1
|
Torralba B, Blanc S, Michalakis Y. Reassortments in single-stranded DNA multipartite viruses: Confronting expectations based on molecular constraints with field observations. Virus Evol 2024; 10:veae010. [PMID: 38384786 PMCID: PMC10880892 DOI: 10.1093/ve/veae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/23/2023] [Accepted: 01/30/2024] [Indexed: 02/23/2024] Open
Abstract
Single-stranded DNA multipartite viruses, which mostly consist of members of the genus Begomovirus, family Geminiviridae, and all members of the family Nanoviridae, partly resolve the cost of genomic integrity maintenance through two remarkable capacities. They are able to systemically infect a host even when their genomic segments are not together in the same host cell, and these segments can be separately transmitted by insect vectors from host to host. These capacities potentially allow such viruses to reassort at a much larger spatial scale, since reassortants could arise from parental genotypes that do not co-infect the same cell or even the same host. To assess the limitations affecting reassortment and their implications in genome integrity maintenance, the objective of this review is to identify putative molecular constraints influencing reassorted segments throughout the infection cycle and to confront expectations based on these constraints with empirical observations. Trans-replication of the reassorted segments emerges as the major constraint, while encapsidation, viral movement, and transmission compatibilities appear more permissive. Confronting the available molecular data and the resulting predictions on reassortments to field population surveys reveals notable discrepancies, particularly a surprising rarity of interspecific natural reassortments within the Nanoviridae family. These apparent discrepancies unveil important knowledge gaps in the biology of ssDNA multipartite viruses and call for further investigation on the role of reassortment in their biology.
Collapse
Affiliation(s)
- Babil Torralba
- PHIM, Université Montpellier, IRD, CIRAD, INRAE, Institut Agro, Avenue du Campus d’Agropolis - ZAC de Baillarguet, Montpellier 34980, France
| | - Stéphane Blanc
- PHIM, Université Montpellier, IRD, CIRAD, INRAE, Institut Agro, Avenue du Campus d’Agropolis - ZAC de Baillarguet, Montpellier 34980, France
| | - Yannis Michalakis
- MIVEGEC, Université Montpellier, CNRS, IRD, 911, Avenue Agropolis, Montpellier 34394, France
| |
Collapse
|
2
|
Nalla MK, Schafleitner R, Pappu HR, Barchenger DW. Current status, breeding strategies and future prospects for managing chilli leaf curl virus disease and associated begomoviruses in Chilli ( Capsicum spp.). FRONTIERS IN PLANT SCIENCE 2023; 14:1223982. [PMID: 37936944 PMCID: PMC10626458 DOI: 10.3389/fpls.2023.1223982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/09/2023] [Indexed: 11/09/2023]
Abstract
Chilli leaf curl virus disease caused by begomoviruses, has emerged as a major threat to global chilli production, causing severe yield losses and economic harm. Begomoviruses are a highly successful and emerging group of plant viruses that are primarily transmitted by whiteflies belonging to the Bemisia tabaci complex. The most effective method for mitigating chilli leaf curl virus disease losses is breeding for host resistance to Begomovirus. This review highlights the current situation of chilli leaf curl virus disease and associated begomoviruses in chilli production, stressing the significant issues that breeders and growers confront. In addition, the various breeding methods used to generate begomovirus resistant chilli cultivars, and also the complicated connections between the host plant, vector and the virus are discussed. This review highlights the importance of resistance breeding, emphasising the importance of multidisciplinary approaches that combine the best of traditional breeding with cutting-edge genomic technologies. subsequently, the article highlights the challenges that must be overcome in order to effectively deploy begomovirus resistant chilli varieties across diverse agroecological zones and farming systems, as well as understanding the pathogen thus providing the opportunities for improving the sustainability and profitability of chilli production.
Collapse
Affiliation(s)
- Manoj Kumar Nalla
- World Vegetable Center, South and Central Asia Regional Office, Hyderabad, India
| | | | - Hanu R. Pappu
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | | |
Collapse
|
3
|
Nogueira AM, Barbosa TMC, Quadros AFF, Orílio AF, Bigão MCJ, Xavier CAD, Ferro CG, Zerbini FM. Specific Nucleotides in the Common Region of the Begomovirus Tomato Rugose Mosaic Virus (ToRMV) Are Responsible for the Negative Interference over Tomato Severe Rugose Virus (ToSRV) in Mixed Infection. Viruses 2023; 15:2074. [PMID: 37896851 PMCID: PMC10611410 DOI: 10.3390/v15102074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/08/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Mixed infection between two or more begomoviruses is commonly found in tomato fields and can affect disease outcomes by increasing symptom severity and viral accumulation compared with single infection. Viruses that affect tomato include tomato severe rugose virus (ToSRV) and tomato rugose mosaic virus (ToRMV). Previous work showed that in mixed infection, ToRMV negatively affects the infectivity and accumulation of ToSRV. ToSRV and ToRMV share a high degree of sequence identity, including cis-elements in the common region (CR) and their specific recognition sites (iteron-related domain, IRD) within the Rep gene. Here, we investigated if divergent sites in the CR and IRD are involved in the interaction between these two begomoviruses. ToSRV clones were constructed containing the same nucleotides as ToRMV in the CR (ToSRV-A(ToR:CR)), IRD (ToSRV-A(ToR:IRD)) and in both regions (ToSRV-A(ToR:CR+IRD)). When plants were co-inoculated with ToRMV and ToSRV-A(ToR:IRD), the infectivity and accumulation of ToSRV were negatively affected. In mixed inoculation of ToRMV with ToSRV-A(ToR:CR), high infectivity of both viruses and high DNA accumulation of ToSRV-A(ToR:CR) were observed. A decrease in viral accumulation was observed in plants inoculated with ToSRV-A(ToR:CR+IRD). These results indicate that differences in the CR, but not the IRD, are responsible for the negative interference of ToRMV on ToSRV.
Collapse
Affiliation(s)
- Angélica M. Nogueira
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil; (A.M.N.); (T.M.C.B.); (A.F.F.Q.); (A.F.O.); (M.C.J.B.); (C.A.D.X.); (C.G.F.)
- Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil
- Departamento de Proteção Vegetal, Faculdade de Ciências Agronômicas, Universidade Estadual Paulista (UNESP), Botucatu 18610-307, SP, Brazil
| | - Tarsiane M. C. Barbosa
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil; (A.M.N.); (T.M.C.B.); (A.F.F.Q.); (A.F.O.); (M.C.J.B.); (C.A.D.X.); (C.G.F.)
- Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil
- Departamento de Entomologia e Acarologia, ESALQ, Universidade de São Paulo, Piracicaba 13418-900, SP, Brazil
| | - Ayane F. F. Quadros
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil; (A.M.N.); (T.M.C.B.); (A.F.F.Q.); (A.F.O.); (M.C.J.B.); (C.A.D.X.); (C.G.F.)
- Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil
| | - Anelise F. Orílio
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil; (A.M.N.); (T.M.C.B.); (A.F.F.Q.); (A.F.O.); (M.C.J.B.); (C.A.D.X.); (C.G.F.)
- Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil
| | - Marcela C. J. Bigão
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil; (A.M.N.); (T.M.C.B.); (A.F.F.Q.); (A.F.O.); (M.C.J.B.); (C.A.D.X.); (C.G.F.)
- Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil
| | - César A. D. Xavier
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil; (A.M.N.); (T.M.C.B.); (A.F.F.Q.); (A.F.O.); (M.C.J.B.); (C.A.D.X.); (C.G.F.)
- Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
| | - Camila G. Ferro
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil; (A.M.N.); (T.M.C.B.); (A.F.F.Q.); (A.F.O.); (M.C.J.B.); (C.A.D.X.); (C.G.F.)
- Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil
- Departamento de Fitopatologia e Nematologia, ESALQ, Universidade de São Paulo, Piracicaba 13418-900, SP, Brazil
| | - Francisco Murilo Zerbini
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil; (A.M.N.); (T.M.C.B.); (A.F.F.Q.); (A.F.O.); (M.C.J.B.); (C.A.D.X.); (C.G.F.)
- Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil
| |
Collapse
|
4
|
Namgial T, Singh AK, Singh NP, Francis A, Chattopadhyay D, Voloudakis A, Chakraborty S. Differential expression of genes during recovery of Nicotiana tabacum from tomato leaf curl Gujarat virus infection. PLANTA 2023; 258:37. [PMID: 37405593 PMCID: PMC10322791 DOI: 10.1007/s00425-023-04182-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/10/2023] [Indexed: 07/06/2023]
Abstract
MAIN CONCLUSION Nicotiana tabacum exhibits recovery response towards tomato leaf curl Gujarat virus. Transcriptome analysis revealed the differential expression of defense-related genes. Genes encoding for cysteine protease inhibitor, hormonal- and stress-related to DNA repair mechanism are found to be involved in the recovery process. Elucidating the role of host factors in response to viral infection is crucial in understanding the plant host-virus interaction. Begomovirus, a genus in the family Geminiviridae, is reported throughout the globe and is known to cause serious crop diseases. Tomato leaf curl Gujarat virus (ToLCGV) infection in Nicotiana tabacum resulted in initial symptom expression followed by a quick recovery in the systemic leaves. Transcriptome analysis using next-generation sequencing (NGS) revealed a large number of differentially expressed genes both in symptomatic as well as recovered leaves when compared to mock-inoculated plants. The virus infected N. tabacum results in alteration of various metabolic pathways, phytohormone signaling pathway, defense related protein, protease inhibitor, and DNA repair pathway. RT-qPCR results indicated that Germin-like protein subfamily T member 2 (NtGLPST), Cysteine protease inhibitor 1-like (NtCPI), Thaumatin-like protein (NtTLP), Kirola-like (NtKL), and Ethylene-responsive transcription factor ERF109-like (NtERTFL) were down-regulated in symptomatic leaves when compared to recovered leaves of ToLCGV-infected plants. In contrast, the Auxin-responsive protein SAUR71-like (NtARPSL) was found to be differentially down-regulated in recovered leaves when compared to symptomatic leaves and the mock-inoculated plants. Lastly, Histone 2X protein like (NtHH2L) gene was found to be down-regulated, whereas Uncharacterized (NtUNCD) was up-regulated in both symptomatic as well as recovered leaves compared to the mock-inoculated plants. Taken together, the present study suggests potential roles of the differentially expressed genes that might govern tobacco's susceptibility and/or recovery response towards ToLCGV infection.
Collapse
Affiliation(s)
- T Namgial
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Athens, 11855, Greece
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - A K Singh
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - N P Singh
- Laboratory of Plant Molecular Biology, National Institute of Plant Genome Research, New Delhi, 110067, India
| | - A Francis
- Laboratory of Plant Molecular Biology, National Institute of Plant Genome Research, New Delhi, 110067, India
| | - D Chattopadhyay
- Laboratory of Plant Molecular Biology, National Institute of Plant Genome Research, New Delhi, 110067, India
| | - A Voloudakis
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Athens, 11855, Greece.
| | - S Chakraborty
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
5
|
Chang HH, Gustian D, Chang CJ, Jan FJ. Virus-virus interactions alter the mechanical transmissibility and host range of begomoviruses. FRONTIERS IN PLANT SCIENCE 2023; 14:1092998. [PMID: 37332697 PMCID: PMC10275492 DOI: 10.3389/fpls.2023.1092998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 05/05/2023] [Indexed: 06/20/2023]
Abstract
Introduction Begomoviruses are mainly transmitted by whiteflies. However, a few begomoviruses can be transmitted mechanically. Mechanical transmissibility affects begomoviral distribution in the field. Materials and methods In this study, two mechanically transmissible begomoviruses, tomato leaf curl New Delhi virus-oriental melon isolate (ToLCNDV-OM) and tomato yellow leaf curl Thailand virus (TYLCTHV), and two nonmechanically transmissible begomoviruses, ToLCNDV-cucumber isolate (ToLCNDV-CB) and tomato leaf curl Taiwan virus (ToLCTV), were used to study the effects of virus-virus interactions on mechanical transmissibility. Results Nicotiana benthamiana and host plants were coinoculated through mechanical transmission with inoculants derived from plants that were mix-infected or inoculants derived from individually infected plants, and the inoculants were mixed immediately before inoculation. Our results showed that ToLCNDV-CB was mechanically transmitted with ToLCNDV-OM to N. benthamiana, cucumber, and oriental melon, whereas ToLCTV was mechanically transmitted with TYLCTHV to N. benthamiana and tomato. For crossing host range inoculation, ToLCNDV-CB was mechanically transmitted with TYLCTHV to N. benthamiana and its nonhost tomato, while ToLCTV with ToLCNDV-OM was transmitted to N. benthamiana and its nonhost oriental melon. For sequential inoculation, ToLCNDV-CB and ToLCTV were mechanically transmitted to N. benthamiana plants that were either preinfected with ToLCNDV-OM or TYLCTHV. The results of fluorescence resonance energy transfer analyses showed that the nuclear shuttle protein of ToLCNDV-CB (CBNSP) and the coat protein of ToLCTV (TWCP) localized alone to the nucleus. When coexpressed with movement proteins of ToLCNDV-OM or TYLCTHV, CBNSP and TWCP relocalized to both the nucleus and the cellular periphery and interacted with movement proteins. Discussion Our findings indicated that virus-virus interactions in mixed infection circumstances could complement the mechanical transmissibility of nonmechanically transmissible begomoviruses and alter their host range. These findings provide new insight into complex virus-virus interactions and will help us to understand the begomoviral distribution and to reevaluate disease management strategies in the field.
Collapse
Affiliation(s)
- Ho-Hsiung Chang
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan
| | - Deri Gustian
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan
| | - Chung-Jan Chang
- Department of Plant Pathology, University of Georgia, Griffin, GA, United States
| | - Fuh-Jyh Jan
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan
- Advanced Plant and Food Crop Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
6
|
Gnanasekaran P, Gupta N, Ponnusamy K, Devendran R, George B, Chakraborty S. Betasatellite-encoded βC1 protein regulates helper virus accumulation by interfering with the ATP hydrolysis activity of geminivirus-encoded replication initiator protein. J Gen Virol 2023; 104. [PMID: 37326617 DOI: 10.1099/jgv.0.001866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023] Open
Abstract
Geminivirus-betasatellite disease complexes are an epidemic threat to the majority of economically important crops across the world. Plant virus satellites including betasatellites are maintained by their associated helper virus. Geminivirus-betasatellites influence viral pathogenesis by substantially increasing or decreasing their helper virus accumulation. In the present study, we attempted to understand the mechanistic details of the geminivirus-betasatellite interaction. Here, we used tomato leaf curl Gujarat virus (ToLCGV) and tomato leaf curl Patna betasatellite (ToLCPaB) as a model system. This study reveals that ToLCGV can efficiently trans-replicate ToLCPaB in Nicotiana benthamiana plants, but ToLCPaB greatly reduced the accumulation of its helper virus DNA. For the first time, we have identified that the ToLCPaB-encoded βC1 protein is able to interact with ToLCGV-encoded replication initiator protein (Rep). In addition, we demonstrate that the C-terminal region of βC1 interacts with the C-terminus of Rep (RepC) protein. Our previous study had established that βC1 proteins encoded by diverse betasatellites possess a novel ATP hydrolysis activity and the conserved lysine/arginine residues at positions 49 and 91 are necessary for this function. Here, we show that mutating lysine at positions 49 to alanine of βC1 (βC1K49A) protein did not affect its ability to interact with RepC protein. Biochemical studies performed with ATP hydrolysis activity-deficient K49A mutated βC1 (βC1K49A) and RepC proteins revealed that Rep-βC1 interaction interferes with the ATP hydrolysis activity of Rep protein. Further, we demonstrate that βC1 protein is able to interact with D227A and D289A mutated RepC proteins but not with D262A, K272A or D286A mutated RepC proteins, suggesting that the βC1-interacting region of Rep protein encompasses its Walker-B and B' motifs. The results of docking studies supported that the βC1-interacting region of Rep protein encompasses its motifs associated with ATP binding and ATP hydrolysis activities. Docking studies also provided evidence that the Rep-βC1 interaction interferes with the ATP binding activity of Rep protein. Together, our findings suggest that βC1 protein regulates helper virus accumulation by interfering with the ATP hydrolysis activity of helper virus Rep protein.
Collapse
Affiliation(s)
- Prabu Gnanasekaran
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi-110 067, India
| | - Neha Gupta
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi-110 067, India
| | - Kalaiarasan Ponnusamy
- Biotechnology Division, National Centre for Disease Control, New Delhi-110 054, India
| | - Ragunathan Devendran
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi-110 067, India
| | - Biju George
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi-110 067, India
| | - Supriya Chakraborty
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi-110 067, India
| |
Collapse
|
7
|
Venkataravanappa V, Ashwathappa KV, Kallingappa P, Shridhar H, Hemachandra Reddy P, Reddy MK, Reddy CNL. Diversity and phylogeography of begomoviruses and DNA satellites associated with the leaf curl and mosaic disease complex of eggplant. Microb Pathog 2023; 180:106127. [PMID: 37119939 DOI: 10.1016/j.micpath.2023.106127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/01/2023]
Abstract
Eggplant is one of the important vegetable crops grown across the world, and its production is threatened by both biotic and abiotic stresses. Diseases caused by viruses are becoming major limiting factors for its successful cultivation. A survey for begomovirus-like symptoms in 72 eggplant fields located in six different Indian states revealed a prevalence of disease ranging from 5.2 to 40.2%, and the symptoms recorded were mosaic, mottling, petiole bending, yellowing, and upward curling, vein thickening, and enation of the leaves, and stunting of plants. The causal agent associated with these plants was transmitted from infected leaf samples to healthy eggplant seedlings via grafting and whiteflies (Bemisia tabaci). The presence of begomovirus was confirmed in 72 infected eggplant samples collected from the surveyed fields exhibiting leaf curl and mosaic disease by PCR using begomovirus specifc primers (DNA-A componet), which resulted in an expected amplicon of 1.2 kb. The partial genome sequence obtained from amplified 1.2 kb from all samples indicated that they are closely related begomovirus species, tomato leaf Karnataka virus (ToLCKV, two samples), tomato leaf curl Palampur virus (ToLCPalV, fifty eggplant samples), and chilli leaf curl virus (ChLCuV, twenty samples). Based on the partial genome sequence analysis, fourteen representative samples were selected for full viral genome amplification by the rolling circle DNA amplification (RCA) technique. Analyses of fourteen eggplant isolates genome sequences using the Sequence Demarcation Tool (SDT) indicated that one isolate had the maximum nucleotide (nt) identity with ToLCKV and eight isolates with ToLCPalV. Whereas, four isolates four isolates (BLC1-CH, BLC2-CH, BLC3-CH, BLC4-CH) are showing nucleotide identity of less than 91% with chilli infecting viruses begomoviruses with chilli infecting begomoviruses and as per the guidelines given by the ICTV study group for the classification of begomoviruses these isolates are considered as one novel begomovirus species, for which name, Eggplant leaf curl Chhattisgarh virus (EgLCuChV) is proposed. For DNA-B component, seven eggplant isolates had the highest nt identity with ToLCPalV infecting other crops. Further, DNA satellites sequence analysis indicated that four betasatellites identified shared maximum nucleotide identity with the tomato leaf curl betasatellite and five alphasatellites shared maximum nucleotide identity with the ageratum enation alphasatellite. Recombination and GC plot analyses indicated that the bulk of begomovirus genome and associated satellites presumably originated from of previously known mono and bipartite begomoviruses and DNA satellites. To the best of our knowledge, this is India's first report of ToLCKV and a noval virus, eggplant leaf curl Chhattisgarh virus associated with eggplant leaf curl disease.
Collapse
Affiliation(s)
- V Venkataravanappa
- Indian Institute of Horticultural Research, Hessaraghatta Lake PO, Bangalore, 560089, Karnataka, India.
| | - K V Ashwathappa
- Indian Institute of Horticultural Research, Hessaraghatta Lake PO, Bangalore, 560089, Karnataka, India
| | | | - Hiremath Shridhar
- Department of Plant Pathology, College of Agriculture, University of Agricultural Sciences, GKVK, Bengaluru, 560 065, Karnataka, India
| | - P Hemachandra Reddy
- Indian Institute of Horticultural Research, Hessaraghatta Lake PO, Bangalore, 560089, Karnataka, India
| | - M Krishna Reddy
- Indian Institute of Horticultural Research, Hessaraghatta Lake PO, Bangalore, 560089, Karnataka, India
| | - C N Lakshminarayana Reddy
- Department of Plant Pathology, College of Agriculture, University of Agricultural Sciences, GKVK, Bengaluru, 560 065, Karnataka, India.
| |
Collapse
|
8
|
Devi OP, Sharma SK, Sanatombi K, Devi KS, Pathaw N, Roy SS, Chanu NT, Sanabam R, Devi HC, Singh AR, Baranwal VK. A Simplified Multiplex PCR Assay for Simultaneous Detection of Six Viruses Infecting Diverse Chilli Species in India and Its Application in Field Diagnosis. Pathogens 2022; 12:pathogens12010006. [PMID: 36678354 PMCID: PMC9861913 DOI: 10.3390/pathogens12010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/10/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Chilli is infected by at least 65 viruses globally, with a mixed infection of multiple viruses leading to severe losses being a common occurrence. A simple diagnostic procedure that can identify multiple viruses at once is required to track their spread, initiate management measures and manage them using virus-free planting supplies. The present study, for the first time, reports a simplified and robust multiplex PCR (mPCR) assay for the simultaneous detection of five RNA viruses, capsicum chlorosis orthotospovirus (CaCV), chilli veinal mottle virus (ChiVMV), large cardamom chirke virus (LCCV), cucumber mosaic virus (CMV), and pepper mild mottle virus (PMMoV), and a DNA virus, chilli leaf curl virus (ChiLCV) infecting chilli. The developed mPCR employed six pairs of primer from the conserved coat protein (CP) region of the respective viruses. Different parameters viz., primer concentration (150-450 nM) and annealing temperature (50 °C), were optimized in order to achieve specific and sensitive amplification of the target viruses in a single reaction tube. The detection limit of the mPCR assay was 5.00 pg/µL to simultaneously detect all the target viruses in a single reaction, indicating a sufficient sensitivity of the developed assay. The developed assay showed high specificity and showed no cross-amplification. The multiplex PCR assay was validated using field samples collected across Northeast India. Interestingly, out of 61 samples collected across the northeastern states, only 22 samples (36%) were positive for single virus infection while 33 samples (54%) were positive for three or more viruses tested in mPCR, showing the widespread occurrence of mixed infection under field conditions. To the best of our knowledge, this is the first report on the development and field validation of the mPCR assay for six chilli viruses and will have application in routine virus indexing and virus management.
Collapse
Affiliation(s)
- Oinam Priyoda Devi
- ICAR Research Complex for NEH Region, Manipur Centre, Lamphelpat, Imphal 795004, India
- Department of Biotechnology, Manipur University, Canchipur, Imphal 795003, India
| | - Susheel Kumar Sharma
- ICAR Research Complex for NEH Region, Manipur Centre, Lamphelpat, Imphal 795004, India
- Advanced Centre for Plant Virology, Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
- Correspondence:
| | | | - Konjengbam Sarda Devi
- ICAR Research Complex for NEH Region, Manipur Centre, Lamphelpat, Imphal 795004, India
| | - Neeta Pathaw
- ICAR Research Complex for NEH Region, Manipur Centre, Lamphelpat, Imphal 795004, India
| | - Subhra Saikat Roy
- ICAR Research Complex for NEH Region, Manipur Centre, Lamphelpat, Imphal 795004, India
| | | | - Rakesh Sanabam
- ICAR Research Complex for NEH Region, Manipur Centre, Lamphelpat, Imphal 795004, India
| | | | | | - Virendra Kumar Baranwal
- Advanced Centre for Plant Virology, Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| |
Collapse
|
9
|
Kumar M, Zarreen F, Chakraborty S. Roles of two distinct alphasatellites modulating geminivirus pathogenesis. Virol J 2021; 18:249. [PMID: 34903259 PMCID: PMC8670188 DOI: 10.1186/s12985-021-01718-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/29/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Alphasatellites are small coding DNA satellites frequently associated with a begomovirus/betasatellite complex, where they are known to modulate virulence and symptom development. Two distinct alphasatellites, namely, Cotton leaf curl Multan alphasatellite (CLCuMuA), and Gossypium darwinii symptomless alphasatellite (GDarSLA) associated with Cotton leaf curl Multan virus-India (CLCuMuV-IN) and Ludwigia leaf distortion betasatellite (LuLDB) were found to be associated with yellow mosaic disease of hollyhock (Alcea rosea) plants. In this study, we show that alphasatellites CLCuMuA and GDarSLA attenuate and delay symptom development in Nicotiana benthamiana. The presence of either alphasatellites reduce the accumulation of the helper virus CLCuMuV-IN. However, the levels of the associated betasatellite, LuLDB, remains unchanged. These results suggest that the alphasatellites could contribute to the host defence and understanding their role in disease development is important for developing resistance strategies. METHODS Tandem repeat constructs of two distinct alphasatellites, namely, CLCuMuA and GDarSLA associated with CLCuMuV-IN and LuLDB were generated. N. benthamiana plants were co-agroinoculated with CLCuMuV and its associated alphasatellites and betasatellite molecules and samples were collected at 7, 14 and 21 days post inoculation (dpi). The viral DNA molecules were quantified in N. benthamiana plants by qPCR. The sequences were analysed using the MEGA-X tool, and a phylogenetic tree was generated. Genetic diversity among the CLCuMuA and GDarSLA was analysed using the DnaSP tool. RESULTS We observed a reduction in symptom severity and accumulation of helper virus in the presence of two alphasatellites isolated from naturally infected hollyhock plants. However, no reduction in the accumulation of betasatellite was observed. The phylogenetic and genetic variability study revealed the evolutionary dynamics of these distinct alphasatellites , which could explain the role of hollyhock-associated alphasatellites in plants. CONCLUSIONS This study provides evidence that alphasatellites have a role in symptom modulation and suppress helper virus replication without any discernible effect on the replication of the associated betasatellite.
Collapse
Affiliation(s)
- Manish Kumar
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110 067 India
| | - Fauzia Zarreen
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110 067 India
| | - Supriya Chakraborty
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110 067 India
| |
Collapse
|
10
|
Ghosh D, M M, Chakraborty S. Impact of viral silencing suppressors on plant viral synergism: a global agro-economic concern. Appl Microbiol Biotechnol 2021; 105:6301-6313. [PMID: 34423406 DOI: 10.1007/s00253-021-11483-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/27/2022]
Abstract
Plant viruses are known for their devastating impact on global agriculture. These intracellular biotrophic pathogens can infect a wide variety of plant hosts all over the world. The synergistic association of plant viruses makes the situation more alarming. It usually promotes the replication, movement, and transmission of either or both the coexisting synergistic viral partners. Although plants elicit a robust antiviral immune reaction, including gene silencing, to limit these infamous invaders, viruses counter it by encoding viral suppressors of RNA silencing (VSRs). Growing evidence also suggests that VSRs play a driving role in mediating the plant viral synergism. This review briefly discusses the evil impacts of mixed infections, especially synergism, and then comprehensively describes the emerging roles of VSRs in mediating the synergistic association of plant viruses. KEY POINTS: • Synergistic associations of plant viruses have devastating impacts on global agriculture. • Viral suppressors of RNA silencing (VSRs) play key roles in driving plant viral synergism.
Collapse
Affiliation(s)
- Dibyendu Ghosh
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Malavika M
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Supriya Chakraborty
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
11
|
Avalos-Calleros JA, Pastor-Palacios G, Bolaños-Martínez OC, Mauricio-Castillo A, Gregorio-Jorge J, Martínez-Marrero N, Bañuelos-Hernández B, Méndez-Lozano J, Arguello-Astorga GR. Two strains of a novel begomovirus encoding Rep proteins with identical β1 strands but different β5 strands are not compatible in replication. Arch Virol 2021; 166:1691-1709. [PMID: 33852083 DOI: 10.1007/s00705-021-05066-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 02/20/2021] [Indexed: 10/21/2022]
Abstract
Geminiviruses have genomes composed of single-stranded DNA molecules and encode a rolling-circle replication (RCR) initiation protein ("Rep"), which has multiple functions. Rep binds to specific repeated DNA motifs ("iterons"), which are major determinants of virus-specific replication. The particular amino acid (aa) residues that determine the preference of a geminivirus Rep for specific iterons (i.e., the trans-acting replication "specificity determinants", or SPDs) are largely unknown, but diverse lines of evidence indicate that most of them are closely associated with the so-called RCR motif I (FLTYP), located in the first 12-19 aa residues of the protein. In this work, we characterized two strains of a novel begomovirus, rhynchosia golden mosaic Sinaloa virus (RhGMSV), that were incompatible in replication in pseudorecombination experiments. Systematic comparisons of the Rep proteins of both RhGMSV strains in the DNA-binding domain allowed the aa residues at positions 71 and 74 to be identified as the residues most likely to be responsible for differences in replication specificity. Residue 71 is part of the β-5 strand structural element, which was predicted in previous studies to contain Rep SPDs. Since the Rep proteins encoded by both RhGMSV strains are identical in their first 24 aa residues, where other studies have mapped potential SPDs, this is the first study lending direct support to the notion that geminivirus Rep proteins contain separate SPDs in their N-terminal domain.
Collapse
Affiliation(s)
- Jesús Aarón Avalos-Calleros
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, A.C. Camino a la Presa de San José 2055, Lomas 4a Sección, C.P. 78216, San Luis Potosí, S.L.P., Mexico
| | - Guillermo Pastor-Palacios
- CONACYT-Consorcio de Investigación Innovación y Desarrollo para las Zonas Áridas, Instituto Potosino de Investigación Científica y Tecnológica, A.C. Camino a La Presa de San José 2055, Lomas 4a Sección, C.P. 78216, San Luis Potosí, S.L.P., Mexico
| | - Omayra C Bolaños-Martínez
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, A.C. Camino a la Presa de San José 2055, Lomas 4a Sección, C.P. 78216, San Luis Potosí, S.L.P., Mexico
| | | | - Josefat Gregorio-Jorge
- Consejo Nacional de Ciencia y Tecnología, Universidad Politécnica de Tlaxcala (UPTx)., Av. Insurgentes Sur 1582, Col. Crédito Constructor, Del. Benito Juárez, 03940, Mexico City, Mexico
| | - Nadia Martínez-Marrero
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, A.C. Camino a la Presa de San José 2055, Lomas 4a Sección, C.P. 78216, San Luis Potosí, S.L.P., Mexico
| | - Bernardo Bañuelos-Hernández
- Facultad de Agronomia y Veterinaria, Universidad De La Salle Bajio, Avenida Universidad 602, Lomas del Campestre, 37150, León Guanajuato, Mexico
| | - Jesús Méndez-Lozano
- Departamento de Biotecnología Agrícola, Instituto Politécnico Nacional, CIIDIR-Unidad Sinaloa, 81101, Guasave, Sinaloa, Mexico
| | - Gerardo Rafael Arguello-Astorga
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, A.C. Camino a la Presa de San José 2055, Lomas 4a Sección, C.P. 78216, San Luis Potosí, S.L.P., Mexico.
| |
Collapse
|
12
|
Basu S, Singh AK, Singh D, Sahu SK, Chakraborty S. Role of viral suppressors governing asymmetric synergism between tomato-infecting begomoviruses. Appl Microbiol Biotechnol 2021; 105:1107-1121. [PMID: 33417040 DOI: 10.1007/s00253-020-11070-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 12/01/2020] [Accepted: 12/17/2020] [Indexed: 11/29/2022]
Abstract
Mixed viral infections are common in fields and frequently exacerbate disease severity via synergistic interactions among individual viral genomic components leading to major crop loss. Two predominant species of tomato-infecting begomoviruses, Tomato leaf curl New Delhi virus (ToLCNDV) and Tomato leaf curl Gujarat virus (ToLCGuV), are known to cause severe leaf curl disease of tomato in India. Previously, we have demonstrated asymmetric synergism between these two distinct begomovirus species during mixed infection in solanaceous hosts. In the present study, we have identified the underlying proteins that positively regulate asymmetric synergism and their effect on plant defense machinery. During co-infection, the AC2 and AV2 of ToLCGuV enhanced ToLCNDV DNA accumulation in Nicotiana benthamiana as well as in their natural host, tomato. Furthermore, we found that AC2 and AV2 of ToLCNDV and AV2 of ToLCGuV play a critical role in suppression of post transcriptional gene silencing (PTGS) machinery. Taken together, AC2 and AV2 encoded proteins of ToLCGuV are the crucial viral factors promoting asymmetric synergism with ToLCNDV. KEY POINTS: • Begomoviral suppressors play vital roles in viral synergism. • AC2 and AV2 of ToLCGuV asymmetrically enhance ToLCNDV accumulation. • AC2 and AV2 of ToLCNDV and ToLCGuV AV2 are major PTGS suppressors.
Collapse
Affiliation(s)
- Saumik Basu
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110 067, India
- Department of Entomology, Washington State University, Pullman, WA, USA
| | - Ashish Kumar Singh
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110 067, India
| | - Divya Singh
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110 067, India
| | - Sanjeeb Kumar Sahu
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110 067, India
- Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Supriya Chakraborty
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110 067, India.
| |
Collapse
|
13
|
Genomic dissection of ROS detoxifying enzyme encoding genes for their role in antioxidative defense mechanism against Tomato leaf curl New Delhi virus infection in tomato. Genomics 2021; 113:889-899. [PMID: 33524498 DOI: 10.1016/j.ygeno.2021.01.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/13/2021] [Accepted: 01/27/2021] [Indexed: 01/23/2023]
Abstract
In the present study, genes encoding for six major classes of enzymatic antioxidants, namely superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), Peroxidase (Prx) and glutathione S-transferase (GST) are identified in tomato. Their expression was studied in tomato cultivars contrastingly tolerant to ToLCNDV during virus infection and different hormone treatments. Significant upregulation of SlGR3, SlPrx25, SlPrx75, SlPrx95, SlGST44, and SlGST96 was observed in the tolerant cultivar during disease infection. Virus-induced gene silencing of SlGR3 in the tolerant cultivar conferred disease susceptibility to the knock-down line, and higher accumulation (~80%) of viral DNA was observed in the tolerant cultivar. Further, subcellular localization of SlGR3 showed its presence in cytoplasm, and its enzymatic activity was found to be increased (~65%) during ToLCNDV infection. Knock-down lines showed ~3- and 3.5-fold reduction in GR activity, which altogether underlines that SlGR3 is vital component of the defense mechanism against ToLCNDV infection.
Collapse
|
14
|
Fiallo-Olivé E, Navas-Castillo J. Molecular and Biological Characterization of a New World Mono-/Bipartite Begomovirus/Deltasatellite Complex Infecting Corchorus siliquosus. Front Microbiol 2020; 11:1755. [PMID: 32793176 PMCID: PMC7390960 DOI: 10.3389/fmicb.2020.01755] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/06/2020] [Indexed: 12/02/2022] Open
Abstract
The genus Begomovirus (family Geminiviridae) is the largest genus in the entire virosphere, with more than 400 species recognized. Begomoviruses are single-stranded DNA plant viruses transmitted by whiteflies of the Bemisia tabaci complex and are considered one of the most important groups of emerging plant viruses in tropical and subtropical regions. Several types of DNA satellites have been described to be associated with begomoviruses: betasatellites, alphasatellites, and deltasatellites. Recently, a family of single-stranded DNA satellites associated with begomoviruses has been created, Tolecusatellitidae, including the genera Betasatellite and Deltasatellite. In this work, we analyzed the population of begomoviruses and associated DNA satellites present in Corchorus siliquosus, a malvaceous plant growing wild in Central America, southeastern North America and the Caribbean, collected in Cuba. The genomes of isolates of two New World begomoviruses [(Desmodium leaf distortion virus (DesLDV) and Corchorus yellow vein Cuba virus (CoYVCUV)] and two deltasatellites [tomato yellow leaf distortion deltasatellite 2 (TYLDD2) and Desmodium leaf distortion deltasatellite (DesLDD)] have been cloned and sequenced from plants showing yellow vein symptoms. Isolates of one of the begomoviruses, CoYVCUV, and one of the deltasatellites, DesLDD, represent novel species. Experiments with infectious clones showed the monopartite nature of CoYVCUV and that DesLDD utilizes the bipartite DesLDV as helper virus, but not the monopartite CoYVCUV. Also, CoYVCUV was shown to infect common bean in addition to Nicotiana benthamiana. This is the first time that (i) a monopartite New World begomovirus is found in a host other than tomato and (ii) deltasatellites have been found in C. siliquosus, thus extending the host and helper virus ranges of this recently recognized class of DNA satellites.
Collapse
Affiliation(s)
- Elvira Fiallo-Olivé
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Consejo Superior de Investigaciones Cient ficas - Universidad de Málaga (IHSM-CSIC-UMA), Málaga, Spain
| | - Jesús Navas-Castillo
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Consejo Superior de Investigaciones Cient ficas - Universidad de Málaga (IHSM-CSIC-UMA), Málaga, Spain
| |
Collapse
|
15
|
Prakash V, Singh A, Singh AK, Dalmay T, Chakraborty S. Tobacco RNA-dependent RNA polymerase 1 affects the expression of defence-related genes in Nicotiana benthamiana upon Tomato leaf curl Gujarat virus infection. PLANTA 2020; 252:11. [PMID: 32613448 DOI: 10.1007/s00425-020-03417-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 06/26/2020] [Indexed: 05/25/2023]
Abstract
MAIN CONCLUSION RNA-dependent RNA polymerase 1 of Nicotiana tabacum modulates ToLCGV pathogenesis by influencing a number of defence-related genes in N. benthamiana plants. Key means of plants protecting themselves from the invading viruses is through RNA silencing. RNA-dependent RNA polymerase-1 (RDR1) is one of the crucial proteins of the RNA silencing pathway, which is induced after infection by viruses. RDR1 functions in the generation of small interfering RNAs (siRNAs) against the viral genome, thus it is antiviral in nature. Here, we used the transgenic Nicotiana benthamiana plant expressing N. tabacum NtRDR1 and observed reduced susceptibility towards Tomato leaf curl Gujarat virus (ToLCGV) infection compared to the wild-type N. benthamiana plants. To understand the reason for such reduced susceptibility, we prepared high-definition small RNA (sRNA) cDNA libraries from ToLCGV-infected wild-type N. benthamiana and NtRDR1 expressing N. benthamiana lines and carried out next-generation sequencing (NGS). We found that upon ToLCGV infection the majority of siRNAs generated from the host genome were of the 24 nucleotide (nt) class, while viral siRNAs (vsiRNAs) were of the 21-22-nt class, indicating that transcriptional gene silencing (TGS) is the major pathway for silencing of host genes while viral genes are silenced, predominantly, by post transcriptional gene silencing (PTGS) pathways. We estimated the changes in the expression of various defence-related genes, such as Constitutively Photomorphogenic-9 (COP9) signalosome (CSN) complex subunit-7, Pentatricopeptide repeat containing protein (PPRP), Laccase-3, Glutathione peroxidase-1 (GPX-1), Universal stress protein (USP) A-like protein, Heat shock transcription factor B4 (HSTF-B4), Auxin response factor-18 (ARF18), WRKY-6 and Short chain dehydrogenase reductase-3a. The differential expression of these genes might be linked with the enhanced tolerance of NtRDR1 N. benthamiana transgenic plants to ToLCGV. Our study suggests that reduced expression of subunit-7 of CSN complex and WRKY6, and increased expression of USPA-like protein might be linked with the reduced susceptibility of NtRDR1-transgenic N. benthamiana plants to ToLCGV.
Collapse
Affiliation(s)
- Ved Prakash
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Archana Singh
- School of Biological Sciences, University of East Anglia, Norwich, UK
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Ashish Kumar Singh
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Tamas Dalmay
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Supriya Chakraborty
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
16
|
Mansi, Kushwaha NK, Singh AK, Karim MJ, Chakraborty S. Nicotiana benthamiana phosphatidylinositol 4-kinase type II regulates chilli leaf curl virus pathogenesis. MOLECULAR PLANT PATHOLOGY 2019; 20:1408-1424. [PMID: 31475785 PMCID: PMC6792133 DOI: 10.1111/mpp.12846] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Geminiviruses are single-stranded DNA viruses that can cause significant losses in economically important crops. In recent years, the role of different kinases in geminivirus pathogenesis has been emphasized. Although geminiviruses use several host kinases, the role of phosphatidylinositol 4-kinase (PI4K) remains obscure. We isolated and characterized phosphatidylinositol 4-kinase type II from Nicotiana benthamiana (NbPI4KII) which interacts with the replication initiator protein (Rep) of a geminivirus, chilli leaf curl virus (ChiLCV). NbPI4KII-mGFP was localized into cytoplasm, nucleus or both. NbPI4KII-mGFP was also found to be associated with the cytoplasmic endomembrane systems in the presence of ChiLCV. Furthermore, we demonstrated that Rep protein directly interacts with NbPI4KII protein and influenced nuclear occurrence of NbPI4KII. The results obtained in the present study revealed that NbPI4KII is a functional protein kinase lacking lipid kinase activity. Downregulation of NbPI4KII expression negatively affects ChiLCV pathogenesis in N. benthamiana. In summary, NbPI4KII is a susceptible factor, which is required by ChiLCV for pathogenesis.
Collapse
Affiliation(s)
- Mansi
- Molecular Virology Laboratory, School of Life SciencesJawaharlal Nehru UniversityNew DelhiIndia
| | - Nirbhay Kumar Kushwaha
- Molecular Virology Laboratory, School of Life SciencesJawaharlal Nehru UniversityNew DelhiIndia
| | - Ashish Kumar Singh
- Molecular Virology Laboratory, School of Life SciencesJawaharlal Nehru UniversityNew DelhiIndia
| | - Mir Jishan Karim
- Molecular Virology Laboratory, School of Life SciencesJawaharlal Nehru UniversityNew DelhiIndia
| | - Supriya Chakraborty
- Molecular Virology Laboratory, School of Life SciencesJawaharlal Nehru UniversityNew DelhiIndia
| |
Collapse
|
17
|
Gnanasekaran P, Ponnusamy K, Chakraborty S. A geminivirus betasatellite encoded βC1 protein interacts with PsbP and subverts PsbP-mediated antiviral defence in plants. MOLECULAR PLANT PATHOLOGY 2019; 20:943-960. [PMID: 30985068 PMCID: PMC6589724 DOI: 10.1111/mpp.12804] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Geminivirus disease complexes potentially interfere with plants physiology and cause disastrous effects on a wide range of economically important crops throughout the world. Diverse geminivirus betasatellite associations exacerbate the epidemic threat for global food security. Our previous study showed that βC1, the pathogenicity determinant of geminivirus betasatellites induce symptom development by disrupting the ultrastructure and function of chloroplasts. Here we explored the betasatellite-virus-chloroplast interaction in the scope of viral pathogenesis as well as plant defence responses, using Nicotiana benthamiana-Radish leaf curl betasatellite (RaLCB) as the model system. We have shown an interaction between RaLCB-encoded βC1 and one of the extrinsic subunit proteins of oxygen-evolving complex of photosystem II both in vitro and in vivo. Further, we demonstrate a novel function of the Nicotiana benthamiana oxygen-evolving enhancer protein 2 (PsbP), in that it binds DNA, including geminivirus DNA. Transient silencing of PsbP in N. benthamiana plants enhances pathogenicity and viral DNA accumulation. Overexpression of PsbP impedes disease development during the early phase of infection, suggesting that PsbP is involved in generation of defence response during geminivirus infection. In addition, βC1-PsbP interaction hampers non-specific binding of PsbP to the geminivirus DNA. Our findings suggest that betasatellite-encoded βC1 protein accomplishes counter-defence by physical interaction with PsbP reducing the ability of PsbP to bind geminivirus DNA to establish infection.
Collapse
Affiliation(s)
- Prabu Gnanasekaran
- Molecular Virology Laboratory, School of Life SciencesJawaharlal Nehru UniversityNew Delhi110 067India
| | - Kalaiarasan Ponnusamy
- Synthetic Biology Laboratory, School of BiotechnologyJawaharlal Nehru UniversityNew Delhi110 067India
| | - Supriya Chakraborty
- Molecular Virology Laboratory, School of Life SciencesJawaharlal Nehru UniversityNew Delhi110 067India
| |
Collapse
|
18
|
Qadir R, Khan ZA, Monga D, Khan JA. Diversity and recombination analysis of Cotton leaf curl Multan virus: a highly emerging begomovirus in northern India. BMC Genomics 2019; 20:274. [PMID: 30954067 PMCID: PMC6451280 DOI: 10.1186/s12864-019-5640-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 03/24/2019] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Cotton leaf curl disease (CLCuD), caused by begomoviruses in association with satellite molecules, is a major threat to cotton production causing enormous losses to cotton crop in most of the cotton growing countries including Indian subcontinent. In this study, isolates of begomovirus and satellite molecules associated with CLCuD were collected from North India (Haryana, New Delhi). They were amplified employing rolling circle replication mechanism, cloned, sequenced and, their phylogenetic and recombination analysis was performed. RESULTS The five Cotton leaf curl Multan virus (CLCuMuV) isolates investigated in this study showed monopartite organization of the genome typical of Old World begomoviruses. Nucleotide sequence analyses assigned them as the strains of CLCuMuV and were designated as CLCuMuV-SR13, CLCuMuV-SR14, CLCuMuV-ND14, CLCuMuV-ND15 and CLCuMuV-SR15. The genome of CLCuMuV-SR13 shared a highest level of nucleotide sequence identity (98%) with CLCuMuV (JN678804), CLCuMuV-SR14 and CLCuMuV-SR15 exhibited 96% with CLCuMuV (KM096471), while isolates CLCuMuV-ND15 and CLCuMuV-SR15 revealed 96% sequence identity with CLCuMuV (AY765253). The four betasatellite molecules investigated in this study shared 95-99% nucleotide sequence identity with Cotton leaf curl Multan betasatellite (CLCuMB) from India. The betasatellite molecules were designated as CLCuMB-SR13, CLCuMB-SR14, CLCuMB-ND14 and CLCuMB-ND15. Alphasatellite molecules in this study, designated as GLCuA-SR14, GLCuA-ND14 and GLCuA-SR15, revealed 98% identity with Guar leaf curl alphasatellite (GLCuA) reported from Pakistan. CONCLUSION The phylogenetic and recombination studies concluded that the isolates of CLCuMuV genomes undertaken in this study have a potential recombinant origin. Remarkably, significant recombination was detected in almost all the genes with contribution of Cotton leaf curl Kokhran Virus (CLCuKoV) in IR, V1, V2, C1, C4 and C5 regions and of CLCuMuV in C2 region of CLCuMuV-SR14. CLCuKoV also donated in C2, C3 regions of CLCuMuV-ND14; V1, V2, C2 and C3 regions of CLCuMuV-ND15 and C1 of CLCuMuV-SR15. Altogether, these observations signify the uniqueness in Indian CLCuMuV isolates showing contribution of CLCuKoV in all the genes. An interesting observation was frequent identification of GLCuA in CLCuD leaf samples.
Collapse
Affiliation(s)
- Razia Qadir
- Plant Virus Laboratory, Department of Biosciences, Jamia Millia Islamia (Central University), New Delhi, 110025, India
| | - Zainul A Khan
- Plant Virus Laboratory, Department of Biosciences, Jamia Millia Islamia (Central University), New Delhi, 110025, India
- Present address: Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi, 110021, India
| | - Dilip Monga
- Central Institute for Cotton Research (ICAR-CICR), Regional Station, Sirsa, Haryana, 125055, India
| | - Jawaid A Khan
- Plant Virus Laboratory, Department of Biosciences, Jamia Millia Islamia (Central University), New Delhi, 110025, India.
| |
Collapse
|
19
|
Basu S, Kumar Kushwaha N, Kumar Singh A, Pankaj Sahu P, Vinoth Kumar R, Chakraborty S. Dynamics of a geminivirus-encoded pre-coat protein and host RNA-dependent RNA polymerase 1 in regulating symptom recovery in tobacco. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:2085-2102. [PMID: 29432546 PMCID: PMC6019014 DOI: 10.1093/jxb/ery043] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 01/24/2018] [Indexed: 05/21/2023]
Abstract
RNA silencing is an integral part of the cellular defense mechanisms in plants that act against virus infection. However, the specific role of RNA silencing and the interplay between host and virus components during recovery from geminivirus infection remains unknown. Hence, in this study we aimed to examine the mechanism behind the host-specific recovery of Nicotiana tabacum infected with Tomato leaf curl Gujarat virus (ToLCGV). Unlike Tomato leaf curl New Delhi virus (ToLCNDV), ToLCGV infection resulted in symptom remission in N. tabacum, and we found that this was mainly due to cross-talk between the pre-coat protein (encoded by the AV2 ORF) of the virus and the host RNA-silencing component RNA-dependent RNA polymerase 1 (encoded by NtRDR1) of N. tabacum. Moreover, apart from the AV2 mutant, other mutants of ToLCNDV developed severe symptoms on a transgenic NtRDR1-overexpression line of N. benthamiana. In contrast, inoculation with ToLCGV resulted in symptom remission, which was due to enhanced methylation of the ToLCGV promoter. Our study reveals a novel 'arms race' in which the pre-coat protein of ToLCNDV selectively blocks the recovery process through inhibiting host-specific RDR1-mediated antiviral silencing in tobacco.
Collapse
Affiliation(s)
- Saumik Basu
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Nirbhay Kumar Kushwaha
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Ashish Kumar Singh
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Pranav Pankaj Sahu
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - R Vinoth Kumar
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Supriya Chakraborty
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
20
|
Kumar S, Tanti B, Patil BL, Mukherjee SK, Sahoo L. RNAi-derived transgenic resistance to Mungbean yellow mosaic India virus in cowpea. PLoS One 2017; 12:e0186786. [PMID: 29077738 PMCID: PMC5659608 DOI: 10.1371/journal.pone.0186786] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 10/06/2017] [Indexed: 11/21/2022] Open
Abstract
Cowpea is an important grain legume crop of Africa, Latin America, and Southeast Asia. Leaf curl and golden mosaic diseases caused by Mungbean yellow mosaic India virus (MYMIV) have emerged as most devastating viral diseases of cowpea in Southeast Asia. In this study, we employed RNA interference (RNAi) strategy to control cowpea-infecting MYMIV. For this, we generated transgenic cowpea plants harbouring three different intron hairpin RNAi constructs, containing the AC2, AC4 and fusion of AC2 and AC4 (AC2+AC4) of seven cowpea-infecting begomoviruses. The T0 and T1 transgenic cowpea lines of all the three constructs accumulated transgene-specific siRNAs. Transgenic plants were further assayed up to T1 generations, for resistance to MYMIV using agro-infectious clones. Nearly 100% resistance against MYMIV infection was observed in transgenic lines, expressing AC2-hp and AC2+AC4-hp RNA, when compared with untransformed controls and plants transformed with empty vectors, which developed severe viral disease symptoms within 3 weeks. The AC4-hp RNA expressing lines displayed appearance of milder symptoms after 5 weeks of MYMIV-inoculation. Northern blots revealed a positive correlation between the level of transgene-specific siRNAs accumulation and virus resistance. The MYMIV-resistant transgenic lines accumulated nearly zero or very low titres of viral DNA. The transgenic cowpea plants had normal phenotype with no yield penalty in greenhouse conditions. This is the first demonstration of RNAi-derived resistance to MYMIV in cowpea.
Collapse
Affiliation(s)
- Sanjeev Kumar
- Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
- Department of Botany, Gauhati University, Guwahati, Assam, India
| | - Bhaben Tanti
- Department of Botany, Gauhati University, Guwahati, Assam, India
| | - Basavaprabhu L. Patil
- ICAR-National Research Centre on Plant Biotechnology, LBS Centre, IARI, Pusa Campus, New Delhi, India
| | - Sunil Kumar Mukherjee
- Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, India
| | - Lingaraj Sahoo
- Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
- * E-mail:
| |
Collapse
|
21
|
Moriones E, Praveen S, Chakraborty S. Tomato Leaf Curl New Delhi Virus: An Emerging Virus Complex Threatening Vegetable and Fiber Crops. Viruses 2017; 9:E264. [PMID: 28934148 PMCID: PMC5691616 DOI: 10.3390/v9100264] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 09/13/2017] [Accepted: 09/20/2017] [Indexed: 12/19/2022] Open
Abstract
The tomato leaf curl New Delhi virus (ToLCNDV) (genus Begomovirus, family Geminiviridae) represents an important constraint to tomato production, as it causes the most predominant and economically important disease affecting tomato in the Indian sub-continent. However, in recent years, ToLCNDV has been fast extending its host range and spreading to new geographical regions, including the Middle East and the western Mediterranean Basin. Extensive research on the genome structure, protein functions, molecular biology, and plant-virus interactions of ToLCNDV has been conducted in the last decade. Special emphasis has been given to gene silencing suppression ability in order to counteract host plant defense responses. The importance of the interaction with DNA alphasatellites and betasatellites in the biology of the virus has been demonstrated. ToLCNDV genetic variability has been analyzed, providing new insights into the taxonomy, host adaptation, and evolution of this virus. Recombination and pseudorecombination have been shown as motors of diversification and adaptive evolution. Important progress has also been made in control strategies to reduce disease damage. This review highlights these various achievements in the context of the previous knowledge of begomoviruses and their interactions with plants.
Collapse
Affiliation(s)
- Enrique Moriones
- Subtropical and Mediterranean Horticulture Institute "La Mayora" (IHSM-UMA-CSIC), Consejo Superior de Investigaciones Científicas, La Mayora Experimental Station, 29750 Algarrobo-Costa, Málaga, Spain.
| | - Shelly Praveen
- Advanced Center for Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi 110 012, India.
| | - Supriya Chakraborty
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110 067, India.
| |
Collapse
|
22
|
Zaidi SS, Martin DP, Amin I, Farooq M, Mansoor S. Tomato leaf curl New Delhi virus: a widespread bipartite begomovirus in the territory of monopartite begomoviruses. MOLECULAR PLANT PATHOLOGY 2017; 18:901-911. [PMID: 27553982 PMCID: PMC6638225 DOI: 10.1111/mpp.12481] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 08/08/2016] [Accepted: 08/21/2016] [Indexed: 05/26/2023]
Abstract
UNLABELLED Tomato leaf curl New Delhi virus (ToLCNDV) is an exceptional Old World bipartite begomovirus. On the Indian subcontinent, a region in which monopartite DNA satellite-associated begomoviruses with mostly narrow geographical ranges predominate, it is widespread, with a geographical range also including the Far East, Middle East, North Africa and Europe. The success of ToLCNDV probably derives from its broad host range and highly flexible genomic configuration: its DNA-A component is capable of productively interacting with, and trans-replicating, diverse DNA-B components and betasatellites. An understanding of the capacity of ToLCNDV to infect a variety of hosts and spread across a broad and ecologically variable geographical range could illuminate the potential economic threats associated with similar begomoviral invasions. Towards this end, we used available ToLCNDV sequences to reconstruct the history of ToLCNDV spread. TAXONOMY Family Geminiviridae, Genus Begomovirus. ToLCNDV is a bipartite begomovirus. Following the revised begomovirus taxonomic criteria of 91% and 94% nucleotide identity for species and strain demarcation, respectively, ToLCNDV is a distinct species with two strains: ToLCNDV and ToLCNDV-Spain. HOST RANGE The primary cultivated host of ToLCNDV is tomato (Solanum lycopersicum), but the virus is also known to infect 43 other plant species from a range of families, including Cucurbitaceae, Euphorbiaceae, Solanaceae, Malvaceae and Fabaceae. DISEASE SYMPTOMS Typical symptoms of ToLCNDV infection in its various hosts include leaf curling, vein thickening, puckering, purpling/darkening of leaf margins, leaf area reduction, internode shortening and severe stunting.
Collapse
Affiliation(s)
- Syed Shan‐E‐Ali Zaidi
- National Institute for Biotechnology and Genetic EngineeringJhang RoadFaisalabad. PO Box 577, Pakistan
| | - Darren P. Martin
- Institute of Infectious Diseases and Molecular Medicine, Department of Integrative Biomedical Sciences, Division of Computational BiologyUniversity of Cape TownAnzio RdObservatoryCape Town, 7925, South Africa
| | - Imran Amin
- National Institute for Biotechnology and Genetic EngineeringJhang RoadFaisalabad. PO Box 577, Pakistan
| | - Muhammad Farooq
- National Institute for Biotechnology and Genetic EngineeringJhang RoadFaisalabad. PO Box 577, Pakistan
| | - Shahid Mansoor
- National Institute for Biotechnology and Genetic EngineeringJhang RoadFaisalabad. PO Box 577, Pakistan
| |
Collapse
|
23
|
Kushwaha NK, Bhardwaj M, Chakraborty S. The replication initiator protein of a geminivirus interacts with host monoubiquitination machinery and stimulates transcription of the viral genome. PLoS Pathog 2017; 13:e1006587. [PMID: 28859169 PMCID: PMC5597257 DOI: 10.1371/journal.ppat.1006587] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 09/13/2017] [Accepted: 08/16/2017] [Indexed: 12/13/2022] Open
Abstract
Geminiviruses constitute a group of plant viruses, with a ssDNA genome, whose replication in the nucleus of an infected cell requires the function of geminivirus-encoded replication initiator protein (Rep). Our results suggest that monoubiquitinated histone 2B (H2B-ub) promotes tri-methylation of histone 3 at lysine 4 (H3-K4me3) on the promoter of Chilli leaf curl virus (ChiLCV). We isolated homologues of two major components of the monoubiquitination machinery: UBIQUITIN-CONJUGATING ENZYME2 (NbUBC2) and HISTONE MONOUBIQUITINATION1 (NbHUB1) from N. benthamiana. ChiLCV failed to cause disease in NbUBC2-, and NbHUB1-silenced plants, at the same time, H2B-ub and H3-K4me3 modifications were decreased, and the occupancy of RNA polymerase II on the viral promoter was reduced as well. In further investigations, Rep protein of ChiLCV was found to re-localize NbUBC2 from the cytoplasm to the nucleoplasm, like NbHUB1, the cognate partner of NbUBC2. Rep was observed to interact and co-localize with NbHUB1 and NbUBC2 in the nuclei of the infected cells. In summary, the current study reveals that the ChiLCV Rep protein binds the viral genome and interacts with NbUBC2 and NbHUB1 for the monoubiquitination of histone 2B that subsequently promotes trimethylation of histone 3 at lysine 4 on ChiLCV mini-chromosomes and enhances transcription of the viral genes.
Collapse
Affiliation(s)
- Nirbhay Kumar Kushwaha
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Mansi Bhardwaj
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Supriya Chakraborty
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
24
|
Belabess Z, Peterschmitt M, Granier M, Tahiri A, Blenzar A, Urbino C. The non-canonical tomato yellow leaf curl virus recombinant that displaced its parental viruses in southern Morocco exhibits a high selective advantage in experimental conditions. J Gen Virol 2016; 97:3433-3445. [DOI: 10.1099/jgv.0.000633] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Zineb Belabess
- CIRAD-INRA-SupAgro, UMR BGPI, CIRAD, TA A -54K, Campus International de Baillarguet, F-34398 Montpellier, France
- Ecole Nationale d'Agriculture de Meknès, BPS 40, Meknès, Morocco
- Faculté des Sciences de Meknès BP 11201, Avenue Zitoune, Meknès, Morocco
| | - Michel Peterschmitt
- CIRAD-INRA-SupAgro, UMR BGPI, CIRAD, TA A -54K, Campus International de Baillarguet, F-34398 Montpellier, France
| | - Martine Granier
- CIRAD-INRA-SupAgro, UMR BGPI, CIRAD, TA A -54K, Campus International de Baillarguet, F-34398 Montpellier, France
| | | | - Abdelali Blenzar
- Faculté des Sciences de Meknès BP 11201, Avenue Zitoune, Meknès, Morocco
| | - Cica Urbino
- CIRAD-INRA-SupAgro, UMR BGPI, CIRAD, TA A -54K, Campus International de Baillarguet, F-34398 Montpellier, France
| |
Collapse
|
25
|
Karthikeyan C, Patil BL, Borah BK, Resmi TR, Turco S, Pooggin MM, Hohn T, Veluthambi K. Emergence of a Latent Indian Cassava Mosaic Virus from Cassava Which Recovered from Infection by a Non-Persistent Sri Lankan Cassava Mosaic Virus. Viruses 2016; 8:E264. [PMID: 27690084 PMCID: PMC5086600 DOI: 10.3390/v8100264] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 09/18/2016] [Accepted: 09/19/2016] [Indexed: 11/25/2022] Open
Abstract
The major threat for cassava cultivation on the Indian subcontinent is cassava mosaic disease (CMD) caused by cassava mosaic geminiviruses which are bipartite begomoviruses with DNA A and DNA B components. Indian cassava mosaic virus (ICMV) and Sri Lankan cassava mosaic virus (SLCMV) cause CMD in India. Two isolates of SLCMV infected the cassava cultivar Sengutchi in the fields near Malappuram and Thiruvananthapuram cities of Kerala State, India. The Malappuram isolate was persistent when maintained in the Madurai Kamaraj University (MKU, Madurai, Tamil Nadu, India) greenhouse, whereas the Thiruvananthapuram isolate did not persist. The recovered cassava plants with the non-persistent SLCMV, which were maintained vegetative in quarantine in the University of Basel (Basel, Switzerland) greenhouse, displayed re-emergence of CMD after a six-month period. Interestingly, these plants did not carry SLCMV but carried ICMV. It is interpreted that the field-collected, SLCMV-infected cassava plants were co-infected with low levels of ICMV. The loss of SLCMV in recovered cassava plants, under greenhouse conditions, then facilitated the re-emergence of ICMV. The partial dimer clones of the persistent and non-persistent isolates of SLCMV and the re-emerged isolate of ICMV were infective in Nicotiana benthamiana upon agroinoculation. Studies on pseudo-recombination between SLCMV and ICMV in N. benthamiana provided evidence for trans-replication of ICMV DNA B by SLCMV DNA A.
Collapse
Affiliation(s)
- Chockalingam Karthikeyan
- Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai-625021, Tamil Nadu, India.
- Institute of Botany, University of Basel, Schöenbeinstrasse 6, Basel 4056, Switzerland.
| | - Basavaprabhu L Patil
- Institute of Botany, University of Basel, Schöenbeinstrasse 6, Basel 4056, Switzerland.
- Present address: ICAR-National Research Centre on Plant Biotechnology, PusaCampus, New Delhi110012, India.
| | - Basanta K Borah
- Institute of Botany, University of Basel, Schöenbeinstrasse 6, Basel 4056, Switzerland.
- Present address: Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat 785013, India.
| | - Thulasi R Resmi
- Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai-625021, Tamil Nadu, India.
- Institute of Botany, University of Basel, Schöenbeinstrasse 6, Basel 4056, Switzerland.
| | - Silvia Turco
- Institute of Botany, University of Basel, Schöenbeinstrasse 6, Basel 4056, Switzerland.
| | - Mikhail M Pooggin
- Institute of Botany, University of Basel, Schöenbeinstrasse 6, Basel 4056, Switzerland.
| | - Thomas Hohn
- Institute of Botany, University of Basel, Schöenbeinstrasse 6, Basel 4056, Switzerland.
| | - Karuppannan Veluthambi
- Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai-625021, Tamil Nadu, India.
| |
Collapse
|
26
|
Sahu PP, Sharma N, Puranik S, Chakraborty S, Prasad M. Tomato 26S Proteasome subunit RPT4a regulates ToLCNDV transcription and activates hypersensitive response in tomato. Sci Rep 2016; 6:27078. [PMID: 27252084 PMCID: PMC4890432 DOI: 10.1038/srep27078] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 05/09/2016] [Indexed: 01/05/2023] Open
Abstract
Involvement of 26S proteasomal subunits in plant pathogen-interactions, and the roles of each subunit in independently modulating the activity of many intra- and inter-cellular regulators controlling physiological and defense responses of a plant were well reported. In this regard, we aimed to functionally characterize a Solanum lycopersicum 26S proteasomal subunit RPT4a (SlRPT4) gene, which was differentially expressed after Tomato leaf curl New Delhi virus (ToLCNDV) infection in tolerant cultivar H-88-78-1. Molecular analysis revealed that SlRPT4 protein has an active ATPase activity. SlRPT4 could specifically bind to the stem-loop structure of intergenic region (IR), present in both DNA-A and DNA-B molecule of the bipartite viral genome. Lack of secondary structure in replication-associated gene fragment prevented formation of DNA-protein complex suggesting that binding of SlRPT4 with DNA is secondary structure specific. Interestingly, binding of SlRPT4 to IR inhibited the function of RNA Pol-II and subsequently reduced the bi-directional transcription of ToLCNDV genome. Virus-induced gene silencing of SlRPT4 gene incited conversion of tolerant attributes of cultivar H-88-78-1 into susceptibility. Furthermore, transient overexpression of SlRPT4 resulted in activation of programmed cell death and antioxidant enzymes system. Overall, present study highlights non-proteolytic function of SlRPT4 and their participation in defense pathway against virus infection in tomato.
Collapse
Affiliation(s)
- Pranav Pankaj Sahu
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
- School of Life Sciences, Jawaharlal Nehru University, New Delhi-110067, India
| | - Namisha Sharma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Swati Puranik
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Supriya Chakraborty
- School of Life Sciences, Jawaharlal Nehru University, New Delhi-110067, India
| | - Manoj Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| |
Collapse
|
27
|
Singh AK, Kushwaha N, Chakraborty S. Synergistic interaction among begomoviruses leads to the suppression of host defense-related gene expression and breakdown of resistance in chilli. Appl Microbiol Biotechnol 2016; 100:4035-49. [PMID: 26780359 DOI: 10.1007/s00253-015-7279-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 12/01/2015] [Accepted: 12/26/2015] [Indexed: 10/22/2022]
Abstract
Chilli (Capsicum sp.) is one of the economically important spice and vegetable crops grown in India and suffers great losses due to the infection of begomoviruses. Conventional breeding approaches have resulted in development of a few cultivars of chilli resistant to begomoviruses. A severe leaf curl disease was observed on one such resistant chilli cultivar (Capsicum annuum cv. Kalyanpur Chanchal) grown in the experimental field of the Jawaharlal Nehru University, New Delhi. Four different viral genomic components namely, Chilli leaf curl virus (DNA A), Tomato leaf curl Bangladesh betasatellite (DNA β), Tomato leaf curl New Delhi virus (DNA A), and Tomato leaf curl Gujarat virus (DNA B) were associated with the severe leaf curl disease. Further, frequent association of these four genomic components was also observed in symptomatic plants of other chilli cultivars (Capsicum annuum cv. Kashi Anmol and Capsicum chinense cv. Bhut Jolokia) grown in the experimental field. Interaction studies among the isolated viral components revealed that Nicotiana benthamiana and chilli plants inoculated with four genomic components of begomoviruses exhibited severe leaf curl disease symptoms. In addition, this synergistic interaction resulted in increased viral DNA accumulation in infected plants. Resistant chilli plants co-inoculated with four genomic components of begomoviruses showed drastic reduction of host basal (ascorbate peroxidase, thionin, polyphenol oxidase) and specific defense-related gene (NBS-LRR) expression. Our results suggested that synergistic interaction among begomoviruses created permissive cellular environment in the resistant chilli plants which leads to breakdown of natural resistance, a phenomenon observed for the first time in chilli.
Collapse
Affiliation(s)
- Ashish Kumar Singh
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110 067, India
| | - Nirbhay Kushwaha
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110 067, India
| | - Supriya Chakraborty
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110 067, India.
| |
Collapse
|
28
|
Esmaeili M, Heydarnejad J, Massumi H, Varsani A. Analysis of watermelon chlorotic stunt virus and tomato leaf curl Palampur virus mixed and pseudo-recombination infections. Virus Genes 2015; 51:408-16. [PMID: 26433951 DOI: 10.1007/s11262-015-1250-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 09/18/2015] [Indexed: 01/25/2023]
Abstract
Watermelon chlorotic stunt virus (WmCSV) and tomato leaf curl Palampur virus (ToLCPMV) are limiting factors for cucurbit production in south and southeastern Iran. ToLCPMV infects all cucurbit crops (except watermelons) whereas WmCSV is somewhat limited to watermelon, causing detrimental effects on fruit production. In a survey, we detected WmCSV in all watermelon growing farms in Fars province (southern Iran). Given that WmCSV and ToLCPMV are present in the same geographical location in Iran, we studied the interaction of two viruses. Co-infection using agroinfectious clones of WmCSV and ToLCPMV caused severe symptoms in watermelon and zucchini in comparison to symptoms observed from individual infections. Interestingly, inoculation of zucchini with WmCSV DNA-A and ToLCPMV DNA-B agroinfectious clones or vice versa produced a viable pseudo-recombinant and induced systemic symptoms. This demonstrates that replication-associated protein of DNA-A of each virus is able to bind to cis elements of the DNA-B molecules of another virus.
Collapse
Affiliation(s)
- Maryam Esmaeili
- Department of Plant Protection, College of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Jahangir Heydarnejad
- Department of Plant Protection, College of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran.
| | - Hossain Massumi
- Department of Plant Protection, College of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Arvind Varsani
- Structural Biology Research Unit, Division of Medical Biochemistry, Department of Clinical Laboratory Sciences, University of Cape Town, Rondebosch, Cape Town, 7701, South Africa.,Department of Plant Pathology and Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32611, USA.,School of Biological Sciences, and Biomolecular Interaction Centre, University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand
| |
Collapse
|
29
|
Singh A, Taneja J, Dasgupta I, Mukherjee SK. Development of plants resistant to tomato geminiviruses using artificial trans-acting small interfering RNA. MOLECULAR PLANT PATHOLOGY 2015; 16:724-34. [PMID: 25512230 PMCID: PMC6638473 DOI: 10.1111/mpp.12229] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
RNA interference (RNAi), a conserved RNA-mediated gene regulatory mechanism in eukaryotes, plays an important role in plant growth and development, and as an antiviral defence system in plants. As a counter-strategy, plant viruses encode RNAi suppressors to suppress the RNAi pathways and consequently down-regulate plant defence. In geminiviruses, the proteins AC2, AC4 and AV2 are known to act as RNAi suppressors. In this study, we have designed a gene silencing vector using the features of trans-acting small interfering RNA (tasiRNA), which is simple and can be used to target multiple genes at a time employing a single-step cloning procedure. This vector was used to target two RNAi suppressor proteins (AC2 and AC4) of the geminivirus, Tomato leaf curl New Delhi virus (ToLCNDV). The vector containing fragments of ToLCNDV AC2 and AC4 genes, on agro-infiltration, produced copious quantities of AC2 and AC4 specific siRNA in both tobacco and tomato plants. On challenge inoculation of the agro-infiltrated plants with ToLCNDV, most plants showed an absence of symptoms and low accumulation of viral DNA. Transgenic tobacco plants were raised using the AC2 and AC4 tasiRNA-generating constructs, and T1 plants, obtained from the primary transgenic plants, were tested for resistance separately against ToLCNDV and Tomato leaf curl Gujarat virus. Most plants showed an absence of symptoms and low accumulation of the corresponding viruses, the resistance being generally proportional to the amounts of siRNA produced against AC2 and AC4 genes. This is the first report of the use of artificial tasiRNA to generate resistance against an important plant virus.
Collapse
Affiliation(s)
- Archana Singh
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Jyoti Taneja
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Indranil Dasgupta
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Sunil Kumar Mukherjee
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| |
Collapse
|
30
|
Bhattacharyya D, Gnanasekaran P, Kumar RK, Kushwaha NK, Sharma VK, Yusuf MA, Chakraborty S. A geminivirus betasatellite damages the structural and functional integrity of chloroplasts leading to symptom formation and inhibition of photosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:5881-95. [PMID: 26113193 PMCID: PMC4566980 DOI: 10.1093/jxb/erv299] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Geminivirus infection often causes severe vein clearing symptoms in hosts. Recently a betasatellite has emerged as a key regulator of symptom induction. To understand the host-betasatellite interactions in the process of symptom development, a systematic study was carried out involving symptoms induced by a betasatellite associated with radish leaf curl disease (RaLCB) in Nicotiana benthamiana. It has been found that βC1 protein localized to chloroplasts of host cells, and RaLCB lacking βC1, which failed to produce symptoms, had no effect on chloroplast ultrastructure. Vein flecking induced by transiently expressed βC1 was associated with chloroplast ultrastructure. In addition, the betasatellite down-regulates expression of genes involved in chlorophyll biosynthesis as well as genes involved in chloroplast development and plastid translocation. Interestingly, the expression of key host genes involved in chlorophyll degradation remains unaffected. Betasatellite infection drastically reduced the numbers of active reaction centres and the plastoquinol pool size in leaves exhibiting vein clearing symptoms. Betasatellite-mediated impediments at different stages of chloroplast functionality affect the photosynthetic efficiency of N. benthamiana. To the best of the authors' knowledge, this is the first evidence of a chloroplast-targeting protein encoded by a DNA virus which induces vein clearing and structurally and functionally damages chloroplasts in plants.
Collapse
Affiliation(s)
- Dhriti Bhattacharyya
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi-110 067, India
| | - Prabu Gnanasekaran
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi-110 067, India
| | - Reddy Kishore Kumar
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi-110 067, India
| | - Nirbhay Kumar Kushwaha
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi-110 067, India
| | - Veerendra Kumar Sharma
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi-110 067, India
| | - Mohd Aslam Yusuf
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi-110 067, India
| | - Supriya Chakraborty
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi-110 067, India
| |
Collapse
|
31
|
Sharma VK, Basu S, Chakraborty S. RNAi mediated broad-spectrum transgenic resistance in Nicotiana benthamiana to chilli-infecting begomoviruses. PLANT CELL REPORTS 2015; 34:1389-99. [PMID: 25916177 DOI: 10.1007/s00299-015-1795-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 03/23/2015] [Accepted: 04/11/2015] [Indexed: 06/04/2023]
Abstract
KEY MESSAGE Two RNAi constructs were designed targeting chilli-infecting begomoviruses and associated betasatellites. Broad-spectrum resistance was achieved against multiple begomoviruses associated with leaf curl disease of chillies in India. Chilli leaf curl disease (ChiLCD) caused by begomoviruses (family: Geminiviridae) has emerged as one of the most devastating viral diseases of chilli, especially in the Indian sub-continent. The severity of disease incidence is expanding at an alarming rate due to the emergence of new begomoviruses with greater ability to infect this crop in almost all the major chilli producing regions of India. In this study, we applied the RNA interference (RNAi) based strategies to control infection of chilli-infecting begomoviruses (CIBs). For this, we have generated transgenic Nicotiana benthamiana plants harboring two different intron hairpin RNAi constructs [designated as TR1 (AC1/AC2) and TR2 (AC1/AC2/βC1)] using conserved regions of viral genome and associated betasatellite. During our study, we observed that, two lines harboring TR1 construct (13-1 and 2-4) and one line harboring TR2 construct (5-1) have shown resistance to the most predominant Indian CIBs like Chilli leaf curl virus-Pakistan isolate Varanasi, Tomato leaf curl New Delhi virus-isolate chilli, and a newly identified begomovirus species, Chilli leaf curl Vellanad virus. Resistant lines accumulated transgene-specific siRNAs, confirming RNAi-mediated resistance against these viruses. Furthermore, these resistant lines also displayed delayed symptom appearance and milder symptoms, as compared to virus-inoculated non-transgenic plants. Average viral DNA accumulation in the resistant lines was reduced up to 90% as compared to non-transgenic plants. Thus, our study demonstrated the application of RNAi-mediated approach in providing resistance against diverse monopartite and bipartite begomoviruses associated with ChiLCD.
Collapse
Affiliation(s)
- Veerandra Kumar Sharma
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | | | | |
Collapse
|
32
|
Patil BL, Fauquet CM. Studies on differential behavior of cassava mosaic geminivirus DNA components, symptom recovery patterns, and their siRNA profiles. Virus Genes 2015; 50:474-86. [PMID: 25724177 DOI: 10.1007/s11262-015-1184-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 02/18/2015] [Indexed: 11/28/2022]
Abstract
Cassava mosaic disease caused by cassava mosaic geminiviruses (CMGs) with bipartite genome organization is a major constraint for production of cassava in the African continent and the Indian sub-continent. Currently, there are eleven recognized species of CMGs, and several diverse isolates represent them, with vast amount of sequence variability, reflecting into diversity of symptom severity/phenotypes. Here, we make a systematic effort to study the infection dynamics of several species of CMGs and their isolates. Further, we try to identify the genomic component of CMGs contributing to the manifestation of diverse patterns of symptoms and the molecular basis for the differential behavior of CMGs. The pseudo-recombination studies carried out by swapping of DNA-A and DNA-B components of the CMGs revealed that the DNA-B component significantly contributes to the symptom severity. Past studies had shown that the DNA-A component of Sri Lankan cassava mosaic virus shows monopartite feature. Thus, the ability of DNA-A component alone, to replicate and move systemically in the host plant with inherent monopartite features was investigated for all the CMGs. Geminiviruses are known to trigger gene silencing and are also its target, resulting in recovery of the host plant from viral infection. In the collection of several different CMG species and isolates we had, there was a vast variability in their recovery and non-recovery phenotypes. To understand the molecular basis of this, the origin and distribution of virus-derived small interfering RNAs were mapped across their genome and across the CMG-infected symptomatic Nicotiana benthamiana.
Collapse
|
33
|
Kushwaha N, Singh AK, Basu S, Chakraborty S. Differential response of diverse solanaceous hosts to tomato leaf curl New Delhi virus infection indicates coordinated action of NBS-LRR and RNAi-mediated host defense. Arch Virol 2015; 160:1499-509. [PMID: 25894479 DOI: 10.1007/s00705-015-2399-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 03/13/2015] [Indexed: 10/23/2022]
Abstract
Tomato leaf curl New Delhi virus (ToLCNDV) is a bipartite begomovirus (family Geminiviridae) that infects a wide range of plants. ToLCNDV has emerged as an important pathogen and a serious threat to tomato production in India. A comparative and molecular analysis of ToLCNDV pathogenesis was performed on diverse solanaceous hosts (Capsicum annuum, Nicotiana benthamiana, N. tabacum, and Solanum lycopersicum). N. benthamiana was found to be the most susceptible host, whereas C. annuum showed resistance against an isolate of ToLCNDV collected in New Delhi from tomato (GenBank accession no. U15015 and U15017). S. lycopersicum and N. tabacum developed conspicuous symptoms and allowed virus to accumulate to significantly high titers. The viral DNA level was concurrent with symptom severity. ToLCNDV-specific siRNA levels were directly proportional to the amount of viral DNA. To investigate the basis for the differences in response of these hosts to ToLCNDV, a comparative expression analysis of selected defense-related genes was carried out. The results indicated differences in expression levels of genes involved in the posttranscriptional gene silencing machinery (RDR6, AGO1 and SGS3) as well as basal host defense responses (nucleotide-binding site and leucine-rich repeat [NBS-LRR] proteins and lipid transfer protein [LTP]). Among these, expression of NBS-LRR genes was found to be significantly higher in C. annuum following ToLCNDV infection. Our analyses suggest that the expression of host defense responses determines the level of ToLCNDV accumulation and degree of symptom development.
Collapse
Affiliation(s)
- Nirbhay Kushwaha
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110 067, India
| | | | | | | |
Collapse
|
34
|
Kumar J, Gunapati S, Alok A, Lalit A, Gadre R, Sharma NC, Roy JK, Singh SP. Cotton leaf curl Burewala virus with intact or mutant transcriptional activator proteins: complexity of cotton leaf curl disease. Arch Virol 2015; 160:1219-28. [PMID: 25772572 DOI: 10.1007/s00705-015-2384-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 02/26/2015] [Indexed: 12/14/2022]
Abstract
Cotton leaf curl disease (CLCuD) is a serious disease of cotton on the Indian subcontinent. In the present study, three cotton leaf curl viruses, cotton leaf curl Burewala virus (CLCuBuV), cotton leaf curl Kokhran virus (CLCuKoV) and cotton leaf curl Multan virus (CLCuMV), and their associated satellites, cotton leaf curl Multan betasatellite (CLCuMB) and cotton leaf curl Multan alphasatellite (CLCuMA), were detected. CLCuBuV with either intact (CLCuBuV-1) or mutant (CLCuBuV-2) transcriptional activator protein (TrAP) were detected in different plants. Agroinoculation with CLCuBuV-1 or CLCuBuV-2 together with CLCuMB and CLCuMA, resulted in typical leaf curling and stunting of tobacco plants. Inoculation with CLCuKoV or an isolate of CLCuMV (CLCuMV-2), together with CLCuMB and CLCuMA, induced severe leaf curling, while the other isolate of CLCuMV (CLCuMV-1), which was recombinant in origin, showed mild leaf curling in tobacco. To investigate the effect of intact or mutant TrAP and also the recombination events, CLCuBuV-1, CLCuBuV-2, CLCuMV-1 or CLCuMV-2 together with the satellites (CLCuMA and CLCuMB) were transferred to cotton via whitefly-mediated transmission. Cotton plants containing CLCuBuV-1, CLCuBuV-2 or CLCuMV-2 together with satellites showed curling and stunting, whereas the plants having CLCuMV-1 and the satellites showed only mild and indistinguishable symptoms. CLCuBuV-1 (intact TrAP) showed severe symptoms in comparison to CLCuBuV-2 (mutant TrAP). The present study reveals that two types of CLCuBuV, one with an intact TrAP and the other with a mutant TrAP, exist in natural infection of cotton in India. Additionally, CLCuMuV-1, which has a recombinant origin, induces mild symptoms in comparison to the other CLCuMV isolates.
Collapse
Affiliation(s)
- Jitendra Kumar
- National Agri-Food Biotechnology Institute, Mohali, Punjab, India,
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Ruščić J, Gutiérrez-Aguirre I, Tušek Žnidarič M, Kolundžija S, Slana A, Barut M, Ravnikar M, Krajačić M. A new application of monolithic supports: The separation of viruses from one another. J Chromatogr A 2015; 1388:69-78. [DOI: 10.1016/j.chroma.2015.01.097] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 01/30/2015] [Accepted: 01/30/2015] [Indexed: 11/29/2022]
|
36
|
Sharma VK, Kushwaha N, Basu S, Singh AK, Chakraborty S. Identification of siRNA generating hot spots in multiple viral suppressors to generate broad-spectrum antiviral resistance in plants. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2015; 21:9-18. [PMID: 25648440 PMCID: PMC4312327 DOI: 10.1007/s12298-014-0264-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 09/16/2014] [Accepted: 09/22/2014] [Indexed: 05/27/2023]
Abstract
Viruses are one of the most devastating plant pathogens causing severe economic losses worldwide. RNA silencing is a robust technology to knock down the expression of specific genes. This mechanism can be exploited to generate virus resistant plants through expression of the viral derived sequences. Viruses in turn have evolved to encode suppressors of RNA silencing to combat host defense. Mixed infection of plants is of common occurrence in nature and simultaneous targeting of suppressor(s) of multiple viruses offers an effective strategy. In this study, we have in silico designed siRNAs against suppressors of the two most devastating viruses of tomato, leaf curl causing tomato begomoviruses and Cucumber mosaic virus. Three different siRNA prediction programs were used to evaluate siRNAs generating capability of each sequence and common putative candidate siRNAs were selected fulfilling the stringent parameters. Our results indicated that in the case of each suppressor a particular region of 100-150 base pairs could be source of potent siRNAs referred as hotspots. Expression of these viral hot spots as a single construct in the plants would facilitate development of transgenic plants with a high degree of broad spectrum resistance against multiple viruses.
Collapse
Affiliation(s)
| | - Nirbhay Kushwaha
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Saumik Basu
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | | |
Collapse
|
37
|
Melgarejo TA, Kon T, Gilbertson RL. Molecular and Biological Characterization of Distinct Strains of Jatropha mosaic virus from the Dominican Republic Reveal a Potential to Infect Crop Plants. PHYTOPATHOLOGY 2015; 105:141-53. [PMID: 25163012 DOI: 10.1094/phyto-05-14-0135-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In the Dominican Republic (DO), jatropha plants with yellow mosaic symptoms are commonly observed in and around fields of various crop plants. Complete nucleotide sequences of DNA-A and DNA-B components of four bipartite begomovirus isolates associated with symptomatic jatropha plants collected from three geographical locations in the DO were determined. Sequence comparisons revealed highest identities (91 to 92%) with the DNA-A component of an isolate of Jatropha mosaic virus (JMV) from Jamaica, indicating that the bipartite begomovirus isolates from the DO are strains of JMV. When introduced into jatropha seedlings by particle bombardment, the cloned components of the JMV strains from the DO induced stunting and yellow mosaic, indistinguishable from symptoms observed in the field, thereby fulfilling Koch's postulates for the disease. The JMV strains also induced disease symptoms in Nicotiana benthamiana, tobacco, and several cultivars of common bean from the Andean gene pool, including one locally grown in the DO. Asymmetry in the infectivity and symptomatology of pseudorecombinants provided further support for the strain designation of the JMV isolates from the DO. Thus, JMV in the DO is a complex of genetically distinct strains that have undergone local evolution and have the potential to cause disease in crop plants.
Collapse
|
38
|
Tomato mottle wrinkle virus, a recombinant begomovirus infecting tomato in Argentina. Arch Virol 2014; 160:581-5. [PMID: 25252814 DOI: 10.1007/s00705-014-2216-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 08/26/2014] [Indexed: 10/24/2022]
Abstract
Begomoviruses seriously threaten tomato production in South America. Here, we present the molecular characterization of a novel tomato-infecting begomovirus isolated in Argentina and demonstrate its infectivity. After cloning and sequencing the complete genome of this new virus, pairwise genetic distance and phylogenetic analyses revealed that it is a novel virus that is closely related to other begomoviruses found in Argentina, Brazil and Bolivia. We have proposed naming the virus tomato mottle wrinkle virus (ToMoWrV), based on symptoms produced upon its biolistic inoculation into tomato plants. Recombination analysis revealed that ToMoWrV is a recombinant, with parental sequences likely belonging to the South American begomoviruses soybean blistering mosaic virus (SoBlMV) and tomato yellow vein streak virus (ToYVSV).
Collapse
|
39
|
George B, Ruhel R, Mazumder M, Sharma VK, Jain SK, Gourinath S, Chakraborty S. Mutational analysis of the helicase domain of a replication initiator protein reveals critical roles of Lys 272 of the B' motif and Lys 289 of the β-hairpin loop in geminivirus replication. J Gen Virol 2014; 95:1591-1602. [PMID: 24728710 DOI: 10.1099/vir.0.064923-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Replication initiator protein (Rep) is indispensable for rolling-circle replication of geminiviruses, a group of plant-infecting circular ssDNA viruses. However, the mechanism of DNA unwinding by circular ssDNA virus-encoded helicases is unknown. To understand geminivirus Rep function, we compared the sequence and secondary structure of Rep with those of bovine papillomavirus E1 and employed charged residue-to-alanine scanning mutagenesis to generate a set of single-substitution mutants in Walker A (K227), in Walker B (D261, 262), and within or adjacent to the B' motif (K272, K286 and K289). All mutants were asymptomatic and viral accumulation could not be detected by Southern blotting in both tomato and N. benthamiana plants. Furthermore, the K272 and K289 mutants were deficient in DNA binding and unwinding. Biochemical studies and modelling data based on comparisons with the known structures of SF3 helicases suggest that the conserved lysine (K289) located in a predicted β-hairpin loop may interact with ssDNA, while lysine 272 in the B' motif (K272) located on the outer surface of the protein is presumably involved in coupling ATP-induced conformational changes to DNA binding. To the best of our knowledge, this is the first time that the roles of the B' motif and the adjacent β-hairpin loop in geminivirus replication have been elucidated.
Collapse
Affiliation(s)
- Biju George
- Department of Biotechnology, Jamia Hamdard University, New Delhi, India
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rajrani Ruhel
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Mohit Mazumder
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | | | | | | |
Collapse
|
40
|
Grigoras I, Ginzo AIDC, Martin DP, Varsani A, Romero J, Mammadov AC, Huseynova IM, Aliyev JA, Kheyr-Pour A, Huss H, Ziebell H, Timchenko T, Vetten HJ, Gronenborn B. Genome diversity and evidence of recombination and reassortment in nanoviruses from Europe. J Gen Virol 2014; 95:1178-1191. [DOI: 10.1099/vir.0.063115-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The recent identification of a new nanovirus, pea necrotic yellow dwarf virus, from pea in Germany prompted us to survey wild and cultivated legumes for nanovirus infections in several European countries. This led to the identification of two new nanoviruses: black medic leaf roll virus (BMLRV) and pea yellow stunt virus (PYSV), each considered a putative new species. The complete genomes of a PYSV isolate from Austria and three BMLRV isolates from Austria, Azerbaijan and Sweden were sequenced. In addition, the genomes of five isolates of faba bean necrotic yellows virus (FBNYV) from Azerbaijan and Spain and those of four faba bean necrotic stunt virus (FBNSV) isolates from Azerbaijan were completely sequenced, leading to the first identification of FBNSV occurring in Europe. Sequence analyses uncovered evolutionary relationships, extensive reassortment and potential remnants of mixed nanovirus infections, as well as intra- and intercomponent recombination events within the nanovirus genomes. In some virus isolates, diverse types of the same genome component (paralogues) were observed, a type of genome complexity not described previously for any member of the family Nanoviridae. Moreover, infectious and aphid-transmissible nanoviruses from cloned genomic DNAs of FBNYV and BMLRV were reconstituted that, for the first time, allow experimental reassortments for studying the genome functions and evolution of these nanoviruses.
Collapse
Affiliation(s)
- Ioana Grigoras
- Institut des Sciences du Végétal, CNRS, 91198 Gif sur Yvette, France
| | - Ana Isabel del Cueto Ginzo
- Departamento de Protección Vegetal, Instituto Nacional de Investigación y Tecnología Agraria (INIA), Carretera de La Coruna Km. 7.0, Madrid 28040, Spain
| | - Darren P. Martin
- Computational Biology Group, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Arvind Varsani
- Electron Microscope Unit, University of Cape Town, Rondebosch, 7701, Cape Town, South Africa
- Department of Plant Pathology and Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
- School of Biological Sciences and Biomolecular Interaction Centre, University of Canterbury, Christchurch, 8140, New Zealand
| | - Javier Romero
- Departamento de Protección Vegetal, Instituto Nacional de Investigación y Tecnología Agraria (INIA), Carretera de La Coruna Km. 7.0, Madrid 28040, Spain
| | - Alamdar Ch. Mammadov
- Department of Fundamental Problems of Biological Productivity, Institute of Botany, Azerbaijan National Academy of Sciences, 40 Badamdar Highway, Baku AZ 1073, Azerbaijan
| | - Irada M. Huseynova
- Department of Fundamental Problems of Biological Productivity, Institute of Botany, Azerbaijan National Academy of Sciences, 40 Badamdar Highway, Baku AZ 1073, Azerbaijan
| | - Jalal A. Aliyev
- Department of Fundamental Problems of Biological Productivity, Institute of Botany, Azerbaijan National Academy of Sciences, 40 Badamdar Highway, Baku AZ 1073, Azerbaijan
| | | | - Herbert Huss
- Lehr- und Forschungszentrum für Landwirtschaft (LFZ) Raumberg-Gumpenstein, Versuchsstation Lambach/Stadl-Paura, 4651 Stadl-Paura, Austria
| | - Heiko Ziebell
- Julius Kühn Institut, Bundesforschungsinstitut für Kulturpflanzen, Institut für Epidemiologie und Pathogendiagnostik, 38104 Braunschweig, Germany
| | - Tatiana Timchenko
- Institut des Sciences du Végétal, CNRS, 91198 Gif sur Yvette, France
| | - Heinrich-Josef Vetten
- Julius Kühn Institut, Bundesforschungsinstitut für Kulturpflanzen, Institut für Epidemiologie und Pathogendiagnostik, 38104 Braunschweig, Germany
| | - Bruno Gronenborn
- Institut des Sciences du Végétal, CNRS, 91198 Gif sur Yvette, France
| |
Collapse
|
41
|
Savory FR, Varma V, Ramakrishnan U. Identifying geographic hot spots of reassortment in a multipartite plant virus. Evol Appl 2014; 7:569-79. [PMID: 24944570 PMCID: PMC4055178 DOI: 10.1111/eva.12156] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 03/05/2014] [Indexed: 11/26/2022] Open
Abstract
Reassortment between different species or strains plays a key role in the evolution of multipartite plant viruses and can have important epidemiological implications. Identifying geographic locations where reassortant lineages are most likely to emerge could be a valuable strategy for informing disease management and surveillance efforts. We developed a predictive framework to identify potential geographic hot spots of reassortment based upon spatially explicit analyses of genome constellation diversity. To demonstrate the utility of this approach, we examined spatial variation in the potential for reassortment among Cardamom bushy dwarf virus (CBDV; Nanoviridae, Babuvirus) isolates in Northeast India. Using sequence data corresponding to six discrete genome components for 163 CBDV isolates, a quantitative measure of genome constellation diversity was obtained for locations across the sampling region. Two key areas were identified where viruses with highly distinct genome constellations cocirculate, and these locations were designated as possible geographic hot spots of reassortment, where novel reassortant lineages could emerge. Our study demonstrates that the potential for reassortment can be spatially dependent in multipartite plant viruses and highlights the use of evolutionary analyses to identify locations which could be actively managed to facilitate the prevention of outbreaks involving novel reassortant strains.
Collapse
Affiliation(s)
- Fiona R Savory
- National Centre for Biological Sciences, TATA Institute of Fundamental Research Bangalore, India
| | - Varun Varma
- National Centre for Biological Sciences, TATA Institute of Fundamental Research Bangalore, India
| | - Uma Ramakrishnan
- National Centre for Biological Sciences, TATA Institute of Fundamental Research Bangalore, India
| |
Collapse
|
42
|
A novel begomovirus isolated from sida contains putative cis- and trans-acting replication specificity determinants that have evolved independently in several geographical lineages. Arch Virol 2014; 159:2283-94. [PMID: 24737005 DOI: 10.1007/s00705-014-2073-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 03/27/2014] [Indexed: 10/25/2022]
Abstract
A novel begomovirus isolated from a Sida rhombifolia plant collected in Sinaloa, Mexico, was characterized. The genomic components of sida mosaic Sinaloa virus (SiMSinV) shared highest sequence identity with DNA-A and DNA-B components of chino del tomate virus (CdTV), suggesting a vertical evolutionary relationship between these viruses. However, recombination analysis indicated that a short segment of SiMSinV DNA-A encompassing the plus-strand replication origin and the 5´-proximal 43 codons of the Rep gene was derived from tomato mottle Taino virus (ToMoTV). Accordingly, the putative cis- and trans-acting replication specificity determinants of SiMSinV were identical to those of ToMoTV but differed from those of CdTV. Modeling of the SiMSinV and CdTV Rep proteins revealed significant differences in the region comprising the small β1/β5 sheet element, where five putative DNA-binding specificity determinants (SPDs) of Rep (i.e., amino acid residues 5, 8, 10, 69 and 71) were previously identified. Computer-assisted searches of public databases led to identification of 33 begomoviruses from three continents encoding proteins with SPDs identical to those of the Rep encoded by SiMSinV. Sequence analysis of the replication origins demonstrated that all 33 begomoviruses harbor potential Rep-binding sites identical to those of SiMSinV. These data support the hypothesis that the Rep β1/β5 sheet region determines specificity of this protein for DNA replication origin sequences.
Collapse
|
43
|
Silva FN, Lima ATM, Rocha CS, Castillo-Urquiza GP, Alves-Júnior M, Zerbini FM. Recombination and pseudorecombination driving the evolution of the begomoviruses Tomato severe rugose virus (ToSRV) and Tomato rugose mosaic virus (ToRMV): two recombinant DNA-A components sharing the same DNA-B. Virol J 2014; 11:66. [PMID: 24708727 PMCID: PMC4113279 DOI: 10.1186/1743-422x-11-66] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 03/27/2014] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Begomoviruses are dicot-infecting, whitefly-transmitted viruses with a genome comprised of one or two molecules of circular, single-stranded DNA. In Brazil, tomato-infecting begomoviruses have emerged as serious pathogens since the introduction of a new biotype of the insect vector in the mid-1990's. Tomato rugose mosaic virus (ToRMV) and Tomato severe rugose virus (ToSRV) are often found in tomato fields. The complete sequence of the DNA-B components of ToSRV and ToRMV show an identity of 98.2%. Additionally, the high nucleotide identity (96.2%) between their common regions indicates that these two viruses may share the same DNA-B. METHODS Tomato seedlings were biolistically inoculated with ToSRV (DNA-A and DNA-B) and ToRMV (DNA-A and DNA-B) infectious clones in every possible combination of single or mixed infection. Symptom expression was evaluated for up to 35 days post-inoculation (dpi). DNA was extracted at 28 dpi and the presence of each viral genomic component was examined by rolling circle amplification (RCA) followed by digestion, as well as by quantitative, real-time PCR. Sequence comparisons, recombination and phylogenetic analyzes were performed using EMBOSS needle, RDP program and maximum likelihood inference, respectively. RESULTS Symptoms in tomato plants inoculated with the different combinations of ToRMV and ToSRV DNA-A and DNA-B components consisted of a typical mosaic in all combinations. Pseudorecombinants were formed in all possible combinations. When two DNA-A or two DNA-B components were inoculated simultaneously, the ToRMV components were detected preferentially in relation to the ToSRV components. The combination of minor changes in both the Rep protein and the CR may be involved in the preferential replication of ToRMV components. Recombination and phylogenetic analyzes support the exchange of genetic material between ToRMV and ToSRV. CONCLUSIONS ToRMV and ToSRV form viable pseudorecombinants in their natural host (Solanum lycopersicum) and share the same DNA-B. ToRMV DNA components are preferentially replicated over ToSRV components. These results indicate that the emergence of ToRMV involved both recombination and pseudorecombination, further highlighting the importance of these mechanisms in the emergence and adaptation of begomoviruses.
Collapse
Affiliation(s)
- Fábio N Silva
- Departamento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil
| | - Alison TM Lima
- Departamento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil
| | - Carolina S Rocha
- Current address: FuturaGene Brasil, Avenida José Lembo 1010, Itapeteninga, SP 18210-780, Brazil
| | | | - Miguel Alves-Júnior
- Current address: Faculdade de Ciências Agrárias, Universidade Federal do Pará, Altamira, PA 68372-040, Brazil
| | - F Murilo Zerbini
- Departamento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil
| |
Collapse
|
44
|
Ranjan P, Singh AK, Kumar RV, Basu S, Chakraborty S. Host-specific adaptation of diverse betasatellites associated with distinct Indian tomato-infecting begomoviruses. Virus Genes 2014; 48:334-42. [DOI: 10.1007/s11262-013-1031-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 12/21/2013] [Indexed: 10/25/2022]
|
45
|
Reddy MS, Kanakala S, Srinivas KP, Hema M, Malathi VG, Sreenivasulu P. Complete genome sequence of a new begomovirus associated with yellow mosaic disease of Hemidesmus indicus in India. Arch Virol 2013; 159:1223-8. [PMID: 24276235 DOI: 10.1007/s00705-013-1811-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 06/27/2013] [Indexed: 11/30/2022]
Abstract
The complete DNA A genome of a virus isolate associated with yellow mosaic disease of a medicinal plant, Hemidesmus indicus, from India was cloned and sequenced. The length of DNA A was 2825 nucleotides, 35 nucleotides longer than the unit genome of monopartite begomoviruses. Comparison of the nucleotide sequence of DNA A of the virus isolate with those of other begomoviruses showed maximum sequence identity of 69 % to DNA A of ageratum yellow vein China virus (AYVCNV; AJ558120) and 68 % with tomato yellow leaf curl virus- LBa4 (TYLCV; EF185318), and it formed a distinct clade in phylogenetic analysis. The genome organization of the present virus isolate was found to be similar to that of Old World monopartite begomoviruses. The genome was considered to be monopartite, because association of DNA B and β satellite DNA components was not detected. Based on its sequence identity (<70 %) to all other begomoviruses known to date and ICTV (International Committee on Taxonomy of Viruses) species demarcating criteria (<89 % identity), it is considered a member of a novel begomovirus species, and the tentative name "Hemidesmus yellow mosaic virus" (HeYMV) is proposed.
Collapse
Affiliation(s)
- M Sreekanth Reddy
- Sri Venkateswara University, Tirupati, Andhra Pradesh, 517 502, India
| | | | | | | | | | | |
Collapse
|
46
|
Kanakala S, Jyothsna P, Shukla R, Tiwari N, Veer BS, Swarnalatha P, Krishnareddy M, Malathi VG. Asymmetric synergism and heteroencapsidation between two bipartite begomoviruses, tomato leaf curl New Delhi virus and tomato leaf curl Palampur virus. Virus Res 2013; 174:126-36. [PMID: 23578824 DOI: 10.1016/j.virusres.2013.03.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 03/15/2013] [Accepted: 03/17/2013] [Indexed: 11/30/2022]
Affiliation(s)
- S Kanakala
- Advanced Centre for Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi 110012, India
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Vu TV, Roy Choudhury N, Mukherjee SK. Transgenic tomato plants expressing artificial microRNAs for silencing the pre-coat and coat proteins of a begomovirus, Tomato leaf curl New Delhi virus, show tolerance to virus infection. Virus Res 2013; 172:35-45. [DOI: 10.1016/j.virusres.2012.12.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 12/18/2012] [Accepted: 12/19/2012] [Indexed: 10/27/2022]
|
48
|
Borah BK, Dasgupta I. Begomovirus research in India: a critical appraisal and the way ahead. J Biosci 2013; 37:791-806. [PMID: 22922204 DOI: 10.1007/s12038-012-9238-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Begomoviruses are a large group of whitefly-transmitted plant viruses containing single-stranded circular DNA encapsidated in geminate particles. They are responsible for significant yield losses in a wide variety of crops in India. Research on begomoviruses has focussed on the molecular characterization of the viruses, their phylogenetic analyses, infectivities on host plants, DNA replication, transgenic resistance, promoter analysis and development of virus-based gene silencing vectors. There have been a number of reports of satellite molecules associated with begomoviruses. This article aims to summarize the major developments in begomoviral research in India in the last approximately 15 years and identifies future areas that need more attention.
Collapse
Affiliation(s)
- Basanta K Borah
- Department of Plant Molecular Biology, University of Delhi South Campus, Delhi 110 021, India
| | | |
Collapse
|
49
|
Jyothsna P, Rawat R, Malathi VG. Predominance of tomato leaf curl Gujarat virus as a monopartite begomovirus: association with tomato yellow leaf curl Thailand betasatellite. Arch Virol 2013; 158:217-24. [PMID: 22983111 DOI: 10.1007/s00705-012-1468-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 07/27/2012] [Indexed: 11/28/2022]
Abstract
Tomato leaf curl is a serious malady in the state of Maharashtra, India, causing nearly 100 % yield loss. An extensive survey was done in the affected fields of tomato in the year 2008, and members of three species of begomoviruses were identified as causing the disease. More than 60 % of the samples from diseased plants were infected with tomato leaf curl Gujarat virus (ToLCGuV). Isolates collected from these fields differed from the Varanasi isolate of ToLCGuV in not having a DNA B component. Instead, they were like typical Old World monopartite begomoviruses in that they were associated with only one betasatellite, tomato yellow leaf curl Thailand betasatellite (TYLCTHB). ToLCGuV alone is readily infectious, expressing systemic symptoms in Nicotiana benthamiana and tomato. Co-inoculation of ToLCGuV with TYLCTHB, increased symptom severity and reduced the incubation time required for symptom expression. ToLCGuV successfully interacted with heterologous DNA B component of ToLCNDV [IN:Pun:JID:08], and co-inoculation of these two resulted in yellow mottling symptoms that were typical of DNA B.
Collapse
Affiliation(s)
- P Jyothsna
- Advanced Centre for Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi 110012, India
| | | | | |
Collapse
|
50
|
Kumar SP, Patel SK, Kapopara RG, Jasrai YT, Pandya HA. Evolutionary and molecular aspects of Indian tomato leaf curl virus coat protein. INTERNATIONAL JOURNAL OF PLANT GENOMICS 2012; 2012:417935. [PMID: 23304121 PMCID: PMC3529866 DOI: 10.1155/2012/417935] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 11/07/2012] [Accepted: 11/08/2012] [Indexed: 05/21/2023]
Abstract
Tomato leaf curl disease (ToLCD) is manifested by yellowing of leaf lamina with upward leaf curl, leaf distortion, shrinking of the leaf surface, and stunted plant growth caused by tomato leaf curl virus (ToLCV). In the present study, using computational methods we explored the evolutionary and molecular prospects of viral coat protein derived from an isolate of Vadodara district, Gujarat (ToLCGV-[Vad]), India. We found that the amino acids in coat protein required for systemic infection, viral particle formation, and insect transmission to host cells were conserved amongst Indian strains. Phylogenetic studies on Indian ToLCV coat proteins showed evolutionary compatibility with other viral taxa. Modeling of coat protein revealed a topology similar to characteristic Geminate viral particle consisting of antiparallel β-barrel motif with N-terminus α-helix. The molecular interaction of coat protein with the viral DNA required for encapsidation and nuclear shuttling was investigated through sequence- and structure-based approaches. We further emphasized the role of loops in coat protein structure as molecular recognition interface.
Collapse
Affiliation(s)
- Sivakumar Prasanth Kumar
- Department of Bioinformatics, Applied Botany Center, University School of Sciences, Gujarat University, Ahmedabad 380 009, India
| | - Saumya K. Patel
- Department of Bioinformatics, Applied Botany Center, University School of Sciences, Gujarat University, Ahmedabad 380 009, India
| | - Ravi G. Kapopara
- Department of Bioinformatics, Applied Botany Center, University School of Sciences, Gujarat University, Ahmedabad 380 009, India
| | - Yogesh T. Jasrai
- Department of Bioinformatics, Applied Botany Center, University School of Sciences, Gujarat University, Ahmedabad 380 009, India
- Department of Botany, University School of Sciences, Gujarat University, Ahmedabad 380 009, India
| | - Himanshu A. Pandya
- Department of Bioinformatics, Applied Botany Center, University School of Sciences, Gujarat University, Ahmedabad 380 009, India
- Department of Botany, University School of Sciences, Gujarat University, Ahmedabad 380 009, India
| |
Collapse
|