1
|
Caspers M, Willemse L, Raes N, Smets E, Schalk P, Bánki O, Gijswijt G. Quantifying the use of natural history collections. Biodivers Data J 2024; 12:e130811. [PMID: 39483740 PMCID: PMC11525201 DOI: 10.3897/bdj.12.e130811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 10/02/2024] [Indexed: 11/03/2024] Open
Abstract
Measuring the use of natural history collections is essential to understand their past and present impact on science, to underpin decisions about their management and to assist with deploying them optimally to address societal challenges. Using the vast natural history collections of Naturalis Biodiversity Center as an example, this paper assesses the significance and relevance of quantifying collection use. Four aspects are discussed: 1. standardisation, 2. relevance of having standardised metrics on collection use, 3. the level of detail and completeness of the information and 4. the interactions between digitisation of collections and physical collection use. Based on a set of transparent and objective parameters to describe collection use, it is proposed to further develop these into international standards.
Collapse
Affiliation(s)
- Max Caspers
- Naturalis Biodiversity Center, Leiden, NetherlandsNaturalis Biodiversity CenterLeidenNetherlands
| | - Luc Willemse
- Naturalis Biodiversity Center, Leiden, NetherlandsNaturalis Biodiversity CenterLeidenNetherlands
| | - Niels Raes
- Naturalis Biodiversity Center, Leiden, NetherlandsNaturalis Biodiversity CenterLeidenNetherlands
| | - Erik Smets
- Naturalis Biodiversity Center, Leiden, NetherlandsNaturalis Biodiversity CenterLeidenNetherlands
| | - Peter Schalk
- Naturalis Biodiversity Center, Leiden, NetherlandsNaturalis Biodiversity CenterLeidenNetherlands
| | - Olaf Bánki
- Catalogue of Life, Amsterdam, NetherlandsCatalogue of LifeAmsterdamNetherlands
| | - Gideon Gijswijt
- Naturalis Biodiversity Center, Leiden, NetherlandsNaturalis Biodiversity CenterLeidenNetherlands
| |
Collapse
|
2
|
Seggi L, Trabucco R, Martellos S. Valorization of Historical Natural History Collections Through Digitization: The Algarium Vatova-Schiffner. PLANTS (BASEL, SWITZERLAND) 2024; 13:2901. [PMID: 39458848 PMCID: PMC11511501 DOI: 10.3390/plants13202901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/29/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024]
Abstract
Digitization of Natural History Collections (NHCs) and mobilization of their data are pivotal for their study, preservation, and accessibility. Furthermore, thanks to digitization and mobilization, Natural History Museums can better showcase their collections, potentially attracting more visitors. However, the optimization of digitization workflows, especially when addressing small and/or historical NHCs, remains a challenge. Starting from a practical example, this contribution aims at providing a general guideline for the digitization of historical NHCs, with a particular focus on pre-digitization planning, during which some decisions should be made for ensuring a smooth, cost- and time-effective digitization process. The digitization of the algarium by Aristocle Vatova and Victor Schiffner was carried out following an image-to-data workflow, which allowed for reducing the handling of the specimens. The metadata were organized according to the Darwin Core standard scheme, and, together with the digital images of the specimens, have been made available to the scientific community and to the general public via an online portal. Thanks to the application of digital technologies and standardized methods, the accessibility of the collection has been enhanced, and its integration with historical data is possible, highlighting the relevance of shared experiences and protocols in advancing the digital transformation of natural history heritage.
Collapse
Affiliation(s)
- Linda Seggi
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy;
- Fondazione Musei Civici di Venezia, Natural History Museum of Venice Giancarlo Ligabue, 30135 Venezia, Italy;
| | - Raffaella Trabucco
- Fondazione Musei Civici di Venezia, Natural History Museum of Venice Giancarlo Ligabue, 30135 Venezia, Italy;
| | - Stefano Martellos
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy;
| |
Collapse
|
3
|
Perry KI, Bahlai CA, Assal TJ, Riley CB, Turo KJ, Taylor L, Radl J, Delgado de la Flor YA, Sivakoff FS, Gardiner MM. Landscape change and alien invasions drive shifts in native lady beetle communities over a century. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2024; 34:e3024. [PMID: 39192693 DOI: 10.1002/eap.3024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/08/2024] [Accepted: 05/10/2024] [Indexed: 08/29/2024]
Abstract
Understanding causes of insect population declines is essential for the development of successful conservation plans, but data limitations restrict assessment across spatial and temporal scales. Museum records represent a source of historical data that can be leveraged to investigate temporal trends in insect communities. Native lady beetle decline has been attributed to competition with established alien species and landscape change, but the relative importance of these drivers is difficult to measure with short-term field-based studies. We assessed distribution patterns for native lady beetles over 12 decades using museum records, and evaluated the relative importance of alien species and landscape change as factors contributing to changes in communities. We compiled occurrence records for 28 lady beetle species collected in Ohio, USA, from 1900 to 2018. Taxonomic beta-diversity was used to evaluate changes in lady beetle community composition over time. To evaluate the relative influence of temporal, spatial, landscape, and community factors on the captures of native species, we constructed negative binomial generalized additive models. We report evidence of declines in captures for several native species. Importantly, the timing, severity, and drivers of these documented declines were species-specific. Land cover change was associated with declines in captures, particularly for Coccinella novemnotata which declined prior to the arrival of alien species. Following the establishment and spread of alien lady beetles, processes of species loss/gain and turnover shifted communities toward the dominance of a few alien species beginning in the 1980s. Because factors associated with declines in captures were highly species-specific, this emphasizes that mechanisms driving population losses cannot be generalized even among closely related native species. These findings also indicate the importance of museum holdings and the analysis of species-level data when studying temporal trends in insect populations.
Collapse
Affiliation(s)
- Kayla I Perry
- Department of Entomology, The Ohio State University, Wooster, Ohio, USA
- Department of Biological Sciences, Kent State University, Kent, Ohio, USA
| | - Christie A Bahlai
- Department of Biological Sciences, Kent State University, Kent, Ohio, USA
| | - Timothy J Assal
- Department of Geography, Kent State University, Kent, Ohio, USA
| | | | - Katherine J Turo
- Department of Entomology, The Ohio State University, Columbus, Ohio, USA
| | - Leo Taylor
- Department of Entomology, The Ohio State University, Columbus, Ohio, USA
| | - James Radl
- Department of Entomology, The Ohio State University, Columbus, Ohio, USA
| | | | - Frances S Sivakoff
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Marion, Ohio, USA
| | - Mary M Gardiner
- Department of Entomology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
4
|
Islam S, Peart C, Kehlmaier C, Sun YH, Lei F, Dahl A, Klemroth S, Alexopoulou D, Del Mar Delgado M, Laiolo P, Carlos Illera J, Dirren S, Hille S, Lkhagvasuren D, Töpfer T, Kaiser M, Gebauer A, Martens J, Paetzold C, Päckert M. Museomics help resolving the phylogeny of snowfinches (Aves, Passeridae, Montifringilla and allies). Mol Phylogenet Evol 2024; 198:108135. [PMID: 38925425 DOI: 10.1016/j.ympev.2024.108135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 03/25/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024]
Abstract
Historical specimens from museum collections provide a valuable source of material also from remote areas or regions of conflict that are not easily accessible to scientists today. With this study, we are providing a taxon-complete phylogeny of snowfinches using historical DNA from whole skins of an endemic species from Afghanistan, the Afghan snowfinch, Pyrgilauda theresae. To resolve the strong conflict between previous phylogenetic hypotheses, we generated novel mitogenome sequences for selected taxa and genome-wide SNP data using ddRAD sequencing for all extant snowfinch species endemic to the Qinghai-Tibet Plateau (QTP) and for an extended intraspecific sampling of the sole Central and Western Palearctic snowfinch species (Montifringilla nivalis). Our phylogenetic reconstructions unanimously refuted the previously suggested paraphyly of genus Pyrgilauda. Misplacement of one species-level taxon (Onychostruthus tazcanowskii) in previous snowfinch phylogenies was undoubtedly inferred from chimeric mitogenomes that included heterospecific sequence information. Furthermore, comparison of novel and previously generated sequence data showed that the presumed sister-group relationship between M. nivalis and the QTP endemic M. henrici was suggested based on flawed taxonomy. Our phylogenetic reconstructions based on genome-wide SNP data and on mitogenomes were largely congruent and supported reciprocal monophyly of genera Montifringilla and Pyrgilauda with monotypic Onychostruthus being sister to the latter. The Afghan endemic P. theresae likely originated from a rather ancient Pliocene out-of-Tibet dispersal probably from a common ancestor with P. ruficollis. Our extended trans-Palearctic sampling for the white-winged snowfinch, M. nivalis, confirmed strong lineage divergence between an Asian and a European clade dated to 1.5 - 2.7 million years ago (mya). Genome-wide SNP data suggested subtle divergence among European samples from the Alps and from the Cantabrian mountains.
Collapse
Affiliation(s)
- Safiqul Islam
- Senckenberg Natural History Collections, Museum of Zoology, Königsbrücker Landstraße 159, 01109 Dresden, Germany; Max Planck-Genome-Centre Cologne, Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829 Köln, Germany; Division of Systematic Zoology, Faculty of Biology, LMU Munich, Biocenter, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany
| | - Claire Peart
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Biocenter, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany
| | - Christian Kehlmaier
- Senckenberg Natural History Collections, Museum of Zoology, Königsbrücker Landstraße 159, 01109 Dresden, Germany
| | - Yue-Hua Sun
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fumin Lei
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Andreas Dahl
- Dresden-Concept Genome Center, c/o Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Fetscherstraße 105, 1307 Dresden, Germany
| | - Sylvia Klemroth
- Dresden-Concept Genome Center, c/o Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Fetscherstraße 105, 1307 Dresden, Germany
| | - Dimitra Alexopoulou
- Dresden-Concept Genome Center, c/o Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Fetscherstraße 105, 1307 Dresden, Germany
| | - Maria Del Mar Delgado
- Biodiversity Research Institute (IMIB, Universidad de Oviedo, CSIC, Principality of Asturias) - Campus de Mieres, Edificio de Investigación - 5ª planta, C. Gonzalo Gutiérrez Quirós s/n, 33600 Mieres, Spain
| | - Paola Laiolo
- Biodiversity Research Institute (IMIB, Universidad de Oviedo, CSIC, Principality of Asturias) - Campus de Mieres, Edificio de Investigación - 5ª planta, C. Gonzalo Gutiérrez Quirós s/n, 33600 Mieres, Spain
| | - Juan Carlos Illera
- Biodiversity Research Institute (IMIB, Universidad de Oviedo, CSIC, Principality of Asturias) - Campus de Mieres, Edificio de Investigación - 5ª planta, C. Gonzalo Gutiérrez Quirós s/n, 33600 Mieres, Spain
| | | | - Sabine Hille
- University of Natural Resources and Life Sciences, Vienna, Gregor Mendel-Strasse 33, 1180 Vienna, Austria
| | - Davaa Lkhagvasuren
- Department of Biology, School of Arts and Sciences, National University of Mongolia, P.O.Box 46A-546, Ulaanbaatar 210646, Mongolia
| | - Till Töpfer
- Leibniz Institute for the Analysis of Biodiversity Change, Zoologisches Forschungsmuseum Alexander Koenig, Adenauerallee, Bonn, Germany
| | | | | | - Jochen Martens
- Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg University, 55099 Mainz, Germany
| | - Claudia Paetzold
- Senckenberg Natural History Collections, Museum of Zoology, Königsbrücker Landstraße 159, 01109 Dresden, Germany
| | - Martin Päckert
- Senckenberg Natural History Collections, Museum of Zoology, Königsbrücker Landstraße 159, 01109 Dresden, Germany.
| |
Collapse
|
5
|
Forcina G, Clavero M, Meister M, Barilaro C, Guerrini M, Barbanera F. Introduced and extinct: neglected archival specimens shed new light on the historical biogeography of an iconic avian species in the Mediterranean. Integr Zool 2024; 19:887-897. [PMID: 38217088 DOI: 10.1111/1749-4877.12801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2024]
Abstract
Collection specimens provide valuable and often overlooked biological material that enables addressing relevant, long-unanswered questions in conservation biology, historical biogeography, and other research fields. Here, we use preserved specimens to analyze the historical distribution of the black francolin (Francolinus francolinus, Phasianidae), a case that has recently aroused the interest of archeozoologists and evolutionary biologists. The black francolin currently ranges from the Eastern Mediterranean and the Middle East to the Indian subcontinent, but, at least since the Middle Ages, it also had a circum-Mediterranean distribution. The species could have persisted in Greece and the Maghreb until the 19th century, even though this possibility had been questioned due to the absence of museum specimens and scant literary evidence. Nevertheless, we identified four 200-year-old stuffed black francolins-presumably the only ones still existing-from these areas and sequenced their mitochondrial DNA control region. Based on the comparison with conspecifics (n = 396) spanning the entirety of the historic and current species range, we found that the new samples pertain to previously identified genetic groups from either the Near East or the Indian subcontinent. While disproving the former occurrence of an allegedly native westernmost subspecies, these results point toward the role of the Crown of Aragon in the circum-Mediterranean expansion of the black francolin, including the Maghreb and Greece. Genetic evidence hints at the long-distance transport of these birds along the Silk Road, probably to be traded in the commerce centers of the Eastern Mediterranean.
Collapse
Affiliation(s)
- Giovanni Forcina
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
- Universidad de Alcalá, Departamento de Ciencias de la Vida, Global Change Ecology and Evolution Research Group (GloCEE), Alcalá de Henares, Madrid, Spain
| | - Miguel Clavero
- Departamento de Biología de la Conservación, Estación Biológica de Doñana EBD-CSIC, Sevilla, Spain
| | - Marie Meister
- UMR7044 du CNRS and Musée Zoologique de Strasbourg, Strasbourg, France
| | | | | | | |
Collapse
|
6
|
Eckert I, Bruneau A, Metsger DA, Joly S, Dickinson TA, Pollock LJ. Herbarium collections remain essential in the age of community science. Nat Commun 2024; 15:7586. [PMID: 39217174 PMCID: PMC11366035 DOI: 10.1038/s41467-024-51899-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
The past decade has yielded more biodiversity observations from community science than the past century of traditional scientific collection. This rapid influx of data is promising for overcoming critical biodiversity data shortfalls, but we also have vast untapped resources held in undigitized natural history collections. Yet, the ability of these undigitized collections to fill data gaps, especially compared against the constant accumulation of community science data, remains unclear. Here, we compare how well community science (iNaturalist) observations and digitized herbarium specimens represent the diversity, distributions, and modeling needs of vascular plants in Canada. We find that, despite having only a third as many records, herbarium specimens capture more taxonomic, phylogenetic, and functional diversity and more efficiently capture species' environmental niches. As such, the digitization of Canada's 7.3M remaining specimens has the potential to more than quintuple our ability to model biodiversity. In contrast, it would require over 27M more iNaturalist observations to produce similar benefits. Our findings indicate that digitizing Earth's remaining herbarium specimens is likely an efficient, feasible, and potentially critical investment when it comes to improving our ability to predict and protect biodiversity into the future.
Collapse
Affiliation(s)
- Isaac Eckert
- Department of Biology, McGill University, Montréal, QC, Canada.
- Québec Centre for Biodiversity Science, Montréal, QC, Canada.
| | - Anne Bruneau
- Québec Centre for Biodiversity Science, Montréal, QC, Canada
- Institut de recherche en biologie végétale & Département de Sciences biologiques, Université de Montréal, Montréal, QC, Canada
| | - Deborah A Metsger
- Green Plant Herbarium, Department of Natural History, Royal Ontario Museum, Toronto, ON, Canada
| | - Simon Joly
- Institut de recherche en biologie végétale & Département de Sciences biologiques, Université de Montréal, Montréal, QC, Canada
- Montreal Botanical Garden, Montréal, QC, Canada
| | - T A Dickinson
- Green Plant Herbarium, Department of Natural History, Royal Ontario Museum, Toronto, ON, Canada
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Laura J Pollock
- Department of Biology, McGill University, Montréal, QC, Canada
- Québec Centre for Biodiversity Science, Montréal, QC, Canada
| |
Collapse
|
7
|
Edwards EJ, Mishler BD, Davis CD. University herbaria are uniquely important. TRENDS IN PLANT SCIENCE 2024; 29:825-826. [PMID: 38937215 DOI: 10.1016/j.tplants.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/29/2024]
Abstract
University herbaria play critical roles in biodiversity research and training and provide interdisciplinary academic environments that foster innovative uses of natural history collections. Universities have a responsibility to steward these important collections in perpetuity, in alignment with their academic missions and for the good of science and society.
Collapse
Affiliation(s)
- Erika J Edwards
- Department of Ecology & Evolutionary Biology, Yale University Herbarium, Yale University, PO Box 208105, New Haven, CT 06520, USA.
| | - Brent D Mishler
- Department of Integrative Biology, University and Jepson Herbaria, University of California, 1001 Valley Life Science Building #2465, Berkeley, CA 94720, USA.
| | - Charles D Davis
- Department of Organismic and Evolutionary Biology, Harvard University Herbaria, 22 Divinity Avenue, Cambridge, MA 02138, USA.
| |
Collapse
|
8
|
Ghimire P, Palacios C, Trimble J, Lamichhaney S. Museum genomics approach to study the taxonomy and evolution of Woolly-necked storks using historic specimens. G3 (BETHESDA, MD.) 2024; 14:jkae081. [PMID: 38626302 DOI: 10.1093/g3journal/jkae081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/16/2024] [Accepted: 04/05/2024] [Indexed: 04/18/2024]
Abstract
The accessibility of genomic tools in evolutionary biology has allowed for a thorough exploration of various evolutionary processes associated with adaptation and speciation. However, genomic studies in natural systems present numerous challenges, reflecting the inherent complexities of studying organisms in their native habitats. The utilization of museum specimens for genomics research has received increased attention in recent times, facilitated by advancements in ancient DNA techniques. In this study, we have utilized a museum genomics approach to analyze historic specimens of Woolly-necked storks (Ciconia spp.) and examine their genetic composition and taxonomic status and explore the evolutionary and adaptive trajectories of populations over the years. The Woolly-necked storks are distributed in Asia and Africa with a taxonomic classification that has been a matter of ambiguity. Asian and African Woollynecks were recently recognized as different species based on their morphological differences; however, their genomic validation was lacking. In this study, we have used ∼70-year-old museum samples for whole-genome population-scale sequencing. Our study has revealed that Asian and African Woollynecks are genetically distinct, consistent with the current taxonomic classification based on morphological features. However, we also found a high genetic divergence between the Asian subspecies Ciconia episcopus neglecta and Ciconia episcopus episcopus, suggesting this classification requires a detailed examination to explore processes of ongoing speciation. Because taxonomic classification directly impacts conservation efforts, and there is evidence of declining populations of Asian Woollynecks in Southeast Asia, our results highlight that population-scale studies are urgent to determine the genetic, ecological, and phylogenetic diversity of these birds.
Collapse
Affiliation(s)
- Prashant Ghimire
- Department of Biological Sciences, Kent State University, Kent, OH 44240, USA
| | - Catalina Palacios
- Department of Biological Sciences, Kent State University, Kent, OH 44240, USA
| | - Jeremiah Trimble
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - Sangeet Lamichhaney
- Department of Biological Sciences, Kent State University, Kent, OH 44240, USA
- School of Biomedical Sciences, Kent State University, Kent, OH 44240, USA
| |
Collapse
|
9
|
Turley NE, Kania SE, Petitta IR, Otruba EA, Biddinger DJ, Butzler TM, Sesler VV, López-Uribe MM. Bee monitoring by community scientists: comparing a collections-based program with iNaturalist. ANNALS OF THE ENTOMOLOGICAL SOCIETY OF AMERICA 2024; 117:220-233. [PMID: 39006748 PMCID: PMC11238606 DOI: 10.1093/aesa/saae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/18/2024] [Accepted: 05/22/2024] [Indexed: 07/16/2024]
Abstract
Bee monitoring, or widespread efforts to document bee community biodiversity, can involve data collection using lethal (specimen collections) or non-lethal methods (observations, photographs). Additionally, data can be collected by professional scientists or by volunteer participants from the general public. Collection-based methods presumably produce more reliable data with fewer biases against certain taxa, while photography-based approaches, such as data collected from public natural history platforms like iNaturalist, can involve more people and cover a broader geographic area. Few efforts have been made to quantify the pros and cons of these different approaches. We established a community science monitoring program to assess bee biodiversity across the state of Pennsylvania (USA) using specimen collections with nets, blue vane traps, and bowl traps. We recruited 26 participants, mostly Master Gardeners, from across the state to sample bees after receiving extensive training on bee monitoring topics and methods. The specimens they collected were identified to species, stored in museum collections, and the data added to public databases. Then, we compared the results from our collections to research-grade observations from iNaturalist during the same time period (2021 and 2022). At state and county levels, we found collections data documented over twice as much biodiversity and novel baseline natural history data (state and county records) than data from iNaturalist. iNaturalist data showed strong biases toward large-bodied and non-native species. This study demonstrates the value of highly trained community scientists for collections-based research that aims to document patterns of bee biodiversity over space and time.
Collapse
Affiliation(s)
- Nash E Turley
- Department of Entomology, The Pennsylvania State University, University Park, PA, USA
| | - Sarah E Kania
- Department of Entomology, The Pennsylvania State University, University Park, PA, USA
| | - Isabella R Petitta
- Intercollege Graduate Degree Program in Ecology, The Pennsylvania State University, University Park, PA, USA
| | - Elizabeth A Otruba
- Department of Entomology, The Academy of Natural Sciences of Drexel University, Philadelphia, PA, USA
| | - David J Biddinger
- Department of Entomology, The Pennsylvania State University, University Park, PA, USA
| | - Thomas M Butzler
- Penn State Extension, The Pennsylvania State University, University Park, PA, USA
| | - Valerie V Sesler
- Penn State Extension, The Pennsylvania State University, University Park, PA, USA
| | - Margarita M López-Uribe
- Department of Entomology, The Pennsylvania State University, University Park, PA, USA
- Intercollege Graduate Degree Program in Ecology, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
10
|
Palandačić A, Chai MJ, Shandikov GA, Akkari N, Frade PR, Randolf S, Berg HM, Mikschi E, Bogutskaya NG. An annotated catalogue of selected historical type specimens, including genetic data, housed in the Natural History Museum Vienna. Zookeys 2024; 1203:253-323. [PMID: 38855791 PMCID: PMC11161686 DOI: 10.3897/zookeys.1203.117699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/08/2024] [Indexed: 06/11/2024] Open
Abstract
Museum collections are an important source for resolving taxonomic issues and species delimitation. Type specimens as name-bearing specimens, traditionally used in morphology-based taxonomy, are, due to the progress in historical DNA methodology, increasingly used in molecular taxonomic studies. Museum collections are subject to constant deterioration and major disasters. The digitisation of collections offers a partial solution to these problems and makes museum collections more accessible to the wider scientific community. The Extended Specimen Approach (ESA) is a method of digitisation that goes beyond the physical specimen to include the historical information stored in the collection. The collections of the Natural History Museum Vienna represent one of the largest non-university research centres in Europe and, due to their size and numerous type specimens, are frequently used for taxonomic studies by visiting and resident scientists. Recently, a version of ESA was presented in the common catalogue of the Fish and Evertebrata Varia collections and extended to include genetic information on type specimens in a case study of a torpedo ray. Here the case study was extended to a heterogeneous selection of historical type series from different collections with the type locality of Vienna. The goal was to apply the ESA, including genetic data on a selected set of type material: three parasitic worms, three myriapods, two insects, twelve fishes, and one bird species. Five hundred digital items (photographs, X-rays, scans) were produced, and genetic analysis was successful in eleven of the 21 type series. In one case a complete mitochondrial genome was assembled, and in another case ten short fragments (100-230 bp) of the cytochrome oxidase I gene were amplified and sequenced. For five type series, genetic analysis confirmed their taxonomic status as previously recognised synonyms, and for one the analysis supported its status as a distinct species. For two species, genetic information was provided for the first time. This catalogue thus demonstrates the usefulness of ESA in providing digitised data of types that can be easily made available to scientists worldwide for further study.
Collapse
Affiliation(s)
- Anja Palandačić
- Fish collection, First Zoological Department, Natural History Museum Vienna, Burgring 7, 1010 Vienna, Austria
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Min J. Chai
- Fish collection, First Zoological Department, Natural History Museum Vienna, Burgring 7, 1010 Vienna, Austria
| | - Gennadiy A. Shandikov
- Fish collection, First Zoological Department, Natural History Museum Vienna, Burgring 7, 1010 Vienna, Austria
| | - Nesrine Akkari
- Myriapoda collection, Third Zoological Department, Natural History Museum Vienna, Burgring 7, 1010 Vienna, Austria
| | - Pedro R. Frade
- Fish collection, First Zoological Department, Natural History Museum Vienna, Burgring 7, 1010 Vienna, Austria
| | - Susanne Randolf
- Fish collection, First Zoological Department, Natural History Museum Vienna, Burgring 7, 1010 Vienna, Austria
| | - Hans-Martin Berg
- Fish collection, First Zoological Department, Natural History Museum Vienna, Burgring 7, 1010 Vienna, Austria
| | - Ernst Mikschi
- Fish collection, First Zoological Department, Natural History Museum Vienna, Burgring 7, 1010 Vienna, Austria
| | - Nina G. Bogutskaya
- Fish collection, First Zoological Department, Natural History Museum Vienna, Burgring 7, 1010 Vienna, Austria
- Evertebrata Varia collection, Third Zoological Department, Natural History Museum Vienna, Burgring 7, 1010 Vienna, Austria
| |
Collapse
|
11
|
Santos BS, Marques MP, Ceríaco LMP. Lack of country-wide systematic herpetology collections in Portugal jeopardizes future research and conservation. AN ACAD BRAS CIENC 2024; 96:e20230622. [PMID: 38451598 DOI: 10.1590/0001-3765202420230622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/27/2023] [Indexed: 03/08/2024] Open
Abstract
Natural History Collections (NHCs) represent the world's largest repositories of long-term biodiversity datasets. Specimen collection and voucher deposition has been the backbone of NHCs since their inception, but recent decades have seen a drastic decline in rates of growth via active collecting. Amphibians and reptiles are amongst the most threatened zoological groups on the planet and are historically underrepresented in most worldwide NHCs. As part of an ongoing project to review the Portuguese zoological collections in the country's NHCs, herpetological data from its three major museums and smaller collections was gathered and used to examine the coverage and representation of the different taxa extant in Portugal. These collections are not taxonomically, geographically, or temporally complete. Approximately 90% of the Portuguese herpetological taxa are represented in the country's NHCs, and around half of the taxa are represented by less than 50 specimens. Geographically, the collections cover less than 30% of the country's territory and almost all of the occurring taxa have less than 10% of their known distribution represented in the collections. A discussion on the implications for science of such incomplete collections and a review of the current status of Portuguese NHCs is presented.
Collapse
Affiliation(s)
- Bruna S Santos
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, 4485-661 Vairão, Portugal
- Universidade do Porto, Departamento de Biologia, Faculdade de Ciências, Rua do Campo Alegre 1021, 4169-007 Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
| | - Mariana P Marques
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, 4485-661 Vairão, Portugal
- Universidade do Porto, Departamento de Biologia, Faculdade de Ciências, Rua do Campo Alegre 1021, 4169-007 Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
- Carnegie Museum of Natural History, 4400 Forbes Avenue, Pittsburgh, PA 15213, U.S.A
| | - Luis M P Ceríaco
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, 4485-661 Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
- Carnegie Museum of Natural History, 4400 Forbes Avenue, Pittsburgh, PA 15213, U.S.A
- Universidade Federal do Rio de Janeiro, Departamento de Vertebrados, Museu Nacional, Quinta da Boavista, São Cristóvão, 20940-040 Rio de Janeiro, RJ, Brazil
- Departamento de Zoologia e Antropologia (Museu Bocage), Museu Nacional de História Natural e da Ciência, Rua da Escola Politécnica, 58, 1269-102 Lisboa, Portugal
| |
Collapse
|
12
|
Delsett LL. Collecting whales: processes and biases in Nordic museum collections. PeerJ 2024; 12:e16794. [PMID: 38288462 PMCID: PMC10823993 DOI: 10.7717/peerj.16794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/24/2023] [Indexed: 02/01/2024] Open
Abstract
Whales are unique museum objects that have entered collections in many ways and for different reasons. This work studies three Nordic natural history museum collections in Norway and Denmark with more than 2,500 whale specimens in total, and gathers the available biological and collection data on the specimens, which include skeletal elements, foetuses and organs preserved in ethanol or formalin, and a few dry-preserved organs. It finds that influx of specimens, which were mainly locally common species that were hunted, to the collections, mainly happened in the latest 1800s and earliest 1900s, fuelled by research trends, nation building, local whaling, and colonial mechanisms. Norway was a major whaling nation, but the largest hunt for whales in the Southern Ocean in the mid-1900s is not reflected in the Norwegian museum collections, probably because of the commercial focus of the whaling industry and logistical challenges, combined with limited research interest in zoological specimens at that time. The results demonstrate that it is important to understand these processes and the resulting biases for future research, outreach, and conservation.
Collapse
Affiliation(s)
- Lene Liebe Delsett
- Department of Archaeology, Conservation and History, University of Oslo, Oslo, Norway
| |
Collapse
|
13
|
Alpeeva EV, Sharova NP, Sharov KS, Vorotelyak EA. Russian Biodiversity Collections: A Professional Opinion Survey. Animals (Basel) 2023; 13:3777. [PMID: 38136814 PMCID: PMC10740833 DOI: 10.3390/ani13243777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/15/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Biodiversity collections are important vehicles for protecting endangered wildlife in situations of adverse anthropogenic influence. In Russia, there are currently a number of institution- and museum-based biological collections, but there are no nation-wide centres of biodiversity collections. In this paper, we report on the results of our survey of 324 bioconservation, big-data, and ecology specialists from different regions of Russia in regard to the necessity to create several large national biodiversity centres of wildlife protection. The survey revealed specific goals that have to be fulfilled during the development of these centres for the protection and restoration of endangered wildlife species. The top three problems/tasks (topics) are the following: (1) the necessity to create large national centres for different types of specimens; (2) the full sequencing and creation of different "omic" (genomic, proteomic, transcriptomic, etc.) databases; (3) full digitisation of a biodiversity collection/centre. These goals may constitute a guideline for the future of biodiversity collections in Russia that would be targeted at protecting and restoring endangered species. With the due network service level, the translation of the website into English, and permission from the regulator (Ministry of Science and Higher Education of Russian Federation), it can also become an international project.
Collapse
Affiliation(s)
| | | | - Konstantin S. Sharov
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, 26 Vavilov Street, 119334 Moscow, Russia; (E.V.A.); (N.P.S.)
| | | |
Collapse
|
14
|
White E, Soltis PS, Soltis DE, Guralnick R. Quantifying error in occurrence data: Comparing the data quality of iNaturalist and digitized herbarium specimen data in flowering plant families of the southeastern United States. PLoS One 2023; 18:e0295298. [PMID: 38060477 PMCID: PMC10703310 DOI: 10.1371/journal.pone.0295298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 11/19/2023] [Indexed: 12/18/2023] Open
Abstract
iNaturalist has the potential to be an extremely rich source of organismal occurrence data. Launched in 2008, it now contains over 150 million uploaded observations as of May 2023. Based on the findings of a limited number of past studies assessing the taxonomic accuracy of participatory science-driven sources of occurrence data such as iNaturalist, there has been concern that some portion of these records might be misidentified in certain taxonomic groups. In this case study, we compare Research Grade iNaturalist observations with digitized herbarium specimens, both of which are currently available for combined download from large data aggregators and are therefore the primary sources of occurrence data for large-scale biodiversity/biogeography studies. Our comparisons were confined regionally to the southeastern United States (Florida, Georgia, North Carolina, South Carolina, Texas, Tennessee, Kentucky, and Virginia). Occurrence records from ten plant families (Gentianaceae, Ericaceae, Melanthiaceae, Ulmaceae, Fabaceae, Asteraceae, Fagaceae, Cyperaceae, Juglandaceae, Apocynaceae) were downloaded and scored on taxonomic accuracy. We found a comparable and relatively low rate of misidentification among both digitized herbarium specimens and Research Grade iNaturalist observations within the study area. This finding illustrates the utility and high quality of iNaturalist data for future research in the region, but also points to key differences between data types, giving each a respective advantage, depending on applications of the data.
Collapse
Affiliation(s)
- Elizabeth White
- Department of Biology, University of Florida, Gainesville, Florida, United States of America
- Florida Museum of Natural History, Gainesville, Florida, United States of America
| | - Pamela S. Soltis
- Department of Biology, University of Florida, Gainesville, Florida, United States of America
- Florida Museum of Natural History, Gainesville, Florida, United States of America
| | - Douglas E. Soltis
- Department of Biology, University of Florida, Gainesville, Florida, United States of America
- Florida Museum of Natural History, Gainesville, Florida, United States of America
| | - Robert Guralnick
- Florida Museum of Natural History, Gainesville, Florida, United States of America
| |
Collapse
|
15
|
Christie K, Pierson NR, Holeski LM, Lowry DB. Resurrected seeds from herbarium specimens reveal rapid evolution of drought resistance in a selfing annual. AMERICAN JOURNAL OF BOTANY 2023; 110:e16265. [PMID: 38102863 DOI: 10.1002/ajb2.16265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 12/17/2023]
Abstract
PREMISE Increased aridity and drought associated with climate change are exerting unprecedented selection pressures on plant populations. Whether populations can rapidly adapt, and which life history traits might confer increased fitness under drought, remain outstanding questions. METHODS We utilized a resurrection ecology approach, leveraging dormant seeds from herbarium collections to assess whether populations of Plantago patagonica from the semi-arid Colorado Plateau have rapidly evolved in response to approximately ten years of intense drought in the region. We quantified multiple traits associated with drought escape and drought resistance and assessed the survival of ancestors and descendants under simulated drought. RESULTS Descendant populations displayed a significant shift in resource allocation, in which they invested less in reproductive tissues and relatively more in both above- and below-ground vegetative tissues. Plants with greater leaf biomass survived longer under terminal drought; moreover, even after accounting for the effect of increased leaf biomass, descendant seedlings survived drought longer than their ancestors. CONCLUSIONS Our results document rapid adaptive evolution in response to climate change in a selfing annual and suggest that shifts in tissue allocation strategies may underlie adaptive responses to drought in arid or semi-arid environments. This work also illustrates a novel approach, documenting that under specific circumstances, seeds from herbarium specimens may provide an untapped source of dormant propagules for future resurrection experiments.
Collapse
Affiliation(s)
- Kyle Christie
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, 86011, USA
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Natalie R Pierson
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, 86011, USA
| | - Liza M Holeski
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, 86011, USA
- Center for Adaptive Western Landscapes, Northern Arizona University, Flagstaff, Arizona, 86011, USA
| | - David B Lowry
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, Michigan, 48824, USA
| |
Collapse
|
16
|
Ramírez-Barahona S, Cuervo-Robayo AP, Magallón S. Assessing digital accessible botanical knowledge and priorities for exploration and discovery of plant diversity across Mesoamerica. THE NEW PHYTOLOGIST 2023; 240:1659-1672. [PMID: 37571871 DOI: 10.1111/nph.19190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023]
Abstract
Digital accessible biodiversity knowledge has the potential to greatly advance botanical research and guide conservation efforts. Evaluating its shortfalls is key to understanding its limits and prioritising regions in need of renewed survey efforts. We used the Royal Botanical Gardens Kew's World Checklist of Vascular Plants to parse publicly available occurrence data downloaded from the Global Biodiversity Information Facility and quantify the spatial distribution of spatial, phylogenetic, and temporal data shortfalls across Mesoamerica. After processing 3578 777 occurrence records for 32 522 species of vascular plants across Mesoamerica, we found evidence of poor data coverage: incomplete characterisation of species diversity, old occurrence records, and low phylogenetic representation. One-third of the region showed large gaps for at least one of these dimensions (hotspots) and < 15% had adequate data coverage across dimensions. Overall, the shortfalls we identified compromise the quality of digitally available occurrence data and hamper research on spatial phylogenetics and species dynamics under anthropogenic disturbances. Our analyses identified areas of opportunity for increased efforts in data digitisation, botanical exploration, sequencing, and biodiversity monitoring. These efforts would serve to increase and rejuvenate knowledge on the geographic distribution of vascular plants in Mesoamerica.
Collapse
Affiliation(s)
- Santiago Ramírez-Barahona
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico, 04510, Mexico
| | - Angela P Cuervo-Robayo
- Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico, 04510, Mexico
| | - Susana Magallón
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico, 04510, Mexico
| |
Collapse
|
17
|
Jesus LMG, Guedes JJM, Moura MR, Feio RN, Costa HC. Environmental drivers of tropical forest snake phenology: Insights from citizen science. Ecol Evol 2023; 13:e10305. [PMID: 37492463 PMCID: PMC10363785 DOI: 10.1002/ece3.10305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/18/2023] [Accepted: 06/26/2023] [Indexed: 07/27/2023] Open
Abstract
Museum specimens and citizen science initiatives are valuable sources of information on how anthropogenic activities affect biodiversity and how species respond to rapid global change. Although tropical regions harbor most of the planet's biodiversity, investigations on species' phenological changes are heavily biased toward temperate regions. Such unevenness in phenological research is also taxonomically biased, with reptiles being the least studied group among tetrapod species regarding animal phenology. Herein, we used long-term time-series data to investigate environmentally driven changes in the activity pattern of tropical forest snakes. We gathered natural history collection and citizen science data for 25 snake species (five venomous and 20 non-venomous) from an Atlantic Forest region in southeastern Brazil. Using circular mixed-effects models, we investigate whether snake activity patterns followed the variation in environmental variables over a decade. Our results show that the activity pattern of Atlantic Forest snakes was seasonal and largely driven by average temperature and relative humidity. Since snakes are ectothermic animals, they are particularly sensitive to temperature variations, especially at small scales. Moreover, relative humidity can affect snake's seasonal activities through physiological constraints and/or prey availability. Most specimens were registered during the rainy season, with highly venomous snakes (lanceheads and coral snakes) emerging as the most abundant taxa. We highlight the importance of citizen science and natural history collections in better understanding biodiversity. Furthermore, our data obtained from local collectors underscore the need for environmental education programs and collaboration between researchers and local decision-makers to raise awareness and reduce conflicts between people and snakes in the region.
Collapse
Affiliation(s)
- Letízia M. G. Jesus
- Museu de Zoologia João Moojen, Instituto de Ciências Biológicas e da SaúdeUniversidade Federal de ViçosaViçosaBrazil
- Programa de Pós‐Graduação em Biodiversidade e Conservação da Natureza, Instituto de Ciências BiológicasUniversidade Federal de Juiz de ForaJuiz de ForaBrazil
| | - Jhonny J. M. Guedes
- Programa de Pós‐Graduação em Ecologia e Evolução, Departamento de Ecologia, Campus SamambaiaUniversidade Federal de GoiásGoiâniaBrazil
| | - Mario R. Moura
- Departamento de Biologia AnimalUniversidade Estadual de CampinasCampinasBrazil
- Departamento de Ciências BiológicasUniversidade Federal da ParaíbaAreiaBrazil
| | - Renato N. Feio
- Museu de Zoologia João Moojen, Instituto de Ciências Biológicas e da SaúdeUniversidade Federal de ViçosaViçosaBrazil
| | - Henrique C. Costa
- Programa de Pós‐Graduação em Biodiversidade e Conservação da Natureza, Instituto de Ciências BiológicasUniversidade Federal de Juiz de ForaJuiz de ForaBrazil
- Departamento de Zoologia, Instituto de Ciências BiológicasUniversidade Federal de Juiz de ForaJuiz de ForaBrazil
| |
Collapse
|
18
|
Johnston MA, Waite ES, Wright ER, Reily BH, De Leon GJ, Esquivel AI, Kerwin J, Salazar M, Sarmiento E, Thiatmaja T, Lee S, Yule K, Franz N. Insect collecting bias in Arizona with a preliminary checklist of the beetles from the Sand Tank Mountains. Biodivers Data J 2023; 11:e101960. [PMID: 37427371 PMCID: PMC10323768 DOI: 10.3897/bdj.11.e101960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/15/2023] [Indexed: 07/11/2023] Open
Abstract
Background The State of Arizona in the south-western United States supports a high diversity of insects. Digitised occurrence records, especially from preserved specimens in natural history collections, are an important and growing resource to understand biodiversity and biogeography. Underlying bias in how insects are collected and what that means for interpreting patterns of insect diversity is largely untested. To explore the effects of insect collecting bias in Arizona, the State was regionalised into specific areas. First, the entire State was divided into broad biogeographic areas by ecoregion. Second, the 81 tallest mountain ranges were mapped on to the State. The distribution of digitised records across these areas were then examined.A case study of surveying the beetles (Insecta, Coleoptera) of the Sand Tank Mountains is presented. The Sand Tanks are a low-elevation range in the Lower Colorado River Basin subregion of the Sonoran Desert from which a single beetle record was published before this study. New information The number of occurrence records and collecting events are very unevenly distributed throughout Arizona and do not strongly correlate with the geographic size of areas. Species richness is estimated for regions in Arizona using rarefaction and extrapolation. Digitised records from the disproportionately highly collected areas in Arizona represent at best 70% the total insect diversity within them. We report a total of 141 species of Coleoptera from the Sand Tank Mountains, based on 914 digitised voucher specimens. These specimens add important new records for taxa that were previously unavailable in digitised data and highlight important biogeographic ranges.Possible underlying mechanisms causing bias are discussed and recommendations are made for future targeted collecting of under-sampled regions. Insect species diversity is apparently at best 70% documented for the State of Arizona with many thousands of species not yet recorded. The Chiricahua Mountains are the most densely sampled region of Arizona and likely contain at least 2,000 species not yet vouchered in online data. Preliminary estimates for species richness of Arizona are at least 21,000 and likely much higher. Limitations to analyses are discussed which highlight the strong need for more insect occurrence data.
Collapse
Affiliation(s)
- M. Andrew Johnston
- Biodiversity Knowledge Integration Center, Arizona State University, Tempe, AZ, United States of AmericaBiodiversity Knowledge Integration Center, Arizona State UniversityTempe, AZUnited States of America
| | - Evan S. Waite
- Biodiversity Knowledge Integration Center, Arizona State University, Tempe, AZ, United States of AmericaBiodiversity Knowledge Integration Center, Arizona State UniversityTempe, AZUnited States of America
| | - Ethan R Wright
- Biodiversity Knowledge Integration Center, Arizona State University, Tempe, AZ, United States of AmericaBiodiversity Knowledge Integration Center, Arizona State UniversityTempe, AZUnited States of America
| | - Brian H. Reily
- Biodiversity Knowledge Integration Center, Arizona State University, Tempe, AZ, United States of AmericaBiodiversity Knowledge Integration Center, Arizona State UniversityTempe, AZUnited States of America
| | - Gilma Juanita De Leon
- Biodiversity Knowledge Integration Center, Arizona State University, Tempe, AZ, United States of AmericaBiodiversity Knowledge Integration Center, Arizona State UniversityTempe, AZUnited States of America
| | - Angela Iran Esquivel
- Biodiversity Knowledge Integration Center, Arizona State University, Tempe, AZ, United States of AmericaBiodiversity Knowledge Integration Center, Arizona State UniversityTempe, AZUnited States of America
| | - Jacob Kerwin
- Biodiversity Knowledge Integration Center, Arizona State University, Tempe, AZ, United States of AmericaBiodiversity Knowledge Integration Center, Arizona State UniversityTempe, AZUnited States of America
| | - Maria Salazar
- Biodiversity Knowledge Integration Center, Arizona State University, Tempe, AZ, United States of AmericaBiodiversity Knowledge Integration Center, Arizona State UniversityTempe, AZUnited States of America
| | - Emiliano Sarmiento
- Biodiversity Knowledge Integration Center, Arizona State University, Tempe, AZ, United States of AmericaBiodiversity Knowledge Integration Center, Arizona State UniversityTempe, AZUnited States of America
| | - Tommy Thiatmaja
- Biodiversity Knowledge Integration Center, Arizona State University, Tempe, AZ, United States of AmericaBiodiversity Knowledge Integration Center, Arizona State UniversityTempe, AZUnited States of America
| | - Sangmi Lee
- Biodiversity Knowledge Integration Center, Arizona State University, Tempe, AZ, United States of AmericaBiodiversity Knowledge Integration Center, Arizona State UniversityTempe, AZUnited States of America
| | - Kelsey Yule
- Biodiversity Knowledge Integration Center, Arizona State University, Tempe, AZ, United States of AmericaBiodiversity Knowledge Integration Center, Arizona State UniversityTempe, AZUnited States of America
| | - Nico Franz
- Biodiversity Knowledge Integration Center, Arizona State University, Tempe, AZ, United States of AmericaBiodiversity Knowledge Integration Center, Arizona State UniversityTempe, AZUnited States of America
| |
Collapse
|
19
|
Green TA, Hutchings PA, Scarff FR, Tweedley JR, Calver MC. Research publications of Australia's natural history museums, 1981-2020: Enduring relevance in a changing world. PLoS One 2023; 18:e0287659. [PMID: 37352318 PMCID: PMC10289469 DOI: 10.1371/journal.pone.0287659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 06/12/2023] [Indexed: 06/25/2023] Open
Abstract
As a case study of the responses of natural history museums to changing scientific and funding environments, we analysed research publications of Australia's Natural History Museums (ANHMs) 1981-2020. Using Scopus, 9,923 relevant documents 1981-2020 were identified, mainly research papers but with a growing proportion of reviews. The number of documents published increased over tenfold from 39 (1981) to 553 (2020), likely driven by collaborations (rising from 28.5% of documents 1981-1985 to 87.2% of documents 2016-2020), contributions from retired staff, and volunteer support. The mean length of documents (pages) ranged from a low of 15.3 in 2001-2005 to a high of 17.4 in 1991-1995, but this statistically significant result was trivial in practical terms. The sources (i.e., journals, book titles, conference proceedings) in which ANHM authors published changed over time, with growing proportions of publications in journals covering molecular ecology/phylogenetics and biological conservation. We identified the major areas of study canvassed within the corpus of publications by developing structural topic models based on patterns of word use in document titles, abstracts and keyword lists. The topics discovered included study subjects traditional for natural history museums (new taxa, phylogeny, systematics, animal morphology, palaeontology, minerals), new directions (molecular genetics, ecology, biological conservation) and marine biology (probably reflecting Australia's large coastline). Most citations came from Australia, USA and UK, although in 2016-2020 only 27.9% of citing documents included an Australian author. Growth in numbers of documents and collaborations, as well as use of documents internationally over a period of great change in scientific and funding environments, indicate an enduring legacy of ANHM research, grounded on the intrinsic value of the collections.
Collapse
Affiliation(s)
- Tayla A. Green
- Environmental and Conservation Sciences, Murdoch University, Murdoch, Western Australia, Australia
| | - Pat A. Hutchings
- Australian Museum Research Institute, Australian Museum, Sydney, NSW, Australia
- Department of Biological Sciences, Macquarie University, North Ryde, Australia
| | - Fiona R. Scarff
- Environmental and Conservation Sciences, Murdoch University, Murdoch, Western Australia, Australia
| | - James R. Tweedley
- Environmental and Conservation Sciences, Murdoch University, Murdoch, Western Australia, Australia
| | - Michael C. Calver
- Environmental and Conservation Sciences, Murdoch University, Murdoch, Western Australia, Australia
| |
Collapse
|
20
|
Daru BH, Rodriguez J. Mass production of unvouchered records fails to represent global biodiversity patterns. Nat Ecol Evol 2023:10.1038/s41559-023-02047-3. [PMID: 37127769 DOI: 10.1038/s41559-023-02047-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 03/26/2023] [Indexed: 05/03/2023]
Abstract
The ever-increasing human footprint even in very remote places on Earth has inspired efforts to document biodiversity vigorously in case organisms go extinct. However, the data commonly gathered come from either primary voucher specimens in a natural history collection or from direct field observations that are not traceable to tangible material in a museum or herbarium. Although both datasets are crucial for assessing how anthropogenic drivers affect biodiversity, they have widespread coverage gaps and biases that may render them inefficient in representing patterns of biodiversity. Using a large global dataset of around 1.9 billion occurrence records of terrestrial plants, butterflies, amphibians, birds, reptiles and mammals, we quantify coverage and biases of expected biodiversity patterns by voucher and observation records. We show that the mass production of observation records does not lead to higher coverage of expected biodiversity patterns but is disproportionately biased toward certain regions, clades, functional traits and time periods. Such coverage patterns are driven by the ease of accessibility to air and ground transportation, level of security and extent of human modification at each sampling site. Conversely, voucher records are vastly infrequent in occurrence data but in the few places where they are sampled, showed relative congruence with expected biodiversity patterns for all dimensions. The differences in coverage and bias by voucher and observation records have important implications on the utility of these records for research in ecology, evolution and conservation research.
Collapse
Affiliation(s)
- Barnabas H Daru
- Department of Biology, Stanford University, Stanford, CA, USA.
| | - Jordan Rodriguez
- Department of Biology, Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
| |
Collapse
|
21
|
LeFebvre MJ, Mychajliw AM, Harris GB, Oswald JA. Historical DNA from a rediscovered nineteenth-century paratype reveals genetic continuity of a Bahamian hutia ( Geocapromys ingrahami) population. Biol Lett 2023; 19:20220566. [PMID: 37122196 PMCID: PMC10130705 DOI: 10.1098/rsbl.2022.0566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 04/03/2023] [Indexed: 05/02/2023] Open
Abstract
Past and ongoing human activities have shaped the geographical ranges and diversity of species. New genomic techniques applied to degraded samples, such as those from natural history collections, can uncover the complex evolutionary consequences of human pressures and generate baselines for interpreting magnitudes of species loss or persistence relevant to conservation. Here we integrate mitogenomic data with historical records from a recently rediscovered Bahamian hutia (Geocapromys ingrahami; (FMP Z02816)) specimen at the Fairbanks Museum & Planetarium (Vermont, USA) to determine when and where the specimen was collected and to place it in a phylogenetic context with specimens that both predate (palaeontological) and postdate (archaeological) human arrival in The Bahamas. We determined that this specimen was part of the same population as the named holotype specimen in 1891 on East Plana Cay (EPC). Bahamian hutia populations were widely extirpated following European colonization. Today, EPC hosts the last remaining natural Bahamian hutia population. Mitogenomic data places the focal specimen within the southern Bahamian hutia population, which is now largely restricted to EPC. The results reveal previously undocumented genetic continuity among the EPC population for at least the past 500 years, highlighting how 'dark' museum specimens inform new conservation-relevant understandings of diversity.
Collapse
Affiliation(s)
- Michelle J. LeFebvre
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - Alexis M. Mychajliw
- Department of Biology, Middlebury College, Middlebury, VT 05753, USA
- Environmental Studies Program, Middlebury College, Middlebury, VT 05753, USA
| | - George B. Harris
- Natural History Collections, Fairbanks Museum and Planetarium, St Johnsbury, VT 05819, USA
| | - Jessica A. Oswald
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
- Department of Biology, University of Nevada, Reno, Reno, NV 89557, USA
| |
Collapse
|
22
|
Li Y, Hopkins AJM, Davis RA. Going, Going, Gone The Diminishing Capacity of Museum Specimen Collections to Address Global Change Research: A Case Study on Urban Reptiles. Animals (Basel) 2023; 13:ani13061078. [PMID: 36978619 PMCID: PMC10044672 DOI: 10.3390/ani13061078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023] Open
Abstract
It has been increasingly popular to use natural history specimens to examine environmental changes. As the current functionality of museum specimens has extended beyond their traditional taxonomic role, there has been a renewed focus on the completeness of biological collections to provide data for current and future research. We used the collections of the Western Australian Museum to answer questions about the change in occurrence of five common reptile species due to the rapid urbanization of Perth. We recorded a significant decline in collection effort from the year 2000 onwards (F = 7.65, p < 0.01) compared to the period 1990–1999. Spatial analysis revealed that only 0.5% of our study region was well sampled, 8.5% were moderately sampled and the majority of the regions (91%) were poorly sampled. By analysing the trend of specimen acquisition from 1950 to 2010, we discovered a significant inconsistency in specimen sampling effort for 13 common reptile species across time and space. A large proportion of past specimens lacked information including the place and time of collection. An increase in investment to museums and an increase in geographically and temporally systematic collecting is advocated to ensure that collections can answer questions about environmental change.
Collapse
Affiliation(s)
- Yanlin Li
- School of Science, Edith Cowan University, 100 Joondalup Drive, Joondalup, WA 6027, Australia
| | - Anna J. M. Hopkins
- School of Science, Edith Cowan University, 100 Joondalup Drive, Joondalup, WA 6027, Australia
| | - Robert A. Davis
- School of Science, Edith Cowan University, 100 Joondalup Drive, Joondalup, WA 6027, Australia
- Department of Terrestrial Zoology, Western Australia Museum, 49 Kew St, Welshpool, WA 6106, Australia
- Correspondence:
| |
Collapse
|
23
|
Závada T, Malik RJ, Mazumder L, Kesseli RV. Radical shift in the genetic composition of New England chicory populations. THE JOURNAL OF ECOLOGY 2023; 111:391-399. [PMID: 37064427 PMCID: PMC10087836 DOI: 10.1111/1365-2745.13968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/29/2022] [Indexed: 06/19/2023]
Abstract
Human activities have been altering the flora and fauna across the planet. Distributions and the diversity of species, and the phenotypes of individuals in those species are changing. New England with its rapidly changing human demographics is an ideal place to investigate these temporal changes in the habitat. The flora of New England consists of both native and nonnative species. Non-indigenous plant species have been introduced since the first Europeans arrived in North America in the 15th century. Cichorium intybus (chicory), native to Eurasia, was first recorded in North America in 1774. Subsequently, chicory spread and became naturalized throughout much of the continent.In this study, we used chloroplast DNA sequences and 12 microsatellite nuclear markers to assess the temporal genetic changes in New England populations of chicory. We analysed 84 herbarium specimens and 18 contemporary extant populations (228 individuals in total).Three chloroplast DNA haplotypes were detected and all were present in New England prior to 1890; however, Hap3 was rare prior to the 1950s. The nuclear DNA markers showed a major shift in the genetic diversity and composition, with all historical herbarium collections belonging to a single genetic cluster and 16 out of 18 contemporary chicory populations belonging to different genetic clusters. This change occurred regionally and also on a local scale with contemporary populations being very different from herbarium specimens collected previously in the corresponding localities. Synthesis. Our results indicate that the genetic diversity and structure of Cichorium intybus populations have changed substantially since the founding populations in New England. These changes may have contributed to the success of this nonnative species and helped to fuel its rapid expansion and adaptation to the changing landscapes in both New England and the rest of North America.
Collapse
Affiliation(s)
- Tomáš Závada
- Sterling CollegeCraftsbury CommonVermontUSA
- Biology DepartmentUniversity of Massachusetts BostonBostonMassachusettsUSA
| | - Rondy J. Malik
- Department of Ecology and Evolutionary Biology, Kansas Biological SurveyLawrenceKansasUSA
| | - Lisa Mazumder
- Biology DepartmentUniversity of Massachusetts BostonBostonMassachusettsUSA
| | - Rick V. Kesseli
- Biology DepartmentUniversity of Massachusetts BostonBostonMassachusettsUSA
| |
Collapse
|
24
|
Davis CL, Guralnick RP, Zipkin EF. Challenges and opportunities for using natural history collections to estimate insect population trends. J Anim Ecol 2023; 92:237-249. [PMID: 35716080 DOI: 10.1111/1365-2656.13763] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 06/13/2022] [Indexed: 11/28/2022]
Abstract
Natural history collections (NHC) provide a wealth of information that can be used to understand the impacts of global change on biodiversity. As such, there is growing interest in using NHC data to estimate changes in species' distributions and abundance trends over historic time horizons when contemporary survey data are limited or unavailable. However, museum specimens were not collected with the purpose of estimating population trends and thus can exhibit spatiotemporal and collector-specific biases that can impose severe limitations to using NHC data for evaluating population trajectories. Here we review the challenges associated with using museum records to track long-term insect population trends, including spatiotemporal biases in sampling effort and sparse temporal coverage within and across years. We highlight recent methodological advancements that aim to overcome these challenges and discuss emerging research opportunities. Specifically, we examine the potential of integrating museum records and other contemporary data sources (e.g. collected via structured, designed surveys and opportunistic citizen science programs) in a unified analytical framework that accounts for the sampling biases associated with each data source. The emerging field of integrated modelling provides a promising framework for leveraging the wealth of collections data to accurately estimate long-term trends of insect populations and identify cases where that is not possible using existing data sources.
Collapse
Affiliation(s)
- Courtney L Davis
- Department of Integrative Biology; Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, Michigan, USA.,Cornell Lab of Ornithology, Cornell University, Ithaca, New York, USA
| | - Robert P Guralnick
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, USA.,Biodiversity Institute, University of Florida, Gainesville, Florida, USA
| | - Elise F Zipkin
- Department of Integrative Biology; Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
25
|
Tolley KA, Telford NS, Makhubo BG, Power RJ, Alexander GJ. Filling the gap: Noteworthy herpetological discoveries in North West Province, South Africa. ZOOSYST EVOL 2023. [DOI: 10.3897/zse.99.90181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The North West Province, South Africa, is centrally situated in southern Africa and is characterised by savannah with a mesic, temperate climate in the east and a hot, arid climate in the west. While the eastern region is fairly well-documented for herpetofauna, the arid central and western regions are poorly surveyed. Given that the Province has been targeted by the national government for development of infrastructure, the overall deficiency of biodiversity data could result in impact assessments that are not well-informed. We, therefore, carried out herpetofaunal surveys over two years (2019–2020) in the North West Province to improve knowledge on the distributions of reptiles and amphibians. Our surveys added a total of 578 new records to an earlier baseline of 1340 records. In addition, over 300 records were added to a citizen-science platform in connection with our surveys. As compared to the previous 100 years, our surveys increased the herpetofaunal dataset by 68% in just two years, increased geographic coverage by 20% and brought the total number of species with accurate records for the Province to 102 reptiles and 23 amphibians. We also recorded range extensions for five reptile species and confirmed the presence of Dendroaspis polylepis (Black Mamba) in the west where it had been last recorded in 1996. Our surveys resulted in a significant increase in biodiversity data for the Province and provided a better foundation for spatial planning that accounts for biodiversity and the maintenance of ecological function.
Collapse
|
26
|
Chenery ES, Harms NJ, Fenton H, Mandrak NE, Molnár PK. Revealing large‐scale parasite ranges: An integrated spatiotemporal database and multisource analysis of the winter tick. Ecosphere 2023. [DOI: 10.1002/ecs2.4376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Emily S. Chenery
- Department of Physical and Environmental Sciences University of Toronto Scarborough Scarborough Ontario Canada
| | - N. Jane Harms
- Animal Health Unit Department of Environment Whitehorse Yukon Canada
| | - Heather Fenton
- Department of Environment and Natural Resources Government of Northwest Territories Yellowknife Northwest Territories Canada
| | - Nicholas E. Mandrak
- Department of Physical and Environmental Sciences University of Toronto Scarborough Scarborough Ontario Canada
- Department of Biological Sciences University of Toronto Scarborough Scarborough Ontario Canada
- Department of Ecology and Evolutionary Biology University of Toronto Toronto Ontario Canada
| | - Péter K. Molnár
- Department of Physical and Environmental Sciences University of Toronto Scarborough Scarborough Ontario Canada
- Department of Biological Sciences University of Toronto Scarborough Scarborough Ontario Canada
- Department of Ecology and Evolutionary Biology University of Toronto Toronto Ontario Canada
| |
Collapse
|
27
|
Davis CC. The herbarium of the future. Trends Ecol Evol 2022; 38:412-423. [PMID: 36549958 DOI: 10.1016/j.tree.2022.11.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022]
Abstract
The ~400 million specimens deposited across ~3000 herbaria are essential for: (i) understanding where plants have lived in the past, (ii) forecasting where they may live in the future, and (iii) delineating their conservation status. An open access 'global metaherbarium' is emerging as these specimens are digitized, mobilized, and interlinked online. This virtual biodiversity resource is attracting new users who are accelerating traditional applications of herbaria and generating basic and applied scientific innovations, including e-monographs and floras produced by diverse, interdisciplinary, and inclusive teams; robust machine-learning algorithms for species identification and phenotyping; collection and synthesis of ecological trait data at large spatiotemporal and phylogenetic scales; and exhibitions and installations that convey the beauty of plants and the value of herbaria in addressing broader societal issues.
Collapse
Affiliation(s)
- Charles C Davis
- Department of Organismic and Evolutionary Biology, Harvard University Herbaria, 22 Divinity Avenue, Cambridge, MA 02138, USA.
| |
Collapse
|
28
|
Hobern D, Livermore L, Vincent S, Robertson T, Miller J, Groom Q, Grosjean M. Towards a Roadmap for Advancing the Catalogue of the World’s Natural History Collections. RESEARCH IDEAS AND OUTCOMES 2022. [DOI: 10.3897/rio.8.e98593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Natural history collections are the foundations upon which all knowledge of natural history is constructed. Biological specimens are the best documentation of variation within each species, increasingly serve as curated sources for reference DNA, and are frequently our only evidence for historical species distribution. Collections represent an enormous multigenerational investment in research infrastructure for the biological sciences, but despite this importance most of the holdings of these institutions remain invisible on the Internet, inaccessible to taxonomists from other countries and hidden from computational biodiversity research.
Although comprehensive digitisation of the complete holdings of each natural history collection is the long-term goal, this is an expensive and labor-intensive task and will not be completed in the near future for all collections. However, many benefits could quickly be achieved by publishing high-quality metadata on each collection to increase its visibility, provide the foundations for further digitisation and enable researchers to discover and communicate with collections of interest.
This paper summarises the results from a consultation activity carried out in 2020 as part of the SYNTHESYS+ (Synthesys of Systematic Resources), “Developing implementation roadmaps for priority infrastructure areas as part of cooperative RI for biodiversity” project. This consultation was primed through an ideas paper, and introductory webinars and conducted as a facilitated two-week online multilingual discussion around 26 topics grouped under four broad headings (Users, Content, Technology and Governance). The results of these discussions are summarised here, along with the wider context of existing and planned initiatives.
Collapse
|
29
|
Soares GM, Barros F, Lanna E, da Silva MVS, Cavalcanti FF. Sponges as libraries: Increase in microplastics in Cinachyrella alloclada after 36 years. MARINE POLLUTION BULLETIN 2022; 185:114339. [PMID: 36395712 DOI: 10.1016/j.marpolbul.2022.114339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/26/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Many studies investigated the presence and effects of microplastics in marine species, but data about sponges are still incipient. We quantified these pollutants in a population of the tropical sponge Cinachyrella alloclada, comparing museum specimens sampled in 1981 with specimens sampled in 2017. The mean number of microplastics in specimens collected decades ago was one order of magnitude lower (0.13 ± 0.40/g of sponge tissue) than those sampled more recently (1.37 ± 0.94/g). We observed microplastics in only 10 % of the specimens collected in 1981 but in 80 % of those from 2017. According to Raman spectroscopy, fibers in C. alloclada consisted of polypropylene. Our results reinforce the importance of natural history collections to reduce the gap of knowledge on the interaction between marine sponges and microplastics.
Collapse
Affiliation(s)
- Guilherme Moreira Soares
- Instituto de Biologia, Universidade Federal da Bahia, Rua Barão de Jeremoabo, s/n, Campus Ondina, Salvador 40170-115, Bahia, Brazil
| | - Francisco Barros
- Instituto de Biologia, Universidade Federal da Bahia, Rua Barão de Jeremoabo, s/n, Campus Ondina, Salvador 40170-115, Bahia, Brazil; Instituto Nacional de Ciência e Tecnologia em Estudos Interdisciplinares e Transdisciplinares em Ecologia e Evolução (IN-TREE), Universidade Federal da Bahia, Rua Barão de Jeremoabo s/n, Campus Ondina, Salvador 40170-115, Bahia, Brazil
| | - Emilio Lanna
- Instituto de Biologia, Universidade Federal da Bahia, Rua Barão de Jeremoabo, s/n, Campus Ondina, Salvador 40170-115, Bahia, Brazil; Instituto Nacional de Ciência e Tecnologia em Estudos Interdisciplinares e Transdisciplinares em Ecologia e Evolução (IN-TREE), Universidade Federal da Bahia, Rua Barão de Jeremoabo s/n, Campus Ondina, Salvador 40170-115, Bahia, Brazil
| | - Marcus Vinicius Santos da Silva
- Instituto de Física, Universidade Federal da Bahia, Rua Barão de Jeremoabo, s/n, Campus Ondina, Salvador 40170-115, Bahia, Brazil
| | - Fernanda F Cavalcanti
- Instituto de Biologia, Universidade Federal da Bahia, Rua Barão de Jeremoabo, s/n, Campus Ondina, Salvador 40170-115, Bahia, Brazil; Instituto Nacional de Ciência e Tecnologia em Estudos Interdisciplinares e Transdisciplinares em Ecologia e Evolução (IN-TREE), Universidade Federal da Bahia, Rua Barão de Jeremoabo s/n, Campus Ondina, Salvador 40170-115, Bahia, Brazil.
| |
Collapse
|
30
|
Speed JDM, Evankow AM, Petersen TK, Ranke PS, Nilsen NH, Turner G, Aagaard K, Bakken T, Davidsen JG, Dunshea G, Finstad AG, Hassel K, Husby M, Hårsaker K, Koksvik JI, Prestø T, Vange V. A regionally coherent ecological fingerprint of climate change, evidenced from natural history collections. Ecol Evol 2022; 12:e9471. [PMID: 36340816 PMCID: PMC9627063 DOI: 10.1002/ece3.9471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 09/02/2022] [Accepted: 10/16/2022] [Indexed: 11/06/2022] Open
Abstract
Climate change has dramatic impacts on ecological systems, affecting a range of ecological factors including phenology, species abundance, diversity, and distribution. The breadth of climate change impacts on ecological systems leads to the occurrence of fingerprints of climate change. However, climate fingerprints are usually identified across broad geographical scales and are potentially influenced by publication biases. In this study, we used natural history collections spanning over 250 years, to quantify a range of ecological responses to climate change, including phenology, abundance, diversity, and distributions, across a range of taxa, including vertebrates, invertebrates, plants, and fungi, within a single region, Central Norway. We tested the hypotheses that ecological responses to climate change are apparent and coherent at a regional scale, that longer time series show stronger trends over time and in relation to temperature, and that ecological responses change in trajectory at the same time as shifts in temperature. We identified a clear regional coherence in climate signal, with decreasing abundances of limnic zooplankton (on average by 7691 individuals m-3 °C-1) and boreal forest breeding birds (on average by 1.94 territories km-2 °C-1), and earlier plant flowering phenology (on average 2 days °C-1) for every degree of temperature increase. In contrast, regional-scale species distributions and species diversity were largely stable. Surprisingly, the effect size of ecological response did not increase with study duration, and shifts in responses did not occur at the same time as shifts in temperature. This may be as the long-term studies include both periods of warming and temperature stability, and that ecological responses lag behind warming. Our findings demonstrate a regional climate fingerprint across a long timescale. We contend that natural history collections provide a unique window on a broad spectrum of ecological responses at timescales beyond most ecological monitoring programs. Natural history collections are thus an essential source for long-term ecological research.
Collapse
Affiliation(s)
- James D. M. Speed
- Department of Natural HistoryNTNU University Museum, Norwegian University of Science and TechnologyTrondheimNorway
| | - Ann M. Evankow
- Department of Natural HistoryNTNU University Museum, Norwegian University of Science and TechnologyTrondheimNorway
- Natural History MuseumUniversity of OsloOsloNorway
| | - Tanja K. Petersen
- Department of Natural HistoryNTNU University Museum, Norwegian University of Science and TechnologyTrondheimNorway
| | - Peter S. Ranke
- Department of Natural HistoryNTNU University Museum, Norwegian University of Science and TechnologyTrondheimNorway
- Centre for Biodiversity Dynamics, Department of BiologyNorwegian University of Science and Technology (NTNU)TrondheimNorway
| | - Nellie H. Nilsen
- Department of Natural HistoryNTNU University Museum, Norwegian University of Science and TechnologyTrondheimNorway
| | - Grace Turner
- Department of Natural HistoryNTNU University Museum, Norwegian University of Science and TechnologyTrondheimNorway
| | - Kaare Aagaard
- Department of Natural HistoryNTNU University Museum, Norwegian University of Science and TechnologyTrondheimNorway
| | - Torkild Bakken
- Department of Natural HistoryNTNU University Museum, Norwegian University of Science and TechnologyTrondheimNorway
| | - Jan G. Davidsen
- Department of Natural HistoryNTNU University Museum, Norwegian University of Science and TechnologyTrondheimNorway
| | - Glenn Dunshea
- Department of Natural HistoryNTNU University Museum, Norwegian University of Science and TechnologyTrondheimNorway
| | - Anders G. Finstad
- Department of Natural HistoryNTNU University Museum, Norwegian University of Science and TechnologyTrondheimNorway
- Centre for Biodiversity Dynamics, Department of BiologyNorwegian University of Science and Technology (NTNU)TrondheimNorway
| | - Kristian Hassel
- Department of Natural HistoryNTNU University Museum, Norwegian University of Science and TechnologyTrondheimNorway
| | - Magne Husby
- Department of Natural HistoryNTNU University Museum, Norwegian University of Science and TechnologyTrondheimNorway
- Section of ScienceNord UniversityLevangerNorway
| | - Karstein Hårsaker
- Department of Natural HistoryNTNU University Museum, Norwegian University of Science and TechnologyTrondheimNorway
| | - Jan Ivar Koksvik
- Department of Natural HistoryNTNU University Museum, Norwegian University of Science and TechnologyTrondheimNorway
| | - Tommy Prestø
- Department of Natural HistoryNTNU University Museum, Norwegian University of Science and TechnologyTrondheimNorway
| | - Vibekke Vange
- Department of Natural HistoryNTNU University Museum, Norwegian University of Science and TechnologyTrondheimNorway
| |
Collapse
|
31
|
Strugnell JM, McGregor HV, Wilson NG, Meredith KT, Chown SL, Lau SCY, Robinson SA, Saunders KM. Emerging biological archives can reveal ecological and climatic change in Antarctica. GLOBAL CHANGE BIOLOGY 2022; 28:6483-6508. [PMID: 35900301 PMCID: PMC9826052 DOI: 10.1111/gcb.16356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Anthropogenic climate change is causing observable changes in Antarctica and the Southern Ocean including increased air and ocean temperatures, glacial melt leading to sea-level rise and a reduction in salinity, and changes to freshwater water availability on land. These changes impact local Antarctic ecosystems and the Earth's climate system. The Antarctic has experienced significant past environmental change, including cycles of glaciation over the Quaternary Period (the past ~2.6 million years). Understanding Antarctica's paleoecosystems, and the corresponding paleoenvironments and climates that have shaped them, provides insight into present day ecosystem change, and importantly, helps constrain model projections of future change. Biological archives such as extant moss beds and peat profiles, biological proxies in lake and marine sediments, vertebrate animal colonies, and extant terrestrial and benthic marine invertebrates, complement other Antarctic paleoclimate archives by recording the nature and rate of past ecological change, the paleoenvironmental drivers of that change, and constrain current ecosystem and climate models. These archives provide invaluable information about terrestrial ice-free areas, a key location for Antarctic biodiversity, and the continental margin which is important for understanding ice sheet dynamics. Recent significant advances in analytical techniques (e.g., genomics, biogeochemical analyses) have led to new applications and greater power in elucidating the environmental records contained within biological archives. Paleoecological and paleoclimate discoveries derived from biological archives, and integration with existing data from other paleoclimate data sources, will significantly expand our understanding of past, present, and future ecological change, alongside climate change, in a unique, globally significant region.
Collapse
Affiliation(s)
- Jan M. Strugnell
- Centre for Sustainable Tropical Fisheries and Aquaculture and College of Science and EngineeringJames Cook UniversityTownsvilleQueenslandAustralia
- Securing Antarctica's Environmental FutureJames Cook UniversityTownsvilleQueenslandAustralia
| | - Helen V. McGregor
- Securing Antarctica's Environmental Future, School of Earth, Atmospheric and Life SciencesUniversity of WollongongWollongongNew South WalesAustralia
| | - Nerida G. Wilson
- Securing Antarctica's Environmental FutureWestern Australian MuseumWestern AustraliaAustralia
- Research and CollectionsWestern Australian MuseumWestern AustraliaAustralia
- School of Biological SciencesUniversity of Western AustraliaCrawleyWestern AustraliaAustralia
| | - Karina T. Meredith
- Securing Antarctica's Environmental FutureAustralian Nuclear Science and Technology OrganisationLucas HeightsNew South WalesAustralia
| | - Steven L. Chown
- Securing Antarctica's Environmental Future, School of Biological SciencesMonash UniversityMelbourneVictoriaAustralia
| | - Sally C. Y. Lau
- Centre for Sustainable Tropical Fisheries and Aquaculture and College of Science and EngineeringJames Cook UniversityTownsvilleQueenslandAustralia
- Securing Antarctica's Environmental FutureJames Cook UniversityTownsvilleQueenslandAustralia
| | - Sharon A. Robinson
- Securing Antarctica's Environmental Future, School of Earth, Atmospheric and Life SciencesUniversity of WollongongWollongongNew South WalesAustralia
| | - Krystyna M. Saunders
- Securing Antarctica's Environmental Future, School of Earth, Atmospheric and Life SciencesUniversity of WollongongWollongongNew South WalesAustralia
- Securing Antarctica's Environmental FutureAustralian Nuclear Science and Technology OrganisationLucas HeightsNew South WalesAustralia
- Institute for Marine and Antarctic StudiesUniversity of TasmaniaHobartTasmaniaAustralia
| |
Collapse
|
32
|
Wilson OE, Pashkevich MD, Rookmaaker K, Turner EC. Image‐based analyses from an online repository provide rich information on long‐term changes in morphology and human perceptions of rhinos. PEOPLE AND NATURE 2022. [DOI: 10.1002/pan3.10406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Oscar E. Wilson
- Department of Geosciences and Geography University of Helsinki Helsinki Finland
| | | | | | | |
Collapse
|
33
|
Islam S, Weiland C, Addink W. From data pipelines to FAIR data infrastructures: A vision for the new horizons of bio- and geodiversity data for scientific research. RESEARCH IDEAS AND OUTCOMES 2022. [DOI: 10.3897/rio.8.e93816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Natural science collections are vast repositories of bio- and geodiversity specimens. These collections, originating from natural history cabinets or expeditions, are increasingly becoming unparalleled sources of data facilitating multidisciplinary research (Meineke et al. 2018, Heberling et al. 2019, Cook et al. 2020, Thompson et al. 2021). Due to various global data mobilization and digitisation efforts (Blagoderov et al. 2012,Nelson and Ellis 2018), this digitised information about specimens includes database records along with two/three-dimensional images, sonograms, sound or video recordings, computerised tomography scans, machine-readable texts from labels on the specimens as well as media items and notes related to the discovery sites and acquisition (Hedrick et al. 2020,Phillipson 2022).
The scope and practice of specimen gathering are also evolving. The term extended specimen was coined to refer to the specimen and associated data extending beyond the singular physical object to other physical or digital entities such as chemical composition, genetic sequence data or species data. Thus the specimen becomes an interconnected network of data resources that have incredible potential to enhance integrative and data-driven research (Webster 2017,Lendemer et al. 2019,Hardisty et al. 2022). These practices also reflect the role of data and the curatorial data life-cycle starting from the initial material sampling process to the downstream analysis. We are also seeing growing acknowledgement that disparate and domain specific data elements prevent interdisciplinarity which is crucial for a holistic understanding of biodiversity and climate crisis (Hicks et al. 2010, Craven et al. 2019, Folk and Siniscalchi 2021).
Thus the data elements are not just records or rows in a database or data pipelines going from one repository to another. They have the potential to become self-describing digital artefacts that can revolutionise how machines interpret and work with specimen data. Within this context, the Distributed System of Scientific Collections (DiSSCo), a new European Research Infrastructure for natural science collections, envisions an infrastructure based on FAIR Digital Objects (FDO) that can unify more than 170 European natural science collections under common and FAIR-compliant (Findable, Accessible, Interoperable, Reusable) (Wilkinson et al. 2016) access and curation policies and practices. DiSSCo’s key element in achieving FAIR is the implementation of Digital Specimen (a domain specific FDO) that closely aligns with the extended specimen practices. The idea behind Digital Specimen – an FDO that acts as a digital surrogate for a specific physical specimen in a natural science collection – was influenced by global conversations around the implementation of the Digital Object Architecture for biodiversity data (De Smedt et al. 2020, Islam et al. 2020,Hardisty et al. 2020).
The main purpose of this talk is to explain the vision of how FAIR and FDO can create a data infrastructure that can not only take advantage of existing databases and repositories but at the same time provide support for innovative services such as AI and digital twinning. With scientific use cases in mind, the talk will highlight a few key FAIR and FDO components (persistent identifiers, metadata, ontologies) within the collaborative modelling activity of Digital Specimen specification. These components provide the template for specifying how a Digital Specimen should look so DiSSCo can build a FAIR service ecosystem based on FDOs (Addink et al. 2021). We will also give examples of envisioned services that can help with image feature extraction, and model training (Grieb et al. 2021,Hardisty et al. 2022) and digital twinning (Schultes et al. 2022). We believe this is an exciting new paradigm powered by FAIR and FDO that can help both humans and machines to accelerate the use of specimen data. From physical objects curated over hundred years, we have developed data pipelines, aggregators and repositories (Barberousse 2021). Now is the time to look for solutions where these data records can become FAIR Digital Objects to enable wider access and multidisciplinary research.
Collapse
|
34
|
Hardisty AR, Ellwood ER, Nelson G, Zimkus B, Buschbom J, Addink W, Rabeler RK, Bates J, Bentley A, Fortes JAB, Hansen S, Macklin JA, Mast AR, Miller JT, Monfils AK, Paul DL, Wallis E, Webster M. Digital Extended Specimens: Enabling an Extensible Network of Biodiversity Data Records as Integrated Digital Objects on the Internet. Bioscience 2022; 72:978-987. [PMID: 36196222 PMCID: PMC9525127 DOI: 10.1093/biosci/biac060] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The early twenty-first century has witnessed massive expansions in availability and accessibility of digital data in virtually all domains of the biodiversity sciences. Led by an array of asynchronous digitization activities spanning ecological, environmental, climatological, and biological collections data, these initiatives have resulted in a plethora of mostly disconnected and siloed data, leaving to researchers the tedious and time-consuming manual task of finding and connecting them in usable ways, integrating them into coherent data sets, and making them interoperable. The focus to date has been on elevating analog and physical records to digital replicas in local databases prior to elevating them to ever-growing aggregations of essentially disconnected discipline-specific information. In the present article, we propose a new interconnected network of digital objects on the Internet—the Digital Extended Specimen (DES) network—that transcends existing aggregator technology, augments the DES with third-party data through machine algorithms, and provides a platform for more efficient research and robust interdisciplinary discovery.
Collapse
Affiliation(s)
| | | | - Gil Nelson
- Florida Museum of Natural History , Gainesville, Florida, United States
| | - Breda Zimkus
- Museum of Comparative Zoology , Cambridge, Massachusetts, United States
| | | | | | - Richard K Rabeler
- University of Michigan Herbarium , Ann Arbor, Michigan, United States
| | - John Bates
- Field Museum of Natural History , Chicago, Illinois, United States
| | - Andrew Bentley
- Biodiversity Institute, University of Kansas , Lawrence, Kansas, United States
| | | | - Sara Hansen
- Central Michigan University Herbarium, Central Michigan University , Mt. Pleasant, Michigan, United States
| | | | - Austin R Mast
- Department of Biological Science, Florida State University , Tallahassee, Florida, United States
| | - Joseph T Miller
- Global Biodiversity Information Facility Secretariat , Copenhagen, Denmark
| | - Anna K Monfils
- Central Michigan University Herbarium, Central Michigan University , Mt. Pleasant, Michigan, United States
| | - Deborah L Paul
- University of Illinois Urbana Champaign , Champaign, Illinois, United States
| | - Elycia Wallis
- Atlas of Living Australia, CSIRO , Melbourne, Australia
| | - Michael Webster
- Macaulay Library, Cornell Lab of Ornithology , Ithaca, New York, United States
| |
Collapse
|
35
|
Bernstein JM, Ruane S. Maximizing Molecular Data From Low-Quality Fluid-Preserved Specimens in Natural History Collections. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.893088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Over the past decade, museum genomics studies have focused on obtaining DNA of sufficient quality and quantity for sequencing from fluid-preserved natural history specimens, primarily to be used in systematic studies. While these studies have opened windows to evolutionary and biodiversity knowledge of many species worldwide, published works often focus on the success of these DNA sequencing efforts, which is undoubtedly less common than obtaining minimal or sometimes no DNA or unusable sequence data from specimens in natural history collections. Here, we attempt to obtain and sequence DNA extracts from 115 fresh and 41 degraded samples of homalopsid snakes, as well as from two degraded samples of a poorly known snake, Hydrablabes periops. Hydrablabes has been suggested to belong to at least two different families (Natricidae and Homalopsidae) and with no fresh tissues known to be available, intractable museum specimens currently provide the only opportunity to determine this snake’s taxonomic affinity. Although our aim was to generate a target-capture dataset for these samples, to be included in a broader phylogenetic study, results were less than ideal due to large amounts of missing data, especially using the same downstream methods as with standard, high-quality samples. However, rather than discount results entirely, we used mapping methods with references and pseudoreferences, along with phylogenetic analyses, to maximize any usable molecular data from our sequencing efforts, identify the taxonomic affinity of H. periops, and compare sequencing success between fresh and degraded tissue samples. This resulted in largely complete mitochondrial genomes for five specimens and hundreds to thousands of nuclear loci (ultra-conserved loci, anchored-hybrid enrichment loci, and a variety of loci frequently used in squamate phylogenetic studies) from fluid-preserved snakes, including a specimen of H. periops from the Field Museum of Natural History collection. We combined our H. periops data with previously published genomic and Sanger-sequenced datasets to confirm the familial designation of this taxon, reject previous taxonomic hypotheses, and make biogeographic inferences for Hydrablabes. A second H. periops specimen, despite being seemingly similar for initial raw sequencing results and after being put through the same protocols, resulted in little usable molecular data. We discuss the successes and failures of using different pipelines and methods to maximize the products from these data and provide expectations for others who are looking to use DNA sequencing efforts on specimens that likely have degraded DNA.Life Science Identifier (Hydrablabes periops)urn:lsid:zoobank.org:pub:F2AA44 E2-D2EF-4747-972A-652C34C2C09D.
Collapse
|
36
|
Millena RJA, Rosenheim JA. A double-edged sword: parental care increases risk of offspring infection by a maternally vectored parasite. Biol Lett 2022; 18:20220007. [PMID: 35642382 PMCID: PMC9156923 DOI: 10.1098/rsbl.2022.0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 05/05/2022] [Indexed: 11/12/2022] Open
Abstract
Parental care can protect offspring from predators but can also create opportunities for parents to vector parasites to their offspring. We hypothesized that the risk of infection by maternally vectored parasites would increase with the frequency of mother-offspring contact. Ammophila spp. wasps (Hymenoptera: Sphecidae) build nests in which they rear a single offspring. Ammophila species exhibit varied offspring provisioning behaviours: some species enter the nest once to provision a single, large caterpillar, whereas others enter the nest repeatedly to provision with many smaller caterpillars. We hypothesized that each nest visit increases the risk of offspring parasitism by Paraxenos lugubris (Strepsiptera: Xenidae), whose infectious stages ride on the mother wasp (phoresy) to reach the vulnerable Ammophila offspring. We quantified parasitism risk by external examination of museum-curated Ammophila specimens-the anterior portion of P. lugubris protrudes between the adult host's abdominal sclerites and reflects infection during the larval stage. As predicted, Ammophila species that receive larger numbers of provisions incur greater risks of parasitism, with nest provisioning behaviour explaining ca 90% of the interspecific variation in mean parasitism. These findings demonstrate that parental care can augment, rather than reduce, the risk of parasite transmission to offspring.
Collapse
Affiliation(s)
- Rebecca Jean A. Millena
- RGGS, Invertebrate Zoology, American Museum of Natural History, New York, NY, USA
- Ecology and Evolution, Entomology and Nematology, University of California Davis, Davis, CA, USA
| | - Jay A. Rosenheim
- Department of Entomology and Nematology, and Center for Population Biology, University of California Davis, Davis, CA, USA
| |
Collapse
|
37
|
Osváth G, Papp E, Benkő Z, Kovács Z. The ornithological collection of the Zoological Museum of Babeș-Bolyai University, Cluj-Napoca, Romania - Part 1: the catalogue of bird skin specimens. Zookeys 2022; 1102:83-106. [PMID: 36761151 PMCID: PMC9848921 DOI: 10.3897/zookeys.1102.79102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 04/14/2022] [Indexed: 11/12/2022] Open
Abstract
This paper reviews the bird skin collection housed in the Zoological Museum of Babeș-Bolyai University, Cluj-Napoca, Romania. The collection includes 925 specimens, belonging to 193 species from 53 families and 20 orders, collected between 1859 and 2021. Due to its historical background and the presence of rare species, it is considered to be one of most important ornithological collections in Eastern Europe. Such a collection can serve as a basis for valuable ornithological studies. Furthermore, a map representation with new distribution data for bird species is provided, which represents a source of information for the status of the avifauna of the Carpathian basin in the 19th and 20th centuries.
Collapse
Affiliation(s)
- Gergely Osváth
- Museum of Zoology, Babeș-Bolyai University, Cluj-Napoca, Romania,Evolutionary Ecology Group, Hungarian Department of Biology and Ecology, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Edgár Papp
- Evolutionary Ecology Group, Hungarian Department of Biology and Ecology, Babeş-Bolyai University, Cluj-Napoca, Romania,Milvus Group Bird and Nature Protection Association, Târgu Mureș, Romania
| | - Zoltán Benkő
- Evolutionary Ecology Group, Hungarian Department of Biology and Ecology, Babeş-Bolyai University, Cluj-Napoca, Romania,Romanian Ornithological Society/BirdLife Romania, Cluj-Napoca, Romania
| | - Zsolt Kovács
- Evolutionary Ecology Group, Hungarian Department of Biology and Ecology, Babeş-Bolyai University, Cluj-Napoca, Romania
| |
Collapse
|
38
|
Teixeira‐Costa L, Heberling JM, Wilson CA, Davis CC. Parasitic flowering plant collections embody the extended specimen. Methods Ecol Evol 2022. [DOI: 10.1111/2041-210x.13866] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Luiza Teixeira‐Costa
- Harvard University Herbaria Cambridge MA USA
- Hanse‐Wissenschaftskolleg – Institute for Advanced Study, Lehmkuhlenbusch 4, 27753 Delmenhorst Germany
| | | | - Carol A. Wilson
- University and Jepson Herbaria University of California, Berkeley, 1001 Valley Life Sciences Building Berkeley CA USA
| | | |
Collapse
|
39
|
Wilson RJ, Siqueira AF, Brooks SJ, Price BW, Simon LM, Walt SJ, Fenberg PB. Applying computer vision to digitised natural history collections for climate change research: Temperature‐size responses in British butterflies. Methods Ecol Evol 2022. [DOI: 10.1111/2041-210x.13844] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Rebecca J. Wilson
- School of Ocean and Earth Sciences University of Southampton Southampton UK
- Department of Life Sciences Natural History Museum London UK
| | | | | | | | - Lea M. Simon
- School of Ocean and Earth Sciences University of Southampton Southampton UK
| | - Stéfan J. Walt
- Berkeley Institute for Data Science University of California Berkeley CA USA
| | - Phillip B. Fenberg
- School of Ocean and Earth Sciences University of Southampton Southampton UK
- Department of Life Sciences Natural History Museum London UK
| |
Collapse
|
40
|
Greeff M, Caspers M, Kalkman V, Willemse L, Sunderland B, Bánki O, Hogeweg L. Sharing taxonomic expertise between natural history collections using image recognition. RESEARCH IDEAS AND OUTCOMES 2022. [DOI: 10.3897/rio.8.e79187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Natural history collections play a vital role in biodiversity research and conservation by providing a window to the past. The usefulness of the vast amount of historical data depends on their quality, with correct taxonomic identifications being the most critical. The identification of many of the objects of natural history collections, however, is wanting, doubtful or outdated. Providing correct identifications is difficult given the sheer number of objects and the scarcity of expertise. Here we outline the construction of an ecosystem for the collaborative development and exchange of image recognition algorithms designed to support the identification of objects. Such an ecosystem will facilitate sharing taxonomic expertise among institutions by offering image datasets that are correctly identified by their in-house taxonomic experts. Together with openly accessible machine learning algorithms and easy to use workbenches, this will allow other institutes to train image recognition algorithms and thereby compensate for the lacking expertise.
Collapse
|
41
|
Alfonso B, Sansón M, Sangil C, Expósito FJ, Díaz JP, Hernández JC. Herbarium macroalgae specimens reveal a rapid reduction of thallus size and reproductive effort related with climate change. MARINE ENVIRONMENTAL RESEARCH 2022; 174:105546. [PMID: 34968841 DOI: 10.1016/j.marenvres.2021.105546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/12/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
Understanding and forecasting the effects of climate changes on vulnerable species are leading concerns for ecologists and conservation biologists. Herbaria are invaluable for use in long-term data series, and one of the few available methods for quantifying biodiversity changes over large periods of time. Gelidium canariense is an endemic and habitat-forming macroalga of the Canary Islands that coexists with two other habitat-forming Gelidiales: G. arbuscula and Pterocladiella capillacea. This study assesses long-term changes in thallus size and reproductive effort of all specimens deposited in the Herbarium of Universidad de La Laguna of these three Gelidiales species. Also assessed were the effects of seawater temperature and increased incident light on net primary production (NPP), and the effects of extreme desiccation conditions on the relative water content and NPP of the three Gelidiales species. The length of the thallus of the endemic species G. canariense was halved during the past 40 years. The shortening of the thallus coincided with a significant decrease in the number of reproductive structures in both Gelidium species. These morphological changes coincide with a significant increase of the sea surface temperature, air temperature above sea surface and ultraviolet radiation in the studied area. The experiments have revealed the deleterious effects of extreme desiccation and extreme irradiance on all three species. Hence, these results suggest that air temperature and irradiance are related with these morphological changes over time in the habitat-forming Gelidium species and that are most likely compromising the survival of their populations which are already declining.
Collapse
Affiliation(s)
- B Alfonso
- Departamento de Botánica, Ecología y Fisiología Vegetal, Universidad de La Laguna, Canary Islands, Spain.
| | - M Sansón
- Departamento de Botánica, Ecología y Fisiología Vegetal, Universidad de La Laguna, Canary Islands, Spain
| | - C Sangil
- Departamento de Botánica, Ecología y Fisiología Vegetal, Universidad de La Laguna, Canary Islands, Spain
| | - F J Expósito
- Departamento de Física, Universidad de La Laguna, Canary Islands, Spain
| | - J P Díaz
- Departamento de Física, Universidad de La Laguna, Canary Islands, Spain
| | - J C Hernández
- Departamento de Biología Animal, Edafología y Geología, Universidad de La Laguna, Canary Islands, Spain
| |
Collapse
|
42
|
Walker BE, Tucker A, Nicolson N. Harnessing Large-Scale Herbarium Image Datasets Through Representation Learning. FRONTIERS IN PLANT SCIENCE 2022; 12:806407. [PMID: 35095977 PMCID: PMC8794728 DOI: 10.3389/fpls.2021.806407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/06/2021] [Indexed: 05/10/2023]
Abstract
The mobilization of large-scale datasets of specimen images and metadata through herbarium digitization provide a rich environment for the application and development of machine learning techniques. However, limited access to computational resources and uneven progress in digitization, especially for small herbaria, still present barriers to the wide adoption of these new technologies. Using deep learning to extract representations of herbarium specimens useful for a wide variety of applications, so-called "representation learning," could help remove these barriers. Despite its recent popularity for camera trap and natural world images, representation learning is not yet as popular for herbarium specimen images. We investigated the potential of representation learning with specimen images by building three neural networks using a publicly available dataset of over 2 million specimen images spanning multiple continents and institutions. We compared the extracted representations and tested their performance in application tasks relevant to research carried out with herbarium specimens. We found a triplet network, a type of neural network that learns distances between images, produced representations that transferred the best across all applications investigated. Our results demonstrate that it is possible to learn representations of specimen images useful in different applications, and we identify some further steps that we believe are necessary for representation learning to harness the rich information held in the worlds' herbaria.
Collapse
Affiliation(s)
| | - Allan Tucker
- Department of Computer Science, Brunel University London, Uxbridge, United Kingdom
| | | |
Collapse
|
43
|
Canhos DAL, Almeida EAB, Assad AL, Cunha Bustamante MMD, Canhos VP, Chapman AD, Giovanni RD, Imperatriz-Fonseca VL, Lohmann LG, Maia LC, Miller JT, Nelson G, Peterson AT, Pirani JR, Souza SD, Stehmann JR, Thiers B. speciesLink: rich data and novel tools for digital assessments of biodiversity. BIOTA NEOTROPICA 2022. [DOI: 10.1590/1676-0611-bn-2022-1394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract speciesLink is a large-scale biodiversity information portal that exists thanks to a broad collaborative network of people and institutions. CRIA’s involvement with the scientific community of Brazil and other countries is responsible for the significant results achieved, currently reaching more than 15 million primary biodiversity data records, 95% of which are associated with preserved specimens and about 25% with high-quality digital images. The network provides data on over 200,000 species, of which over 110,000 occur in Brazil. This article describes thematic networks within speciesLink, as well as some of the most useful tools developed. The importance and contributions of speciesLink are outlined, as are concerns about securing stable budgetary support for such biodiversity data e-infrastructures. Here we review the value of speciesLink as a major source of biodiversity information for research, education, informed decision-making, policy development, and bioeconomy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Gil Nelson
- Integrated Digitized Biocollections, USA
| | | | | | | | | | | |
Collapse
|
44
|
Wolfgramm H, Martens J, Töpfer T, Vamberger M, Pathak A, Stuckas H, Päckert M. Asymmetric allelic introgression across a hybrid zone of the coal tit ( Periparus ater) in the central Himalayas. Ecol Evol 2021; 11:17332-17351. [PMID: 34938512 PMCID: PMC8668783 DOI: 10.1002/ece3.8369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/26/2021] [Accepted: 11/02/2021] [Indexed: 11/07/2022] Open
Abstract
In the Himalayas, a number of secondary contact zones have been described for vicariant vertebrate taxa. However, analyses of genetic divergence and admixture are missing for most of these examples. In this study, we provide a population genetic analysis for the coal tit (Periparus ater) hybrid zone in Nepal. Intermediate phenotypes between the distinctive western "spot-winged tit" (P. a. melanolophus) and Eastern Himalayan coal tits (P. a. aemodius) occur across a narrow range of <100 km in western Nepal. As a peculiarity, another distinctive cinnamon-bellied form is known from a single population so far. Genetic admixture of western and eastern mitochondrial lineages was restricted to the narrow zone of phenotypically intermediate populations. The cline width was estimated 46 km only with a center close to the population of the cinnamon-bellied phenotype. In contrast, allelic introgression of microsatellite loci was asymmetrical from eastern P. a. aemodius into far western populations of phenotypic P. a. melanolophus but not vice versa. Accordingly, the microsatellite cline was about 3.7 times wider than the mitochondrial one.
Collapse
Affiliation(s)
- Hannes Wolfgramm
- Senckenberg Natural History Collections DresdenDresdenGermany
- Present address:
Department of Functional GenomicsInterfaculty Institute of Genetics and Functional GenomicsUniversity Medicine GreifswaldGreifswaldGermany
| | - Jochen Martens
- Institute of Organismic and Molecular Evolution (iomE)Johannes Gutenberg UniversityMainzGermany
| | - Till Töpfer
- Leibniz Institute for the Analysis of Biodiversity ChangeZoological Research Museum Alexander KoenigBonnGermany
| | | | - Abhinaya Pathak
- Department of National Parks and Wildlife ConservationKathmanduNepal
| | - Heiko Stuckas
- Senckenberg Natural History Collections DresdenDresdenGermany
| | - Martin Päckert
- Senckenberg Natural History Collections DresdenDresdenGermany
| |
Collapse
|
45
|
von Thaden A, Cocchiararo B, Mueller SA, Reiners TE, Reinert K, Tuchscherer I, Janke A, Nowak C. Informing conservation strategies with museum genomics: Long-term effects of past anthropogenic persecution on the elusive European wildcat. Ecol Evol 2021; 11:17932-17951. [PMID: 35003648 PMCID: PMC8717334 DOI: 10.1002/ece3.8385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 11/04/2021] [Accepted: 11/09/2021] [Indexed: 12/13/2022] Open
Abstract
Like many carnivore species, European wildcats (Felis silvestris) have suffered severe anthropogenic population declines in the past, resulting in a strong population bottleneck at the beginning of the 20th century. In Germany, the species has managed to survive its near extinction in small isolated areas and is currently recolonizing former habitats owing to legal protection and concerted conservation efforts. Here, we SNP-genotyped and mtDNA-sequenced 56 historical and 650 contemporary samples to assess the impact of massive persecution on genetic diversity, population structure, and hybridization dynamics of wildcats. Spatiotemporal analyses suggest that the presumed postglacial differentiation between two genetically distinct metapopulations in Germany is in fact the result of the anthropogenic bottleneck followed by re-expansion from few secluded refugia. We found that, despite the bottleneck, populations experienced no severe genetic erosion, nor suffered from elevated inbreeding or showed signs of increased hybridization with domestic cats. Our findings have significant implications for current wildcat conservation strategies, as the data analyses show that the two presently recognized wildcat population clusters should be treated as a single conservation unit. Although current populations appear under no imminent threat from genetic factors, fostering connectivity through the implementation of forest corridors will facilitate the preservation of genetic diversity and promote long-term viability. The present study documents how museum collections can be used as essential resource for assessing long-term anthropogenic effects on natural populations, for example, regarding population structure and the delineation of appropriate conservation units, potentially informing todays' species conservation.
Collapse
Affiliation(s)
- Alina von Thaden
- Conservation Genetics GroupSenckenberg Research Institute and Natural History Museum FrankfurtGelnhausenGermany
- Institute of Ecology, Evolution & DiversityJohann Wolfgang Goethe‐University, BiologicumFrankfurt am MainGermany
| | - Berardino Cocchiararo
- Conservation Genetics GroupSenckenberg Research Institute and Natural History Museum FrankfurtGelnhausenGermany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE‐TBG)Frankfurt am MainGermany
| | - Sarah Ashley Mueller
- Conservation Genetics GroupSenckenberg Research Institute and Natural History Museum FrankfurtGelnhausenGermany
- Institute of Ecology, Evolution & DiversityJohann Wolfgang Goethe‐University, BiologicumFrankfurt am MainGermany
| | - Tobias Erik Reiners
- Conservation Genetics GroupSenckenberg Research Institute and Natural History Museum FrankfurtGelnhausenGermany
| | - Katharina Reinert
- Conservation Genetics GroupSenckenberg Research Institute and Natural History Museum FrankfurtGelnhausenGermany
- Department of Physical GeographyJohann Wolfgang Goethe‐UniversityFrankfurt am MainGermany
| | - Iris Tuchscherer
- Conservation Genetics GroupSenckenberg Research Institute and Natural History Museum FrankfurtGelnhausenGermany
- Institute of Ecology, Evolution & DiversityJohann Wolfgang Goethe‐University, BiologicumFrankfurt am MainGermany
| | - Axel Janke
- Institute of Ecology, Evolution & DiversityJohann Wolfgang Goethe‐University, BiologicumFrankfurt am MainGermany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE‐TBG)Frankfurt am MainGermany
- Senckenberg Biodiversity and Climate Research CentreSenckenberg Gesellschaft für NaturforschungFrankfurt am MainGermany
| | - Carsten Nowak
- Conservation Genetics GroupSenckenberg Research Institute and Natural History Museum FrankfurtGelnhausenGermany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE‐TBG)Frankfurt am MainGermany
| |
Collapse
|
46
|
Tomotani BM, Salvador RB, Sabadel AJM, Miskelly CM, Brown JCS, Delgado J, Boussès P, Cherel Y, Waugh SM, Bury SJ. Extreme bill dimorphism leads to different but overlapping isotopic niches and similar trophic positions in sexes of the charismatic extinct huia. Oecologia 2021; 198:67-77. [PMID: 34842996 PMCID: PMC8803797 DOI: 10.1007/s00442-021-05082-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 11/15/2021] [Indexed: 11/30/2022]
Abstract
The New Zealand huia (Heteralocha acutirostris) had the most extreme bill sexual dimorphism among modern birds. Given the quick extinction of the species, the cause of the dimorphism could only be hypothesised to reflect different trophic niches and reduce male/female competition. We tested that hypothesis by combining museum specimens, geometric morphometrics, and isotopic analyses. We used geometric morphometrics to describe bill shape; measured bulk (δ15Nbulk) and (δ13Cbulk) values from feather as proxies of the birds’ foraging habitat and diet; and compared compound-specific stable isotopes analyses (CSIA) of nitrogen in amino acids (δ15NAA) in male–female pairs to estimate their trophic position. Sexes had significantly different, but overlapping feather δ15Nbulk and δ13Cbulk values, but δ15NAA indicated identical trophic positions and δ15Nbulk was not related to bill shape. Trophic position was less variable among females, consistent with a specialised foraging behaviour and, thus, supporting a partial male/female foraging segregation.
Collapse
Affiliation(s)
- Barbara M Tomotani
- Netherlands Institute of Ecology, NIOO-KNAW, Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands. .,Museum of New Zealand, Te Papa Tongarewa, Wellington, New Zealand.
| | | | - Amandine J M Sabadel
- National Institute of Water and Atmospheric Research, Wellington, New Zealand.,Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Colin M Miskelly
- Museum of New Zealand, Te Papa Tongarewa, Wellington, New Zealand
| | - Julie C S Brown
- National Institute of Water and Atmospheric Research, Wellington, New Zealand
| | - Josette Delgado
- National Institute of Water and Atmospheric Research, Wellington, New Zealand
| | - Patrick Boussès
- Institut Systématique, Évolution, Biodiversité, ISYEB, Muséum national d'Histoire naturelle, Sorbonne Université, Paris, France
| | - Yves Cherel
- Centre d'Etudes Biologiques de Chizé, CNRS-La Rochelle Université, Villiers-en-Bois, France
| | - Susan M Waugh
- Ligue pour la Protection des Oiseaux, Rochefort, France
| | - Sarah J Bury
- National Institute of Water and Atmospheric Research, Wellington, New Zealand
| |
Collapse
|
47
|
Abstract
Natural history collections are invaluable repositories of biological information that provide an unrivaled record of Earth's biodiversity. Museum genomics-genomics research using traditional museum and cryogenic collections and the infrastructure supporting these investigations-has particularly enhanced research in ecology and evolutionary biology, the study of extinct organisms, and the impact of anthropogenic activity on biodiversity. However, leveraging genomics in biological collections has exposed challenges, such as digitizing, integrating, and sharing collections data; updating practices to ensure broadly optimal data extraction from existing and new collections; and modernizing collections practices, infrastructure, and policies to ensure fair, sustainable, and genomically manifold uses of museum collections by increasingly diverse stakeholders. Museum genomics collections are poised to address these challenges and, with increasingly sensitive genomics approaches, will catalyze a future era of reproducibility, innovation, and insight made possible through integrating museum and genome sciences.
Collapse
Affiliation(s)
- Daren C Card
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA; .,Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Beth Shapiro
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, California 95064, USA.,Howard Hughes Medical Institute, University of California, Santa Cruz, California 95064, USA
| | - Gonzalo Giribet
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA; .,Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Craig Moritz
- Centre for Biodiversity Analysis and Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 0200, Australia
| | - Scott V Edwards
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA; .,Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
48
|
Old Brains in Alcohol: The Usability of Legacy Collection Material to Study the Spider Neuroarchitecture. DIVERSITY 2021. [DOI: 10.3390/d13110601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Natural history collections include rare and significant taxa that might otherwise be unavailable for comparative studies. However, curators must balance the needs of current and long-term research. Methods of data extraction that minimize the impact on specimens are therefore favored. Micro-CT has the potential to expose new character systems based on internal anatomy to taxonomic and phylogenetic analysis without dissection or thin sectioning for histology. However, commonly applied micro-CT protocols involve critical point drying, which permanently changes the specimen. Here, we apply a minimally destructive method of specimen preparation for micro-CT investigation of spider neuroanatomy suitable for application to legacy specimens in natural history collections. We used two groups of female spiders of the common species Araneus diadematus—freshly captured (n = 11) vs. legacy material between 70 and 90 years old (n = 10)—to qualitatively and quantitatively assess the viability of micro-CT scanning and the impact of aging on their neuroarchitecture. We statistically compared the volumes of the supraesophageal ganglion (syncerebrum) and used 2D geometric morphometrics to analyze variations in the gross shape of the brain. We found no significant differences in the brain shape or the brain volume relative to the cephalothorax size. Nonetheless, a significant difference was observed in the spider size. We considered such differences to be explained by environmental factors rather than preservation artifacts. Comparison between legacy and freshly collected specimens indicates that museum specimens do not degrade over time in a way that might bias the study results, as long as the basic preservation conditions are consistently maintained, and where lapses in preservation have occurred, these can be identified. This, together with the relatively low-impact nature of the micro-CT protocol applied here, could facilitate the use of old, rare, and valuable material from collections in studies of internal morphology.
Collapse
|
49
|
Frainer G, Carvalho FR, Bertaco VA, Malabarba LR. Museum specimens reveal a rare new characid fish genus, helping to refine the interrelationships of the Probolodini (Characidae: Stethaprioninae). SYST BIODIVERS 2021. [DOI: 10.1080/14772000.2021.1986167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Guilherme Frainer
- Department of Statistical Sciences, Centre for Statistics in Ecology, Environment and Conservation, University of Cape Town, Rondebosch 7701, Cape Town, South Africa
- Programa de Pós-Graduação em Biologia Animal, Departamento de Zoologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Fernando R. Carvalho
- Instituto de Biociências, Laboratório de Ictiologia, Universidade Federal de Mato Grosso do Sul, Avenida Costa e Silva, s/n, Cidade Universitária, Campo Grande, 79070–900, MS, Brazil
| | - VinÍCius A. Bertaco
- Secretaria do Meio Ambiente e Infraestrutura, SEMA, Museum de Ciências Naturais, Av. Salvador França, 1427, Porto Alegre, 90690–000, RS, Brazil
| | - Luiz R. Malabarba
- Programa de Pós-Graduação em Biologia Animal, Departamento de Zoologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
50
|
Wolkis D, Jones K, Flynn T, DeMotta M, Rønsted N. Germination of seeds from herbarium specimens as a last conservation resort for resurrecting extinct or critically endangered Hawaiian plants. CONSERVATION SCIENCE AND PRACTICE 2021. [DOI: 10.1111/csp2.576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Dustin Wolkis
- National Tropical Botanical Garden Kalaheo Hawaii USA
- Natural History Museum of Denmark University of Copenhagen Copenhagen Denmark
- Seed Conservation Specialist Group Species Survival Commission, International Union for Conservation of Nature Gland Switzerland
| | - Kelli Jones
- National Tropical Botanical Garden Kalaheo Hawaii USA
| | - Tim Flynn
- National Tropical Botanical Garden Kalaheo Hawaii USA
| | - Mike DeMotta
- National Tropical Botanical Garden Kalaheo Hawaii USA
| | - Nina Rønsted
- National Tropical Botanical Garden Kalaheo Hawaii USA
- Natural History Museum of Denmark University of Copenhagen Copenhagen Denmark
| |
Collapse
|