1
|
Carter MH, Gribble J, Diller JR, Denison MR, Mirza SA, Chappell JD, Halasa NB, Ogden KM. Human Rotaviruses of Multiple Genotypes Acquire Conserved VP4 Mutations during Serial Passage. Viruses 2024; 16:978. [PMID: 38932271 PMCID: PMC11209247 DOI: 10.3390/v16060978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/06/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Human rotaviruses exhibit limited tropism and replicate poorly in most cell lines. Attachment protein VP4 is a key rotavirus tropism determinant. Previous studies in which human rotaviruses were adapted to cultured cells identified mutations in VP4. However, most such studies were conducted using only a single human rotavirus genotype. In the current study, we serially passaged 50 human rotavirus clinical specimens representing five of the genotypes most frequently associated with severe human disease, each in triplicate, three to five times in primary monkey kidney cells then ten times in the MA104 monkey kidney cell line. From 13 of the 50 specimens, we obtained 25 rotavirus antigen-positive lineages representing all five genotypes, which tended to replicate more efficiently in MA104 cells at late versus early passage. We used Illumina next-generation sequencing and analysis to identify variants that arose during passage. In VP4, variants encoded 28 mutations that were conserved for all P[8] rotaviruses and 12 mutations that were conserved for all five genotypes. These findings suggest there may be a conserved mechanism of human rotavirus adaptation to MA104 cells. In the future, such a conserved adaptation mechanism could be exploited to study human rotavirus biology or efficiently manufacture vaccines.
Collapse
Affiliation(s)
- Maximilian H. Carter
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jennifer Gribble
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Julia R. Diller
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Mark R. Denison
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Sara A. Mirza
- Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - James D. Chappell
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Natasha B. Halasa
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Kristen M. Ogden
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
2
|
Goswami S, Samanta D, Duraivelan K. Molecular mimicry of host short linear motif-mediated interactions utilised by viruses for entry. Mol Biol Rep 2023; 50:4665-4673. [PMID: 37016039 PMCID: PMC10072811 DOI: 10.1007/s11033-023-08389-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 03/15/2023] [Indexed: 04/06/2023]
Abstract
Viruses are obligate intracellular parasites that depend on host cellular machinery for performing even basic biological functions. One of the many ways they achieve this is through molecular mimicry, wherein the virus mimics a host sequence or structure, thereby being able to hijack the host's physiological interactions for its pathogenesis. Such adaptations are specific recognitions that often confer tissue and species-specific tropisms to the virus, and enable the virus to utilise previously existing host signalling networks, which ultimately aid in further steps of viral infection, such as entry, immune evasion and spread. A common form of sequence mimicry utilises short linear motifs (SLiMs). SLiMs are short-peptide sequences that mediate transient interactions and are major elements in host protein interaction networks. This work is aimed at providing a comprehensive review of current literature of some well-characterised SLiMs that play a role in the attachment and entry of viruses into host cells, which mimic physiological receptor-ligand interactions already present in the host. Considering recent trends in emerging diseases, further research on such motifs involved in viral entry can help in the discovery of previously unknown cellular receptors utilised by viruses, as well as help in the designing of targeted therapeutics such as vaccines or inhibitors directed towards these interactions.
Collapse
Affiliation(s)
- Saumyadeep Goswami
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Dibyendu Samanta
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India.
| | - Kheerthana Duraivelan
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
3
|
Tvaroška I, Kozmon S, Kóňa J. Molecular Modeling Insights into the Structure and Behavior of Integrins: A Review. Cells 2023; 12:cells12020324. [PMID: 36672259 PMCID: PMC9856412 DOI: 10.3390/cells12020324] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Integrins are heterodimeric glycoproteins crucial to the physiology and pathology of many biological functions. As adhesion molecules, they mediate immune cell trafficking, migration, and immunological synapse formation during inflammation and cancer. The recognition of the vital roles of integrins in various diseases revealed their therapeutic potential. Despite the great effort in the last thirty years, up to now, only seven integrin-based drugs have entered the market. Recent progress in deciphering integrin functions, signaling, and interactions with ligands, along with advancement in rational drug design strategies, provide an opportunity to exploit their therapeutic potential and discover novel agents. This review will discuss the molecular modeling methods used in determining integrins' dynamic properties and in providing information toward understanding their properties and function at the atomic level. Then, we will survey the relevant contributions and the current understanding of integrin structure, activation, the binding of essential ligands, and the role of molecular modeling methods in the rational design of antagonists. We will emphasize the role played by molecular modeling methods in progress in these areas and the designing of integrin antagonists.
Collapse
Affiliation(s)
- Igor Tvaroška
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravska cesta 9, 845 38 Bratislava, Slovakia
- Correspondence:
| | - Stanislav Kozmon
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravska cesta 9, 845 38 Bratislava, Slovakia
- Medical Vision o. z., Záhradnícka 4837/55, 821 08 Bratislava, Slovakia
| | - Juraj Kóňa
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravska cesta 9, 845 38 Bratislava, Slovakia
- Medical Vision o. z., Záhradnícka 4837/55, 821 08 Bratislava, Slovakia
| |
Collapse
|
4
|
Hamajima R, Lusiany T, Minami S, Nouda R, Nurdin JA, Yamasaki M, Kobayashi N, Kanai Y, Kobayashi T. A reverse genetics system for human rotavirus G2P[4]. J Gen Virol 2022; 103. [PMID: 36748482 DOI: 10.1099/jgv.0.001816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Rotaviruses (RVs) are an important cause of acute gastroenteritis in young children. Recently, versatile plasmid-based reverse genetics systems were developed for several human RV genotypes; however, these systems have not been developed for all commonly circulating human RV genotypes. In this study, we established a reverse genetics system for G2P[4] human RV strain HN126. Nucleotide sequence analysis, including that of the terminal ends of the viral double-stranded RNA genome, revealed that HN126 possessed a DS-1-like genotype constellation. Eleven plasmids, each encoding 11 gene segments of the RV genome, and expression plasmids encoding vaccinia virus RNA capping enzyme (D1R and D12L), Nelson Bay orthoreovirus FAST, and NSP2 and NSP5 of HN126, were transfected into BHK-T7 cells, and recombinant strain HN126 was generated. Using HN126 or simian RV strain SA11 as backbone viruses, reassortant RVs carrying the outer and intermediate capsid proteins (VP4, VP7 and VP6) of HN126 and/or SA11 (in various combinations) were generated. Viral replication analysis of the single, double and triple reassortant viruses suggested that homologous combination of the VP4 and VP7 proteins contributed to efficient virus infectivity and interaction between other viral or cellular proteins. Further studies of reassortant viruses between simian and other human RV strains will contribute to developing an appropriate model for human RV research, as well as suitable backbone viruses for generation of recombinant vaccine candidates.
Collapse
Affiliation(s)
- Rina Hamajima
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Japan.,Present address: Laboratory of Sericulture and Entomoresources, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Chikusa, Japan
| | - Tina Lusiany
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Japan
| | - Shohei Minami
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Japan
| | - Ryotaro Nouda
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Japan
| | - Jeffery A Nurdin
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Japan
| | - Moeko Yamasaki
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Japan
| | - Nobumichi Kobayashi
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yuta Kanai
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Japan
| | - Takeshi Kobayashi
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Japan.,Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
5
|
Diller JR, Carter MH, Kanai Y, Sanchez SV, Kobayashi T, Ogden KM. Monoreassortant rotaviruses of multiple G types are differentially neutralized by sera from infants vaccinated with ROTARIX® and RotaTeq®. J Infect Dis 2021; 224:1720-1729. [PMID: 34628500 DOI: 10.1093/infdis/jiab479] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/16/2021] [Indexed: 12/30/2022] Open
Abstract
Rotavirus is a leading cause of pediatric diarrheal mortality. The rotavirus outer capsid consists of VP7 and VP4 proteins, which respectively determine viral G and P type and are primary targets of neutralizing antibodies. To elucidate VP7-specific neutralizing antibody responses, we engineered monoreassortant rotaviruses each containing a human VP7 segment from a sequenced clinical specimen or a vaccine strain in an identical genetic background. We quantified replication and neutralization of engineered viruses using sera from infants vaccinated with monovalent ROTARIX® or multivalent RotaTeq® vaccines. Immunization with RotaTeq® induced broader neutralizing antibody responses than ROTARIX®. Inclusion of a single dose of RotaTeq® in the schedule enhanced G-type neutralization breadth of vaccinated infant sera. Cell type-specific differences in infectivity, replication, and neutralization were detected for some monoreassortant viruses. These findings suggest that rotavirus VP7, independent of VP4, can contribute to cell tropism and the breadth of vaccine-elicited neutralizing antibody responses.
Collapse
Affiliation(s)
- Julia R Diller
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Maximilian H Carter
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Yuta Kanai
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Shania V Sanchez
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Takeshi Kobayashi
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Kristen M Ogden
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
6
|
Esona MD, Gautam R, Katz E, Jaime J, Ward ML, Wikswo ME, Betrapally NS, Rustempasic SM, Selvarangan R, Harrison CJ, Boom JA, Englund J, Klein EJ, Staat MA, McNeal MM, Halasa N, Chappell J, Weinberg GA, Payne DC, Parashar UD, Bowen MD. Comparative genomic analysis of genogroup 1 and genogroup 2 rotaviruses circulating in seven US cities, 2014-2016. Virus Evol 2021; 7:veab023. [PMID: 34522389 PMCID: PMC8432945 DOI: 10.1093/ve/veab023] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
For over a decade, the New Vaccine Surveillance Network (NVSN) has conducted active rotavirus (RVA) strain surveillance in the USA. The evolution of RVA in the post-vaccine introduction era and the possible effects of vaccine pressure on contemporary circulating strains in the USA are still under investigation. Here, we report the whole-gene characterization (eleven ORFs) for 157 RVA strains collected at seven NVSN sites during the 2014 through 2016 seasons. The sequenced strains included 52 G1P[8], 47 G12P[8], 18 G9P[8], 24 G2P[4], 5 G3P[6], as well as 7 vaccine strains, a single mixed strain (G9G12P[8]), and 3 less common strains. The majority of the single and mixed strains possessed a Wa-like backbone with consensus genotype constellation of G1/G3/G9/G12-P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1, while the G2P[4], G3P[6], and G2P[8] strains displayed a DS-1-like genetic backbone with consensus constellation of G2/G3-P[4]/P[6]/P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2. Two intergenogroup reassortant G1P[8] strains were detected that appear to be progenies of reassortment events between Wa-like G1P[8] and DS-1-like G2P[4] strains. Two Rotarix® vaccine (RV1) and two RV5 derived (vd) reassortant strains were detected. Phylogenetic and similarity matrices analysis revealed 2-11 sub-genotypic allelic clusters among the genes of Wa- and DS-1-like strains. Most study strains clustered into previously defined alleles. Amino acid (AA) substitutions occurring in the neutralization epitopes of the VP7 and VP4 proteins characterized in this study were mostly neutral in nature, suggesting that these RVA proteins were possibly under strong negative or purifying selection in order to maintain competent and actual functionality, but fourteen radical (AA changes that occur between groups) AA substitutions were noted that may allow RVA strains to gain a selective advantage through immune escape. The tracking of RVA strains at the sub-genotypic allele constellation level will enhance our understanding of RVA evolution under vaccine pressure, help identify possible mechanisms of immune escape, and provide valuable information for formulation of future RVA vaccines.
Collapse
Affiliation(s)
- Mathew D Esona
- Division of Viral Diseases, Centers for Disease Control and Prevention, Viral Gastroenteritis Branch, Atlanta, GA, USA
- Corresponding author: E-mail:
| | - Rashi Gautam
- Division of Viral Diseases, Centers for Disease Control and Prevention, Viral Gastroenteritis Branch, Atlanta, GA, USA
| | - Eric Katz
- Cherokee Nation Assurance, Contracting Agency to the Division of Viral Diseases, Centers for Disease Control and Prevention, Arlington, VA, USA
| | - Jose Jaime
- Division of Viral Diseases, Centers for Disease Control and Prevention, Viral Gastroenteritis Branch, Atlanta, GA, USA
| | - M Leanne Ward
- Division of Viral Diseases, Centers for Disease Control and Prevention, Viral Gastroenteritis Branch, Atlanta, GA, USA
| | - Mary E Wikswo
- Division of Viral Diseases, Centers for Disease Control and Prevention, Viral Gastroenteritis Branch, Atlanta, GA, USA
| | - Naga S Betrapally
- Division of Viral Diseases, Centers for Disease Control and Prevention, Viral Gastroenteritis Branch, Atlanta, GA, USA
| | - Slavica M Rustempasic
- Division of Viral Diseases, Centers for Disease Control and Prevention, Viral Gastroenteritis Branch, Atlanta, GA, USA
| | | | | | | | - Jan Englund
- Seattle Children’s Hospital, Seattle, WA, USA
| | | | - Mary Allen Staat
- Division of Infectious Diseases, Department of Pediatrics, University of Cincinnati, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Monica M McNeal
- Division of Infectious Diseases, Department of Pediatrics, University of Cincinnati, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Natasha Halasa
- Vanderbilt University Medical Center, Nashville, TN, USA
| | - James Chappell
- Vanderbilt University Medical Center, Nashville, TN, USA
| | - Geoffrey A Weinberg
- University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Daniel C Payne
- Division of Viral Diseases, Centers for Disease Control and Prevention, Viral Gastroenteritis Branch, Atlanta, GA, USA
| | - Umesh D Parashar
- Division of Viral Diseases, Centers for Disease Control and Prevention, Viral Gastroenteritis Branch, Atlanta, GA, USA
| | - Michael D Bowen
- Division of Viral Diseases, Centers for Disease Control and Prevention, Viral Gastroenteritis Branch, Atlanta, GA, USA
| |
Collapse
|
7
|
Kim CH. Viral Protein Interaction with Host Cells GSLs. GLYCOSPHINGOLIPIDS SIGNALING 2020:53-92. [DOI: 10.1007/978-981-15-5807-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
|
8
|
Abstract
Integrins are heterodimeric cell surface receptors ensuring the mechanical connection between cells and the extracellular matrix. In addition to the anchorage of cells to the extracellular matrix, these receptors have critical functions in intracellular signaling, but are also taking center stage in many physiological and pathological conditions. In this review, we provide some historical, structural, and physiological notes so that the diverse functions of these receptors can be appreciated and put into the context of the emerging field of mechanobiology. We propose that the exciting journey of the exploration of these receptors will continue for at least another new generation of researchers.
Collapse
Affiliation(s)
- Michael Bachmann
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire , Geneva , Switzerland ; and Faculty of Medicine and Health Technology, Tampere University, and Fimlab Laboratories , Tampere , Finland
| | - Sampo Kukkurainen
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire , Geneva , Switzerland ; and Faculty of Medicine and Health Technology, Tampere University, and Fimlab Laboratories , Tampere , Finland
| | - Vesa P Hytönen
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire , Geneva , Switzerland ; and Faculty of Medicine and Health Technology, Tampere University, and Fimlab Laboratories , Tampere , Finland
| | - Bernhard Wehrle-Haller
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire , Geneva , Switzerland ; and Faculty of Medicine and Health Technology, Tampere University, and Fimlab Laboratories , Tampere , Finland
| |
Collapse
|
9
|
The C Terminus of Rotavirus VP4 Protein Contains an Actin Binding Domain Which Requires Cooperation with the Coiled-Coil Domain for Actin Remodeling. J Virol 2018; 93:JVI.01598-18. [PMID: 30333172 DOI: 10.1128/jvi.01598-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 10/10/2018] [Indexed: 12/28/2022] Open
Abstract
The interactions between viruses and actin cytoskeleton have been widely studied. We showed that rotaviruses remodel microfilaments in intestinal cells and demonstrated that this was due to the VP4 spike protein. Microfilaments mainly occur in the apical domain of infected polarized enterocytes and favor the polarized apical exit of viral progeny. The present work aims at the identification of molecular determinants of actin-VP4 interactions. We used various deletion mutants of VP4 that were transfected into Cos-7 cells and analyzed interactions by immunofluorescence confocal microscopy. It has been established that the C-terminal part of VP4 is embedded within viral particles when rotavirus assembles. The use of specific monoclonal antibodies demonstrated that VP4 is expressed in different forms in infected cells: classically as spike on the outer layer of virus particles, but also as free soluble protein in the cytosol. The C terminus of free VP4 was identified as interacting with actin microfilaments. The VP4 actin binding domain is unable to promote microfilament remodeling by itself; the coiled-coil domain is also required in this process. This actin-binding domain was shown to dominate a previously identified peroxisomal targeting signal, located in the three last amino acids of VP4. The newly identified actin-binding domain is highly conserved in rotavirus strains from species A, B, and C, suggesting that actin binding and remodeling is a general strategy for rotavirus exit. This provides a novel mechanism of protein-protein interactions, not involving cell signaling pathways, to facilitate rotavirus exit.IMPORTANCE Rotaviruses are causal agents of acute infantile viral diarrhea. In intestinal cells, in vitro as well as in vivo, virus assembly and exit do not imply cell lysis but rely on an active process in which the cytoskeleton plays a major role. We describe here a novel molecular mechanism by which the rotavirus spike protein VP4 drives actin remodeling. This relies on the fact that VP4 occurs in different forms. Besides its structural function within the virion, a large proportion of VP4 is expressed as free protein. Here, we show that free VP4 possesses a functional actin-binding domain. This domain, in coordination with a coiled-coil domain, promotes actin cytoskeleton remodeling, thereby providing the capacity to destabilize the cell membrane and allow efficient rotavirus exit.
Collapse
|
10
|
Azab W, Osterrieder K. Initial Contact: The First Steps in Herpesvirus Entry. ADVANCES IN ANATOMY EMBRYOLOGY AND CELL BIOLOGY 2018; 223:1-27. [PMID: 28528437 DOI: 10.1007/978-3-319-53168-7_1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The entry process of herpesviruses into host cells is complex and highly variable. It involves a sequence of well-orchestrated events that begin with virus attachment to glycan-containing proteinaceous structures on the cell surface. This initial contact tethers virus particles to the cell surface and results in a cascade of molecular interactions, including the tight interaction of viral envelope glycoproteins to specific cell receptors. These interactions trigger intracellular signaling and finally virus penetration after fusion of the viral envelope with cellular membranes. Based on the engaged cellular receptors and co-receptors, and the subsequent signaling cascades, the entry pathway will be decided on the spot. A number of viral glycoproteins and many cellular receptors and molecules have been identified as players in one or several of these events during virus entry. This chapter will review viral glycoproteins, cellular receptors and signaling cascades associated with the very first interactions of herpesviruses with their target cells.
Collapse
Affiliation(s)
- Walid Azab
- Institut für Virologie, Robert von Ostertag-Haus, Zentrum für Infektionsmedizin, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163, Berlin, Germany.
| | - Klaus Osterrieder
- Institut für Virologie, Robert von Ostertag-Haus, Zentrum für Infektionsmedizin, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163, Berlin, Germany
| |
Collapse
|
11
|
Arthos J, Cicala C, Nawaz F, Byrareddy SN, Villinger F, Santangelo PJ, Ansari AA, Fauci AS. The Role of Integrin α 4β 7 in HIV Pathogenesis and Treatment. Curr HIV/AIDS Rep 2018; 15:127-135. [PMID: 29478152 PMCID: PMC5882766 DOI: 10.1007/s11904-018-0382-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Acute HIV infection is characterized by high-level viral replication throughout the body's lymphoid system, particularly in gut-associated lymphoid tissues resulting in damage to structural components of gut tissue. This damage is irreversible and believed to contribute to the development of immune deficiencies. Antiretroviral therapy (ART) does not restore gut structure and function. Studies in macaques point to an alternative treatment strategy that may ameliorate gut damage. Integrin α4β7 mediates the homing of lymphocytes to gut tissues. Vedolizumab, a monoclonal antibody (mAb) antagonist of α4β7, has demonstrated efficacy and has been approved for the treatment of inflammatory bowel disease in humans. Here, we describe our current knowledge, and the gaps in our understanding, of the role of α4β7 in HIV pathogenesis and treatment. RECENT FINDINGS When administered to macaques prior to infection, a nonhuman primate analogue of vedolizumab prevents transmission of SIV. In combination with ART, this mAb facilitates durable virologic control following treatment interruption. Targeting α4β7 represents a novel therapeutic approach to prevent and treat HIV infection.
Collapse
Affiliation(s)
- James Arthos
- Laboratory of Immunoregulation, National Institutes of Allergy & Infectious Diseases, National Institutes of Health, 10 Center Drive Rm 6A08, Bethesda, MD, 20814, USA.
| | - Claudia Cicala
- Laboratory of Immunoregulation, National Institutes of Allergy & Infectious Diseases, National Institutes of Health, 10 Center Drive Rm 6A08, Bethesda, MD, 20814, USA
| | - Fatima Nawaz
- Laboratory of Immunoregulation, National Institutes of Allergy & Infectious Diseases, National Institutes of Health, 10 Center Drive Rm 6A08, Bethesda, MD, 20814, USA
| | - Siddappa N Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Francois Villinger
- New Iberia Research Center, University of Louisiana Lafayette, Lafayette, LA, 70560, USA
| | - Philip J Santangelo
- Walter H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30680, USA
| | - Aftab A Ansari
- Department of Pathology & Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Anthony S Fauci
- Laboratory of Immunoregulation, National Institutes of Allergy & Infectious Diseases, National Institutes of Health, 10 Center Drive Rm 6A08, Bethesda, MD, 20814, USA
| |
Collapse
|
12
|
Guerrero CA, Acosta O. Inflammatory and oxidative stress in rotavirus infection. World J Virol 2016; 5:38-62. [PMID: 27175349 PMCID: PMC4861870 DOI: 10.5501/wjv.v5.i2.38] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 10/23/2015] [Accepted: 01/29/2016] [Indexed: 02/05/2023] Open
Abstract
Rotaviruses are the single leading cause of life-threatening diarrhea affecting children under 5 years of age. Rotavirus entry into the host cell seems to occur by sequential interactions between virion proteins and various cell surface molecules. The entry mechanisms seem to involve the contribution of cellular molecules having binding, chaperoning and oxido-reducing activities. It appears to be that the receptor usage and tropism of rotaviruses is determined by the species, cell line and rotavirus strain. Rotaviruses have evolved functions which can antagonize the host innate immune response, whereas are able to induce endoplasmic reticulum (ER) stress, oxidative stress and inflammatory signaling. A networking between ER stress, inflammation and oxidative stress is suggested, in which release of calcium from the ER increases the generation of mitochondrial reactive oxygen species (ROS) leading to toxic accumulation of ROS within ER and mitochondria. Sustained ER stress potentially stimulates inflammatory response through unfolded protein response pathways. However, the detailed characterization of the molecular mechanisms underpinning these rotavirus-induced stressful conditions is still lacking. The signaling events triggered by host recognition of virus-associated molecular patterns offers an opportunity for the development of novel therapeutic strategies aimed at interfering with rotavirus infection. The use of N-acetylcysteine, non-steroidal anti-inflammatory drugs and PPARγ agonists to inhibit rotavirus infection opens a new way for treating the rotavirus-induced diarrhea and complementing vaccines.
Collapse
|
13
|
Smith YE, Vellanki SH, Hopkins AM. Dynamic interplay between adhesion surfaces in carcinomas: Cell-cell and cell-matrix crosstalk. World J Biol Chem 2016; 7:64-77. [PMID: 26981196 PMCID: PMC4768125 DOI: 10.4331/wjbc.v7.i1.64] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 09/22/2015] [Accepted: 11/04/2015] [Indexed: 02/05/2023] Open
Abstract
Cell-cell and cell-matrix signaling and communication between adhesion sites involve mechanisms which are required for cellular functions during normal development and homeostasis; however these cellular functions and mechanisms are often deregulated in cancer. Aberrant signaling at cell-cell and cell-matrix adhesion sites often involves downstream mediators including Rho GTPases and tyrosine kinases. This review discusses these molecules as putative mediators of cellular crosstalk between cell-cell and cell-matrix adhesion sites, in addition to their attractiveness as therapeutic targets in cancer. Interestingly, inter-junctional crosstalk mechanisms are frequently typified by the way in which bacterial and viral pathogens opportunistically infect or intoxicate mammalian cells. This review therefore also discusses the concept of learning from pathogen-host interaction studies to better understand coordinated communication between cell-cell and cell-matrix adhesion sites, in addition to highlighting the potential therapeutic usefulness of exploiting pathogens or their products to tap into inter-junctional crosstalk. Taken together, we feel that increased knowledge around mechanisms of cell-cell and cell-matrix adhesion site crosstalk and consequently a greater understanding of their therapeutic targeting offers a unique opportunity to contribute to the emerging molecular revolution in cancer biology.
Collapse
|
14
|
Coulson BS. Expanding diversity of glycan receptor usage by rotaviruses. Curr Opin Virol 2015; 15:90-6. [PMID: 26363995 DOI: 10.1016/j.coviro.2015.08.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 08/11/2015] [Accepted: 08/26/2015] [Indexed: 11/16/2022]
Abstract
Rotaviruses are major etiologic agents of severe gastroenteritis in human and animals, infecting the mature intestinal epithelium. Their attachment to host cell glycans is mediated through the virion spike protein. This is considered to be crucial for successful host cell invasion by rotaviruses. Recent studies have greatly expanded our understanding of the diversity of glycans commonly recognized by rotaviruses, to include the ganglioside GM1a and histo-blood group antigens. Here, these new findings are integrated with advances in knowledge of spike protein structure, rotavirus entry mechanisms and innate intestinal immunity to provide an overview of the variety of rotavirus glycan receptors and their roles in cell penetration, host tropism and pathogenesis.
Collapse
Affiliation(s)
- Barbara S Coulson
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Melbourne, Victoria 3000, Australia.
| |
Collapse
|
15
|
Hussein HAM, Walker LR, Abdel-Raouf UM, Desouky SA, Montasser AKM, Akula SM. Beyond RGD: virus interactions with integrins. Arch Virol 2015; 160:2669-81. [PMID: 26321473 PMCID: PMC7086847 DOI: 10.1007/s00705-015-2579-8] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 08/21/2015] [Indexed: 12/30/2022]
Abstract
Viruses successfully infect host cells by initially binding to the surfaces of the cells, followed by an intricate entry process. As multifunctional heterodimeric cell-surface receptor molecules, integrins have been shown to usefully serve as entry receptors for a plethora of viruses. However, the exact role(s) of integrins in viral pathogen internalization has yet to be elaborately described. Notably, several viruses harbor integrin-recognition motifs displayed on viral envelope/capsid-associated proteins. The most common of these motifs is the minimal peptide sequence for binding integrins, RGD (Arg-Gly-Asp), which is known for its role in virus infection via its ability to interact with over half of the more than 20 known integrins. Not all virus-integrin interactions are RGD-dependent, however. Non-RGD-binding integrins have also been shown to effectively promote virus entry and infection as well. Such virus-integrin binding is shown to facilitate adhesion, cytoskeleton rearrangement, integrin activation, and increased intracellular signaling. Also, we have attempted to discuss the role of carbohydrate moieties in virus interactions with receptor-like host cell surface integrins that drive the process of internalization. As much as possible, this article examines the published literature regarding the role of integrins in terms of virus infection and virus-encoded glycosylated proteins that mediate interactions with integrins, and it explores the idea of targeting these receptors as a therapeutic treatment option.
Collapse
Affiliation(s)
- Hosni A M Hussein
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Lia R Walker
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Usama M Abdel-Raouf
- Faculty of Science, Al Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Sayed A Desouky
- Faculty of Science, Al Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | | | - Shaw M Akula
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA.
| |
Collapse
|
16
|
López T, López S, Arias CF. The tyrosine kinase inhibitor genistein induces the detachment of rotavirus particles from the cell surface. Virus Res 2015. [PMID: 26216271 DOI: 10.1016/j.virusres.2015.07.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Group A rotaviruses are a major cause of severe gastroenteritis in young infants. In this work we evaluated the potential role of protein tyrosine kinases on rotavirus infectivity and viral progeny production. From the broad-spectrum inhibitors tested, only genistein, a flavonoid, inhibited rotavirus infectivity. The inhibition observed was dose and strain dependent, with more than 10-fold IC50 differences for some rotavirus strains, and the effect of the drug was shown to be dependent of their activity as a protein tyrosine kinase inhibitor, since the inactive analogue of genistein, daidzein, had no effect on virus infection. Investigation of the stage of virus replication blocked by the drug showed that it interferes with the early interactions of the virus with receptors and/or co-receptors, since treatment of the cells with genistein promoted the detachment of the virus from the cell surface.
Collapse
Affiliation(s)
- Tomás López
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos 62210, México.
| | - Susana López
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos 62210, México.
| | - Carlos F Arias
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos 62210, México.
| |
Collapse
|
17
|
Gaudreau MC, Johnson BM, Gudi R, Al-Gadban MM, Vasu C. Gender bias in lupus: does immune response initiated in the gut mucosa have a role? Clin Exp Immunol 2015; 180:393-407. [PMID: 25603723 DOI: 10.1111/cei.12587] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2015] [Indexed: 12/28/2022] Open
Abstract
The risk of developing systemic lupus erythematosus (SLE) is approximately nine times higher among women compared to men. However, very little is understood concerning the underlying mechanisms that contribute to this gender bias. Further, whether there is a link between immune response initiated in the gut mucosa, the progression of SLE and the associated gender bias has never been investigated. In this report, we show a potential link between the immune response of the gut mucosa and SLE and the gender bias of lupus for the first time, to our knowledge. Both plasma cell- and gut-imprinted- α4β7 T cell frequencies were significantly higher in the spleen and gut mucosa of female (SWR × NZB)F1 (SNF1 ) mice compared to that of their male counterparts. Importantly, female SNF1 mice not only showed profoundly higher CD45(+) immune cell densities, but also carried large numbers of interleukin (IL)-17-, IL-22- and IL-9-producing cells in the lamina propria (LP) compared to their male counterparts. Intestinal mucosa of female SNF1 mice expressed higher levels of a large array of proinflammatory molecules, including type 1 interferons and Toll-like receptors 7 and 8 (TLR-7 and TLR-8), even before puberty. Our work, therefore, indicates that the gut immune system may play a role in the initiation and progression of disease in SLE and the associated gender bias.
Collapse
Affiliation(s)
- M-C Gaudreau
- Departments of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - B M Johnson
- Departments of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - R Gudi
- Departments of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - M M Al-Gadban
- Departments of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - C Vasu
- Departments of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA.,Departments of Surgery, College of Medicine, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
18
|
Comparative analysis of glycoprotein B (gB) of equine herpesvirus type 1 and type 4 (EHV-1 and EHV-4) in cellular tropism and cell-to-cell transmission. Viruses 2015; 7:522-42. [PMID: 25654240 PMCID: PMC4353902 DOI: 10.3390/v7020522] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 01/04/2015] [Accepted: 01/27/2015] [Indexed: 12/05/2022] Open
Abstract
Glycoprotein B (gB) plays an important role in alphaherpesvirus cellular entry and acts in concert with gD and the gH/gL complex. To evaluate whether functional differences exist between gB1 and gB4, the corresponding genes were exchanged between the two viruses. The gB4-containing-EHV-1 (EHV-1_gB4) recombinant virus was analyzed for growth in culture, cell tropism, and cell entry rivaling no significant differences when compared to parental virus. We also disrupted a potential integrin-binding motif, which did not affect the function of gB in culture. In contrast, a significant reduction of plaque sizes and growth kinetics of gB1-containing-EHV-4 (EHV-4_gB1) was evident when compared to parental EHV-4 and revertant viruses. The reduction in virus growth may be attributable to the loss of functional interaction between gB and the other envelope proteins involved in virus entry, including gD and gH/gL. Alternatively, gB4 might have an additional function, required for EHV-4 replication, which is not fulfilled by gB1. In conclusion, our results show that the exchange of gB between EHV-1 and EHV-4 is possible, but results in a significant attenuation of virus growth in the case of EHV-4_gB1. The generation of stable recombinant viruses is a valuable tool to address viral entry in a comparative fashion and investigate this aspect of virus replication further.
Collapse
|
19
|
Roy S, Esona MD, Kirkness EF, Akopov A, McAllen JK, Wikswo ME, Cortese MM, Payne DC, Parashar UD, Gentsch JR, Bowen MD. Comparative genomic analysis of genogroup 1 (Wa-like) rotaviruses circulating in the USA, 2006-2009. INFECTION GENETICS AND EVOLUTION 2014; 28:513-23. [PMID: 25301114 DOI: 10.1016/j.meegid.2014.09.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 09/09/2014] [Accepted: 09/15/2014] [Indexed: 01/09/2023]
Abstract
Group A rotaviruses (RVA) are double stranded RNA viruses that are a significant cause of acute pediatric gastroenteritis. Beginning in 2006 and 2008, respectively, two vaccines, Rotarix™ and RotaTeq®, have been approved for use in the USA for prevention of RVA disease. The effects of possible vaccine pressure on currently circulating strains in the USA and their genome constellations are still under investigation. In this study we report 33 complete RVA genomes (ORF regions) collected in multiple cities across USA during 2006-2009, including 8 collected from children with verified receipt of 3 doses of rotavirus vaccine. The strains included 16 G1P[8], 10 G3P[8], and 7 G9P[8]. All 33 strains had a Wa like backbone with the consensus genotype constellation of G(1/3/9)-P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1. From maximum likelihood based phylogenetic analyses, we identified 3-7 allelic constellations grouped mostly by respective G types, suggesting a possible allelic segregation based on the VP7 gene of RVA, primarily for the G3 and G9 strains. The vaccine failure strains showed similar grouping for all genes in G9 strains and most genes of G3 strains suggesting that these constellations were necessary to evade vaccine-derived immune protection. Substitutions in the antigenic region of VP7 and VP4 genes were also observed for the vaccine failure strains which could possibly explain how these strains escape vaccine induced immune response. This study helps elucidate how RVA strains are currently evolving in the population post vaccine introduction and supports the need for continued RVA surveillance.
Collapse
Affiliation(s)
- Sunando Roy
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Mathew D Esona
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - Asmik Akopov
- The J. Craig Venter Institute, Rockville, MD, USA
| | | | - Mary E Wikswo
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Margaret M Cortese
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Daniel C Payne
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Umesh D Parashar
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jon R Gentsch
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Michael D Bowen
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| |
Collapse
|
20
|
Virulence-associated genome mutations of murine rotavirus identified by alternating serial passages in mice and cell cultures. J Virol 2014; 88:5543-58. [PMID: 24599996 DOI: 10.1128/jvi.00041-14] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED Although significant clinical efficacy and safety of rotavirus vaccines were recently revealed in many countries, the mechanism of their attenuation is not well understood. We passaged serially a cell culture-adapted murine rotavirus EB strain in mouse pups or in cell cultures alternately and repeatedly and fully sequenced all 11 genes of 21 virus samples passaged in mice or in cell cultures. Sequence analysis revealed that mouse-passaged viruses that regained virulence almost consistently acquired four kinds of amino acid (aa) substitutions in VP4 and substitution in aa 37 (Val to Ala) in NSP4. In addition, they gained and invariably conserved the 3' consensus sequence in NSP1. The molecular changes occurred along with the acquisition of virulence during passages in mice and then disappeared following passages in cell cultures. Intraperitoneal injection of recombinant NSP4 proteins confirmed the aa 37 site as important for its diarrheagenic activity in mice. These genome changes are likely to be correlated with rotavirus virulence. IMPORTANCE Serial passage of a virulent wild-type virus in vitro often results in loss of virulence of the virus in an original animal host, while serial passage of a cell culture-adapted avirulent virus in vivo often gains virulence in an animal host. Actually, live attenuated virus vaccines were originally produced by serial passage in cell cultures. Although clinical efficacy and safety of rotavirus vaccines were recently revealed, the mechanism of their attenuation is not well understood. We passaged serially a murine rotavirus by alternating switch of host (mice or cell cultures) repeatedly and sequenced the eleven genes of the passaged viruses to identify mutations associated with the emergence or disappearance of virulence. Sequence analysis revealed that changes in three genes (VP4, NSP1, and NSP4) were associated with virulence in mice. Intraperitoneal injection of recombinant NSP4 proteins confirmed its diarrheagenic activity in mice. These genome changes are likely to be correlated with rotavirus virulence.
Collapse
|
21
|
Brennan M, Cox D. The therapeutic potential of I-domain integrins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 819:157-78. [PMID: 25023174 DOI: 10.1007/978-94-017-9153-3_11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Due to their role in processes central to cancer and autoimmune disease I-domain integrins are an attractive drug target. Both antibodies and small molecule antagonists have been discovered and tested in the clinic. Much of the effort has focused on αLβ2 antagonists. Maybe the most successful was the monoclonal antibody efalizumab, which was approved for the treatment of psoriasis but subsequently withdrawn from the market due to the occurrence of a serious adverse effect (progressive multifocal leukoencephalopathy). Other monoclonal antibodies were tested for the treatment of reperfusion injury, post-myocardial infarction, but failed to progress due to lack of efficacy. New potent small molecule inhibitors of αv integrins are promising reagents for treating fibrotic disease. Small molecule inhibitors targeting collagen-binding integrins have been discovered and future work will focus on identifying molecules selectively targeting each of the collagen receptors and identifying appropriate target diseases for future clinical studies.
Collapse
Affiliation(s)
- Marian Brennan
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
| | | |
Collapse
|
22
|
Rotavirus replication in the cholangiocyte mediates the temporal dependence of murine biliary atresia. PLoS One 2013; 8:e69069. [PMID: 23844248 PMCID: PMC3700947 DOI: 10.1371/journal.pone.0069069] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 06/05/2013] [Indexed: 01/15/2023] Open
Abstract
Biliary atresia (BA) is a neonatal disease that results in obliteration of the biliary tree. The murine model of BA, which mirrors the human disease, is based upon infection of newborn mice with rhesus rotavirus (RRV), leading to an obstructive cholangiopathy. The purpose of this study was to characterize the temporal relationship between viral infection and the induction of this model. BALB/c mice were infected with RRV on day of life (DOL) 0, 3, 5, and 7. Groups were characterized as early-infection (infection by DOL 3) or late-infection (infection after DOL 5). Early RRV infection induced symptoms in 95% of pups with a mortality rate of 80%. In contrast, late infection caused symptoms in only 50% of mice, and 100% of pups survived. The clinical findings correlated with histological analysis of extrahepatic biliary trees, cytokine expression, and viral titers. Primary murine cholangiocytes isolated, cultured, and infected with RRV yielded higher titers of infectious virus in those harvested from DOL 2 versus DOL 9 mice. Less interferon alpha and beta was produced in DOL 2 versus DOL 9 RRV infected primary cholangiocytes. Injection of BALB/c interferon alpha/beta receptor knockout (IFN-αβR(-/-)) pups at DOL 7 showed increased symptoms (79%) and mortality (46%) when compared to late infected wild type mice. In conclusion, the degree of injury sustained by relatively immature cholangiocytes due to more robust RRV replication correlated with more severe clinical manifestations of cholangiopathy and higher mortality. Interferon alpha production by cholangiocytes appears to play a regulatory role. These findings confirm a temporal dependence of RRV infection in murine BA and begin to define a pathophysiologic role of the maturing cholangiocyte.
Collapse
|
23
|
Abstract
Filoviruses cause severe hemorrhagic fever in humans with high case-fatality rates. The cellular factors exploited by filoviruses for their spread constitute potential targets for intervention, but are incompletely defined. The viral glycoprotein (GP) mediates filovirus entry into host cells. Recent studies revealed important insights into the host cell molecules engaged by GP for cellular entry. The binding of GP to cellular lectins was found to concentrate virions onto susceptible cells and might contribute to the early and sustained infection of macrophages and dendritic cells, important viral targets. Tyrosine kinase receptors were shown to promote macropinocytic uptake of filoviruses into a subset of susceptible cells without binding to GP, while interactions between GP and human T cell Ig mucin 1 (TIM-1) might contribute to filovirus infection of mucosal epithelial cells. Moreover, GP engagement of the cholesterol transporter Niemann-Pick C1 was demonstrated to be essential for GP-mediated fusion of the viral envelope with a host cell membrane. Finally, mutagenic and structural analyses defined GP domains which interact with these host cell factors. Here, we will review the recent progress in elucidating the molecular interactions underlying filovirus entry and discuss their implications for our understanding of the viral cell tropism.
Collapse
|
24
|
Glycoprotein H and α4β1 integrins determine the entry pathway of alphaherpesviruses. J Virol 2013; 87:5937-48. [PMID: 23514881 DOI: 10.1128/jvi.03522-12] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpesviruses enter cells either by direct fusion at the plasma membrane or from within endosomes, depending on the cell type and receptor(s). We investigated two closely related herpesviruses of horses, equine herpesvirus type 1 (EHV-1) and EHV-4, for which the cellular and viral determinants routing virus entry are unknown. We show that EHV-1 enters equine epithelial cells via direct fusion at the plasma membrane, while EHV-4 does so via an endocytic pathway, which is dependent on dynamin II, cholesterol, caveolin 1, and tyrosine kinase activity. Exchange of glycoprotein H (gH) between EHV-1 and EHV-4 resulted in rerouting of EHV-1 to the endocytic pathway, as did blocking of α4β1 integrins on the cell surface. Furthermore, a point mutation in the SDI integrin-binding motif of EHV-1 gH also directed EHV-1 to the endocytic pathway. Cumulatively, we show that viral gH and cellular α4β1 integrins are important determinants in the choice of alphaherpesvirus cellular entry pathways.
Collapse
|
25
|
Santana AY, Guerrero CA, Acosta O. Implication of Hsc70, PDI and integrin αvβ3 involvement during entry of the murine rotavirus ECwt into small-intestinal villi of suckling mice. Arch Virol 2013; 158:1323-36. [PMID: 23404461 DOI: 10.1007/s00705-013-1626-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 12/23/2012] [Indexed: 11/25/2022]
Abstract
In the present study, a homologous rotavirus, ECwt, infecting small intestinal villi isolated from ICR and BALB/c mice were used as a model for identifying cell-surface molecules involved in rotavirus entry. Small-intestinal villi were treated with anti-Hsc70, anti-PDI, anti-integrin β3 or anti-ERp57 antibodies or their corresponding F(ab')2 fragments before inoculation with rotavirus ECwt, RRV or Wa. Pretreatment of villi decreased virus infectivity by about 50-100 % depending of the rotavirus strain, antibody structure and detection assay used. Similar results were obtained by treating viral inocula with purified proteins Hsc70, PDI or integrin β3 before inoculation of untreated villi. Rotavirus infection of villi proved to be sensitive to membrane-impermeant thiol/disulfide inhibitors such as DTNB and bacitracin, suggesting the involvement of a redox reaction in infection. The present results suggest that PDI, Hsc70 and integrin β3 are used by both homologous and heterologous rotaviruses during infection of isolated mouse villi.
Collapse
Affiliation(s)
- Ana Y Santana
- Instituto de Biotecnología, Universidad Nacional de Colombia, Bogotá, Colombia
| | | | | |
Collapse
|
26
|
Azab W, Zajic L, Osterrieder N. The role of glycoprotein H of equine herpesviruses 1 and 4 (EHV-1 and EHV-4) in cellular host range and integrin binding. Vet Res 2012; 43:61. [PMID: 22909178 PMCID: PMC3522555 DOI: 10.1186/1297-9716-43-61] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 07/19/2012] [Indexed: 11/25/2022] Open
Abstract
Equine herpesvirus type 1 and 4 (EHV-1 and EHV-4) glycoprotein H (gH) has been hypothesized to play a role in direct fusion of the virus envelope with cellular membranes. To investigate gH’s role in infection, an EHV-1 mutant lacking gH was created and the gH genes were exchanged between EHV-1 and EHV-4 to determine if gH affects cellular entry and/or host range. In addition, a serine-aspartic acid-isoleucine (SDI) integrin-binding motif present in EHV-1 gH was mutated as it was presumed important in cell entry mediated by binding to α4β1 or α4β7 integrins. We here document that gH is essential for EHV-1 replication, plays a role in cell-to-cell spread and significantly affects plaque size and growth kinetics. Moreover, we could show that α4β1 and α4β7 integrins are not essential for viral entry of EHV-1 and EHV-4, and that viral entry is not affected in equine cells when the integrins are inaccessible.
Collapse
Affiliation(s)
- Walid Azab
- Institut für Virologie, Freie Universität Berlin, Philippstrasse 13, Haus 18, 10115, Berlin, Germany.
| | | | | |
Collapse
|
27
|
Rotavirus VP4 and VP7-Derived Synthetic Peptides as Potential Substrates of Protein Disulfide Isomerase Lead to Inhibition of Rotavirus Infection. Int J Pept Res Ther 2012. [DOI: 10.1007/s10989-012-9314-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
28
|
Abstract
UNLABELLED Directed differentiation of stem cell lines into intestine-like tissue called induced human intestinal organoids (iHIOs) is now possible (J. R. Spence, C. N. Mayhew, S. A. Rankin, M. F. Kuhar, J. E. Vallance, K. Tolle, E. E. Hoskins, V. V. Kalinichenko, S. I. Wells, A. M. Zorn, N. F. Shroyer, and J. M. Wells, Nature 470:105-109, 2011). We tested iHIOs as a new model to cultivate and study fecal viruses. Protocols for infection of iHIOs with a laboratory strain of rotavirus, simian SA11, were developed. Proof-of-principle analyses showed that iHIOs support replication of a gastrointestinal virus, rotavirus, on the basis of detection of nonstructural viral proteins (nonstructural protein 4 [NSP4] and NSP2) by immunofluorescence, increased levels of viral RNA by quantitative reverse transcription-PCR (qRT-PCR), and production of infectious progeny virus. iHIOs were also shown to support replication of 12/13 clinical rotavirus isolates directly from stool samples. An unexpected finding was the detection of rotavirus infection not only in the epithelial cells but also in the mesenchymal cell population of the iHIOs. This work demonstrates that iHIOs offer a promising new model to study rotaviruses and other gastrointestinal viruses. IMPORTANCE Gastrointestinal viral infections are a major cause of illness and death in children and adults. The ability to fully understand how viruses interact with human intestinal cells in order to cause disease has been hampered by insufficient methods for growing many gastrointestinal viruses in the laboratory. Induced human intestinal organoids (iHIOs) are a promising new model for generating intestine-like tissue. This is the first report of a study using iHIOs to cultivate any microorganism, in this case, an enteric virus. The evidence that both laboratory and clinical rotavirus isolates can replicate in iHIOs suggests that this model would be useful not only for studies of rotaviruses but also potentially of other infectious agents. Furthermore, detection of rotavirus proteins in unexpected cell types highlights the promise of this system to reveal new questions about pathogenesis that have not been previously recognized or investigated in other intestinal cell culture models.
Collapse
|
29
|
Glycoproteins D of equine herpesvirus type 1 (EHV-1) and EHV-4 determine cellular tropism independently of integrins. J Virol 2011; 86:2031-44. [PMID: 22171258 DOI: 10.1128/jvi.06555-11] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Equine herpesvirus type 1 (EHV-1) and EHV-4 are genetically and antigenically very similar, but their pathogenic potentials are strikingly different. The differences in pathogenicity between both viruses seem to be reflected in cellular host range: EHV-1 can readily be propagated in many cell types of multiple species, while EHV-4 entry and replication appear to be restricted mainly to equine cells. The clear difference in cellular tropism may well be associated with differences in the gene products involved in virus entry and/or spread from cell to cell. Here we show that (i) most of the EHV-1 permissive cell lines became resistant to EHV-1 expressing EHV-4 glycoprotein D (gD4) and the opposite was observed for EHV-4 harboring EHV-1 gD (gD1). (ii) The absence of integrins did not inhibit entry into and replication of EHV-1 in CHO-K1 or peripheral blood mononuclear cells (PBMC). Furthermore, integrin-negative K562 cells did not acquire the ability to bind to gD1 when αVβ3 integrin was overexpressed. (iii) PBMC could be infected with similar efficiencies by both EHV-1 and EHV-4 in vitro. (iv) In contrast to results for equine fibroblasts and cells of endothelial or epithelial origin, we were unable to block entry of EHV-1 or EHV-4 into PBMC with antibodies directed against major histocompatibility complex class I (MHC-I), a result that indicates that these viruses utilize a different receptor(s) to infect PBMC. Cumulatively, we provide evidence that efficient EHV-1 and EHV-4 entry is dependent mainly on gD, which can bind to multiple cell surface receptors, and that gD has a defining role with respect to cellular host range of EHV-1 and EHV-4.
Collapse
|
30
|
Darc M, Hait SH, Soares EA, Cicala C, Seuanez HN, Machado ES, Arthos JA, Soares MA. Polymorphisms in the α4 integrin of neotropical primates: insights for binding of natural ligands and HIV-1 gp120 to the human α4β7. PLoS One 2011; 6:e24461. [PMID: 21912696 PMCID: PMC3166318 DOI: 10.1371/journal.pone.0024461] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 08/10/2011] [Indexed: 11/30/2022] Open
Abstract
The α4 integrin subunit associates with β7 and β1 and plays important roles in immune function and cell trafficking. The gut-homing receptor α4β7 has been recently described as a new receptor for HIV. Here, we describe polymorphisms of ITGA4 gene in New World primates (NWP), and tested their impact on the binding to monoclonal antibodies, natural ligands (MAdCAM and VCAM), and several gp120 HIV-1 envelope proteins. Genomic DNA of NWP specimens comprising all genera of the group had their exons 5 and 6 (encoding the region of binding to the ligands studied) analyzed. The polymorphisms found were introduced into an ITGA4 cDNA clone encoding the human α4 subunit. Mutant α4 proteins were co-expressed with β7 and were tested for binding of mAbs, MAdCAM, VCAM and gp120 of HIV-1, which was compared to the wild-type (human) α4. Mutant α4 proteins harboring the K201E/I/N substitution had reduced binding of all ligands tested, including HIV-1 gp120 envelopes. The mAbs found with reduced biding included one from which a clinically-approved drug for the treatment of neurological disorders has been derived. α4 polymorphisms in other primate species may influence outcomes in the development and treatment of infectious and autoimmune diseases in humans and in non-human primates.
Collapse
Affiliation(s)
- Mirela Darc
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Genética, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Sabrina H. Hait
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Genética, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | | | - Claudia Cicala
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Hector N. Seuanez
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Genética, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Elizabeth S. Machado
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - James A. Arthos
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Marcelo A. Soares
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Genética, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
31
|
Rhesus rotavirus entry into a polarized epithelium is endocytosis dependent and involves sequential VP4 conformational changes. J Virol 2010; 85:2492-503. [PMID: 21191022 DOI: 10.1128/jvi.02082-10] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Rotavirus (RV) cell entry is an incompletely understood process, involving VP4 and VP7, the viral proteins composing the outermost layer of the nonenveloped RV triple-layered icosahedral particle (TLP), encasing VP6. VP4 can exist in three conformational states: soluble, cleaved spike, and folded back. In order to better understand the events leading to RV entry, we established a detection system to image input virus by monitoring the rhesus RV (RRV) antigens VP4, VP6, and VP7 at very early times postinfection. We provide evidence that decapsidation occurs directly after cell membrane penetration. We also demonstrate that several VP4 and VP7 conformational changes take place during entry. In particular, we detected, for the first time, the generation of folded-back VP5 in the context of the initiation of infection. Folded-back VP5 appears to be limited to the entry step. We furthermore demonstrate that RRV enters the cell cytoplasm through an endocytosis pathway. The endocytosis hypothesis is supported by the colocalization of RRV antigens with the early endosome markers Rab4 and Rab5. Finally, we provide evidence that the entry process is likely dependent on the endocytic Ca(2+) concentration, as bafilomycin A1 treatment as well as an augmentation of the extracellular calcium reservoir using CaEGTA, which both lead to an elevated intraendosomal calcium concentration, resulted in the accumulation of intact virions in the actin network. Together, these findings suggest that internalization, decapsidation, and cell membrane penetration involve endocytosis, calcium-dependent uncoating, and VP4 conformational changes, including a fold-back.
Collapse
|
32
|
Fleming FE, Graham KL, Takada Y, Coulson BS. Determinants of the specificity of rotavirus interactions with the alpha2beta1 integrin. J Biol Chem 2010; 286:6165-74. [PMID: 21138834 DOI: 10.1074/jbc.m110.142992] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The human α2β1 integrin binds collagen and acts as a cellular receptor for rotaviruses and human echovirus 1. These ligands require the inserted (I) domain within the α2 subunit of α2β1 for binding. Previous studies have identified the binding sites for collagen and echovirus 1 in the α2 I domain. We used CHO cells expressing mutated α2β1 to identify amino acids involved in binding to human and animal rotaviruses. Residues where mutation affected rotavirus binding were located in several exposed loops and adjacent regions of the α2 I domain. Binding by all rotaviruses was eliminated by mutations in the activation-responsive αC-α6 and αF helices. This is a novel feature that distinguishes rotavirus from other α2β1 ligands. Mutation of residues that co-ordinate the metal ion (Ser-153, Thr-221, and Glu-256 in α2 and Asp-130 in β1) and nearby amino acids (Ser-154, Gln-215, and Asp-219) also inhibited rotavirus binding. The importance of most of these residues was greatest for binding by human rotaviruses. These mutations inhibit collagen binding to α2β1 (apart from Glu-256) but do not affect echovirus binding. Overall, residues where mutation affected both rotavirus and collagen recognition are located at one side of the metal ion-dependent adhesion site, whereas those important for collagen alone cluster nearby. Mutations eliminating rotavirus and echovirus binding are distinct, consistent with the respective preference of these viruses for activated or inactive α2β1. In contrast, rotavirus and collagen utilize activated α2β1 and show an overlap in α2β1 residues important for binding.
Collapse
Affiliation(s)
- Fiona E Fleming
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | |
Collapse
|
33
|
Cox D, Brennan M, Moran N. Integrins as therapeutic targets: lessons and opportunities. Nat Rev Drug Discov 2010; 9:804-20. [PMID: 20885411 DOI: 10.1038/nrd3266] [Citation(s) in RCA: 361] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The integrins are a large family of cell adhesion molecules that are essential for the regulation of cell growth and function. The identification of key roles for integrins in a diverse range of diseases, including cancer, infection, thrombosis and autoimmune disorders, has revealed their substantial potential as therapeutic targets. However, so far, pharmacological inhibitors for only three integrins have received marketing approval. This article discusses the structure and function of integrins, their roles in disease and the chequered history of the approved integrin antagonists. Recent advances in the understanding of integrin function, ligand interaction and signalling pathways suggest novel strategies for inhibiting integrin function that could help harness their full potential as therapeutic targets.
Collapse
Affiliation(s)
- Dermot Cox
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, 123 St Stephens Green, Dublin 2, Ireland.
| | | | | |
Collapse
|
34
|
Kerur N, Veettil MV, Sharma-Walia N, Sadagopan S, Bottero V, Paul AG, Chandran B. Characterization of entry and infection of monocytic THP-1 cells by Kaposi's sarcoma associated herpesvirus (KSHV): role of heparan sulfate, DC-SIGN, integrins and signaling. Virology 2010; 406:103-16. [PMID: 20674951 PMCID: PMC2932840 DOI: 10.1016/j.virol.2010.07.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2010] [Revised: 05/01/2010] [Accepted: 07/07/2010] [Indexed: 01/04/2023]
Abstract
KSHV effectively binds, enters and establishes infection in THP-1 cells with initial concurrent expression of latent ORF73 and lytic ORF50 genes and subsequent persistence of ORF73. KSHV genome persisted for 30 days and lytic cycle could be activated. KSHV utilized heparan sulfate for binding to THP-1 cells and primary monocytes. Blocking DC-SIGN did not inhibit KSHV binding; however, virus entry in THP-1 cells and in primary monocytes was reduced. In addition to the previously identified integrins alpha3beta1, alphavbeta3 and alphavbeta5, integrin alpha5beta1 was also utilized for infection. KSHV entered THP-1 cells via clathrin and caveolin mediated endocytosis and did not utilize macropinocytosis as in human dermal endothelial cells, and required an endosomal acidification. Infection also induced phosphorylation of FAK, Src, PI3K, NF-kappaB and ERK1/2 signaling molecules, and entry was blocked by tyrosine kinase inhibitors. These findings suggest that THP-1 cells are highly useful model for studying KSHV infection of monocytes.
Collapse
Affiliation(s)
- Nagaraj Kerur
- H. M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA
| | - Mohanan Valiya Veettil
- H. M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA
| | - Neelam Sharma-Walia
- H. M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA
| | - Sathish Sadagopan
- H. M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA
| | - Virginie Bottero
- H. M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA
| | - Arun George Paul
- H. M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA
| | - Bala Chandran
- H. M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA
| |
Collapse
|
35
|
Narváez CF, Franco MA, Angel J, Morton JM, Greenberg HB. Rotavirus differentially infects and polyclonally stimulates human B cells depending on their differentiation state and tissue of origin. J Virol 2010; 84:4543-55. [PMID: 20164228 PMCID: PMC2863723 DOI: 10.1128/jvi.02550-09] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Accepted: 02/08/2010] [Indexed: 12/12/2022] Open
Abstract
We have shown previously that rotavirus (RV) can infect murine intestinal B220(+) cells in vivo (M. Fenaux, M. A. Cuadras, N. Feng, M. Jaimes, and H. B. Greenberg, J. Virol. 80:5219-5232, 2006) and human blood B cells in vitro (M. C. Mesa, L. S. Rodriguez, M. A. Franco, and J. Angel, Virology 366:174-184, 2007). However, the effect of RV on B cells, especially those present in the human intestine, the primary site of RV infection, is unknown. Here, we compared the effects of the in vitro RV infection of human circulating (CBC) and intestinal B cells (IBC). RV infected four times more IBC than CBC, and in both types of B cells the viral replication was highly restricted to the memory subset. RV induced cell death in 30 and 3% of infected CBC and IBC, respectively. Moreover, RV induced activation and differentiation into antibody-secreting cells (ASC) of CBC but not IBC when the B cells were present with other mononuclear cells. However, RV did not induce these effects in purified CBC or IBC, suggesting the participation of other cells in activating and differentiating CBC. RV infection was associated with enhanced interleukin-6 (IL-6) production by CBC independent of viral replication. The infection of the anti-B-cell receptor, lipopolysaccharide, or CpG-stimulated CBC reduced the secretion of IL-6 and IL-8 and decreased the number of ASC. These inhibitory effects were associated with an increase in viral replication and cell death and were observed in polyclonally stimulated CBC but not in IBC. Thus, RV differentially interacts with primary human B cells depending on their tissue of origin and differentiation stage, and it affects their capacity to modulate the local and systemic immune responses.
Collapse
Affiliation(s)
- Carlos F. Narváez
- Department of Medicine, Microbiology & Immunology, Stanford University School of Medicine, Stanford, California 94305, Instituto de Genética Humana, Pontificia Universidad Javeriana, Bogotá, Colombia, Department of Surgery, Stanford University School of Medicine, Stanford, California 94305
| | - Manuel A. Franco
- Department of Medicine, Microbiology & Immunology, Stanford University School of Medicine, Stanford, California 94305, Instituto de Genética Humana, Pontificia Universidad Javeriana, Bogotá, Colombia, Department of Surgery, Stanford University School of Medicine, Stanford, California 94305
| | - Juana Angel
- Department of Medicine, Microbiology & Immunology, Stanford University School of Medicine, Stanford, California 94305, Instituto de Genética Humana, Pontificia Universidad Javeriana, Bogotá, Colombia, Department of Surgery, Stanford University School of Medicine, Stanford, California 94305
| | - John M. Morton
- Department of Medicine, Microbiology & Immunology, Stanford University School of Medicine, Stanford, California 94305, Instituto de Genética Humana, Pontificia Universidad Javeriana, Bogotá, Colombia, Department of Surgery, Stanford University School of Medicine, Stanford, California 94305
| | - Harry B. Greenberg
- Department of Medicine, Microbiology & Immunology, Stanford University School of Medicine, Stanford, California 94305, Instituto de Genética Humana, Pontificia Universidad Javeriana, Bogotá, Colombia, Department of Surgery, Stanford University School of Medicine, Stanford, California 94305
| |
Collapse
|
36
|
Abstract
Viruses, despite being relatively simple in structure and composition, have evolved to exploit complex cellular processes for their replication in the host cell. After binding to their specific receptor on the cell surface, viruses (or viral genomes) have to enter cells to initiate a productive infection. Though the entry processes of many enveloped viruses is well understood, that of most non-enveloped viruses still remains unresolved. Recent studies have shown that compared to direct fusion at the plasma membrane, endocytosis is more often the preferred means of entry into the target cell. Receptor-mediated endocytic pathways such as the dynamin-dependent clathrin and caveolar pathways are well characterized as viral entry portals. However, many viruses are able to utilize multiple uptake pathways. Fluid phase uptake, though relatively non-specific in terms of its cargo, potentially aids viral infection by its ability to intersect with the endocytic pathway. In fact, many viruses despite using specialized pathways for entry are still able to generate productive infection via fluid phase uptake. Macropinocytosis, a major fluid uptake pathway found in epithelial cells and fibroblasts, is stimulated by growth factor receptors. Many viruses can induce these signaling cascades in cells leading to macropinocytosis. Though endocytic trafficking is utilized by both enveloped and non-enveloped viruses, key differences lie in the way membranes are traversed to deposit the viral genome at its site of replication. This review will discuss recent developments in the rapidly evolving field of viral entry.
Collapse
Affiliation(s)
- Manjula Kalia
- Virology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | | |
Collapse
|
37
|
Delgui L, Oña A, Gutiérrez S, Luque D, Navarro A, Castón JR, Rodríguez JF. The capsid protein of infectious bursal disease virus contains a functional alpha 4 beta 1 integrin ligand motif. Virology 2009; 386:360-72. [PMID: 19243806 DOI: 10.1016/j.virol.2008.12.036] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Revised: 12/17/2008] [Accepted: 12/22/2008] [Indexed: 01/31/2023]
Abstract
Infectious bursal disease virus (IBDV), a member of the dsRNA Birnaviridae family, is an important immunosuppressive avian pathogen. We have identified a strictly conserved amino acid triplet matching the consensus sequence used by fibronectin to bind the alpha 4 beta 1 integrin within the protruding domain of the IBDV capsid polypeptide. We show that a single point mutation on this triplet abolishes the cell-binding activity of IBDV-derived subviral particles (SVP), and abrogates the recovering of infectious IBDV by reverse genetics without affecting the overall SVP architecture. Additionally, we demonstrate that the presence of the alpha 4 beta 1 heterodimer is a critical determinant for the susceptibility of murine BALB/c 3T3 cells to IBDV binding and infectivity. Our data suggests that the IBDV might also use the alpha 4 beta 1 integrin as a specific binding receptor in avian cells.
Collapse
Affiliation(s)
- Laura Delgui
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología-CSIC, Cantoblanco, Calle Darwin no. 3,28049 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
38
|
Equine herpesvirus 1 entry via endocytosis is facilitated by alphaV integrins and an RSD motif in glycoprotein D. J Virol 2008; 82:11859-68. [PMID: 18815313 DOI: 10.1128/jvi.00868-08] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Equine herpesvirus 1 (EHV-1) is a member of the Alphaherpesvirinae, and its broad tissue tropism suggests that EHV-1 may use multiple receptors to initiate virus entry. EHV-1 entry was thought to occur exclusively through fusion at the plasma membrane, but recently entry via the endocytic/phagocytic pathway was reported for Chinese hamster ovary cells (CHO-K1 cells). Here we show that cellular integrins, and more specifically those recognizing RGD motifs such as alphaVbeta5, are important during the early steps of EHV-1 entry via endocytosis in CHO-K1 cells. Moreover, mutational analysis revealed that an RSD motif in the EHV-1 envelope glycoprotein D (gD) is critical for entry via endocytosis. In addition, we show that EHV-1 enters peripheral blood mononuclear cells predominantly via the endocytic pathway, whereas in equine endothelial cells entry occurs mainly via fusion at the plasma membrane. Taken together, the data in this study provide evidence that EHV-1 entry via endocytosis is triggered by the interaction between cellular integrins and the RSD motif present in gD and, moreover, that EHV-1 uses different cellular entry pathways to infect important target cell populations of its natural host.
Collapse
|
39
|
Dupuy AG, Caron E. Integrin-dependent phagocytosis: spreading from microadhesion to new concepts. J Cell Sci 2008; 121:1773-83. [PMID: 18492791 DOI: 10.1242/jcs.018036] [Citation(s) in RCA: 183] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
By linking actin dynamics to extracellular components, integrins are involved in a wide range of cellular processes that are associated with or require cytoskeletal remodelling and cell-shape changes. One such function is integrin-dependent phagocytosis, a process that several integrins are capable of mediating and that allows the binding and clearance of particles. Integrin-dependent phagocytosis is involved in a wide range of physiological processes, from the clearance of microorganisms and apoptotic-cell removal to extracellular-matrix remodelling. Integrin signalling is also exploited by microbial pathogens for entry into host cells. Far from being a particular property of specific integrins and specialised cells, integrin-dependent uptake is emerging as a general, intrinsic ability of most integrins that is associated with their capacity to signal to the actin cytoskeleton. Integrin-mediated phagocytosis can therefore be used as a robust model in which to study integrin regulation and signalling.
Collapse
Affiliation(s)
- Aurélien G Dupuy
- Centre for Molecular Microbiology and Infection and Division of Cell and Molecular Biology, Imperial College London, London, UK
| | | |
Collapse
|
40
|
Gonzalez JM, Hu Y, Gabelt BT, Kaufman PL, Peters DM. Identification of the active site in the heparin II domain of fibronectin that increases outflow facility in cultured monkey anterior segments. Invest Ophthalmol Vis Sci 2008; 50:235-41. [PMID: 18757505 DOI: 10.1167/iovs.08-2143] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To determine the active site in the Heparin II (HepII) domain of fibronectin that regulates outflow facility in cultured anterior segments and disrupts the actin cytoskeleton in transformed human trabecular meshwork (TM-1) cells. METHODS Outflow facility was determined by two-level, constant-pressure perfusion in cultured anterior segments of rhesus and cynomolgus monkey eyes. One segment from each pair was exchanged with either the HepII domain or an integrin/syndecan binding peptide (IDAPS or PPRARI) from the HepII domain. To assay changes in the actin cytoskeleton, TM-1 cells were incubated for 24 hours with or without the HepII domain, PPRARI, or IDAPS. Changes were monitored with phase and immunofluorescence microscopy. RESULTS HepII domain (100 microg/mL) and PPRARI (500 microg/mL) increased outflow facility by 31% +/- 13% (n = 9, P < 0.05) and 24% +/- 9% (n = 8, P < 0.05), respectively in cultured anterior segments after an overnight infusion. Perfusion with IDAPS (500 microg/mL) had no effect on outflow facility. In TM-1 cultures, 250 microg/mL of the HepII domain or 4 mg/mL of PPRARI disrupted the assembly of actin filaments. A lower concentration of PPRARI (2 mg/mL) disrupted the actin cytoskeleton when used in combination with a nondisrupting concentration of the HepII domain (30-60 microg/mL). In contrast, IDAPS did not disrupt the actin cytoskeleton under any condition tested. CONCLUSIONS The active site in the HepII domain that regulates outflow facility in cultured anterior segments and disrupts the actin cytoskeleton in TM-1 cells is the syndecan/integrin binding sequence, PPRARI.
Collapse
Affiliation(s)
- Jose M Gonzalez
- Department of Pathology and Laboratory Medicine, University of Wisconsin-School of Medicine and Public Health, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
41
|
Cell integrins: commonly used receptors for diverse viral pathogens. Trends Microbiol 2007; 15:500-7. [DOI: 10.1016/j.tim.2007.10.001] [Citation(s) in RCA: 175] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Revised: 08/13/2007] [Accepted: 10/19/2007] [Indexed: 01/23/2023]
|
42
|
Rotavirus replication in intestinal cells differentially regulates integrin expression by a phosphatidylinositol 3-kinase-dependent pathway, resulting in increased cell adhesion and virus yield. J Virol 2007; 82:148-60. [PMID: 17942548 DOI: 10.1128/jvi.01980-07] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Changes in the interactions between intestinal cells and their surrounding environment during virus infection have not been well documented. The growth and survival of intestinal epithelial cells, the main targets of rotavirus infection, are largely dependent on the interaction of cell surface integrins with the extracellular matrix. In this study, we detected alterations in cellular integrin expression following rotavirus infection, identified the signaling components required, and analyzed the subsequent effects on cell binding to the matrix component collagen. After rotavirus infection of intestinal cells, expression of alpha2beta1 and beta2 integrins was up-regulated, whereas that of alphaVbeta3, alphaVbeta5, and alpha5beta1 integrins, if present, was down-regulated. This differential regulation of integrins was reflected at the transcriptional level. It was unrelated to the use of integrins as rotavirus receptors, as both integrin-using and integrin-independent viruses induced integrin regulation. Using pharmacological agents that inhibit kinase activity, integrin regulation was shown to be dependent on phosphatidylinositol 3-kinase (PI3K) but independent of the activities of the mitogen-activated protein kinases p38 and ERK1/2, and cyclooxygenase-2. Replication-dependent activation of the PI3K/Akt pathway was observed following infection of intestinal and nonintestinal cell lines. Rotavirus activation of PI3K was important for regulation of alpha2beta1 expression. Blockade of integrin regulation by PI3K inhibition led to decreased adherence of infected intestinal cells to collagen and a concomitant decrease in virus titer. These findings indicate that rotavirus-induced PI3K activation causes regulation of integrin expression in intestinal cells, leading to prolonged adherence of infected cells to collagen and increased virus production.
Collapse
|
43
|
Yoshioka M, Miwa T, Horii H, Takata M, Yokoyama T, Nishizawa K, Watanabe M, Shinagawa M, Murayama Y. Characterization of a proteolytic enzyme derived from a Bacillus strain that effectively degrades prion protein. J Appl Microbiol 2007; 102:509-15. [PMID: 17241357 DOI: 10.1111/j.1365-2672.2006.03080.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS The purpose of this paper was to screen candidate bacterial strains for the production of proteases suitable for application to the degradation of pathogenic forms of prion protein (PrP(Sc)). This paper describes the biochemical characteristics and proteolytic activity of the isolated protease. METHODS AND RESULTS After screening more than 200 bacterial proteases for keratinolytic activity, we identified a Bacillus stain that produced a protease exhibiting high-degradation activity against a scrapie PrP(Sc). Sequence analysis indicated that this serine-protease belonged to the Subtilisin family and had optimum pH and temperature ranges of 9-10 and 60-70 degrees C. Western blotting analysis revealed that the protease was also capable of decomposing bovine spongiform encephalopathy-infected brain homogenate. In addition, the protease was demonstrated to degrade dried PrP(Sc) that had become firmly attached to a plastic surface considerably more effectively than proteinase K or PWD-1, a previously reported keratinase. CONCLUSIONS These results indicate that the isolated protease exhibited higher activity for PrP(Sc) degradation compared with other proteases examined. SIGNIFICANCE AND IMPACT OF THE STUDY This protease could be used under moderate conditions for the decontamination of precision instruments that are susceptible to PrP(Sc) contamination.
Collapse
Affiliation(s)
- M Yoshioka
- National Institute of Animal Health, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Graham KL, O'Donnell JA, Tan Y, Sanders N, Carrington EM, Allison J, Coulson BS. Rotavirus infection of infant and young adult nonobese diabetic mice involves extraintestinal spread and delays diabetes onset. J Virol 2007; 81:6446-58. [PMID: 17428851 PMCID: PMC1900081 DOI: 10.1128/jvi.00205-07] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Rotaviruses have been implicated as a possible viral trigger for exacerbations in islet autoimmunity, suggesting they might modulate type 1 diabetes development. In this study, the ability of rotavirus strain RRV to infect the pancreas and affect insulitis and diabetes was examined in nonobese diabetic (NOD) mice, an experimental model of type 1 diabetes. Mice were inoculated either orally or intraperitoneally as infants or young adults. In infant mice inoculated orally, rotavirus antigen was detected in pancreatic macrophages outside islets and infectious virus was found in blood cells, pancreas, spleen, and liver. Extraintestinal RRV spread and pancreatic presence of infectious virus also occurred in intraperitoneally inoculated infant and adult mice. The initiation of insulitis was unaltered by infection. The onset of diabetes was delayed in infant mice inoculated orally and infant and adult mice inoculated intraperitoneally. In contrast, adult mice inoculated orally showed no evidence of pancreatic RRV, the lowest rate of detectable RRV replication, and no diabetes modulation. Thus, the ability of RRV infection to modulate diabetes development in infant and young adult NOD mice was related to the overall extent of detectable virus replication and the presence of infectious virus extraintestinally, including in the pancreas. These studies show that RRV infection of infant and young adult NOD mice provides significant protection against diabetes. As these findings do not support the hypothesis that rotavirus triggers autoimmunity related to type 1 diabetes, further research is needed to resolve this issue.
Collapse
Affiliation(s)
- Kate L Graham
- Department of Microbiology and Immunology, Gate 11, Royal Parade, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | | | | | | | | | | | | |
Collapse
|
45
|
Fleming FE, Graham KL, Taniguchi K, Takada Y, Coulson BS. Rotavirus-neutralizing antibodies inhibit virus binding to integrins alpha 2 beta 1 and alpha 4 beta 1. Arch Virol 2007; 152:1087-101. [PMID: 17318737 DOI: 10.1007/s00705-007-0937-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Accepted: 01/08/2007] [Indexed: 11/25/2022]
Abstract
Rotavirus outer capsid proteins VP5(*), VP8(*) and VP7 elicit neutralizing, protective antibodies. The alpha 2 beta 1 integrin is a cellular receptor for rotavirus that is bound by VP5(*). Some rotaviruses also recognize the alpha 4 beta 1 integrin. In this study, the effects of antibodies to rotavirus on virus binding to recombinant alpha 2 beta 1 and alpha 4 beta 1 expressed on K562 cells were determined. All neutralizing monoclonal antibodies to VP5(*) tested (YO-2C2, 2G4, 1A10) and two to VP7 (RV-3:2, RV-4:2) inhibited rotavirus binding to alpha 2 beta 1. Rotavirus binding to alpha 4 beta 1 was reduced by 2G4 and neutralizing antibody F45:2, directed to VP7. However, a neutralizing antibody to VP8(*) (RV-5:2) and one to VP7 (RV-3:1) did not affect rotavirus binding to these integrins. Virus-cell binding was unaffected by non-neutralizing antibody RVA to the rotavirus inner capsid protein VP6. The attachment of human rotavirus strain Wa to these integrins was inhibited by infection sera with neutralizing activity collected from two children hospitalised with severe rotavirus gastroenteritis. A negative reference serum did not affect rotavirus-cell attachment. As the binding of rotaviruses to alpha 2 beta 1 and alpha 4 beta 1 is inhibited by neutralizing antibodies to VP5(*) and VP7, and serum from children with rotavirus disease, rotavirus recognition of these integrins may be important for host infection.
Collapse
Affiliation(s)
- F E Fleming
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, Australia
| | | | | | | | | |
Collapse
|
46
|
Holloway G, Coulson BS. Rotavirus activates JNK and p38 signaling pathways in intestinal cells, leading to AP-1-driven transcriptional responses and enhanced virus replication. J Virol 2006; 80:10624-33. [PMID: 16928761 PMCID: PMC1641755 DOI: 10.1128/jvi.00390-06] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Rotavirus infection is known to regulate transcriptional changes in many cellular genes. The transcription factors NF-kappaB and AP-1 are activated by rotavirus infection, but the upstream processes leading to these events are largely unidentified. We therefore studied the activation state during rotavirus infection of c-Jun NH2-terminal kinase (JNK) and p38, which are kinases known to activate AP-1. As assessed by Western blotting using phospho-specific antibodies, infection with rhesus rotavirus (RRV) or exposure to UV-psoralen-inactivated RRV (I-RRV) resulted in the activation of JNK in HT-29, Caco-2, and MA104 cells. Activation of p38 during RRV infection was observed in Caco-2 and MA104 cells but not in HT-29 cells, whereas exposure to I-RRV did not lead to p38 activation in these cell lines. Rotavirus strains SA11, CRW-8, Wa, and UK also activated JNK and p38. Consistent with the activation of JNK, a corresponding increase in the phosphorylation of the AP-1 component c-Jun was shown. The interleukin-8 (IL-8) and c-jun promoters contain AP-1 binding sequences, and these genes have been shown previously to be transcriptionally up-regulated during rotavirus infection. Using specific inhibitors of JNK (SP600125) and p38 (SB203580) and real-time PCR, we showed that maximal RRV-induced IL-8 and c-jun transcription required JNK and p38 activity. This highlights the importance of JNK and p38 in RRV-induced, AP-1-driven gene expression. Significantly, inhibition of p38 or JNK in Caco-2 cells reduced RRV growth but not viral structural antigen expression, demonstrating the potential importance of JNK and p38 activation for optimal rotavirus replication.
Collapse
Affiliation(s)
- Gavan Holloway
- Department of Microbiology and Immunology, Gate 11, Royal Parade, The University of Melbourne, Melbourne, Victoria 3010, Australia.
| | | |
Collapse
|
47
|
Graham KL, Takada Y, Coulson BS. Rotavirus spike protein VP5* binds alpha2beta1 integrin on the cell surface and competes with virus for cell binding and infectivity. J Gen Virol 2006; 87:1275-1283. [PMID: 16603530 DOI: 10.1099/vir.0.81580-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Rotaviruses recognize several cell-surface molecules, including the alpha2beta1 integrin, and the processes of rotavirus cell attachment and entry appear to be multifactorial. The VP5* subunit of the rotavirus spike protein VP4 contains the alpha2beta1 ligand sequence Asp-Gly-Glu at residues 308-310. Binding to alpha2beta1 and infectivity of monkey rotavirus strain RRV and human rotavirus strain Wa, but not porcine rotavirus strain CRW-8, are inhibited by peptides containing Asp-Gly-Glu. Asp308 and Gly309 are necessary for the binding of RRV VP5* (aa 248-474) to expressed I domain of the alpha2 integrin subunit. Here, the ability of RRV VP5* to bind cells and affect rotavirus-integrin interactions was determined. Interestingly, VP5* bound to cells at 4 and 37 degrees C, both via alpha2beta1 and independently of this integrin. Prior VP5* binding at 37 degrees C eliminated RRV binding to cellular alpha2beta1 and reduced RRV and Wa infectivity in MA104 cells by 38-46 %. VP5* binding did not affect the infectivity of CRW-8. VP5* binding at 4 degrees C did not affect permissive-cell infection by RRV, indicating an energy requirement for VP5* competition with virus for infectivity. Mutagenesis of VP5* Asp308 and Gly309 eliminated VP5* binding to alpha2beta1 and the VP5* inhibition of rotavirus cell binding and infection, but not alpha2beta1-independent cell binding by VP5*. These studies show for the first time that expressed VP5* binds cell-surface alpha2beta1 using Asp308 and Gly309 and inhibits the infection of homologous and heterologous rotaviruses that use alpha2beta1 as a receptor.
Collapse
Affiliation(s)
- Kate L Graham
- Department of Microbiology and Immunology, The University of Melbourne, Victoria 3010, Australia
| | - Yoshikazu Takada
- The University of California, Davis, UC Davis Medical Center, 4645 2nd Avenue, Sacramento, CA 95817, USA
| | - Barbara S Coulson
- Department of Microbiology and Immunology, The University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
48
|
Abstract
As obligate intracellular parasites, viruses must bind to, and enter, permissive host cells in order to gain access to the cellular machinery that is required for their replication. The very large number of mammalian viruses identified to date is reflected in the fact that almost every human and animal cell type is a target for infection by one, or commonly more than one, species of virus. As viruses have adapted to target certain cell types for their propagation, there is exquisite specificity in cellular tropism. This specificity is frequently, but not always, mediated by the first step in the viral replication cycle: attachment of viral surface proteins to receptors expressed on susceptible cells. Viral receptors may be protein, carbohydrate, and/or lipid. Many viruses can use more than one attachment receptor, and indeed may sequentially engage multiple receptors to infect a cell. Thus, it is useful to differentiate between attachment receptors, that simply allow viruses a foothold at the limiting membrane of a cell, and entry receptors that mediate delivery the viral genome into the cytoplasm. For some viruses the attachment factors that promote binding to permissive cells are very well defined, but the sequence of events that triggers viral entry is only now beginning to be understood. For other viruses, despite many efforts, the receptors remain elusive. In this chapter we will confine our review to viruses that infect mammals, with particular focus on human pathogens. We do not intend that this will be an exhaustive overview of viral attachment receptors; instead we will take a number of examples of well-characterized virus-receptor interactions, discuss supporting evidence, and highlight any controversies and uncertainties in the field. We will then conclude with a reflection on general principles of viral attachment, consider some exceptions to these principles, and make some suggestion for future research.
Collapse
|