1
|
Varanda J, Santos JM. It Was Not the Perfect Storm: The Social History of the HIV-2 Virus in Guinea-Bissau. Trop Med Infect Dis 2023; 8:tropicalmed8050261. [PMID: 37235309 DOI: 10.3390/tropicalmed8050261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
The perfect storm model that was elaborated for the HIV-1M pandemic has also been used to explain the emergence of HIV-2, a second human immunodeficiency virus-acquired immunodeficiency syndrome (HIV-AIDS) that became an epidemic in Guinea-Bissau, West Africa. The use of this model creates epidemiological generalizations, ecological oversimplifications and historical misunderstandings as its assumptions-an urban center with explosive population growth, a high level of commercial sex and a surge in STDs, a network of mechanical transport and country-wide, en masse mobile campaigns-are absent from the historical record. This model fails to explain how the HIV-2 epidemic actually came about. This is the first study to conduct an exhaustive examination of sociohistorical contextual developments and align them with environmental, virological and epidemiological data. The interdisciplinary dialogue indicates that the emergence of the HIV-2 epidemic piggybacked on local sociopolitical transformations. The war's indirect effects on ecological relations, mobility and sociability were acute in rural areas and are a key to the HIV-2 epidemic. This setting had the natural host of the virus, the population numbers, the mobility trends and the use of technology on a scale needed to foster viral adaptation and amplification. The present analysis suggests new reflections on the processes of zoonotic spillovers and disease emergence.
Collapse
Affiliation(s)
- Jorge Varanda
- Centre for Research in Anthropology (CRIA-UC), Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
- Global Health and Tropical Medicine, Institute of Hygiene and Tropical Medicine-NOVA-Lisbon (GHTM-UNL), Rua da Junqueira, 100, 1349-008 Lisboa, Portugal
| | - José Maurício Santos
- Centre for Geographical Studies, Institute of Geography and Spatial Planning, Universidade de Lisboa, 1600-276 Lisboa, Portugal
- Associated Laboratory TERRA, 1349-017 Lisboa, Portugal
| |
Collapse
|
2
|
Bártolo I, Moranguinho I, Gonçalves P, Diniz AR, Borrego P, Martin F, Figueiredo I, Gomes P, Gonçalves F, Alves AJS, Alves N, Caixas U, Pinto IV, Barahona I, Pinho e Melo TMVD, Taveira N. High Instantaneous Inhibitory Potential of Bictegravir and the New Spiro-β-Lactam BSS-730A for HIV-2 Isolates from RAL-Naïve and RAL-Failing Patients. Int J Mol Sci 2022; 23:ijms232214300. [PMID: 36430777 PMCID: PMC9695772 DOI: 10.3390/ijms232214300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
Integrase inhibitors (INIs) are an important class of drugs for treating HIV-2 infection, given the limited number of drugs active against this virus. While the clinical efficacy of raltegravir and dolutegravir is well established, the clinical efficacy of bictegravir for treating HIV-2 infected patients has not been determined. Little information is available regarding the activity of bictegravir against HIV-2 isolates from patients failing raltegravir-based therapy. In this study, we examined the phenotypic and matched genotypic susceptibility of HIV-2 primary isolates from raltegravir-naïve and raltegravir-failing patients to raltegravir, dolutegravir, and bictegravir, and to the new spiro-β-lactam BSS-730A. The instantaneous inhibitory potential (IIP) was calculated to help predict the clinical activity of bictegravir and BSS-730A. Isolates from raltegravir-naïve patients were highly sensitive to all INIs and BSS-730A. Combined integrase mutations E92A and Q148K conferred high-level resistance to raltegravir, and E92Q and T97A conferred resistance to raltegravir and dolutegravir. The antiviral activity of bictegravir and BSS-730A was not affected by these mutations. BSS-730A displayed strong antiviral synergism with raltegravir. Mean IIP values at Cmax were similar for all INIs and were not significantly affected by resistance mutations. IIP values were significantly higher for BSS-730A than for INIs. The high IIP values of bictegravir and BSS-730A for raltegravir-naïve and raltegravir-resistant HIV-2 isolates highlight their potential value for treating HIV-2 infection. Overall, the results are consistent with the high clinical efficacy of raltegravir and dolutegravir for HIV-2 infection and suggest a promising clinical profile for bictegravir and BSS-730A.
Collapse
Affiliation(s)
- Inês Bártolo
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-019 Lisboa, Portugal
| | - Inês Moranguinho
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-019 Lisboa, Portugal
| | - Paloma Gonçalves
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-019 Lisboa, Portugal
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Superior de Ciências da Saúde Egas Moniz, 2829-511 Caparica, Portugal
| | - Ana Rita Diniz
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-019 Lisboa, Portugal
| | - Pedro Borrego
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-019 Lisboa, Portugal
- Centro de Administração e Políticas Públicas (CAPP), Instituto Superior de Ciências Sociais e Políticas (ISCSP), Universidade de Lisboa, 1649-019 Lisboa, Portugal
| | - Francisco Martin
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-019 Lisboa, Portugal
| | - Inês Figueiredo
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-019 Lisboa, Portugal
| | - Perpétua Gomes
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Superior de Ciências da Saúde Egas Moniz, 2829-511 Caparica, Portugal
- Laboratório de Biologia Molecular, LMCBM, SPC, Centro Hospitalar Lisboa Ocidental–HEM, 1649-019 Lisboa, Portugal
| | - Fátima Gonçalves
- Laboratório de Biologia Molecular, LMCBM, SPC, Centro Hospitalar Lisboa Ocidental–HEM, 1649-019 Lisboa, Portugal
| | - Américo J. S. Alves
- Department of Chemistry, Coimbra Chemistry Centre-Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal
| | - Nuno Alves
- Department of Chemistry, Coimbra Chemistry Centre-Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal
| | - Umbelina Caixas
- Serviço de Medicina 1.4, Hospital de S. José, CHLC, EPE, and Faculdade de Ciências Médicas, FCM-Nova, Centro de Estudos de Doenças Crónicas–CEDOC, 1649-019 Lisboa, Portugal
| | - Inês V. Pinto
- Medicina Interna, Hospital de Cascais Dr. José de Almeida, 2755-009 Alcabideche, Portugal
| | - Isabel Barahona
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Superior de Ciências da Saúde Egas Moniz, 2829-511 Caparica, Portugal
| | - Teresa M. V. D. Pinho e Melo
- Department of Chemistry, Coimbra Chemistry Centre-Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal
| | - Nuno Taveira
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-019 Lisboa, Portugal
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Superior de Ciências da Saúde Egas Moniz, 2829-511 Caparica, Portugal
- Correspondence:
| |
Collapse
|
3
|
Attwood SW, Hill SC, Aanensen DM, Connor TR, Pybus OG. Phylogenetic and phylodynamic approaches to understanding and combating the early SARS-CoV-2 pandemic. Nat Rev Genet 2022; 23:547-562. [PMID: 35459859 PMCID: PMC9028907 DOI: 10.1038/s41576-022-00483-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2022] [Indexed: 01/05/2023]
Abstract
Determining the transmissibility, prevalence and patterns of movement of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections is central to our understanding of the impact of the pandemic and to the design of effective control strategies. Phylogenies (evolutionary trees) have provided key insights into the international spread of SARS-CoV-2 and enabled investigation of individual outbreaks and transmission chains in specific settings. Phylodynamic approaches combine evolutionary, demographic and epidemiological concepts and have helped track virus genetic changes, identify emerging variants and inform public health strategy. Here, we review and synthesize studies that illustrate how phylogenetic and phylodynamic techniques were applied during the first year of the pandemic, and summarize their contributions to our understanding of SARS-CoV-2 transmission and control.
Collapse
Affiliation(s)
- Stephen W Attwood
- Department of Zoology, University of Oxford, Oxford, UK.
- Pathogen Genomics Unit, Public Health Wales NHS Trust, Cardiff, UK.
| | - Sarah C Hill
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, London, UK
| | - David M Aanensen
- Centre for Genomic Pathogen Surveillance, Wellcome Genome Campus, Hinxton, UK
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Thomas R Connor
- Pathogen Genomics Unit, Public Health Wales NHS Trust, Cardiff, UK
- School of Biosciences, Cardiff University, Cardiff, UK
| | - Oliver G Pybus
- Department of Zoology, University of Oxford, Oxford, UK.
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, London, UK.
| |
Collapse
|
4
|
Avila-Rios S, García-Morales C, Reyes-Terán G, González-Rodríguez A, Matías-Florentino M, Mehta SR, Chaillon A. Phylodynamics of HIV in the Mexico City Metropolitan Region. J Virol 2022; 96:e0070822. [PMID: 35762759 PMCID: PMC9327710 DOI: 10.1128/jvi.00708-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/06/2022] [Indexed: 12/30/2022] Open
Abstract
Evolutionary analyses of viral sequences can provide insights into transmission dynamics, which in turn can optimize prevention interventions. Here, we characterized the dynamics of HIV transmission within the Mexico City metropolitan area. HIV pol sequences from persons recently diagnosed at the largest HIV clinic in Mexico City (between 2016 and 2021) were annotated with demographic/geographic metadata. A multistep phylogenetic approach was applied to identify putative transmission clades. A data set of publicly available sequences was used to assess international introductions. Clades were analyzed with a discrete phylogeographic model to evaluate the timing and intensity of HIV introductions and transmission dynamics among municipalities in the region. A total of 6,802 sequences across 96 municipalities (5,192 from Mexico City and 1,610 from the neighboring State of Mexico) were included (93.6% cisgender men, 5.0% cisgender women, and 1.3% transgender women); 3,971 of these sequences formed 1,206 clusters, involving 78 municipalities, including 89 clusters of ≥10 sequences. Discrete phylogeographic analysis revealed (i) 1,032 viral introductions into the region, over one-half of which were from the United States, and (ii) 354 migration events between municipalities with high support (adjusted Bayes factor of ≥3). The most frequent viral migrations occurred between northern municipalities within Mexico City, i.e., Cuauhtémoc to Iztapalapa (5.2% of events), Iztapalapa to Gustavo A. Madero (5.4%), and Gustavo A. Madero to Cuauhtémoc (6.5%). Our analysis illustrates the complexity of HIV transmission within the Mexico City metropolitan area but also identifies a spatially active transmission area involving a few municipalities in the north of the city, where targeted interventions could have a more pronounced effect on the entire regional epidemic. IMPORTANCE Phylogeographic investigation of the Mexico City HIV epidemic illustrates the complexity of HIV transmission in the region. An active transmission area involving a few municipalities in the north of the city, with transmission links throughout the region, is identified and could be a location where targeted interventions could have a more pronounced effect on the entire regional epidemic, compared with those dispersed in other manners.
Collapse
Affiliation(s)
- Santiago Avila-Rios
- Center for Research in Infectious Diseases, National Institute of Respiratory Diseases, Mexico City, Mexico
| | - Claudia García-Morales
- Center for Research in Infectious Diseases, National Institute of Respiratory Diseases, Mexico City, Mexico
| | - Gustavo Reyes-Terán
- Coordinating Commission of the National Institutes of Health and High Specialty Hospitals, Ministry of Health, Mexico City, Mexico
| | | | | | - Sanjay R. Mehta
- Division of Infectious Diseases and Global Public Health, University of California, San Diego, San Diego, California, USA
- Veterans Affairs Health System, San Diego, California, USA
| | - Antoine Chaillon
- Division of Infectious Diseases and Global Public Health, University of California, San Diego, San Diego, California, USA
| |
Collapse
|
5
|
Reeves I, Cromarty B, Deayton J, Dhairyawan R, Kidd M, Taylor C, Thornhill J, Tickell-Painter M, van Halsema C. British HIV Association guidelines for the management of HIV-2 2021. HIV Med 2021; 22 Suppl 4:1-29. [PMID: 34927347 DOI: 10.1111/hiv.13204] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Iain Reeves
- Consultant in HIV Medicine, Homerton University Hospital NHS Trust, London, UK
| | | | - Jane Deayton
- Clinical Senior Lecturer in HIV, Barts and the London, Queen Mary University of London, London, UK
| | - Rageshri Dhairyawan
- Consultant in Sexual Health and HIV Medicine, Barts Health NHS Trust, London, UK
| | - Mike Kidd
- Consultant Virologist, National Infection Service, Public Health England, UK
| | - Chris Taylor
- Consultant Physician Sexual Health and HIV, Kings College Hospital, London, UK
| | - John Thornhill
- Consultant in Sexual Health and HIV Medicine, Barts Health NHS Trust, London, UK
| | - Maya Tickell-Painter
- Specialist Registrar in Infectious Diseases and Microbiology, Manchester University NHS Foundation Trust, Manchester, UK
| | - Clare van Halsema
- Consultant in Infectious Diseases, North Manchester General Hospital, Manchester, UK
| |
Collapse
|
6
|
Ceccarelli G, Giovanetti M, Sagnelli C, Ciccozzi A, d’Ettorre G, Angeletti S, Borsetti A, Ciccozzi M. Human Immunodeficiency Virus Type 2: The Neglected Threat. Pathogens 2021; 10:pathogens10111377. [PMID: 34832533 PMCID: PMC8621479 DOI: 10.3390/pathogens10111377] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/15/2021] [Accepted: 10/20/2021] [Indexed: 11/16/2022] Open
Abstract
West Africa has the highest prevalence of human immunodeficiency virus (HIV)-2 infection in the world, but a high number of cases has been recognized in Europe, India, and the United States. The virus is less transmissible than HIV-1, with sexual contacts being the most frequent route of acquisition. In the absence of specific antiretroviral therapy, most HIV-2 carriers will develop AIDS. Although, it requires more time than HIV-1 infection, CD4+ T cell decline occurs more slowly in HIV-2 than in HIV-1 patients. HIV-2 is resistant to non-nucleoside reverse transcriptase inhibitors (NNRTIs) and some protease inhibitors. Misdiagnosis of HIV-2 in patients mistakenly considered HIV-1-positive or in those with dual infections can cause treatment failures with undetectable HIV-1 RNA. In this era of global integration, clinicians must be aware of when to consider the diagnosis of HIV-2 infection and how to test for this virus. Although there is debate regarding when therapy should be initiated and which regimen should be chosen, recent trials have provided important information on treatment options for HIV-2 infection. In this review, we focus mainly on data available and on the insight they offer about molecular epidemiology, clinical presentation, antiretroviral therapy, and diagnostic tests of HIV-2 infection.
Collapse
Affiliation(s)
- Giancarlo Ceccarelli
- Department of Public Health and Infectious Diseases, Policlinico Umberto I, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (G.C.); (G.d.)
| | - Marta Giovanetti
- Laboratório de Flavivírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil;
- Laboratório de Genética Celular e Molecular, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Caterina Sagnelli
- Section of Infectious Diseases, Department of Mental Health and Public Medicine, University of Campania Luigi Vanvitelli, Via L. Armanni 5, 80131 Naples, Italy;
| | - Alessandra Ciccozzi
- Unit of Medical Statistics and Molecular Epidemiology, University Campus Bio-Medico of Rome, 00100 Rome, Italy;
| | - Gabriella d’Ettorre
- Department of Public Health and Infectious Diseases, Policlinico Umberto I, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (G.C.); (G.d.)
| | - Silvia Angeletti
- Unit of Clinical Laboratory Science, University Campus Bio-Medico of Rome, 00100 Rome, Italy;
| | - Alessandra Borsetti
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, 00100 Rome, Italy;
| | - Massimo Ciccozzi
- Unit of Medical Statistics and Molecular Epidemiology, University Campus Bio-Medico of Rome, 00100 Rome, Italy;
- Correspondence: ; Tel.: +39-06-22541-9187
| |
Collapse
|
7
|
Visseaux B, Bertine M, Le Hingrat Q, Ferré V, Charpentier C, Collin F, Damond F, Matheron S, Hué S, Descamps D. HIV-2 diversity displays two clades within group A with distinct geographical distribution and evolution. Virus Evol 2021; 7:veab024. [PMID: 34422316 PMCID: PMC8377049 DOI: 10.1093/ve/veab024] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Genetic diversity of HIV-2 groups A and B has not yet been fully described, especially in a few Western Africa countries such as Ivory-Coast or Mali. We collected 444 pol, 152 vif, 129 env, and 74 LTR sequences from patients of the French ANRS CO5 HIV-2 cohort completed by 221 pol, 18 vif, 377 env, and 63 LTR unique sequences from public databases. We performed phylogenetic reconstructions and revealed two distinct lineages within HIV-2 group A, herein called A1 and A2, presenting non-negligible genetic distances and distinct geographic distributions as A1 is related to coastal Western African countries and A2 to inland Western countries. Estimated early diversification times for groups A and B in human populations were 1940 [95% higher probability densitiy: 1935–53] and 1961 [1952–70]. A1 experienced an early diversification in 1942 [1937–58] with two distinct early epidemics in Guinea-Bissau or Senegal, raising the possibility of group A emergence in those countries from an initial introduction from Ivory-Coast to Senegal, two former French colonies. Changes in effective population sizes over time revealed that A1 exponentially grew concomitantly to Guinea-Bissau independence war, but both A2 and B lineages experienced a latter growth, starting during the 80s economic crisis. This large HIV-2 genetic analysis provides the existence of two distinct subtypes within group A and new data about HIV-2 early spreading patterns and recent epidemiologic evolution for which data are scarce outside Guinea-Bissau.
Collapse
Affiliation(s)
- Benoit Visseaux
- Université de Paris, IAME, UMR 1137, INSERM, Paris, France.,Assistance Publique - Hôpitaux de Paris, Hôpital Bichat, Department of Virology, Paris, France
| | - Mélanie Bertine
- Université de Paris, IAME, UMR 1137, INSERM, Paris, France.,Assistance Publique - Hôpitaux de Paris, Hôpital Bichat, Department of Virology, Paris, France
| | - Quentin Le Hingrat
- Université de Paris, IAME, UMR 1137, INSERM, Paris, France.,Assistance Publique - Hôpitaux de Paris, Hôpital Bichat, Department of Virology, Paris, France
| | - Valentine Ferré
- Université de Paris, IAME, UMR 1137, INSERM, Paris, France.,Assistance Publique - Hôpitaux de Paris, Hôpital Bichat, Department of Virology, Paris, France
| | - Charlotte Charpentier
- Université de Paris, IAME, UMR 1137, INSERM, Paris, France.,Assistance Publique - Hôpitaux de Paris, Hôpital Bichat, Department of Virology, Paris, France
| | - Fidéline Collin
- ISPED, UMR 897, INSERM, Université de Bordeaux, Epidémiologie-Biostatistique, Bordeaux, France
| | - Florence Damond
- Université de Paris, IAME, UMR 1137, INSERM, Paris, France.,Assistance Publique - Hôpitaux de Paris, Hôpital Bichat, Department of Virology, Paris, France
| | - Sophie Matheron
- Université de Paris, IAME, UMR 1137, INSERM, Paris, France.,Assistance Publique - Hôpitaux de Paris, Hôpital Bichat, Department of Infectious and Tropical Diseases, Paris, France
| | - Stéphane Hué
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
| | - Diane Descamps
- Université de Paris, IAME, UMR 1137, INSERM, Paris, France.,Assistance Publique - Hôpitaux de Paris, Hôpital Bichat, Department of Virology, Paris, France
| |
Collapse
|
8
|
Vrancken B, Zhao B, Li X, Han X, Liu H, Zhao J, Zhong P, Lin Y, Zai J, Liu M, Smith DM, Dellicour S, Chaillon A. Comparative Circulation Dynamics of the Five Main HIV Types in China. J Virol 2020; 94:e00683-20. [PMID: 32938762 PMCID: PMC7654276 DOI: 10.1128/jvi.00683-20] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/02/2020] [Indexed: 01/17/2023] Open
Abstract
The HIV epidemic in China accounts for 3% of the global HIV incidence. We compared the patterns and determinants of interprovincial spread of the five most prevalent circulating types. HIV pol sequences sampled across China were used to identify relevant transmission networks of the five most relevant HIV-1 types (B and circulating recombinant forms [CRFs] CRF01_AE, CRF07_BC, CRF08_BC, and CRF55_01B) in China. From these, the dispersal history across provinces was inferred. A generalized linear model (GLM) was used to test the association between migration rates among provinces and several measures of human mobility. A total of 10,707 sequences were collected between 2004 and 2017 across 26 provinces, among which 1,962 are newly reported here. A mean of 18 (minimum and maximum, 1 and 54) independent transmission networks involving up to 17 provinces were identified. Discrete phylogeographic analysis largely recapitulates the documented spread of the HIV types, which in turn, mirrors within-China population migration flows to a large extent. In line with the different spatiotemporal spread dynamics, the identified drivers thereof were also heterogeneous but are consistent with a central role of human mobility. The comparative analysis of the dispersal dynamics of the five main HIV types circulating in China suggests a key role of large population centers and developed transportation infrastructures as hubs of HIV dispersal. This advocates for coordinated public health efforts in addition to local targeted interventions.IMPORTANCE While traditional epidemiological studies are of great interest in describing the dynamics of epidemics, they struggle to fully capture the geospatial dynamics and factors driving the dispersal of pathogens like HIV as they have difficulties capturing linkages between infections. To overcome this, we used a discrete phylogeographic approach coupled to a generalized linear model extension to characterize the dynamics and drivers of the across-province spread of the five main HIV types circulating in China. Our results indicate that large urbanized areas with dense populations and developed transportation infrastructures are facilitators of HIV dispersal throughout China and highlight the need to consider harmonized country-wide public policies to control local HIV epidemics.
Collapse
Affiliation(s)
- Bram Vrancken
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory for Computational and Evolutionary Virology, KU Leuven, Leuven, Belgium
| | - Bin Zhao
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xingguang Li
- Department of Hospital Office, The First People's Hospital of Fangchenggang, Fangchenggang, China
| | - Xiaoxu Han
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Haizhou Liu
- Centre for Emerging Infectious Diseases, The State Key Laboratory of Virology, Wuhan Institute of Virology, University of Chinese Academy of Sciences, Wuhan, China
| | - Jin Zhao
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Ping Zhong
- Department of AIDS and STD, Shanghai Municipal Center for Disease Control and Prevention; Shanghai Municipal Institutes for Preventive Medicine, Shanghai, China
| | - Yi Lin
- Department of AIDS and STD, Shanghai Municipal Center for Disease Control and Prevention; Shanghai Municipal Institutes for Preventive Medicine, Shanghai, China
| | - Junjie Zai
- Immunology innovation Team, School of Medicine, Ningbo University, Ningbo, Zhejiang China
| | - Mingchen Liu
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Davey M Smith
- Division of Infectious Diseases and Global Public Health, University of California San Diego, California, USA
| | - Simon Dellicour
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory for Computational and Evolutionary Virology, KU Leuven, Leuven, Belgium
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, Brussels, Belgium
| | - Antoine Chaillon
- Division of Infectious Diseases and Global Public Health, University of California San Diego, California, USA
| |
Collapse
|
9
|
Shepherd SJ, Sykes C, Jackson C, Bell DJ, Gunson RN. The first case of HIV-2 in Scotland. Access Microbiol 2020; 2:acmi000087. [PMID: 32974567 PMCID: PMC7470315 DOI: 10.1099/acmi.0.000087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 11/15/2019] [Indexed: 12/25/2022] Open
Abstract
HIV-1 infects an estimated 37 million people worldwide, while the rarer HIV-2 infects 1–2 million worldwide. HIV-2 is mainly restricted to West African countries. The majority of patients in Scotland are diagnosed with HIV-1, but in 2013 the West of Scotland Specialist Virology Centre (WoSSVC) diagnosed Scotland’s first HIV-2 positive case in a patient from Côte d’Ivoire. HIV-2 differs from HIV-1 in terms of structural viral proteins, viral transmissibility, prolonged period of latency, intrinsic resistance to certain antivirals and how to monitor the effectiveness of treatment. Over the course of 5 years the patient has required several changes in treatment due to both side effects and pill burden. This case highlights the complexity of HIV-2 patient management over time.
Collapse
Affiliation(s)
- S J Shepherd
- West of Scotland Specialist Virology Centre, Level 5 New Lister Building, Glasgow Royal Infirmary, 10-16 Alexandra Parade, G31 2ER, UK
| | - C Sykes
- Infectious Diseases Unit, The Brownlee Centre, Gartnavel General Hospital, Glasgow G12 0YN, UK
| | - C Jackson
- West of Scotland Specialist Virology Centre, Level 5 New Lister Building, Glasgow Royal Infirmary, 10-16 Alexandra Parade, G31 2ER, UK
| | - D J Bell
- Infectious Diseases Unit, The Brownlee Centre, Gartnavel General Hospital, Glasgow G12 0YN, UK
| | - R N Gunson
- West of Scotland Specialist Virology Centre, Level 5 New Lister Building, Glasgow Royal Infirmary, 10-16 Alexandra Parade, G31 2ER, UK
| |
Collapse
|
10
|
Tchounga BK, Charpentier C, Coffie PA, Dabis F, Descamps D, Eholie SP, Ekouevi DK. Survival among antiretroviral-experienced HIV-2 patients experiencing virologic failure with drug resistance mutations in Cote d'Ivoire West Africa. PLoS One 2020; 15:e0236642. [PMID: 32756581 PMCID: PMC7406077 DOI: 10.1371/journal.pone.0236642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 07/09/2020] [Indexed: 11/30/2022] Open
Abstract
INTRODUCTION The long-term prognosis of HIV-2-infected patients receiving antiretroviral therapy (ART) is still challenging, due to the intrinsic resistance to non-nucleoside reverse transcriptase inhibitors (NNRTI) and the suboptimal response to some protease inhibitors (PI). The objective was to describe the 5-years outcomes among HIV-2 patients harboring drug-resistant viruses. METHODS A clinic-based cohort of HIV-2-patients experiencing virologic failure, with at least one drug resistance mutation was followed from January 2012 to August 2017 in Côte d'Ivoire. Follow-up data included death, lost to follow-up (LTFU), immuno-virological responses. The Kaplan-Meier curve was used to estimate survival rates. RESULTS A total of 31 HIV-2 patients with virologic failure and with at least one drug resistance mutation were included. Two-third of them were men, 28(90.3%) were on PI-based ART-regimen at enrolment and the median age was 50 years (IQR = 46-54). The median baseline CD4 count and viral load were 456 cells/mm3 and 3.7 log10 c/mL respectively, and the participants have been followed-up in median 57 months (IQR = 24-60). During this period, 21 (67.7%) patients switched at least one antiretroviral drug, including two (6.5%) and three (9.7%) who switched to a PI-based and an integrase inhibitor-based regimen respectively. A total of 10(32.3%) patients died and 4(12.9%) were LTFU. The 36 and 60-months survival rates were 68.5% and 64.9%, respectively. Among the 17 patients remaining in care, six(35.3%) had an undetectable viral load (<50 c/mL) and for the 11 others, the viral load ranged from 2.8 to 5.6 log10 c/mL. Twelve patients were receiving lopinavir at the time of first genotype, five(42%) had a genotypic susceptibility score (GSS) ≤1 and 4(33%) a GSS >2. CONCLUSIONS The 36-months survival rate among ART-experienced HIV-2 patients with drug-resistant viruses is below 70%,lower than in HIV-1. There is urgent need to improve access to second-line ART for patients living with HIV-2 in West Africa.
Collapse
Affiliation(s)
- Boris K. Tchounga
- Programme PACCI, Site de recherche ANRS de Côte d’Ivoire, Abidjan, Côte d’Ivoire
| | | | - Patrick A. Coffie
- Département de Dermatologie et Maladies Infectieuses, Université Félix Houphouët-Boigny, UFR des Sciences Médicales, Abidjan, Côte d’Ivoire
| | - François Dabis
- Centre Inserm 1219 & Institut de Santé Publique d’épidémiologie et de développement, Université de Bordeaux, Bordeaux, France
| | - Diane Descamps
- Université de Paris, INSERM UMR 1137 IAME, Paris, France
| | - Serge P. Eholie
- Département de Dermatologie et Maladies Infectieuses, Université Félix Houphouët-Boigny, UFR des Sciences Médicales, Abidjan, Côte d’Ivoire
| | - Didier K. Ekouevi
- Centre Inserm 1219 & Institut de Santé Publique d’épidémiologie et de développement, Université de Bordeaux, Bordeaux, France
| |
Collapse
|
11
|
Ferreira da Silva MJ, Paddock C, Gerini F, Borges F, Aleixo-Pais I, Costa M, Colmonero-Costeira I, Casanova C, Lecoq M, Silva C, Bruford MW, Varanda J, Minhós T. Chasing a ghost: notes on the present distribution and conservation of the sooty mangabey (Cercocebus atys) in Guinea-Bissau, West Africa. Primates 2020; 61:357-363. [PMID: 32318929 PMCID: PMC7203580 DOI: 10.1007/s10329-020-00817-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/30/2020] [Indexed: 11/24/2022]
Abstract
The West-African sooty mangabey (Cercocebus atys) is threatened by habitat loss, hunting for meat consumption, and mortality during crop-foraging events. The species’ overall demographic trend is unknown. Presence and distribution in Guinea-Bissau, a country neighbored by Senegal and Republic of Guinea, was confirmed in 1946 but the species was declared extinct in 1989 and not observed in subsequent countrywide expeditions. Narratives of its presence across southern Guinea-Bissau are scattered in reports and occurrence in the eastern part was reported in 2017, but the limits of its distribution are currently unknown. Here, we present recent geo-referenced visual and molecular-based records of the sooty mangabey for three protected areas in southern Guinea-Bissau collected as part of a region-wide survey. Individuals were observed in Cufada Lagoons Natural Park (2015) and Dulombi National Park (NP) (2016) and photographed in Boé NP (2007, 2015 and 2020). Thirty-six samples collected in Boé NP (2017) were identified as sooty mangabey using a 402 base pair fragment of the mitochondrial cytochrome b gene. Our work suggests a wider distribution in Guinea-Bissau than previously described, augments knowledge of the populations’ current habitat use and threats, and has implications for efforts to conserve the species in West Africa. Considering the sooty mangabey as the reservoir of the simian immunodeficiency virus that led to the human variant, HIV-2, confirmation that the Guinea-Bissau population is not extinct may lead to a better understanding of early viral jump to humans and consequent epidemic spread, specifically of the HIV-2 Subgroup A. We highlight the need for extra conservation measures by Guinea-Bissau authorities.
Collapse
Affiliation(s)
- Maria Joana Ferreira da Silva
- Organisms and Environment Division, School of Biosciences, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, Wales, UK. .,CIBIO/InBio, Centro de Investigação Em Biodiversidade E Recursos Genéticos, Campus Agrário de Vairão, 4485-661, Vairão, Portugal. .,CAPP, Centro de Administração E Políticas Públicas, Universidade de Lisboa, Rua Almerindo Lessa, 1300-663, Lisboa, Portugal.
| | - Christina Paddock
- Organisms and Environment Division, School of Biosciences, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, Wales, UK.,Bristol Zoological Society, Clifton, Bristol, BS8 3HA, UK
| | - Federica Gerini
- CIBIO/InBio, Centro de Investigação Em Biodiversidade E Recursos Genéticos, Campus Agrário de Vairão, 4485-661, Vairão, Portugal
| | - Filipa Borges
- CIBIO/InBio, Centro de Investigação Em Biodiversidade E Recursos Genéticos, Campus Agrário de Vairão, 4485-661, Vairão, Portugal.,Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal.,CRIA, Centre for Research in Anthropology (CRIA-FCSH/NOVA), 1069-061, Lisbon, Portugal
| | - Isa Aleixo-Pais
- Organisms and Environment Division, School of Biosciences, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, Wales, UK.,CRIA, Centre for Research in Anthropology (CRIA-FCSH/NOVA), 1069-061, Lisbon, Portugal
| | - Mafalda Costa
- Organisms and Environment Division, School of Biosciences, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, Wales, UK
| | - Ivo Colmonero-Costeira
- Organisms and Environment Division, School of Biosciences, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, Wales, UK.,CIBIO/InBio, Centro de Investigação Em Biodiversidade E Recursos Genéticos, Campus Agrário de Vairão, 4485-661, Vairão, Portugal
| | - Catarina Casanova
- CIAS, Centro de Investigação Em Antropologia E Saúde, University of Coimbra, Calçada Martim de Freitas, Edíficio de São Bento, 3000-456, Coimbra, Portugal
| | - Miguel Lecoq
- Rua Barão de Sabrosa, n.º 29-1.º, 1900-087, Lisboa, Portugal
| | - Cristina Silva
- Instituto Politécnico de Setúbal, Escola Superior de Tecnologia, Campus do IPS-Estefanilha, 2910-761, Setúbal, Portugal
| | - Michael W Bruford
- Organisms and Environment Division, School of Biosciences, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, Wales, UK.,Sustainable Places Research Institute, Cardiff University, 33 Park Place, Cardiff, CF10 3BA, UK
| | - Jorge Varanda
- CRIA, Centre for Research in Anthropology (CRIA-FCSH/NOVA), 1069-061, Lisbon, Portugal.,Global Health and Tropical Medicine, Institute of Hygiene and Tropical Medicine (GHTM-UNL), R. da Junqueira 100, 1349-008, Lisbon, Portugal
| | - Tânia Minhós
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal.,CRIA, Centre for Research in Anthropology (CRIA-FCSH/NOVA), 1069-061, Lisbon, Portugal.,Department of Anthropology, School of Social Sciences and Humanities, Universidade Nova de Lisboa, 1069-061, Lisbon, Portugal
| |
Collapse
|
12
|
Le Hingrat Q, Visseaux B, Bertine M, Chauveau L, Schwartz O, Collin F, Damond F, Matheron S, Descamps D, Charpentier C. Genetic Variability of Long Terminal Repeat Region between HIV-2 Groups Impacts Transcriptional Activity. J Virol 2020; 94:e01504-19. [PMID: 31915276 PMCID: PMC7081896 DOI: 10.1128/jvi.01504-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 12/13/2019] [Indexed: 11/20/2022] Open
Abstract
The HIV-2 long terminal repeat (LTR) region contains several transcription factor (TF) binding sites. Efficient LTR transactivation by cellular TF and viral proteins is crucial for HIV-2 reactivation and viral production. Proviral LTRs from 66 antiretroviral-naive HIV-2-infected patients included in the French ANRS HIV-2 CO5 Cohort were sequenced. High genetic variability within the HIV-2 LTR was observed, notably in the U3 subregion, the subregion encompassing most known TF binding sites. Genetic variability was significantly higher in HIV-2 group B than in group A viruses. Notably, all group B viruses lacked the peri-ETS binding site, and 4 group B sequences (11%) also presented a complete deletion of the first Sp1 binding site. The lack of a peri-ETS binding site was responsible for lower transcriptional activity in activated T lymphocytes, while deletion of the first Sp1 binding site lowered basal or Tat-mediated transcriptional activities, depending on the cell line. Interestingly, the HIV-2 cellular reservoir was less frequently quantifiable in patients infected by group B viruses and, when quantifiable, the reservoirs were significantly smaller than in patients infected by group A viruses. Our findings suggest that mutations observed in vivo in HIV-2 LTR sequences are associated with differences in transcriptional activity and may explain the small cellular reservoirs in patients infected by HIV-2 group B, providing new insight into the reduced pathogenicity of HIV-2 infection.IMPORTANCE Over 1 million patients are infected with HIV-2, which is often described as an attenuated retroviral infection. Patients frequently have undetectable viremia and evolve at more slowly toward AIDS than HIV-1-infected patients. Several studies have reported a smaller viral reservoir in peripheral blood mononuclear cells in HIV-2-infected patients than in HIV-1-infected patients, while others have found similar sizes of reservoirs but a reduced amount of cell-associated RNA, suggesting a block in HIV-2 transcription. Recent studies have found associations between mutations within the HIV-1 LTR and reduced transcriptional activities. Until now, mutations within the HIV-2 LTR region have scarcely been studied. We conducted this research to discover if such mutations exist in the HIV-2 LTR and their potential association with the viral reservoir and transcriptional activity. Our study indicates that transcription of HIV-2 group B proviruses may be impaired, which might explain the small viral reservoir observed in patients.
Collapse
Affiliation(s)
- Quentin Le Hingrat
- Université de Paris, IAME, UMR 1137, IINSERM, Paris, France
- Laboratoire de Virologie, AP-HP, Hôpital Bichat, Paris, France
| | - Benoit Visseaux
- Université de Paris, IAME, UMR 1137, IINSERM, Paris, France
- Laboratoire de Virologie, AP-HP, Hôpital Bichat, Paris, France
| | - Mélanie Bertine
- Université de Paris, IAME, UMR 1137, IINSERM, Paris, France
- Laboratoire de Virologie, AP-HP, Hôpital Bichat, Paris, France
| | - Lise Chauveau
- Institut Pasteur, Unité Virus et Immunité, Paris, France
| | | | - Fidéline Collin
- ISPED, UMR 897, INSERM, Université Bordeaux, Epidémiologie-Biostatistique, Bordeaux, France
| | - Florence Damond
- Université de Paris, IAME, UMR 1137, IINSERM, Paris, France
- Laboratoire de Virologie, AP-HP, Hôpital Bichat, Paris, France
| | - Sophie Matheron
- Université de Paris, IAME, UMR 1137, IINSERM, Paris, France
- Service de Maladies Infectieuses et Tropicales, AP-HP, Hôpital Bichat, Paris, France
| | - Diane Descamps
- Université de Paris, IAME, UMR 1137, IINSERM, Paris, France
- Laboratoire de Virologie, AP-HP, Hôpital Bichat, Paris, France
| | - Charlotte Charpentier
- Université de Paris, IAME, UMR 1137, IINSERM, Paris, France
- Laboratoire de Virologie, AP-HP, Hôpital Bichat, Paris, France
| |
Collapse
|
13
|
Le Hingrat Q, Perrier M, Charpentier C, Jacquot A, Houhou-Fidouh N, Descamps D, Visseaux B. Was Zika introduced to Brazil by participants at the 2013 Beach Soccer World Cup held in Tahiti: A phylogeographical analysis. Travel Med Infect Dis 2019; 32:101512. [PMID: 31704483 DOI: 10.1016/j.tmaid.2019.101512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 10/31/2019] [Accepted: 11/04/2019] [Indexed: 11/16/2022]
Abstract
BACKGROUND Zika virus (ZIKV) was initially responsible for a limited number of punctual epidemics throughout Africa and Asia. Recently, large epidemics occurred in French Polynesia, Brazil and Pan-America. These outbreaks were associated with severe outcomes such as Guillain-Barré Syndrome and microcephaly of in-utero infected newborns. Previous studies demonstrated that ZIKV was introduced in Brazil from French Polynesia but failed to identify a founding event. METHOD All publicly available ZIKV full-genome sequences (n = 182) were phylogenetically analyzed, using Bayesian method, to estimate the introduction date of ZIKV into Brazil. RESULTS Introduction date into Brazil was estimated between 8th of July 2013 and 4th of November 2013, encompassing the Beach Soccer World Cup held in French Polynesia, in September 2013, which gathered Brazilian athletes and supporters. We also observed that ZIKV sequences from travelers infected in South-East Asia or in Pacific islands were closely related to viruses identified prior to the French Polynesian epidemic, underlining an endemic circulation of ZIKV in those countries since 2007, at least. CONCLUSION This work provides a narrower estimation of ZIKV introduction into Brazil and illustrates the need for a better exploration of ZIKV circulation and endemicity in South-East Asia, while epidemiological and prevention efforts have been mainly focused on the Pan-American epidemic.
Collapse
Affiliation(s)
- Quentin Le Hingrat
- Université de Paris, INSERM UMR 1137 IAME, F-75018, Paris, France; Laboratoire de Virologie, AP-HP, Hôpital Bichat-Claude Bernard, F-75018, Paris, France.
| | - Marine Perrier
- Université de Paris, INSERM UMR 1137 IAME, F-75018, Paris, France; Laboratoire de Virologie, AP-HP, Hôpital Bichat-Claude Bernard, F-75018, Paris, France
| | - Charlotte Charpentier
- Université de Paris, INSERM UMR 1137 IAME, F-75018, Paris, France; Laboratoire de Virologie, AP-HP, Hôpital Bichat-Claude Bernard, F-75018, Paris, France
| | - Alaric Jacquot
- Laboratoire de Virologie, AP-HP, Hôpital Bichat-Claude Bernard, F-75018, Paris, France
| | - Nadhira Houhou-Fidouh
- Université de Paris, INSERM UMR 1137 IAME, F-75018, Paris, France; Laboratoire de Virologie, AP-HP, Hôpital Bichat-Claude Bernard, F-75018, Paris, France
| | - Diane Descamps
- Université de Paris, INSERM UMR 1137 IAME, F-75018, Paris, France; Laboratoire de Virologie, AP-HP, Hôpital Bichat-Claude Bernard, F-75018, Paris, France
| | - Benoit Visseaux
- Université de Paris, INSERM UMR 1137 IAME, F-75018, Paris, France; Laboratoire de Virologie, AP-HP, Hôpital Bichat-Claude Bernard, F-75018, Paris, France
| |
Collapse
|
14
|
Boswell MT, Rowland-Jones SL. Delayed disease progression in HIV-2: the importance of TRIM5α and the retroviral capsid. Clin Exp Immunol 2019; 196:305-317. [PMID: 30773620 DOI: 10.1111/cei.13280] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2019] [Indexed: 12/21/2022] Open
Abstract
HIV-2 is thought to have entered the human population in the 1930s through cross-species transmission of SIV from sooty mangabeys in West Africa. Unlike HIV-1, HIV-2 has not led to a global pandemic, and recent data suggest that HIV-2 prevalence is declining in some West African states where it was formerly endemic. Although many early isolates of HIV-2 were derived from patients presenting with AIDS-defining illnesses, it was noted that a much larger proportion of HIV-2-infected subjects behaved as long-term non-progressors (LTNP) than their HIV-1-infected counterparts. Many HIV-2-infected adults are asymptomatic, maintaining an undetectable viral load for over a decade. However, despite lower viral loads, HIV-2 progresses to clinical AIDS without therapeutic intervention in most patients. In addition, successful treatment with anti-retroviral therapy (ART) is more challenging than for HIV-1. HIV-2 is significantly more sensitive to restriction by host restriction factor tripartite motif TRIM5α than HIV-1, and this difference in sensitivity is linked to differences in capsid structure. In this review we discuss the determinants of HIV-2 disease progression and focus on the important interactions between TRIM5α and HIV-2 capsid in long-term viral control.
Collapse
Affiliation(s)
- M T Boswell
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | |
Collapse
|
15
|
Pérez AB, Vrancken B, Chueca N, Aguilera A, Reina G, García-del Toro M, Vera F, Von Wichman MA, Arenas JI, Téllez F, Pineda JA, Omar M, Bernal E, Rivero-Juárez A, Fernández-Fuertes E, de la Iglesia A, Pascasio JM, Lemey P, Garcia F, Cuypers L. Increasing importance of European lineages in seeding the hepatitis C virus subtype 1a epidemic in Spain. Euro Surveill 2019; 24:1800227. [PMID: 30862327 PMCID: PMC6402173 DOI: 10.2807/1560-7917.es.2019.24.9.1800227] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BackgroundReducing the burden of the hepatitis C virus (HCV) requires large-scale deployment of intervention programmes, which can be informed by the dynamic pattern of HCV spread. In Spain, ongoing transmission of HCV is mostly fuelled by people who inject drugs (PWID) infected with subtype 1a (HCV1a).AimOur aim was to map how infections spread within and between populations, which could help formulate more effective intervention programmes to halt the HCV1a epidemic in Spain.MethodsEpidemiological links between HCV1a viruses from a convenience sample of 283 patients in Spain, mostly PWID, collected between 2014 and 2016, and 1,317, 1,291 and 1,009 samples collected abroad between 1989 and 2016 were reconstructed using sequences covering the NS3, NS5A and NS5B genes. To efficiently do so, fast maximum likelihood-based tree estimation was coupled to a flexible Bayesian discrete phylogeographic inference method.ResultsThe transmission network structure of the Spanish HCV1a epidemic was shaped by continuous seeding of HCV1a into Spain, almost exclusively from North America and European countries. The latter became increasingly relevant and have dominated in recent times. Export from Spain to other countries in Europe was also strongly supported, although Spain was a net sink for European HCV1a lineages. Spatial reconstructions showed that the epidemic in Spain is diffuse, without large, dominant within-country networks.ConclusionTo boost the effectiveness of local intervention efforts, concerted supra-national strategies to control HCV1a transmission are needed, with a strong focus on the most important drivers of ongoing transmission, i.e. PWID and other high-risk populations.
Collapse
Affiliation(s)
- Ana Belen Pérez
- Department of Microbiology, Institute of Bio Sanitary Research (IBIS), AIDS Research Network, University Hospital of Granada, Granada, Spain,These authors contributed equally to the article
| | - Bram Vrancken
- These authors contributed equally to the article,KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Evolutionary and Computational Virology, Leuven, Belgium
| | - Natalia Chueca
- Department of Microbiology, Institute of Bio Sanitary Research (IBIS), AIDS Research Network, University Hospital of Granada, Granada, Spain
| | - Antonio Aguilera
- Department of Microbiology, University Hospital of Santiago, Santiago de Compostela, Spain
| | - Gabriel Reina
- Department of Microbiology, University Hospital of Navarra, Institute for Health Research (IdisNA), Pamplona, Spain
| | | | - Francisco Vera
- Unit of Infectious Diseases, Internal Medicine, General Hospital of Rosell, Cartagena, Murcia, Spain
| | | | - Juan Ignacio Arenas
- Unit of Infectious Diseases, Hospital Universitario de San Sebastian, San Sebastian, Spain
| | - Francisco Téllez
- Unit of Infectious Diseases and Microbiology, University Hospital of Puerto Real, Cádiz, Spain
| | - Juan A Pineda
- Unit of Infectious Diseases, University Hospital of Valme, Sevilla, Spain (J.A. Pineda)
| | | | - Enrique Bernal
- Unit of Infectious Diseases, General University Hospital, Murcia, Spain
| | - Antonio Rivero-Juárez
- Unit of Infectious Diseases, University Hospital Reina Sofía of Córdoba, Maimonides Institute of Biomedical Research of Córdoba, University of Córdoba, Córdoba, Spain
| | | | | | - Juan Manuel Pascasio
- Clinical Management Unit of Digestive Diseases, University Hospital of Virgen del Rocío, Sevilla, Spain
| | - Philippe Lemey
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Evolutionary and Computational Virology, Leuven, Belgium
| | - Féderico Garcia
- Department of Microbiology, Institute of Bio Sanitary Research (IBIS), AIDS Research Network, University Hospital of Granada, Granada, Spain,These authors contributed equally to the article
| | - Lize Cuypers
- These authors contributed equally to the article,KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Clinical and Epidemiological Virology, Leuven, Belgium
| |
Collapse
|
16
|
Inhibitory Effects of HIV-2 Vpx on Replication of HIV-1. J Virol 2018; 92:JVI.00554-18. [PMID: 29743354 DOI: 10.1128/jvi.00554-18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 04/30/2018] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) and HIV-2 share a striking genomic resemblance; however, variability in the genetic sequence accounts for the presence of unique accessory genes, such as the viral protein X (vpx) gene in HIV-2. Dual infection with both viruses has long been described in the literature, yet the molecular mechanism of how dually infected patients tend to do better than those who are monoinfected with HIV-1 has not yet been explored. We hypothesized that in addition to extracellular mechanisms, an HIV-2 accessory gene is the culprit, and interference at the viral accessory/regulatory protein level is perhaps responsible for the attenuated pathogenicity of HIV-1 observed in dually infected patients. Following simulation of dual infection in cell culture experiments, we found that pretransduction of cells with HIV-2 significantly protects against HIV-1 transduction. Importantly, we have found that this dampening of the infectivity of HIV-1 was a result of interviral interference carried out by viral protein X of HIV-2, resulting in a severe hindrance to the replication dynamics of HIV-1, influencing both its early and late phases of the viral life cycle. Our findings shed light on potential intracellular interactions between the two viruses and broaden our understanding of the observed clinical spectrum in dually infected patients, highlighting HIV-2 Vpx as a potential candidate worth exploring in the fight against HIV-1.IMPORTANCE Dual infection with human immunodeficiency virus types 1 and 2 is relatively common in areas of endemicity. For as-yet-unclarified reasons, patients who are dually infected were shown to have lower viral loads and generally a lower rate of progression to AIDS than those who are monoinfected. We aimed to explore dual infection in cell culture, to elucidate possible mechanisms by which HIV-2 may be able to exert such an effect. Our results indicate that on the cellular level, pretransduction of cells with HIV-2 significantly protects against HIV-1 transduction, which was found to be a result of interviral interference carried out by viral protein X of HIV-2. These findings broaden our knowledge of interviral interactions on the cellular level and may provide an explanation for the decreased pathogenicity of HIV-1 in dually infected patients, highlighting HIV-2 Vpx as a potential candidate worth exploring in the fight against HIV.
Collapse
|
17
|
Horigan V, Gale P, Kosmider RD, Minnis C, Snary EL, Breed AC, Simons RR. Application of a quantitative entry assessment model to compare the relative risk of incursion of zoonotic bat-borne viruses into European Union Member States. MICROBIAL RISK ANALYSIS 2017; 7:8-28. [PMID: 32289058 PMCID: PMC7103962 DOI: 10.1016/j.mran.2017.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 09/29/2017] [Accepted: 09/29/2017] [Indexed: 06/11/2023]
Abstract
This paper presents a quantitative assessment model for the risk of entry of zoonotic bat-borne viruses into the European Union (EU). The model considers four routes of introduction: human travel, legal trade of products, live animal imports and illegal import of bushmeat and was applied to five virus outbreak scenarios. Two scenarios were considered for Zaire ebolavirus (wEBOV, cEBOV) and other scenarios for Hendra virus, Marburg virus (MARV) and Middle East Respiratory Syndrome Coronavirus (MERS-CoV). The use of the same framework and generic data sources for all EU Member States (MS) allows for a relative comparison of the probability of virus introduction and of the importance of the routes of introduction among MSs. According to the model wEBOV posed the highest risk of an introduction event within the EU, followed by MARV and MERS-CoV. However, the main route of introduction differed, with wEBOV and MERS-CoV most likely through human travel and MARV through legal trade of foodstuffs. The relative risks to EU MSs as entry points also varied between outbreak scenarios, highlighting the heterogeneity in global trade and travel to the EU MSs. The model has the capability to allow for a continual updating of the risk estimate using new data as, and when, it becomes available. The model provides an horizon scanning tool for use when available data are limited and, therefore, the absolute risk estimates often have high uncertainty. Sensitivity analysis suggested virus prevalence in bats has a large influence on the results; a 90% reduction in prevalence reduced the risk of introduction considerably and resulted in the relative ranking of MARV falling below that for MERS-CoV, due to this parameter disproportionately affecting the risk of introduction from the trade route over human travel.
Collapse
Affiliation(s)
- Verity Horigan
- Animal and Plant Health Agency (APHA), Department of Epidemiological Sciences, New Haw, Addlestone, Surrey KT15 3NB, United Kingdom
| | - Paul Gale
- Animal and Plant Health Agency (APHA), Department of Epidemiological Sciences, New Haw, Addlestone, Surrey KT15 3NB, United Kingdom
| | - Rowena D. Kosmider
- Animal and Plant Health Agency (APHA), Department of Epidemiological Sciences, New Haw, Addlestone, Surrey KT15 3NB, United Kingdom
| | - Christopher Minnis
- The Royal Veterinary College, Royal College Street, London, England NW1 0TU, United Kingdom
| | - Emma L. Snary
- Animal and Plant Health Agency (APHA), Department of Epidemiological Sciences, New Haw, Addlestone, Surrey KT15 3NB, United Kingdom
| | - Andrew C. Breed
- Animal and Plant Health Agency (APHA), Department of Epidemiological Sciences, New Haw, Addlestone, Surrey KT15 3NB, United Kingdom
| | - Robin R.L. Simons
- Animal and Plant Health Agency (APHA), Department of Epidemiological Sciences, New Haw, Addlestone, Surrey KT15 3NB, United Kingdom
| |
Collapse
|
18
|
Sousa JD, Müller V, Vandamme AM. The epidemic emergence of HIV: what novel enabling factors were involved? Future Virol 2017. [DOI: 10.2217/fvl-2017-0042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Humans acquired retroviruses from simians, mainly through bushmeat handling. All epidemically successful HIV groups started to spread in early 20th century, contrasting with the antiquity of T-cell lymphotropic viruses, implying that novel enabling factors were involved in HIV emergence. Here we review the Parenteral Serial Transmission and the Enhanced Heterosexual Transmission hypotheses for the adaptation and early spread of HIV. Epidemic start roughly coincides in time with peak genital ulcer disease in cities, suggesting a major role for sexual transmission. Only ill-adapted and rare HIV groups emerged after approximately 1950, when injections and transfusions attained their maximal levels, suggesting that if parenteral serial transmission was necessary for HIV adaptation, it had to be complemented by sexual transmission for HIV to reach epidemic potential. [Formula: see text]
Collapse
Affiliation(s)
- João Dinis Sousa
- Department of Microbiology & Immunology, Rega Institute for Medical Research, Clinical & Epidemiological Virology, KU Leuven - University of Leuven, B-3000, Leuven, Belgium
- Center for Global Health & Tropical Medicine, Unidade de Microbiologia Médica, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Viktor Müller
- Institute of Biology, Eötvös Loránd University, Budapest, Hungary
- Evolutionary Systems Research Group, MTA Centre for Ecological Research, Tihany, Hungary
| | - Anne-Mieke Vandamme
- Department of Microbiology & Immunology, Rega Institute for Medical Research, Clinical & Epidemiological Virology, KU Leuven - University of Leuven, B-3000, Leuven, Belgium
- Center for Global Health & Tropical Medicine, Unidade de Microbiologia Médica, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| |
Collapse
|
19
|
Mendoza CD, Requena S, Caballero E, Cabezas T, Peñaranda M, Amengual MJ, Sáez A, Lozano AB, Ramos JM, Soriano V. Antiretroviral treatment of HIV-2 infection. Future Virol 2017. [DOI: 10.2217/fvl-2017-0037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
HIV-2 is a neglected virus despite estimates of 1–2 million people being infected worldwide. AIDS develops more slowly in HIV-2 than HIV-1. Outside endemic regions, HIV-2 is mostly found in immigrants from west Africa or their sex partners. There are four major caveats when treating HIV-2. First, some antiretrovirals are not or only partially active against HIV-2. Second, CD4 declines in HIV-2 occur slowly, but CD4 recovery is smaller with antiretroviral treatment. Third, both virological failure and rapid emergence of drug resistance occur more frequently in HIV-2 than HIV-1. Finally, misdiagnosis of HIV-2 in patients wrongly considered as infected with HIV-1 or in those dually infected may result in treatment failures with undetectable HIV-1 RNA. Integrase inhibitors, and especially dolutegravir, should be part of any preferred HIV-2 antiretroviral combination nowadays.
Collapse
Affiliation(s)
- Carmen de Mendoza
- Laboratory of Internal Medicine, Puerta de Hierro Research Institute, Majadahonda, Spain
| | - Silvia Requena
- Laboratory of Internal Medicine, Puerta de Hierro Research Institute, Majadahonda, Spain
| | | | | | - María Peñaranda
- Microbiology Unit, Son Espases Hospital, Palma de Mallorca, Spain
| | | | - Ana Sáez
- Microbiology Unit, Hospital Marqués de Valdecilla, Santander, Spain
| | | | - José M Ramos
- Infectious Diseases Unit, General Hospital, Alicante, Spain
| | - Vincent Soriano
- Infectious Diseases Unit, La Paz University Hospital & Autonomous University, Madrid, Spain
| |
Collapse
|
20
|
de Mendoza C, Cabezas T, Caballero E, Requena S, Amengual MJ, Peñaranda M, Sáez A, Tellez R, Lozano AB, Treviño A, Ramos JM, Pérez JL, Barreiro P, Soriano V. HIV type 2 epidemic in Spain: challenges and missing opportunities. AIDS 2017; 31:1353-1364. [PMID: 28358736 DOI: 10.1097/qad.0000000000001485] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
: HIV type 2 (HIV-2) is a neglected virus despite estimates of 1-2 million people infected worldwide. HIV-2 is less efficiently transmitted than HIV-1 by sex and from mother to child. Although AIDS may develop in HIV-2 carriers, it takes longer than in HIV-1-infected patients. In contrast with HIV-1 infection, there is no global pandemic caused by HIV-2, as the virus is largely confined to West Africa. In a less extent and due to socioeconomic ties and wars, HIV-2 is prevalent in Portugal and its former colonies in Brazil, India, Mozambique and Angola. Globally, HIV-2 infections are steadily declining over time. A total of 338 cases of HIV-2 infection had been reported at the Spanish HIV-2 registry until December 2016, of whom 63% were men. Overall 72% were sub-Saharan Africans, whereas 16% were native Spaniards. Dual HIV-1 and HIV-2 coinfection was found in 9% of patients. Heterosexual contact was the most likely route of HIV-2 acquisition in more than 90% of cases. Roughly one-third presented with CD4 cell counts less than 200 cells/μl and/or AIDS clinical events. Plasma HIV-2 RNA was undetectable at baseline in 40% of patients. To date, one-third of HIV-2 carriers have received antiretroviral therapy, using integrase inhibitors 32 individuals. New diagnoses of HIV-2 in Spain have remained stable since 2010 with an average of 15 cases yearly. Illegal immigration from Northwestern African borders accounts for over 75% of new HIV-2 diagnoses. Given the relatively large community of West Africans already living in Spain and the continuous flux of immigration from endemic regions, HIV-2 infection either alone or as coinfection with HIV-1 should be excluded once in all HIV-seroreactive persons, especially when showing atypical HIV serological profiles, immunovirological disconnect (CD4 cell count loss despite undetectable HIV-1 viremia) and/or high epidemiological risks (birth in or sex partners from endemic regions).
Collapse
|
21
|
Assessment of the Cavidi ExaVir Load Assay for Monitoring Plasma Viral Load in HIV-2-Infected Patients. J Clin Microbiol 2017; 55:2367-2379. [PMID: 28515216 DOI: 10.1128/jcm.00235-17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 05/10/2017] [Indexed: 11/20/2022] Open
Abstract
HIV plasma viral load is an established marker of disease progression and of response to antiretroviral therapy, but currently there is no commercial assay validated for the quantification of viral load in HIV-2-infected individuals. We sought to make the first clinical evaluation of Cavidi ExaVir Load (version 3) in HIV-2-infected patients. Samples were collected from a total of 102 individuals living in Cape Verde, and the HIV-2 viral load was quantified by both ExaVir Load and a reference in-house real-time quantitative PCR (qPCR) used in Portugal in 91 samples. The associations between viral load and clinical prognostic variables (CD4+ T cell counts and antiretroviral therapy status) were similar for measurements obtained using ExaVir Load and qPCR. There was no difference between the two methods in the capacity to discriminate between nonquantifiable and quantifiable HIV-2 in the plasma. In samples with an HIV-2 viral load quantifiable by both methods (n = 27), the measurements were highly correlated (Pearson r = 0.908), but the ExaVir Load values were systematically higher relative to those determined by qPCR (median difference, 0.942 log10 copies/ml). A regression model was derived that enables the conversion of ExaVir Load results to those that would have been obtained by the reference qPCR. In conclusion, ExaVir Load version 3 is a reliable commercial assay to measure viral load in HIV-2-infected patients and therefore a valuable alternative to the in-house assays in current use.
Collapse
|
22
|
Sousa JD, Temudo MP, Hewlett BS, Camacho RJ, Müller V, Vandamme AM. Male Circumcision and the Epidemic Emergence of HIV-2 in West Africa. PLoS One 2016; 11:e0166805. [PMID: 27926927 PMCID: PMC5142780 DOI: 10.1371/journal.pone.0166805] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 11/03/2016] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Epidemic HIV-2 (groups A and B) emerged in humans circa 1930-40. Its closest ancestors are SIVsmm infecting sooty mangabeys from southwestern Côte d'Ivoire. The earliest large-scale serological surveys of HIV-2 in West Africa (1985-91) show a patchy spread. Côte d'Ivoire and Guinea-Bissau had the highest prevalence rates by then, and phylogeographical analysis suggests they were the earliest epicenters. Wars and parenteral transmission have been hypothesized to have promoted HIV-2 spread. Male circumcision (MC) is known to correlate negatively with HIV-1 prevalence in Africa, but studies examining this issue for HIV-2 are lacking. METHODS We reviewed published HIV-2 serosurveys for 30 cities of all West African countries and obtained credible estimates of real prevalence through Bayesian estimation. We estimated past MC rates of 218 West African ethnic groups, based on ethnographic literature and fieldwork. We collected demographic tables specifying the ethnic partition in cities. Uncertainty was incorporated by defining plausible ranges of parameters (e.g. timing of introduction, proportion circumcised). We generated 1,000 sets of past MC rates per city using Latin Hypercube Sampling with different parameter combinations, and explored the correlation between HIV-2 prevalence and estimated MC rate (both logit-transformed) in the 1,000 replicates. RESULTS AND CONCLUSIONS Our survey reveals that, in the early 20th century, MC was far less common and geographically more variable than nowadays. HIV-2 prevalence in 1985-91 and MC rates in 1950 were negatively correlated (Spearman rho = -0.546, IQR: -0.553--0.546, p≤0.0021). Guinea-Bissau and Côte d'Ivoire cities had markedly lower MC rates. In addition, MC was uncommon in rural southwestern Côte d'Ivoire in 1930.The differential HIV-2 spread in West Africa correlates with different historical MC rates. We suggest HIV-2 only formed early substantial foci in cities with substantial uncircumcised populations. Lack of MC in rural areas exposed to bushmeat may have had a role in successful HIV-2 emergence.
Collapse
Affiliation(s)
- João Dinis Sousa
- KU Leuven—University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Clinical and Epidemiological Virology, B-3000, Leuven, Belgium
- Center for Global Health and Tropical Medicine, Unidade de Microbiologia Médica, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Marina Padrão Temudo
- Department of Natural Resources, Environment, and Land, CEF, School of Agriculture, University of Lisbon, Lisbon, Portugal
| | - Barry Stephen Hewlett
- Department of Anthropology, Washington State University Vancouver, Vancouver, Washington, United States of America
| | - Ricardo Jorge Camacho
- KU Leuven—University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Clinical and Epidemiological Virology, B-3000, Leuven, Belgium
| | - Viktor Müller
- Institute of Biology, Eötvös Loránd University, Budapest, Hungary
- Parmenides Center for the Conceptual Foundations of Science, Pullach/Munich, Germany
| | - Anne-Mieke Vandamme
- KU Leuven—University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Clinical and Epidemiological Virology, B-3000, Leuven, Belgium
- Center for Global Health and Tropical Medicine, Unidade de Microbiologia Médica, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| |
Collapse
|
23
|
Multiple introductions and onward transmission of non-pandemic HIV-1 subtype B strains in North America and Europe. Sci Rep 2016; 6:33971. [PMID: 27653834 PMCID: PMC5032033 DOI: 10.1038/srep33971] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 09/06/2016] [Indexed: 12/28/2022] Open
Abstract
Most HIV-1 subtype B infections in North America and Europe seem to have resulted from the expansion of a single pandemic lineage (BPANDEMIC) disseminated from the United States (US). Some non-pandemic subtype B strains of Caribbean origin (BCAR) may have also reached North America and Europe, but their epidemiological relevance in those regions remains largely unknown. Here we analyze a total of 20,045 HIV-1 subtype B pol sequences from the US, Canada, and Europe, to estimate the prevalence and to reconstruct the spatiotemporal dynamics of dissemination of HIV-1 BCAR strains in those regions. We find that BCAR strains were probably disseminated from the Caribbean into North America and Europe at multiple times since the early 1970s onwards. The BCAR strains reached the US, Canada and at least 16 different European countries, where they account for a very low fraction (<5%) of subtype B infections, with exception of the Czech Republic (7.7%). We also find evidence of the onward transmission of BCAR clades in the US, Canada, the Czech Republic, Germany, Italy, Spain and the UK, as well as short-distance spreading of BCAR lineages between neighboring European countries from Central and Western Europe, and long-distance dissemination between the US and Europe.
Collapse
|
24
|
Cella E, Lo Presti A, Giovanetti M, Veo C, Lai A, Dicuonzo G, Angeletti S, Ciotti M, Zehender G, Ciccozzi M. Phylogenetic Analysis of Human Immunodeficiency Virus Type 2 Group B. J Glob Infect Dis 2016; 8:108-14. [PMID: 27621561 PMCID: PMC4997794 DOI: 10.4103/0974-777x.188592] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
CONTEXT Human immunodeficiency virus type 2 (HIV-2) infections are mainly restricted to West Africa; however, in the recent years, the prevalence of HIV-2 is a growing concern in some European countries and the Southwestern region of India. Despite the presence of different HIV-2 groups, only A and B Groups have established human-to-human transmission chains. AIMS This work aimed to evaluate the phylogeographic inference of HIV-2 Group B worldwide to estimate their data of origin and the population dynamics. MATERIALS AND METHODS The evolutionary rates, the demographic history for HIV-2 Group B dataset, and the phylogeographic analysis were estimated using a Bayesian approach. The viral gene flow analysis was used to count viral gene out/in flow among different locations. RESULTS The root of the Bayesian maximum clade credibility tree of HIV-2 Group B dated back to 1957. The demographic history of HIV-2 Group B showed that the epidemic remained constant up to 1970 when started an exponential growth. From 1985 to early 2000s, the epidemic reached a plateau, and then it was characterized by two bottlenecks and a new plateau at the end of 2000s. Phylogeographic reconstruction showed that the most probable location for the root of the tree was Ghana. Regarding the viral gene flow of HIV-2 Group B, the only observed viral gene flow was from Africa to France, Belgium, and Luxembourg. CONCLUSIONS The study gives insights into the origin, history, and phylogeography of HIV-2 Group B epidemic. The growing number of infections of HIV-2 worldwide indicates the need for strengthening surveillance.
Collapse
Affiliation(s)
- Eleonora Cella
- Department of Infectious, Parasitic and Immunomediated Diseases, National Institute of Health, Rome, Italy; Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Alessandra Lo Presti
- Department of Infectious, Parasitic and Immunomediated Diseases, National Institute of Health, Rome, Italy
| | - Marta Giovanetti
- Department of Infectious, Parasitic and Immunomediated Diseases, National Institute of Health, Rome, Italy; Department of Biology, General Pathology Laboratory, University of Rome Tor Vergata, Rome, Italy
| | - Carla Veo
- Department of Biomedical and Clinical Sciences L. Sacco, University of Milan, Milan, Italy
| | - Alessia Lai
- Department of Biomedical and Clinical Sciences L. Sacco, University of Milan, Milan, Italy
| | - Giordano Dicuonzo
- Clinical Pathology and Microbiology Laboratory, University Hospital Campus Bio-Medico of Rome, Rome, Italy
| | - Silvia Angeletti
- Clinical Pathology and Microbiology Laboratory, University Hospital Campus Bio-Medico of Rome, Rome, Italy
| | - Marco Ciotti
- Laboratory of Molecular Virology, Tor Vergata Foundation Hospital, Rome, Italy
| | - Gianguglielmo Zehender
- Department of Biomedical and Clinical Sciences L. Sacco, University of Milan, Milan, Italy
| | - Massimo Ciccozzi
- Department of Infectious, Parasitic and Immunomediated Diseases, National Institute of Health, Rome, Italy; Clinical Pathology and Microbiology Laboratory, University Hospital Campus Bio-Medico, Rome, Italy
| |
Collapse
|
25
|
Visseaux B, Damond F, Matheron S, Descamps D, Charpentier C. Hiv-2 molecular epidemiology. INFECTION GENETICS AND EVOLUTION 2016; 46:233-240. [PMID: 27530215 DOI: 10.1016/j.meegid.2016.08.010] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 08/10/2016] [Accepted: 08/11/2016] [Indexed: 12/13/2022]
Abstract
The Simian Immunodeficiency Virus of sooty mangabeys (SIVsmm) has been revealed to be at the origin of Human Immunodeficiency Virus type 2 (HIV-2) in humans, firstly detected from two Portuguese patients in 1986. HIV-2 is mainly restricted to West Africa where it infects up to 1 to 2 million people. HIV-2 is also present in Europe, mainly Portugal and France, India and United States of America. Two major HIV-2 groups, groups A and B, were generated by two independent transmission events involving infected sooty mangabeys from the Taï forest in Ivory Coast. Seven other HIV-2 groups have been described, but each has only been identified in one patient. To date, no subtypes have been formally described but some preliminary data suggest that HIV-2 group A may be divided in two distinct subtypes with distinct geographical origins. To date only two recombinant forms have been described: one circulating recombinant form (CRF01_AB) and one unique recombinant form. In this review, we focused mainly on molecular data available and their insights about HIV-2 origins, diversity, drug resistance and global epidemiology.
Collapse
Affiliation(s)
- Benoit Visseaux
- INSERM, IAME, UMR 1137, F-75018 Paris, France; Université Paris Diderot, IAME, UMR 1137, Sorbonne Paris Cité, F-75018 Paris, France; AP-HP, Hôpital Bichat, Laboratoire de Virologie, F-75018 Paris, France.
| | - Florence Damond
- INSERM, IAME, UMR 1137, F-75018 Paris, France; Université Paris Diderot, IAME, UMR 1137, Sorbonne Paris Cité, F-75018 Paris, France; AP-HP, Hôpital Bichat, Laboratoire de Virologie, F-75018 Paris, France
| | - Sophie Matheron
- INSERM, IAME, UMR 1137, F-75018 Paris, France; Université Paris Diderot, IAME, UMR 1137, Sorbonne Paris Cité, F-75018 Paris, France; AP-HP, Hôpital Bichat, Service de Maladies Infectieuses et Tropicales, F-75018 Paris, France
| | - Diane Descamps
- INSERM, IAME, UMR 1137, F-75018 Paris, France; Université Paris Diderot, IAME, UMR 1137, Sorbonne Paris Cité, F-75018 Paris, France; AP-HP, Hôpital Bichat, Laboratoire de Virologie, F-75018 Paris, France
| | - Charlotte Charpentier
- INSERM, IAME, UMR 1137, F-75018 Paris, France; Université Paris Diderot, IAME, UMR 1137, Sorbonne Paris Cité, F-75018 Paris, France; AP-HP, Hôpital Bichat, Laboratoire de Virologie, F-75018 Paris, France
| |
Collapse
|
26
|
Zbinden A, Dürig R, Shah C, Böni J, Schüpbach J. Importance of an Early HIV Antibody Differentiation Immunoassay for Detection of Dual Infection with HIV-1 and HIV-2. PLoS One 2016; 11:e0157690. [PMID: 27310138 PMCID: PMC4911042 DOI: 10.1371/journal.pone.0157690] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 06/02/2016] [Indexed: 11/24/2022] Open
Abstract
Background HIV-2 is primarily endemic in West Africa and India, however, in time of global migration, a possible HIV-2 infection or co-infection with HIV-1 should be recognized right at the time of HIV diagnosis, in order to enable optimized antiretroviral treatment. Laboratory HIV testing consists of a combined HIV1/2/O antibody + antigen screening test and subsequent confirmation and type differentiation by a serological test formatted as a multi-line or multi-spot assay. CDC has proposed a revised alternative HIV diagnostic strategy which, in case of a reactive result in a combined HIV1/2/O antibody + antigen screening test, comprises an HIV-1 nucleic acid test (NAT) for HIV confirmation instead of an antibody differentiation immunoassay (ADI). Only a negative NAT must be further investigated by an ADI, thus saving expenses for ADI in most instances. We have investigated this alternative strategy with respect to its recognition of dual HIV-1 and HIV-2 infection. Methods and Results Anonymized data of HIV notifications of patients newly diagnosed with HIV in Switzerland between 2007 and 2014 were analysed retrospectively. In a total of 4'679 notifications, we found 35 HIV-2 infections, 9 (25.7%) of which were dually infected with HIV-1. In 7 of the 9 dual HIV-1 and HIV-2 infections, HIV-1 RNA testing at the time of HIV diagnosis was positive with concentrations from 102 to 94'300 copies/mL plasma. HIV-1 RNA data were not available for the other two cases. Conclusions The alternative CDC strategy would have missed the concomitant HIV-2 infection in at least 7, but probably even more, of the 9 dually infected patients, as the detectable HIV-1 RNA would have precluded a supplemental ADI. Early ADI is mandatory for diagnosis of dual HIV-1/HIV-2 infection and guidance of appropriate therapy.
Collapse
Affiliation(s)
- Andrea Zbinden
- Institute of Medical Virology, University of Zurich, CH-8057, Zurich, Switzerland
- * E-mail:
| | | | - Cyril Shah
- Institute of Medical Virology, University of Zurich, CH-8057, Zurich, Switzerland
- Swiss National Center for Retroviruses, University of Zurich, CH-8057, Zurich, Switzerland
| | - Jürg Böni
- Institute of Medical Virology, University of Zurich, CH-8057, Zurich, Switzerland
- Swiss National Center for Retroviruses, University of Zurich, CH-8057, Zurich, Switzerland
| | - Jörg Schüpbach
- Institute of Medical Virology, University of Zurich, CH-8057, Zurich, Switzerland
- Swiss National Center for Retroviruses, University of Zurich, CH-8057, Zurich, Switzerland
| |
Collapse
|
27
|
Paraskevis D, Nikolopoulos GK, Magiorkinis G, Hodges-Mameletzis I, Hatzakis A. The application of HIV molecular epidemiology to public health. INFECTION GENETICS AND EVOLUTION 2016; 46:159-168. [PMID: 27312102 DOI: 10.1016/j.meegid.2016.06.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 06/06/2016] [Accepted: 06/07/2016] [Indexed: 02/02/2023]
Abstract
HIV is responsible for one of the largest viral pandemics in human history. Despite a concerted global response for prevention and treatment, the virus persists. Thus, urgent public health action, utilizing novel interventions, is needed to prevent future transmission events, critical to eliminating HIV. For public health planning to prove effective and successful, we need to understand the dynamics of regional epidemics and to intervene appropriately. HIV molecular epidemiology tools as implemented in phylogenetic, phylodynamic and phylogeographic analyses have proven to be powerful tools in public health planning across many studies. Numerous applications with HIV suggest that molecular methods alone or in combination with mathematical modelling can provide inferences about the transmission dynamics, critical epidemiological parameters (prevalence, incidence, effective number of infections, Re, generation times, time between infection and diagnosis), or the spatiotemporal characteristics of epidemics. Molecular tools have been used to assess the impact of an intervention and outbreak investigation which are of great public health relevance. In some settings, molecular sequence data may be more readily available than HIV surveillance data, and can therefore allow for molecular analyses to be conducted more easily. Nonetheless, classic methods have an integral role in monitoring and evaluation of public health programmes, and should supplement emerging techniques from the field of molecular epidemiology. Importantly, molecular epidemiology remains a promising approach in responding to viral diseases.
Collapse
Affiliation(s)
- D Paraskevis
- Department of Hygiene Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| | - G K Nikolopoulos
- Hellenic Center for Diseases Control and Prevention, Maroussi, Greece
| | - G Magiorkinis
- Department of Hygiene Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece; Department of Zoology, University of Oxford, South Parks Road, OX1 3PS, Oxford, United Kingdom
| | | | - A Hatzakis
- Hellenic Center for Diseases Control and Prevention, Maroussi, Greece
| |
Collapse
|
28
|
Phylodynamics of influenza A(H3N2) in South America, 1999-2012. INFECTION GENETICS AND EVOLUTION 2016; 43:312-20. [PMID: 27275847 DOI: 10.1016/j.meegid.2016.06.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/26/2016] [Accepted: 06/04/2016] [Indexed: 11/21/2022]
Abstract
The limited influenza A(H3N2) genetic data available from the Southern Hemisphere (particularly from Africa and Latin America), constrains the accurate reconstruction of viral dissemination dynamics within those regions. Our objective was to describe the spatial dissemination dynamics of influenza A(H3N2) within South America. A total of 469 sequences of the HA1 portion of the hemagglutinin gene (HA) from influenza A(H3N2) viruses sampled in temperate and tropical South American countries between 1999 and 2012 were combined with available contemporary sequences from Australia, Hong Kong, United Kingdom and the United States. Phylogenetic analyses revealed that influenza A(H3N2) sequences from South America were highly intermixed with sequences from other geographical regions, although a clear geographic virus population structure was detected globally. We identified 14 clades mostly (≥80%) composed of influenza sequences from South American countries. Bayesian phylogeographic analyses of those clades support a significant role of both temperate and tropical regions in the introduction and dissemination of new influenza A(H3N2) strains within South America and identify an intensive bidirectional viral exchange between different geographical areas. These findings indicate that seasonal influenza A(H3N2) epidemics in South America are seeded by both the continuous importation of viral variants from other geographic regions and the short-term persistence of local lineages. This study also supports a complex metapopulation model of influenza A(H3N2) dissemination in South America, with no preferential direction in viral movement between temperate and tropical regions.
Collapse
|
29
|
Mirazo S, Mir D, Bello G, Ramos N, Musto H, Arbiza J. New insights into the hepatitis E virus genotype 3 phylodynamics and evolutionary history. INFECTION GENETICS AND EVOLUTION 2016; 43:267-73. [PMID: 27264728 DOI: 10.1016/j.meegid.2016.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 05/19/2016] [Accepted: 06/01/2016] [Indexed: 12/27/2022]
Abstract
Hepatitis E virus (HEV) is an emergent hepatotropic virus endemic mainly in Asia and other developing areas. However, in the last decade it has been increasingly reported in high-income countries. Human infecting HEV strains are currently classified into four genotypes (1-4). Genotype 3 (HEV-3) is the prevalent virus genotype and the mostly associated with autochthonous and sporadic cases of HEV in developed areas. The evolutionary history of HEV worldwide remains largely unknown. In this study we reconstructed the spatiotemporal and population dynamics of HEV-3 at global scale, but with particular emphasis in South America, where case reports have increased dramatically in the last years. To achieve this, we applied a Bayesian coalescent-based approach to a comprehensive data set comprising 97 GenBank HEV-3 sequences for which the location and sampling date was documented. Our phylogenetic analyses suggest that the worldwide genetic diversity of HEV-3 can be grouped into two main Clades (I and II) with a Ƭmrca dated in approximately 320years ago (95% HPD: 420-236years) and that a unique independent introduction of HEV-3 seems to have occurred in Uruguay, where most of the human HEV cases in South America have been described. The phylodynamic inference indicates that the population size of this virus suffered substantial temporal variations after the second half of the 20th century. In this sense and conversely to what is postulated to date, we suggest that the worldwide effective population size of HEV-3 is not decreasing and that frequently sources of error in its estimates stem from assumptions that the analyzed sequences are derived from a single panmictic population. Novel insights on the global population dynamics of HEV are given. Additionally, this work constitutes an attempt to further describe in a Bayesian coalescent framework, the phylodynamics and evolutionary history of HEV-3 in the South American region.
Collapse
Affiliation(s)
- Santiago Mirazo
- Sección Virología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
| | - Daiana Mir
- Laboratorio de AIDS & Imunologia Molecular, Instituto Oswaldo Cruz. Av. Brasil 4365, 21045900 Rio de Janeiro, Brazil
| | - Gonzalo Bello
- Laboratorio de AIDS & Imunologia Molecular, Instituto Oswaldo Cruz. Av. Brasil 4365, 21045900 Rio de Janeiro, Brazil
| | - Natalia Ramos
- Sección Virología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
| | - Héctor Musto
- Laboratorio de Organización y Evolución del Genoma, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400. Montevideo, Uruguay
| | - Juan Arbiza
- Sección Virología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay.
| |
Collapse
|
30
|
Mahdi M, Szojka Z, Mótyán JA, Tőzsér J. Inhibition Profiling of Retroviral Protease Inhibitors Using an HIV-2 Modular System. Viruses 2015; 7:6152-62. [PMID: 26633459 PMCID: PMC4690855 DOI: 10.3390/v7122931] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 11/11/2015] [Accepted: 11/13/2015] [Indexed: 12/13/2022] Open
Abstract
Retroviral protease inhibitors (PIs) are fundamental pillars in the treatment of HIV infection and acquired immunodeficiency syndrome (AIDS). Currently used PIs are designed against HIV-1, and their effect on HIV-2 is understudied. Using a modular HIV-2 protease cassette system, inhibition profiling assays were carried out for protease inhibitors both in enzymatic and cell culture assays. Moreover, the treatment-associated resistance mutations (I54M, L90M) were introduced into the modular system, and comparative inhibition assays were performed to determine their effect on the susceptibility of the protease. Our results indicate that darunavir, saquinavir, indinavir and lopinavir were very effective HIV-2 protease inhibitors, while tipranavir, nelfinavir and amprenavir showed a decreased efficacy. I54M, L90M double mutation resulted in a significant reduction in the susceptibility to most of the inhibitors with the exception of tipranavir. To our knowledge, this modular system constitutes a novel approach in the field of HIV-2 protease characterization and susceptibility testing.
Collapse
Affiliation(s)
- Mohamed Mahdi
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, H-4010 Debrecen, Hungary.
| | - Zsófia Szojka
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, H-4010 Debrecen, Hungary.
| | - János András Mótyán
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, H-4010 Debrecen, Hungary.
| | - József Tőzsér
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, H-4010 Debrecen, Hungary.
| |
Collapse
|
31
|
De Maio N, Wu CH, O’Reilly KM, Wilson D. New Routes to Phylogeography: A Bayesian Structured Coalescent Approximation. PLoS Genet 2015; 11:e1005421. [PMID: 26267488 PMCID: PMC4534465 DOI: 10.1371/journal.pgen.1005421] [Citation(s) in RCA: 160] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 07/05/2015] [Indexed: 12/14/2022] Open
Abstract
Phylogeographic methods aim to infer migration trends and the history of sampled lineages from genetic data. Applications of phylogeography are broad, and in the context of pathogens include the reconstruction of transmission histories and the origin and emergence of outbreaks. Phylogeographic inference based on bottom-up population genetics models is computationally expensive, and as a result faster alternatives based on the evolution of discrete traits have become popular. In this paper, we show that inference of migration rates and root locations based on discrete trait models is extremely unreliable and sensitive to biased sampling. To address this problem, we introduce BASTA (BAyesian STructured coalescent Approximation), a new approach implemented in BEAST2 that combines the accuracy of methods based on the structured coalescent with the computational efficiency required to handle more than just few populations. We illustrate the potentially severe implications of poor model choice for phylogeographic analyses by investigating the zoonotic transmission of Ebola virus. Whereas the structured coalescent analysis correctly infers that successive human Ebola outbreaks have been seeded by a large unsampled non-human reservoir population, the discrete trait analysis implausibly concludes that undetected human-to-human transmission has allowed the virus to persist over the past four decades. As genomics takes on an increasingly prominent role informing the control and prevention of infectious diseases, it will be vital that phylogeographic inference provides robust insights into transmission history. When studying infectious diseases it is often important to understand how germs spread from location-to-location, person-to-person, or even one part of the body to another. Using phylogeographic methods, it is possible to recover the history of spread of pathogens (or other organisms) by studying their genetic material. Here we reveal that some popular, fast phylogeographic methods are inaccurate, and we introduce a new more reliable method to address the problem. By comparing different phylogeographic methods based on principled population models and fast alternatives, we found that different approaches can give diametrically opposed results, and we offer concrete examples in the context of the ongoing Ebola outbreak in West Africa and the world-wide outbreaks of Avian Influenza Virus and Tomato Yellow Leaf Curl Virus. We found that the most popular phylogeographic method often produces completely inaccurate conclusions. One of the reasons for its popularity has been its computational speed, which has allowed users to analyse large genetic datasets with complex models. More accurate approaches have until now been considerably slower, and therefore we propose a new method called BASTA that achieves good accuracy in a reasonable time. We are relying more and more on genetic sequencing to learn about the origin and spread of infections, and as this role continues to grow, it will be essential to use accurate phylogeographic methods when designing policies to prevent or curb the spread of disease.
Collapse
Affiliation(s)
- Nicola De Maio
- Institute for Emerging Infections, Oxford Martin School, Oxford, United Kingdom
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Chieh-Hsi Wu
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Kathleen M O’Reilly
- MRC Centre for Outbreak Analysis and Modelling, School of Public Health, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Daniel Wilson
- Institute for Emerging Infections, Oxford Martin School, Oxford, United Kingdom
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
32
|
de Pina-Araujo IIM, Delatorre E, Guimarães ML, Morgado MG, Bello G. Origin and Population Dynamics of a Novel HIV-1 Subtype G Clade Circulating in Cape Verde and Portugal. PLoS One 2015; 10:e0127384. [PMID: 25993094 PMCID: PMC4439163 DOI: 10.1371/journal.pone.0127384] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 04/15/2015] [Indexed: 01/04/2023] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) subtype G is the most prevalent and second most prevalent HIV-1 clade in Cape Verde and Portugal, respectively; but there is no information about the origin and spatiotemporal dispersal pattern of this HIV-1 clade circulating in those countries. To this end, we used Maximum Likelihood and Bayesian coalescent-based methods to analyze a collection of 578 HIV-1 subtype G pol sequences sampled throughout Portugal, Cape Verde and 11 other countries from West and Central Africa over a period of 22 years (1992 to 2013). Our analyses indicate that most subtype G sequences from Cape Verde (80%) and Portugal (95%) branched together in a distinct monophyletic cluster (here called GCV-PT). The GCV-PT clade probably emerged after a single migration of the virus out of Central Africa into Cape Verde between the late 1970s and the middle 1980s, followed by a rapid dissemination to Portugal a couple of years later. Reconstruction of the demographic history of the GCV-PT clade circulating in Cape Verde and Portugal indicates that this viral clade displayed an initial phase of exponential growth during the 1980s and 1990s, followed by a decline in growth rate since the early 2000s. Our data also indicate that during the exponential growth phase the GCV-PT clade recombined with a preexisting subtype B viral strain circulating in Portugal, originating the CRF14_BG clade that was later disseminated to Spain and Cape Verde. Historical and recent human population movements between Angola, Cape Verde and Portugal probably played a key role in the origin and dispersal of the GCV-PT and CRF14_BG clades.
Collapse
Affiliation(s)
| | - Edson Delatorre
- Laboratório de AIDS & Imunologia Molecular, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Monick L. Guimarães
- Laboratório de AIDS & Imunologia Molecular, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Mariza G. Morgado
- Laboratório de AIDS & Imunologia Molecular, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Gonzalo Bello
- Laboratório de AIDS & Imunologia Molecular, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
33
|
Treviño A, Cabezas T, Lozano AB, García-Delgado R, Force L, Fernández-Montero JM, Mendoza CD, Caballero E, Soriano V. Dolutegravir for the treatment of HIV-2 infection. J Clin Virol 2015; 64:12-5. [PMID: 25728072 DOI: 10.1016/j.jcv.2015.01.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 12/28/2014] [Accepted: 01/02/2015] [Indexed: 11/29/2022]
Abstract
BACKGROUND Therapeutic options are limited for HIV-2 infected persons, largely in part due to the lack of susceptibility to HIV-1 non-nucleoside reverse transcriptase inhibitors and poor susceptibility to some HIV-1 protease inhibitors. This is particularly worrisome for HIV-2 patients with prior antiretroviral failure. OBJECTIVES Report the virological response to dolutegravir in HIV-2-infected individuals. STUDY DESIGN Retrospective observational assessment of all HIV-2 individuals treated with dolutegravir in Spain. RESULTS From 297 HIV-2-infected individuals recorded at the Spanish national registry, 26% received antiretroviral therapy. Six out of 8 failing on raltegravir selected for integrase resistance mutations N155H (4), Y143G (1) and Q148R (1). Two patients bearing N155H subsequently received dolutegravir. Both experienced initially more than 1.5 log drop in plasma HIV-2 RNA and significant CD4 gains. Whereas one kept on undetectable viremia 6 months later, the other experienced viral rebound. CONCLUSION Dolutegravir may be a good therapeutic option for patients with HIV-2 infection, including those that previously failed other integrase inhibitors.
Collapse
Affiliation(s)
- Ana Treviño
- Laboratory of Virology, Puerta de Hierro Research Institute and University Hospital, Majadahonda, Madrid, Spain
| | | | | | | | | | | | - Carmen de Mendoza
- Laboratory of Virology, Puerta de Hierro Research Institute and University Hospital, Majadahonda, Madrid, Spain.
| | | | - Vincent Soriano
- Infectious Diseases Unit, La Paz University Hospital & IdiPAZ, Paseo de la Castellana 261, Madrid 28046, Spain.
| |
Collapse
|
34
|
Seabra SG, Brás PG, Martins J, Martins R, Wyatt N, Shirazi J, Rebelo MT, Franco JC, Mateus C, Figueiredo E, Paulo OS. Phylogeographical patterns inCoenosia attenuata(Diptera: Muscidae): a widespread predator of insect species associated with greenhouse crops. Biol J Linn Soc Lond 2014. [DOI: 10.1111/bij.12419] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sofia G. Seabra
- Centre for Ecology, Evolution and Environmental Changes; Departamento de Biologia Animal; Faculdade de Ciências; Universidade de Lisboa; 1749-016 Lisboa Portugal
| | - Patrícia G. Brás
- Centre for Ecology, Evolution and Environmental Changes; Departamento de Biologia Animal; Faculdade de Ciências; Universidade de Lisboa; 1749-016 Lisboa Portugal
| | - Joana Martins
- Centro de Engenharia dos Biossistemas; Instituto Superior de Agronomia; Universidade de Lisboa; Tapada da Ajuda 1349-017 Lisboa Portugal
| | - Renata Martins
- Centre for Ecology, Evolution and Environmental Changes; Departamento de Biologia Animal; Faculdade de Ciências; Universidade de Lisboa; 1749-016 Lisboa Portugal
| | - Nigel Wyatt
- Natural History Museum; Cromwell Road London SW7 5BD UK
| | - Jalal Shirazi
- Biocontrol Research Department; Iranian Research Institute of Plant Protection (IRIPP); PO Box 1454 Tehran 19395 Iran
| | - Maria Teresa Rebelo
- Centro de Estudos do Ambiente e do Mar (CESAM); Departamento de Biologia Animal; Faculdade de Ciências; Universidade de Lisboa; 1749-016 Lisboa Portugal
| | - José Carlos Franco
- Centro de Estudos Florestais; Instituto Superior de Agronomia; Universidade de Lisboa; Tapada da Ajuda 1349-017 Lisboa Portugal
| | - Célia Mateus
- Instituto Nacional de Investigação Agrária e Veterinária; Av. República Quinta do Marquês 2784-505 Oeiras Portugal
| | - Elisabete Figueiredo
- Centro de Engenharia dos Biossistemas; Instituto Superior de Agronomia; Universidade de Lisboa; Tapada da Ajuda 1349-017 Lisboa Portugal
| | - Octávio S. Paulo
- Centre for Ecology, Evolution and Environmental Changes; Departamento de Biologia Animal; Faculdade de Ciências; Universidade de Lisboa; 1749-016 Lisboa Portugal
| |
Collapse
|
35
|
Intercontinental dispersal of HIV-1 subtype B associated with transmission among men who have sex with men in Japan. J Virol 2014; 88:9864-76. [PMID: 24942575 DOI: 10.1128/jvi.01354-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Transmission clusters of HIV-1 subtype B uniquely associated with the epidemic among men who have sex with men (MSM) in East Asia have recently been identified. Using the Los Alamos HIV sequence database and the UK HIV drug resistance database, we explored possible links between HIV MSM epidemics in East Asia and the rest of the world by using phylogenetic and molecular clock analyses. We found that JP.MSM.B-1, a subtype B MSM variant that accounts for approximately one-third of the infections among Japanese MSM, was detected worldwide, in the United Kingdom (n=13), mainland China (n=3), the United States, Germany, Canada, and Taiwan (n=1 each). Interestingly, 10 United Kingdom samples plus two from Germany and the United States formed a distinct monophyletic subgroup within JP.MSM.B-1. The estimated divergence times of JP.MSM.B-1 and the latter subgroup were ∼1989 and ∼1999, respectively. These dates suggest that JP.MSM.B-1 was circulating for many years in Japan among MSM before disseminating to other countries, most likely through global MSM networks. A significant number of other Asian MSM HIV lineages were also detected in the UK HIV drug resistance database. Our study provides insight into the regional and global dispersal of Asian MSM HIV lineages. Further study of these strains is warranted to elucidate viral migration and the interrelationship of HIV epidemics on a global scale. IMPORTANCE We previously identified several transmission clusters of HIV-1 subtype B uniquely associated with the epidemic among men who have sex with men (MSM) in East Asia. Using the Los Alamos HIV sequence database and the UK HIV drug resistance database, we explored the possible interplay of HIV MSM epidemics in the different geographic regions and found previously unrecognized interrelationships among the HIV-1 epidemics in East Asia, the United Kingdom, and the rest of the world. Our study provides insight into the regional and global dispersal of Asian MSM HIV lineages and highlights the importance of strengthening HIV monitoring efforts and the need for implementing effective control measures to reduce HIV transmission on a global scale.
Collapse
|
36
|
Delatorre E, Mir D, Bello G. Spatiotemporal dynamics of the HIV-1 subtype G epidemic in West and Central Africa. PLoS One 2014; 9:e98908. [PMID: 24918930 PMCID: PMC4053352 DOI: 10.1371/journal.pone.0098908] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 05/03/2014] [Indexed: 01/25/2023] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) subtype G is the second most prevalent HIV-1 clade in West Africa, accounting for nearly 30% of infections in the region. There is no information about the spatiotemporal dynamics of dissemination of this HIV-1 clade in Africa. To this end, we analyzed a total of 305 HIV-1 subtype G pol sequences isolated from 11 different countries from West and Central Africa over a period of 20 years (1992 to 2011). Evolutionary, phylogeographic and demographic parameters were jointly estimated from sequence data using a Bayesian coalescent-based method. Our analyses indicate that subtype G most probably emerged in Central Africa in 1968 (1956–1976). From Central Africa, the virus was disseminated to West and West Central Africa at multiple times from the middle 1970s onwards. Two subtype G strains probably introduced into Nigeria and Togo between the middle and the late 1970s were disseminated locally and to neighboring countries, leading to the origin of two major western African clades (GWA-I and GWA-II). Subtype G clades circulating in western and central African regions displayed an initial phase of exponential growth followed by a decline in growth rate since the early/middle 1990s; but the mean epidemic growth rate of GWA-I (0.75 year−1) and GWA-II (0.95 year−1) clades was about two times higher than that estimated for central African lineages (0.47 year−1). Notably, the overall evolutionary and demographic history of GWA-I and GWA-II clades was very similar to that estimated for the CRF06_cpx clade circulating in the same region. These results support the notion that the spatiotemporal dissemination dynamics of major HIV-1 clades circulating in western Africa have probably been shaped by the same ecological factors.
Collapse
Affiliation(s)
- Edson Delatorre
- Laboratório de AIDS & Imunologia Molecular, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Daiana Mir
- Laboratório de AIDS & Imunologia Molecular, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Gonzalo Bello
- Laboratório de AIDS & Imunologia Molecular, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
37
|
Torres C, Lema C, Dohmen FG, Beltran F, Novaro L, Russo S, Freire MC, Velasco-Villa A, Mbayed VA, Cisterna DM. Phylodynamics of vampire bat-transmitted rabies in Argentina. Mol Ecol 2014; 23:2340-2352. [PMID: 24661865 PMCID: PMC4870601 DOI: 10.1111/mec.12728] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 03/06/2014] [Accepted: 03/14/2014] [Indexed: 12/11/2022]
Abstract
Common vampire bat populations distributed from Mexico to Argentina are important rabies reservoir hosts in Latin America. The aim of this work was to analyse the population structure of the rabies virus (RABV) variants associated with vampire bats in the Americas and to study their phylodynamic pattern within Argentina. The phylogenetic analysis based on all available vampire bat-related N gene sequences showed both a geographical and a temporal structure. The two largest groups of RABV variants from Argentina were isolated from northwestern Argentina and from the central western zone of northeastern Argentina, corresponding to livestock areas with different climatic, topographic and biogeographical conditions, which determined their dissemination and evolutionary patterns. In addition, multiple introductions of the infection into Argentina, possibly from Brazil, were detected. The phylodynamic analysis suggests that RABV transmission dynamics is characterized by initial epizootic waves followed by local enzootic cycles with variable persistence. Anthropogenic interventions in the ecosystem should be assessed taking into account not only the environmental impact but also the potential risk of disease spreading through dissemination of current RABV lineages or the emergence of novel ones associated with vampire bats.
Collapse
Affiliation(s)
- C Torres
- Cátedra de Virología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junin 956, 4° piso, Ciudad Autónoma de Buenos Aires C1113AAD, Argentina
- CONICET, Av. Rivadavia 1917, Ciudad Autónoma de Buenos Aires C1033AAJ, Argentina
| | - C Lema
- Servicio de Neurovirosis, Instituto Nacional de Enfermedades Infecciosas, Administración Nacional de Laboratorios e Institutos de Salud (ANLIS) "Dr. Carlos G. Malbrán," Av.Velez Sarsfield 563, Ciudad Autónoma de Buenos Aires C1282AFF, Argentina
| | - F Gury Dohmen
- Instituto de Zoonosis "Dr. Luis Pasteur", Av Díaz Vélez 4821 Ciudad Autónoma de Buenos Aires C1405DCD, Argentina
| | - F Beltran
- Instituto de Zoonosis "Dr. Luis Pasteur", Av Díaz Vélez 4821 Ciudad Autónoma de Buenos Aires C1405DCD, Argentina
| | - L Novaro
- DILAB, SENASA, Av. Paseo Colon 367, Ciudad Autónoma de Buenos Aires C1063ACD, Argentina
| | - S Russo
- DILAB, SENASA, Av. Paseo Colon 367, Ciudad Autónoma de Buenos Aires C1063ACD, Argentina
| | - M C Freire
- Servicio de Neurovirosis, Instituto Nacional de Enfermedades Infecciosas, Administración Nacional de Laboratorios e Institutos de Salud (ANLIS) "Dr. Carlos G. Malbrán," Av.Velez Sarsfield 563, Ciudad Autónoma de Buenos Aires C1282AFF, Argentina
| | - A Velasco-Villa
- Centers for Disease Control and Prevention, 1600 Clifton Rd, Atlanta, Georgia 30333, USA
| | - V A Mbayed
- Cátedra de Virología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junin 956, 4° piso, Ciudad Autónoma de Buenos Aires C1113AAD, Argentina
- CONICET, Av. Rivadavia 1917, Ciudad Autónoma de Buenos Aires C1033AAJ, Argentina
| | - D M Cisterna
- Servicio de Neurovirosis, Instituto Nacional de Enfermedades Infecciosas, Administración Nacional de Laboratorios e Institutos de Salud (ANLIS) "Dr. Carlos G. Malbrán," Av.Velez Sarsfield 563, Ciudad Autónoma de Buenos Aires C1282AFF, Argentina
| |
Collapse
|
38
|
de Pina-Araujo IIM, Guimarães ML, Bello G, Vicente ACP, Morgado MG. Profile of the HIV epidemic in Cape Verde: molecular epidemiology and drug resistance mutations among HIV-1 and HIV-2 infected patients from distinct islands of the archipelago. PLoS One 2014; 9:e96201. [PMID: 24763617 PMCID: PMC3999145 DOI: 10.1371/journal.pone.0096201] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 04/04/2014] [Indexed: 12/12/2022] Open
Abstract
HIV-1 and HIV-2 have been detected in Cape Verde since 1987, but little is known regarding the genetic diversity of these viruses in this archipelago, located near the West African coast. In this study, we characterized the molecular epidemiology of HIV-1 and HIV-2 and described the occurrence of drug resistance mutations (DRM) among antiretroviral therapy naïve (ARTn) patients and patients under treatment (ARTexp) from different Cape Verde islands. Blood samples, socio-demographic and clinical-laboratory data were obtained from 221 HIV-positive individuals during 2010–2011. Phylogenetic and bootscan analyses of the pol region (1300 bp) were performed for viral subtyping. HIV-1 and HIV-2 DRM were evaluated for ARTn and ARTexp patients using the Stanford HIV Database and HIV-GRADE e.V. Algorithm Homepage, respectively. Among the 221 patients (169 [76.5%] HIV-1, 43 [19.5%] HIV-2 and 9 [4.1%] HIV-1/HIV-2 co-infections), 67% were female. The median ages were 34 (IQR = 1–75) and 47 (IQR = 12–84) for HIV-1 and HIV-2, respectively. HIV-1 infections were due to subtypes G (36.6%), CRF02_AG (30.6%), F1 (9.7%), URFs (10.4%), B (5.2%), CRF05_DF (3.0%), C (2.2%), CRF06_cpx (0.7%), CRF25_cpx (0.7%) and CRF49_cpx (0.7%), whereas all HIV-2 infections belonged to group A. Transmitted DRM (TDRM) was observed in 3.4% (2/58) of ARTn HIV-1-infected patients (1.7% NRTI, 1.7% NNRTI), but not among those with HIV-2. Among ARTexp patients, DRM was observed in 47.8% (33/69) of HIV-1 (37.7% NRTI, 37.7% NNRTI, 7.4% PI, 33.3% for two classes) and 17.6% (3/17) of HIV-2-infections (17.6% NRTI, 11.8% PI, 11.8% both). This study indicates that Cape Verde has a complex and unique HIV-1 molecular epidemiological scenario dominated by HIV-1 subtypes G, CRF02_AG and F1 and HIV-2 subtype A. The occurrence of TDRM and the relatively high level of DRM among treated patients are of concern. Continuous monitoring of patients on ART, including genotyping, are public policies to be implemented.
Collapse
Affiliation(s)
- Isabel Inês M. de Pina-Araujo
- Laboratório de AIDS & Imunologia Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brasil
- Departamento de Ciência e Tecnologia, Universidade de Cabo Verde, Praia, Santiago, Cabo Verde
- * E-mail: (IIMPA); (MGM)
| | - Monick L. Guimarães
- Laboratório de AIDS & Imunologia Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brasil
| | - Gonzalo Bello
- Laboratório de AIDS & Imunologia Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brasil
| | - Ana Carolina P. Vicente
- Laboratório de Genética Molecular de Microorganismos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brasil
| | - Mariza G. Morgado
- Laboratório de AIDS & Imunologia Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brasil
- * E-mail: (IIMPA); (MGM)
| |
Collapse
|
39
|
Bezemer D, Faria NR, Hassan A, Hamers RL, Mutua G, Anzala O, Mandaliya K, Cane P, Berkley JA, Rinke de Wit TF, Wallis C, Graham SM, Price MA, Coutinho RA, Sanders EJ. HIV Type 1 transmission networks among men having sex with men and heterosexuals in Kenya. AIDS Res Hum Retroviruses 2014; 30:118-26. [PMID: 23947948 DOI: 10.1089/aid.2013.0171] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We performed a molecular phylogenetic study on HIV-1 polymerase sequences of men who have sex with men (MSM) and heterosexual patient samples in Kenya to characterize any observed HIV-1 transmission networks. HIV-1 polymerase sequences were obtained from samples in Nairobi and coastal Kenya from 84 MSM, 226 other men, and 364 women from 2005 to 2010. Using Bayesian phylogenetics, we tested whether sequences clustered by sexual orientation and geographic location. In addition, we used trait diffusion analyses to identify significant epidemiological links and to quantify the number of transmissions between risk groups. Finally, we compared 84 MSM sequences with all HIV-1 sequences available online at GenBank. Significant clustering of sequences from MSM at both coastal Kenya and Nairobi was found, with evidence of HIV-1 transmission between both locations. Although a transmission pair between a coastal MSM and woman was confirmed, no significant HIV-1 transmission was evident between MSM and the comparison population for the predominant subtype A (60%). However, a weak but significant link was evident when studying all subtypes together. GenBank comparison did not reveal other important transmission links. Our data suggest infrequent intermingling of MSM and heterosexual HIV-1 epidemics in Kenya.
Collapse
Affiliation(s)
| | - Nuno Rodrigues Faria
- Department of Microbiology and Immunology, University of Leuven, Leuven, Belgium
| | - Amin Hassan
- Kenya Medical Research Institute, Centre for Geographic Medicine Research–Coast, Kilifi, Kenya
| | - Raph L. Hamers
- PharmAccess Foundation, Department of Global Health, Academic Medical Center of the University of Amsterdam, Amsterdam Institute for Global Health and Development, Amsterdam, The Netherlands
| | - Gaudensia Mutua
- Kenya AIDS Vaccine Initiative, University of Nairobi, Nairobi, Kenya
| | - Omu Anzala
- Kenya AIDS Vaccine Initiative, University of Nairobi, Nairobi, Kenya
| | | | | | - James A. Berkley
- Kenya Medical Research Institute, Centre for Geographic Medicine Research–Coast, Kilifi, Kenya
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Tobias F. Rinke de Wit
- PharmAccess Foundation, Department of Global Health, Academic Medical Center of the University of Amsterdam, Amsterdam Institute for Global Health and Development, Amsterdam, The Netherlands
| | | | - Susan M. Graham
- Kenya Medical Research Institute, Centre for Geographic Medicine Research–Coast, Kilifi, Kenya
- University of Washington, Seattle, Washington
| | - Matthew A. Price
- International AIDS Vaccine Initiative, New York, New York
- Department of Epidemiology and Biostatistics, University of California at San Francisco, San Francisco, California
| | - Roel A. Coutinho
- Centre for Infectious Disease Control, RIVM, Utrecht, The Netherlands
- Julius Center for Health Science and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Eduard J. Sanders
- Kenya Medical Research Institute, Centre for Geographic Medicine Research–Coast, Kilifi, Kenya
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
40
|
Peeters M, Jung M, Ayouba A. The origin and molecular epidemiology of HIV. Expert Rev Anti Infect Ther 2014; 11:885-96. [DOI: 10.1586/14787210.2013.825443] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
41
|
Peeters M, D’Arc M, Delaporte E. Origin and diversity of human retroviruses. AIDS Rev 2014; 16:23-34. [PMID: 24584106 PMCID: PMC4289907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Simian immunodeficiency viruses, simian T‑cell lymphotropic viruses, and simian foamy viruses from nonhuman primates have crossed the species barrier to humans at several time points, leading to the HIV and human T lymphotropic virus epidemic and to sporadic cases of human infections with simian foamy viruses, respectively. Efficient infection and spread in humans differs between simian foamy virus, simian lymphotropic virus, and simian immunodeficiency virus, but seems also to differ among the different viruses from the same simian lineage, as illustrated by the different spread of HIV‑1 M, N O, P or for the different HIV‑2 groups. Among the four HIV‑1 groups, only HIV‑1 group M has spread worldwide, and the actual diversity within HIV‑1 M (subtypes, circulating recombinants) is the result of subsequent evolution and spread in the human population. HIV‑2 only spread to some extent in West Africa, and similarly as for HIV‑1, the nine HIV‑2 groups have also a different epidemic history. Four types of human T lymphotropic virus, type 1 to 4, have been described in humans and for three of them simian counterparts (simian T lymphotropic virus‑1, ‑2, ‑3) have been identified in multiple nonhuman primate species. The majority of human infections are with human T lymphotropic virus‑1, which is present throughout the world as clusters of high endemicity. Humans are susceptible to a wide variety of simian foamy viruses and seem to acquire these viruses more readily than simian immunodeficiency viruses or simian T lymphotropic viruses, but neither signs of disease in humans nor human‑to‑human transmission of simian foamy virus have been documented yet. The current HIV‑1 M epidemic illustrates the impact of a single cross‑species transmission. The recent discovery of HIV‑1 P, HIV‑2 I, new human T lymphotropic virus‑1 and ‑3 variants, as well as simian foamy virus infections in humans in Central Africa, show that our knowledge of genetic diversity and cross‑species transmissions of simian retroviruses is still incomplete.
Collapse
Affiliation(s)
- Martine Peeters
- UMI 233, Institut de Recherche pour le Développement (IRD) and University of Montpellier 1, Montpellier, France
- Computational Biology Institute, Montpellier, France
| | - Mirela D’Arc
- UMI 233, Institut de Recherche pour le Développement (IRD) and University of Montpellier 1, Montpellier, France
- Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eric Delaporte
- UMI 233, Institut de Recherche pour le Développement (IRD) and University of Montpellier 1, Montpellier, France
- Universitary Hospital Gui de Chauliac, Montpellier, France
| |
Collapse
|
42
|
Menéndez-Arias L, Alvarez M. Antiretroviral therapy and drug resistance in human immunodeficiency virus type 2 infection. Antiviral Res 2013; 102:70-86. [PMID: 24345729 DOI: 10.1016/j.antiviral.2013.12.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 12/02/2013] [Accepted: 12/06/2013] [Indexed: 12/19/2022]
Abstract
One to two million people worldwide are infected with the human immunodeficiency virus type 2 (HIV-2), with highest prevalences in West African countries, but also present in Western Europe, Asia and North America. Compared to HIV-1, HIV-2 infection undergoes a longer asymptomatic phase and progresses to AIDS more slowly. In addition, HIV-2 shows lower transmission rates, probably due to its lower viremia in infected individuals. There is limited experience in the treatment of HIV-2 infection and several antiretroviral drugs used to fight HIV-1 are not effective against HIV-2. Effective drugs against HIV-2 include nucleoside analogue reverse transcriptase (RT) inhibitors (e.g. zidovudine, tenofovir, lamivudine, emtricitabine, abacavir, stavudine and didanosine), protease inhibitors (saquinavir, lopinavir and darunavir), and integrase inhibitors (raltegravir, elvitegravir and dolutegravir). Maraviroc, a CCR5 antagonist blocking coreceptor binding during HIV entry, is active in vitro against CCR5-tropic HIV-2 but more studies are needed to validate its use in therapeutic treatments against HIV-2 infection. HIV-2 strains are naturally resistant to a few antiretroviral drugs developed to suppress HIV-1 propagation such as nonnucleoside RT inhibitors, several protease inhibitors and the fusion inhibitor enfuvirtide. Resistance selection in HIV-2 appears to be faster than in HIV-1. In this scenario, the development of novel drugs specific for HIV-2 is an important priority. In this review, we discuss current anti-HIV-2 therapies and mutational pathways leading to drug resistance.
Collapse
Affiliation(s)
- Luis Menéndez-Arias
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas & Universidad Autónoma de Madrid), c/Nicolás Cabrera, 1, Campus de Cantoblanco, 28049 Madrid, Spain.
| | - Mar Alvarez
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas & Universidad Autónoma de Madrid), c/Nicolás Cabrera, 1, Campus de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
43
|
Souza WM, Bello G, Amarilla AA, Alfonso HL, Aquino VH, Figueiredo LTM. Phylogeography and evolutionary history of rodent-borne hantaviruses. INFECTION GENETICS AND EVOLUTION 2013; 21:198-204. [PMID: 24287104 DOI: 10.1016/j.meegid.2013.11.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 11/10/2013] [Accepted: 11/13/2013] [Indexed: 01/09/2023]
Abstract
Hantavirus (Family Bunyaviridae) are mostly associated to rodents and transmitted to man by inhalation of aerosolized infected excreta of these animals. The human infection by hantaviruses can lead to severe diseases such as hemorrhagic fever with renal syndrome (HFRS) in Asia and Europe, and pulmonary syndrome (HPS) in the Americas. To determine the origin, spreading and evolutionary dynamics of rodent-borne hantaviruses, 190 sequences of nucleoprotein (N) of hantaviruses identified in 30 countries, from 1985 to 2010, were retrieved from the GenBank and analyzed using the BEAST program. Our evolutionary analysis indicates that current genetic diversity of N gene of rodent-borne hantaviruses probably was originated around 2000 years ago. Hantavirus harbored by Murinae and Arvicolinae subfamilies, probably, were originated in Asia 500-700 years ago and later spread toward Siberia, Europe, Africa and North America. Hantavirus carried by Neotominae subfamily, probably, emerged 500-600 years ago in Central America and spread toward North America. Finally, hantaviruses associated to Sigmodontinae occurred in Brazil 400 years ago and were, probably, originated from Neotominae-associated virus from northern South America. These data offer subsidies to understand the time-scale and worldwide dissemination dynamics of rodent-borne hantaviruses.
Collapse
Affiliation(s)
- W M Souza
- Virology Research Center, School of Medicine of Ribeirao Preto of University of Sao Paulo, Ribeirao Preto, São Paulo, Brazil.
| | - G Bello
- Laboratório de AIDS & Imunologia Molecular, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - A A Amarilla
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - H L Alfonso
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - V H Aquino
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - L T M Figueiredo
- Virology Research Center, School of Medicine of Ribeirao Preto of University of Sao Paulo, Ribeirao Preto, São Paulo, Brazil.
| |
Collapse
|
44
|
Beck A, Guzman H, Li L, Ellis B, Tesh RB, Barrett ADT. Phylogeographic reconstruction of African yellow fever virus isolates indicates recent simultaneous dispersal into east and west Africa. PLoS Negl Trop Dis 2013; 7:e1910. [PMID: 23516640 PMCID: PMC3597480 DOI: 10.1371/journal.pntd.0001910] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 10/03/2012] [Indexed: 11/19/2022] Open
Abstract
Yellow fever virus (YFV) is a mosquito-borne flavivirus that is a major public health problem in tropical areas of Africa and South America. There have been detailed studies on YFV ecology in West Africa and South America, but current understanding of YFV circulation on the African continent is incomplete. This inadequacy is especially notable for East and Central Africa, for which the unpredictability of human outbreaks is compounded by limitations in both historical and present surveillance efforts. Sparse availability of nucleotide sequence data makes it difficult to investigate the dispersal of YFV in these regions of the continent. To remedy this, we constructed Bayesian phylogenetic and geographic analyses utilizing 49 partial genomic sequences to infer the structure of YFV divergence across the known range of the virus on the African continent. Relaxed clock analysis demonstrated evidence for simultaneous divergence of YFV into east and west lineages, a finding that differs from previous hypotheses of YFV dispersal from reservoirs located on edges of the endemic range. Using discrete and continuous geographic diffusion models, we provide detailed structure of YFV lineage diversity. Significant transition links between extant East and West African lineages are presented, implying connection between areas of known sylvatic cycling. The results of demographic modeling reinforce the existence of a stably maintained population of YFV with spillover events into human populations occurring periodically. Geographically distinct foci of circulation are reconstructed, which have significant implications for studies of YFV ecology and emergence of human disease. We propose further incorporation of Bayesian phylogeography into formal GIS analyses to augment studies of arboviral disease. Yellow fever virus (YFV) is a mosquito-transmitted pathogen of great public health significance, which is endemic to tropical areas of Africa and South America. Despite the availability of an effective vaccine, and programs that exist in many endemic areas to reduce populations of mosquitoes, YFV continues to circulate and emerge in regions with developing public health infrastructures. Periodic outbreaks of YFV into humans are unpredictable and merit thorough investigation of the ecology and genetic diversity of the virus. Our analyses improve the current understanding of African YFV evolution in several respects. We have included unpublished viral sequence data from Central and East Africa, which is significant because the availability of YFV isolates from these regions is extremely limited. We present a modeled geographic structure of African YFV dispersal, and propose a new model for the spread of YFV based on concurrent historical movement of the virus from reservoirs in central African jungles to both eastern and western regions of the continent. Our results provide evidence for the presence of unique genotypes of the virus in both central and east African circulation. The presented findings not only provide insight to estimations of outbreak risk for the regions in question, but also contribute to rational GIS analysis and approaches to vaccination campaigns.
Collapse
Affiliation(s)
- Andrew Beck
- Department of Pathology, Center for Biodefense and Emerging Infectious Diseases, Sealy Center for Vaccine Development, Institute for Human Infections and Immunity, and Center for Tropical Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Hilda Guzman
- Department of Pathology, Center for Biodefense and Emerging Infectious Diseases, Sealy Center for Vaccine Development, Institute for Human Infections and Immunity, and Center for Tropical Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Li Li
- Department of Pathology, Center for Biodefense and Emerging Infectious Diseases, Sealy Center for Vaccine Development, Institute for Human Infections and Immunity, and Center for Tropical Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
| | | | - Robert B. Tesh
- Department of Pathology, Center for Biodefense and Emerging Infectious Diseases, Sealy Center for Vaccine Development, Institute for Human Infections and Immunity, and Center for Tropical Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Alan D. T. Barrett
- Department of Pathology, Center for Biodefense and Emerging Infectious Diseases, Sealy Center for Vaccine Development, Institute for Human Infections and Immunity, and Center for Tropical Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
45
|
de Silva TI, van Tienen C, Onyango C, Jabang A, Vincent T, Loeff MFSVD, Coutinho RA, Jaye A, Rowland-Jones S, Whittle H, Cotten M, Hué S. Population dynamics of HIV-2 in rural West Africa: comparison with HIV-1 and ongoing transmission at the heart of the epidemic. AIDS 2013; 27:125-34. [PMID: 23032414 DOI: 10.1097/qad.0b013e32835ab12c] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES To compare the population dynamics of HIV-2 and HIV-1, and to characterize ongoing HIV-2 transmission in rural Guinea-Bissau. DESIGN Phylogenetic and phylodynamic analyses using HIV-2 gag and env, and HIV-1 env sequences, combined with epidemiological data from a community cohort. METHODS Samples were obtained from surveys in 1989-1991, 1996-1997, 2003 and 2006-2007. Phylogenies were reconstructed using sequences from 103 HIV-2-infected and 56 HIV-1-infected patients using Bayesian Evolutionary Analysis by Sampling Trees (BEAST), a relaxed molecular clock and a Bayesian skyline coalescent model. RESULTS Bayesian skyline plots showed a strong increase in the 1990s of the HIV-1 effective population size (Ne) in the same period that the Ne of HIV-2 came into a plateau phase. The population dynamics of both viruses were remarkably similar following initial introduction. Incident infections were found more often in HIV-2 transmission clusters, with 55-58% of all individuals contributing to ongoing transmission. Some phylogenetically linked sexual partners had discordant viral loads (undetectable vs. detectable), suggesting host factors dictate the risk of disease progression in HIV-2. Multiple HIV-2 introductions into the cohort are evident, but ongoing transmission has occurred predominantly within the community. CONCLUSION Comparison of HIV-1 and HIV-2 phylodynamics in the same community suggests both viruses followed similar growth patterns following introduction, and is consistent with the hypothesis that HIV-1 may have played a role in the decline of HIV-2 via competitive exclusion. The source of ongoing HIV-2 transmission in the cohort appears to be new HIV-2 cases, rather than the pool of older infections established during the early growth of HIV-2.
Collapse
|
46
|
Rice yellow mottle virus in Madagascar and in the Zanzibar Archipelago; island systems and evolutionary time scale to study virus emergence. Virus Res 2012; 171:71-9. [PMID: 23123216 DOI: 10.1016/j.virusres.2012.10.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 10/19/2012] [Accepted: 10/22/2012] [Indexed: 11/23/2022]
Abstract
Rice yellow mottle virus (RYMV), of the genus Sobemovirus, is a major threat to rice cultivation in Africa. Long range transmission of RYMV, difficult to study experimentally, is inferred from a detailed analysis of the molecular diversity of the virus in Madagascar and in the Zanzibar Archipelago (Zanzibar and Pemba Islands; Tanzania) compared with that found elsewhere in Africa. A unique successful introduction of RYMV to Madagascar, which is ca. 400 km from mainland Africa, contrasted with recurrent introductions of the virus to the Zanzibar Archipelago, ca. 40 km from the East African coast. Accordingly, RYMV dispersal over distances of hundreds of kilometers is rare whereas spread of the virus over distances of tens of kilometers is relatively frequent. The dates of introduction of RYMV to Madagascar and to Pemba Island were estimated from three sets of ORF4 sequences of virus isolates collected between 1966 and 2011. They were compared with the dates of the first field detection in Madagascar (1989) and in Pemba Island (1990). The estimates did not depend substantially on the data set used or on the evolutionary model applied and their credible intervals were narrow. The estimated dates are recent - 1978 (1969-1986) and 1985 (1977-1993) in Madagascar and in Pemba Island, respectively - compared to the early diversification of RYMV in East Africa ca. 200 years ago. They predated by 5-10 years the first field detections in these islands. The interplay between virus sources, rice cultivation and long range dispersal which led to RYMV emergence and spread is enlightened.
Collapse
|
47
|
de Sousa JD, Alvarez C, Vandamme AM, Müller V. Enhanced heterosexual transmission hypothesis for the origin of pandemic HIV-1. Viruses 2012; 4:1950-83. [PMID: 23202448 PMCID: PMC3497036 DOI: 10.3390/v4101950] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 09/15/2012] [Accepted: 09/17/2012] [Indexed: 11/16/2022] Open
Abstract
HIV-1 M originated from SIVcpz endemic in chimpanzees from southeast Cameroon or neighboring areas, and it started to spread in the early 20th century. Here we examine the factors that may have contributed to simian-to-human transmission, local transmission between humans, and export to a city. The region had intense ape hunting, social disruption, commercial sex work, STDs, and traffic to/from Kinshasa in the period 1899-1923. Injection treatments increased sharply around 1930; however, their frequency among local patients was far lower than among modern groups experiencing parenteral HIV-1 outbreaks. Recent molecular datings of HIV-1 M fit better the period of maximal resource exploitation and trade links than the period of high injection intensity. We conclude that although local parenteral outbreaks might have occurred, these are unlikely to have caused massive transmission. World War I led to additional, and hitherto unrecognized, risks of HIV-1 emergence. We propose an Enhanced Heterosexual Transmission Hypothesis for the origin of HIV-1 M, featuring at the time and place of its origin a coincidence of favorable co-factors (ape hunting, social disruption, STDs, and mobility) for both cross-species transmission and heterosexual spread. Our hypothesis does not exclude a role for parenteral transmission in the initial viral adaptation.
Collapse
Affiliation(s)
- João Dinis de Sousa
- Laboratory for Clinical and Epidemiological Virology, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Leuven B-3000, Belgium; (J.D.S.); (A.-M.V.)
| | - Carolina Alvarez
- Laboratory for Clinical and Epidemiological Virology, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Leuven B-3000, Belgium; (J.D.S.); (A.-M.V.)
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima 31, Peru; (C.A.)
| | - Anne-Mieke Vandamme
- Laboratory for Clinical and Epidemiological Virology, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Leuven B-3000, Belgium; (J.D.S.); (A.-M.V.)
- Centro de Malária e Outras Doenças Tropicais, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisboa 1349-008, Portugal
| | - Viktor Müller
- Research Group of Theoretical Biology and Evolutionary Ecology, Eötvös Loránd University and the Hungarian Academy of Sciences, Budapest 1117, Hungary;
| |
Collapse
|