1
|
Atkins HM, Uslu AA, Li JJ, Shearer DA, Brendle SA, Han C, Kozak M, Lopez P, Nayar D, Balogh KK, Abendroth C, Copper J, Cheng KC, Christensen ND, Zhu Y, Avril S, Burgener AD, Murooka TT, Hu J. Monitoring mouse papillomavirus-associated cancer development using longitudinal Pap smear screening. mBio 2024; 15:e0142024. [PMID: 39012151 PMCID: PMC11323795 DOI: 10.1128/mbio.01420-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 06/27/2024] [Indexed: 07/17/2024] Open
Abstract
A substantial percentage of the population remains at risk for cervical cancer due to pre-existing human papillomavirus (HPV) infections, despite prophylactic vaccines. Early diagnosis and treatment are crucial for better disease outcomes. The development of new treatments heavily relies on suitable preclinical model systems. Recently, we established a mouse papillomavirus (MmuPV1) model that is relevant to HPV genital pathogenesis. In the current study, we validated the use of Papanicolaou (Pap) smears, a valuable early diagnostic tool for detecting HPV cervical cancer, to monitor disease progression in the MmuPV1 mouse model. Biweekly cervicovaginal swabs were collected from the MmuPV1-infected mice for viral DNA quantitation and cytology assessment. The Pap smear slides were evaluated for signs of epithelial cell abnormalities using the 2014 Bethesda system criteria. Tissues from the infected mice were harvested at various times post-viral infection for additional histological and virological assays. Over time, increased viral replication was consistent with higher levels of viral DNA, and it coincided with an uptick in epithelial cell abnormalities with higher severity scores noted as early as 10 weeks after viral infection. The cytological results also correlated with the histological evaluation of tissues harvested simultaneously. Both immunocompromised and immunocompetent mice with squamous cell carcinoma (SCC) cytology also developed vaginal SCCs. Notably, samples from the MmuPV1-infected mice exhibited similar cellular abnormalities compared to the corresponding human samples at similar disease stages. Hence, Pap smear screening proves to be an effective tool for the longitudinal monitoring of disease progression in the MmuPV1 mouse model. IMPORTANCE Papanicolaou (Pap) smear has saved millions of women's lives as a valuable early screening tool for detecting human papillomavirus (HPV) cervical precancers and cancer. However, more than 200,000 women in the United States alone remain at risk for cervical cancer due to pre-existing HPV infection-induced precancers, as there are currently no effective treatments for HPV-associated precancers and cancers other than invasive procedures including a loop electrosurgical excision procedure (LEEP) to remove abnormal tissues. In the current study, we validated the use of Pap smears to monitor disease progression in our recently established mouse papillomavirus model. To the best of our knowledge, this is the first study that provides compelling evidence of applying Pap smears from cervicovaginal swabs to monitor disease progression in mice. This HPV-relevant cytology assay will enable us to develop and test novel antiviral and anti-tumor therapies using this model to eliminate HPV-associated diseases and cancers.
Collapse
Affiliation(s)
- Hannah M. Atkins
- Department of Pathology and Laboratory Medicine, Division of Comparative Medicine, The University of North Carolina, Chapel Hill, North Carolina, USA
| | - Aysegul Aksakal Uslu
- Department of Pathology and Laboratory Medicine, Division of Comparative Medicine, The University of North Carolina, Chapel Hill, North Carolina, USA
| | - Jingwei J. Li
- The Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
- Department of Pathology and laboratory medicine, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Debra A. Shearer
- The Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
- Department of Pathology and laboratory medicine, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Sarah A. Brendle
- The Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
- Department of Pathology and laboratory medicine, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Chen Han
- TEM facility, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Michael Kozak
- Department of Pathology and laboratory medicine, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Paul Lopez
- Department of Immunology, The University of Manitoba, Winnipeg, Manitoba, Canada
| | - Deesha Nayar
- Department of Immunology, The University of Manitoba, Winnipeg, Manitoba, Canada
| | - Karla K. Balogh
- The Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
- Department of Pathology and laboratory medicine, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Catherine Abendroth
- Department of Pathology and laboratory medicine, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Jean Copper
- The Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
- Department of Pathology and laboratory medicine, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Keith C. Cheng
- The Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
- Department of Pathology and laboratory medicine, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Neil D. Christensen
- The Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
- Department of Pathology and laboratory medicine, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
- Department of Microbiology and immunology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Yusheng Zhu
- Department of Pathology and laboratory medicine, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Stefanie Avril
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Adam D. Burgener
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Center for Global Health and Diseases, University of Manitoba, Winnipeg, Canada
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Manitoba, Winnipeg, Canada
- Department of Medicine, Unit of Infectious Diseases, Center for Molecular Medicine, Karolinska Institutet, Solna, Stockholm, Sweden
| | - Thomas T. Murooka
- Department of Immunology, The University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jiafen Hu
- The Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
- Department of Pathology and laboratory medicine, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
2
|
Torres AD, King RE, Uberoi A, Buehler D, Yoshida S, Ward-Shaw E, Lambert PF. Deficiency in Ever2 does not increase susceptibility of mice to pathogenesis by the mouse papillomavirus, MmuPV1. J Virol 2024; 98:e0017424. [PMID: 38869286 PMCID: PMC11265430 DOI: 10.1128/jvi.00174-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/19/2024] [Indexed: 06/14/2024] Open
Abstract
Epidermodysplasia verruciformis (EV) is a rare genetic skin disorder that is characterized by the development of papillomavirus-induced skin lesions that can progress to squamous cell carcinoma (SCC). Certain high-risk, cutaneous β-genus human papillomaviruses (β-HPVs), in particular HPV5 and HPV8, are associated with inducing EV in individuals who have a homozygous mutation in one of three genes tied to this disease: EVER1, EVER2, or CIB1. EVER1 and EVER2 are also known as TMC6 and TMC8, respectively. Little is known about the biochemical activities of EVER gene products or their roles in facilitating EV in conjunction with β-HPV infection. To investigate the potential effect of EVER genes on papillomavirus infection, we pursued in vivo infection studies by infecting Ever2-null mice with mouse papillomavirus (MmuPV1). MmuPV1 shares characteristics with β-HPVs including similar genome organization, shared molecular activities of their early, E6 and E7, oncoproteins, the lack of a viral E5 gene, and the capacity to cause skin lesions that can progress to SCC. MmuPV1 infections were conducted both in the presence and absence of UVB irradiation, which is known to increase the risk of MmuPV1-induced pathogenesis. Infection with MmuPV1 induced skin lesions in both wild-type and Ever2-null mice with and without UVB. Many lesions in both genotypes progressed to malignancy, and the disease severity did not differ between Ever2-null and wild-type mice. However, somewhat surprisingly, lesion growth and viral transcription was decreased, and lesion regression was increased in Ever2-null mice compared with wild-type mice. These studies demonstrate that Ever2-null mice infected with MmuPV1 do not exhibit the same phenotype as human EV patients infected with β-HPVs.IMPORTANCEHumans with homozygous mutations in the EVER2 gene develop epidermodysplasia verruciformis (EV), a disease characterized by predisposition to persistent β-genus human papillomavirus (β-HPV) skin infections, which can progress to skin cancer. To investigate how EVER2 confers protection from papillomaviruses, we infected the skin of homozygous Ever2-null mice with mouse papillomavirus MmuPV1. Like in humans with EV, infected Ever2-null mice developed skin lesions that could progress to cancer. Unlike in humans with EV, lesions in these Ever2-null mice grew more slowly and regressed more frequently than in wild-type mice. MmuPV1 transcription was higher in wild-type mice than in Ever2-null mice, indicating that mouse EVER2 does not confer protection from papillomaviruses. These findings suggest that there are functional differences between MmuPV1 and β-HPVs and/or between mouse and human EVER2.
Collapse
Affiliation(s)
- Alexandra D. Torres
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Renee E. King
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Aayushi Uberoi
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Darya Buehler
- Department of Pathology and Laboratory Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Satoshi Yoshida
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Ella Ward-Shaw
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Paul F. Lambert
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
3
|
Spurgeon ME, Townsend EC, Blaine-Sauer S, McGregor SM, Horswill M, den Boon JA, Ahlquist P, Kalan L, Lambert PF. Key aspects of papillomavirus infection influence the host cervicovaginal microbiome in a preclinical murine papillomavirus (MmuPV1) infection model. mBio 2024; 15:e0093324. [PMID: 38742830 PMCID: PMC11237646 DOI: 10.1128/mbio.00933-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 04/15/2024] [Indexed: 05/16/2024] Open
Abstract
Human papillomaviruses (HPVs) are the most common sexually transmitted infection in the United States and are a major etiological agent of cancers in the anogenital tract and oral cavity. Growing evidence suggests changes in the host microbiome are associated with the natural history and ultimate outcome of HPV infection. We sought to define changes in the host cervicovaginal microbiome during papillomavirus infection, persistence, and pathogenesis using the murine papillomavirus (MmuPV1) cervicovaginal infection model. Cervicovaginal lavages were performed over a time course of MmuPV1 infection in immunocompetent female FVB/N mice and extracted DNA was analyzed by qPCR to track MmuPV1 viral copy number. 16S ribosomal RNA (rRNA) gene sequencing was used to determine the composition and diversity of microbial communities throughout this time course. We also sought to determine whether specific microbial communities exist across the spectrum of MmuPV1-induced neoplastic disease. We, therefore, performed laser-capture microdissection to isolate regions of disease representing all stages of neoplastic disease progression (normal, low- and high-grade dysplasia, and cancer) from female reproductive tract tissue sections from MmuPV1-infected mice and performed 16S rRNA sequencing. Consistent with other studies, we found that the natural murine cervicovaginal microbiome is highly variable across different experiments. Despite these differences in initial microbiome composition between experiments, we observed that MmuPV1 persistence, viral load, and severity of disease influenced the composition of the cervicovaginal microbiome. These studies demonstrate that papillomavirus infection can alter the cervicovaginal microbiome.IMPORTANCEHuman papillomaviruses (HPVs) are the most common sexually transmitted infection in the United States. A subset of HPVs that infect the anogenital tract (cervix, vagina, anus) and oral cavity cause at least 5% of cancers worldwide. Recent evidence indicates that the community of microbial organisms present in the human cervix and vagina, known as the cervicovaginal microbiome, plays a role in HPV-induced cervical cancer. However, the mechanisms underlying this interplay are not well-defined. In this study, we infected the female reproductive tract of mice with a murine papillomavirus (MmuPV1) and found that key aspects of papillomavirus infection and disease influence the host cervicovaginal microbiome. This is the first study to define changes in the host microbiome associated with MmuPV1 infection in a preclinical animal model of HPV-induced cervical cancer. These results pave the way for using MmuPV1 infection models to further investigate the interactions between papillomaviruses and the host microbiome.
Collapse
Affiliation(s)
- Megan E. Spurgeon
- McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Elizabeth C. Townsend
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Medical Scientist Training Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Simon Blaine-Sauer
- McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Stephanie M. McGregor
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Mark Horswill
- McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- John W. and Jeanne M. Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, Wisconsin, USA
| | - Johan A. den Boon
- McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- John W. and Jeanne M. Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, Wisconsin, USA
| | - Paul Ahlquist
- McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- John W. and Jeanne M. Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, Wisconsin, USA
| | - Lindsay Kalan
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
| | - Paul F. Lambert
- McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
4
|
Pei L, Hickman HD. T Cell Surveillance during Cutaneous Viral Infections. Viruses 2024; 16:679. [PMID: 38793562 PMCID: PMC11126121 DOI: 10.3390/v16050679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 05/26/2024] Open
Abstract
The skin is a complex tissue that provides a strong physical barrier against invading pathogens. Despite this, many viruses can access the skin and successfully replicate in either the epidermal keratinocytes or dermal immune cells. In this review, we provide an overview of the antiviral T cell biology responding to cutaneous viral infections and how these responses differ depending on the cellular targets of infection. Much of our mechanistic understanding of T cell surveillance of cutaneous infection has been gained from murine models of poxvirus and herpesvirus infection. However, we also discuss other viral infections, including flaviviruses and papillomaviruses, in which the cutaneous T cell response has been less extensively studied. In addition to the mechanisms of successful T cell control of cutaneous viral infection, we highlight knowledge gaps and future directions with possible impact on human health.
Collapse
Affiliation(s)
| | - Heather D. Hickman
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA;
| |
Collapse
|
5
|
Gelbard MK, Munger K. Human papillomaviruses: Knowns, mysteries, and unchartered territories. J Med Virol 2023; 95:e29191. [PMID: 37861365 PMCID: PMC10608791 DOI: 10.1002/jmv.29191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023]
Abstract
There has been an explosion in the number of papillomaviruses that have been identified and fully sequenced. Yet only a minute fraction of these has been studied in any detail. Most of our molecular research efforts have focused on the E6 and E7 proteins of "high-risk," cancer-associated human papillomaviruses (HPVs). Interactions of the high-risk HPV E6 and E7 proteins with their respective cellular targets, the p53 and the retinoblastoma tumor suppressors, have been investigated in minute detail. Some have thus questioned if research on papillomaviruses remains an exciting and worthwhile area of investigation. However, fundamentally new insights on the biological activities and cellular targets of the high-risk HPV E6 and E7 proteins have been discovered and previously unstudied HPVs have been newly associated with human diseases. HPV infections continue to be an important cause of human morbidity and mortality and since there are no antivirals to combat HPV infections, research on HPVs should remain attractive to new investigators and biomedical funding agencies, alike.
Collapse
Affiliation(s)
- Maya K. Gelbard
- Genetics, Molecular and Cellular Biology Program, Graduate School of Biomedical Sciences
- Department of Developmental, Molecular and Cellular Biology, Tufts University School of Medicine, Boston, MA 02111
| | - Karl Munger
- Genetics, Molecular and Cellular Biology Program, Graduate School of Biomedical Sciences
- Department of Developmental, Molecular and Cellular Biology, Tufts University School of Medicine, Boston, MA 02111
| |
Collapse
|
6
|
Yilmaz V, Strati K. Protocol for in vivo lineage tracing of the mouse-papillomavirus-type 1-infected cells in mice. STAR Protoc 2023; 4:101994. [PMID: 36607810 PMCID: PMC9826866 DOI: 10.1016/j.xpro.2022.101994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/10/2022] [Accepted: 12/14/2022] [Indexed: 01/06/2023] Open
Abstract
Here, we present a protocol to create an in vivo lineage-tracing mouse model for mouse-papillomavirus-type 1 (MmuPV1)-infected cells. We describe the steps to generate and deliver the MmuPV1 lox-Cre-lox plasmid for the infection of mice, followed by skin tissue extraction and processing. We then detail how to use flow cytometry to trace, quantify, and analyze MmuPV1-harboring cells and their progeny. This model is suitable to investigate the early effects of papillomavirus on the target cells. For complete details on the use and execution of this protocol, please refer to Yilmaz et al. (2022).1.
Collapse
Affiliation(s)
- Vural Yilmaz
- Department of Biological Sciences, University of Cyprus, Nicosia 2109, Cyprus
| | - Katerina Strati
- Department of Biological Sciences, University of Cyprus, Nicosia 2109, Cyprus.
| |
Collapse
|
7
|
Shimizu A, Yamaguchi R, Kuriyama Y. Recent advances in cutaneous HPV infection. J Dermatol 2023; 50:290-298. [PMID: 36601717 DOI: 10.1111/1346-8138.16697] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 01/06/2023]
Abstract
More than 200 types of human papillomavirus (HPV) have been reported to date and have been associated with various dermatological diseases. Among dermatological diseases, viral verrucae are the most commonly reported to be associated with HPV. Epidermodysplasia verruciformis (EV) consists of three types: typical EV is an autosomal recessive genetic disorder with TMC6/TMC8 gene mutations, atypical EV develops due to various gene mutations that cause immunodeficiency, and acquired EV develops due to acquired immunodeficiency. Generalized verrucosis differs from EV in that it involves numerous verrucous nodules (mainly on the limbs), histopathologically no blue cells as seen in EV, and infection with cutaneous α-HPVs as well as β-HPVs. HPV-induced skin malignancies include squamous cell carcinoma (SCC) caused by β-HPV (especially HPV types 5 and 8) in EV patients, organ transplant recipients, and healthy individuals, and SCC of the vulva and nail unit caused by mucosal high-risk HPV infection. Carcinogenesis of β-HPV is associated with sunlight. Mucosal high-risk HPV-associated carcinomas may also be sexually transmitted. We focused on Bowen's disease of the nail, which has been the subject of our research for a long time and has recently come to the fore in the field of dermatology.
Collapse
Affiliation(s)
- Akira Shimizu
- Department of Dermatology, Kanazawa Medical University, Uchinada, Japan
| | - Reimon Yamaguchi
- Department of Dermatology, Kanazawa Medical University, Uchinada, Japan
| | - Yuko Kuriyama
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi City, Japan
| |
Collapse
|
8
|
Small DNA tumor viruses and human cancer: Preclinical models of virus infection and disease. Tumour Virus Res 2022; 14:200239. [PMID: 35636683 PMCID: PMC9194455 DOI: 10.1016/j.tvr.2022.200239] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 05/05/2022] [Accepted: 05/25/2022] [Indexed: 01/13/2023] Open
Abstract
Human tumor viruses cause various human cancers that account for at least 15% of the global cancer burden. Among the currently identified human tumor viruses, two are small DNA tumor viruses: human papillomaviruses (HPVs) and Merkel cell polyomavirus (MCPyV). The study of small DNA tumor viruses (adenoviruses, polyomaviruses, and papillomaviruses) has facilitated several significant biological discoveries and established some of the first animal models of virus-associated cancers. The development and use of preclinical in vivo models to study HPVs and MCPyV and their role in human cancer is the focus of this review. Important considerations in the design of animal models of small DNA tumor virus infection and disease, including host range, cell tropism, choice of virus isolates, and the ability to recapitulate human disease, are presented. The types of infection-based and transgenic model strategies that are used to study HPVs and MCPyV, including their strengths and limitations, are also discussed. An overview of the current models that exist to study HPV and MCPyV infection and neoplastic disease are highlighted. These comparative models provide valuable platforms to study various aspects of virus-associated human disease and will continue to expand knowledge of human tumor viruses and their relationship with their hosts.
Collapse
|
9
|
Yilmaz V, Louca P, Potamiti L, Panayiotidis M, Strati K. A novel lineage-tracing mouse model for studying early MmuPV1 infections. eLife 2022; 11:72638. [PMID: 35533001 PMCID: PMC9084889 DOI: 10.7554/elife.72638] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 04/26/2022] [Indexed: 11/18/2022] Open
Abstract
Human papillomaviruses are DNA viruses that ubiquitously infect humans and have been associated with hyperproliferative lesions. The recently discovered mouse specific papillomavirus (MmuPV1) provides the opportunity to study papillomavirus infections in vivo in the context of a common laboratory mouse model (Mus musculus). To date, a major challenge in the field has been the lack of tools to identify, observe, and characterize individually the papillomavirus hosting cells and also trace the progeny of these cells over time. Here, we present the successful generation of an in vivo lineage-tracing model of MmuPV1-harboring cells and their progeny by means of genetic reporter activation. Following the validation of the system both in vitro and in vivo, we used it to provide a proof-of-concept of its utility. Using flow-cytometry analysis, we observed increased proliferation dynamics and decreased MHC-I cell surface expression in MmuPV1-treated tissues which could have implications in tissue regenerative capacity and ability to clear the virus. This model is a novel tool to study the biology of the MmuPV1 host-pathogen interactions.
Collapse
Affiliation(s)
- Vural Yilmaz
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Panayiota Louca
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Louiza Potamiti
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - Mihalis Panayiotidis
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - Katerina Strati
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
10
|
Saunders-Wood T, Egawa N, Zheng K, Giaretta A, Griffin HM, Doorbar J. Role of E6 in Maintaining the Basal Cell Reservoir during Productive Papillomavirus Infection. J Virol 2022; 96:e0118121. [PMID: 35019722 PMCID: PMC8906426 DOI: 10.1128/jvi.01181-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 12/28/2021] [Indexed: 11/20/2022] Open
Abstract
Papillomaviruses exclusively infect stratified epithelial tissues and cause chronic infections. To achieve this, infected cells must remain in the epithelial basal layer alongside their uninfected neighbors for years or even decades. To examine how papillomaviruses achieve this, we used the in vivo MmuPV1 (Mus musculus papillomavirus 1) model of lesion formation and persistence. During early lesion formation, an increased cell density in the basal layer, as well as a delay in the infected cells' commitment to differentiation, was apparent in cells expressing MmuPV1 E6/E7 RNA. Using cell culture models, keratinocytes exogenously expressing MmuPV1 E6, but not E7, recapitulated this delay in differentiation postconfluence and also grew to a significantly higher density. Cell competition assays further showed that MmuPV1 E6 expression led to a preferential persistence of the cell in the first layer, with control cells accumulating almost exclusively in the second layer. Interestingly, the disruption of MmuPV1 E6 binding to MAML1 protein abrogated these phenotypes. This suggests that the interaction between MAML1 and E6 is necessary for the lower (basal)-layer persistence of MmuPV1 E6-expressing cells. Our results indicate a role for E6 in lesion establishment by facilitating the persistence of infected cells in the epithelial basal layer, a mechanism that is most likely shared by other papillomavirus types. Interruption of this interaction is predicted to impede persistent papillomavirus infection and consequently provides a novel treatment target. IMPORTANCE Persistent infection with high-risk HPV types can lead to development of HPV-associated cancers, and persistent low-risk HPV infection causes problematic diseases, such as recurrent respiratory papillomatosis. The management and treatment of these conditions pose a considerable economic burden. Maintaining a reservoir of infected cells in the basal layer of the epithelium is critical for the persistence of infection in the host, and our studies using the mouse papillomavirus model suggest that E6 gene expression leads to the preferential persistence of epithelial cells in the lower layers during stratification. The E6 interaction with MAML1, a component of the Notch pathway, is required for this phenotype and is linked to E6 effects on cell density and differentiation. These observations are likely to reflect a common E6 role that is preserved among papillomaviruses and provide us with a novel therapeutic target for the treatment of recalcitrant lesions.
Collapse
Affiliation(s)
| | - Nagayasu Egawa
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Ke Zheng
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Alberto Giaretta
- Department of Information Engineering, University of Padova, Padua, Italy
| | - Heather M. Griffin
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - John Doorbar
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
11
|
Tschirley AM, Stockwell PA, Rodger EJ, Eltherington O, Morison IM, Christensen N, Chatterjee A, Hibma M. The Mouse Papillomavirus Epigenetic Signature Is Characterised by DNA Hypermethylation after Lesion Regression. Viruses 2021; 13:v13102045. [PMID: 34696474 PMCID: PMC8539022 DOI: 10.3390/v13102045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/07/2021] [Indexed: 12/17/2022] Open
Abstract
Papillomaviruses (PVs) are double-stranded DNA tumour viruses that can infect cutaneous and mucosal epidermis. Human papillomavirus (HPV) types have been linked to the causality of cutaneous squamous cell carcinoma (cSCC); however, HPV DNA is not always detected in the resultant tumour. DNA methylation is an epigenetic change that can contribute to carcinogenesis. We hypothesise that the DNA methylation pattern in cells is altered following PV infection. We tested if DNA methylation was altered by PV infection in the mouse papillomavirus (MmuPV1) model. Immunosuppressed mice were infected with MmuPV1 on cutaneous tail skin. Immunosuppression was withdrawn for some mice, causing lesions to spontaneously regress. Reduced representation bisulphite sequencing was carried out on DNA from the actively infected lesions, visibly regressed lesions, and mock-infected control mice. DNA methylation libraries were generated and analysed for differentially methylated regions throughout the genome. The presence of MmuPV1 sequences was also assessed. We identified 834 predominantly differentially hypermethylated fragments in regressed lesions, and no methylation differences in actively infected lesions. The promoter regions of genes associated with tumorigenicity, including the tumour suppressor protein DAPK1 and mismatch repair proteins MSH6 and PAPD7, were hypermethylated. Viral DNA was detected in active lesions and in some lesions that had regressed. This is the first description of the genome-wide DNA methylation landscape for active and regressed MmuPV1 lesions. We propose that the DNA hypermethylation in the regressed lesions that we report here may increase the susceptibility of cells to ultraviolet-induced cSCC.
Collapse
Affiliation(s)
- Allison M. Tschirley
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand; (A.M.T.); (P.A.S.); (E.J.R.); (O.E.); (I.M.M.); (A.C.)
| | - Peter A. Stockwell
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand; (A.M.T.); (P.A.S.); (E.J.R.); (O.E.); (I.M.M.); (A.C.)
| | - Euan J. Rodger
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand; (A.M.T.); (P.A.S.); (E.J.R.); (O.E.); (I.M.M.); (A.C.)
| | - Oliver Eltherington
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand; (A.M.T.); (P.A.S.); (E.J.R.); (O.E.); (I.M.M.); (A.C.)
| | - Ian M. Morison
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand; (A.M.T.); (P.A.S.); (E.J.R.); (O.E.); (I.M.M.); (A.C.)
| | - Neil Christensen
- Department of Pathology, Pennsylvania State University, State College, PA 16802, USA;
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand; (A.M.T.); (P.A.S.); (E.J.R.); (O.E.); (I.M.M.); (A.C.)
| | - Merilyn Hibma
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand; (A.M.T.); (P.A.S.); (E.J.R.); (O.E.); (I.M.M.); (A.C.)
- Correspondence: ; Tel.: +64-3479-7726
| |
Collapse
|
12
|
Wei T, Grace M, Uberoi A, Romero-Masters JC, Lee D, Lambert PF, Munger K. The Mus musculus Papillomavirus Type 1 E7 Protein Binds to the Retinoblastoma Tumor Suppressor: Implications for Viral Pathogenesis. mBio 2021; 12:e0227721. [PMID: 34465025 PMCID: PMC8406179 DOI: 10.1128/mbio.02277-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 08/05/2021] [Indexed: 12/17/2022] Open
Abstract
The species specificity of papillomaviruses has been a significant roadblock for performing in vivo pathogenesis studies in common model organisms. The Mus musculus papillomavirus type 1 (MmuPV1) causes cutaneous papillomas that can progress to squamous cell carcinomas in laboratory mice. The papillomavirus E6 and E7 genes encode proteins that establish and maintain a cellular milieu that allows for viral genome synthesis and viral progeny synthesis in growth-arrested, terminally differentiated keratinocytes. The E6 and E7 proteins provide this activity by binding to and functionally reprogramming key cellular regulatory proteins. The MmuPV1 E7 protein lacks the canonical LXCXE motif that mediates the binding of multiple viral oncoproteins to the cellular retinoblastoma tumor suppressor protein, RB1. Our proteomic experiments, however, revealed that MmuPV1 E7 still interacts with RB1. We show that MmuPV1 E7 interacts through its C terminus with the C-terminal domain of RB1. Binding of MmuPV1 E7 to RB1 did not cause significant activation of E2F-regulated cellular genes. MmuPV1 E7 expression was shown to be essential for papilloma formation. Experimental infection of mice with MmuPV1 expressing an E7 mutant that is defective for binding to RB1 caused delayed onset, lower incidence, and smaller sizes of papillomas. Our results demonstrate that the MmuPV1 E7 gene is essential and that targeting noncanonical activities of RB1, which are independent of RB1's ability to modulate the expression of E2F-regulated genes, contribute to papillomavirus-mediated pathogenesis. IMPORTANCE Papillomavirus infections cause a variety of epithelial hyperplastic lesions, or warts. While most warts are benign, some papillomaviruses cause lesions that can progress to squamous cell carcinomas, and approximately 5% of all human cancers are caused by human papillomavirus (HPV) infections. The papillomavirus E6 and E7 proteins are thought to function to reprogram host epithelial cells to enable viral genome replication in terminally differentiated, normally growth-arrested cells. E6 and E7 lack enzymatic activities and function by interacting and functionally altering host cell regulatory proteins. Many cellular proteins that can interact with E6 and E7 have been identified, but the biological relevance of these interactions for viral pathogenesis has not been determined. This is because papillomaviruses are species specific and do not infect heterologous hosts. Here, we use a recently established mouse papillomavirus (MmuPV1) model to investigate the role of the E7 protein in viral pathogenesis. We show that MmuPV1 E7 is necessary for papilloma formation. The retinoblastoma tumor suppressor protein (RB1) is targeted by many papillomaviral E7 proteins, including cancer-associated HPVs. We show that MmuPV1 E7 can bind RB1 and that infection with a mutant MmuPV1 virus that expresses an RB1 binding-defective E7 mutant caused smaller and fewer papillomas that arise with delayed kinetics.
Collapse
Affiliation(s)
- Tao Wei
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Miranda Grace
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Aayushi Uberoi
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - James C. Romero-Masters
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Denis Lee
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Paul F. Lambert
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Karl Munger
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
13
|
Mouse papillomavirus type 1 (MmuPV1) DNA is frequently integrated in benign tumors by microhomology-mediated end-joining. PLoS Pathog 2021; 17:e1009812. [PMID: 34343212 PMCID: PMC8362953 DOI: 10.1371/journal.ppat.1009812] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/13/2021] [Accepted: 07/19/2021] [Indexed: 12/24/2022] Open
Abstract
MmuPV1 is a useful model for studying papillomavirus-induced tumorigenesis. We used RNA-seq to look for chimeric RNAs that map to both MmuPV1 and host genomes. In tumor tissues, a higher proportion of total viral reads were virus-host chimeric junction reads (CJRs) (1.9‰ - 7‰) than in tumor-free tissues (0.6‰ - 1.3‰): most CJRs mapped to the viral E2/E4 region. Although most of the MmuPV1 integration sites were mapped to intergenic regions and introns throughout the mouse genome, integrations were seen more than once in several genes: Malat1, Krt1, Krt10, Fabp5, Pard3, and Grip1; these data were confirmed by rapid amplification of cDNA ends (RACE)-Single Molecule Real-Time (SMRT)-seq or targeted DNA-seq. Microhomology sequences were frequently seen at host-virus DNA junctions. MmuPV1 infection and integration affected the expression of host genes. We found that factors for DNA double-stranded break repair and microhomology-mediated end-joining (MMEJ), such as H2ax, Fen1, DNA polymerase Polθ, Cdk1, and Plk1, exhibited a step-wise increase and Mdc1 a decrease in expression in MmuPV1-infected tissues and MmuPV1 tumors relative to normal tissues. Increased expression of mitotic kinases CDK1 and PLK1 appears to be correlated with CtIP phosphorylation in MmuPV1 tumors, suggesting a role for MMEJ-mediated DNA joining in the MmuPV1 integration events that are associated with MmuPV1-induced progression of tumors. Persistent high-risk HPV infection leads viral DNA integration into the host genome and promotes viral carcinogenesis. We have been using the MmuPV1 mouse-infection model to study papillomavirus tumorigenesis and asked whether MmuPV1 DNA also integrates into the genomes of infected mouse cells. Strikingly, we found that MmuPV1 integration into the infected host genome, like high-risk HPV infections, is very common and the mapped integration sites were distributed on all of the mouse chromosomes. Consistently, we identified microhomology sequences in the range of 2–10 nts always at the integration junction regions. We further verified the MMEJ-mediated viral DNA integration in tumor tissues during MmuPV1 infection and a step-wise increase in the expression of the DNA repair MMEJ host factors from normal tissues, to tumor-free MmuPV1 infected tissues, and then to MmuPV1 tumors. Our observations provide the first evidence of MmuPV1 integration in virus-infected cells and a conceptual advance of how papillomavirus DNA integration contributes to the development of papillomavirus-associated precancers to cancers.
Collapse
|
14
|
Yamashita-Kawanishi N, Haga T. Anogenital-Associated Papillomaviruses in Animals: Focusing on Bos taurus Papillomaviruses. Pathogens 2020; 9:E993. [PMID: 33260814 PMCID: PMC7760238 DOI: 10.3390/pathogens9120993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/12/2022] Open
Abstract
In contrast to the diverse studies on human papillomaviruses (HPVs), information on animal PVs associated with anogenital lesions is limited. In the animal kingdom, papillomas occur more commonly in cattle than in any other animals, and diverse types of Bos taurus papillomaviruses (BPVs) exist, including the very recently discovered BPV type 29 (BPV29). From this perspective, we will review previous studies describing PV types associated with anogenitals in animals, with a focus on BPVs. To date, two classical BPV types, classified into Deltapapillomavirus (BPV1 and BPV2) and Dyokappapapillomavirus (BPV22), and two novel Xipapillomaviruses (BPV28 and BPV29) have been identified from anogenital lesions and tissues of the domestic cow. Due to the limited reports describing anogenital-associated PVs in animals, the relationships between their phylogenetic and pathogenetic properties are still undiscovered. Animal studies are valuable not only for the veterinary field but also for human medicine, as animal diseases have been shown to mimic human diseases. Studies of anogenital-associated PVs in animals have a positive impact on various research fields.
Collapse
Affiliation(s)
| | - Takeshi Haga
- Division of Infection Control and Disease Prevention, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-0033, Japan;
| |
Collapse
|
15
|
Insights into the Role of Innate Immunity in Cervicovaginal Papillomavirus Infection from Studies Using Gene-Deficient Mice. J Virol 2020; 94:JVI.00087-20. [PMID: 32295905 DOI: 10.1128/jvi.00087-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/03/2020] [Indexed: 01/28/2023] Open
Abstract
We demonstrate that female C57BL/6J mice are susceptible to a transient lower genital tract infection with MmuPV1 mouse papillomavirus and display focal histopathological abnormalities resembling those of human papillomavirus (HPV) infection. We took advantage of strains of genetically deficient mice to study in vivo the role of innate immune signaling in the control of papillomavirus. At 4 months, we sacrificed MmuPV1-infected mice and measured viral 757/3139 spliced transcripts by TaqMan reverse transcription-PCR (RT-PCR), localization of infection by RNAscope in situ hybridization, and histopathological abnormities by hematoxylin and eosin (H&E) staining. Among mice deficient in receptors for pathogen-associated molecular patterns, MyD88-/- and STING-/- mice had 1,350 and 80 copies of spliced transcripts/μg RNA, respectively, while no viral expression was detected in MAVS-/- and Ripk2-/- mice. Mice deficient in an adaptor molecule, STAT1-/-, for interferon signaling had 46,000 copies/μg RNA. Among mice with targeted deficiencies in the inflammatory response, interleukin-1 receptor knockout (IL-1R-/-) and caspase-1-/- mice had 350 and 30 copies/μg RNA, respectively. Among mice deficient in chemokine receptors, CCR6-/- mice had 120 copies/μg RNA, while CXCR2-/- and CXCR3-/- mice were negative. RNAscope confirmed focal infection in MyD88-/-, STAT1-/-, and CCR6-/- mice but was negative for other gene-deficient mice. Histological abnormalities were seen only in the latter mice. Our findings and the literature support a working model of innate immunity to papillomaviruses involving the activation of a MyD88-dependent pathway and IL-1 receptor signaling, control of viral replication by interferon-stimulated genes, and clearance of virus-transformed dysplastic cells by the action of the CCR6/CCL20 axis.IMPORTANCE Papillomaviruses infect stratified squamous epithelia, and the viral life cycle is linked to epithelial differentiation. Additionally, changes occur in viral and host gene expression, and immune cells are activated to modulate the infectious process. In vitro studies with keratinocytes cannot fully model the complex viral and host responses and do not reflect the contribution of local and migrating immune cells. We show that female C57BL/6J mice are susceptible to a transient papillomavirus cervicovaginal infection, and mice deficient in select genes involved in innate immune responses are susceptible to persistent infection with variable manifestations of histopathological abnormalities. The results of our studies support a working model of innate immunity to papillomaviruses, and the model provides a framework for more in-depth studies. A better understanding of mechanisms of early viral clearance and the development of approaches to induce clearance will be important for cancer prevention and the treatment of HPV-related diseases.
Collapse
|
16
|
Abstract
Human papillomavirus (HPV) is the most common sexually transmitted pathogen, and high-risk HPVs contribute to 5% of human cancers, including 25% of head and neck squamous cell carcinomas (HNSCCs). Despite the significant role played by HPVs in HNSCC, there is currently no available in vivo system to model the process from papillomavirus infection to virus-induced HNSCC. In this paper, we describe an infection-based HNSCC model, utilizing a mouse papillomavirus (MmuPV1), which naturally infects laboratory mice. Infections of the tongue epithelium of two immunodeficient strains with MmuPV1 caused high-grade squamous dysplasia with early signs of invasive carcinoma over the course of 4 months. When combined with the oral carcinogen 4-nitroquinoline-1-oxide (4NQO), MmuPV1 caused invasive squamous cell carcinoma (SCC) on the tongue of both immunodeficient and immunocompetent mice. These tumors expressed markers of papillomavirus infection and HPV-associated carcinogenesis. This novel preclinical model provides a valuable new means to study how natural papillomavirus infections contribute to HNSCC.IMPORTANCE The species specificity of papillomavirus has limited the development of an infection-based animal model to study HPV-associated head and neck carcinogenesis. Our study presents a novel in vivo model using the mouse papillomavirus MmuPV1 to study papillomavirus-associated head and neck cancer. In our model, MmuPV1 infects and causes lesions in both immunodeficient and genetically immunocompetent strains of mice. These virally induced lesions carry features associated with both HPV infections and HPV-associated carcinogenesis. Combined with previously identified cancer cofactors, MmuPV1 causes invasive squamous cell carcinomas in mice. This model provides opportunities for basic and translational studies of papillomavirus infection-based head and neck disease.
Collapse
|
17
|
Spurgeon ME, Lambert PF. Mus musculus Papillomavirus 1: a New Frontier in Animal Models of Papillomavirus Pathogenesis. J Virol 2020; 94:e00002-20. [PMID: 32051276 PMCID: PMC7163119 DOI: 10.1128/jvi.00002-20] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 02/04/2020] [Indexed: 01/06/2023] Open
Abstract
Animal models of viral pathogenesis are essential tools in human disease research. Human papillomaviruses (HPVs) are a significant public health issue due to their widespread sexual transmission and oncogenic potential. Infection-based models of papillomavirus pathogenesis have been complicated by their strict species and tissue specificity. In this Gem, we discuss the discovery of a murine papillomavirus, Mus musculus papillomavirus 1 (MmuPV1), and how its experimental use represents a major advancement in models of papillomavirus-induced pathogenesis/carcinogenesis, and their transmission.
Collapse
Affiliation(s)
- Megan E Spurgeon
- McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Paul F Lambert
- McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
18
|
Influence of cell-penetrating peptides on the activity and stability of virus-based nanoparticles. Int J Pharm 2020; 576:119008. [DOI: 10.1016/j.ijpharm.2019.119008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/23/2019] [Accepted: 12/29/2019] [Indexed: 02/06/2023]
|
19
|
The human papillomavirus 16 E5 gene potentiates MmuPV1-Dependent pathogenesis. Virology 2019; 541:1-12. [PMID: 31826841 DOI: 10.1016/j.virol.2019.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 12/03/2019] [Accepted: 12/03/2019] [Indexed: 12/19/2022]
Abstract
The papillomavirus E5 gene contributes to transformation and tumorigenesis; however, its exact function in these processes and viral pathogenesis is unclear. While E5 is present in high-risk mucosotropic HPVs that cause anogenital and head and neck cancers, it is absent in cutaneous HPVs and the recently discovered mouse papillomavirus (MmuPV1), which causes papillomas and squamous cell carcinomas of the skin and mucosal epithelia in laboratory mice. We infected K14E5 transgenic mice, which express the high-risk mucosotropic HPV16 E5 gene in stratified epithelia, with MmuPV1 to investigate the effects of E5 on papillomavirus-induced pathogenesis. Skin lesions in MmuPV1-infected K14E5 mice had earlier onset, higher incidence, and reduced frequency of spontaneous regression compared to those in non-transgenic mice. K14E5 mice were also more susceptible to cervicovaginal cancers when infected with MmuPV1 and treated with estrogen compared to non-transgenic mice. Our studies support the hypothesis that E5 contributes to papillomavirus-induced pathogenesis.
Collapse
|
20
|
Viral metagenomics reveals significant viruses in the genital tract of apparently healthy dairy cows. Arch Virol 2019; 164:1059-1067. [PMID: 30783771 DOI: 10.1007/s00705-019-04158-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 01/03/2019] [Indexed: 01/03/2023]
Abstract
The virome in genital tract secretion samples collected from 80 dairy cattle in Shanghai, China, was characterized. Viruses detected included members of the families Papillomaviridae, Polyomaviridae, Hepeviridae, Parvoviridae, Astroviridae, Picornaviridae, and Picobirnaviridae. A member of a new species within the genus Dyoxipapillomavirus and six circular Rep-encoding single-stranded DNA (ssDNA) (CRESS-DNA) viral genomes were fully sequenced and phylogenetically analyzed. The prevalence of bovine polyomaviruses 1 and 2 was measured by PCR to be 10% (8/80) and 6.25% (5/80), respectively. PCR screening also indicated that the novel papillomavirus ujs-21015 and bovine herpesvirus 6 were present in three and two out of the 80 samples, respectively.
Collapse
|
21
|
Complete Genome Sequences of Papillomavirus Isolates from the Oral Cavity, Skin, and Feces of Wild Rats. Microbiol Resour Announc 2018; 7:MRA01258-18. [PMID: 30533755 PMCID: PMC6256490 DOI: 10.1128/mra.01258-18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 10/06/2018] [Indexed: 11/20/2022] Open
Abstract
Six genome sequences of papillomavirus were determined from oral and skin swabs and fecal samples collected from wild rats. Three genomes were 7,722 bp, two genomes were 7,716 bp, and one was 7,730 bp, displaying typical papillomavirus genome organizations. Phylogenetic analysis revealed that these six genomes belonged to two different clusters.
Collapse
|
22
|
More than just oncogenes: mechanisms of tumorigenesis by human viruses. Curr Opin Virol 2018; 32:48-59. [PMID: 30268926 DOI: 10.1016/j.coviro.2018.09.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/05/2018] [Accepted: 09/14/2018] [Indexed: 12/18/2022]
Abstract
Most humans are infected with at least one of the known human cancer viruses during their lifetimes. While the initial infection with these viruses does not cause major disease, infected cells can acquire cancer hallmarks, particularly upon immunosuppression or exposure to co-carcinogenic stimuli. Even though cancer formation represents a rare outcome of a viral infection, approximately one out of eight human cancers has a viral etiology. Viral cancers present unique opportunities for prophylaxis, diagnosis, and therapy, as demonstrated by the success of HBV and HPV vaccines and HCV antivirals in decreasing the incidence of tumors that are caused by these viruses. Here we review common characteristics and mechanisms of action of the human oncogenic viruses.
Collapse
|
23
|
de Jong SJ, Créquer A, Matos I, Hum D, Gunasekharan V, Lorenzo L, Jabot-Hanin F, Imahorn E, Arias AA, Vahidnezhad H, Youssefian L, Markle JG, Patin E, D'Amico A, Wang CQF, Full F, Ensser A, Leisner TM, Parise LV, Bouaziz M, Maya NP, Cadena XR, Saka B, Saeidian AH, Aghazadeh N, Zeinali S, Itin P, Krueger JG, Laimins L, Abel L, Fuchs E, Uitto J, Franco JL, Burger B, Orth G, Jouanguy E, Casanova JL. The human CIB1-EVER1-EVER2 complex governs keratinocyte-intrinsic immunity to β-papillomaviruses. J Exp Med 2018; 215:2289-2310. [PMID: 30068544 PMCID: PMC6122964 DOI: 10.1084/jem.20170308] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/21/2018] [Accepted: 07/02/2018] [Indexed: 02/04/2023] Open
Abstract
Patients with epidermodysplasia verruciformis (EV) and biallelic null mutations of TMC6 (encoding EVER1) or TMC8 (EVER2) are selectively prone to disseminated skin lesions due to keratinocyte-tropic human β-papillomaviruses (β-HPVs), which lack E5 and E8. We describe EV patients homozygous for null mutations of the CIB1 gene encoding calcium- and integrin-binding protein-1 (CIB1). CIB1 is strongly expressed in the skin and cultured keratinocytes of controls but not in those of patients. CIB1 forms a complex with EVER1 and EVER2, and CIB1 proteins are not expressed in EVER1- or EVER2-deficient cells. The known functions of EVER1 and EVER2 in human keratinocytes are not dependent on CIB1, and CIB1 deficiency does not impair keratinocyte adhesion or migration. In keratinocytes, the CIB1 protein interacts with the HPV E5 and E8 proteins encoded by α-HPV16 and γ-HPV4, respectively, suggesting that this protein acts as a restriction factor against HPVs. Collectively, these findings suggest that the disruption of CIB1-EVER1-EVER2-dependent keratinocyte-intrinsic immunity underlies the selective susceptibility to β-HPVs of EV patients.
Collapse
Affiliation(s)
- Sarah Jill de Jong
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Amandine Créquer
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Irina Matos
- Robin Chemers Neustein Laboratory of Mammalian Development and Cell Biology, The Rockefeller University, New York, NY
| | - David Hum
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | | | - Lazaro Lorenzo
- Laboratory of Human Genetics of Infectious Diseases, Institut National de la Santé et de la Recherche Médicale, UMR 1163, Necker Hospital for Sick Children, Paris, France
- University Paris Descartes, Imagine Institute, Paris, France
| | - Fabienne Jabot-Hanin
- Laboratory of Human Genetics of Infectious Diseases, Institut National de la Santé et de la Recherche Médicale, UMR 1163, Necker Hospital for Sick Children, Paris, France
- University Paris Descartes, Imagine Institute, Paris, France
| | - Elias Imahorn
- Department of Biomedicine, University Hospital Basel and University of Basel, Switzerland
| | - Andres A Arias
- Primary Immunodeficiencies Group, School of Medicine, University of Antioquia, Medellin, Colombia
- School of Microbiology, University of Antioquia, Medellin, Colombia
| | - Hassan Vahidnezhad
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Leila Youssefian
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
- Department of Medical Genetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Janet G Markle
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Etienne Patin
- Human Evolutionary Genetics, Pasteur Institute, Paris, France
- National Center for Scientific Research, URA 3012, Paris, France
- Center of Bioinformatics, Biostatistics and Integrative Biology, Pasteur Institute, Paris, France
| | - Aurelia D'Amico
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Claire Q F Wang
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, NY
| | - Florian Full
- Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Armin Ensser
- Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Tina M Leisner
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Leslie V Parise
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Matthieu Bouaziz
- Laboratory of Human Genetics of Infectious Diseases, Institut National de la Santé et de la Recherche Médicale, UMR 1163, Necker Hospital for Sick Children, Paris, France
- University Paris Descartes, Imagine Institute, Paris, France
| | | | - Xavier Rueda Cadena
- Dermatology/Oncology - Skin Cancer Unit, National Cancer Institute, Bogota, Colombia
| | - Bayaki Saka
- Department of Dermatology, Sylvanus Olympio Hospital, University of Lomé, Togo
| | - Amir Hossein Saeidian
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - Nessa Aghazadeh
- Department of Dermatology, Razi Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Sirous Zeinali
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
- Kawsar Human Genetics Research Center, Tehran, Iran
| | - Peter Itin
- Department of Biomedicine, University Hospital Basel and University of Basel, Switzerland
- Dermatology, University Hospital Basel, Basel, Switzerland
| | - James G Krueger
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, NY
| | - Lou Laimins
- Department of Microbiology-Immunology, Northwestern University, Chicago, IL
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Institut National de la Santé et de la Recherche Médicale, UMR 1163, Necker Hospital for Sick Children, Paris, France
- University Paris Descartes, Imagine Institute, Paris, France
| | - Elaine Fuchs
- Robin Chemers Neustein Laboratory of Mammalian Development and Cell Biology, The Rockefeller University, New York, NY
| | - Jouni Uitto
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
- Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA
| | - Jose Luis Franco
- Primary Immunodeficiencies Group, School of Medicine, University of Antioquia, Medellin, Colombia
| | - Bettina Burger
- Department of Biomedicine, University Hospital Basel and University of Basel, Switzerland
| | - Gérard Orth
- Department of Virology, Pasteur Institute, Paris, France
| | - Emmanuelle Jouanguy
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Institut National de la Santé et de la Recherche Médicale, UMR 1163, Necker Hospital for Sick Children, Paris, France
- University Paris Descartes, Imagine Institute, Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Institut National de la Santé et de la Recherche Médicale, UMR 1163, Necker Hospital for Sick Children, Paris, France
- University Paris Descartes, Imagine Institute, Paris, France
- Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, Paris, France
- Howard Hughes Medical Institute, New York, NY
| |
Collapse
|
24
|
Meyers JM, Grace M, Uberoi A, Lambert PF, Munger K. Inhibition of TGF-β and NOTCH Signaling by Cutaneous Papillomaviruses. Front Microbiol 2018; 9:389. [PMID: 29568286 PMCID: PMC5852067 DOI: 10.3389/fmicb.2018.00389] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 02/20/2018] [Indexed: 12/12/2022] Open
Abstract
Infections with cutaneous papillomaviruses have been linked to cutaneous squamous cell carcinomas that arise in patients who suffer from a rare genetic disorder, epidermodysplasia verruciformis, or those who have experienced long-term, systemic immunosuppression following organ transplantation. The E6 proteins of the prototypical cutaneous human papillomavirus (HPV) 5 and HPV8 inhibit TGF-β and NOTCH signaling. The Mus musculus papillomavirus 1, MmuPV1, infects laboratory mouse strains and causes cutaneous skin warts that can progress to squamous cell carcinomas. MmuPV1 E6 shares biological and biochemical activities with HPV8 E6 including the ability to inhibit TGF-β and NOTCH signaling by binding the SMAD2/SMAD3 and MAML1 transcription factors, respectively. Inhibition of TGF-β and NOTCH signaling is linked to delayed differentiation and sustained proliferation of differentiating keratinocytes. Furthermore, the ability of MmuPV1 E6 to bind MAML1 is necessary for wart and cancer formation in experimentally infected mice. Hence, experimental MmuPV1 infection in mice will be a robust and valuable experimental system to dissect key aspects of cutaneous HPV infection, pathogenesis, and carcinogenesis.
Collapse
Affiliation(s)
- Jordan M Meyers
- Program in Virology, Harvard Medical School, Boston, MA, United States.,Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, United States
| | - Miranda Grace
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, United States
| | - Aayushi Uberoi
- McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Paul F Lambert
- McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Karl Munger
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, United States
| |
Collapse
|
25
|
Larsen BB, Cole KL, Worobey M. Ancient DNA provides evidence of 27,000-year-old papillomavirus infection and long-term codivergence with rodents. Virus Evol 2018; 4:vey014. [PMID: 29977605 PMCID: PMC6007503 DOI: 10.1093/ve/vey014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The long-term evolutionary history of many viral lineages is poorly understood. Novel sources of ancient DNA combined with phylogenetic analyses can provide insight into the time scale of virus evolution. Here we report viral sequences from ancient North American packrat middens. We screened samples up to 27,000-years old and found evidence of papillomavirus (PV) infection in Neotoma cinerea (Bushy-tailed packrat). Phylogenetic analysis placed the PV sequences in a clade with other previously published PV sequences isolated from rodents. Concordance between the host and virus tree topologies along with a correlation in branch lengths suggests a shared evolutionary history between rodents and PVs. Based on host divergence times, PVs have likely been circulating in rodents for at least 17 million years. These results have implications for our understanding of PV evolution and for further research with ancient DNA from Neotoma middens.
Collapse
Affiliation(s)
- Brendan B Larsen
- Department of Ecology and Evolutionary Biology, University of Arizona, 1041 E. Lowell St., Tucson, 85721 AZ, USA
| | - Kenneth L Cole
- Northern Arizona University, School of Earth Sciences and Environmental Sustainability, 525 S. Beaver St., Flagstaff, 86011 AZ, USA
| | - Michael Worobey
- Department of Ecology and Evolutionary Biology, University of Arizona, 1041 E. Lowell St., Tucson, 85721 AZ, USA
| |
Collapse
|
26
|
Uberoi A, Yoshida S, Lambert PF. Development of an in vivo infection model to study Mouse papillomavirus-1 (MmuPV1). J Virol Methods 2017; 253:11-17. [PMID: 29253496 DOI: 10.1016/j.jviromet.2017.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 12/11/2017] [Indexed: 12/20/2022]
Abstract
Preclinical model systems to study multiple features of the papillomavirus life cycle are extremely valuable tools to aid our understanding of Human Papillomavirus (HPV) biology, disease progression and treatments. Mouse papillomavirus (MmuPV1) is the first ever rodent papillomavirus that can infect the laboratory strain of mice and was discovered recently in 2011. This model is an attractive model to study papillomavirus pathogenesis due to the ubiquitous availability of lab mice and the fact that this mouse species is easily genetically modifiable. Several other groups, including ours, have reported that MmuPV1-induced papillomas are restricted to T-cell deficient immunosuppressed mice. In our lab we showed for the first time that MmuPV1 causes skin cancers in UVB-irradiated immunocompetent animals. In this report we describe in detail the MmuPV1-UV infection model that can be adapted to study MmuPV1 biology in immunocompetent animals.
Collapse
Affiliation(s)
- Aayushi Uberoi
- McArdle Laboratory of Cancer Research, 1111 Highland Avenue, University of Wisconsin, Madison 53705, United States
| | - Satoshi Yoshida
- McArdle Laboratory of Cancer Research, 1111 Highland Avenue, University of Wisconsin, Madison 53705, United States
| | - Paul F Lambert
- McArdle Laboratory of Cancer Research, 1111 Highland Avenue, University of Wisconsin, Madison 53705, United States.
| |
Collapse
|
27
|
Brimer N, Drews CM, Vande Pol SB. Association of papillomavirus E6 proteins with either MAML1 or E6AP clusters E6 proteins by structure, function, and evolutionary relatedness. PLoS Pathog 2017; 13:e1006781. [PMID: 29281732 PMCID: PMC5760104 DOI: 10.1371/journal.ppat.1006781] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 01/09/2018] [Accepted: 11/29/2017] [Indexed: 01/11/2023] Open
Abstract
Papillomavirus E6 proteins bind to LXXLL peptide motifs displayed on targeted cellular proteins. Alpha genus HPV E6 proteins associate with the cellular ubiquitin ligase E6AP (UBE3A), by binding to an LXXLL peptide (ELTLQELLGEE) displayed by E6AP, thereby stimulating E6AP ubiquitin ligase activity. Beta, Gamma, and Delta genera E6 proteins bind a similar LXXLL peptide (WMSDLDDLLGS) on the cellular transcriptional co-activator MAML1 and thereby repress Notch signaling. We expressed 45 different animal and human E6 proteins from diverse papillomavirus genera to ascertain the overall preference of E6 proteins for E6AP or MAML1. E6 proteins from all HPV genera except Alpha preferentially interacted with MAML1 over E6AP. Among animal papillomaviruses, E6 proteins from certain ungulate (SsPV1 from pigs) and cetacean (porpoises and dolphins) hosts functionally resembled Alpha genus HPV by binding and targeting the degradation of E6AP. Beta genus HPV E6 proteins functionally clustered with Delta, Pi, Tau, Gamma, Chi, Mu, Lambda, Iota, Dyokappa, Rho, and Dyolambda E6 proteins to bind and repress MAML1. None of the tested E6 proteins physically and functionally interacted with both MAML1 and E6AP, indicating an evolutionary split. Further, interaction of an E6 protein was insufficient to activate degradation of E6AP, indicating that E6 proteins that target E6AP co-evolved to separately acquire both binding and triggering of ubiquitin ligase activation. E6 proteins with similar biological function clustered together in phylogenetic trees and shared structural features. This suggests that the divergence of E6 proteins from either MAML1 or E6AP binding preference is a major event in papillomavirus evolution.
Collapse
Affiliation(s)
- Nicole Brimer
- Department of Pathology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Camille M. Drews
- Department of Pathology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Scott B. Vande Pol
- Department of Pathology, University of Virginia, Charlottesville, Virginia, United States of America
| |
Collapse
|
28
|
Xue XY, Majerciak V, Uberoi A, Kim BH, Gotte D, Chen X, Cam M, Lambert PF, Zheng ZM. The full transcription map of mouse papillomavirus type 1 (MmuPV1) in mouse wart tissues. PLoS Pathog 2017; 13:e1006715. [PMID: 29176795 PMCID: PMC5720830 DOI: 10.1371/journal.ppat.1006715] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/07/2017] [Accepted: 10/25/2017] [Indexed: 12/17/2022] Open
Abstract
Mouse papillomavirus type 1 (MmuPV1) provides, for the first time, the opportunity to study infection and pathogenesis of papillomaviruses in the context of laboratory mice. In this report, we define the transcriptome of MmuPV1 genome present in papillomas arising in experimentally infected mice using a combination of RNA-seq, PacBio Iso-seq, 5’ RACE, 3’ RACE, primer-walking RT-PCR, RNase protection, Northern blot and in situ hybridization analyses. We demonstrate that the MmuPV1 genome is transcribed unidirectionally from five major promoters (P) or transcription start sites (TSS) and polyadenylates its transcripts at two major polyadenylation (pA) sites. We designate the P7503, P360 and P859 as “early” promoters because they give rise to transcripts mostly utilizing the polyadenylation signal at nt 3844 and therefore can only encode early genes, and P7107 and P533 as “late” promoters because they give rise to transcripts utilizing polyadenylation signals at either nt 3844 or nt 7047, the latter being able to encode late, capsid proteins. MmuPV1 genome contains five splice donor sites and three acceptor sites that produce thirty-six RNA isoforms deduced to express seven predicted early gene products (E6, E7, E1, E1^M1, E1^M2, E2 and E8^E2) and three predicted late gene products (E1^E4, L2 and L1). The majority of the viral early transcripts are spliced once from nt 757 to 3139, while viral late transcripts, which are predicted to encode L1, are spliced twice, first from nt 7243 to either nt 3139 (P7107) or nt 757 to 3139 (P533) and second from nt 3431 to nt 5372. Thirteen of these viral transcripts were detectable by Northern blot analysis, with the P533-derived late E1^E4 transcripts being the most abundant. The late transcripts could be detected in highly differentiated keratinocytes of MmuPV1-infected tissues as early as ten days after MmuPV1 inoculation and correlated with detection of L1 protein and viral DNA amplification. In mature warts, detection of L1 was also found in more poorly differentiated cells, as previously reported. Subclinical infections were also observed. The comprehensive transcription map of MmuPV1 generated in this study provides further evidence that MmuPV1 is similar to high-risk cutaneous beta human papillomaviruses. The knowledge revealed will facilitate the use of MmuPV1 as an animal virus model for understanding of human papillomavirus gene expression, pathogenesis and immunology. Papillomavirus (PV) infections lead to development of both benign warts and cancers. Because PVs are epitheliotropic and species specific, it has been extremely challenging to study PV infection in the context of a naturally occurring infection in a tractable laboratory animal. The recent discovery of the papillomavirus, MmuPV1, that infects laboratory mice, provides an important new animal model system for understanding the pathogenesis of papillomavirus-associated diseases. By using state of the art RNA-seq to provide deep sequencing analysis of what regions of the viral genome are transcribed and PacBio Iso-seq that produces longer reads to define the complete sequences of individual transcripts in combination with several conventional technologies to confirm transcription starts sites, splice sites, and polyadenylation sites, we provide the first detailed description of the MmuPV1 transcript map using RNA from MmuPV1-induced mouse warts. This study reveals the presence of mRNA transcripts capable of coding for ten protein products in the MmuPV1 genome and leads to correctly re-assigning the E1^E4, L2 and L1 coding regions. We were able to detect individual transcripts from the infected wart tissues by RT-PCR, Northern blot and RNA ISH, to define the temporal onset of productive viral infection and to ectopically express a predicted viral protein for functional studies. The constructed MmuPV1 transcript map provides a foundation to advance our understanding of papillomavirus biology and pathogenesis.
Collapse
Affiliation(s)
- Xiang-Yang Xue
- Tumor Virus RNA Biology Section, RNA Biology Laboratory, Center for Cancer Research, NCI/NIH, Frederick, Maryland, United States of America
- Department of Microbiology and Immunology, Wenzhou Medical University, Zhejiang, China
| | - Vladimir Majerciak
- Tumor Virus RNA Biology Section, RNA Biology Laboratory, Center for Cancer Research, NCI/NIH, Frederick, Maryland, United States of America
| | - Aayushi Uberoi
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Bong-Hyun Kim
- Collaborative Bioinformatics Resource, Center for Cancer Research, NCI/NIH, Bethesda, Maryland, United States of America
- Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, Maryland, United States of America
| | - Deanna Gotte
- Tumor Virus RNA Biology Section, RNA Biology Laboratory, Center for Cancer Research, NCI/NIH, Frederick, Maryland, United States of America
| | - Xiongfong Chen
- Collaborative Bioinformatics Resource, Center for Cancer Research, NCI/NIH, Bethesda, Maryland, United States of America
- Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, Maryland, United States of America
| | - Maggie Cam
- Collaborative Bioinformatics Resource, Center for Cancer Research, NCI/NIH, Bethesda, Maryland, United States of America
| | - Paul F. Lambert
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Zhi-Ming Zheng
- Tumor Virus RNA Biology Section, RNA Biology Laboratory, Center for Cancer Research, NCI/NIH, Frederick, Maryland, United States of America
- * E-mail:
| |
Collapse
|
29
|
Abstract
Preclinical infection model systems are extremely valuable tools to aid in our understanding of Human Papillomavirus (HPV) biology, disease progression, prevention, and treatments. In this context, rodent papillomaviruses and their respective infection models are useful tools but remain underutilized resources in the field of papillomavirus biology. Two rodent papillomaviruses, MnPV1, which infects the Mastomys species of multimammate rats, and MmuPV1, which infects laboratory mice, are currently the most studied rodent PVs. Both of these viruses cause malignancy in the skin and can provide attractive infection models to study the lesser understood cutaneous papillomaviruses that have been frequently associated with HPV-related skin cancers. Of these, MmuPV1 is the first reported rodent papillomavirus that can naturally infect the laboratory strain of mice. MmuPV1 is an attractive model virus to study papillomavirus pathogenesis because of the ubiquitous availability of lab mice and the fact that this mouse species is genetically modifiable. In this review, we have summarized the knowledge we have gained about PV biology from the study of rodent papillomaviruses and point out the remaining gaps that can provide new research opportunities.
Collapse
|
30
|
Kocjan BJ, Hošnjak L, Račnik J, Zadravec M, Bakovnik N, Cigler B, Ummelen M, Hopman AHN, Gale N, Švara T, Gombač M, Poljak M. Molecular characterization, prevalence and clinical relevance of Phodopus sungorus papillomavirus type 1 (PsuPV1) naturally infecting Siberian hamsters (Phodopus sungorus). J Gen Virol 2017; 98:2799-2809. [PMID: 29022861 DOI: 10.1099/jgv.0.000943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phodopus sungorus papillomavirus type 1 (PsuPV1), naturally infecting Siberian hamsters (Phodopus sungorus) and clustering in the genus Pipapillomavirus (Pi-PV), is only the second PV type isolated from the subfamily of hamsters. In silico analysis of three independent complete viral genomes obtained from cervical adenocarcinoma, oral squamous cell carcinoma and normal oral mucosa revealed that PsuPV1 encodes characteristic viral proteins (E1, E2, E4, E6, E7, L1 and L2) with conserved functional domains and a highly conserved non-coding region. The overall high prevalence (102/114; 89.5 %) of PsuPV1 infection in normal oral and anogenital mucosa suggests that asymptomatic infection with PsuPV1 is very frequent in healthy Siberian hamsters from an early age onward, and that the virus is often transmitted between both anatomical sites. Using type-specific real-time PCR and chromogenic in situ hybridization, the presence of PsuPV1 was additionally detected in several investigated tumours (cervical adenocarcinoma, cervical adenomyoma, vaginal carcinoma in situ, ovarian granulosa cell tumour, mammary ductal carcinoma, oral fibrosarcoma, hibernoma and squamous cell papilloma) and normal tissues of adult animals. In the tissue sample of the oral squamous cell carcinoma individual, punctuated PsuPV1-specific in situ hybridization spots were detected within the nuclei of infected animal cells, suggesting viral integration into the host genome and a potential etiological association of PsuPV1 with sporadic cases of this neoplasm.
Collapse
Affiliation(s)
- Boštjan J Kocjan
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Lea Hošnjak
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Joško Račnik
- Department for Birds, Small Mammals, and Reptiles, Institute of Poultry, Birds, Small Mammals, and Reptiles, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Marko Zadravec
- Department for Birds, Small Mammals, and Reptiles, Institute of Poultry, Birds, Small Mammals, and Reptiles, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Nejc Bakovnik
- Department for Birds, Small Mammals, and Reptiles, Institute of Poultry, Birds, Small Mammals, and Reptiles, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Blaž Cigler
- Miklavžin Veterinary Center, Lakotence 7a, Ljubljana, Slovenia
| | - Monique Ummelen
- Department of Molecular Cell Biology, Research Institute for Growth and Development (GROW), University of Maastricht, Maastricht, The Netherlands
| | - Anton H N Hopman
- Department of Molecular Cell Biology, Research Institute for Growth and Development (GROW), University of Maastricht, Maastricht, The Netherlands
| | - Nina Gale
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tanja Švara
- Institute of Pathology, Forensic and Administrative Veterinary Medicine, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Mitja Gombač
- Institute of Pathology, Forensic and Administrative Veterinary Medicine, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Mario Poljak
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
31
|
Joh J, Chilton PM, Wilcher SA, Zahin M, Park J, Proctor ML, Ghim SJ, Jenson AB. T cell-mediated antitumor immune response eliminates skin tumors induced by mouse papillomavirus, MmuPV1. Exp Mol Pathol 2017; 103:181-190. [PMID: 28939161 DOI: 10.1016/j.yexmp.2017.09.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 09/18/2017] [Indexed: 12/28/2022]
Abstract
Previous studies of naturally occurring mouse papillomavirus (PV) MmuPV1-induced tumors in B6.Cg-Foxn1nu/nu mice suggest that T cell deficiency is necessary and sufficient for the development of such tumors. To confirm this, MmuPV1-induced tumors were transplanted from T cell-deficient mice into immunocompetent congenic mice. Consequently, the tumors regressed and eventually disappeared. The elimination of MmuPV1-infected skin/tumors in immunocompetent mice was consistent with the induction of antitumor T cell immunity. This was confirmed by adoptive cell experiments using hyperimmune splenocytes collected from graft-recipient mice. In the present study, such splenocytes were injected into T cell-deficient mice infected with MmuPV1, and they eliminated both early-stage and fully formed tumors. We clearly show that anti-tumor T cell immunity activated during tumor regression in immunocompetent mice effectively eliminates tumors developing in T cell-deficient congenic mice. The results corroborate the notion that PV-induced tumors are strongly linked to the immune status of the host, and that PV antigens are major anti-tumor antigens. Successful anti-PV T cell responses should, therefore, lead to effective anti-tumor immune therapy in human PV-infected patients.
Collapse
Affiliation(s)
- Joongho Joh
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA; Department of Medicine, University of Louisville, Louisville, KY, USA.
| | - Paula M Chilton
- Christine M. Kleinert Institute for Hand & Microsurgery, 225 Abraham Flexner Way, Suite 850, Louisville, KY, USA
| | - Sarah A Wilcher
- Research Resources Center, 530 South Jackson Street, Louisville, KY, USA
| | - Maryam Zahin
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Jino Park
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA; Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Mary L Proctor
- Research Resources Center, 530 South Jackson Street, Louisville, KY, USA
| | - Shin-Je Ghim
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Alfred B Jenson
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| |
Collapse
|
32
|
Hu J, Cladel NM, Budgeon LR, Balogh KK, Christensen ND. The Mouse Papillomavirus Infection Model. Viruses 2017; 9:v9090246. [PMID: 28867783 PMCID: PMC5618012 DOI: 10.3390/v9090246] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 08/23/2017] [Accepted: 08/24/2017] [Indexed: 12/28/2022] Open
Abstract
The mouse papillomavirus (MmuPV1) was first reported in 2011 and has since become a powerful research tool. Through collective efforts from different groups, significant progress has been made in the understanding of molecular, virological, and immunological mechanisms of MmuPV1 infections in both immunocompromised and immunocompetent hosts. This mouse papillomavirus provides, for the first time, the opportunity to study papillomavirus infections in the context of a small common laboratory animal for which abundant reagents are available and for which many strains exist. The model is a major step forward in the study of papillomavirus disease and pathology. In this review, we summarize studies using MmuPV1 over the past six years and share our perspectives on the value of this unique model system. Specifically, we discuss viral pathogenesis in cutaneous and mucosal tissues as well as in different mouse strains, immune responses to the virus, and local host-restricted factors that may be involved in MmuPV1 infections and associated disease progression.
Collapse
Affiliation(s)
- Jiafen Hu
- The Jake Gittlen Laboratories for Cancer Research, Hershey, PA 17033, USA.
- Department of Pathology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| | - Nancy M Cladel
- The Jake Gittlen Laboratories for Cancer Research, Hershey, PA 17033, USA.
- Department of Pathology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| | - Lynn R Budgeon
- The Jake Gittlen Laboratories for Cancer Research, Hershey, PA 17033, USA.
- Department of Pathology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| | - Karla K Balogh
- The Jake Gittlen Laboratories for Cancer Research, Hershey, PA 17033, USA.
- Department of Pathology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| | - Neil D Christensen
- The Jake Gittlen Laboratories for Cancer Research, Hershey, PA 17033, USA.
- Department of Pathology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| |
Collapse
|
33
|
Zhang W, Yang S, Shan T, Hou R, Liu Z, Li W, Guo L, Wang Y, Chen P, Wang X, Feng F, Wang H, Chen C, Shen Q, Zhou C, Hua X, Cui L, Deng X, Zhang Z, Qi D, Delwart E. Virome comparisons in wild-diseased and healthy captive giant pandas. MICROBIOME 2017; 5:90. [PMID: 28780905 PMCID: PMC5545856 DOI: 10.1186/s40168-017-0308-0] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 07/13/2017] [Indexed: 05/12/2023]
Abstract
BACKGROUND The giant panda (Ailuropoda melanoleuca) is a vulnerable mammal herbivore living wild in central China. Viral infections have become a potential threat to the health of these endangered animals, but limited information related to these infections is available. METHODS Using a viral metagenomic approach, we surveyed viruses in the feces, nasopharyngeal secretions, blood, and different tissues from a wild giant panda that died from an unknown disease, a healthy wild giant panda, and 46 healthy captive animals. RESULTS The previously uncharacterized complete or near complete genomes of four viruses from three genera in Papillomaviridae family, six viruses in a proposed new Picornaviridae genus (Aimelvirus), two unclassified viruses related to posaviruses in Picornavirales order, 19 anelloviruses in four different clades of Anelloviridae family, four putative circoviruses, and 15 viruses belonging to the recently described Genomoviridae family were sequenced. Reflecting the diet of giant pandas, numerous insect virus sequences related to the families Iflaviridae, Dicistroviridae, Iridoviridae, Baculoviridae, Polydnaviridae, and subfamily Densovirinae and plant viruses sequences related to the families Tombusviridae, Partitiviridae, Secoviridae, Geminiviridae, Luteoviridae, Virgaviridae, and Rhabdoviridae; genus Umbravirus, Alphaflexiviridae, and Phycodnaviridae were also detected in fecal samples. A small number of insect virus sequences were also detected in the nasopharyngeal secretions of healthy giant pandas and lung tissues from the dead wild giant panda. Although the viral families present in the sick giant panda were also detected in the healthy ones, a higher proportion of papillomaviruses, picornaviruses, and anelloviruses reads were detected in the diseased panda. CONCLUSION This viral survey increases our understanding of eukaryotic viruses in giant pandas and provides a baseline for comparison to viruses detected in future infectious disease outbreaks. The similar viral families detected in sick and healthy giant pandas indicate that these viruses result in commensal infections in most immuno-competent animals.
Collapse
Affiliation(s)
- Wen Zhang
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013 China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan 610081 China
| | - Shixing Yang
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013 China
| | - Tongling Shan
- Department of Swine Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241 China
| | - Rong Hou
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan 610081 China
| | - Zhijian Liu
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013 China
| | - Wang Li
- Department of Laboratory Medicine, Jiangsu Taizhou People’s Hospital, Taizhou, Jiangsu 225300 China
| | - Lianghua Guo
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240 China
| | - Yan Wang
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013 China
| | - Peng Chen
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan 610081 China
| | - Xiaochun Wang
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013 China
| | - Feifei Feng
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan 610081 China
| | - Hua Wang
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013 China
| | - Chao Chen
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan 610081 China
| | - Quan Shen
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013 China
| | - Chenglin Zhou
- Department of Laboratory Medicine, Jiangsu Taizhou People’s Hospital, Taizhou, Jiangsu 225300 China
| | - Xiuguo Hua
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240 China
| | - Li Cui
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240 China
| | - Xutao Deng
- Blood Systems Research Institute, Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA 94118 USA
| | - Zhihe Zhang
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan 610081 China
| | - Dunwu Qi
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan 610081 China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan 610000 China
| | - Eric Delwart
- Blood Systems Research Institute, Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA 94118 USA
| |
Collapse
|
34
|
Genomic characterisation of Felis catus papillomavirus type 5 with proposed classification within a new papillomavirus genus. Vet Microbiol 2017; 207:50-55. [DOI: 10.1016/j.vetmic.2017.05.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 05/25/2017] [Accepted: 05/31/2017] [Indexed: 11/19/2022]
|
35
|
Zahin M, Ghim SJ, Khanal S, Bossart GD, Jenson AB, Joh J. Molecular characterization of novel mucosotropic papillomaviruses from a Florida manatee (Trichechus manatus latirostris). J Gen Virol 2016; 96:3545-3553. [PMID: 26395390 DOI: 10.1099/jgv.0.000293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
We isolated two new manatee papillomavirus (PV) types, TmPV3 and TmPV4, from a Florida manatee (Trichechus manatus latirostris). Two PV types were previously isolated from this species. TmPV1 is widely dispersed amongst manatees and a close-to-root PV; not much is known about TmPV2. The genomes of TmPV3 and TmPV4 were 7622 and 7771 bp in size, respectively. Both PVs had a genomic organization characteristic of all PVs, with one non-coding region and seven ORFs, including the E7 ORF that is absent in other cetacean PVs. Although these PVs were isolated from separate genital lesions of the same manatee, an enlarged E2/E4 ORF was found only in the TmPV4 genome. The full genome and L1 sequence similarities between TmPV3 and TmPV4 were 63.2 and 70.3 %, respectively. These genomes shared only 49.1 and 50.2 % similarity with TmPV1. The pairwise alignment of L1 nucleotide sequences indicated that the two new PVs nested in a monophyletic group of the genus Rhopapillomavirus, together with the cutaneotropic TmPV1 and TmPV2.
Collapse
Affiliation(s)
- Maryam Zahin
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Shin-Je Ghim
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Sujita Khanal
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA.,Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY 40202, USA
| | - Gregory D Bossart
- Georgia Aquarium, 225 Baker Street Northwest, Atlanta, GA 30313, USA.,Division of Comparative Pathology, Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Alfred B Jenson
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Joongho Joh
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA.,Department of Medicine, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
36
|
Uberoi A, Yoshida S, Frazer IH, Pitot HC, Lambert PF. Role of Ultraviolet Radiation in Papillomavirus-Induced Disease. PLoS Pathog 2016; 12:e1005664. [PMID: 27244228 PMCID: PMC4887022 DOI: 10.1371/journal.ppat.1005664] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 05/06/2016] [Indexed: 01/16/2023] Open
Abstract
Human papillomaviruses are causally associated with 5% of human cancers. The recent discovery of a papillomavirus (MmuPV1) that infects laboratory mice provides unique opportunities to study the life cycle and pathogenesis of papillomaviruses in the context of a genetically manipulatable host organism. To date, MmuPV1-induced disease has been found largely to be restricted to severely immunodeficient strains of mice. In this study, we report that ultraviolet radiation (UVR), specifically UVB spectra, causes wild-type strains of mice to become highly susceptible to MmuPV1-induced disease. MmuPV1-infected mice treated with UVB develop warts that progress to squamous cell carcinoma. Our studies further indicate that UVB induces systemic immunosuppression in mice that correlates with susceptibility to MmuPV1-associated disease. These findings provide new insight into how MmuPV1 can be used to study the life cycle of papillomaviruses and their role in carcinogenesis, the role of host immunity in controlling papillomavirus-associated pathogenesis, and a basis for understanding in part the role of UVR in promoting HPV infection in humans.
Collapse
Affiliation(s)
- Aayushi Uberoi
- McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Satoshi Yoshida
- McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Ian H. Frazer
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia
| | - Henry C. Pitot
- McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Paul F. Lambert
- McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
37
|
Joh J, Ghim SJ, Chilton PM, Sundberg JP, Park J, Wilcher SA, Proctor ML, Bennett Jenson A. MmuPV1 infection and tumor development of T cell-deficient mice is prevented by passively transferred hyperimmune sera from normal congenic mice immunized with MmuPV1 virus-like particles (VLPs). Exp Mol Pathol 2016; 100:212-9. [PMID: 26778691 DOI: 10.1016/j.yexmp.2016.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 01/08/2016] [Indexed: 12/28/2022]
Abstract
Infection by mouse papillomavirus (PV), MmuPV1, of T cell-deficient, B6.Cg-Foxn1(nu)/J nude mice revealed that four, distinct squamous papilloma phenotypes developed simultaneously after infection of experimental mice. Papillomas appeared on the muzzle, vagina, and tail at or about day 42days post-inoculation. The dorsal skin developed papillomas and hair follicle tumors (trichoblastomas) as early as 26days after infection. Passive transfer of hyperimmune sera from normal congenic mice immunized with MmuPV1 virus-like particles (VLPs) to T cell-deficient strains of mice prevented infection by virions of experimental mice. This study provides further evidence that T cell deficiency is critical for tumor formation by MmuPV1 infection.
Collapse
Affiliation(s)
- Joongho Joh
- James Graham Brown Cancer Center, 505 South Hancock Street, Louisville, KY, United States; Department of Medicine, 550 South Jackson Street, Louisville, KY, United States.
| | - Shin-je Ghim
- James Graham Brown Cancer Center, 505 South Hancock Street, Louisville, KY, United States
| | - Paula M Chilton
- Christine M. Kleinert Institute for Hand & Microsurgery, 225 Abraham Flexner Way, Suite 850, Louisville, KY, United States
| | | | - Jino Park
- James Graham Brown Cancer Center, 505 South Hancock Street, Louisville, KY, United States
| | - Sarah A Wilcher
- Research Resources Center, 530 South Jackson Street, Louisville, KY, United States
| | - Mary L Proctor
- Research Resources Center, 530 South Jackson Street, Louisville, KY, United States
| | - A Bennett Jenson
- James Graham Brown Cancer Center, 505 South Hancock Street, Louisville, KY, United States
| |
Collapse
|
38
|
Doorbar J. Model systems of human papillomavirus-associated disease. J Pathol 2015; 238:166-79. [DOI: 10.1002/path.4656] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 09/30/2015] [Accepted: 10/07/2015] [Indexed: 11/11/2022]
Affiliation(s)
- John Doorbar
- Department of Pathology; University of Cambridge; Tennis Court Road Cambridge UK
| |
Collapse
|
39
|
Munday JS, Dunowska M, Laurie RE, Hills S. Genomic characterisation of canine papillomavirus type 17, a possible rare cause of canine oral squamous cell carcinoma. Vet Microbiol 2015; 182:135-40. [PMID: 26711040 DOI: 10.1016/j.vetmic.2015.11.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 11/09/2015] [Accepted: 11/14/2015] [Indexed: 11/27/2022]
Abstract
Squamous cell carcinomas (SCCs) are the second most common cancer of the canine oral cavity resulting in significant morbidity and mortality. Recently a dog with multiple oral SCCs that contained a novel papillomavirus (PV) was reported. The aim of the present study was to determine the genome of this novel PV. To do this a short section of PV DNA was amplified from an oral SCC and 'back-to-back' primers were designed. Due to the circular nature of PV DNA, these primers were then used to amplify the remainder of the genome by inverse PCR. The PCR product was sequenced using next generation sequencing and the full genome of the PV, consisting of 8007 bp, was assembled and analysed. As this is the seventeenth PV identified from the domestic dog, the novel PV was designated Canis familiaris papillomavirus (CPV) type 17. Similar to other CPV types, the putative coding regions of CPV-17 were predicted to produce 5 early and 2 late proteins. Phylogenetic analysis of ORF L1 revealed greater than 70% similarity to CPV-2 and CPV-7 and we propose that CPV-17 also be classified as a Taupapillomavirus 1. While it appears CPV-17 is only rarely present in canine oral SCCs, evidence suggests that this PV could influence the development of oral SCCs in this species.
Collapse
Affiliation(s)
- John S Munday
- College of Science, Massey University, Palmerston North, New Zealand.
| | - Magda Dunowska
- College of Science, Massey University, Palmerston North, New Zealand
| | - Rebecca E Laurie
- Otago Genomics and Bioinformatics Facility, Otago University, Dunedin, New Zealand
| | - Simon Hills
- College of Science, Massey University, Palmerston North, New Zealand
| |
Collapse
|
40
|
Munday JS, Thomson N, Dunowska M, Knight CG, Laurie RE, Hills S. Genomic characterisation of the feline sarcoid-associated papillomavirus and proposed classification as Bos taurus papillomavirus type 14. Vet Microbiol 2015; 177:289-95. [DOI: 10.1016/j.vetmic.2015.03.019] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 03/02/2015] [Accepted: 03/16/2015] [Indexed: 01/04/2023]
|
41
|
A novel pre-clinical murine model to study the life cycle and progression of cervical and anal papillomavirus infections. PLoS One 2015; 10:e0120128. [PMID: 25803616 PMCID: PMC4372414 DOI: 10.1371/journal.pone.0120128] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 01/19/2015] [Indexed: 02/02/2023] Open
Abstract
Background Papillomavirus disease and associated cancers remain a significant health burden in much of the world. The current protective vaccines, Gardasil and Cervarix, are expensive and not readily available to the underprivileged. In addition, the vaccines have not gained wide acceptance in the United States nor do they provide therapeutic value. Papillomaviruses are strictly species specific and thus human viruses cannot be studied in an animal host. An appropriate model for mucosal disease has long been sought. We chose to investigate whether the newly discovered mouse papillomavirus, MmuPV1, could infect mucosal tissues in Foxn1nu/Foxn1nu mice. Methods The vaginal and anal canals of Foxn1nu/Foxn1nu mice were gently abraded using Nonoxynol-9 and “Doctor’s BrushPicks” and MmuPV1 was delivered into the vaginal tract or the anal canal. Results Productive vaginal, cervical and anal infections developed in all mice. Vaginal/cervical infections could be monitored by vaginal lavage. Dysplasias were evident in all animals. Conclusions Anogenital tissues of a common laboratory mouse can be infected with a papillomavirus unique to that animal. This observation will pave the way for fundamental virological and immunological studies that have been challenging to carry out heretofore due to lack of a suitable model system.
Collapse
|
42
|
Immune status, strain background, and anatomic site of inoculation affect mouse papillomavirus (MmuPV1) induction of exophytic papillomas or endophytic trichoblastomas. PLoS One 2014; 9:e113582. [PMID: 25474466 PMCID: PMC4256377 DOI: 10.1371/journal.pone.0113582] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 10/25/2014] [Indexed: 12/14/2022] Open
Abstract
Papillomaviruses (PVs) induce papillomas, premalignant lesions, and carcinomas in a wide variety of species. PVs are classified first based on their host and tissue tropism and then their genomic diversities. A laboratory mouse papillomavirus, MmuPV1 (formerly MusPV), was horizontally transmitted within an inbred colony of NMRI-Foxn1(nu)/Foxn1nu (nude; T cell deficient) mice of an unknown period of time. A ground-up, filtered papilloma inoculum was not capable of infecting C57BL/6J wild-type mice; however, immunocompetent, alopecic, S/RV/Cri-ba/ba (bare) mice developed small papillomas at injection sites that regressed. NMRI-Foxn1(nu) and B6.Cg-Foxn1(nu), but not NU/J-Foxn1(nu), mice were susceptible to MmuPV1 infection. B6 congenic strains, but not other congenic strains carrying the same allelic mutations, lacking B- and T-cells, but not B-cells alone, were susceptible to infection, indicating that mouse strain and T-cell deficiency are critical to tumor formation. Lesions initially observed were exophytic papillomas around the muzzle, exophytic papillomas on the tail, and condylomas of the vaginal lining which could be induced by separate scarification or simultaneous scarification of MmuPV1 at all four sites. On the dorsal skin, locally invasive, poorly differentiated tumors developed with features similar to human trichoblastomas. Transcriptome analysis revealed significant differences between the normal skin in these anatomic sites and in papillomas versus trichoblastomas. The primarily dysregulated genes involved molecular pathways associated with cancer, cellular development, cellular growth and proliferation, cell morphology, and connective tissue development and function. Although trichoepitheliomas are benign, aggressive tumors, few of the genes commonly associated with basal cell carcinoma or squamous cells carcinoma were highly dysregulated.
Collapse
|
43
|
Abstract
UNLABELLED Human papillomaviruses (HPVs) are small DNA viruses causally associated with benign warts and multiple cancers, including cervical and head-and-neck cancers. While the vast majority of people are exposed to HPV, most instances of infection are cleared naturally. However, the intrinsic host defense mechanisms that block the early establishment of HPV infections remain mysterious. Several antiviral cytidine deaminases of the human APOBEC3 (hA3) family have been identified as potent viral DNA mutators. While editing of HPV genomes in benign and premalignant cervical lesions has been demonstrated, it remains unclear whether hA3 proteins can directly inhibit HPV infection. Interestingly, recent studies revealed that HPV-positive cervical and head-and-neck cancers exhibited higher rates of hA3 mutation signatures than most HPV-negative cancers. Here, we report that hA3A and hA3B expression levels are highly upregulated in HPV-positive keratinocytes and cervical tissues in early stages of cancer progression, potentially through a mechanism involving the HPV E7 oncoprotein. HPV16 virions assembled in the presence of hA3A, but not in the presence of hA3B or hA3C, have significantly decreased infectivity compared to HPV virions assembled without hA3A or with a catalytically inactive mutant, hA3A/E72Q. Importantly, hA3A knockdown in human keratinocytes results in a significant increase in HPV infectivity. Collectively, our findings suggest that hA3A acts as a restriction factor against HPV infection, but the induction of this restriction mechanism by HPV may come at a cost to the host by promoting cancer mutagenesis. IMPORTANCE Human papillomaviruses (HPVs) are highly prevalent and potent human pathogens that cause >5% of all human cancers, including cervical and head-and-neck cancers. While the majority of people become infected with HPV, only 10 to 20% of infections are established as persistent infections. This suggests the existence of intrinsic host defense mechanisms that inhibit viral persistence. Using a robust method to produce infectious HPV virions, we demonstrate that hA3A, but not hA3B or hA3C, can significantly inhibit HPV infectivity. Moreover, hA3A and hA3B were coordinately induced in HPV-positive clinical specimens during cancer progression, likely through an HPV E7 oncoprotein-dependent mechanism. Interestingly, HPV-positive cervical and head-and-neck cancer specimens were recently shown to harbor significant amounts of hA3 mutation signatures. Our findings raise the intriguing possibility that the induction of this host restriction mechanism by HPV may also trigger hA3A- and hA3B-induced cancer mutagenesis.
Collapse
|
44
|
Silva KA, Kennedy VE, Sundberg JP. Systematic evaluation of skin and adnexa in mutant laboratory mice. ACTA ACUST UNITED AC 2014; 4:105-19. [PMID: 25554736 DOI: 10.1002/9780470942390.mo140035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The skin and its adnexa (hair and nails) comprise one of the easiest organ systems to evaluate, as they are the most accessible. However, mice are small and have lots of very fine hairs of multiple types. Thus, while major abnormalities are obvious, subtle abnormalities or the basis for these defects can be difficult to define. To assist in outlining basic approaches to evaluating mice clinically as well as microscopically with the help of a pathologist, methods are provided here that are used routinely in many laboratories. The mouse is a very useful mammalian model system for studying normal and abnormal (disease) development, and there is a high degree of correlation not only with human biology and medicine but with that of most other mammalian species. Utilizing basic approaches standardizes analysis and provides quality samples for analysis.
Collapse
|
45
|
Day PM, Schelhaas M. Concepts of papillomavirus entry into host cells. Curr Opin Virol 2014; 4:24-31. [PMID: 24525291 PMCID: PMC3951680 DOI: 10.1016/j.coviro.2013.11.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Revised: 11/17/2013] [Accepted: 11/19/2013] [Indexed: 12/17/2022]
Abstract
Papillomaviruses enter basal cells of stratified epithelia. Assembly of new virions occurs in infected cells during terminal differentiation. This unique biology is reflected in the mechanism of entry. Extracellularly, the interaction of nonenveloped capsids with several host cell proteins, after binding, results in discrete conformational changes. Asynchronous internalization occurs over several hours by an endocytic mechanism related to, but distinct from macropinocytosis. Intracellular trafficking leads virions through the endosomal system, and from late endosomes to the trans-Golgi-network, before nuclear delivery. Here, we discuss the existing data with the aim to synthesize an integrated model of the stepwise process of entry, thereby highlighting key open questions. Additionally, we relate data from experiments with cultured cells to in vivo results.
Collapse
Affiliation(s)
- Patricia M Day
- Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda, USA
| | - Mario Schelhaas
- Emmy-Noether Group: Virus Endocytosis, Institutes of Molecular Virology and Medical Biochemistry, ZMBE, University of Münster, Münster, Germany; Cluster of Excellence EXC1003, Cells in Motion, CiM, Münster, Germany.
| |
Collapse
|
46
|
Joh J, Jenson AB, Ingle A, Sundberg JP, Ghim SJ. Searching for the initiating site of the major capsid protein to generate virus-like particles for a novel laboratory mouse papillomavirus. Exp Mol Pathol 2014; 96:155-61. [PMID: 24389228 DOI: 10.1016/j.yexmp.2013.12.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 12/16/2013] [Indexed: 10/25/2022]
Abstract
Correctly folded virus-like particles (VLPs) of papillomavirus (PV) display conformationally dependent epitopes that are type specific, maintained on authentic virions, and induce neutralizing antibodies. Alignment of the L1 amino acid (aa) sequences of 84 PVs revealed that the lengths of their N-termini are diverse and that multiple, possible initiation methionine (met) codons exist. The L1 gene of MusPV (MmuPV1), that naturally infects immunodeficient laboratory mouse strain (NMRI-Foxn1(nu)/Foxn1(nu)), has four met codons at the 1st, 2nd, 28th, and 30th aas from its N-terminus. Of these, the 3rd and 4th mets, that are at the 28th and 30th aa position from the N-termius, respectively, are located at the position where most PVs have their first met. These two mets, located at the 9th and 11th from the YLPP conserved aas of most PVs, should be considered as consensus initiation codons of PV L1s. Three L1 proteins of MusPV, starting from the 2nd, 3rd, and 4th mets, were expressed using a baculovirus expression system and characterized for their ability to self-assemble into VLPs. While MusPV L1 proteins starting from the 2nd met expressed an L1 protein that did not fold into VLPs, the L1s starting from the 3rd and 4th mets generated correct VLPs in abundant quantities. We now conclude that the highest quantity and best quality VLPs are made from the consensus L1 met of MusPV.
Collapse
Affiliation(s)
- Joongho Joh
- Department of Medicine, James Graham Brown Cancer Center (JGBCC), University of Louisville, Louisville, KY, United States
| | - Alfred B Jenson
- Department of Medicine, James Graham Brown Cancer Center (JGBCC), University of Louisville, Louisville, KY, United States
| | - Arvind Ingle
- Tata Memorial Centre, ACTREC, Kharghar, Navi Mumbai 410-210, India
| | | | - Shin-je Ghim
- Department of Medicine, James Graham Brown Cancer Center (JGBCC), University of Louisville, Louisville, KY, United States.
| |
Collapse
|
47
|
Rogovskyy AS, Chen Z, Burk RD, Bankhead T. Characterization of the North American beaver (Castor canadensis) papillomavirus genome. Vet Microbiol 2014; 168:214-20. [DOI: 10.1016/j.vetmic.2013.11.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 10/24/2013] [Accepted: 11/04/2013] [Indexed: 11/30/2022]
|
48
|
Characterization of Mus musculus papillomavirus 1 infection in situ reveals an unusual pattern of late gene expression and capsid protein localization. J Virol 2013; 87:13214-25. [PMID: 24067981 DOI: 10.1128/jvi.02162-13] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Full-length genomic DNA of the recently identified laboratory mouse papillomavirus 1 (MusPV1) was synthesized in vitro and was used to establish and characterize a mouse model of papillomavirus pathobiology. MusPV1 DNA, whether naked or encapsidated by MusPV1 or human papillomavirus 16 (HPV 16) capsids, efficiently induced the outgrowth of papillomas as early as 3 weeks after application to abraded skin on the muzzles and tails of athymic NCr nude mice. High concentrations of virions were extracted from homogenized papillomatous tissues and were serially passaged for >10 generations. Neutralization by L1 antisera confirmed that infectious transmission was capsid mediated. Unexpectedly, the skin of the murine back was much less susceptible to virion-induced papillomas than the muzzle or tail. Although reporter pseudovirions readily transduced the skin of the back, infection with native MusPV1 resulted in less viral genome amplification and gene expression on the back, including reduced expression of the L1 protein and very low expression of the L2 protein, results that imply skin region-specific control of postentry aspects of the viral life cycle. Unexpectedly, L1 protein on the back was predominantly cytoplasmic, while on the tail the abundant L1 was cytoplasmic in the lower epithelial layers and nuclear in the upper layers. Nuclear localization of L1 occurred only in cells that coexpressed the minor capsid protein, L2. The pattern of L1 protein staining in the infected epithelium suggests that L1 expression occurs earlier in the MusPV1 life cycle than in the life cycle of high-risk HPV and that virion assembly is regulated by a previously undescribed mechanism.
Collapse
|
49
|
Genomic characterization of Felis catus papillomavirus-3: A novel papillomavirus detected in a feline Bowenoid in situ carcinoma. Vet Microbiol 2013; 165:319-25. [DOI: 10.1016/j.vetmic.2013.04.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 03/27/2013] [Accepted: 04/07/2013] [Indexed: 01/03/2023]
|
50
|
Secondary infections, expanded tissue tropism, and evidence for malignant potential in immunocompromised mice infected with Mus musculus papillomavirus 1 DNA and virus. J Virol 2013; 87:9391-5. [PMID: 23785210 DOI: 10.1128/jvi.00777-13] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Papillomavirus disease poses a special challenge to people with compromised immune systems. Appropriate models to study infections in these individuals are lacking. We report here the development of a model that will help to address these deficiencies. The MmuPV1 genome was synthesized and used successfully to produce virus from DNA infections in immunocompromised mice. In these early studies, we have demonstrated both primary and secondary infections, expanded tissue tropism, and extensive dysplasia.
Collapse
|