1
|
Liu W, Zhou Y, Jiang N, Xu C, Zhong Q, Fan Y. A droplet digital PCR assay to detect Chinese rice-field eels rhabdovirus. JOURNAL OF FISH DISEASES 2024; 47:e14020. [PMID: 39282798 DOI: 10.1111/jfd.14020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 11/10/2024]
Abstract
Chinese rice-field eels rhabdovirus (CrERV) causes haemorrhagic disease in Chinese rice-field eels (Monopterus albus), leading to significant mortality and economic losses. Sensitive detection of CrERV nucleic acids is essential to control the spread of this pathogen and to treat infected individuals. Herein, we developed an efficient and sensitive droplet digital PCR (ddPCR) method to rapidly detect and quantify CrERV. The ddPCR assay optimal conditions were an annealing temperature of 53°C, and primer and probe concentrations of 0.5 and 0.25 μM, respectively. The assay had a diagnostic sensitivity of 0.23 copies/μL, and was highly specific, showing no cross reactivity with other viruses (infectious haematopoietic necrosis virus, grass carp reovirus, spring viremia of carp virus, largemouth bass ranavirus, carp edema virus, Chinese giant salamander iridovirus, and white spot syndrome virus). Real-time quantitative PCR testing of 30 Chinese rice-field eels samples detected CrERV in 7 samples (23.3%), whereas ddPCR detected CrERV in 12 samples (40%), demonstrating its higher sensitivity. Thus, ddPCR represents an advanced method to absolutely quantify CrERV in infected fish with low virus concentrations, providing a valuable tool to manage the spread and impact of CrERV.
Collapse
Affiliation(s)
- Wenzhi Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Yong Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Nan Jiang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Chen Xu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Qiwang Zhong
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China
| | - Yuding Fan
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| |
Collapse
|
2
|
Wang PH, Xing L. The roles of rabies virus structural proteins in immune evasion and implications for vaccine development. Can J Microbiol 2024; 70:461-469. [PMID: 39297428 DOI: 10.1139/cjm-2024-0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Rabies is a zoonotic infectious disease that targets the nervous system of human and animals and has about 100% fatality rate without treatment. Rabies virus is a bullet-like viral particle composed of five structural proteins, including nucleoprotein (N), phosphorylated protein (P), matrix protein (M), glycoprotein (G), and large subunit (L) of RNA-dependent RNA polymerase. These multifunctional viral proteins also play critical roles in the immune escape by inhibiting specific immune responses in the host, resulting in massive replication of the virus in the nervous system and abnormal behaviors of patients such as brain dysfunction and hydrophobia, which ultimately lead to the death of patients. Herein, the role of five structural proteins of rabies virus in the viral replication and immune escape and its implication for the development of vaccines were systemically reviewed, so as to shed light on the understanding of pathogenic mechanism of rabies virus.
Collapse
Affiliation(s)
- Pei-Hua Wang
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, Shanxi province, China
| | - Li Xing
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, Shanxi province, China
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, 92 Wucheng Road, Taiyuan 030006, Shanxi province, China
| |
Collapse
|
3
|
Larrea-Sarmiento AE, Galanti R, Olmedo-Velarde A, Wang X, Al Rwahnih M, Borth W, Lutgen H, Fitch MM, Sugano J, Sewake K, Suzuki J, Wall MM, Melzer M, Hu J. Characterization of Two Novel Viruses Within a Complex Virome from Flowering Ginger in Hawaii. PLANT DISEASE 2024; 108:3001-3009. [PMID: 39327791 DOI: 10.1094/pdis-10-23-2181-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Flowering ginger (Alpinia purpurata) is economically and culturally important in Hawaii. In the past decade, a slow decline syndrome has impacted the production of this crop in the state. RNA sequencing analyses and virus indexing surveys were done on samples collected from four of the Hawaiian Islands. Viral sequences corresponding to six viruses were recovered from transcriptomic data from samples with virus-like symptoms. Canna yellow mottle virus (CaYMV, genus Badnavirus) and two novel viruses, Alpinia vein clearing virus (ApVCV, genus Ampelovirus) and Alpinia vein streaking virus (ApVSV, genus Betanucleorhabdovirus), were found at a moderate incidence in diseased plants. Conversely, three other viruses, including the two potyviruses, banana bract mosaic virus and bean common mosaic virus, and a badnavirus, banana streak GF virus, were also found but at a low incidence. Virus detection in potential insect vectors and transmission assays identified the mealybug Planococcus citri as a vector of CaYMV and ApVCV, whereas the aphid Pentalonia caladii was identified as a vector of the novel ApVSV. Both P. citri and P. caladii are common pests of flowering ginger in Hawaii. Transmission of ApVSV was achieved using P. caladii colonies either established in the laboratory or naturally feeding on infected plants, although no transmission was obtained using viruliferous aphids originally reared on taro (Colocasia esculenta). Our study provides insights into the potential association between viral infections and the observed decline symptoms of flowering ginger in Hawaii. However, more definitive studies are needed to link single or mixed viral infections with decline symptoms.
Collapse
Affiliation(s)
| | - Russell Galanti
- Department of Tropical Plant and Soil Sciences, University of Hawaii, Honolulu, HI 96848
| | - Alejandro Olmedo-Velarde
- Department of Plant and Environmental Protection Sciences, University of Hawaii, Honolulu, HI 96822
| | - Xupeng Wang
- Department of Plant and Environmental Protection Sciences, University of Hawaii, Honolulu, HI 96822
| | - Maher Al Rwahnih
- Department of Plant Pathology, Foundation Plant Services, University of California, Davis, CA 95616
| | - Wayne Borth
- Department of Plant and Environmental Protection Sciences, University of Hawaii, Honolulu, HI 96822
| | - Hannah Lutgen
- Department of Tropical Plant and Soil Sciences, University of Hawaii, Honolulu, HI 96848
| | | | - Jari Sugano
- Department of Plant and Environmental Protection Sciences, University of Hawaii, Honolulu, HI 96822
| | - Kelvin Sewake
- Department of Plant and Environmental Protection Sciences, University of Hawaii, Honolulu, HI 96822
| | - Jon Suzuki
- United States Department of Agriculture, Agricultural Research Service, Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, Hilo, HI 96720
| | - Marisa M Wall
- United States Department of Agriculture, Agricultural Research Service, Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, Hilo, HI 96720
| | - Michael Melzer
- Department of Plant and Environmental Protection Sciences, University of Hawaii, Honolulu, HI 96822
| | - John Hu
- Department of Plant and Environmental Protection Sciences, University of Hawaii, Honolulu, HI 96822
| |
Collapse
|
4
|
Ferreira LYM, de Sousa AG, Silva JL, Santos JPN, Souza DGDN, Orellana LCB, de Santana SF, de Vasconcelos LBCM, Oliveira AR, Aguiar ERGR. Characterization of the Virome Associated with the Ubiquitous Two-Spotted Spider Mite, Tetranychus urticae. Viruses 2024; 16:1532. [PMID: 39459865 PMCID: PMC11512250 DOI: 10.3390/v16101532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
Agricultural pests can cause direct damage to crops, including chlorosis, loss of vigor, defoliation, and wilting. In addition, they can also indirectly damage plants, such as by transmitting pathogenic micro-organisms while feeding on plant tissues, affecting the productivity and quality of crops and interfering with agricultural production. Among the known arthropod pests, mites are highly prevalent in global agriculture, particularly those from the Tetranychidae family. The two-spotted spider mite, Tetranychus urticae, is especially notorious, infesting about 1600 plant species and causing significant agricultural losses. Despite its impact on agriculture, the virome of T. urticae is poorly characterized in the literature. This lack of knowledge is concerning, as these mites could potentially transmit plant-infecting viral pathogens, compromising food security and complicating integrated pest management efforts. Our study aimed to characterize the virome of the mite T. urticae by taking advantage of publicly available RNA deep sequencing libraries. A total of 30 libraries were selected, covering a wide range of geographic and sampling conditions. The library selection step included selecting 1 control library from each project in the NCBI SRA database (16 in total), in addition to the 14 unique libraries from a project containing field-collected mites. The analysis was conducted using an integrated de novo virus discovery bioinformatics pipeline developed by our group. This approach revealed 20 viral sequences, including 11 related to new viruses. Through phylogenetic analysis, eight of these were classified into the Nodaviridae, Kitaviridae, Phenuiviridae, Rhabdoviridae, Birnaviridae, and Qinviridae viral families, while three were characterized only at the order level within Picornavirales and Reovirales. The remaining nine viral sequences showed high similarity at the nucleotide level with known viral species, likely representing new strains of previously characterized viruses. Notably, these include the known Bean common mosaic virus (BCMV) and Phaseolus vulgaris alphaendornavirus 1, both of which have significant impacts on bean agriculture. Altogether, our results expand the virome associated with the ubiquitous mite pest T. urticae and highlight its potential role as a transmitter of important plant pathogens. Our data emphasize the importance of continuous virus surveillance for help in the preparedness of future emerging threats.
Collapse
Affiliation(s)
- Lucas Yago Melo Ferreira
- Center of Biotechnology and Genetics, Department of Biological Sciences, State University of Santa Cruz, Ilhéus 45662-900, Brazil; (L.Y.M.F.); (A.G.d.S.); (J.L.S.); (J.P.N.S.); (D.G.d.N.S.); (L.C.B.O.); (S.F.d.S.); (L.B.C.M.d.V.)
| | - Anderson Gonçalves de Sousa
- Center of Biotechnology and Genetics, Department of Biological Sciences, State University of Santa Cruz, Ilhéus 45662-900, Brazil; (L.Y.M.F.); (A.G.d.S.); (J.L.S.); (J.P.N.S.); (D.G.d.N.S.); (L.C.B.O.); (S.F.d.S.); (L.B.C.M.d.V.)
| | - Joannan Lima Silva
- Center of Biotechnology and Genetics, Department of Biological Sciences, State University of Santa Cruz, Ilhéus 45662-900, Brazil; (L.Y.M.F.); (A.G.d.S.); (J.L.S.); (J.P.N.S.); (D.G.d.N.S.); (L.C.B.O.); (S.F.d.S.); (L.B.C.M.d.V.)
| | - João Pedro Nunes Santos
- Center of Biotechnology and Genetics, Department of Biological Sciences, State University of Santa Cruz, Ilhéus 45662-900, Brazil; (L.Y.M.F.); (A.G.d.S.); (J.L.S.); (J.P.N.S.); (D.G.d.N.S.); (L.C.B.O.); (S.F.d.S.); (L.B.C.M.d.V.)
| | - David Gabriel do Nascimento Souza
- Center of Biotechnology and Genetics, Department of Biological Sciences, State University of Santa Cruz, Ilhéus 45662-900, Brazil; (L.Y.M.F.); (A.G.d.S.); (J.L.S.); (J.P.N.S.); (D.G.d.N.S.); (L.C.B.O.); (S.F.d.S.); (L.B.C.M.d.V.)
| | - Lixsy Celeste Bernardez Orellana
- Center of Biotechnology and Genetics, Department of Biological Sciences, State University of Santa Cruz, Ilhéus 45662-900, Brazil; (L.Y.M.F.); (A.G.d.S.); (J.L.S.); (J.P.N.S.); (D.G.d.N.S.); (L.C.B.O.); (S.F.d.S.); (L.B.C.M.d.V.)
| | - Sabrina Ferreira de Santana
- Center of Biotechnology and Genetics, Department of Biological Sciences, State University of Santa Cruz, Ilhéus 45662-900, Brazil; (L.Y.M.F.); (A.G.d.S.); (J.L.S.); (J.P.N.S.); (D.G.d.N.S.); (L.C.B.O.); (S.F.d.S.); (L.B.C.M.d.V.)
| | - Lara Beatriz Correia Moreira de Vasconcelos
- Center of Biotechnology and Genetics, Department of Biological Sciences, State University of Santa Cruz, Ilhéus 45662-900, Brazil; (L.Y.M.F.); (A.G.d.S.); (J.L.S.); (J.P.N.S.); (D.G.d.N.S.); (L.C.B.O.); (S.F.d.S.); (L.B.C.M.d.V.)
| | - Anibal Ramadan Oliveira
- Laboratory of Entomology, Department of Biological Science, State University of Santa Cruz, Ilhéus 45662-900, Brazil;
| | - Eric Roberto Guimarães Rocha Aguiar
- Postgraduate Program in Computational Modeling in Science and Technology, Department of Engineering and Computing, State University of Santa Cruz (UESC), Ilhéus 45662-900, Brazil
| |
Collapse
|
5
|
Xiao J, Nie B, Chen ME, Ge D, Liu R. Discovery and Genomic Analysis of Three Novel Viruses in the Order Mononegavirales in Leafhoppers. Viruses 2024; 16:1321. [PMID: 39205295 PMCID: PMC11360795 DOI: 10.3390/v16081321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/11/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
Leafhoppers are economically important pests and may serve as vectors for pathogenic viruses that cause substantial crop damage. In this study, using deep transcriptome sequencing, we identified three novel viruses within the order Mononegavirales, including two viruses belonging to the family Rhabdoviridae and one to the family Lispiviridae. The complete genome sequences were obtained via the rapid amplification of cDNA ends and tentatively named Recilia dorsalis rhabdovirus 1 (RdRV1, 14,251 nucleotides, nt), Nephotettix virescens rhabdovirus 1 (NvRV1, 13,726 nt), and Nephotettix virescens lispivirus 1 (NvLV1, 14,055 nt). The results of a phylogenetic analysis and sequence identity comparison suggest that RdRV1 and NvRV1 represent novel species within the family Rhabdoviridae, while NvLV1 is a new virus belonging to the family Lispiviridae. As negative-sense single-strand RNA viruses, RdRV1 and NvRV1 contain the conserved transcription termination signal and intergenic trinucleotides in the non-transcribed region. Intergenomic sequence and transcriptome profile analyses suggested that all these genes were co-transcriptionally expressed in these viral genomes, facilitated by specific intergenic trinucleotides and putative transcription initiation sequences.
Collapse
Affiliation(s)
- Jiajing Xiao
- Center for Agroforestry Mega Data Science, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.X.); (B.N.); (M.-E.C.)
| | - Binghua Nie
- Center for Agroforestry Mega Data Science, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.X.); (B.N.); (M.-E.C.)
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Meng-En Chen
- Center for Agroforestry Mega Data Science, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.X.); (B.N.); (M.-E.C.)
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Danfeng Ge
- Center for Agroforestry Mega Data Science, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.X.); (B.N.); (M.-E.C.)
| | - Renyi Liu
- Center for Agroforestry Mega Data Science, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.X.); (B.N.); (M.-E.C.)
| |
Collapse
|
6
|
Emmenegger EJ, Bueren EK, Conway CM, Sanders GE, Hendrix AN, Schroeder T, Di Cicco E, Pham PH, Lumsden JS, Clouthier SC. Host Jump of an Exotic Fish Rhabdovirus into a New Class of Animals Poses a Disease Threat to Amphibians. Viruses 2024; 16:1193. [PMID: 39205167 PMCID: PMC11360232 DOI: 10.3390/v16081193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 09/04/2024] Open
Abstract
Spring viremia of carp virus (SVCV) is a rhabdovirus that primarily infects cyprinid finfishes and causes a disease notifiable to the World Organization for Animal Health. Amphibians, which are sympatric with cyprinids in freshwater ecosystems, are considered non-permissive hosts of rhabdoviruses. The potential host range expansion of SVCV in an atypical host species was evaluated by testing the susceptibility of amphibians native to the Pacific Northwest. Larval long-toed salamanders Ambystoma macrodactylum and Pacific tree frog Pseudacris regilla tadpoles were exposed to SVCV strains from genotypes Ia, Ib, Ic, or Id by either intraperitoneal injection, immersion, or cohabitation with virus-infected koi Cyprinus rubrofuscus. Cumulative mortality was 100% for salamanders injected with SVCV, 98-100% for tadpoles exposed to virus via immersion, and 0-100% for tadpoles cohabited with SVCV-infected koi. Many of the animals that died exhibited clinical signs of disease and SVCV RNA was found by in situ hybridization in tissue sections of immersion-exposed tadpoles, particularly in the cells of the gastrointestinal tract and liver. SVCV was also detected by plaque assay and RT-qPCR testing in both amphibian species regardless of the virus exposure method, and viable virus was detected up to 28 days after initial exposure. Recovery of infectious virus from naïve tadpoles cohabited with SVCV-infected koi further demonstrated that SVCV transmission can occur between classes of ectothermic vertebrates. Collectively, these results indicated that SVCV, a fish rhabdovirus, can be transmitted to and cause lethal disease in two amphibian species. Therefore, members of all five of the major vertebrate groups (mammals, birds, reptiles, fish, and amphibians) appear to be vulnerable to rhabdovirus infections. Future research studying potential spillover and spillback infections of aquatic rhabdoviruses between foreign and domestic amphibian and fish species will provide insights into the stressors driving novel interclass virus transmission events.
Collapse
Affiliation(s)
- Eveline J Emmenegger
- U.S. Geological Survey, Western Fisheries Research Center (WFRC), 6505 NE 65th Street, Seattle, WA 98115, USA
| | - Emma K Bueren
- U.S. Geological Survey, Western Fisheries Research Center (WFRC), 6505 NE 65th Street, Seattle, WA 98115, USA
- Department of Biology, Indiana University, 1001 E 3rd St, Bloomington, IN 47405, USA
| | - Carla M Conway
- U.S. Geological Survey, Western Fisheries Research Center (WFRC), 6505 NE 65th Street, Seattle, WA 98115, USA
| | - George E Sanders
- Department of Comparative Medicine, University of Washington, Seattle, WA 98195, USA
| | - A Noble Hendrix
- QEDA Consulting, 4007 Densmore Avenue N, Seattle, WA 98103, USA
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA 98195, USA
| | - Tamara Schroeder
- Freshwater Institute, Fisheries and Oceans Canada (DFO), 501 University Crescent, Winnipeg, MB R3T 2N6, Canada
| | - Emiliano Di Cicco
- Pacific Salmon Foundation (PSF), 1682 W 7th Ave., Vancouver, BC V6J 4S6, Canada
| | - Phuc H Pham
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - John S Lumsden
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Sharon C Clouthier
- Freshwater Institute, Fisheries and Oceans Canada (DFO), 501 University Crescent, Winnipeg, MB R3T 2N6, Canada
| |
Collapse
|
7
|
Antúnez MP, Marín Montesinos JC, Corduneanu A, Obregón D, Moutailler S, Cabezas-Cruz A. Tick-borne viruses and their risk to public health in the Caribbean: Spotlight on bats as reservoirs in Cuba. Heliyon 2024; 10:e26118. [PMID: 38375245 PMCID: PMC10875593 DOI: 10.1016/j.heliyon.2024.e26118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/21/2024] Open
Abstract
In recent decades, tick-borne diseases (TBDs) have surged and expanded globally due to factors like changes in human activities, land use patterns, and climate change, and it have been associated with the emergence of zoonotic diseases. Cuba faces the impact of ticks on human health and the economy. Although Cuba has studied TBDs extensively for the past 50 years, focus on tick-borne viral pathogens affecting humans remains scant. Despite TBDs not currently being a major health concern in Cuba, factors like inadequate clinician awareness, climate conditions, global tick emergence, and evidence of zoonotic pathogens in ticks underscore the importance of enhanced TBD surveillance in the country. Here we revised the available information on ticks as vectors of pathogenic viruses to humans, spotlighting bats as potential reservoirs of tick-borne viruses (TBVs). Ticks on bats have gained interest as potential reservoirs of pathogenic viruses to humans in Cuba and worldwide. Understanding their role in maintaining viruses and their potential transmission to humans is crucial for the implementation of surveillance and control programs to reduce the risk of tick-borne viral diseases and public health management.
Collapse
Affiliation(s)
- Maritza Pupo Antúnez
- Laboratorio de Virología. Departamento de Microbiología y Virología. Facultad de Biología, Universidad de la Habana, C.P. 10400, Plaza de la Revolución, Cuba
| | - José Carlos Marín Montesinos
- Laboratorio de Virología. Departamento de Microbiología y Virología. Facultad de Biología, Universidad de la Habana, C.P. 10400, Plaza de la Revolución, Cuba
| | - Alexandra Corduneanu
- Department of Animal Breeding and Animal Production, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
- Department of Parasitology and Parasitic Diseases, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca-Napoca, Romania
| | - Dasiel Obregón
- School of Environmental Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Sara Moutailler
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, F-94700, France
| | - Alejandro Cabezas-Cruz
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, F-94700, France
| |
Collapse
|
8
|
Carrillo JFC, Boaretto AG, Santana DJ, Silva DB. Skin secretions of Leptodactylidae (Anura) and their potential applications. J Venom Anim Toxins Incl Trop Dis 2024; 30:e20230042. [PMID: 38374940 PMCID: PMC10876013 DOI: 10.1590/1678-9199-jvatitd-2023-0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/04/2023] [Indexed: 02/21/2024] Open
Abstract
The skin of anuran species is a protective barrier against predators and pathogens, showing also chemical defense by substances that represent a potential source for bioactive substances. This review describes the current chemical and biological knowledge from the skin secretions of Leptodactylidae species, one of the most diverse neotropical frog families. These skin secretions reveal a variety of substances such as amines (12), neuropeptides (16), and antimicrobial peptides (72). The amines include histamine and its methylated derivatives, tryptamine derivatives and quaternary amines. The peptides of Leptodactylidae species show molecular weight up to 3364 Da and ocellatins are the most reported. The peptides exhibit commonly glycine (G) or glycine-valine (GV) as C-terminal amino acids, and the most common N-terminal amino acids are glutamic acid (E), lysine (K), and valine (V). The substances from Leptodactylidae species have been evaluated against pathogenic microorganisms, particularly Escherichia coli and Staphylococcus aureus, and the most active peptides showed MIC of 1-15 µM. Furthermore, some compounds showed also pharmacological properties such as immunomodulation, treatment of degenerative diseases, anticancer, and antioxidant. Currently, only 9% of the species in this family have been properly studied, highlighting a large number of unstudied species such as an entire subfamily (Paratelmatobiinae). The ecological context, functions, and evolution of peptides and amines in this family are poorly understood and represent a large field for further exploration.
Collapse
Affiliation(s)
- Juan F. C. Carrillo
- Program in Ecology and Conservation, Institute of Biosciences,
Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil
- Laboratory of Systematics and Biogeography of Amphibians and
Reptiles (Mapinguari), Institute of Biosciences, Federal University of Mato Grosso
do Sul, Campo Grande, MS, Brazil
- Laboratory of Natural Products and Mass Spectrometry (LaPNEM),
Faculty of Pharmaceutical Sciences, Food and Nutrition (FACFAN), Federal University
of Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Amanda Galdi Boaretto
- Program in Ecology and Conservation, Institute of Biosciences,
Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil
- Laboratory of Natural Products and Mass Spectrometry (LaPNEM),
Faculty of Pharmaceutical Sciences, Food and Nutrition (FACFAN), Federal University
of Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Diego J. Santana
- Program in Ecology and Conservation, Institute of Biosciences,
Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil
- Laboratory of Systematics and Biogeography of Amphibians and
Reptiles (Mapinguari), Institute of Biosciences, Federal University of Mato Grosso
do Sul, Campo Grande, MS, Brazil
| | - Denise Brentan Silva
- Program in Ecology and Conservation, Institute of Biosciences,
Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil
| |
Collapse
|
9
|
Ghorani S, Massumi H, Farhangi SH, Mansouri M, Heydarnejad J, Hosseinipour A. Metatranscriptome analysis of symptomatic bitter apple plants revealed mixed viral infections with a putative novel polerovirus. BMC Genomics 2024; 25:181. [PMID: 38360528 PMCID: PMC10868029 DOI: 10.1186/s12864-024-10057-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/27/2024] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND Next-generation Sequencing (NGS) combined with bioinformatic analyses constitutes a powerful approach for identifying and characterizing previously unknown viral genomes. In this study, leaf samples from bitter apple plants (Citrullus colocynthis (L.) Schrad) exhibiting symptoms such as dwarfing, leaf crinkling, and chlorosis were collected from the southern part of Kerman province, Iran. RESULTS Putative infecting viruses were identified through de novo assembly of sequencing reads using various tools, followed by BLAST analysis. Complete genomes for Squash vein yellowing virus (SqVYV), Citrus-associated rhabdovirus (CiaRV), and a novel polerovirus-related strain termed Bitter apple aphid-borne yellows virus (BaABYV) were assembled and characterized. Additionally, a partial genome for Watermelon mosaic virus (WMV) was assembled. The genomic organization of the BaABYV was determined to be 5'-ORF0-ORF1-ORF1,2-ORF3a-ORF3-ORF3,5-ORF4-3'. Amino acid sequence identities for inferred proteins (P0 and P1, P1,2) with known poleroviruses were found to be the 90% species delineation limit, implying that BaABYV should be considered a new member of the genus Polerovirus. Recombination events were observed in the BaABYV and WMV strains; such events were not found in the CiaRV strain. CONCLUSIONS Molecular evidence from this study suggests that C. colocynthis is a reservoir host of several plant viruses. Among them, BaABYV is proposed as a new member of the genus Polerovirus. Furthermore, the CiaRV strain has been reported for the first time from Iran.
Collapse
Affiliation(s)
- Shahrbanou Ghorani
- Department of Plant Protection, College of Agriculture, Shahid Bahonar University of Kerman, Kerman, 7616914111, Iran
| | - Hossein Massumi
- Department of Plant Protection, College of Agriculture, Shahid Bahonar University of Kerman, Kerman, 7616914111, Iran.
- Research and Technology Institute of Plant Production (RTIPP), Shahid Bahonar University of Kerman, Kerman, Iran.
| | - Samin H Farhangi
- Animal Breeding and Genomics, Wageningen University & Research, Wageningen, The Netherlands
| | - Mehdi Mansouri
- Department of Agricultural Biotechnology, College of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Jahangir Heydarnejad
- Department of Plant Protection, College of Agriculture, Shahid Bahonar University of Kerman, Kerman, 7616914111, Iran
| | - Akbar Hosseinipour
- Department of Plant Protection, College of Agriculture, Shahid Bahonar University of Kerman, Kerman, 7616914111, Iran
| |
Collapse
|
10
|
Sui B, Zheng J, Fu Z, Zhao L, Zhou M. TRIM72 restricts lyssavirus infection by inducing K48-linked ubiquitination and proteasome degradation of the matrix protein. PLoS Pathog 2024; 20:e1011718. [PMID: 38408103 PMCID: PMC10919858 DOI: 10.1371/journal.ppat.1011718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 03/07/2024] [Accepted: 02/19/2024] [Indexed: 02/28/2024] Open
Abstract
The tripartite motif (TRIM) protein family is the largest subfamily of E3 ubiquitin ligases, playing a crucial role in the antiviral process. In this study, we found that TRIM72, a member of the TRIM protein family, was increased in neuronal cells and mouse brains following rabies lyssavirus (RABV) infection. Over-expression of TRIM72 significantly reduced the viral titer of RABV in neuronal cells and mitigated the pathogenicity of RABV in mice. Furthermore, we found that TRIM72 over-expression effectively prevents the assembly and/or release of RABV. In terms of the mechanism, TRIM72 promotes the K48-linked ubiquitination of RABV Matrix protein (M), leading to the degradation of M through the proteasome pathway. TRIM72 directly interacts with M and the interaction sites were identified and confirmed through TRIM72-M interaction model construction and mutation analysis. Further investigation revealed that the degradation of M induced by TRIM72 was attributed to TRIM72's promotion of ubiquitination at site K195 in M. Importantly, the K195 site was found to be partially conserved among lyssavirus's M proteins, and TRIM72 over-expression induced the degradation of these lyssavirus M proteins. In summary, our study has uncovered a TRIM family protein, TRIM72, that can restrict lyssavirus replication by degrading M, and we have identified a novel ubiquitination site (K195) in lyssavirus M.
Collapse
Affiliation(s)
- Baokun Sui
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jiaxin Zheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhenfang Fu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ling Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Ming Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
11
|
Zamorano A, Carevic P, Gamboa C, Cui W, Curkovic T, Córdova P, Higuera G, Ramos-Castillo L, Quiroga N, Fiore N. Old and New Aphid-Borne Viruses in Coriander in Chile: An Epidemiological Approach. Viruses 2024; 16:226. [PMID: 38400002 PMCID: PMC10893044 DOI: 10.3390/v16020226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
In Chile, edible herbs are mainly grown by small farmers. This type of horticultural crop typically requires intensive management because it is highly susceptible to insects, some of which transmit viruses that severely affect crop yield and quality. In 2019, in coriander plants tested negative for all previously reported viruses, RNA-Seq analysis of one symptomatic plant revealed a plethora of viruses, including one virus known to infect coriander, five viruses never reported in coriander, and a new cytorhabdovirus with a 14,180 nucleotide RNA genome for which the species name Cytorhabdovirus coriandrum was proposed. Since all the detected viruses were aphid-borne, aphids and weeds commonly growing around the coriander field were screened for viruses. The results showed the occurrence of the same seven viruses and the alfalfa mosaic virus, another aphid-borne virus, in aphids and weeds. Together, our findings document the presence of multiple viruses in coriander and the potential role of weeds as virus reservoirs for aphid acquisition.
Collapse
Affiliation(s)
- Alan Zamorano
- Facultad de Ciencias Agronómicas, Universidad de Chile, Avenida Santa Rosa 11315, Santiago 8820808, Chile; (A.Z.); (P.C.); (C.G.); (W.C.); (T.C.); (L.R.-C.)
| | - Paulina Carevic
- Facultad de Ciencias Agronómicas, Universidad de Chile, Avenida Santa Rosa 11315, Santiago 8820808, Chile; (A.Z.); (P.C.); (C.G.); (W.C.); (T.C.); (L.R.-C.)
| | - Camila Gamboa
- Facultad de Ciencias Agronómicas, Universidad de Chile, Avenida Santa Rosa 11315, Santiago 8820808, Chile; (A.Z.); (P.C.); (C.G.); (W.C.); (T.C.); (L.R.-C.)
| | - Weier Cui
- Facultad de Ciencias Agronómicas, Universidad de Chile, Avenida Santa Rosa 11315, Santiago 8820808, Chile; (A.Z.); (P.C.); (C.G.); (W.C.); (T.C.); (L.R.-C.)
| | - Tomislav Curkovic
- Facultad de Ciencias Agronómicas, Universidad de Chile, Avenida Santa Rosa 11315, Santiago 8820808, Chile; (A.Z.); (P.C.); (C.G.); (W.C.); (T.C.); (L.R.-C.)
| | - Pamela Córdova
- Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Avenida El Líbano 5524, Santiago 7830490, Chile; (P.C.); (G.H.)
| | - Gastón Higuera
- Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Avenida El Líbano 5524, Santiago 7830490, Chile; (P.C.); (G.H.)
| | - Luz Ramos-Castillo
- Facultad de Ciencias Agronómicas, Universidad de Chile, Avenida Santa Rosa 11315, Santiago 8820808, Chile; (A.Z.); (P.C.); (C.G.); (W.C.); (T.C.); (L.R.-C.)
| | - Nicolás Quiroga
- Institute of Agri-Food, Animal and Environmental Sciences (ICA3), Universidad de O’Higgins, Campus Colchagua, San Fernando 3070000, Chile;
| | - Nicola Fiore
- Facultad de Ciencias Agronómicas, Universidad de Chile, Avenida Santa Rosa 11315, Santiago 8820808, Chile; (A.Z.); (P.C.); (C.G.); (W.C.); (T.C.); (L.R.-C.)
| |
Collapse
|
12
|
Wang PH, Shah PT, Xing L. Genetic characteristics and geographic distribution of rabies virus in China. Arch Virol 2023; 169:14. [PMID: 38157057 DOI: 10.1007/s00705-023-05947-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/22/2023] [Indexed: 01/03/2024]
Abstract
China is one of the largest countries with endemic rabies. In this study, we examined the full-length genome sequences of 87 rabies virus (RABV) strains identified in China from 1931 to 2019. Chinese RABV isolates were divided into two major clades, GI and GII. Clade GI consisted of viruses from the Asian clade, which was further divided into three subclades: Asian1, Asian2, and Asian3. Clade GII consisted of viruses from the Cosmopolitan, Arctic-related, and Indian clades. A phylogeographic network showed that the variation of rabies virus was more closely associated with geographic location than with the host species. Recombination appears to be one of the factors driving the emergence of new viral strains.
Collapse
Affiliation(s)
- Pei-Hua Wang
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, Shanxi Province, China
| | - Pir Tariq Shah
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, Shanxi Province, China
| | - Li Xing
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, Shanxi Province, China.
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, Shanxi Province, China.
- Shanxi Provincial Key Laboratory for Prevention and Treatment of Major Infectious Diseases, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, Shanxi Province, China.
| |
Collapse
|
13
|
Gao DM, Qiao JH, Gao Q, Zhang J, Zang Y, Xie L, Zhang Y, Wang Y, Fu J, Zhang H, Han C, Wang XB. A plant cytorhabdovirus modulates locomotor activity of insect vectors to enhance virus transmission. Nat Commun 2023; 14:5754. [PMID: 37717061 PMCID: PMC10505171 DOI: 10.1038/s41467-023-41503-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 09/07/2023] [Indexed: 09/18/2023] Open
Abstract
Transmission of many plant viruses relies on phloem-feeding insect vectors. However, how plant viruses directly modulate insect behavior is largely unknown. Barley yellow striate mosaic virus (BYSMV) is transmitted by the small brown planthopper (SBPH, Laodelphax striatellus). Here, we show that BYSMV infects the central nervous system (CNS) of SBPHs, induces insect hyperactivity, and prolongs phloem feeding duration. The BYSMV accessory protein P6 interacts with the COP9 signalosome subunit 5 (LsCSN5) of SBPHs and suppresses LsCSN5-regulated de-neddylation from the Cullin 1 (CUL1), hereby inhibiting CUL1-based E3 ligases-mediated degradation of the circadian clock protein Timeless (TIM). Thus, virus infection or knockdown of LsCSN5 compromises TIM oscillation and induces high insect locomotor activity for transmission. Additionally, expression of BYSMV P6 in the CNS of transgenic Drosophila melanogaster disturbs circadian rhythm and induces high locomotor activity. Together, our results suggest the molecular mechanisms whereby BYSMV modulates locomotor activity of insect vectors for transmission.
Collapse
Affiliation(s)
- Dong-Min Gao
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Ji-Hui Qiao
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Qiang Gao
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Jiawen Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Ying Zang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Liang Xie
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yan Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Ying Wang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Jingyan Fu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Hua Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Chenggui Han
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Xian-Bing Wang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
14
|
Hermanns K, Marklewitz M, Zirkel F, Kopp A, Kramer-Schadt S, Junglen S. Mosquito community composition shapes virus prevalence patterns along anthropogenic disturbance gradients. eLife 2023; 12:e66550. [PMID: 37702388 PMCID: PMC10547478 DOI: 10.7554/elife.66550] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 09/12/2023] [Indexed: 09/14/2023] Open
Abstract
Previously unknown pathogens often emerge from primary ecosystems, but there is little knowledge on the mechanisms of emergence. Most studies analyzing the influence of land-use change on pathogen emergence focus on a single host-pathogen system and often observe contradictory effects. Here, we studied virus diversity and prevalence patterns in natural and disturbed ecosystems using a multi-host and multi-taxa approach. Mosquitoes sampled along a disturbance gradient in Côte d'Ivoire were tested by generic RT-PCR assays established for all major arbovirus and insect-specific virus taxa including novel viruses previously discovered in these samples based on cell culture isolates enabling an unbiased and comprehensive approach. The taxonomic composition of detected viruses was characterized and viral infection rates according to habitat and host were analyzed. We detected 331 viral sequences pertaining to 34 novel and 15 previously identified viruses of the families Flavi-, Rhabdo-, Reo-, Toga-, Mesoni- and Iflaviridae and the order Bunyavirales. Highest host and virus diversity was observed in pristine and intermediately disturbed habitats. The majority of the 49 viruses was detected with low prevalence. However, nine viruses were found frequently across different habitats of which five viruses increased in prevalence towards disturbed habitats, in congruence with the dilution effect hypothesis. These viruses were mainly associated with one specific mosquito species (Culex nebulosus), which increased in relative abundance from pristine (3%) to disturbed habitats (38%). Interestingly, the observed increased prevalence of these five viruses in disturbed habitats was not caused by higher host infection rates but by increased host abundance, an effect tentatively named abundance effect. Our data show that host species composition is critical for virus abundance. Environmental changes that lead to an uneven host community composition and to more individuals of a single species are a key driver of virus emergence.
Collapse
Affiliation(s)
- Kyra Hermanns
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Free University Berlin, Humboldt-Universtiy Berlin, and Berlin Institute of HealthBerlinGermany
| | - Marco Marklewitz
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Free University Berlin, Humboldt-Universtiy Berlin, and Berlin Institute of HealthBerlinGermany
| | - Florian Zirkel
- Institute of Virology, University of Bonn Medical CentreBerlinGermany
| | - Anne Kopp
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Free University Berlin, Humboldt-Universtiy Berlin, and Berlin Institute of HealthBerlinGermany
| | - Stephanie Kramer-Schadt
- Department of Ecological Dynamics, Leibniz Institute for Zoo and Wildlife ResearchBerlinGermany
- Institute of Ecology, Technische Universität BerlinBerlinGermany
| | - Sandra Junglen
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Free University Berlin, Humboldt-Universtiy Berlin, and Berlin Institute of HealthBerlinGermany
| |
Collapse
|
15
|
da Silva LA, de Camargo BR, Rodrigues BMP, Berlitz DL, Fiuza LM, Ardisson-Araújo DMP, Ribeiro BM. Exploring viral infections in honey bee colonies: insights from a metagenomic study in southern Brazil. Braz J Microbiol 2023; 54:1447-1458. [PMID: 37531005 PMCID: PMC10485192 DOI: 10.1007/s42770-023-01078-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/22/2023] [Indexed: 08/03/2023] Open
Abstract
The decline in honey bee colonies in different parts of the world in recent years is due to different reasons, such as agricultural practices, climate changes, the use of chemical insecticides, and pests and diseases. Viral infections are one of the main causes leading to honey bee population declines, which have a major economic impact due to honey production and pollination. To investigate the presence of viruses in bees in southern Brazil, we used a metagenomic approach to sequence adults' samples of concentrated extracts from Apis mellifera collected in fifteen apiaries of six municipalities in the Rio Grande do Sul state, Brazil, between 2016 and 2017. High-throughput sequencing (HTS) of these samples resulted in the identification of eight previously known viruses (Apis rhabdovirus 1 (ARV-1), Acute bee paralysis virus (ABPV), Aphid lethal paralysis virus (ALPV), Black queen cell virus (BQCV), Bee Macula-like virus (BeeMLV), Deformed wing virus (DWV), Lake Sinai Virus NE (LSV), and Varroa destructor virus 3 (VDV-3)) and a thogotovirus isolate. This thogotovirus shares high amino acid identities in five of the six segments with Varroa orthomyxovirus 1, VOV-1 (98.36 to 99.34% identity). In contrast, segment 4, which codes for the main glycoprotein (GP), has no identity with VOV-1, as observed for the other segments, but shares an amino acid identity of 34-38% with other glycoproteins of viruses from the Orthomyxoviridae family. In addition, the putative thogotovirus GP also shows amino acid identities ranging from 33 to 41% with the major glycoprotein (GP64) of insect viruses of the Baculoviridae family. To our knowledge, this is the second report of a thogotovirus found in bees and given this information, this thogotovirus isolate was tentatively named Apis thogotovirus 1 (ATHOV-1). The detection of multiple viruses in bees is important to better understand the complex interactions between viruses and their hosts. By understanding these interactions, better strategies for managing viral infections in bees and protecting their populations can be developed.
Collapse
Affiliation(s)
| | | | | | - Diouneia Lisiane Berlitz
- Control Agro Bio Pesquisa E Defesa Agropecuária, Parque Tecnológico TECNOPUC/PUCRS, Porto Alegre, RS, Brazil
| | - Lidia Mariana Fiuza
- ProspectaBio - Soluções biológicas Ltda. CABIO - Control Agro Bio - Consultoria Parque Tecnológico TECNOPUC/PUCRS, Porto Alegre, RS, Brazil
| | - Daniel Mendes Pereira Ardisson-Araújo
- Cell Biology Department, University of Brasília, Brasília, DF, 70910-900, Brazil.
- Laboratory of Baculovirus, Cell Biology Department, University of Brasilia, Brasilia, DF, 70910-900, Brazil.
| | - Bergmann Morais Ribeiro
- Cell Biology Department, University of Brasília, Brasília, DF, 70910-900, Brazil.
- Laboratory of Baculovirus, Cell Biology Department, University of Brasilia, Brasilia, DF, 70910-900, Brazil.
| |
Collapse
|
16
|
Golender N, Klement E, Ofer L, Hoffmann B, Wernike K, Beer M, Pfaff F. Hefer valley virus: a novel ephemerovirus detected in the blood of a cow with severe clinical signs in Israel in 2022. Arch Virol 2023; 168:234. [PMID: 37608200 DOI: 10.1007/s00705-023-05850-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/07/2023] [Indexed: 08/24/2023]
Abstract
A novel ephemerovirus was identified in a Holstein-Friesian cow in the Hefer Valley, Israel, that showed severe and fatal clinical signs resembling an arboviral infection. A sample taken during the acute phase tested negative for important endemic arboviral infectious cattle diseases. However, sequencing from blood revealed the full genome sequence of Hefer Valley virus, which is likely to represent a new species within the genus Ephemerovirus, family Rhabdoviridae. Archived samples from cattle with comparable clinical signs collected in Israel in 2021 and 2022 tested negative for the novel virus, and therefore, the actual distribution of the virus is unknown. As this is a recently identified new viral infection, the viral vector and the prevalence of the virus in the cattle population are still unknown but will be the subject of future investigations.
Collapse
Affiliation(s)
- Natalia Golender
- Department of Virology, Kimron Veterinary Institute, Bet Dagan, Israel.
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, Rehovot, Israel.
| | - Eyal Klement
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Lior Ofer
- Hachaklait veterinary services, Caesarea, Israel
| | - Bernd Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Greifswald, Germany
| | - Kerstin Wernike
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Greifswald, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Greifswald, Germany
| | - Florian Pfaff
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Greifswald, Germany
| |
Collapse
|
17
|
Atabekova AK, Solovieva AD, Chergintsev DA, Solovyev AG, Morozov SY. Role of Plant Virus Movement Proteins in Suppression of Host RNAi Defense. Int J Mol Sci 2023; 24:ijms24109049. [PMID: 37240394 DOI: 10.3390/ijms24109049] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
One of the systems of plant defense against viral infection is RNA silencing, or RNA interference (RNAi), in which small RNAs derived from viral genomic RNAs and/or mRNAs serve as guides to target an Argonaute nuclease (AGO) to virus-specific RNAs. Complementary base pairing between the small interfering RNA incorporated into the AGO-based protein complex and viral RNA results in the target cleavage or translational repression. As a counter-defensive strategy, viruses have evolved to acquire viral silencing suppressors (VSRs) to inhibit the host plant RNAi pathway. Plant virus VSR proteins use multiple mechanisms to inhibit silencing. VSRs are often multifunctional proteins that perform additional functions in the virus infection cycle, particularly, cell-to-cell movement, genome encapsidation, or replication. This paper summarizes the available data on the proteins with dual VSR/movement protein activity used by plant viruses of nine orders to override the protective silencing response and reviews the different molecular mechanisms employed by these proteins to suppress RNAi.
Collapse
Affiliation(s)
- Anastasia K Atabekova
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
| | - Anna D Solovieva
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| | - Denis A Chergintsev
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| | - Andrey G Solovyev
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| | - Sergey Y Morozov
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
18
|
Rupprecht CE, Mshelbwala PP, Reeves RG, Kuzmin IV. Rabies in a postpandemic world: resilient reservoirs, redoubtable riposte, recurrent roadblocks, and resolute recidivism. ANIMAL DISEASES 2023; 3:15. [PMID: 37252063 PMCID: PMC10195671 DOI: 10.1186/s44149-023-00078-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/02/2023] [Indexed: 05/31/2023] Open
Abstract
Rabies is an ancient disease. Two centuries since Pasteur, fundamental progress occurred in virology, vaccinology, and diagnostics-and an understanding of pathobiology and epizootiology of rabies in testament to One Health-before common terminological coinage. Prevention, control, selective elimination, and even the unthinkable-occasional treatment-of this zoonosis dawned by the twenty-first century. However, in contrast to smallpox and rinderpest, eradication is a wishful misnomer applied to rabies, particularly post-COVID-19 pandemic. Reasons are minion. Polyhostality encompasses bats and mesocarnivores, but other mammals represent a diverse spectrum of potential hosts. While rabies virus is the classical member of the genus, other species of lyssaviruses also cause the disease. Some reservoirs remain cryptic. Although global, this viral encephalitis is untreatable and often ignored. As with other neglected diseases, laboratory-based surveillance falls short of the notifiable ideal, especially in lower- and middle-income countries. Calculation of actual burden defaults to a flux within broad health economic models. Competing priorities, lack of defined, long-term international donors, and shrinking local champions challenge human prophylaxis and mass dog vaccination toward targets of 2030 for even canine rabies impacts. For prevention, all licensed vaccines are delivered to the individual, whether parenteral or oral-essentially 'one and done'. Exploiting mammalian social behaviors, future 'spreadable vaccines' might increase the proportion of immunized hosts per unit effort. However, the release of replication-competent, genetically modified organisms selectively engineered to spread intentionally throughout a population raises significant biological, ethical, and regulatory issues in need of broader, transdisciplinary discourse. How this rather curious idea will evolve toward actual unconventional prevention, control, or elimination in the near term remains debatable. In the interim, more precise terminology and realistic expectations serve as the norm for diverse, collective constituents to maintain progress in the field.
Collapse
Affiliation(s)
- Charles E. Rupprecht
- College of Forestry, Wildlife & Environment, College of Veterinary Medicine, Auburn University, Auburn, AL 36849 USA
| | - Philip P. Mshelbwala
- School of Veterinary Science, University of Queensland, Gatton, Australia
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Abuja, Abuja, Nigeria
| | - R. Guy Reeves
- Max Planck Institut Für Evolutionsbiologie, 24306 Plön, Germany
| | - Ivan V. Kuzmin
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555 USA
| |
Collapse
|
19
|
Abdulal RH, Malki JS, Ghazal E, Alsaieedi AA, Almahboub SA, Khan MY, Alsulaiman RM, Ghaith MM, Abujamel TS, Ganash M, Mahmoud AB, Alkayyal AA, Hashem AM. Construction of VSVΔ51M oncolytic virus expressing human interleukin-12. Front Mol Biosci 2023; 10:1190669. [PMID: 37255540 PMCID: PMC10225647 DOI: 10.3389/fmolb.2023.1190669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/02/2023] [Indexed: 06/01/2023] Open
Abstract
The use of oncolytic viruses (OVs) in combination with cytokines, such as IL-12, is a promising approach for cancer treatment that addresses the limitations of current standard treatments and traditional cancer immunotherapies. IL-12, a proinflammatory cytokine, triggers intracellular signaling pathways that lead to increased apoptosis of tumor cells and enhanced antitumor activity of immune cells via IFN-γ induction, making this cytokine a promising candidate for cancer therapy. Targeted expression of IL-12 within tumors has been shown to play a crucial role in tumor eradication. The recent development of oncolytic viruses enables targeted delivery and expression of IL-12 at the tumor site, thereby addressing the systemic toxicities associated with traditional cancer therapy. In this study, we constructed an oncolytic virus, VSVΔ51M, based on the commercially available VSV wild-type backbone and further modified it to express human IL-12. Our preclinical data confirmed the safety and limited toxicity of the modified virus, VSV-Δ51M-hIL-12, supporting its potential use for clinical development.
Collapse
Affiliation(s)
- Rwaa H. Abdulal
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Biological Science, Faculty of Science, King AbdulAziz University, Jeddah, Saudi Arabia
| | - Jana S. Malki
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ezdehar Ghazal
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahdab A. Alsaieedi
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sarah A. Almahboub
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Muhammad Yasir Khan
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Biological Science, Faculty of Science, King AbdulAziz University, Jeddah, Saudi Arabia
| | - Reem M. Alsulaiman
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mazen M. Ghaith
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Turki S. Abujamel
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Magdah Ganash
- Department of Biological Science, Faculty of Science, King AbdulAziz University, Jeddah, Saudi Arabia
| | - Ahmad Bakur Mahmoud
- College of Applied Medical Sciences, Taibah University, Madinah, Saudi Arabia
- Strategic Research and Innovation Laboratories, Taibah University, Madinah, Saudi Arabia
| | - Almohanad A. Alkayyal
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Anwar M. Hashem
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
20
|
Liu Q, Cui F, Liu X, Fu Y, Fang W, Kang X, Lu H, Li S, Liu B, Guo W, Xia Q, Kang L, Jiang F. Association of virome dynamics with mosquito species and environmental factors. MICROBIOME 2023; 11:101. [PMID: 37158937 PMCID: PMC10165777 DOI: 10.1186/s40168-023-01556-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/20/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND The pathogenic viruses transmitted by mosquitoes cause a variety of animal and human diseases and public health concerns. Virome surveillance is important for the discovery, and control of mosquito-borne pathogenic viruses, as well as early warning systems. Virome composition in mosquitoes is affected by mosquito species, food source, and geographic region. However, the complex associations of virome composition remain largely unknown. RESULTS Here, we profiled the high-depth RNA viromes of 15 species of field-caught adult mosquitoes, especially from Culex, Aedes, Anopheles, and Armigeres in Hainan Island from 2018 to 2020. We detected 57 known and 39 novel viruses belonging to 15 families. We established the associations of the RNA viruses with mosquito species and their foods, indicating the importance of feeding acquisition of RNA viruses in determining virome composition. A large fraction of RNA viruses were persistent in the same mosquito species across the 3 years and different locations, showing the species-specific stability of viromes in Hainan Island. In contrast, the virome compositions of single mosquito species in different geographic regions worldwide are visibly distinct. This is consistent with the differences in food sources of mosquitoes distributed broadly across continents. CONCLUSIONS Thus, species-specific viromes in a relatively small area are limited by viral interspecific competition and food sources, whereas the viromes of mosquito species in large geographic regions may be governed by ecological interactions between mosquitoes and local environmental factors. Video Abstract.
Collapse
Affiliation(s)
- Qing Liu
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Feng Cui
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiang Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yumei Fu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- NHC Key Laboratory of Tropical Disease Control, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Wenjing Fang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Xun Kang
- NHC Key Laboratory of Tropical Disease Control, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Hong Lu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Siping Li
- NHC Key Laboratory of Tropical Disease Control, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Biao Liu
- NHC Key Laboratory of Tropical Disease Control, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Wei Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qianfeng Xia
- NHC Key Laboratory of Tropical Disease Control, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, China.
| | - Le Kang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China.
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China.
| | - Feng Jiang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China.
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
21
|
Ito T, Mekata T, Olesen NJ, Lorenzen N. Epitope mapping of the monoclonal antibody IP5B11 used for detection of viral haemorrhagic septicaemia virus facilitated by genome sequencing of carpione novirhabdovirus. Vet Res 2023; 54:35. [PMID: 37069579 PMCID: PMC10111850 DOI: 10.1186/s13567-023-01166-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/29/2023] [Indexed: 04/19/2023] Open
Abstract
The monoclonal antibody (mAb) IP5B11, which is used worldwide for the diagnosis of viral haemorrhagic septicaemia (VHS) in fish, reacts with all genotypes of VHS virus (VHSV). The mAb exceptionally also reacts with the carpione rhabdovirus (CarRV). Following next generation genome sequencing of CarRV and N protein sequence alignment including five kinds of fish novirhabdoviruses, the epitope recognized by mAb IP5B11 was identified. Dot blot analysis confirmed the epitope of mAb IP5B11 to be associated with the region N219 to N233 of the N protein of VHSV. Phylogenetic analysis identified CarRV as a new member of the fish novirhabdoviruses.
Collapse
Affiliation(s)
- Takafumi Ito
- Pathology Division, Fisheries Research Agency, Fisheries Technology Institute, 422-1 Nakatsuhamaura, Minami-Ise, Mie, 516-0193, Japan.
| | - Tohru Mekata
- Pathology Division, Fisheries Research Agency, Fisheries Technology Institute, 422-1 Nakatsuhamaura, Minami-Ise, Mie, 516-0193, Japan
- Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoinooka, Imabari, Ehime, Japan
| | - Niels Jørgen Olesen
- National Institute for Aquatic Resources, Technical University of Denmark, Kemitorvet 202, 2800, Kgs Lyngby, Denmark
| | - Niels Lorenzen
- National Institute for Aquatic Resources, Technical University of Denmark, Kemitorvet 202, 2800, Kgs Lyngby, Denmark
| |
Collapse
|
22
|
Identification of the Coding-Complete Genome Sequence of a Novel Cytorhabdovirus in Tilia cordata Showing Extensive Leaf Chloroses. Microbiol Resour Announc 2023; 12:e0005223. [PMID: 36927006 PMCID: PMC10112207 DOI: 10.1128/mra.00052-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
Here, we report the coding-complete sequence (14,152 nucleotides [nt]) of a novel cytorhabdovirus detected in Tilia cordata and tentatively named cytorhabdovirus tiliae. The assumed genome organization is 3'-N-P-P3-M-G-p6-p6'-L-5'. The N gene encodes the putative nucleoprotein (59.1 kDa), P encodes the phosphoprotein (34.7 kDa), P3 encodes the movement protein (23.1 kDa), M encodes the matrix protein (23.1 kDa), G encodes a glycoprotein (64.4 kDa), and L encodes the viral RNA polymerase (247 kDa). P6 and P6' are overlapping open reading frames (ORFs), which may encode gene products of 7.9 and 9.5 kDa, respectively, of unknown functions.
Collapse
|
23
|
Villan Larios DC, Diaz Reyes BM, Pirovani CP, Loguercio LL, Santos VC, Góes-Neto A, Fonseca PLC, Aguiar ERGR. Exploring the Mycovirus Universe: Identification, Diversity, and Biotechnological Applications. J Fungi (Basel) 2023; 9:jof9030361. [PMID: 36983529 PMCID: PMC10052124 DOI: 10.3390/jof9030361] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 03/18/2023] Open
Abstract
Viruses that infect fungi are known as mycoviruses and are characterized by the lack of an extracellular phase. In recent years, the advances on nucleic acids sequencing technologies have led to a considerable increase in the number of fungi-infecting viral species described in the literature, with a special interest in assessing potential applications as fungal biocontrol agents. In the present study, we performed a comprehensive review using Scopus, Web of Science, and PubMed databases to mine mycoviruses data to explore their molecular features and their use in biotechnology. Our results showed the existence of 267 mycovirus species, of which 189 are recognized by the International Committee on Taxonomy of Viruses (ICTV). The majority of the mycoviruses identified have a dsRNA genome (38.6%), whereas the Botourmiaviridae (ssRNA+) alone represents 14% of all mycoviruses diversity. Regarding fungal hosts, members from the Sclerotinicaeae appeared as the most common species described to be infected by mycoviruses, with 16 different viral families identified so far. It is noteworthy that such results are directly associated with the high number of studies and strategies used to investigate the presence of viruses in members of the Sclerotinicaeae family. The knowledge about replication strategy and possible impact on fungi biology is available for only a small fraction of the mycoviruses studied, which is the main limitation for considering these elements potential targets for biotechnological applications. Altogether, our investigation allowed us to summarize the general characteristics of mycoviruses and their hosts, the consequences, and the implications of this knowledge on mycovirus–fungi interactions, providing an important source of information for future studies.
Collapse
Affiliation(s)
- Diana Carolina Villan Larios
- Department of Biological Sciences, Center for Biotechnology and Genetics, Universidade Estadual de Santa Cruz, Ilhéus 45662-900, Bahia, Brazil; (D.C.V.L.); (B.M.D.R.); (C.P.P.); (L.L.L.)
| | - Brayan Maudiel Diaz Reyes
- Department of Biological Sciences, Center for Biotechnology and Genetics, Universidade Estadual de Santa Cruz, Ilhéus 45662-900, Bahia, Brazil; (D.C.V.L.); (B.M.D.R.); (C.P.P.); (L.L.L.)
| | - Carlos Priminho Pirovani
- Department of Biological Sciences, Center for Biotechnology and Genetics, Universidade Estadual de Santa Cruz, Ilhéus 45662-900, Bahia, Brazil; (D.C.V.L.); (B.M.D.R.); (C.P.P.); (L.L.L.)
| | - Leandro Lopes Loguercio
- Department of Biological Sciences, Center for Biotechnology and Genetics, Universidade Estadual de Santa Cruz, Ilhéus 45662-900, Bahia, Brazil; (D.C.V.L.); (B.M.D.R.); (C.P.P.); (L.L.L.)
| | - Vinícius Castro Santos
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil;
| | - Aristóteles Góes-Neto
- Department of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil;
| | - Paula Luize Camargos Fonseca
- Department of Biological Sciences, Center for Biotechnology and Genetics, Universidade Estadual de Santa Cruz, Ilhéus 45662-900, Bahia, Brazil; (D.C.V.L.); (B.M.D.R.); (C.P.P.); (L.L.L.)
- Department of Genetics, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
- Correspondence: (P.L.C.F.); (E.R.G.R.A.)
| | - Eric Roberto Guimarães Rocha Aguiar
- Department of Biological Sciences, Center for Biotechnology and Genetics, Universidade Estadual de Santa Cruz, Ilhéus 45662-900, Bahia, Brazil; (D.C.V.L.); (B.M.D.R.); (C.P.P.); (L.L.L.)
- Correspondence: (P.L.C.F.); (E.R.G.R.A.)
| |
Collapse
|
24
|
Souto S, Mérour E, Le Coupanec A, Lamoureux A, Bernard J, Brémont M, Millet JK, Biacchesi S. Recombinant viral hemorrhagic septicemia virus with rearranged genomes as vaccine vectors to protect against lethal betanodavirus infection. Front Immunol 2023; 14:1138961. [PMID: 36999033 PMCID: PMC10043230 DOI: 10.3389/fimmu.2023.1138961] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/23/2023] [Indexed: 03/15/2023] Open
Abstract
The outbreaks of viral hemorrhagic septicemia (VHS) and viral encephalopathy and retinopathy (VER) caused by the enveloped novirhabdovirus VHSV, and the non-enveloped betanodavirus nervous necrosis virus (NNV), respectively, represent two of the main viral infectious threats for aquaculture worldwide. Non-segmented negative-strand RNA viruses such as VHSV are subject to a transcription gradient dictated by the order of the genes in their genomes. With the goal of developing a bivalent vaccine against VHSV and NNV infection, the genome of VHSV has been engineered to modify the gene order and to introduce an expression cassette encoding the major protective antigen domain of NNV capsid protein. The NNV Linker-P specific domain was duplicated and fused to the signal peptide (SP) and the transmembrane domain (TM) derived from novirhabdovirus glycoprotein to obtain expression of antigen at the surface of infected cells and its incorporation into viral particles. By reverse genetics, eight recombinant VHSVs (rVHSV), termed NxGyCz according to the respective positions of the genes encoding the nucleoprotein (N) and glycoprotein (G) as well as the expression cassette (C) along the genome, have been successfully recovered. All rVHSVs have been fully characterized in vitro for NNV epitope expression in fish cells and incorporation into VHSV virions. Safety, immunogenicity and protective efficacy of rVHSVs has been tested in vivo in trout (Oncorhynchus mykiss) and sole (Solea senegalensis). Following bath immersion administration of the various rVHSVs to juvenile trout, some of the rVHSVs were attenuated and protective against a lethal VHSV challenge. Results indicate that rVHSV N2G1C4 is safe and protective against VHSV challenge in trout. In parallel, juvenile sole were injected with rVHSVs and challenged with NNV. The rVHSV N2G1C4 is also safe, immunogenic and efficiently protects sole against a lethal NNV challenge, thus presenting a promising starting point for the development of a bivalent live attenuated vaccine candidate for the protection of these two commercially valuable fish species against two major diseases in aquaculture.
Collapse
Affiliation(s)
- Sandra Souto
- Microbiology and Parasitology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- *Correspondence: Stéphane Biacchesi, ; Sandra Souto,
| | - Emilie Mérour
- Université Paris-Saclay, INRAE, UVSQ, Virologie et Immunologie Moléculaires, Jouy-en-Josas, France
| | - Alain Le Coupanec
- Université Paris-Saclay, INRAE, UVSQ, Virologie et Immunologie Moléculaires, Jouy-en-Josas, France
| | - Annie Lamoureux
- Université Paris-Saclay, INRAE, UVSQ, Virologie et Immunologie Moléculaires, Jouy-en-Josas, France
| | - Julie Bernard
- Université Paris-Saclay, INRAE, UVSQ, Virologie et Immunologie Moléculaires, Jouy-en-Josas, France
| | - Michel Brémont
- Université Paris-Saclay, INRAE, UVSQ, Virologie et Immunologie Moléculaires, Jouy-en-Josas, France
| | - Jean K. Millet
- Université Paris-Saclay, INRAE, UVSQ, Virologie et Immunologie Moléculaires, Jouy-en-Josas, France
| | - Stéphane Biacchesi
- Université Paris-Saclay, INRAE, UVSQ, Virologie et Immunologie Moléculaires, Jouy-en-Josas, France
- *Correspondence: Stéphane Biacchesi, ; Sandra Souto,
| |
Collapse
|
25
|
Medberry AN, Srivastava A, Diaz-Lara A, Rwahnih MA, Villamor DEV, Tzanetakis IE. A Novel, Divergent Member of the Rhabdoviridae Family Infects Strawberry. PLANT DISEASE 2023; 107:620-623. [PMID: 35857372 DOI: 10.1094/pdis-05-22-1078-sc] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Strawberry (Fragaria × ananassa) is the most important berry crop worldwide and viruses pose a constant threat to the industry. In this communication, we describe a novel virus in the family Rhabdoviridae referred to as strawberry virus 3 (StrV-3). The virus does not show significant homology when compared with recognized rhabdoviruses and, therefore, the establishment of a new genus should be considered. A triplex reverse-transcription PCR test was developed and successfully employed in a survey of the National Clonal Germplasm Repository Fragaria collection. A CRISPR-Cas-based protocol was also developed and shown to detect the virus in as little as 1 fg of total RNA, a protocol to be used in the detection of the virus in candidate G1 plants. The strawberry aphid (Chaetosiphon fragaefolii) was evaluated-alas, unsuccessfully-as a potential vector of the virus. This work broadens our understanding of the family Rhabdoviridae and assists in the quest of releasing plant material free of viruses.
Collapse
Affiliation(s)
- Ava N Medberry
- Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville, AR 72701, U.S.A
| | - Ashish Srivastava
- Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville, AR 72701, U.S.A
- Amity Institute of Virology & Immunology, Amity University Uttar Pradesh, Sector 125, Noida, UP 284403, India
| | - Alfredo Diaz-Lara
- School of Engineering and Sciences, Tecnologico de Monterrey, Campus Queretaro, Queretaro 76130, Mexico
- Department of Plant Pathology, University of California-Davis, Davis, CA 95616, U.S.A
| | - Maher Al Rwahnih
- Department of Plant Pathology, University of California-Davis, Davis, CA 95616, U.S.A
| | - Dan E V Villamor
- Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville, AR 72701, U.S.A
| | - Ioannis E Tzanetakis
- Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville, AR 72701, U.S.A
| |
Collapse
|
26
|
Yang Z, Wang H, Yang S, Wang X, Shen Q, Ji L, Zeng J, Zhang W, Gong H, Shan T. Virome diversity of ticks feeding on domestic mammals in China. Virol Sin 2023; 38:208-221. [PMID: 36781125 PMCID: PMC10176445 DOI: 10.1016/j.virs.2023.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 02/08/2023] [Indexed: 02/13/2023] Open
Abstract
Ticks are considered the second most common pathogen vectors transmitting a broad range of vital human and veterinary viruses. From 2017 to 2018, 640 ticks were collected in eight different provinces in central and western China. Six species were detected, including H.longicornis, De.everestianus, Rh.microplus, Rh.turanicus, Rh.sanguineous, and Hy.asiaticum. Sixty-four viral metagenomic libraries were constructed on the MiSeq Illumina platform, resulting in 13.44 G (5.88 × 107) of 250-bp-end reads, in which 2,437,941 are viral reads. We found 27 nearly complete genome sequences, including 16 genome sequences encoding entire protein-coding regions (lack of 3' or 5' end non-coding regions) and complete viral genomes, distributed in the arboviral family (Chuviridae, Rhabdoviridae, Nairoviridae, Phenuiviridae, Flaviviridae, Iflaviridae) as well as Parvoviridae and Polyomaviridae that cause disease in mammals and even humans. In addition, 13 virus sequences found in Chuviridae, Nairoviridae, Flaviviridae, Iflaviridae, Hepeviridae, Parvoviridae, and Polyomaviridae were identified as belonging to a new virus species in the identified viral genera. Besides, an epidemiological survey shows a high prevalence (9.38% and 15.63%) of two viruses (Ovine Copiparvovirus and Bovine parvovirus 2) in the tick cohort.
Collapse
Affiliation(s)
- Zijun Yang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China; Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, 212013, China; Center of Clinical Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Hao Wang
- Department of Clinical Laboratory, Huai'an Hospital, Xuzhou Medical University, Huai'an, 223002, China
| | - Shixing Yang
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Xiaochun Wang
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Quan Shen
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Likai Ji
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Jian Zeng
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Wen Zhang
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, 212013, China.
| | - Haiyan Gong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| | - Tongling Shan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| |
Collapse
|
27
|
Liu X, Zhang X, Xu Z, Huang Z, Zhong J, Zhu Y, Wei Y. Recovery of Siniperca chuatsi rhabdovirus from cloned cDNA. JOURNAL OF FISH DISEASES 2023; 46:127-135. [PMID: 36321410 DOI: 10.1111/jfd.13726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Siniperca chuatsi rhabdovirus (SCRV) is an important pathogen that infects mandarin fish. A reverse genetics system is an important technical platform for virus research. In this study, the minigenome in which the enhanced green fluorescent protein gene is flanked by the viral genomic ends of SCRV and transcribed using a T7 promoter-terminator cassette was constructed. Co-transfection of the minigenome construct with SCRV-supporting plasmids of N, P, and L in BSRT7 cells resulted in the expression of the reporter gene. Transcription of a positive-strand RNA copy from cDNA of the SCRV genome along with the viral N, P, and L proteins resulted in the recovery of infectious SCRV in cells. Viral titre up to 108 PFU/ml was achieved. Recombinant SCRV was verified by the detection of a unique restriction site engineered into the SCRV genome. The phenotypes of the recombinant SCRV and the parental virus were evaluated by plaque size, replication kinetics in vitro, and pathogenicity in vivo. The recovered SCRV from cDNA showed similar phenotypes compared to the parental virus. The established reverse genetics system is of great significance and value for the functional genome study of SCRV and for laying a foundation for the development of the viral vector and SCRV vaccine.
Collapse
Affiliation(s)
- Xiaoyu Liu
- School of Medicine, Shaoxing University, Shaoxing, China
| | - Xiaodong Zhang
- School of Life Sciences, Shaoxing University, Shaoxing, China
| | - Zhendong Xu
- School of Medicine, Shaoxing University, Shaoxing, China
| | - Zhiyang Huang
- School of Medicine, Shaoxing University, Shaoxing, China
| | - Junyao Zhong
- School of Medicine, Shaoxing University, Shaoxing, China
| | - Yinzhi Zhu
- School of Medicine, Shaoxing University, Shaoxing, China
| | - Yongwei Wei
- School of Medicine, Shaoxing University, Shaoxing, China
| |
Collapse
|
28
|
Mifsud JCO, Gallagher RV, Holmes EC, Geoghegan JL. Transcriptome Mining Expands Knowledge of RNA Viruses across the Plant Kingdom. J Virol 2022; 96:e0026022. [PMID: 35638822 PMCID: PMC9769393 DOI: 10.1128/jvi.00260-22] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/24/2022] [Indexed: 01/07/2023] Open
Abstract
Our current understanding of plant viruses stems largely from those affecting economically important plants. Yet plant species in cultivation represent a small and biased subset of the plant kingdom. Here, we describe virus diversity and abundance in 1,079 transcriptomes from species across the breadth of the plant kingdom (Archaeplastida) by analyzing open-source data from the 1000 Plant Transcriptomes Initiative (1KP). We identified 104 potentially novel viruses, of which 40% were single-stranded positive-sense RNA viruses across eight orders, including members of the Hepelivirales, Tymovirales, Cryppavirales, Martellivirales, and Picornavirales. One-third of the newly described viruses were double-stranded RNA viruses from the orders Durnavirales and Ghabrivirales. The remaining were negative-sense RNA viruses from the Rhabdoviridae, Aspiviridae, Yueviridae, and Phenuiviridae and the newly proposed Viridisbunyaviridae. Our analysis considerably expands the known host range of 13 virus families to include lower plants (e.g., Benyviridae and Secoviridae) and 4 virus families to include alga hosts (e.g., Tymoviridae and Chrysoviridae). More broadly, however, a cophylogeny analysis revealed that the evolutionary history of these families is largely driven by cross-species transmission events. The discovery of the first 30-kDa movement protein in a nonvascular plant suggests that the acquisition of plant virus movement proteins occurred prior to the emergence of the plant vascular system. Together, these data highlight that numerous RNA virus families are associated with older evolutionary plant lineages than previously thought and that the apparent scarcity of RNA viruses found in lower plants likely reflects a lack of investigation rather than their absence. IMPORTANCE Our knowledge of plant viruses is mainly limited to those infecting economically important host species. In particular, we know little about those viruses infecting basal plant lineages such as the ferns, lycophytes, bryophytes, and charophytes. To expand this understanding, we conducted a broad-scale viral survey of species across the breadth of the plant kingdom. We found that basal plants harbor a wide diversity of RNA viruses, including some that are sufficiently divergent to likely compose a new virus family. The basal plant virome revealed offers key insights into the evolutionary history of core plant virus gene modules and genome segments. More broadly, this work emphasizes that the scarcity of viruses found in these species to date most likely reflects the limited research in this area.
Collapse
Affiliation(s)
- Jonathon C. O. Mifsud
- Sydney Institute for Infectious Diseases, School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
- School of Natural Sciences, Macquarie University, North Ryde, New South Wales, Australia
| | - Rachael V. Gallagher
- School of Natural Sciences, Macquarie University, North Ryde, New South Wales, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Edward C. Holmes
- Sydney Institute for Infectious Diseases, School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Jemma L. Geoghegan
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Institute of Environmental Science and Research, Wellington, New Zealand
| |
Collapse
|
29
|
Siniperca chuatsi Rhabdovirus (SCRV)-Induced Key Pathways and Major Antiviral Genes in Fish Cells. Microorganisms 2022; 10:microorganisms10122464. [PMID: 36557717 PMCID: PMC9788611 DOI: 10.3390/microorganisms10122464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/01/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
Fish rhabdoviruses, including Siniperca chuatsi rhabdovirus (SCRV), are epidemic pathogens that harm fish aquaculture. To clarify the interactions between SCRV and its host and explore antiviral targets, the present study performed transcriptome analysis in a cultured S. chuatsi skin cell line (SCSC) after SCRV infection at 3, 12, 24, and 36 h post-infection (hpi). Comparison with control obtained 38, 353, 896, and 1452 differentially expressed genes (DEGs) in the detected time points, respectively. Further analysis of the Go terms and KEGG pathways revealed the key pathways "Cytokine-cytokine receptor interaction" and "interferon related pathways" in SCSC cells responding to SCRV infection. The significantly up-regulated genes in the pathways were also verified by qPCR. Furthermore, gene cloning and overexpression revealed that five interferon-stimulated genes (ISGs) IFI4407, IFI35, Viperin, IFIT1, and IFIT5 had the ability to inhibit SCRV replication in FHM (Fathead minnow) cells, especially an inhibition efficiency more than 50% was observed in IFI35 overexpressed cells. In summary, current study revealed the main innate immune pathways in S. chuatsi cells induced by SCRV infection and the major ISGs of S. chuatsi in controlling SCRV replication.
Collapse
|
30
|
A Novel Rhabdovirus Associated with the Idaho Population of Potato Cyst Nematode Globodera pallida. Viruses 2022; 14:v14122718. [PMID: 36560722 PMCID: PMC9783950 DOI: 10.3390/v14122718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Globodera pallida, a potato cyst nematode (PCN), is a quarantine endoparasitic pest of potato (Solanum tuberosum) in the US due to its effects on yield and quality of potato tubers. A new rhabdovirus, named potato cyst nematode rhabdovirus (PcRV), was revealed and characterized in the G. pallida populations collected in Idaho through use of high-throughput sequencing (HTS) and RT-PCR and found to be most closely related to soybean cyst nematode rhabdovirus (ScRV). PcRV has a 13,604 bp long, single-stranded RNA genome encoding five open reading frames, including four rhabdovirus-specific genes, N, P, G, and L, and one unknown gene. PcRV was found present in eggs, invasive second-stage juveniles, and parasitic females of G. pallida, implying a vertical transmission mode. RT-PCR and partial sequencing of PcRV in laboratory-reared G. pallida populations maintained over five years suggested that the virus is highly persistent and genetically stable. Two other Globodera spp. reproducing on potato and reported in the US, G. rostochiensis and G. ellingtonae, tested negative for PcRV presence. To the best of our knowledge, PcRV is the first virus experimentally found infecting G. pallida. Based on their similar genome organizations, the phylogeny of their RNA-dependent RNA polymerase domains (L gene), and relatively high identity levels in their protein products, PcRV and ScRV are proposed to form a new genus, provisionally named "Gammanemrhavirus", within the family Rhabdoviridae.
Collapse
|
31
|
Tangudu CS, Hargett AM, Laredo-Tiscareño SV, Smith RC, Blitvich BJ. Isolation of a novel rhabdovirus and detection of multiple novel viral sequences in Culex species mosquitoes in the United States. Arch Virol 2022; 167:2577-2590. [PMID: 36056958 DOI: 10.1007/s00705-022-05586-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/21/2022] [Indexed: 12/14/2022]
Abstract
To increase our understanding of the diversity of the mosquito virome, 6956 mosquitoes of five species (Culex erraticus, Culex pipiens, Culex restuans, Culex tarsalis, and Culex territans) collected in Iowa in the United States in 2017 and 2020 were assayed for novel viruses by performing polyethylene glycol precipitation, virus isolation in cell culture, and unbiased high-throughput sequencing. A novel virus, provisionally named "Walnut Creek virus", was isolated from Cx. tarsalis, and its genomic sequence and organization are characteristic of viruses in the genus Hapavirus (family Rhabdoviridae). Replication of Walnut Creek virus occurred in avian, mammalian, and mosquito, but not tick, cell lines. A novel virus was also isolated from Cx. restuans, and partial genome sequencing revealed that it is distantly related to an unclassified virus of the genus Phytoreovirus (family Sedoreoviridae). Two recognized viruses were also isolated: Culex Y virus (family Birnaviridae) and Houston virus (family Mesoniviridae). We also identified sequences of eight novel viruses from six families (Amalgaviridae, Birnaviridae, Partitiviridae, Sedoreoviridae, Tombusviridae, and Totiviridae), two viruses that do not belong to any established families, and many previously recognized viruses. In summary, we provide evidence of multiple novel and recognized viruses in Culex spp. mosquitoes in the United States.
Collapse
Affiliation(s)
- Chandra S Tangudu
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA
| | - Alissa M Hargett
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA
| | - S Viridiana Laredo-Tiscareño
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA
| | - Ryan C Smith
- Department of Entomology, College of Agriculture and Life Sciences, Iowa State University, Ames, IA, USA
| | - Bradley J Blitvich
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
32
|
Guo C, Ye Z, Hu B, Shan S, Chen J, Sun Z, Li J, Wei Z. The Characterization of Three Novel Insect-Specific Viruses Discovered in the Bean Bug, Riptortus pedestris. Viruses 2022; 14:v14112500. [PMID: 36423109 PMCID: PMC9696879 DOI: 10.3390/v14112500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 11/16/2022] Open
Abstract
Insect-specific virus (ISV) is one of the most promising agents for the biological control of insects, which is abundantly distributed in hematophagous insects. However, few ISVs have been reported in Riptortus pedestris (Fabricius), one of the major pests threatening soybeans and causing great losses in yield and quality. In this work, field Riptortus pedestris was collected from six soybean-producing regions in China, and their virome was analyzed with the metatranscriptomic approach. Altogether, seven new insect RNA viruses were identified, three of which had complete RNA-dependent RNA polymerase (RdRp) and nearly full-length genome sequences, which were named Riptortus pedestris alphadrosrha-like virus 1 (RpALv1), Riptortus pedestris alphadrosrha-like virus 2 (RpALv2) and Riptortus pedestris almendra-like virus (RiALv). The three identified novel ISVs belonged to the family Rhabdoviridae, and phylogenetic tree analysis indicated that they were clustered into new distinct clades. Interestingly, the analysis of virus-derived small-interfering RNAs (vsiRNAs) indicated that only RiALv-derived siRNAs exhibited 22 nt length preference, whereas no clear 21 or 22 nt peaks were observed for RpALv1 and RpALv2, suggesting the complexity of siRNA-based antiviral immunity in R. pedestris. In conclusion, this study contributes to a better understanding of the microenvironment in R. pedestris and provides viral information for the development of potential soybean insect-specific biocontrol agents.
Collapse
|
33
|
Medberry A, Tzanetakis IE. Identification, Characterization, and Detection of a Novel Strawberry Cytorhabdovirus. PLANT DISEASE 2022; 106:2784-2787. [PMID: 36176214 DOI: 10.1094/pdis-11-21-2449-sc] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In 2020, a novel agent was discovered in strawberry, a rhabdovirus closely related to lettuce necrotic yellows virus. The new virus, named strawberry virus 2 (StrV-2), was discovered in an accession of the Fragaria virus collection of the National Clonal Germplasm Repository (NCGR), and for this reason, it was studied in-depth. The complete StrV-2 genome was obtained and investigated in silico. Transmission was assessed using two aphid species whereas a multiplex RT-PCR test targeting plant and virus genes was developed and used to screen the NCGR Fragaria virus collection.
Collapse
Affiliation(s)
- Ava Medberry
- Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville, AR 72701
| | - Ioannis E Tzanetakis
- Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville, AR 72701
| |
Collapse
|
34
|
Lyssavirus P Protein Isoforms Diverge Significantly in Subcellular Interactions Underlying Mechanisms of Interferon Antagonism. J Virol 2022; 96:e0139622. [PMID: 36222519 PMCID: PMC9599249 DOI: 10.1128/jvi.01396-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Viral hijacking of microtubule (MT)-dependent transport is well understood, but several viruses also express discrete MT-associated proteins (vMAPs), potentially to modulate MT-dependent processes in the host cell. Specific roles for vMAP-MT interactions include subversion of antiviral responses by P3, an isoform of the P protein of rabies virus (RABV; genus Lyssavirus), which mediates MT-dependent antagonism of interferon (IFN)-dependent signal transducers and activators of transcription 1 (STAT1) signaling. P3 also undergoes nucleocytoplasmic trafficking and inhibits STAT1-DNA binding, indicative of intranuclear roles in a multipronged antagonistic strategy. MT association/STAT1 antagonist functions of P3 correlate with pathogenesis, indicating potential as therapeutic targets. However, key questions remain, including whether other P protein isoforms interact with MTs, the relationship of these interactions with pathogenesis, and the extent of conservation of P3-MT interactions between diverse pathogenic lyssaviruses. Using super-resolution microscopy, live-cell imaging, and immune signaling analyses, we find that multiple P protein isoforms associate with MTs and that association correlates with pathogenesis. Furthermore, P3 proteins from different lyssaviruses exhibit variation in intracellular localization phenotypes that are associated with STAT1 antagonist function, whereby P3-MT association is conserved among lyssaviruses of phylogroup I but not phylogroup II, while nucleocytoplasmic localization varies between P3 proteins of the same phylogroup within both phylogroup I and II. Nevertheless, the divergent P3 proteins retain significant IFN antagonist function, indicative of adaptation to favor different inhibitory mechanisms, with MT interaction important to phylogroup I viruses. IMPORTANCE Lyssaviruses, including rabies virus, cause rabies, a progressive encephalomyelitis that is almost invariably fatal. There are no effective antivirals for symptomatic infection, and effective application of current vaccines is limited in areas of endemicity, such that rabies causes ~59,000 deaths per year. Viral subversion of host cell functions, including antiviral immunity, is critical to disease, and isoforms of the lyssavirus P protein are central to the virus-host interface underpinning immune evasion. Here, we show that specific cellular interactions of P protein isoforms involved in immune evasion vary significantly between different lyssaviruses, indicative of distinct strategies to evade immune responses. These findings highlight the diversity of the virus-host interface, an important consideration in the development of pan-lyssavirus therapeutic approaches.
Collapse
|
35
|
Meng XY, Wang ZH, Yu XD, Zhang QY, Ke F. Development and characterization of a skin cell line from Chinese perch (Siniperca chuatsi) and its application in aquatic animal viruses. JOURNAL OF FISH DISEASES 2022; 45:1439-1449. [PMID: 35762824 DOI: 10.1111/jfd.13673] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Chinese perch (Siniperca chuatsi), an important fish for the aquaculture industry of China, is often affected by viral diseases. A stable and sensitive cell line can play an important role in virus identification and isolation, functional gene identification, virus pathogenic mechanism and antiviral immunity study. In the present study, a new cell line (S. chuatsi skin cell, SCSC) derived from the skin of S. chuatsi was established. The SCSC mainly consisted of fibroblastic-like cells, which grew well in M199 medium supplemented with 10% foetal bovine serum at 25°C. Chromosome analysis revealed that the SCSC (44%) has a diploid chromosome number of 2n = 48. The SCSC can be transfected and expressed exogenous gene efficiently. It also showed high sensitivity to several aquatic animal viruses from different families including Rhabdoviridae, Iridoviridae and Reoviridae. In addition, RT-PCR showed that S. chuatsi rhabdovirus (SCRV) started genome replication as early as 3 h post infection in the cells, which also induced the up-regulation of a variety of immune-related genes including these related to interleukin family, pattern recognition receptors, JAK-STAT pathway and interferon regulatory factors. In summary, current study provided a new tool in research of fish viruses and its interaction with host.
Collapse
Affiliation(s)
- Xian-Yu Meng
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Modern Agriculture Sciences, University of the Chinese Academy of Sciences, Beijing, China
| | - Zi-Hao Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Modern Agriculture Sciences, University of the Chinese Academy of Sciences, Beijing, China
| | - Xue-Dong Yu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Qi-Ya Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- The Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Fei Ke
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- The Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
36
|
Kondo H, Botella L, Suzuki N. Mycovirus Diversity and Evolution Revealed/Inferred from Recent Studies. ANNUAL REVIEW OF PHYTOPATHOLOGY 2022; 60:307-336. [PMID: 35609970 DOI: 10.1146/annurev-phyto-021621-122122] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
High-throughput virome analyses with various fungi, from cultured or uncultured sources, have led to the discovery of diverse viruses with unique genome structures and even neo-lifestyles. Examples in the former category include splipalmiviruses and ambiviruses. Splipalmiviruses, related to yeast narnaviruses, have multiple positive-sense (+) single-stranded (ss) RNA genomic segments that separately encode the RNA-dependent RNA polymerase motifs, the hallmark of RNA viruses (members of the kingdom Orthornavirae). Ambiviruses appear to have an undivided ssRNA genome of 3∼5 kb with two large open reading frames (ORFs) separated by intergenic regions. Another narna-like virus group has two fully overlapping ORFs on both strands of a genomic segment that span more than 90% of the genome size. New virus lifestyles exhibited by mycoviruses include the yado-kari/yado-nushi nature characterized by the partnership between the (+)ssRNA yadokarivirus and an unrelated dsRNA virus (donor of the capsid for the former) and the hadaka nature of capsidless 10-11 segmented (+)ssRNA accessible by RNase in infected mycelial homogenates. Furthermore, dsRNA polymycoviruses with phylogenetic affinity to (+)ssRNA animal caliciviruses have been shown to be infectious as dsRNA-protein complexes or deproteinized naked dsRNA. Many previous phylogenetic gaps have been filled by recently discovered fungal and other viruses, which haveprovided interesting evolutionary insights. Phylogenetic analyses and the discovery of natural and experimental cross-kingdom infections suggest that horizontal virus transfer may have occurred and continue to occur between fungi and other kingdoms.
Collapse
Affiliation(s)
- Hideki Kondo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan;
| | - Leticia Botella
- Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University, Brno, Czech Republic
| | - Nobuhiro Suzuki
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan;
| |
Collapse
|
37
|
Jin Y, Bergmann SM, Mai Q, Yang Y, Liu W, Sun D, Chen Y, Yu Y, Liu Y, Cai W, Dong H, Li H, Yu H, Wu Y, Lai M, Zeng W. Simultaneous Isolation and Identification of Largemouth Bass Virus and Rhabdovirus from Moribund Largemouth Bass ( Micropterus salmoides). Viruses 2022; 14:v14081643. [PMID: 36016264 PMCID: PMC9415833 DOI: 10.3390/v14081643] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 02/04/2023] Open
Abstract
Largemouth bass is an important commercially farmed fish in China, but the rapid expansion of its breeding has resulted in increased incidence of diseases caused by bacteria, viruses and parasites. In this study, moribund largemouth bass containing ulcer foci on body surfaces indicated the most likely pathogens were iridovirus and rhabdovirus members and this was confirmed using a combination of immunohistochemistry, cell culture, electron microscopy and conserved gene sequence analysis. We identified that these fish had been co-infected with these viruses. We observed bullet-shaped virions (100−140 nm long and 50−100 nm in diameter) along with hexagonal virions with 140 nm diameters in cell culture inoculated with tissue homogenates. The viruses were plaque purified and a comparison of the highly conserved regions of the genome of these viruses indicated that they are most similar to largemouth bass virus (LMBV) and hybrid snakehead rhabdovirus (HSHRV), respectively. Regression infection experiments indicated fish mortalities for LMBV-FS2021 and HSHRV-MS2021 were 86.7 and 11.1%, respectively. While co-infection resulted in 93.3% mortality that was significantly (p < 0.05) higher than the single infections even though the viral loads differed by >100-fold. Overall, we simultaneously isolated and identified LMBV and a HSHRV-like virus from diseased largemouth bass, and our results can provide novel ideas for the prevention and treatment of combined virus infection especially in largemouth bass.
Collapse
Affiliation(s)
- Yuqi Jin
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528231, China; (Y.J.); (Q.M.); (Y.Y.); (W.L.); (D.S.); (Y.C.); (Y.Y.); (Y.L.); (H.D.); (H.L.); (H.Y.)
| | - Sven M. Bergmann
- Institute of Infectology, Friedrich-Loffler-Institut (FLI), Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-InselRiems, Germany;
| | - Qianyi Mai
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528231, China; (Y.J.); (Q.M.); (Y.Y.); (W.L.); (D.S.); (Y.C.); (Y.Y.); (Y.L.); (H.D.); (H.L.); (H.Y.)
| | - Ying Yang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528231, China; (Y.J.); (Q.M.); (Y.Y.); (W.L.); (D.S.); (Y.C.); (Y.Y.); (Y.L.); (H.D.); (H.L.); (H.Y.)
| | - Weiqiang Liu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528231, China; (Y.J.); (Q.M.); (Y.Y.); (W.L.); (D.S.); (Y.C.); (Y.Y.); (Y.L.); (H.D.); (H.L.); (H.Y.)
| | - Dongli Sun
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528231, China; (Y.J.); (Q.M.); (Y.Y.); (W.L.); (D.S.); (Y.C.); (Y.Y.); (Y.L.); (H.D.); (H.L.); (H.Y.)
| | - Yanfeng Chen
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528231, China; (Y.J.); (Q.M.); (Y.Y.); (W.L.); (D.S.); (Y.C.); (Y.Y.); (Y.L.); (H.D.); (H.L.); (H.Y.)
| | - Yingying Yu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528231, China; (Y.J.); (Q.M.); (Y.Y.); (W.L.); (D.S.); (Y.C.); (Y.Y.); (Y.L.); (H.D.); (H.L.); (H.Y.)
| | - Yuhong Liu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528231, China; (Y.J.); (Q.M.); (Y.Y.); (W.L.); (D.S.); (Y.C.); (Y.Y.); (Y.L.); (H.D.); (H.L.); (H.Y.)
| | - Wenlong Cai
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong 999077, China;
| | - Hanxu Dong
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528231, China; (Y.J.); (Q.M.); (Y.Y.); (W.L.); (D.S.); (Y.C.); (Y.Y.); (Y.L.); (H.D.); (H.L.); (H.Y.)
| | - Hua Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528231, China; (Y.J.); (Q.M.); (Y.Y.); (W.L.); (D.S.); (Y.C.); (Y.Y.); (Y.L.); (H.D.); (H.L.); (H.Y.)
| | - Hui Yu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528231, China; (Y.J.); (Q.M.); (Y.Y.); (W.L.); (D.S.); (Y.C.); (Y.Y.); (Y.L.); (H.D.); (H.L.); (H.Y.)
| | - Yali Wu
- Foshan Institute of Agricultural Sciences, Guangdong, Foshan 528145, China; (Y.W.); (M.L.)
| | - Mingjian Lai
- Foshan Institute of Agricultural Sciences, Guangdong, Foshan 528145, China; (Y.W.); (M.L.)
| | - Weiwei Zeng
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528231, China; (Y.J.); (Q.M.); (Y.Y.); (W.L.); (D.S.); (Y.C.); (Y.Y.); (Y.L.); (H.D.); (H.L.); (H.Y.)
- Correspondence: ; Tel.: +86-(0757)-83962672
| |
Collapse
|
38
|
Li J, Shang Q, Liu Y, Dai W, Li X, Wei S, Hu G, McNeill MR, Ban L. Occurrence, Distribution, and Transmission of Alfalfa Viruses in China. Viruses 2022; 14:1519. [PMID: 35891498 PMCID: PMC9316278 DOI: 10.3390/v14071519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/30/2022] [Accepted: 07/02/2022] [Indexed: 02/05/2023] Open
Abstract
Alfalfa (Medicago sativa L.) is one of the most important quality forages worldwide and is cultivated throughout China. Alfalfa is susceptible to a variety of viral diseases during its growth, which has caused huge amounts of commercial losses. However, the profile of the alfalfa virus in China remains ambiguous and the viruses transmitted by Odontothrips loti (Haliday), dominant insect pests in alfalfa, are also poorly understood. In the present study, virus diversity was investigated in the primary alfalfa-growing areas in China. A total of 18 alfalfa viruses were identified through RNA-sequencing (RNA-seq) and reverse transcription-polymerase chain reaction (RT-PCR). Two new plant viruses, Medicago sativa virus 1 (MsV1) and Medicago sativa luteovirus 1 (MsLV1), were detected for the first time. Another four viruses, including the Alfalfa ringspot-associated virus (ARaV), Alfalfa virus F (AVF), Alfalfa enamovirus 1 (AEV1), and Alfalfa deltaparitivirus (ADPV), were reported in China for the first time as well. Both Alfalfa mosaic virus (AMV) and Medicago sativa alphapartitivirus 2 (MsAPV2) are the dominant pathogens, with an infection incidence of 91.7-100%, and 74.4-97.2%, respectively. Additionally, O. loti with first- and second-instar nymphs were shown to acquire the AMV within 0.25 h of feeding on a virus-infected alfalfa. Transmission by thrips to healthy alfalfa plants was also demonstrated. Additionally, we clarified the dynamic changes in the AMV in pre-adult stages of O. loti, which indicated that the AMV is propagated in the nymph stage of O. loti. These findings provide valuable information for understanding the alfalfa virome, confirm the role thrips O. loti plays in alfalfa virus transmission, and improve our fundamental knowledge and management of diseases in China.
Collapse
Affiliation(s)
- Jin Li
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China; (J.L.); (Y.L.); (W.D.); (X.L.)
| | - Qiaoxia Shang
- College of Bioscience and Resources Environment, Beijing University of Agriculture, Beijing 100096, China;
| | - Yanqi Liu
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China; (J.L.); (Y.L.); (W.D.); (X.L.)
| | - Wenting Dai
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China; (J.L.); (Y.L.); (W.D.); (X.L.)
| | - Xin Li
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China; (J.L.); (Y.L.); (W.D.); (X.L.)
| | - Shuhua Wei
- Institute of Plant Protection, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China;
| | - Guixin Hu
- Pratacultural College, Gansu Agricultural University, Lanzhou 730070, China;
| | - Mark Richard McNeill
- Resilient Agriculture Innovative Centre of Excellence, AgResearch, Ltd., Lincoln 7674, New Zealand;
| | - Liping Ban
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China; (J.L.); (Y.L.); (W.D.); (X.L.)
| |
Collapse
|
39
|
RABIES IN ARCTIC FOX (VULPES LAGOPUS) AND REINDEER (RANGIFER TARANDUS PLATYRHYNCHUS) DURING AN OUTBREAK ON SVALBARD, NORWAY, 2011-12. J Wildl Dis 2022; 58:550-561. [PMID: 35666850 DOI: 10.7589/jwd-d-21-00112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 02/21/2022] [Indexed: 11/20/2022]
Abstract
Rabies is an important zoonotic disease with high fatality rates in animals and humans. In the Arctic, the Arctic fox (Vulpes lagopus) is regarded as the principal reservoir, but there is considerable debate about how the disease persists at the low population densities that are typical for this species. We describe an outbreak of rabies among Arctic foxes and Svalbard reindeer (Rangifer tarandus platyrhynchus) during 2011-12 on the remote Arctic archipelago of Svalbard, an area with a very low and relatively stable Arctic fox density. The aim of the research was to increase knowledge of Arctic rabies in this ecosystem and in the presumed spillover host, the Svalbard reindeer. Phylogenetic analysis of rabies virus (RABV) RNA isolates from Arctic fox and reindeer was performed, and clinical observations and histologic and immunohistochemical findings in reindeer were described. An ongoing capture-mark-recapture project allowed collection of serum samples from clinically healthy reindeer from the affected population for detection of rabies virus-neutralizing antibodies. The outbreak was caused by at least two different variants belonging to the RABV Arctic-2 and Arctic-3 clades, which suggests that rabies was introduced to Svalbard on at least two different occasions. The RABV variants found in Arctic fox and reindeer were similar within locations, suggesting that Arctic foxes and reindeer acquired the infection from the same source(s). The histopathologic and immunohistochemical findings in 10 reindeer were consistent with descriptions in other species infected with RABV of non-Arctic lineages. Evidence of RABV was detected in both brain and salivary gland samples. None of 158 examined serum samples from clinically healthy reindeer had virus-neutralizing antibodies against RABV.
Collapse
|
40
|
Wu Q, Yang Z, Lu Z, Mi S, Feng Y, He B, Zhu G, Gong W, Tu C. Identification of two novel ephemeroviruses in pigs infected by classical swine fever virus. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 100:105273. [PMID: 35321840 DOI: 10.1016/j.meegid.2022.105273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 03/07/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Ephemeroviruses are arthropod-borne rhabdoviruses within Ephemerovirus genus and have been isolated exclusively from cattle and haematophagous arthropods (mosquitoes and biting midges) without any member detected or isolated up to date from pigs, although some serological surveys have indicated that pigs may be a silent host for ephemerovirus infection. Here, many viral reads annotated to, but genetically distinct from, the existing members within the Ephemerovirus genus have been identified in the meta-transcriptomic data of two clinical classical swine fever virus (CSFV)-infected samples (HeN10 and GDMM7). The nearly complete genome sequences of the two novel ephemeroviruses have been obtained through contig assembly, specific RT-PCR and sequencing, therefore named as porcine ephemeroviruses (PoEVs). Genome nucleotide sequence analysis showed that PoEV strains HeN10 and GDMM7 have similar genome organization and 66.5% genomic identity to each other, but both are genetically distant from all members of the Ephemerovirus genus with identity being only 51.1-59.6%. Furthermore, comparison of the most conserved ephemeroviral proteins N and L indicated that PoEV strains HeN10 and GDMM7 share a high sequence identity to each other (N: 78.1%; L: 70.7%), but are diverged from the known ephemeroviruses (N: 43.4-60.7%; L: 47.6-58.5%). The genetic distance is significantly beyond the criteria for demarcation of viruses assigned to different ephemerovirus species. Thereby, two novel viruses named as PoEV1 (strain HeN10) and PoEV2 (strain GDMM7) are identified and these appear to represent two new species within the Ephemerovirus genus. The present study showed the first genome evidence of pig ephemeroviruses, likely expanding the known host range of ephemerovirus.
Collapse
Affiliation(s)
- Qingqing Wu
- College of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; State Key Laboratory of Human and Animal Zoonotic Infectious Diseases, Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Zhe Yang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; State Key Laboratory of Human and Animal Zoonotic Infectious Diseases, Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Zongji Lu
- College of Life Sciences and Engineering, Foshan University, Foshan 528000, China
| | - Shijiang Mi
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; State Key Laboratory of Human and Animal Zoonotic Infectious Diseases, Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Ye Feng
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Biao He
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Guoqiang Zhu
- College of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Wenjie Gong
- State Key Laboratory of Human and Animal Zoonotic Infectious Diseases, Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Changchun Tu
- College of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; State Key Laboratory of Human and Animal Zoonotic Infectious Diseases, Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| |
Collapse
|
41
|
Walker PJ, Bigarré L, Kurath G, Dacheux L, Pallandre L. Revised Taxonomy of Rhabdoviruses Infecting Fish and Marine Mammals. Animals (Basel) 2022; 12:ani12111363. [PMID: 35681827 PMCID: PMC9179924 DOI: 10.3390/ani12111363] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/15/2022] [Accepted: 05/24/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The Rhabdoviridae is a family of viruses that includes some important pathogens of fish and marine mammals. Aspects of the taxonomic classification of fish viruses assigned to this family have recently been reviewed by the International Committee on Taxonomy of Viruses (ICTV). This paper describes the newly approved taxonomy, including the assignment of new subfamilies and new virus species. The paper also considers a taxonomic conundrum presented by viruses assigned to one group of fish rhabdoviruses (genus Novirhabdovirus) for which assignment to the family Rhabdoviridae may not be appropriate. Abstract The Rhabdoviridae is a large family of negative-sense (-) RNA viruses that includes important pathogens of ray-finned fish and marine mammals. As for all viruses, the taxonomic assignment of rhabdoviruses occurs through a process implemented by the International Committee on Taxonomy of Viruses (ICTV). A recent revision of taxonomy conducted in conjunction with the ICTV Rhabdoviridae Study Group has resulted in the establishment of three new subfamilies (Alpharhabdovirinae, Betarhabdovirinae, and Gammarhabdovirinae) within the Rhabdoviridae, as well as three new genera (Cetarhavirus, Siniperhavirus, and Scophrhavirus) and seven new species for viruses infecting fish or marine mammals. All rhabdovirus species have also now been named or renamed to comply with the binomial format adopted by the ICTV in 2021, comprising the genus name followed by a species epithet. Phylogenetic analyses of L protein (RNA-dependent RNA polymerase) sequences of (-) RNA viruses indicate that members of the genus Novirhabdovirus (subfamily Gammarhabdovirinae) do not cluster within the Rhabdoviridae, suggesting the need for a review of their current classification.
Collapse
Affiliation(s)
- Peter J. Walker
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4067, Australia
- Correspondence:
| | - Laurent Bigarré
- Laboratory of Ploufragan-Plouzané-Niort, Technopole Brest Iroise, ANSES, 29280 Plouzané, France; (L.B.); (L.P.)
| | - Gael Kurath
- Western Fisheries Research Center, US Geological Survey, 6505 NE 65th Street, Seattle, WA 98115, USA;
| | - Laurent Dacheux
- Unit Lyssavirus Epidemiology and Neuropathology, Université Paris Cité, Institut Pasteur, 28 Rue du Docteur Roux, CEDEX 15, 75724 Paris, France;
| | - Laurane Pallandre
- Laboratory of Ploufragan-Plouzané-Niort, Technopole Brest Iroise, ANSES, 29280 Plouzané, France; (L.B.); (L.P.)
| |
Collapse
|
42
|
Elakov AL. [Anti-rabies vaccines applied in the Russian Federation and perspectives for their improvement]. Vopr Virusol 2022; 67:107-114. [PMID: 35521983 DOI: 10.36233/0507-4088-102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 05/05/2022] [Indexed: 12/25/2022]
Abstract
Rabies is almost ubiquitous (except in certain areas) and poses a significant danger to both animals and humans. Every year around 55,000 people die from this disease worldwide. In the Russian Federation alone 400,000- 450,000 patients annually apply for anti-rabies treatment. In the absolute majority of cases human infection is caused by contact with infected animals. In RF, a number of cultured inactivated anti-rabies vaccines for medical and veterinary purposes have been developed, registered and used for specific prevention of rabies. These vaccine preparations have shown high effectiveness in preventing infection in domestic and farm animals. At the same time, the main reservoir of the rabies virus (Mononegavirales: Rhabdoviridae: Lyssavirus) (RV) are wild carnivores (Mammalia: Carnivora). For the purpose of their oral immunization, live virus vaccines from attenuated (fixed) strains of RV that are little resistant in the external environment are used. In Western Europe and North America there is successful experience with recombinant anti-rabies vaccine preparations containing a viral glycoprotein gene (G-protein). Such vaccines are safe for humans and animals. In Russia also had been developed a vector anti-rabies vaccine based on adenovirus (Adenoviridae), which can be used to combat this infection. Currently, in addition to classical rabies, diseases caused by new, previously unknown lyssaviruses (Lyssavirus) are becoming increasingly important. Bats (Mammalia: Microchiroptera) are their vectors. Cases of illness and death after contact with these animals have been described. In the near future, we should expect the development of new vaccines that will provide protection not only against RV, but also against other lyssaviruses.
Collapse
Affiliation(s)
- A L Elakov
- FSBSI «Federal Scientific Center - All-Russian Scientific Research Institute of Experimental Veterinary Medicine named after K.I. Skryabin and Ya.R. Kovalenko of the Russian Academy of Sciences»
| |
Collapse
|
43
|
The Comparison of Full G and N Gene Sequences From Turkish Rabies Virus Field Strains. Virus Res 2022; 315:198790. [PMID: 35487366 DOI: 10.1016/j.virusres.2022.198790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/25/2022] [Accepted: 04/25/2022] [Indexed: 11/21/2022]
Abstract
The rabies infection is a zoonotic viral disease in humans and is spread by both wild and domestic carnivores. This study aimed to molecularly characterize the field strains of the rabies virus circulating in Turkey between 2013 and 2020. Brain samples obtained from 16 infected animals (8 cattle, one donkey, three foxes, three dogs, and one marten) were tested. Full nucleoprotein (N) and glycoprotein (G) gene sequences were used to determine the genetic and antigenic characteristics of the rabies virus field strains. The phylogenetic analyses revealed that the 16 field strains identified in Turkey belonged to the Cosmopolitan lineage.
Collapse
|
44
|
Jia D, Liu H, Zhang J, Wan W, Wang Z, Zhang X, Chen Q, Wei T. Polyamine-metabolizing enzymes are activated to promote the proper assembly of rice stripe mosaic virus in insect vectors. STRESS BIOLOGY 2022; 2:10. [PMID: 37676339 PMCID: PMC10441986 DOI: 10.1007/s44154-021-00032-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 12/30/2021] [Indexed: 09/08/2023]
Abstract
Both viruses and host cells compete for intracellular polyamines for efficient propagation. Currently, how the key polyamine-metabolizing enzymes, including ornithine decarboxylase 1 (ODC1) and its antizyme 1 (OAZ1), are activated to co-ordinate viral propagation and polyamine biosynthesis remains unknown. Here, we report that the matrix protein of rice stripe mosaic virus (RSMV), a cytorhabdovirus, directly hijacks OAZ1 to ensure the proper assembly of rigid bacilliform non-enveloped virions in leafhopper vector. Viral matrix protein effectively competes with ODC1 to bind to OAZ1, and thus, the ability of OAZ1 to target and mediate the degradation of ODC1 is significantly inhibited during viral propagation, which finally promotes polyamines production. Thus, OAZ1 and ODC1 are activated to synergistically promote viral persistent propagation and polyamine biosynthesis in viruliferous vectors. Our data suggest that it is a novel mechanism for rhabdovirus to exploit OAZ1 for facilitating viral assembly.
Collapse
Affiliation(s)
- Dongsheng Jia
- Fujian Province Key Laboratory of Plant Virology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| | - Huan Liu
- Fujian Province Key Laboratory of Plant Virology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| | - Jian Zhang
- Fujian Province Key Laboratory of Plant Virology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| | - Wenqiang Wan
- Fujian Province Key Laboratory of Plant Virology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| | - Zongwen Wang
- Fujian Province Key Laboratory of Plant Virology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| | - Xiaofeng Zhang
- Fujian Province Key Laboratory of Plant Virology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| | - Qian Chen
- Fujian Province Key Laboratory of Plant Virology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| | - Taiyun Wei
- Fujian Province Key Laboratory of Plant Virology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China.
| |
Collapse
|
45
|
Abstract
Rhabdoviruses are ubiquitous and diverse viruses that propagate owing to bidirectional interactions with their vertebrate, arthropod, and plant hosts, and some of them could pose global health or agricultural threats. However, rhabdoviruses have rarely been reported in fungi. Here, two newly identified fungal rhabdoviruses, Rhizoctonia solani rhabdovirus 1 (RsRhV1) and RsRhV2, were discovered and molecularly characterized from the phytopathogenic fungus Rhizoctonia solani. The genomic organizations of RsRhV1 and RsRhV2 are 11,716 and 11,496 nucleotides (nt) in length, respectively, and consist of five open reading frames (ORFs) (ORFs I to V). ORF I, ORF IV, and ORF V encode the viral nucleocapsid (N), glycoprotein (G), and RNA polymerase (L), respectively. The putative protein encoded by ORF III has a lower level of identity with the matrix protein of rhabdoviruses. ORF II encodes a hypothetical protein with unknown function. Phylogenetic trees based on multiple alignments of N, L, and G proteins revealed that RsRhV1 and RsRhV2 are new members of the family Rhabdoviridae, but they form an independent evolutionary branch significantly distinct from other known nonfungal rhabdoviruses, suggesting that they represent a novel viral evolutionary lineage within Rhabdoviridae. Compared to strains lacking rhabdoviruses, strains harboring RsRhV2 and RsRhV1 showed hypervirulence, suggesting that RsRhV1 and RsRhV2 might be associated with the virulence of R. solani. Taken together, this study enriches our understanding of the diversity and host range of rhabdoviruses. IMPORTANCE Mycoviruses have been attracting an increasing amount of attention due to their impact on important medical, agricultural, and industrial fungi. Rhabdoviruses are prevalent across a wide spectrum of hosts, from plants to invertebrates and vertebrates. This study molecularly characterized two novel rhabdoviruses from four Rhizoctonia solani strains, based on their genomic structures, transcription strategy, phylogenetic relationships, and biological impact on their host. Our study makes a significant contribution to the literature because it not only enriches the mycovirus database but also expands the known host range of rhabdoviruses. It also offers insight into the evolutionary linkage between animal viruses and mycoviruses and the transmission of viruses from one host to another. Our study will also help expand the contemporary knowledge of the classification of rhabdoviruses, as well as providing a new model to study rhabdovirus-host interactions, which will benefit the agriculture and medical areas of human welfare.
Collapse
|
46
|
Jia W, Chen S, Chi S, He Y, Ren L, Wang X. Recent Progress on Tick-Borne Animal Diseases of Veterinary and Public Health Significance in China. Viruses 2022; 14:v14020355. [PMID: 35215952 PMCID: PMC8875255 DOI: 10.3390/v14020355] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/31/2022] [Accepted: 02/03/2022] [Indexed: 02/04/2023] Open
Abstract
Ticks and tick-borne diseases pose a growing threat to human and animal health, which has brought great losses to livestock production. With the continuous expansion of human activities and the development of natural resources, there are more and more opportunities for humans to contract ticks and tick-borne pathogens. Therefore, research on ticks and tick-borne diseases is of great significance. This paper reviews recent progress on tick-borne bacterial diseases, viral diseases, and parasitic diseases in China, which provides a theoretical foundation for the research of tick-borne diseases.
Collapse
Affiliation(s)
- Weijuan Jia
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China; (W.J.); (S.C.); (Y.H.)
| | - Si Chen
- College of Animal Sciences, Key Lab for Zoonoses Research, Ministry of Education, Jilin University, Changchun 130062, China;
| | - Shanshan Chi
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China; (W.J.); (S.C.); (Y.H.)
| | - Yunjiang He
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China; (W.J.); (S.C.); (Y.H.)
| | - Linzhu Ren
- College of Animal Sciences, Key Lab for Zoonoses Research, Ministry of Education, Jilin University, Changchun 130062, China;
- Correspondence: (L.R.); (X.W.); Tel.: +86-15924529577 (X.W.)
| | - Xueli Wang
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China; (W.J.); (S.C.); (Y.H.)
- Correspondence: (L.R.); (X.W.); Tel.: +86-15924529577 (X.W.)
| |
Collapse
|
47
|
Complete genome sequence of cnidium virus 1, a novel betanucleorhabdovirus infecting Cnidium officinale. Arch Virol 2022; 167:973-977. [PMID: 35112199 DOI: 10.1007/s00705-021-05348-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/18/2021] [Indexed: 11/02/2022]
Abstract
The complete genomic sequence of a plant rhabdovirus that was identified in Cnidium officinale in Yeongyang-dun, South Korea, is reported here. The virus, tentatively named "cnidium virus 1" (CnV1), has a negative-sense RNA genome of ~ 14 kb, and its organization most closely resembles that of unsegmented plant rhabdoviruses, containing six antisense open reading frames (ORFs) in the order 3'-N-P-P3-M-G-L-5'. Intergenic regions containing conserved sequences separate the genes. The genome of CnV1 is 37.8-56% identical in its complete nucleotide sequence to betanucleorhabdoviruses and other related rhabdoviruses. Therefore, based on the sequence similarity criteria for species demarcation, its genome organization, and its phylogenetic position, CnV1 should be classified as a new member of the genus Betanucleorhabdovirus in the family Rhabdoviridae. CnV1 is the first rhabdovirus found in C. officinale.
Collapse
|
48
|
Edridge AWD, Abd-Elfarag G, Deijs M, Jebbink MF, Boele van Hensbroek M, van der Hoek L. Divergent Rhabdovirus Discovered in a Patient with New-Onset Nodding Syndrome. Viruses 2022; 14:v14020210. [PMID: 35215803 PMCID: PMC8880091 DOI: 10.3390/v14020210] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 12/15/2022] Open
Abstract
A divergent rhabdovirus was discovered in the bloodstream of a 15-year-old girl with Nodding syndrome from Mundri West County in South Sudan. Nodding syndrome is a progressive degenerative neuropathy of unknown cause affecting thousands of individuals in Sub-Saharan Africa. The index case was previously healthy until she developed head-nodding seizures four months prior to presentation. Virus discovery by VIDISCA-NGS on the patient’s plasma detected multiple sequence reads belonging to a divergent rhabdovirus. The viral load was 3.85 × 103 copies/mL in the patient’s plasma and undetectable in her cerebrospinal fluid. Further genome walking allowed for the characterization of full coding sequences of all the viral proteins (N, P, M, U1, U2, G, U3, and L). We tentatively named the virus “Mundri virus” (MUNV) and classified it as a novel virus species based on the high divergence from other known viruses (all proteins had less than 43% amino acid identity). Phylogenetic analysis revealed that MUNV forms a monophyletic clade with several human-infecting tibroviruses prevalent in Central Africa. A bioinformatic machine-learning algorithm predicted MUNV to be an arbovirus (bagged prediction strength (BPS) of 0.9) transmitted by midges (BPS 0.4) with an artiodactyl host reservoir (BPS 0.9). An association between MUNV infection and Nodding syndrome was evaluated in a case–control study of 72 patients with Nodding syndrome (including the index case) matched to 65 healthy households and 48 community controls. No subject, besides the index case, was positive for MUNV RNA in their plasma. A serological assay detecting MUNV anti-nucleocapsid found, respectively, in 28%, 22%, and 16% of cases, household controls and community controls to be seropositive with no significant differences between cases and either control group. This suggests that MUNV commonly infects children in South Sudan yet may not be causally associated with Nodding syndrome.
Collapse
Affiliation(s)
- Arthur W. D. Edridge
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (M.D.); (M.F.J.)
- Center for Global Child Health, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (G.A.-E.); (M.B.v.H.)
- Correspondence: (A.W.D.E.); (L.v.d.H.)
| | - Gasim Abd-Elfarag
- Center for Global Child Health, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (G.A.-E.); (M.B.v.H.)
| | - Martin Deijs
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (M.D.); (M.F.J.)
| | - Maarten F. Jebbink
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (M.D.); (M.F.J.)
| | - Michael Boele van Hensbroek
- Center for Global Child Health, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (G.A.-E.); (M.B.v.H.)
| | - Lia van der Hoek
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (M.D.); (M.F.J.)
- Correspondence: (A.W.D.E.); (L.v.d.H.)
| |
Collapse
|
49
|
Nearly Complete Genome Sequences of Eight Rabies Virus Strains Obtained from Domestic Carnivores in the Democratic Republic of the Congo. Microbiol Resour Announc 2022; 11:e0110921. [PMID: 34989606 PMCID: PMC8759400 DOI: 10.1128/mra.01109-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
In this report, we describe eight nearly complete genome sequences of rabies virus strains collected in the Democratic Republic of the Congo from domestic carnivores in 2017 and 2018. All of them clustered into a specific phylogroup among the Africa 1b lineage in the Cosmopolitan clade.
Collapse
|
50
|
Complete Genome Sequences of Five Rabies Virus Strains Obtained from Domestic Carnivores in Liberia. Microbiol Resour Announc 2022; 11:e0104721. [PMID: 35049353 PMCID: PMC8772593 DOI: 10.1128/mra.01047-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
As in other African countries, canine rabies is endemic in Liberia. However, data concerning the genetic diversity of rabies virus isolates circulating in this country remain limited. We report here the complete genome sequences of five rabies viruses obtained from domestic animals. All of them belonged to subgroup H within the Africa 2 clade.
Collapse
|