to epigenetic programming and lasting sex differences in microglia identity.
Collapse
Affiliation(s)
- Jonathan W VanRyzin
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Ashley E Marquardt
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland
| | - Lindsay A Pickett
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland
| | - Margaret M McCarthy
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland.,Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
35
|
Abstract
In the past decennia, our understanding of the sexual differentiation of the mammalian brain has dramatically changed. The simple model according to which testosterone masculinizes the brain of males away from a default female form, was replaced with a complex scenario, according to which sex effects on the brain of both females and males are exerted by genetic, hormonal, and environmental factors. These factors act via multiple partly independent mechanisms that may vary according to internal and external factors. These observations led to the "mosaic" hypothesis-the expectation of high variability in the degree of "maleness"/"femaleness" of different features within a single brain. Here, we briefly review animal data that form the basis of current understanding of sexual differentiation; present, in this context, the results of co-analyses of human brain measures obtained by magnetic resonance imaging or postmortem; discuss criticisms and controversies of the mosaic hypothesis and implications for research; and conclude that co-analysis of several (preferably, many) features and going back from the group level to that of the individual would advance our understanding of the relations between sex and the brain in health and disease.
Collapse
Affiliation(s)
- Daphna Joel
- School of Psychological Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Alicia Garcia-Falgueras
- Netherlands Institute for Neuroscience, Amsterdam, An Institute of the Royal Netherlands Academy of Arts and Sciences, KNAW, Amsterdam, the Netherlands
| | - Dick Swaab
- Netherlands Institute for Neuroscience, Amsterdam, An Institute of the Royal Netherlands Academy of Arts and Sciences, KNAW, Amsterdam, the Netherlands
| |
Collapse
|
36
|
Phillips OR, Onopa AK, Hsu V, Ollila HM, Hillary RP, Hallmayer J, Gotlib IH, Taylor J, Mackey L, Singh MK. Beyond a Binary Classification of Sex: An Examination of Brain Sex Differentiation, Psychopathology, and Genotype. J Am Acad Child Adolesc Psychiatry 2019; 58:787-798. [PMID: 30768381 PMCID: PMC6456435 DOI: 10.1016/j.jaac.2018.09.425] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 09/18/2018] [Accepted: 10/02/2018] [Indexed: 10/28/2022]
Abstract
OBJECTIVE Sex differences in the brain are traditionally treated as binary. We present new evidence that a continuous measure of sex differentiation of the brain can explain sex differences in psychopathology. The degree of sex-differentiated brain features (ie, features that are more common in one sex) may predispose individuals toward sex-biased psychopathology and may also be influenced by the genome. We hypothesized that individuals with a female-biased differentiation score would have greater female-biased psychopathology (internalizing symptoms, such as anxiety and depression), whereas individuals with a male-biased differentiation score would have greater male-biased psychopathology (externalizing symptoms, such as disruptive behaviors). METHOD Using the Philadelphia Neurodevelopmental Cohort database acquired from database of Genotypes and Phenotypes, we calculated the sex differentiation measure, a continuous data-driven calculation of each individual's degree of sex-differentiating features extracted from multimodal brain imaging data (magnetic resonance imaging [MRI] /diffusion MRI) from the imaged participants (n = 866, 407 female and 459 male). RESULTS In male individuals, higher differentiation scores were correlated with higher levels of externalizing symptoms (r = 0.119, p = .016). The differentiation measure reached genome-wide association study significance (p < 5∗10-8) in male individuals with single nucleotide polymorphisms Chromsome5:rs111161632:RASGEF1C and Chromosome19:rs75918199:GEMIN7, and in female individuals with Chromosome2:rs78372132:PARD3B and Chromosome15:rs73442006:HCN4. CONCLUSION The sex differentiation measure provides an initial topography of quantifying male and female brain features. This demonstration that the sex of the human brain can be conceptualized on a continuum has implications for both the presentation of psychopathology and the relation of the brain with genetic variants that may be associated with brain differentiation.
Collapse
|
37
|
Gupte R, Brooks W, Vukas R, Pierce J, Harris J. Sex Differences in Traumatic Brain Injury: What We Know and What We Should Know. J Neurotrauma 2019; 36:3063-3091. [PMID: 30794028 PMCID: PMC6818488 DOI: 10.1089/neu.2018.6171] [Citation(s) in RCA: 277] [Impact Index Per Article: 55.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
There is growing recognition of the problem of male bias in neuroscience research, including in the field of traumatic brain injury (TBI) where fewer women than men are recruited to clinical trials and male rodents have predominantly been used as an experimental injury model. Despite TBI being a leading cause of mortality and disability worldwide, sex differences in pathophysiology and recovery are poorly understood, limiting clinical care and successful drug development. Given growing interest in sex as a biological variable affecting injury outcomes and treatment efficacy, there is a clear need to summarize sex differences in TBI. This scoping review presents an overview of current knowledge of sex differences in TBI and a comparison of human and animal studies. We found that overall, human studies report worse outcomes in women than men, whereas animal studies report better outcomes in females than males. However, closer examination shows that multiple factors including injury severity, sample size, and experimental injury model may differentially interact with sex to affect TBI outcomes. Additionally, we explore how sex differences in mitochondrial structure and function might contribute to possible sex differences in TBI outcomes. We propose recommendations for future investigations of sex differences in TBI, which we hope will lead to improved patient management, prognosis, and translation of therapies from bench to bedside.
Collapse
Affiliation(s)
- Raeesa Gupte
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas
| | - William Brooks
- Department of Neurology, University of Kansas Medical Center, Kansas City, Kansas
- Hoglund Brain Center, University of Kansas Medical Center, Kansas City, Kansas
- The University of Kansas Clinical and Translational Sciences Institute, University of Kansas Medical Center, Kansas City, Kansas
| | - Rachel Vukas
- School of Medicine, Dykes Library of Health Sciences, University of Kansas Medical Center, Kansas City, Kansas
| | - Janet Pierce
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
| | - Janna Harris
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas
- Hoglund Brain Center, University of Kansas Medical Center, Kansas City, Kansas
- Address correspondence to: Janna Harris, PhD, Hoglund Brain Imaging Center, MS 1052, 3901 Rainbow Boulevard, Kansas City, KS 66160
| |
Collapse
|
38
|
Sanchis-Segura C, Ibañez-Gual MV, Adrián-Ventura J, Aguirre N, Gómez-Cruz ÁJ, Avila C, Forn C. Sex differences in gray matter volume: how many and how large are they really? Biol Sex Differ 2019; 10:32. [PMID: 31262342 PMCID: PMC6604149 DOI: 10.1186/s13293-019-0245-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 06/06/2019] [Indexed: 11/17/2022] Open
Abstract
Background Studies assessing volumetric sex differences have provided contradictory results. Total intracranial volume (TIV) is a major confounding factor when estimating local volumes of interest (VOIs). We investigated how the number, size, and direction of sex differences in gray matter volume (GMv) vary depending on how TIV variation is statistically handled. Methods Sex differences in the GMv of 116 VOIs were assessed in 356 participants (171 females) without correcting for TIV variation or after adjusting the data with 5 different methods (VBM8 non-linear-only modulation, proportions, power-corrected-proportions, covariation, and the residuals method). The outcomes obtained with these procedures were compared to each other and to those obtained in three criterial subsamples, one comparing female-male pairs matched on their TIV and two others comparing groups of either females or males with large/small TIVs. Linear regression was used to quantify TIV effects on raw GMv and the efficacy of each method in controlling for them. Results Males had larger raw GMv than females in all brain areas, but these differences were driven by direct TIV-VOIs relationships and more closely resembled the differences observed between individuals with large/small TIVs of sex-specific subsamples than the sex differences observed in the TIV-matched subsample. All TIV-adjustment methods reduced the number of sex differences but their results were very different. The VBM8- and the proportions-adjustment methods inverted TIV-VOIs relationships and resulted in larger adjusted volumes in females, promoting sex differences largely attributable to TIV variation and very distinct from those observed in the TIV-matched subsample. The other three methods provided results unrelated to TIV and very similar to those of the TIV-matched subsample. In these datasets, sex differences were bidirectional and achieved satisfactory replication rates in 19 VOIs, but they were “small” (d < ∣0.38∣) and most of them faded away after correcting for multiple comparisons. Conclusions There is not just one answer to the question of how many and how large the sex differences in GMv are, but not all the possible answers are equally valid. When TIV effects are ruled out using appropriate adjustment methods, few sex differences (if any) remain statistically significant, and their size is quite reduced. Electronic supplementary material The online version of this article (10.1186/s13293-019-0245-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Carla Sanchis-Segura
- Departament de Psicologia bàsica, clínica i psicobiologia, Universitat Jaume I, Castelló, Spain.
| | | | - Jesús Adrián-Ventura
- Departament de Psicologia bàsica, clínica i psicobiologia, Universitat Jaume I, Castelló, Spain
| | - Naiara Aguirre
- Departament de Psicologia bàsica, clínica i psicobiologia, Universitat Jaume I, Castelló, Spain
| | | | - César Avila
- Departament de Psicologia bàsica, clínica i psicobiologia, Universitat Jaume I, Castelló, Spain
| | - Cristina Forn
- Departament de Psicologia bàsica, clínica i psicobiologia, Universitat Jaume I, Castelló, Spain
| |
Collapse
|
39
|
Adolescent sex differences in cortico-subcortical functional connectivity during response inhibition. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2019; 20:1-18. [PMID: 31111341 DOI: 10.3758/s13415-019-00718-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Numerous lines of evidence have shown that cognitive processes engaged during response inhibition tasks are associated with structure and functional integration of regions within fronto-parietal networks. However, while prior studies have started to characterize how intrinsic connectivity during resting state differs between boys and girls, comparatively less is known about how functional connectivity differs between males and females when brain function is exogenously driven by the processing demands of typical Go/No-Go tasks that assess both response inhibition and error processing. The purpose of this study was to characterize adolescent sex differences and possible changes in sexually dimorphic regional functional connectivity across adolescent development in both cortical and subcortical brain connectivity elicited during a visual Go/No-Go task. A total of 130 healthy adolescents (ages 12-25 years) performed a Go/No-Go task during functional magnetic resonance imaging. High model-order group independent component analysis was used to characterize whole-brain network functional connectivity during response inhibition and then a univariate technique used to evaluate differences related to sex and age. As predicted and similar to previously described findings from non-task-driven resting state connectivity studies, functional connectivity sex differences were observed in several subcortical regions, including the amygdala, caudate, thalamus, and cortical regions, including inferior frontal gyrus engaged most strongly during successful response inhibition and/or error processing. Importantly, adolescent boys and girls exhibited different normative profiles of age-related changes in several default mode networks of regions and anterior cingulate cortex. These results suggest that cortical-subcortical functional networks supporting response inhibition operate differently between sexes during adolescence.
Collapse
|
40
|
Fausto-Sterling A. Gender/Sex, Sexual Orientation, and Identity Are in the Body: How Did They Get There? JOURNAL OF SEX RESEARCH 2019; 56:529-555. [PMID: 30875248 DOI: 10.1080/00224499.2019.1581883] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
In this review, I explore theoretical and empirical approaches to the development of gender/sex and sexual orientation (SO). Leaving behind the nature versus nurture opposition, I look at both identities as deeply embodied. My approach intertwines sex, gender, orientation, bodies, and cultures without a demand to choose one over the other. First, I introduce basic definitions, focusing on how intertwined the concepts of sex and gender really are. I affirm recent trends to consider a new term-gender/sex-as the best way to think about these deeply interwoven bodily traits. I introduce several literatures, each of which considers the processes by which traits become embodied. These points of view offer a basis for future work on identity development. Specifically, and selectively, I provide insights from the fields of phenomenology, dyadic interaction and the formation of presymbolic representations in infancy, and dynamic systems in infant development. I consider how thinking about embodied cognition helps to address intersubjectivity and the emergence of subjective identity. Next, I review what we currently know about the development of complex sexual systems in infancy and toddlerhood. Finally, I discuss the few existing theories of SO development that consider the events of infancy and childhood.
Collapse
|
41
|
Snoek L, Miletić S, Scholte HS. How to control for confounds in decoding analyses of neuroimaging data. Neuroimage 2019; 184:741-760. [DOI: 10.1016/j.neuroimage.2018.09.074] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 09/04/2018] [Accepted: 09/25/2018] [Indexed: 12/31/2022] Open
|
42
|
Kersey AJ, Csumitta KD, Cantlon JF. Gender similarities in the brain during mathematics development. NPJ SCIENCE OF LEARNING 2019; 4:19. [PMID: 31728205 PMCID: PMC6841948 DOI: 10.1038/s41539-019-0057-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 09/11/2019] [Indexed: 05/16/2023]
Abstract
Some scientists and public figures have hypothesized that women and men differ in their pursuit of careers in science, technology, engineering, and mathematics (STEM) owing to biological differences in mathematics aptitude. However, little evidence supports such claims. Some studies of children and adults show gender differences in mathematics performance but in those studies it is impossible to disentangle intrinsic, biological differences from sociocultural influences. To investigate the early biology of mathematics and gender, we tested for gender differences in the neural processes of mathematics in young children. We measured 3-10-year-old children's neural development with functional magnetic resonance imaging (fMRI) during naturalistic viewing of mathematics education videos. We implemented both frequentist and Bayesian analyses that quantify gender similarities and differences in neural processes. Across all analyses girls and boys showed significant gender similarities in neural functioning, indicating that boys and girls engage the same neural system during mathematics development.
Collapse
Affiliation(s)
- Alyssa J. Kersey
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY 14627 USA
- Department of Psychology, University of Chicago, Chicago, IL 60637 USA
| | - Kelsey D. Csumitta
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY 14627 USA
| | - Jessica F. Cantlon
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY 14627 USA
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA 15213 USA
| |
Collapse
|
43
|
Joel D, Persico A, Salhov M, Berman Z, Oligschläger S, Meilijson I, Averbuch A. Analysis of Human Brain Structure Reveals that the Brain "Types" Typical of Males Are Also Typical of Females, and Vice Versa. Front Hum Neurosci 2018; 12:399. [PMID: 30405373 PMCID: PMC6204758 DOI: 10.3389/fnhum.2018.00399] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 09/14/2018] [Indexed: 12/22/2022] Open
Abstract
Findings of average differences between females and males in the structure of specific brain regions are often interpreted as indicating that the typical male brain is different from the typical female brain. An alternative interpretation is that the brain types typical of females are also typical of males, and sex differences exist only in the frequency of rare brain types. Here we contrasted the two hypotheses by analyzing the structure of 2176 human brains using three analytical approaches. An anomaly detection analysis showed that brains from females are almost as likely to be classified as “normal male brains,” as brains from males are, and vice versa. Unsupervised clustering algorithms revealed that common brain “types” are similarly common in females and in males and that a male and a female are almost as likely to have the same brain “type” as two females or two males are. Large sex differences were found only in the frequency of some rare brain “types.” Last, supervised clustering algorithms revealed that the brain “type(s)” typical of one sex category in one sample could be typical of the other sex category in another sample. The present findings demonstrate that even when similarity and difference are defined mathematically, ignoring biological or functional relevance, sex category (i.e., whether one is female or male), is not a major predictor of the variability of human brain structure. Rather, the brain types typical of females are also typical of males, and vice versa, and large sex differences are found only in the prevalence of some rare brain types. We discuss the implications of these findings to studies of the structure and function of the human brain.
Collapse
Affiliation(s)
- Daphna Joel
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Ariel Persico
- School of Computer Science, Tel Aviv University, Tel Aviv, Israel
| | - Moshe Salhov
- School of Computer Science, Tel Aviv University, Tel Aviv, Israel
| | - Zohar Berman
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Sabine Oligschläger
- Max Planck Research Group for Neuroanatomy and Connectivity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Faculty of Life Sciences, University Leipzig, Leipzig, Germany.,International Max Planck Research School NeuroCom, Leipzig, Germany
| | - Isaac Meilijson
- School of Mathematical Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Amir Averbuch
- School of Computer Science, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
44
|
Sanchis-Segura C, Aguirre N, Cruz-Gómez ÁJ, Solozano N, Forn C. Do Gender-Related Stereotypes Affect Spatial Performance? Exploring When, How and to Whom Using a Chronometric Two-Choice Mental Rotation Task. Front Psychol 2018; 9:1261. [PMID: 30087637 PMCID: PMC6066687 DOI: 10.3389/fpsyg.2018.01261] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 06/29/2018] [Indexed: 11/13/2022] Open
Abstract
It is a common belief that males have superior visuospatial abilities and that differences in this and other cognitive domains (e.g., math) contribute to the reduced interest and low representation of girls and women in STEM education and professions. However, previous studies show that gender-related implicit associations and explicit beliefs, as well as situational variables, might affect cognitive performance in those gender-stereotyped domains and produce between-gender spurious differences. Therefore, the present study aimed to provide information on when, how and who might be affected by the situational reactivation of stereotypic gender-science beliefs/associations while performing a 3D mental rotation chronometric task (3DMRT). More specifically, we assessed the explicit beliefs and implicit associations (by the Implicit Association Test) held by female and male students of humanities and STEM majors and compared their performance in a 3DMRT after receiving stereotype- congruent, incongruent and nullifying experimental instructions. Our results show that implicit stereotypic gender-science associations correlate with 3DMRT performance in both females and males, but that inter-gender differences emerge only under stereotype-reactivating conditions. We also found that changes in self-confidence mediate these instructions’ effects and that academic specialization moderates them, hence promoting 3DMRT performance differences between male and female humanities, but not STEM, students. Taken together, these observations suggest that the common statement “males have superior mental rotation abilities” simplifies a much more complex reality and might promote stereotypes which, in turn, might induce artefactual performance differences between females and males in such tasks.
Collapse
Affiliation(s)
- Carla Sanchis-Segura
- Departamento de Psicologia Básica, Clínica y Psicobiología, Facultad de Ciencias de la Salud, Universitat Jaume I, Castellón, Spain
| | - Naiara Aguirre
- Departamento de Psicologia Básica, Clínica y Psicobiología, Facultad de Ciencias de la Salud, Universitat Jaume I, Castellón, Spain
| | - Álvaro J Cruz-Gómez
- Departamento de Psicologia Básica, Clínica y Psicobiología, Facultad de Ciencias de la Salud, Universitat Jaume I, Castellón, Spain
| | - Noemí Solozano
- Departamento de Psicologia Básica, Clínica y Psicobiología, Facultad de Ciencias de la Salud, Universitat Jaume I, Castellón, Spain
| | - Cristina Forn
- Departamento de Psicologia Básica, Clínica y Psicobiología, Facultad de Ciencias de la Salud, Universitat Jaume I, Castellón, Spain
| |
Collapse
|
45
|
Abstract
In this mini-review, I summarize and interpret the current status of sex/gender differences in terms of brain anatomy, brain function, behavior, and cognition. Based on this review and the reported findings, I conclude that most of these sex/gender differences are not large enough to support the assumption of sexual dimorphism in terms of brain anatomy, brain function, cognition, and behavior. Instead, I suggest that many brain and cognitive features are modulated by environment, culture, and practice (and several other influences). These influences interact with the menstrual cycle, the general hormone level, and current gender stereotypes in a way that has not yet been fully understood.
Collapse
Affiliation(s)
- Lutz Jäncke
- Division of Neuropsychology, Institute of Psychology, University of Zurich, Zurich, Switzerland
- University Research Priority Program (URPP) “Dynamic of Healthy Aging”, University of Zurich, Zurich, Switzerland
| |
Collapse
|
46
|
Etchell A, Adhikari A, Weinberg LS, Choo AL, Garnett EO, Chow HM, Chang SE. A systematic literature review of sex differences in childhood language and brain development. Neuropsychologia 2018; 114:19-31. [PMID: 29654881 PMCID: PMC5988993 DOI: 10.1016/j.neuropsychologia.2018.04.011] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 04/01/2018] [Accepted: 04/09/2018] [Indexed: 01/07/2023]
Abstract
The extent of sex differences in childhood language development is unclear. We conducted a systematic literature review synthesizing results from studies examining sex differences in brain structure and function relevant to language development during childhood. We searched PubMed and Scopus databases, and this returned a total of 46 published studies meeting criteria for inclusion that directly examined sex differences in brain development relevant to language function in children. The results indicate that: (a) sex differences in brain structure or function do not necessarily lead to differences in language task performance; (b) evidence for sex differences in brain and language development are limited; (c) when present, sex differences often interact with a variety of factors such as age and task. Overall, the magnitude of sexual dimorphism of brain developmental trajectories associated with language is not as significant as previously thought. Sex differences were found, however, in studies employing tighter age ranges. This suggests that sex differences may be more prominent during certain developmental stages but are negligible in other stages, likely due to different rates of maturation between the sexes. More research is needed to improve our understanding of how sex differences may arise due to the influence of sex hormones and developmental stages, and how these differences may lead to differences in various language task performance. These studies are expected to provide normative information that may be used in studies examining neurodevelopmental disorders that frequently affect more males than females, and also often affect language development.
Collapse
Affiliation(s)
- Andrew Etchell
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA.
| | - Aditi Adhikari
- College of Arts and Sciences, University of North Carolina at Chapel Hill, USA
| | - Lauren S Weinberg
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI, USA
| | - Ai Leen Choo
- Department of Communication Sciences and Disorders, Georgia State University, USA
| | - Emily O Garnett
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Ho Ming Chow
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA; Katzin Diagnostic & Research PET/MR Center, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Soo-Eun Chang
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
47
|
Rice TR, Shah LD, Trelles P, Lin SK, Christensen DS, Walther A, Sher L. Mental health of the male adolescent and young man: the Copenhagen statement. World J Pediatr 2018; 14:224-232. [PMID: 29679360 DOI: 10.1007/s12519-018-0155-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 03/20/2018] [Accepted: 03/27/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND Male adolescents and young men benefit when their mental health care is specialized to match their unique gendered and developmental needs. Sensitivity to the social circumstances of this population is important; additionally, the emerging ability to tailor care through knowledge gleaned from the intersection of psychiatry, neurology, and endocrinology informs care. DATA SOURCES This article summarized the views of six experts in the area of the adolescent and young adult male mental health. These experts were select members of the World Federation of Societies of Biological Psychiatry's Task Force on Men's Mental Health. They convened to present two symposia on the topic of men's mental health at the 13th World Congress of Biological Psychiatry (WCBP) in Copenhagen, Denmark in 2017. RESULTS In these works, a special focus is paid to addictive disorders, disruptive behavior disorders, aggression, and brain development. Collectively, the authors present an argument for the merits of a male-specific model of mental health care to advance the overall well-being of this population. CONCLUSIONS Men's mental health should be recognized as a social issue as much as a medical issue, with special attention paid to problems such as unemployment, familial disruption, and substance abuse. These problems, and especially those of major societal impact including violence and suicide which are much more frequently the product of male youth and men, should have more male-tailored options for service provision that respond to men's mental health needs.
Collapse
Affiliation(s)
- Timothy R Rice
- Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY, 10029, USA.
| | - Lesha D Shah
- New York University School of Medicine, New York, NY, USA
| | - Pilar Trelles
- Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY, 10029, USA
| | - Shih-Ku Lin
- Taipei City Hospital and Taipei Medical University, Taipei, China
| | - Dinne Skjærlund Christensen
- Department of Public Health, Center for Healthy Aging and Section of Environmental Health, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Walther
- Biological Psychology, TU Dresden, Dresden, Germany
- Clinical Psychology and Psychotherapy, University of Zurich, Zurich, Switzerland
| | - Leo Sher
- James J. Peters VA Medical Center and Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
48
|
David SP, Naudet F, Laude J, Radua J, Fusar-Poli P, Chu I, Stefanick ML, Ioannidis JPA. Potential Reporting Bias in Neuroimaging Studies of Sex Differences. Sci Rep 2018; 8:6082. [PMID: 29666377 PMCID: PMC5904173 DOI: 10.1038/s41598-018-23976-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 03/19/2018] [Indexed: 12/24/2022] Open
Abstract
Numerous functional magnetic resonance imaging (fMRI) studies have reported sex differences. To empirically evaluate for evidence of excessive significance bias in this literature, we searched for published fMRI studies of human brain to evaluate sex differences, regardless of the topic investigated, in Medline and Scopus over 10 years. We analyzed the prevalence of conclusions in favor of sex differences and the correlation between study sample sizes and number of significant foci identified. In the absence of bias, larger studies (better powered) should identify a larger number of significant foci. Across 179 papers, median sample size was n = 32 (interquartile range 23-47.5). A median of 5 foci related to sex differences were reported (interquartile range, 2-9.5). Few articles (n = 2) had titles focused on no differences or on similarities (n = 3) between sexes. Overall, 158 papers (88%) reached "positive" conclusions in their abstract and presented some foci related to sex differences. There was no statistically significant relationship between sample size and the number of foci (-0.048% increase for every 10 participants, p = 0.63). The extremely high prevalence of "positive" results and the lack of the expected relationship between sample size and the number of discovered foci reflect probable reporting bias and excess significance bias in this literature.
Collapse
Affiliation(s)
- Sean P David
- Department of Medicine, Stanford University School of Medicine, Stanford, USA.
- Meta-Research Innovation Center at Stanford (METRICS), Stanford University, Stanford, USA.
| | - Florian Naudet
- Department of Medicine, Stanford University School of Medicine, Stanford, USA
- Meta-Research Innovation Center at Stanford (METRICS), Stanford University, Stanford, USA
| | - Jennifer Laude
- Department of Medicine, Stanford University School of Medicine, Stanford, USA
- Department of Psychology and Neuroscience, Stanford University School of Medicine, Stanford, USA
| | - Joaquim Radua
- Early Psychosis: Interventions & Clinical-detection (EPIC) lab, King's College London, Institute of Psychiatry Psychology and Neuroscience, London, United Kingdom
- FIDMAG Germanes Hospitalaries, CIBERSAM, Saint Boi de Llobregat, Barcelona, Spain
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Paolo Fusar-Poli
- Early Psychosis: Interventions & Clinical-detection (EPIC) lab, King's College London, Institute of Psychiatry Psychology and Neuroscience, London, United Kingdom
- OASIS team, South London and the Maudsley NHS Foundation Trust, London, UK
| | - Isabella Chu
- Department of Medicine, Stanford University School of Medicine, Stanford, USA
| | - Marcia L Stefanick
- Department of Medicine, Stanford University School of Medicine, Stanford, USA
| | - John P A Ioannidis
- Department of Medicine, Stanford University School of Medicine, Stanford, USA
- Meta-Research Innovation Center at Stanford (METRICS), Stanford University, Stanford, USA
- Departments of Health Research and Policy, of Biomedical Data Science, and of Statistics, Stanford University, Stanford, USA
| |
Collapse
|
49
|
Goymann W, Brumm H. Let's Talk About Sex − Not Gender. Bioessays 2018; 40:e1800030. [DOI: 10.1002/bies.201800030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 02/22/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Wolfgang Goymann
- Max-Planck-Institut für Ornithologie, Eberhard-Gwinner-Straße; 82319 Seewiesen Germany
| | - Henrik Brumm
- Max-Planck-Institut für Ornithologie, Eberhard-Gwinner-Straße; 82319 Seewiesen Germany
| |
Collapse
|
50
|
Floris DL, Lai MC, Nath T, Milham MP, Di Martino A. Network-specific sex differentiation of intrinsic brain function in males with autism. Mol Autism 2018. [PMID: 29541439 PMCID: PMC5840786 DOI: 10.1186/s13229-018-0192-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Background The male predominance in the prevalence of autism spectrum disorder (ASD) has motivated research on sex differentiation in ASD. Multiple sources of evidence have suggested a neurophenotypic convergence of ASD-related characteristics and typical sex differences. Two existing, albeit competing, models provide predictions on such neurophenotypic convergence. These two models are testable with neuroimaging. Specifically, the Extreme Male Brain (EMB) model predicts that ASD is associated with enhanced brain maleness in both males and females with ASD (i.e., a shift-towards-maleness). In contrast, the Gender Incoherence (GI) model predicts a shift-towards-maleness in females, yet a shift-towards-femaleness in males with ASD. Methods To clarify whether either model applies to the intrinsic functional properties of the brain in males with ASD, we measured the statistical overlap between typical sex differences and ASD-related atypicalities in resting-state fMRI (R-fMRI) datasets largely available in males. Main analyses focused on two large-scale R-fMRI samples: 357 neurotypical (NT) males and 471 NT females from the 1000 Functional Connectome Project and 360 males with ASD and 403 NT males from the Autism Brain Imaging Data Exchange. Results Across all R-fMRI metrics, results revealed coexisting, but network-specific, shift-towards-maleness and shift-towards-femaleness in males with ASD. A shift-towards-maleness mostly involved the default network, while a shift-towards-femaleness mostly occurred in the somatomotor network. Explorations of the associated cognitive processes using available cognitive ontology maps indicated that higher-order social cognitive functions corresponded to the shift-towards-maleness, while lower-order sensory motor processes corresponded to the shift-towards-femaleness. Conclusions The present findings suggest that atypical intrinsic brain properties in males with ASD partly reflect mechanisms involved in sexual differentiation. A model based on network-dependent atypical sex mosaicism can synthesize prior competing theories on factors involved in sex differentiation in ASD. Electronic supplementary material The online version of this article (10.1186/s13229-018-0192-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dorothea L Floris
- 1Hassenfeld Children's Hospital at NYU Langone Health, Department of Child and Adolescent Psychiatry, Child Study Center, 1 Park Avenue, New York City, NY 10016 USA
| | - Meng-Chuan Lai
- 2Child and Youth Mental Health Collaborative at the Centre for Addiction and Mental Health and The Hospital for Sick Children, Department of Psychiatry, University of Toronto, Toronto, ON M6J 1H4 Canada.,3Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, CB2 8AH UK
| | - Tanmay Nath
- 1Hassenfeld Children's Hospital at NYU Langone Health, Department of Child and Adolescent Psychiatry, Child Study Center, 1 Park Avenue, New York City, NY 10016 USA
| | - Michael P Milham
- 4Center for the Developing Brain, Child Mind Institute, New York, NY 10022 USA.,5Nathan S Kline Institute for Psychiatric Research, Orangeburg, NY 10962 USA
| | - Adriana Di Martino
- 1Hassenfeld Children's Hospital at NYU Langone Health, Department of Child and Adolescent Psychiatry, Child Study Center, 1 Park Avenue, New York City, NY 10016 USA
| |
Collapse
|