1
|
Kostinov M, Svitich O, Chuchalin A, Abramova N, Osiptsov V, Khromova E, Pakhomov D, Tatevosov V, Vlasenko A, Gainitdinova V, Mashilov K, Kryukova N, Baranova I, Kostinov A. Changes in nasal, pharyngeal and salivary secretory IgA levels in patients with COVID-19 and the possibility of correction of their secretion using combined intranasal and oral administration of a pharmaceutical containing antigens of opportunistic microorganisms. Drugs Context 2023; 12:2022-10-4. [PMID: 37342460 PMCID: PMC10278444 DOI: 10.7573/dic.2022-10-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 05/08/2023] [Indexed: 06/23/2023] Open
Abstract
Background Although extensive research has been conducted on the role of local immunity in patients with SARS-CoV-2, little is known about the production and concentrations of secretory IgA (SIgA) in different mucosal compartments. This article aims to assess the secretion of SIgA in the nasal and pharyngeal compartments and saliva of patients with COVID-19 and to investigate the possibility and efficiency of correction of their secretion using combined intranasal and oral administration of a pharmaceutical containing antigens of opportunistic microorganisms. Methods This study included 78 inpatients, aged between 18 and 60 years, who had confirmed COVID-19 with moderate lung involvement. The control group (n=45) received basic therapy, and the treatment group (n=33) was additionally administered the bacteria-based pharmaceutical Immunovac VP4 from day 1 to day 10 of hospitalization. SIgA levels were measured by ELISA at baseline and on days 14 and 30. Results No systemic or local reactions associated with Immunovac VP4 were reported. We observed a statistically significant reduction in the duration of fever and hospitalization in patients who received Immunovac VP4 compared with those from the control group (p=0.03 and p=0.05, respectively). Changes over time in SIgA levels in nasal swabs were found to be significantly different in the two treatment groups (F=7.9, p[78.0]<0.001). On day 14 of observation, patients in the control group showed a statistically significant reduction in SIgA levels from baseline (p=0.02), whereas patients in the Immunovac VP4 group had stable SIgA levels (p=0.07). On day 30 after the start of treatment, there was a statistically significant increase in SIgA levels in the Immunovac VP4 group compared with baseline (from 77.7 (40.5-98.7) μg/L to 113.4 (39.8-156.7) μg/L; p=0.05) and the levels measured on day 14 (from 60.2 (23.3-102.9) μg/L to 113.4 (39.8-156.7) μg/L; p=0.03). The control group showed a statistically significant decrease in levels of nasal SIgA (to 37.3) on day 30 (p=0.007 for comparison with baseline values and p=0.04 for comparison with levels measured on day 14). Changes over time in SIgA levels measured in pharyngeal swabs were also different between the two treatment groups, and this difference reached statistical significance (F=6.5, p[73.0]=0.003). In the control group, this parameter did not change throughout the study (p=0.17 for a comparison between the levels measured on day 14 and the baseline values, and p=0.12 for a comparison between the levels measured on day 30 and the baseline values). In the Immunovac VP4 group, there was a statistically significant increase from baseline in SIgA levels on study day 30: from 1.5 (0.2-16.5) μg/L to 29.8 (3.6-106.8) μg/L (p=0.02). Changes over time in salivary SIgA did not show a significant difference between study groups (F=0.3, p[66.3]=0.75). Conclusion As part of combination therapy, the bacteria-based immunostimulant agent Immunovac VP4 increases SIgA levels in the nasal and pharyngeal compartments and induces clinical improvement. Induced mucosal immunity is central to the prevention of respiratory infections, particularly in patients with post-COVID-19 syndrome.
Collapse
Affiliation(s)
- Mikhail Kostinov
- Laboratory of Preventive Vaccination and Immunotherapy of Allergic Diseases, I.I. Mechnikov Research Institute of Vaccines and Sera, Moscow, Russian Federation
- Department of Epidemiology and Modern Technologies of Vaccination, I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Oksana Svitich
- I.I. Mechnikov Research Institute of Vaccines and Sera, Moscow, Russian Federation
| | - Alexander Chuchalin
- Department of Hospital Therapy of the Faculty of Pediatrics, Pirogov Russian National Research Medical University (Pirogov Medical University), Moscow, Russian Federation
- Research Institute of Pulmonology, Moscow, Russian Federation
| | - Natalya Abramova
- Laboratory of Molecular Immunology, I.I. Mechnikov Research Institute of Vaccines and Sera, Moscow, Russian Federation
| | - Valery Osiptsov
- The Main Military Clinical Hospital of the National Guard Troops of the Russian Federation, Moscow, Russian Federation
| | - Ekaterina Khromova
- Laboratory of Preventive Vaccination and Immunotherapy of Allergic Diseases, I.I. Mechnikov Research Institute of Vaccines and Sera, Moscow, Russian Federation
| | - Dmitry Pakhomov
- Laboratory of Preventive Vaccination and Immunotherapy of Allergic Diseases, I.I. Mechnikov Research Institute of Vaccines and Sera, Moscow, Russian Federation
| | - Vitaly Tatevosov
- The Main Military Clinical Hospital of the National Guard Troops of the Russian Federation, Moscow, Russian Federation
| | - Anna Vlasenko
- Medical Cybernetics and Informatics Department, Novokuznetsk State Institute of Advanced Training of Physicians – Branch of the “Russian Medical Academy of Continuous Professional Education”, Novokuznetsk, Russian Federation
| | - Vilia Gainitdinova
- Pulmonology Department of the I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Kirill Mashilov
- Laboratory of Preventive Vaccination and Immunotherapy of Allergic Diseases, I.I. Mechnikov Research Institute of Vaccines and Sera, Moscow, Russian Federation
| | - Nadezhda Kryukova
- Department of Hospital Therapy of the Faculty of Pediatrics, Pirogov Russian National Research Medical University (Pirogov Medical University), Moscow, Russian Federation
| | - Irina Baranova
- Department of Hospital Therapy of the Faculty of Pediatrics, Pirogov Russian National Research Medical University (Pirogov Medical University), Moscow, Russian Federation
| | - Anton Kostinov
- Allergodiagnostics Laboratory, I.I. Mechnikov Research Institute of Vaccines and Sera, Moscow, Russian Federation
| |
Collapse
|
2
|
Bohländer F. A new hope? Possibilities of therapeutic IgA antibodies in the treatment of inflammatory lung diseases. Front Immunol 2023; 14:1127339. [PMID: 37051237 PMCID: PMC10083398 DOI: 10.3389/fimmu.2023.1127339] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/14/2023] [Indexed: 03/29/2023] Open
Abstract
Inflammatory lung diseases represent a persistent burden for patients and the global healthcare system. The combination of high morbidity, (partially) high mortality and limited innovations in the last decades, have resulted in a great demand for new therapeutics. Are therapeutic IgA antibodies possibly a new hope in the treatment of inflammatory lung diseases? Current research increasingly unravels the elementary functions of IgA as protector against infections and as modulator of overwhelming inflammation. With a focus on IgA, this review describes the pathological alterations in mucosal immunity and how they contribute to chronic inflammation in the most common inflammatory lung diseases. The current knowledge of IgA functions in the circulation, and particularly in the respiratory mucosa, are summarized. The interplay between neutrophils and IgA seems to be key in control of inflammation. In addition, the hurdles and benefits of therapeutic IgA antibodies, as well as the currently known clinically used IgA preparations are described. The data highlighted here, together with upcoming research strategies aiming at circumventing the current pitfalls in IgA research may pave the way for this promising antibody class in the application of inflammatory lung diseases.
Collapse
Affiliation(s)
- Fabian Bohländer
- Department of Translational Research, Biotest AG, Dreieich, Germany
| |
Collapse
|
3
|
Li X, Liu J, Li W, Peng Q, Li M, Ying Z, Zhang Z, Liu X, Wu X, Zhao D, Yang L, Cao S, Huang Y, Shi L, Xu H, Wang Y, Yue G, Suo Y, Nie J, Huang W, Li J, Li Y. Heterologous prime-boost immunisation with mRNA- and AdC68-based 2019-nCoV variant vaccines induces broad-spectrum immune responses in mice. Front Immunol 2023; 14:1142394. [PMID: 37006275 PMCID: PMC10050358 DOI: 10.3389/fimmu.2023.1142394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/06/2023] [Indexed: 03/17/2023] Open
Abstract
The ongoing evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 or 2019-nCoV) variants has been associated with the transmission and pathogenicity of COVID-19. Therefore, exploring the optimal immunisation strategy to improve the broad-spectrum cross-protection ability of COVID-19 vaccines is of great significance. Herein, we assessed different heterologous prime-boost strategies with chimpanzee adenovirus vector-based COVID-19 vaccines plus Wuhan-Hu-1 (WH-1) strain (AdW) and Beta variant (AdB) and mRNA-based COVID-19 vaccines plus WH-1 strain (ARW) and Omicron (B.1.1.529) variant (ARO) in 6-week-old female BALB/c mice. AdW and AdB were administered intramuscularly or intranasally, while ARW and ARO were administered intramuscularly. Intranasal or intramuscular vaccination with AdB followed by ARO booster exhibited the highest levels of cross-reactive IgG, pseudovirus-neutralising antibody (PNAb) responses, and angiotensin-converting enzyme-2 (ACE2)-binding inhibition rates against different 2019-nCoV variants among all vaccination groups. Moreover, intranasal AdB vaccination followed by ARO induced higher levels of IgA and neutralising antibody responses against live 2019-nCoV than intramuscular AdB vaccination followed by ARO. A single dose of AdB administered intranasally or intramuscularly induced broader cross-NAb responses than AdW. Th1-biased cellular immune response was induced in all vaccination groups. Intramuscular vaccination-only groups exhibited higher levels of Th1 cytokines than intranasal vaccination-only and intranasal vaccination-containing groups. However, no obvious differences were found in the levels of Th2 cytokines between the control and all vaccination groups. Our findings provide a basis for exploring vaccination strategies against different 2019-nCoV variants to achieve high broad-spectrum immune efficacy.
Collapse
Affiliation(s)
- Xingxing Li
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, China
| | - Jingjing Liu
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Wenjuan Li
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, China
| | - Qinhua Peng
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, China
| | - Miao Li
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, China
| | - Zhifang Ying
- Department of Respiratory Virus Vaccine, National Institutes for Food and Drug Control, Beijing, China
| | - Zelun Zhang
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, China
| | - Xinyu Liu
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, China
| | - Xiaohong Wu
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, China
| | - Danhua Zhao
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, China
| | - Lihong Yang
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, China
| | - Shouchun Cao
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, China
| | - Yanqiu Huang
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, China
| | - Leitai Shi
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, China
| | - Hongshan Xu
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, China
| | - Yunpeng Wang
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, China
| | - Guangzhi Yue
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, China
| | - Yue Suo
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, China
| | - Jianhui Nie
- Department of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Weijin Huang
- Department of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Jia Li
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, China
| | - Yuhua Li
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, China
| |
Collapse
|
4
|
Li X, Wang L, Liu J, Fang E, Liu X, Peng Q, Zhang Z, Li M, Liu X, Wu X, Zhao D, Yang L, Li J, Cao S, Huang Y, Shi L, Xu H, Wang Y, Suo Y, Yue G, Nie J, Huang W, Li W, Li Y. Combining intramuscular and intranasal homologous prime-boost with a chimpanzee adenovirus-based COVID-19 vaccine elicits potent humoral and cellular immune responses in mice. Emerg Microbes Infect 2022; 11:1890-1899. [PMID: 35775819 PMCID: PMC9331206 DOI: 10.1080/22221751.2022.2097479] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/29/2022] [Indexed: 02/08/2023]
Abstract
The efficacy of many coronavirus disease 2019 (COVID-19) vaccines has been shown to decrease to varying extents against new severe acute respiratory syndrome coronavirus 2 variants, which are responsible for the continuing COVID-19 pandemic. Combining intramuscular and intranasal vaccination routes is a promising approach for achieving more potent immune responses. We evaluated the immunogenicity of prime-boost protocols with a chimpanzee adenovirus serotype 68 vector-based vaccine, ChAdTS-S, administered via both intranasal and intramuscular routes in BALB/c mice. Intramuscular priming followed by an intranasal booster elicited the highest levels of IgG, IgA, and pseudovirus neutralizing antibody titres among all the protocols tested at day 42 after prime immunization compared with the intranasal priming/intramuscular booster and prime-boost protocols using only one route. In addition, intramuscular priming followed by an intranasal booster induced high T-cell responses, measured using the IFN-γ ELISpot assay, that were similar to those observed upon intramuscular vaccination. All ChAdTS-S vaccination groups induced Th1-skewing of the T-cell response according to intracellular cytokine staining and Meso Scale Discovery cytokine profiling assays on day 56 after priming. This study provides reference data for assessing vaccination schemes of adenovirus-based COVID-19 vaccines with high immune efficacy.
Collapse
Affiliation(s)
- Xingxing Li
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, People’s Republic of China
| | - Ling Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, People’s Republic of China
| | - Jingjing Liu
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, People’s Republic of China
| | - Enyue Fang
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, People’s Republic of China
| | - Xiaohui Liu
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, People’s Republic of China
| | - Qinhua Peng
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, People’s Republic of China
| | - Zelun Zhang
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, People’s Republic of China
| | - Miao Li
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, People’s Republic of China
| | - Xinyu Liu
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, People’s Republic of China
| | - Xiaohong Wu
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, People’s Republic of China
| | - Danhua Zhao
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, People’s Republic of China
| | - Lihong Yang
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, People’s Republic of China
| | - Jia Li
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, People’s Republic of China
| | - Shouchun Cao
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, People’s Republic of China
| | - Yanqiu Huang
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, People’s Republic of China
| | - Leitai Shi
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, People’s Republic of China
| | - Hongshan Xu
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, People’s Republic of China
| | - Yunpeng Wang
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, People’s Republic of China
| | - Yue Suo
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, People’s Republic of China
| | - Guangzhi Yue
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, People’s Republic of China
| | - Jianhui Nie
- Department of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing, People’s Republic of China
| | - Weijin Huang
- Department of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing, People’s Republic of China
| | - Wenjuan Li
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, People’s Republic of China
| | - Yuhua Li
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, People’s Republic of China
| |
Collapse
|
5
|
Wei X, Rong N, Liu J. Prospects of animal models and their application in studies on adaptive immunity to SARS-CoV-2. Front Immunol 2022; 13:993754. [PMID: 36189203 PMCID: PMC9523127 DOI: 10.3389/fimmu.2022.993754] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/05/2022] [Indexed: 01/08/2023] Open
Abstract
The adaptive immune response induced by SARS-CoV-2 plays a key role in the antiviral process and can protect the body from the threat of infection for a certain period of time. However, owing to the limitations of clinical studies, the antiviral mechanisms, protective thresholds, and persistence of the immune memory of adaptive immune responses remain unclear. This review summarizes existing research models for SARS-CoV-2 and elaborates on the advantages of animal models in simulating the clinical symptoms of COVID-19 in humans. In addition, we systematically summarize the research progress on the SARS-CoV-2 adaptive immune response and the remaining key issues, as well as the application and prospects of animal models in this field. This paper provides direction for in-depth analysis of the anti-SARS-CoV-2 mechanism of the adaptive immune response and lays the foundation for the development and application of vaccines and drugs.
Collapse
Affiliation(s)
- Xiaohui Wei
- National Health Commission Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | | | - Jiangning Liu
- National Health Commission Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| |
Collapse
|
6
|
Tsukinoki K, Yamamoto T, Saito J, Sakaguchi W, Iguchi K, Inoue Y, Ishii S, Sato C, Yokoyama M, Shiraishi Y, Kato N, Shimada H, Makabe A, Saito A, Tanji M, Nagaoka I, Saruta J, Yamaguchi T, Kimoto S, Yamaguchi H. Prevalence of saliva immunoglobulin A antibodies reactive with severe acute respiratory syndrome coronavirus 2 among Japanese people unexposed to the virus. Microbiol Immunol 2022; 66:403-410. [PMID: 35607844 PMCID: PMC9347685 DOI: 10.1111/1348-0421.13011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/11/2022] [Accepted: 05/21/2022] [Indexed: 11/29/2022]
Abstract
While the COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses a threat to public health as the number of cases and COVID-19-related deaths are increasing worldwide, the incidence of the virus infection is extremely low in Japan compared with many other countries. To explain this uncommon phenomenon, we investigated the prevalence of naturally occurring ("natural") antibodies, focusing on those of the secretory immunoglobulin A (sIgA) form, reactive with SARS-CoV-2 among Japanese people. One hundred and eighty healthy Japanese volunteers of a wide range of age who had been considered to be unexposed to SARS-CoV-2 participated in this study. Saliva samples and blood samples were collected from all of the 180 participants and 139 adults (aged ≥ 20 years) included therein, respectively. The determination of saliva IgA antibodies, mostly comprising sIgA antibodies, as well as serum IgA and immunoglobulin G antibodies, reactive with the receptor binding domain of the SARS-CoV-2 spike-1 subunit proteins was conducted using an enzyme-linked immunosorbent assay. The major findings were that 52.78% (95% confidence interval, 45.21%-60.25%) of the individuals who had not been exposed to SARS-CoV-2 were positive for saliva IgA antibodies with a wide range of levels between 0.002 and 3.272 ng/mL, and that there may be a negative trend in positivity for the antibodies according to age. As we had expected, a frequent occurrence of assumable "natural" sIgA antibodies reactive with SARS-CoV-2 among the studied Japanese participant population was observed.
Collapse
Affiliation(s)
- Keiichi Tsukinoki
- Department of Environmental Pathology, Graduate School of DentistryKanagawa Dental UniversityKanagawaJapan
| | | | | | - Wakako Sakaguchi
- Department of Environmental Pathology, Graduate School of DentistryKanagawa Dental UniversityKanagawaJapan
| | - Keiichiro Iguchi
- Department of OrthodonticsKanagawa Dental UniversityKanagawaJapan
| | - Yoshinori Inoue
- Department of Pediatric DentistryKanagawa Dental UniversityKanagawaJapan
| | - Shigeru Ishii
- Department of Advanced Oral SurgeryKDU Yokohama ClinicKanagawaJapan
| | | | - Mina Yokoyama
- Department of Pediatric DentistryKanagawa Dental UniversityKanagawaJapan
| | | | - Noriaki Kato
- EPS Research Center, EPS Holdings, Inc.TokyoJapan
| | | | - Akio Makabe
- Sites Support Section, Foods DepartmentEP Mediate Co., Ltd.TokyoJapan
| | - Akihiro Saito
- Sites Support Section, Foods DepartmentEP Mediate Co., Ltd.TokyoJapan
| | | | - Isao Nagaoka
- Department of Host Defense and Biochemical Research, Faculty of Health ScienceJuntendo UniversityTokyoJapan
| | - Juri Saruta
- Department of Education PlanningKanagawa Dental UniversityKanagawaJapan
| | | | - Shigenari Kimoto
- Department of Pediatric DentistryKanagawa Dental UniversityKanagawaJapan
| | - Hideyo Yamaguchi
- EPS Research Center, EPS Holdings, Inc.TokyoJapan
- Department of Diagnostics and Disease Control, Institute of Medical MycologyTeikyo UniversityTokyoJapan
| |
Collapse
|
7
|
Bohländer F, Weißmüller S, Riehl D, Gutscher M, Schüttrumpf J, Faust S. The Functional Role of IgA in the IgM/IgA-Enriched Immunoglobulin Preparation Trimodulin. Biomedicines 2021; 9:1828. [PMID: 34944644 PMCID: PMC8698729 DOI: 10.3390/biomedicines9121828] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 11/16/2022] Open
Abstract
In comparison to human immunoglobulin (Ig) G, antibodies of IgA class are not well investigated. In line with this, the functional role of the IgA component in IgM/IgA-enriched immunoglobulin preparations is also largely unknown. In recent years, powerful anti-pathogenic and immunomodulatory properties of human serum IgA especially on neutrophil function were unraveled. Therefore, the aim of our work is to investigate functional aspects of the trimodulin IgA component, a new plasma-derived polyvalent immunoglobulin preparation containing ~56% IgG, ~23% IgM and ~21% IgA. The functional role of IgA was investigated by analyzing the interaction of IgA with FcαRI, comparing trimodulin with standard intravenous IgG (IVIG) preparation and investigating Fc receptor (FcR)-dependent functions by excluding IgM-mediated effects. Trimodulin demonstrated potent immunomodulatory, as well as anti-pathogenic effects in our neutrophil model (neutrophil-like HL-60 cells). The IgA component of trimodulin was shown to induce a strong FcαRI-dependent inhibitory immunoreceptor tyrosine-based activation motif (ITAMi) signaling, counteract lipopolysaccharide-induced inflammation and mediate phagocytosis of Staphylococcus aureus. The fine-tuned balance between immunomodulatory and anti-pathogenic effects of trimodulin were shown to be dose-dependent. Summarized, our data demonstrate the functional role of IgA in trimodulin, highlighting the importance of this immunoglobulin class in immunoglobulin therapy.
Collapse
Affiliation(s)
- Fabian Bohländer
- Department of Analytical Development and Validation, Biotest AG, Landsteinerstraße 5, 63303 Dreieich, Germany; (F.B.); (D.R.); (M.G.)
| | - Sabrina Weißmüller
- Department of Translational Research, Biotest AG, Landsteinerstraße 5, 63303 Dreieich, Germany;
| | - Dennis Riehl
- Department of Analytical Development and Validation, Biotest AG, Landsteinerstraße 5, 63303 Dreieich, Germany; (F.B.); (D.R.); (M.G.)
| | - Marcus Gutscher
- Department of Analytical Development and Validation, Biotest AG, Landsteinerstraße 5, 63303 Dreieich, Germany; (F.B.); (D.R.); (M.G.)
| | - Jörg Schüttrumpf
- Corporate R&D, Biotest AG, Landsteinerstraße 5, 63303 Dreieich, Germany;
| | - Stefanie Faust
- Department of Analytical Development and Validation, Biotest AG, Landsteinerstraße 5, 63303 Dreieich, Germany; (F.B.); (D.R.); (M.G.)
| |
Collapse
|
8
|
Li GW, Nan F, Yuan GH, Liu CX, Liu X, Chen LL, Tian B, Yang L. SCAPTURE: a deep learning-embedded pipeline that captures polyadenylation information from 3' tag-based RNA-seq of single cells. Genome Biol 2021; 22:221. [PMID: 34376223 PMCID: PMC8353616 DOI: 10.1186/s13059-021-02437-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 07/16/2021] [Indexed: 01/16/2023] Open
Abstract
Single-cell RNA-seq (scRNA-seq) profiles gene expression with high resolution. Here, we develop a stepwise computational method-called SCAPTURE to identify, evaluate, and quantify cleavage and polyadenylation sites (PASs) from 3' tag-based scRNA-seq. SCAPTURE detects PASs de novo in single cells with high sensitivity and accuracy, enabling detection of previously unannotated PASs. Quantified alternative PAS transcripts refine cell identity analysis beyond gene expression, enriching information extracted from scRNA-seq data. Using SCAPTURE, we show changes of PAS usage in PBMCs from infected versus healthy individuals at single-cell resolution.
Collapse
Affiliation(s)
- Guo-Wei Li
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Fang Nan
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Guo-Hua Yuan
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Chu-Xiao Liu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Xindong Liu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Ling-Ling Chen
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Bin Tian
- Program in Gene Expression and Regulation, and Center for Systems and Computational Biology, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Li Yang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
9
|
Kalish H, Klumpp-Thomas C, Hunsberger S, Baus HA, Fay MP, Siripong N, Wang J, Hicks J, Mehalko J, Travers J, Drew M, Pauly K, Spathies J, Ngo T, Adusei KM, Karkanitsa M, Croker JA, Li Y, Graubard BI, Czajkowski L, Belliveau O, Chairez C, Snead KR, Frank P, Shunmugavel A, Han A, Giurgea LT, Rosas LA, Bean R, Athota R, Cervantes-Medina A, Gouzoulis M, Heffelfinger B, Valenti S, Caldararo R, Kolberg MM, Kelly A, Simon R, Shafiq S, Wall V, Reed S, Ford EW, Lokwani R, Denson JP, Messing S, Michael SG, Gillette W, Kimberly RP, Reis SE, Hall MD, Esposito D, Memoli MJ, Sadtler K. Undiagnosed SARS-CoV-2 seropositivity during the first 6 months of the COVID-19 pandemic in the United States. Sci Transl Med 2021; 13:eabh3826. [PMID: 34158410 PMCID: PMC8432952 DOI: 10.1126/scitranslmed.abh3826] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/16/2021] [Indexed: 12/14/2022]
Abstract
Asymptomatic SARS-CoV-2 infection and delayed implementation of diagnostics have led to poorly defined viral prevalence rates in the United States and elsewhere. To address this, we analyzed seropositivity in 9089 adults in the United States who had not been diagnosed previously with COVID-19. Individuals with characteristics that reflected the U.S. population (n = 27,716) were selected by quota sampling from 462,949 volunteers. Enrolled participants (n = 11,382) provided medical, geographic, demographic, and socioeconomic information and dried blood samples. Survey questions coincident with the Behavioral Risk Factor Surveillance System survey, a large probability-based national survey, were used to adjust for selection bias. Most blood samples (88.7%) were collected between 10 May and 31 July 2020 and were processed using ELISA to measure seropositivity (IgG and IgM antibodies against SARS-CoV-2 spike protein and the spike protein receptor binding domain). The overall weighted undiagnosed seropositivity estimate was 4.6% (95% CI, 2.6 to 6.5%), with race, age, sex, ethnicity, and urban/rural subgroup estimates ranging from 1.1% to 14.2%. The highest seropositivity estimates were in African American participants; younger, female, and Hispanic participants; and residents of urban centers. These data indicate that there were 4.8 undiagnosed SARS-CoV-2 infections for every diagnosed case of COVID-19, and an estimated 16.8 million infections were undiagnosed by mid-July 2020 in the United States.
Collapse
Affiliation(s)
- Heather Kalish
- Trans-NIH Shared Resource on Biomedical Engineering and Physical Science, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20894, USA
| | - Carleen Klumpp-Thomas
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Sally Hunsberger
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20894, USA
| | - Holly Ann Baus
- Clinical Studies Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20894, USA
| | - Michael P Fay
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20894, USA
| | - Nalyn Siripong
- Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jing Wang
- Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Jennifer Hicks
- Trans-NIH Shared Resource on Biomedical Engineering and Physical Science, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20894, USA
| | - Jennifer Mehalko
- Protein Expression Laboratory, NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Jameson Travers
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Matthew Drew
- Protein Expression Laboratory, NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Kyle Pauly
- Trans-NIH Shared Resource on Biomedical Engineering and Physical Science, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20894, USA
| | - Jacquelyn Spathies
- Trans-NIH Shared Resource on Biomedical Engineering and Physical Science, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20894, USA
| | - Tran Ngo
- Section on Immuno-Engineering, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20894, USA
| | - Kenneth M Adusei
- Section on Immuno-Engineering, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20894, USA
| | - Maria Karkanitsa
- Section on Immuno-Engineering, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20894, USA
| | - Jennifer A Croker
- Center for Clinical and Translational Science, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Yan Li
- Joint Program in Survey Methodology, Department of Epidemiology and Biostatistics, University of Maryland College Park, College Park, MD 20742, USA
| | - Barry I Graubard
- Division of Cancer Epidemiology and Genetics, Biostatistics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20894, USA
| | - Lindsay Czajkowski
- Clinical Studies Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20894, USA
| | - Olivia Belliveau
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20894, USA
| | - Cheryl Chairez
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20894, USA
| | - Kelly R Snead
- Protein Expression Laboratory, NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Peter Frank
- Protein Expression Laboratory, NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Anandakumar Shunmugavel
- Section on Immuno-Engineering, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20894, USA
| | - Alison Han
- Clinical Studies Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20894, USA
| | - Luca T Giurgea
- Clinical Studies Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20894, USA
| | - Luz Angela Rosas
- Clinical Studies Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20894, USA
| | - Rachel Bean
- Clinical Studies Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20894, USA
| | - Rani Athota
- Clinical Studies Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20894, USA
| | - Adriana Cervantes-Medina
- Clinical Studies Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20894, USA
| | - Monica Gouzoulis
- Clinical Studies Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20894, USA
| | - Brittany Heffelfinger
- Clinical Studies Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20894, USA
| | - Shannon Valenti
- Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Rocco Caldararo
- Clinical Research Directorate, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD 21702, USA
| | - Michelle M Kolberg
- Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20894, USA
| | - Andrew Kelly
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Reid Simon
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Saifullah Shafiq
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Vanessa Wall
- Protein Expression Laboratory, NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Susan Reed
- Clinical Studies Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20894, USA
| | - Eric W Ford
- Center for Clinical and Translational Science, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ravi Lokwani
- Section on Immuno-Engineering, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20894, USA
| | - John-Paul Denson
- Protein Expression Laboratory, NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Simon Messing
- Protein Expression Laboratory, NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Sam G Michael
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - William Gillette
- Protein Expression Laboratory, NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Robert P Kimberly
- Center for Clinical and Translational Science, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Steven E Reis
- Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Matthew D Hall
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Dominic Esposito
- Protein Expression Laboratory, NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Matthew J Memoli
- Clinical Studies Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20894, USA.
| | - Kaitlyn Sadtler
- Section on Immuno-Engineering, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20894, USA.
| |
Collapse
|
10
|
Livanos AE, Jha D, Cossarini F, Gonzalez-Reiche AS, Tokuyama M, Aydillo T, Parigi TL, Ladinsky MS, Ramos I, Dunleavy K, Lee B, Dixon RE, Chen ST, Martinez-Delgado G, Nagula S, Bruce EA, Ko HM, Glicksberg BS, Nadkarni G, Pujadas E, Reidy J, Naymagon S, Grinspan A, Ahmad J, Tankelevich M, Bram Y, Gordon R, Sharma K, Houldsworth J, Britton GJ, Chen-Liaw A, Spindler MP, Plitt T, Wang P, Cerutti A, Faith JJ, Colombel JF, Kenigsberg E, Argmann C, Merad M, Gnjatic S, Harpaz N, Danese S, Cordon-Cardo C, Rahman A, Schwartz RE, Kumta NA, Aghemo A, Bjorkman PJ, Petralia F, van Bakel H, Garcia-Sastre A, Mehandru S. Intestinal Host Response to SARS-CoV-2 Infection and COVID-19 Outcomes in Patients With Gastrointestinal Symptoms. Gastroenterology 2021; 160:2435-2450.e34. [PMID: 33676971 PMCID: PMC7931673 DOI: 10.1053/j.gastro.2021.02.056] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Given that gastrointestinal (GI) symptoms are a prominent extrapulmonary manifestation of COVID-19, we investigated intestinal infection with SARS-CoV-2, its effect on pathogenesis, and clinical significance. METHODS Human intestinal biopsy tissues were obtained from patients with COVID-19 (n = 19) and uninfected control individuals (n = 10) for microscopic examination, cytometry by time of flight analyses, and RNA sequencing. Additionally, disease severity and mortality were examined in patients with and without GI symptoms in 2 large, independent cohorts of hospitalized patients in the United States (N = 634) and Europe (N = 287) using multivariate logistic regressions. RESULTS COVID-19 case patients and control individuals in the biopsy cohort were comparable for age, sex, rates of hospitalization, and relevant comorbid conditions. SARS-CoV-2 was detected in small intestinal epithelial cells by immunofluorescence staining or electron microscopy in 15 of 17 patients studied. High-dimensional analyses of GI tissues showed low levels of inflammation, including down-regulation of key inflammatory genes including IFNG, CXCL8, CXCL2, and IL1B and reduced frequencies of proinflammatory dendritic cells compared with control individuals. Consistent with these findings, we found a significant reduction in disease severity and mortality in patients presenting with GI symptoms that was independent of sex, age, and comorbid illnesses and despite similar nasopharyngeal SARS-CoV-2 viral loads. Furthermore, there was reduced levels of key inflammatory proteins in circulation in patients with GI symptoms. CONCLUSIONS These data highlight the absence of a proinflammatory response in the GI tract despite detection of SARS-CoV-2. In parallel, reduced mortality in patients with COVID-19 presenting with GI symptoms was observed. A potential role of the GI tract in attenuating SARS-CoV-2-associated inflammation needs to be further examined.
Collapse
Affiliation(s)
- Alexandra E Livanos
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York; The Dr. Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Divya Jha
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York; The Dr. Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Francesca Cossarini
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Division of Infectious Disease, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ana S Gonzalez-Reiche
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Minami Tokuyama
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York; The Dr. Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Teresa Aydillo
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Tommaso L Parigi
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Mark S Ladinsky
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California
| | - Irene Ramos
- Department of Neurology and Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Katie Dunleavy
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Brian Lee
- Human Immune Monitoring Center (HIMC) Icahn School of Medicine at Mount Sinai New York, New York, New York
| | - Rebekah E Dixon
- The Dr. Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Steven T Chen
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Gustavo Martinez-Delgado
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York; The Dr. Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Satish Nagula
- The Dr. Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Emily A Bruce
- Division of Immunobiology, Department of Medicine, University of Vermont, Larner College of Medicine, Burlington, Vermont
| | - Huaibin M Ko
- The Dr. Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Pathology, Molecular and Cell Based Medicine Icahn School of Medicine at Mount Sinai, New York, New York
| | - Benjamin S Glicksberg
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; The Hasso Plattner Institute for Digital Health at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Girish Nadkarni
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; The Hasso Plattner Institute for Digital Health at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, New York; The Charles Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; The Mount Sinai Clinical Intelligence Center, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Elisabet Pujadas
- Department of Pathology, Molecular and Cell Based Medicine Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jason Reidy
- Department of Pathology, Molecular and Cell Based Medicine Icahn School of Medicine at Mount Sinai, New York, New York
| | - Steven Naymagon
- The Dr. Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ari Grinspan
- The Dr. Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jawad Ahmad
- The Dr. Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Michael Tankelevich
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York; The Dr. Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Yaron Bram
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Ronald Gordon
- Department of Pathology, Molecular and Cell Based Medicine Icahn School of Medicine at Mount Sinai, New York, New York
| | - Keshav Sharma
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York; The Dr. Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jane Houldsworth
- Department of Pathology, Molecular and Cell Based Medicine Icahn School of Medicine at Mount Sinai, New York, New York
| | - Graham J Britton
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Alice Chen-Liaw
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Matthew P Spindler
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Tamar Plitt
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Pei Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Andrea Cerutti
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Catalan Institute for Research and Advanced Studies, Barcelona, Spain; Program for Inflammatory and Cardiovascular Disorders, Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain
| | - Jeremiah J Faith
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jean-Frederic Colombel
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York; The Dr. Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ephraim Kenigsberg
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Carmen Argmann
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Miriam Merad
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; Human Immune Monitoring Center (HIMC) Icahn School of Medicine at Mount Sinai New York, New York, New York; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Sacha Gnjatic
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; Human Immune Monitoring Center (HIMC) Icahn School of Medicine at Mount Sinai New York, New York, New York; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Pathology, Molecular and Cell Based Medicine Icahn School of Medicine at Mount Sinai, New York, New York
| | - Noam Harpaz
- Department of Pathology, Molecular and Cell Based Medicine Icahn School of Medicine at Mount Sinai, New York, New York
| | - Silvio Danese
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Carlos Cordon-Cardo
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Pathology, Molecular and Cell Based Medicine Icahn School of Medicine at Mount Sinai, New York, New York
| | - Adeeb Rahman
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; Human Immune Monitoring Center (HIMC) Icahn School of Medicine at Mount Sinai New York, New York, New York; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Robert E Schwartz
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Nikhil A Kumta
- The Dr. Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Alessio Aghemo
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California
| | - Francesca Petralia
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York.
| | - Adolfo Garcia-Sastre
- Division of Infectious Disease, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
| | - Saurabh Mehandru
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York; The Dr. Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
11
|
Kalish H, Klumpp-Thomas C, Hunsberger S, Baus HA, Fay MP, Siripong N, Wang J, Hicks J, Mehalko J, Travers J, Drew M, Pauly K, Spathies J, Ngo T, Adusei KM, Karkanitsa M, Croker JA, Li Y, Graubard BI, Czajkowski L, Belliveau O, Chairez C, Snead K, Frank P, Shunmugavel A, Han A, Giurgea LT, Rosas LA, Bean R, Athota R, Cervantes-Medina A, Gouzoulis M, Heffelfinger B, Valenti S, Caldararo R, Kolberg MM, Kelly A, Simon R, Shafiq S, Wall V, Reed S, Ford EW, Lokwani R, Denson JP, Messing S, Michael SG, Gillette W, Kimberly RP, Reis SE, Hall MD, Esposito D, Memoli MJ, Sadtler K. Mapping a Pandemic: SARS-CoV-2 Seropositivity in the United States. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.01.27.21250570. [PMID: 33532807 PMCID: PMC7852277 DOI: 10.1101/2021.01.27.21250570] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Asymptomatic SARS-CoV-2 infection and delayed implementation of diagnostics have led to poorly defined viral prevalence rates. To address this, we analyzed seropositivity in US adults who have not previously been diagnosed with COVID-19. Individuals with characteristics that reflect the US population (n = 11,382) and who had not previously been diagnosed with COVID-19 were selected by quota sampling from 241,424 volunteers (ClinicalTrials.gov NCT04334954). Enrolled participants provided medical, geographic, demographic, and socioeconomic information and 9,028 blood samples. The majority (88.7%) of samples were collected between May 10th and July 31st, 2020. Samples were analyzed via ELISA for anti-Spike and anti-RBD antibodies. Estimation of seroprevalence was performed by using a weighted analysis to reflect the US population. We detected an undiagnosed seropositivity rate of 4.6% (95% CI: 2.6 - 6.5%). There was distinct regional variability, with heightened seropositivity in locations of early outbreaks. Subgroup analysis demonstrated that the highest estimated undiagnosed seropositivity within groups was detected in younger participants (ages 18-45, 5.9%), females (5.5%), Black/African American (14.2%), Hispanic (6.1%), and Urban residents (5.3%), and lower undiagnosed seropositivity in those with chronic diseases. During the first wave of infection over the spring/summer of 2020 an estimate of 4.6% of adults had a prior undiagnosed SARS-CoV-2 infection. These data indicate that there were 4.8 (95% CI: 2.8-6.8) undiagnosed cases for every diagnosed case of COVID-19 during this same time period in the United States, and an estimated 16.8 million undiagnosed cases by mid-July 2020.
Collapse
Affiliation(s)
- Heather Kalish
- Trans-NIH Shared Resource on Biomedical Engineering and Physical Science, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20894
| | - Carleen Klumpp-Thomas
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850
| | - Sally Hunsberger
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20894
| | - Holly Ann Baus
- Clinical Studies Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20894
| | - Michael P Fay
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20894
| | - Nalyn Siripong
- Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jing Wang
- Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick MD 21702
| | - Jennifer Hicks
- Trans-NIH Shared Resource on Biomedical Engineering and Physical Science, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20894
| | - Jennifer Mehalko
- Protein Expression Laboratory, NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick MD 21702
| | - Jameson Travers
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850
| | - Matthew Drew
- Protein Expression Laboratory, NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick MD 21702
| | - Kyle Pauly
- Trans-NIH Shared Resource on Biomedical Engineering and Physical Science, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20894
| | - Jacquelyn Spathies
- Trans-NIH Shared Resource on Biomedical Engineering and Physical Science, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20894
| | - Tran Ngo
- Section on Immuno-Engineering, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20894
| | - Kenneth M. Adusei
- Section on Immuno-Engineering, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20894
| | - Maria Karkanitsa
- Section on Immuno-Engineering, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20894
| | - Jennifer A Croker
- Center for Clinical and Translational Science, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Yan Li
- Joint Program in Survey Methodology, Department of Epidemiology and Biostatistics, University of Maryland College Park, College Park, MD 20742
| | - Barry I. Graubard
- Division of Cancer Epidemiology & Genetics, Biostatistics Branch, National Cancer Institute, National Institutes of Health, Bethesda MD 20894
| | - Lindsay Czajkowski
- Clinical Studies Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20894
| | - Olivia Belliveau
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20894
| | - Cheryl Chairez
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20894
| | - Kelly Snead
- Protein Expression Laboratory, NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick MD 21702
| | - Peter Frank
- Protein Expression Laboratory, NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick MD 21702
| | - Anandakumar Shunmugavel
- Section on Immuno-Engineering, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20894
| | - Alison Han
- Clinical Studies Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20894
| | - Luca T. Giurgea
- Clinical Studies Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20894
| | - Luz Angela Rosas
- Clinical Studies Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20894
| | - Rachel Bean
- Clinical Studies Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20894
| | - Rani Athota
- Clinical Studies Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20894
| | - Adriana Cervantes-Medina
- Clinical Studies Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20894
| | - Monica Gouzoulis
- Clinical Studies Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20894
| | - Brittany Heffelfinger
- Clinical Studies Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20894
| | - Shannon Valenti
- Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Rocco Caldararo
- Clinical Research Directorate, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc, Frederick MD 21702
| | - Michelle M. Kolberg
- Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20894
| | - Andrew Kelly
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850
| | - Reid Simon
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850
| | - Saifullah Shafiq
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850
| | - Vanessa Wall
- Protein Expression Laboratory, NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick MD 21702
| | - Susan Reed
- Clinical Studies Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20894
| | - Eric W Ford
- Center for Clinical and Translational Science, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Ravi Lokwani
- Section on Immuno-Engineering, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20894
| | - John-Paul Denson
- Protein Expression Laboratory, NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick MD 21702
| | - Simon Messing
- Protein Expression Laboratory, NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick MD 21702
| | - Sam G. Michael
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850
| | - William Gillette
- Protein Expression Laboratory, NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick MD 21702
| | - Robert P. Kimberly
- Center for Clinical and Translational Science, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Steven E. Reis
- Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Matthew D. Hall
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850
| | - Dominic Esposito
- Protein Expression Laboratory, NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick MD 21702
| | - Matthew J. Memoli
- Clinical Studies Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20894
| | - Kaitlyn Sadtler
- Section on Immuno-Engineering, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20894
| |
Collapse
|
12
|
Klumpp-Thomas C, Kalish H, Drew M, Hunsberger S, Snead K, Fay MP, Mehalko J, Shunmugavel A, Wall V, Frank P, Denson JP, Hong M, Gulten G, Messing S, Hicks J, Michael S, Gillette W, Hall MD, Memoli MJ, Esposito D, Sadtler K. Standardization of ELISA protocols for serosurveys of the SARS-CoV-2 pandemic using clinical and at-home blood sampling. Nat Commun 2021; 12:113. [PMID: 33397956 PMCID: PMC7782755 DOI: 10.1038/s41467-020-20383-x] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 11/29/2020] [Indexed: 01/08/2023] Open
Abstract
The extent of SARS-CoV-2 infection throughout the United States population is currently unknown. High quality serology is key to avoiding medically costly diagnostic errors, as well as to assuring properly informed public health decisions. Here, we present an optimized ELISA-based serology protocol, from antigen production to data analyses, that helps define thresholds for IgG and IgM seropositivity with high specificities. Validation of this protocol is performed using traditionally collected serum as well as dried blood on mail-in blood sampling kits. Archival (pre-2019) samples are used as negative controls, and convalescent, PCR-diagnosed COVID-19 patient samples serve as positive controls. Using this protocol, minimal cross-reactivity is observed for the spike proteins of MERS, SARS1, OC43 and HKU1 viruses, and no cross reactivity is observed with anti-influenza A H1N1 HAI. Our protocol may thus help provide standardized, population-based data on the extent of SARS-CoV-2 seropositivity, immunity and infection.
Collapse
Affiliation(s)
- Carleen Klumpp-Thomas
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
- Section on Immuno-Engineering, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Heather Kalish
- Trans-NIH Shared Resource on Biomedical Engineering and Physical Science, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Matthew Drew
- Protein Expression Laboratory, NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Sally Hunsberger
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Kelly Snead
- Protein Expression Laboratory, NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Michael P Fay
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Jennifer Mehalko
- Protein Expression Laboratory, NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Anandakumar Shunmugavel
- Section on Immuno-Engineering, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Vanessa Wall
- Protein Expression Laboratory, NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Peter Frank
- Protein Expression Laboratory, NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - John-Paul Denson
- Protein Expression Laboratory, NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Min Hong
- Protein Expression Laboratory, NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Gulcin Gulten
- Protein Expression Laboratory, NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Simon Messing
- Protein Expression Laboratory, NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Jennifer Hicks
- Trans-NIH Shared Resource on Biomedical Engineering and Physical Science, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Sam Michael
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - William Gillette
- Protein Expression Laboratory, NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Matthew D Hall
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Matthew J Memoli
- LID Clinical Studies Unit, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Dominic Esposito
- Protein Expression Laboratory, NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Kaitlyn Sadtler
- Section on Immuno-Engineering, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20894, USA.
| |
Collapse
|
13
|
Lucas C, Klein J, Sundaram M, Liu F, Wong P, Silva J, Mao T, Oh JE, Tokuyama M, Lu P, Venkataraman A, Park A, Israelow B, Wyllie AL, Vogels CBF, Muenker MC, Casanovas-Massana A, Schulz WL, Zell J, Campbell M, Fournier JB, Grubaugh ND, Farhadian S, Wisnewski AV, Cruz CD, Omer S, Ko AI, Ring A, Iwasaki A. Kinetics of antibody responses dictate COVID-19 outcome. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.12.18.20248331. [PMID: 33398304 PMCID: PMC7781347 DOI: 10.1101/2020.12.18.20248331] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recent studies have provided insights into innate and adaptive immune dynamics in coronavirus disease 2019 (COVID-19). Yet, the exact feature of antibody responses that governs COVID-19 disease outcomes remain unclear. Here, we analysed humoral immune responses in 209 asymptomatic, mild, moderate and severe COVID-19 patients over time to probe the nature of antibody responses in disease severity and mortality. We observed a correlation between anti-Spike (S) IgG levels, length of hospitalization and clinical parameters associated with worse clinical progression. While high anti-S IgG levels correlated with worse disease severity, such correlation was time-dependent. Deceased patients did not have higher overall humoral response than live discharged patients. However, they mounted a robust, yet delayed response, measured by anti-S, anti-RBD IgG, and neutralizing antibody (NAb) levels, compared to survivors. Delayed seroconversion kinetics correlated with impaired viral control in deceased patients. Finally, while sera from 89% of patients displayed some neutralization capacity during their disease course, NAb generation prior to 14 days of disease onset emerged as a key factor for recovery. These data indicate that COVID-19 mortality does not correlate with the cross-sectional antiviral antibody levels per se, but rather with the delayed kinetics of NAb production.
Collapse
Affiliation(s)
- Carolina Lucas
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- These authors contributed equally: Carolina Lucas, Jon Klein
| | - Jon Klein
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- These authors contributed equally: Carolina Lucas, Jon Klein
| | - Maria Sundaram
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Feimei Liu
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Patrick Wong
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Julio Silva
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Tianyang Mao
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Ji Eun Oh
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Maria Tokuyama
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Peiwen Lu
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Arvind Venkataraman
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Annsea Park
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Benjamin Israelow
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, USA
| | - Anne L. Wyllie
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Chantal B. F. Vogels
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - M. Catherine Muenker
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Arnau Casanovas-Massana
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Wade L. Schulz
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, USA
- Center for Outcomes Research and Evaluation, Yale-New Haven Hospital, New Haven, CT, USA
| | - Joseph Zell
- Department of Internal Medicine/Section General Medicine; Yale University School of Medicine, New Haven, CT, USA
| | - Melissa Campbell
- Department of Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, USA
| | - John B. Fournier
- Department of Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, USA
| | | | - Nathan D. Grubaugh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Shelli Farhadian
- Department of Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, USA
| | - Adam V. Wisnewski
- Department of Internal Medicine/Section General Medicine; Yale University School of Medicine, New Haven, CT, USA
| | - Charles Dela Cruz
- Department of Medicine, Section of Pulmonary and Critical Care Medicine; Yale University School of Medicine, New Haven, CT, USA
| | - Saad Omer
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
- Department of Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, USA
- Yale Institute for Global Health, Yale University, New Haven, CT, USA
| | - Albert I. Ko
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
- Department of Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, USA
| | - Aaron Ring
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Akiko Iwasaki
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| |
Collapse
|
14
|
Weisblum Y, Schmidt F, Zhang F, DaSilva J, Poston D, Lorenzi JCC, Muecksch F, Rutkowska M, Hoffmann HH, Michailidis E, Gaebler C, Agudelo M, Cho A, Wang Z, Gazumyan A, Cipolla M, Luchsinger L, Hillyer CD, Caskey M, Robbiani DF, Rice CM, Nussenzweig MC, Hatziioannou T, Bieniasz PD. Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants. eLife 2020; 9:e61312. [PMID: 33112236 PMCID: PMC7723407 DOI: 10.7554/elife.61312] [Citation(s) in RCA: 1004] [Impact Index Per Article: 251.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/27/2020] [Indexed: 12/12/2022] Open
Abstract
Neutralizing antibodies elicited by prior infection or vaccination are likely to be key for future protection of individuals and populations against SARS-CoV-2. Moreover, passively administered antibodies are among the most promising therapeutic and prophylactic anti-SARS-CoV-2 agents. However, the degree to which SARS-CoV-2 will adapt to evade neutralizing antibodies is unclear. Using a recombinant chimeric VSV/SARS-CoV-2 reporter virus, we show that functional SARS-CoV-2 S protein variants with mutations in the receptor-binding domain (RBD) and N-terminal domain that confer resistance to monoclonal antibodies or convalescent plasma can be readily selected. Notably, SARS-CoV-2 S variants that resist commonly elicited neutralizing antibodies are now present at low frequencies in circulating SARS-CoV-2 populations. Finally, the emergence of antibody-resistant SARS-CoV-2 variants that might limit the therapeutic usefulness of monoclonal antibodies can be mitigated by the use of antibody combinations that target distinct neutralizing epitopes.
Collapse
MESH Headings
- Angiotensin-Converting Enzyme 2/metabolism
- Antibodies, Monoclonal/immunology
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/immunology
- Base Sequence
- COVID-19/immunology
- COVID-19/therapy
- COVID-19/virology
- COVID-19 Vaccines/immunology
- Epitopes/genetics
- Epitopes/immunology
- Genes, Reporter
- Humans
- Immunization, Passive
- Mutation
- Neutralization Tests
- Protein Domains
- Protein Isoforms/immunology
- Reassortant Viruses/immunology
- Receptors, Virus/metabolism
- SARS-CoV-2/genetics
- SARS-CoV-2/immunology
- SARS-CoV-2/physiology
- Selection, Genetic
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/metabolism
- Vesiculovirus/genetics
- Virus Replication
- COVID-19 Serotherapy
Collapse
Affiliation(s)
- Yiska Weisblum
- Laboratory of Retrovirology, The Rockefeller UniversityNew YorkUnited States
| | - Fabian Schmidt
- Laboratory of Retrovirology, The Rockefeller UniversityNew YorkUnited States
| | - Fengwen Zhang
- Laboratory of Retrovirology, The Rockefeller UniversityNew YorkUnited States
| | - Justin DaSilva
- Laboratory of Retrovirology, The Rockefeller UniversityNew YorkUnited States
| | - Daniel Poston
- Laboratory of Retrovirology, The Rockefeller UniversityNew YorkUnited States
| | - Julio CC Lorenzi
- Laboratory of Molecular Immunology The Rockefeller UniversityNew YorkUnited States
| | - Frauke Muecksch
- Laboratory of Retrovirology, The Rockefeller UniversityNew YorkUnited States
| | - Magdalena Rutkowska
- Laboratory of Retrovirology, The Rockefeller UniversityNew YorkUnited States
| | - Hans-Heinrich Hoffmann
- Laboratory of Virology and Infectious Disease The Rockefeller UniversityNew YorkUnited States
| | - Eleftherios Michailidis
- Laboratory of Virology and Infectious Disease The Rockefeller UniversityNew YorkUnited States
| | - Christian Gaebler
- Laboratory of Molecular Immunology The Rockefeller UniversityNew YorkUnited States
| | - Marianna Agudelo
- Laboratory of Molecular Immunology The Rockefeller UniversityNew YorkUnited States
| | - Alice Cho
- Laboratory of Molecular Immunology The Rockefeller UniversityNew YorkUnited States
| | - Zijun Wang
- Laboratory of Molecular Immunology The Rockefeller UniversityNew YorkUnited States
| | - Anna Gazumyan
- Laboratory of Molecular Immunology The Rockefeller UniversityNew YorkUnited States
| | - Melissa Cipolla
- Laboratory of Molecular Immunology The Rockefeller UniversityNew YorkUnited States
| | - Larry Luchsinger
- Lindsley F. Kimball Research Institute, New York Blood CenterNew YorkUnited States
| | | | - Marina Caskey
- Laboratory of Molecular Immunology The Rockefeller UniversityNew YorkUnited States
| | - Davide F Robbiani
- Laboratory of Molecular Immunology The Rockefeller UniversityNew YorkUnited States
- Institute for Research in Biomedicine, Università della Svizzera italianaBellinzonaSwitzerland
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease The Rockefeller UniversityNew YorkUnited States
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology The Rockefeller UniversityNew YorkUnited States
- Howard Hughes Medical Institute, The Rockefeller UniversityNew YorkUnited States
| | | | - Paul D Bieniasz
- Laboratory of Retrovirology, The Rockefeller UniversityNew YorkUnited States
- Howard Hughes Medical Institute, The Rockefeller UniversityNew YorkUnited States
| |
Collapse
|
15
|
Isho B, Abe KT, Zuo M, Jamal AJ, Rathod B, Wang JH, Li Z, Chao G, Rojas OL, Bang YM, Pu A, Christie-Holmes N, Gervais C, Ceccarelli D, Samavarchi-Tehrani P, Guvenc F, Budylowski P, Li A, Paterson A, Yue FY, Marin LM, Caldwell L, Wrana JL, Colwill K, Sicheri F, Mubareka S, Gray-Owen SD, Drews SJ, Siqueira WL, Barrios-Rodiles M, Ostrowski M, Rini JM, Durocher Y, McGeer AJ, Gommerman JL, Gingras AC. Persistence of serum and saliva antibody responses to SARS-CoV-2 spike antigens in COVID-19 patients. Sci Immunol 2020; 5:5/52/eabe5511. [PMID: 33033173 PMCID: PMC8050884 DOI: 10.1126/sciimmunol.abe5511] [Citation(s) in RCA: 563] [Impact Index Per Article: 140.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022]
Abstract
While the antibody response to SARS-CoV-2 has been extensively studied in blood, relatively little is known about the antibody response in saliva and its relationship to systemic antibody levels. Here, we profiled by enzyme-linked immunosorbent assays (ELISAs) IgG, IgA and IgM responses to the SARS-CoV-2 spike protein (full length trimer) and its receptor-binding domain (RBD) in serum and saliva of acute and convalescent patients with laboratory-diagnosed COVID-19 ranging from 3-115 days post-symptom onset (PSO), compared to negative controls. Anti-SARS-CoV-2 antibody responses were readily detected in serum and saliva, with peak IgG levels attained by 16-30 days PSO. Longitudinal analysis revealed that anti-SARS-CoV-2 IgA and IgM antibodies rapidly decayed, while IgG antibodies remained relatively stable up to 105 days PSO in both biofluids. Lastly, IgG, IgM and to a lesser extent IgA responses to spike and RBD in the serum positively correlated with matched saliva samples. This study confirms that serum and saliva IgG antibodies to SARS-CoV-2 are maintained in the majority of COVID-19 patients for at least 3 months PSO. IgG responses in saliva may serve as a surrogate measure of systemic immunity to SARS-CoV-2 based on their correlation with serum IgG responses.
Collapse
Affiliation(s)
- Baweleta Isho
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Kento T Abe
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Michelle Zuo
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Alainna J Jamal
- Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, ON, Canada
- Department of Microbiology, at Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
| | - Bhavisha Rathod
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
| | - Jenny H Wang
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
| | - Zhijie Li
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Gary Chao
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Olga L Rojas
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Yeo Myong Bang
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Annie Pu
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | | | - Christian Gervais
- Mammalian Cell Expression, Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, QC, Canada
| | - Derek Ceccarelli
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
| | - Payman Samavarchi-Tehrani
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
| | - Furkan Guvenc
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Patrick Budylowski
- Combined Containment Level 3 Unit, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Angel Li
- Department of Microbiology, at Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
| | - Aimee Paterson
- Department of Microbiology, at Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
| | - Feng Yun Yue
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Lina M Marin
- College of Dentistry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Lauren Caldwell
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
| | - Jeffrey L Wrana
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Karen Colwill
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
| | - Frank Sicheri
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Samira Mubareka
- Department of Laboratory Medicine and Molecular Diagnostics, Division of Microbiology, Sunnybrook Health Sciences Centre; Biological Sciences, Sunnybrook Research Institute; and Division of Infectious Diseases, Sunnybrook Health Sciences Centre, Toronto, ON, Canada; Department of Laboratory Medicine and Pathology, University of Toronto, Toronto, ON, Canada
| | - Scott D Gray-Owen
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Combined Containment Level 3 Unit, University of Toronto, Toronto, ON, Canada
| | - Steven J Drews
- Canadian Blood Services, Edmonton, AB & Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Walter L Siqueira
- College of Dentistry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Miriam Barrios-Rodiles
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
| | - Mario Ostrowski
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- St. Michael's Hospital, Toronto, ON, Canada; Li Ka Shing Knowledge Institute
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - James M Rini
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Yves Durocher
- Mammalian Cell Expression, Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, QC, Canada
| | - Allison J McGeer
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
- Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, ON, Canada
- Department of Microbiology, at Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
| | | | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|