1
|
Mutombo PN, Kasilo OMJ, James PB, Wardle J, Kunle O, Katerere D, Wambebe C, Matsabisa MG, Rahmatullah M, Nikiema JB, Mukankubito I, Sheridan R, Sanogo R, Nissapatorn V, Sivakorn C, Tripathy S, Goyal R, Dhobi M. Experiences and challenges of African traditional medicine: lessons from COVID-19 pandemic. BMJ Glob Health 2023; 8:e010813. [PMID: 37558269 PMCID: PMC10414097 DOI: 10.1136/bmjgh-2022-010813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 04/24/2023] [Indexed: 08/11/2023] Open
Abstract
Management of COVID-19 in Africa is challenging due to limited resources, including the high cost of vaccines, diagnostics, medical devices and routine pharmaceuticals. These challenges, in addition to wide acceptability, have resulted in increased use of herbal medicines based on African traditional medicines (ATMs) by patients in Africa. This is in spite of the often-significant gaps in evidence regarding these traditional medicines as to their efficacy and safety for COVID-19. African scientists, with some support from their governments, and guidance from WHO and other bodies, are addressing this evidence gap, developing and testing herbal medicines based on ATMs to manage mild-to-moderate cases of COVID-19. Such efforts need further support to meet public health needs.
Collapse
Affiliation(s)
- Polydor Ngoy Mutombo
- Faculty of Health, National Centre for Naturopathic Medicine, Southern Cross University, Lismore, New South Wales, Australia
| | - Ossy Muganga Julius Kasilo
- Universal Health Coverage Life Course Cluster, World Health Organization Regional Office for Africa, Brazzaville, Congo
| | - Peter Bai James
- Faculty of Health, National Centre for Naturopathic Medicine, Southern Cross University, Lismore, New South Wales, Australia
| | - Jon Wardle
- Faculty of Health, National Centre for Naturopathic Medicine, Southern Cross University, Lismore, New South Wales, Australia
| | - Olobayo Kunle
- Pharmaceutical Technology and Raw Materials Development, National Institute for Pharmaceutical Research and Development, Abuja, Federal Capital Territory, Nigeria
| | - David Katerere
- Pharmaceutical Science, Tshwane University of Technology, Pretoria, South Africa
| | - Charles Wambebe
- Pharmacology & Therapeutics, School of Biomedical Sciences, International Biomedical Research Institute (IBRI), Abuja, Nigeria
| | | | - Mohammed Rahmatullah
- Biotechnology & Genetic Engineering, University of Development Alternative, Dhaka, Bangladesh
| | - Jean-Baptiste Nikiema
- Medicines Supply, Health Infrastructure and Equipment Maintenance (MIM) Unit, Universal Health Coverage/Life Course Cluster, World Health Organization Regional Office for Africa, Brazzaville, Congo
| | - Immaculee Mukankubito
- Medicines Supply, Health Infrastructure and Equipment Maintenance (MIM) Unit, World Health Organization Regional Office for Africa, Brazzaville, Congo
| | | | - Rokia Sanogo
- Médecine Traditionnelle, Institut National de Recherche en Sante Publique, Bamako, Mali
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences and World Union for Herbal Drug Discovery (WUHeDD), Walailak University, Thai Buri, Thailand
| | - Chaisith Sivakorn
- Intensive Care Unit, University College London Hospitals NHS Foundation Trust, London, UK
| | - Satyajit Tripathy
- Pharmacology, University of the Free State, Bloemfontein, Free State, South Africa
| | - Ramesh Goyal
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Delhi, India
| | - Mahaveer Dhobi
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Delhi, India
| |
Collapse
|
2
|
Gerardi V, Rohaim MA, Naggar RFE, Atasoy MO, Munir M. Deep Structural Analysis of Myriads of Omicron Sub-Variants Revealed Hotspot for Vaccine Escape Immunity. Vaccines (Basel) 2023; 11:668. [PMID: 36992252 PMCID: PMC10059128 DOI: 10.3390/vaccines11030668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/18/2023] Open
Abstract
The emergence of the Omicron variant has reinforced the importance of continued SARS-CoV-2 evolution and its possible impact on vaccine effectiveness. Specifically, mutations in the receptor-binding domain (RBD) are critical to comprehend the flexibility and dynamicity of the viral interaction with the human agniotensin-converting enzyme 2 (hACE2) receptor. To this end, we have applied a string of deep structural and genetic analysis tools to map the substitution patterns in the S protein of major Omicron sub-variants (n = 51) with a primary focus on the RBD mutations. This head-to-head comparison of Omicron sub-variants revealed multiple simultaneous mutations that are attributed to antibody escape, and increased affinity and binding to hACE2. Our deep mapping of the substitution matrix indicated a high level of diversity at the N-terminal and RBD domains compared with other regions of the S protein, highlighting the importance of these two domains in a matched vaccination approach. Structural mapping identified highly variable mutations in the up confirmation of the S protein and at sites that critically define the function of the S protein in the virus pathobiology. These substitutional trends offer support in tracking mutations along the evolutionary trajectories of SAR-CoV-2. Collectively, the findings highlight critical areas of mutations across the major Omicron sub-variants and propose several hotspots in the S proteins of SARS-CoV-2 sub-variants to train the future design and development of COVID-19 vaccines.
Collapse
Affiliation(s)
- Valeria Gerardi
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YG, UK
| | - Mohammed A. Rohaim
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YG, UK
- Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Rania F. El Naggar
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YG, UK
- Department of Virology, Faculty of Veterinary Medicine, University of Sadat City, Sadat 32897, Egypt
| | - Mustafa O. Atasoy
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YG, UK
| | - Muhammad Munir
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YG, UK
| |
Collapse
|
3
|
Gomari MM, Tarighi P, Choupani E, Abkhiz S, Mohamadzadeh M, Rostami N, Sadroddiny E, Baammi S, Uversky VN, Dokholyan NV. Structural evolution of Delta lineage of SARS-CoV-2. Int J Biol Macromol 2023; 226:1116-1140. [PMID: 36435470 PMCID: PMC9683856 DOI: 10.1016/j.ijbiomac.2022.11.227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
One of the main obstacles in prevention and treatment of COVID-19 is the rapid evolution of the SARS-CoV-2 Spike protein. Given that Spike is the main target of common treatments of COVID-19, mutations occurring at this virulent factor can affect the effectiveness of treatments. The B.1.617.2 lineage of SARS-CoV-2, being characterized by many Spike mutations inside and outside of its receptor-binding domain (RBD), shows high infectivity and relative resistance to existing cures. Here, utilizing a wide range of computational biology approaches, such as immunoinformatics, molecular dynamics (MD), analysis of intrinsically disordered regions (IDRs), protein-protein interaction analyses, residue scanning, and free energy calculations, we examine the structural and biological attributes of the B.1.617.2 Spike protein. Furthermore, the antibody design protocol of Rosetta was implemented for evaluation the stability and affinity improvement of the Bamlanivimab (LY-CoV55) antibody, which is not capable of interactions with the B.1.617.2 Spike. We observed that the detected mutations in the Spike of the B1.617.2 variant of concern can cause extensive structural changes compatible with the described variation in immunogenicity, secondary and tertiary structure, oligomerization potency, Furin cleavability, and drug targetability. Compared to the Spike of Wuhan lineage, the B.1.617.2 Spike is more stable and binds to the Angiotensin-converting enzyme 2 (ACE2) with higher affinity.
Collapse
Affiliation(s)
- Mohammad Mahmoudi Gomari
- Student Research Committee, Iran University of Medical Sciences, Tehran 1449614535, Iran; Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Parastoo Tarighi
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Edris Choupani
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Shadi Abkhiz
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Masoud Mohamadzadeh
- Department of Chemistry, Faculty of Sciences, University of Hormozgan, Bandar Abbas 7916193145, Iran
| | - Neda Rostami
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak 3848177584, Iran
| | - Esmaeil Sadroddiny
- Medical Biotechnology Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran
| | - Soukayna Baammi
- African Genome Centre (AGC), Mohammed VI Polytechnic University, Benguerir 43150, Morocco
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33620, USA; Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia.
| | - Nikolay V Dokholyan
- Department of Pharmacology, Department of Biochemistry & Molecular Biology, Pennsylvania State University College of Medicine, Hershey, PA 16802, USA.
| |
Collapse
|
4
|
Lamkiewicz K, Esquivel Gomez LR, Kühnert D, Marz M. Genome Structure, Life Cycle, and Taxonomy of Coronaviruses and the Evolution of SARS-CoV-2. Curr Top Microbiol Immunol 2023; 439:305-339. [PMID: 36592250 DOI: 10.1007/978-3-031-15640-3_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Coronaviruses have a broad host range and exhibit high zoonotic potential. In this chapter, we describe their genomic organization in terms of encoded proteins and provide an introduction to the peculiar discontinuous transcription mechanism. Further, we present evolutionary conserved genomic RNA secondary structure features, which are involved in the complex replication mechanism. With a focus on computational methods, we review the emergence of SARS-CoV-2 starting with the 2019 strains. In that context, we also discuss the debated hypothesis of whether SARS-CoV-2 was created in a laboratory. We focus on the molecular evolution and the epidemiological dynamics of this recently emerged pathogen and we explain how variants of concern are detected and characterised. COVID-19, the disease caused by SARS-CoV-2, can spread through different transmission routes and also depends on a number of risk factors. We describe how current computational models of viral epidemiology, or more specifically, phylodynamics, have facilitated and will continue to enable a better understanding of the epidemic dynamics of SARS-CoV-2.
Collapse
Affiliation(s)
- Kevin Lamkiewicz
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Leutragraben 1, 07743, Jena, Germany
- European Virus Bioinformatics Center, Leutragraben 1, 07743, Jena, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, 04103, Leipzig, Germany
| | - Luis Roger Esquivel Gomez
- Transmission, Infection, Diversification and Evolution Group, Max Planck Institute for the Science of Human History, Kahlaische Straße 10, 07745, Jena, Germany
| | - Denise Kühnert
- Transmission, Infection, Diversification and Evolution Group, Max Planck Institute for the Science of Human History, Kahlaische Straße 10, 07745, Jena, Germany
- European Virus Bioinformatics Center, Leutragraben 1, 07743, Jena, Germany
| | - Manja Marz
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Leutragraben 1, 07743, Jena, Germany.
- European Virus Bioinformatics Center, Leutragraben 1, 07743, Jena, Germany.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, 04103, Leipzig, Germany.
- FLI Leibniz Institute for Age Research, Beutenbergstraße 11, 07745, Jena, Germany.
| |
Collapse
|
5
|
Mohseni Afshar Z, Barary M, Hosseinzadeh R, Karim B, Ebrahimpour S, Nazary K, Sio TT, Sullman MJM, Carson-Chahhoud K, Moudi E, Babazadeh A. COVID-19 vaccination challenges: A mini-review. Hum Vaccin Immunother 2022; 18:2066425. [PMID: 35512088 PMCID: PMC9302531 DOI: 10.1080/21645515.2022.2066425] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/11/2022] [Accepted: 02/28/2022] [Indexed: 02/07/2023] Open
Abstract
The emergence of SARS-CoV-2 has led to the infection of many people across the globe, over six million deaths, and has placed an unprecedented burden on public health worldwide. The pandemic has led to the high-speed development and production of vaccines against the COVID-19, as vaccines can end the pandemic. At the beginning of the program, vaccinations were initially targeted only at high-risk groups, such as the elderly, those with comorbidities, or healthcare workers. Although most of the mentioned populations have received the two recommended doses, limited resources have left many authorities with an effective vaccine undersupply. Therefore, policies have been implemented to manage the available doses of the vaccines more efficiently. As there is no universally agreed consensus on this topic, we discuss the different recommendations and guidelines regarding the time interval between the two vaccine doses and explain the different scenarios for applying the two doses.
Collapse
Affiliation(s)
- Zeinab Mohseni Afshar
- Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Barary
- Student Research Committee, Virtual School of Medical Education and Management, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Students’ Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Rezvan Hosseinzadeh
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Bardia Karim
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Soheil Ebrahimpour
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Kosar Nazary
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Terence T. Sio
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona, USA
| | - Mark J. M. Sullman
- Department of Social Sciences, University of Nicosia, Nicosia, Cyprus
- Department of Life and Health Sciences, University of Nicosia, Nicosia, Cyprus
| | | | - Emaduddin Moudi
- Clinical Research Development Center, Shahid Beheshti Hospital, Babol University of Medical Sciences, Babol, Iran
| | - Arefeh Babazadeh
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
6
|
Zhang H, Shen L, Sun M, Zhao C, Li Q, Yang Z, Liu J, Liu K, Xiao B. Spatiotemporal impact of non-pharmaceutical interventions against COVID-19 on the incidence of infectious diarrhea in Xi'an, China. Front Public Health 2022; 10:1011592. [PMID: 36518571 PMCID: PMC9742410 DOI: 10.3389/fpubh.2022.1011592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/08/2022] [Indexed: 11/29/2022] Open
Abstract
Background Non-pharmaceutical interventions (NPIs) against COVID-19 may prevent the spread of other infectious diseases. Our purpose was to assess the effects of NPIs against COVID-19 on infectious diarrhea in Xi'an, China. Methods Based on the surveillance data of infectious diarrhea, and the different periods of emergence responses for COVID-19 in Xi'an from 2011 to 2021, we applied Bayesian structural time series model and interrupted time series model to evaluate the effects of NPIs against COVID-19 on the epidemiological characteristics and the causative pathogens of infectious diarrhea. Findings A total of 102,051 cases of infectious diarrhea were reported in Xi'an from 2011 to 2021. The Bayesian structural time series model results demonstrated that the cases of infectious diarrhea during the emergency response period was 40.38% lower than predicted, corresponding to 3,211 fewer cases, during the COVID-19 epidemic period of 2020-2021. The reduction exhibited significant variations in the demography, temporal and geographical distribution. The decline in incidence was especially evident in children under 5-years-old, with decreases of 34.09% in 2020 and 33.99% in 2021, relative to the 2017-2019 average. Meanwhile, the incidence decreased more significantly in industrial areas. Interpretation NPIs against COVID-19 were associated with short- and long-term reductions in the incidence of infectious diarrhea, and this effect exhibited significant variations in epidemiological characteristics.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Prevention of Infectious Diseases, Xi'an Center for Disease Control and Prevention, Xi'an, Shaanxi, China
| | - Li Shen
- School of Remote Sensing and Information Engineering, Wuhan University, Wuhan, China
| | - Minghao Sun
- School of Remote Sensing and Information Engineering, Wuhan University, Wuhan, China
| | - Chenxi Zhao
- Department of Epidemiology, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi'an, China
| | - Qian Li
- Department of Prevention of Infectious Diseases, Xi'an Center for Disease Control and Prevention, Xi'an, Shaanxi, China
| | - Zurong Yang
- Department of Epidemiology, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi'an, China
| | - Jifeng Liu
- Department of Prevention of Infectious Diseases, Xi'an Center for Disease Control and Prevention, Xi'an, Shaanxi, China
| | - Kun Liu
- Department of Epidemiology, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi'an, China
| | - Bo Xiao
- Department of Plastic Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| |
Collapse
|
7
|
Kombe Kombe AJ, Biteghe FAN, Ndoutoume ZN, Jin T. CD8 + T-cell immune escape by SARS-CoV-2 variants of concern. Front Immunol 2022; 13:962079. [PMID: 36389664 PMCID: PMC9647062 DOI: 10.3389/fimmu.2022.962079] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 10/03/2022] [Indexed: 07/30/2023] Open
Abstract
Despite the efficacy of antiviral drug repositioning, convalescent plasma (CP), and the currently available vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the worldwide coronavirus disease 2019 (COVID-19) pandemic is still challenging because of the ongoing emergence of certain new SARS-CoV-2 strains known as variants of concern (VOCs). Mutations occurring within the viral genome, characterized by these new emerging VOCs, confer on them the ability to efficiently resist and escape natural and vaccine-induced humoral and cellular immune responses. Consequently, these VOCs have enhanced infectivity, increasing their stable spread in a given population with an important fatality rate. While the humoral immune escape process is well documented, the evasion mechanisms of VOCs from cellular immunity are not well elaborated. In this review, we discussed how SARS-CoV-2 VOCs adapt inside host cells and escape anti-COVID-19 cellular immunity, focusing on the effect of specific SARS-CoV-2 mutations in hampering the activation of CD8+ T-cell immunity.
Collapse
Affiliation(s)
- Arnaud John Kombe Kombe
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | | | - Zélia Nelly Ndoutoume
- The Second Clinical School, Medical Imaging, Chongqing Medical University, Chongqing, China
| | - Tengchuan Jin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Laboratory of Structural Immunology, Chinese Academic of Sciences Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Chinese Academic of Sciences (CAS) Center for Excellence in Molecular Cell Science, Chinese Academy of Science, Shanghai, China
| |
Collapse
|
8
|
Huang WC, Chiem K, Martinez-Sobrido L, Lovell JF. Intranasal Immunization with Liposome-Displayed Receptor-Binding Domain Induces Mucosal Immunity and Protection against SARS-CoV-2. Pathogens 2022; 11:1035. [PMID: 36145467 PMCID: PMC9505078 DOI: 10.3390/pathogens11091035] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/25/2022] [Accepted: 09/06/2022] [Indexed: 11/30/2022] Open
Abstract
The global pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has led to efforts in developing effective vaccine approaches. Currently, approved coronavirus disease 2019 (COVID-19) vaccines are administered through an intramuscular (I.M.) route. Here, we show that the SARS-CoV-2 spike (S) glycoprotein receptor-binding domain (RBD), when displayed on immunogenic liposomes, can be intranasally (I.N.) administered, resulting in the production of antigen-specific IgA and antigen-specific cellular responses in the lungs. Following I.N. immunization, antigen-presenting cells of the lungs took up liposomes displaying the RBD. K18 human ACE2-transgenic mice that were immunized I.M or I.N with sub-microgram doses of RBD liposomes and that were then challenged with SARS-CoV-2 had a reduced viral load in the early course of infection, with I.M. achieving complete viral clearance. Nevertheless, both vaccine administration routes led to full protection against lethal viral infection, demonstrating the potential for the further exploration and optimization of I.N immunization with liposome-displayed antigen vaccines.
Collapse
Affiliation(s)
- Wei-Chiao Huang
- Department of Biomedical Engineering, University at Buffalo, Buffalo, NY 14260, USA
- POP Biotechnologies, Buffalo, NY 14128, USA
| | - Kevin Chiem
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | | | - Jonathan F. Lovell
- Department of Biomedical Engineering, University at Buffalo, Buffalo, NY 14260, USA
| |
Collapse
|
9
|
Khairnar P, Soni M, Handa M, Riadi Y, Kesharwani P, Shukla R. Recent highlights on Omicron as a new SARS-COVID-19 variant: evolution, genetic mutation, and future perspectives. J Drug Target 2022; 30:603-613. [PMID: 35311601 PMCID: PMC9115780 DOI: 10.1080/1061186x.2022.2056187] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/15/2022] [Accepted: 03/15/2022] [Indexed: 12/11/2022]
Abstract
COVID-19 has affected the lives of billions of people and is a causative agent for millions of deaths. After 23 months of the first reported case of COVID-19, on 25th November 2020, a new SARS-COVID-19 variant, i.e. Omicron was reported with a WHO tagline of VoC that trembled the world with its infectivity rate. This fifth VoC raised the concern about neutralising ability and adequate control of SARS-COVID-19 infection due to mass vaccination drive (nearly more than 4.7 billion individuals got vaccinated globally till December 2021). However, the present scenario of VoCs highlights the importance of vaccination and public health measures that need to be followed strictly to prevent the fatality from Omicron. The world still needs to overcome the hesitancy that poses a major barrier to the implementation of vaccination. This review highlights the SARS-COVID-19 situation and discusses in detail the mutational events that occurred at a cellular level in different variants over time. This article is dedicated to the scientific findings reported during the recent outbreak of 2019-2022 and describes their symptoms, disease, spread, treatment, and preventive action advised. The article also focuses on the treatment options available for Covid-19 and the update of Omicron by expert agencies.
Collapse
Affiliation(s)
- Pooja Khairnar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, India
| | - Mukesh Soni
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, India
| | - Mayank Handa
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, India
| | - Yassine Riadi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, India
| |
Collapse
|
10
|
Mfoutou Mapanguy CC, Batchi-Bouyou AL, Djontu JC, Pallerla SR, Ngoma CH, Linh LTK, Rachakonda S, Casadei N, Angelov A, Sonnabend M, Vouvoungui JC, Ampa R, Nguimbi E, Peter S, Kremsner PG, Montaldo C, Velavan TP, Ntoumi F. SARS-CoV-2 B.1.214.1, B.1.214.2 and B.1.620 are predominant lineages between December 2020 and July 2021 in the Republic of Congo. IJID REGIONS 2022; 3:106-113. [PMID: 35720148 PMCID: PMC8907106 DOI: 10.1016/j.ijregi.2022.03.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/25/2022] [Accepted: 03/08/2022] [Indexed: 06/15/2023]
Abstract
Background : SARS-CoV-2 variants have been emerging and are shown to increase transmissibility, pathogenicity, and decreased vaccine efficacies. The objective of this study was to determine the distribution, prevalence, and dynamics of SARS-CoV-2 variants circulating in Brazzaville, the Republic of Congo (ROC). Methods : Between December 2020 and July 2021, a total of n=600 oropharyngeal specimens collected in the community were tested for COVID-19. Of the samples tested, 317 (53%) were SARS-CoV-2 positive. All samples that had a threshold of Ct <30 (n=182) were sequenced by next-generation sequencing (NGS), and all complete sequenced genomes were submitted to GISAID; lineages were assigned using pangolin nomenclature and a phylogenetic tree was reconstructed. In addition, the global prevalence of the predominant lineages was analysed using data from GISAID and Outbreak databases. Results : A total of 15 lineages circulated with B.1.214.2 (26%), B.1.214.1 (19%) and B.1.620 (18%) being predominant. The variants of concern (VOC) alpha (B.1.1.7) (6%) and for the first time in June delta (B.1.617.2) (4%) were observed. In addition, the B.1.214.1 lineage first reported from ROC was observed to be spreading locally and regionally. Phylogenetic analysis suggests that the B.1.620 variant (VUM) under observation may have originated from either Cameroon or the Central African Republic. SARS-CoV-2 lineages were heterogeneous, with the densely populated districts of Poto-Poto and Moungali likely the epicenter of spread. Conclusion : Longitudinal monitoring and molecular surveillance across time and space are critical to understanding viral phylodynamics, which could have important implications for transmissibility and impact infection prevention and control measures.
Collapse
Affiliation(s)
- Claujens Chastel Mfoutou Mapanguy
- Fondation Congolaise pour la Recherche Médicale (FCRM), Brazzaville, Republic of Congo
- Faculty of Sciences and Technology, University Marien Ngouabi, Brazzaville, Republic of Congo
| | - Armel Landry Batchi-Bouyou
- Fondation Congolaise pour la Recherche Médicale (FCRM), Brazzaville, Republic of Congo
- Faculty of Sciences and Technology, University Marien Ngouabi, Brazzaville, Republic of Congo
| | - Jean Claude Djontu
- Fondation Congolaise pour la Recherche Médicale (FCRM), Brazzaville, Republic of Congo
| | - Srinivas Reddy Pallerla
- Institute of Tropical Medicine, Universitätsklinikum Tübingen, Tübingen, Germany
- Vietnamese-German Center for Medical Research, VG-CARE, Hanoi, Vietnam
| | - Chamy Helga Ngoma
- Fondation Congolaise pour la Recherche Médicale (FCRM), Brazzaville, Republic of Congo
- Faculty of Sciences and Technology, University Marien Ngouabi, Brazzaville, Republic of Congo
| | - Le Thi Kieu Linh
- Institute of Tropical Medicine, Universitätsklinikum Tübingen, Tübingen, Germany
- Vietnamese-German Center for Medical Research, VG-CARE, Hanoi, Vietnam
| | | | - Nicolas Casadei
- Institute for Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- NGS Competence Center Tübingen (NCCT), Tübingen, Germany
| | - Angel Angelov
- NGS Competence Center Tübingen (NCCT), Tübingen, Germany
- Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Michael Sonnabend
- NGS Competence Center Tübingen (NCCT), Tübingen, Germany
- Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Jeannhey Christevy Vouvoungui
- Fondation Congolaise pour la Recherche Médicale (FCRM), Brazzaville, Republic of Congo
- Faculty of Sciences and Technology, University Marien Ngouabi, Brazzaville, Republic of Congo
| | - Raoul Ampa
- Faculty of Sciences and Technology, University Marien Ngouabi, Brazzaville, Republic of Congo
| | - Etienne Nguimbi
- Faculty of Sciences and Technology, University Marien Ngouabi, Brazzaville, Republic of Congo
| | - Silke Peter
- NGS Competence Center Tübingen (NCCT), Tübingen, Germany
- Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Peter G Kremsner
- Institute of Tropical Medicine, Universitätsklinikum Tübingen, Tübingen, Germany
- Centre de Recherches Médicales de Lambaréné (CERMEL), Gabon
| | - Chiara Montaldo
- National Institute for Infectious Diseases Lazzaro Spallanzani Institute for Hospitalization and Care Scientific, Rome, Italy
| | - Thirumalaisamy P. Velavan
- Institute of Tropical Medicine, Universitätsklinikum Tübingen, Tübingen, Germany
- Vietnamese-German Center for Medical Research, VG-CARE, Hanoi, Vietnam
| | - Francine Ntoumi
- Fondation Congolaise pour la Recherche Médicale (FCRM), Brazzaville, Republic of Congo
- Faculty of Sciences and Technology, University Marien Ngouabi, Brazzaville, Republic of Congo
- Institute of Tropical Medicine, Universitätsklinikum Tübingen, Tübingen, Germany
| |
Collapse
|
11
|
Sun Y, Zhang Y, Liu Z, Li X, Liu J, Tian X, Gao Q, Niu P, Zhai H, Sun Z, Tian Y, Wang J. Analysis of the Transmission of SARS-CoV-2 Delta VOC in Yantai, China, August 2021. Front Med (Lausanne) 2022; 9:842719. [PMID: 35707526 PMCID: PMC9189276 DOI: 10.3389/fmed.2022.842719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 04/11/2022] [Indexed: 11/28/2022] Open
Abstract
Objective Starting 31 July 2021, a SARS-CoV-2 outbreak occurred in Yantai, Shandong Province. The investigation showed that this outbreak was closely related to the epidemic at Nanjing Lukou Airport. In view of the fact that there were many people involved in this outbreak and these people had a complex activity area, the transmission route cannot be analyzed by simple epidemiological investigation. Here we combined the SARS-COV-2 whole-genome sequencing with epidemiology to determine the epidemic transmission route of Yantai. Methods Thirteen samples of SARS-CoV-2 outbreak cases from 31 July to 4 August 2021 were collected and identified by fluorescence quantitative PCR, then whole-genome deep sequencing based on NGS was performed, and the data were analyzed and processed by biological software. Results All sequences were over 29,000 bases in length and all belonged to B.1.617.2, which was the Delta strain. All sequences shared two amino acid deletions and 9 amino acid mutations in Spike protein compared with reference sequence NC_045512.2 (Wuhan virus strain). Compared with the sequence of Lukou Airport Delta strain, the homology was 99.99%. In order to confirm the transmission relationship between patients, we performed a phylogenetic tree analysis. The results showed that patient 1, patient 2, and patient 9 belong to an independent branch, and other patients have a close relationship. Combined with the epidemiological investigation, we speculated that the epidemic of Yantai was transmitted by two routes at the same time. Based on this information, our prevention and control work was carried out in two ways and effectively prevented the further spread of this epidemic.
Collapse
Affiliation(s)
- Yulou Sun
- Yantai Center for Disease Control and Prevention, Yantai, China
| | - Yuwei Zhang
- Shandong Center for Disease Control and Prevention, Jinan, China
| | - Zimo Liu
- Electrocardiogram Room, Yantai Yuhuangding Hospital, Yantai, China
| | - Xia Li
- Yantai Center for Disease Control and Prevention, Yantai, China
| | - Juan Liu
- Yantai Center for Disease Control and Prevention, Yantai, China
| | - Xinghan Tian
- Department of Critical Care Medicine, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, China
| | - Qiao Gao
- Yantai Center for Disease Control and Prevention, Yantai, China
| | - Peihua Niu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hongli Zhai
- Research Institute of Luye Public Health, Ludong University, Yantai, China
| | - Zhenlu Sun
- Yantai Center for Disease Control and Prevention, Yantai, China
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yunlong Tian
- Yantai Center for Disease Control and Prevention, Yantai, China
| | - Ji Wang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Chinese Field Epidemiology Training Program, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
12
|
Ortiz-Pineda PA, Sierra-Torres CH. Evolutionary Traits and Genomic Surveillance of SARS-CoV-2 in South America. Glob Health Epidemiol Genom 2022; 2022:8551576. [PMID: 35655960 PMCID: PMC9132712 DOI: 10.1155/2022/8551576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/12/2022] [Accepted: 04/24/2022] [Indexed: 11/18/2022] Open
Abstract
Since the zoonotic event from which SARS-CoV-2 started infecting humans late in 2019, the virus has caused more than 5 million deaths and has infected over 500 million people around the world. The pandemic has had a severe impact on social and economic activities, with greater repercussions in low-income countries. South America, with almost 5% of the world's population, has reckoned with almost a fifth of the total people infected and more than 26% (>1/4) of the deceased. Fortunately, the full genome structure and sequence of SARS-CoV-2 have been rapidly obtained and studied thanks to all the scientific efforts and data sharing around the world. Such molecular analysis of SARS-CoV-2 dynamics showed that rates of mutation, similar to other members of the Coronaviridae family, along with natural selection forces, could result in the emergence of new variants; few of them might be of high consequence. However, this is a serious threat to controlling the pandemic and, of course, enduring the process of returning to normalization with the implicit monetary cost of such a contingency. The lack of updated knowledge in South America justifies the need to develop a structured genomic surveillance program of current and emerging SARS-CoV-2 variants. The modeling of the molecular events and microevolution of the virus will contribute to making better decisions on public health management of the pandemic and developing accurate treatments and more efficient vaccines.
Collapse
Affiliation(s)
- Pablo A. Ortiz-Pineda
- Laboratory of Molecular Biology and Genomics, InnovaGen Foundation, Popayán, Colombia
| | - Carlos H. Sierra-Torres
- Laboratory of Molecular Biology and Genomics, InnovaGen Foundation, Popayán, Colombia
- Human Genetics Laboratory, Department of Physiological Sciences, Faculty of Health Sciences, University of Cauca, Popayán, Colombia
| |
Collapse
|
13
|
GeurtsvanKessel CH, Geers D, Schmitz KS, Mykytyn AZ, Lamers MM, Bogers S, Scherbeijn S, Gommers L, Sablerolles RS, Nieuwkoop NN, Rijsbergen LC, van Dijk LL, de Wilde J, Alblas K, Breugem TI, Rijnders BJ, de Jager H, Weiskopf D, van der Kuy PHM, Sette A, Koopmans MP, Grifoni A, Haagmans BL, de Vries RD. Divergent SARS-CoV-2 Omicron-reactive T and B cell responses in COVID-19 vaccine recipients. Sci Immunol 2022; 7:eabo2202. [PMID: 35113647 PMCID: PMC8939771 DOI: 10.1126/sciimmunol.abo2202] [Citation(s) in RCA: 294] [Impact Index Per Article: 147.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 01/31/2022] [Indexed: 12/13/2022]
Abstract
The severe acute respiratory distress syndrome coronavirus 2 (SARS-CoV-2) Omicron variant is spreading rapidly, even in vaccinated individuals, raising concerns about immune escape. Here, we studied neutralizing antibodies and T cell responses targeting SARS-CoV-2 D614G [wild type (WT)] and the Beta, Delta, and Omicron variants of concern in a cohort of 60 health care workers after immunization with ChAdOx-1 S, Ad26.COV2.S, mRNA-1273, or BNT162b2. High binding antibody levels against WT SARS-CoV-2 spike (S) were detected 28 days after vaccination with both mRNA vaccines (mRNA-1273 or BNT162b2), which substantially decreased after 6 months. In contrast, antibody levels were lower after Ad26.COV2.S vaccination but did not wane. Neutralization assays showed consistent cross-neutralization of the Beta and Delta variants, but neutralization of Omicron was significantly lower or absent. BNT162b2 booster vaccination after either two mRNA-1273 immunizations or Ad26.COV2 priming partially restored neutralization of the Omicron variant, but responses were still up to 17-fold decreased compared with WT. SARS-CoV-2-specific T cells were detected up to 6 months after all vaccination regimens, with more consistent detection of specific CD4+ than CD8+ T cells. No significant differences were detected between WT- and variant-specific CD4+ or CD8+ T cell responses, including Omicron, indicating minimal escape at the T cell level. This study shows that vaccinated individuals retain T cell immunity to the SARS-CoV-2 Omicron variant, potentially balancing the lack of neutralizing antibodies in preventing or limiting severe COVID-19. Booster vaccinations are needed to further restore Omicron cross-neutralization by antibodies.
Collapse
Affiliation(s)
| | - Daryl Geers
- Department of Viroscience, Erasmus MC, Rotterdam, the Netherlands
| | | | - Anna Z. Mykytyn
- Department of Viroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Mart M Lamers
- Department of Viroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Susanne Bogers
- Department of Viroscience, Erasmus MC, Rotterdam, the Netherlands
| | | | - Lennert Gommers
- Department of Viroscience, Erasmus MC, Rotterdam, the Netherlands
| | | | | | | | | | - Janet de Wilde
- Department of Viroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Kimberley Alblas
- Department of Viroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Tim I. Breugem
- Department of Viroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Bart J.A. Rijnders
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, Rotterdam, Netherlands
| | - Herbert de Jager
- Department of Occupational Health Services, Erasmus MC, Rotterdam, Netherlands
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | | | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | | | - Alba Grifoni
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Bart L. Haagmans
- Department of Viroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Rory D. de Vries
- Department of Viroscience, Erasmus MC, Rotterdam, the Netherlands
| |
Collapse
|
14
|
Wu X, Wang Y, Cheng L, Ni F, Zhu L, Ma S, Huang B, Ji M, Hu H, Li Y, Xu S, Shi H, Zhang D, Liu L, Nawaz W, Hu Q, Ye S, Liu Y, Wu Z. Short-Term Instantaneous Prophylaxis and Efficient Treatment Against SARS-CoV-2 in hACE2 Mice Conferred by an Intranasal Nanobody (Nb22). Front Immunol 2022; 13:865401. [PMID: 35371009 PMCID: PMC8967979 DOI: 10.3389/fimmu.2022.865401] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 02/21/2022] [Indexed: 12/30/2022] Open
Abstract
Current COVID-19 vaccines need to take at least one month to complete inoculation and then become effective. Around 51% of the global population is still not fully vaccinated. Instantaneous protection is an unmet need among those who are not fully vaccinated. In addition, breakthrough infections caused by SARS-CoV-2 are widely reported. All these highlight the unmet needing for short-term instantaneous prophylaxis (STIP) in the communities where SARS-CoV-2 is circulating. Previously, we reported nanobodies isolated from an alpaca immunized with the spike protein, exhibiting ultrahigh potency against SARS-CoV-2 and its variants. Herein, we found that Nb22, among our previously reported nanobodies, exhibited ultrapotent neutralization against Delta variant with an IC50 value of 0.41 ng/ml (5.13 pM). Furthermore, the crystal structural analysis revealed that the binding of Nb22 to WH01 and Delta RBDs both effectively blocked the binding of RBD to hACE2. Additionally, intranasal Nb22 exhibited protection against SARS-CoV-2 Delta variant in the post-exposure prophylaxis (PEP) and pre-exposure prophylaxis (PrEP). Of note, intranasal Nb22 also demonstrated high efficacy against SARS-CoV-2 Delta variant in STIP for seven days administered by single dose and exhibited long-lasting retention in the respiratory system for at least one month administered by four doses, providing a strategy of instantaneous short-term prophylaxis against SARS-CoV-2. Thus, ultrahigh potency, long-lasting retention in the respiratory system and stability at room-temperature make the intranasal or inhaled Nb22 to be a potential therapeutic or STIP agent against SARS-CoV-2.
Collapse
Affiliation(s)
- Xilin Wu
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
- Department of Antibody, Abrev Biotechnology Co., Ltd., Nanjing, China
| | - Yaxing Wang
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, China
| | - Lin Cheng
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, Shenzhen, China
| | - Fengfeng Ni
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Linjing Zhu
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
- Department of Antibody, Abrev Biotechnology Co., Ltd., Nanjing, China
| | - Sen Ma
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, China
| | - Bilian Huang
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Mengmeng Ji
- School of Life Sciences, Ningxia University, Yinchuan, China
| | - Huimin Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Yuncheng Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Shijie Xu
- Department of Antibody, Y-clone Medical Science Co. Ltd., Suzhou, China
| | - Haixia Shi
- Department of Antibody, Y-clone Medical Science Co. Ltd., Suzhou, China
| | - Doudou Zhang
- Department of Antibody, Y-clone Medical Science Co. Ltd., Suzhou, China
| | - Linshuo Liu
- Department of Antibody, Y-clone Medical Science Co. Ltd., Suzhou, China
| | - Waqas Nawaz
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Qinxue Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- Institute for Infection and Immunity, St. George’s University of London, London, United Kingdom
| | - Sheng Ye
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, China
- Life Sciences Institute, Zhejiang University, Zhejiang, China
- *Correspondence: Zhiwei Wu, ; Sheng Ye, ; Yalan Liu,
| | - Yalan Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- *Correspondence: Zhiwei Wu, ; Sheng Ye, ; Yalan Liu,
| | - Zhiwei Wu
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
- School of Life Sciences, Ningxia University, Yinchuan, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China
- *Correspondence: Zhiwei Wu, ; Sheng Ye, ; Yalan Liu,
| |
Collapse
|
15
|
Cantoni D, Mayora-Neto M, Nadesalingam A, Wells DA, Carnell GW, Ohlendorf L, Ferrari M, Palmer P, Chan AC, Smith P, Bentley EM, Einhauser S, Wagner R, Page M, Raddi G, Baxendale H, Castillo-Olivares J, Heeney J, Temperton N. Neutralisation Hierarchy of SARS-CoV-2 Variants of Concern Using Standardised, Quantitative Neutralisation Assays Reveals a Correlation With Disease Severity; Towards Deciphering Protective Antibody Thresholds. Front Immunol 2022; 13:773982. [PMID: 35330908 PMCID: PMC8940306 DOI: 10.3389/fimmu.2022.773982] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 02/07/2022] [Indexed: 01/16/2023] Open
Abstract
The rise of SARS-CoV-2 variants has made the pursuit to define correlates of protection more troublesome, despite the availability of the World Health Organisation (WHO) International Standard for anti-SARS-CoV-2 Immunoglobulin sera, a key reagent used to standardise laboratory findings into an international unitage. Using pseudotyped virus, we examine the capacity of convalescent sera, from a well-defined cohort of healthcare workers (HCW) and Patients infected during the first wave from a national critical care centre in the UK to neutralise B.1.1.298, variants of interest (VOI) B.1.617.1 (Kappa), and four VOCs, B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma) and B.1.617.2 (Delta), including the B.1.617.2 K417N, informally known as Delta Plus. We utilised the WHO International Standard for anti-SARS-CoV-2 Immunoglobulin to report neutralisation antibody levels in International Units per mL. Our data demonstrate a significant reduction in the ability of first wave convalescent sera to neutralise the VOCs. Patients and HCWs with more severe COVID-19 were found to have higher antibody titres and to neutralise the VOCs more effectively than individuals with milder symptoms. Using an estimated threshold for 50% protection, 54 IU/mL, we found most asymptomatic and mild cases did not produce titres above this threshold.
Collapse
Affiliation(s)
- Diego Cantoni
- Viral Pseudotype Unit, Medway School of Pharmacy, Universities of Kent & Greenwich, Chatham, United Kingdom
| | - Martin Mayora-Neto
- Viral Pseudotype Unit, Medway School of Pharmacy, Universities of Kent & Greenwich, Chatham, United Kingdom
| | - Angalee Nadesalingam
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - David A. Wells
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
- DIOSynVax, University of Cambridge, Cambridge, United Kingdom
| | - George W. Carnell
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Luis Ohlendorf
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Matteo Ferrari
- DIOSynVax, University of Cambridge, Cambridge, United Kingdom
| | - Phil Palmer
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Andrew C.Y. Chan
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Peter Smith
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Emma M. Bentley
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Sebastian Einhauser
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Ralf Wagner
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Mark Page
- Division of Virology, National Institute for Biological Standards and Control, Potters Bar, United Kingdom
| | - Gianmarco Raddi
- Royal Papworth Hospital NHS Foundation Trust, Cambridge, United Kingdom
| | - Helen Baxendale
- Royal Papworth Hospital NHS Foundation Trust, Cambridge, United Kingdom
| | - Javier Castillo-Olivares
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Jonathan Heeney
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
- DIOSynVax, University of Cambridge, Cambridge, United Kingdom
| | - Nigel Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, Universities of Kent & Greenwich, Chatham, United Kingdom
| |
Collapse
|
16
|
Heijnen L, Elsinga G, de Graaf M, Molenkamp R, Koopmans MPG, Medema G. Droplet digital RT-PCR to detect SARS-CoV-2 signature mutations of variants of concern in wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 799:149456. [PMID: 34371414 PMCID: PMC8332926 DOI: 10.1016/j.scitotenv.2021.149456] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/15/2021] [Accepted: 07/31/2021] [Indexed: 04/15/2023]
Abstract
Wastewater surveillance has shown to be a valuable and efficient tool to obtain information about the trends of COVID-19 in the community. Since the recent emergence of new variants, associated with increased transmissibility and/or antibody escape (variants of concern), there is an urgent need for methods that enable specific and timely detection and quantification of the occurrence of these variants in the community. In this study, we demonstrate the use of RT-ddPCR on wastewater samples for specific detection of mutation N501Y. This assay enabled simultaneous enumeration of lineage B.1.351 (containing the 501Y mutation) and Wild Type (WT, containing 501N) SARS-CoV-2 RNA. Detection of N501Y was possible in samples with mixtures of WT with low proportions of B.1.351 (0.5%) and could accurately determine the proportion of N501Y and WT in mixtures of SARS-CoV-2 RNA. The application to raw sewage samples from the cities of Amsterdam and Utrecht demonstrated that this method can be applied to wastewater samples. The emergence of N501Y in Amsterdam and Utrecht wastewater aligned with the emergence of B.1.1.7 as causative agent of COVID-19 in the Netherlands, indicating that RT-ddPCR of wastewater samples can be used to monitor the emergence of the N501Y mutation in the community. It also indicates that RT-ddPCR could be used for sensitive and accurate monitoring of current (like K417N, K417T, E484K, L452R) or future mutations present in SARS-CoV-2 variants of concern. Monitoring these mutations can be used to obtain insight in the introduction and spread of VOC and support public health decision-making regarding measures to limit viral spread or allocation of testing or vaccination.
Collapse
Affiliation(s)
- Leo Heijnen
- KWR Water Research Institute, Nieuwegein, the Netherlands.
| | - Goffe Elsinga
- KWR Water Research Institute, Nieuwegein, the Netherlands
| | - Miranda de Graaf
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Richard Molenkamp
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Marion P G Koopmans
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Gertjan Medema
- KWR Water Research Institute, Nieuwegein, the Netherlands
| |
Collapse
|
17
|
Heijnen L, Elsinga G, de Graaf M, Molenkamp R, Koopmans MPG, Medema G. Droplet digital RT-PCR to detect SARS-CoV-2 signature mutations of variants of concern in wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 799:149456. [PMID: 34371414 DOI: 10.1101/2021.03.25.21254324] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/15/2021] [Accepted: 07/31/2021] [Indexed: 05/20/2023]
Abstract
Wastewater surveillance has shown to be a valuable and efficient tool to obtain information about the trends of COVID-19 in the community. Since the recent emergence of new variants, associated with increased transmissibility and/or antibody escape (variants of concern), there is an urgent need for methods that enable specific and timely detection and quantification of the occurrence of these variants in the community. In this study, we demonstrate the use of RT-ddPCR on wastewater samples for specific detection of mutation N501Y. This assay enabled simultaneous enumeration of lineage B.1.351 (containing the 501Y mutation) and Wild Type (WT, containing 501N) SARS-CoV-2 RNA. Detection of N501Y was possible in samples with mixtures of WT with low proportions of B.1.351 (0.5%) and could accurately determine the proportion of N501Y and WT in mixtures of SARS-CoV-2 RNA. The application to raw sewage samples from the cities of Amsterdam and Utrecht demonstrated that this method can be applied to wastewater samples. The emergence of N501Y in Amsterdam and Utrecht wastewater aligned with the emergence of B.1.1.7 as causative agent of COVID-19 in the Netherlands, indicating that RT-ddPCR of wastewater samples can be used to monitor the emergence of the N501Y mutation in the community. It also indicates that RT-ddPCR could be used for sensitive and accurate monitoring of current (like K417N, K417T, E484K, L452R) or future mutations present in SARS-CoV-2 variants of concern. Monitoring these mutations can be used to obtain insight in the introduction and spread of VOC and support public health decision-making regarding measures to limit viral spread or allocation of testing or vaccination.
Collapse
Affiliation(s)
- Leo Heijnen
- KWR Water Research Institute, Nieuwegein, the Netherlands.
| | - Goffe Elsinga
- KWR Water Research Institute, Nieuwegein, the Netherlands
| | - Miranda de Graaf
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Richard Molenkamp
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Marion P G Koopmans
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Gertjan Medema
- KWR Water Research Institute, Nieuwegein, the Netherlands
| |
Collapse
|
18
|
Ahmed S, Khan MS, Gayathri S, Singh R, Kumar S, Patel UR, Malladi SK, Rajmani RS, van Vuren PJ, Riddell S, Goldie S, Girish N, Reddy P, Upadhyaya A, Pandey S, Siddiqui S, Tyagi A, Jha S, Pandey R, Khatun O, Narayan R, Tripathi S, McAuley AJ, Singanallur NB, Vasan SS, Ringe RP, Varadarajan R. A Stabilized, Monomeric, Receptor Binding Domain Elicits High-Titer Neutralizing Antibodies Against All SARS-CoV-2 Variants of Concern. Front Immunol 2021; 12:765211. [PMID: 34956193 PMCID: PMC8695907 DOI: 10.3389/fimmu.2021.765211] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/18/2021] [Indexed: 12/23/2022] Open
Abstract
Saturation suppressor mutagenesis was used to generate thermostable mutants of the SARS-CoV-2 spike receptor-binding domain (RBD). A triple mutant with an increase in thermal melting temperature of ~7°C with respect to the wild-type B.1 RBD and was expressed in high yield in both mammalian cells and the microbial host, Pichia pastoris, was downselected for immunogenicity studies. An additional derivative with three additional mutations from the B.1.351 (beta) isolate was also introduced into this background. Lyophilized proteins were resistant to high-temperature exposure and could be stored for over a month at 37°C. In mice and hamsters, squalene-in-water emulsion (SWE) adjuvanted formulations of the B.1-stabilized RBD were considerably more immunogenic than RBD lacking the stabilizing mutations and elicited antibodies that neutralized all four current variants of concern with similar neutralization titers. However, sera from mice immunized with the stabilized B.1.351 derivative showed significantly decreased neutralization titers exclusively against the B.1.617.2 (delta) VOC. A cocktail comprising stabilized B.1 and B.1.351 RBDs elicited antibodies with qualitatively improved neutralization titers and breadth relative to those immunized solely with either immunogen. Immunized hamsters were protected from high-dose viral challenge. Such vaccine formulations can be rapidly and cheaply produced, lack extraneous tags or additional components, and can be stored at room temperature. They are a useful modality to combat COVID-19, especially in remote and low-resource settings.
Collapse
Affiliation(s)
- Shahbaz Ahmed
- Molecular Biophysics Unit (MBU), Indian Institute of Science, Bengaluru, India
| | | | - Savitha Gayathri
- Molecular Biophysics Unit (MBU), Indian Institute of Science, Bengaluru, India
| | - Randhir Singh
- Mynvax Private Limited, ES12, Entrepreneurship Centre, Society for Innovation and Development (SID), Indian Institute of Science, Bengaluru, India
| | - Sahil Kumar
- Virology Unit, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| | - Unnatiben Rajeshbhai Patel
- Mynvax Private Limited, ES12, Entrepreneurship Centre, Society for Innovation and Development (SID), Indian Institute of Science, Bengaluru, India
| | | | - Raju S. Rajmani
- Molecular Biophysics Unit (MBU), Indian Institute of Science, Bengaluru, India
| | - Petrus Jansen van Vuren
- Australian Centre for Disease Preparedness (ACDP), Commonwealth Scientific and Industrial Research Organisation (CSIRO), Geelong, VIC, Australia
| | - Shane Riddell
- Australian Centre for Disease Preparedness (ACDP), Commonwealth Scientific and Industrial Research Organisation (CSIRO), Geelong, VIC, Australia
| | - Sarah Goldie
- Australian Centre for Disease Preparedness (ACDP), Commonwealth Scientific and Industrial Research Organisation (CSIRO), Geelong, VIC, Australia
| | - Nidhi Girish
- Mynvax Private Limited, ES12, Entrepreneurship Centre, Society for Innovation and Development (SID), Indian Institute of Science, Bengaluru, India
| | - Poorvi Reddy
- Mynvax Private Limited, ES12, Entrepreneurship Centre, Society for Innovation and Development (SID), Indian Institute of Science, Bengaluru, India
| | - Aditya Upadhyaya
- Mynvax Private Limited, ES12, Entrepreneurship Centre, Society for Innovation and Development (SID), Indian Institute of Science, Bengaluru, India
| | - Suman Pandey
- Mynvax Private Limited, ES12, Entrepreneurship Centre, Society for Innovation and Development (SID), Indian Institute of Science, Bengaluru, India
| | - Samreen Siddiqui
- Max Super Speciality Hospital (A Unit of Devki Devi Foundation), Max Healthcare, Delhi, India
| | - Akansha Tyagi
- Max Super Speciality Hospital (A Unit of Devki Devi Foundation), Max Healthcare, Delhi, India
| | - Sujeet Jha
- Max Super Speciality Hospital (A Unit of Devki Devi Foundation), Max Healthcare, Delhi, India
| | - Rajesh Pandey
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, Council of Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Oyahida Khatun
- Department of Microbiology & Cell Biology, Indian Institute of Science, Bengaluru, India
- Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru, India
| | - Rohan Narayan
- Department of Microbiology & Cell Biology, Indian Institute of Science, Bengaluru, India
- Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru, India
| | - Shashank Tripathi
- Department of Microbiology & Cell Biology, Indian Institute of Science, Bengaluru, India
- Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru, India
| | - Alexander J. McAuley
- Australian Centre for Disease Preparedness (ACDP), Commonwealth Scientific and Industrial Research Organisation (CSIRO), Geelong, VIC, Australia
| | | | - Seshadri S. Vasan
- Australian Centre for Disease Preparedness (ACDP), Commonwealth Scientific and Industrial Research Organisation (CSIRO), Geelong, VIC, Australia
- Department of Health Sciences, University of York, York, United Kingdom
| | - Rajesh P. Ringe
- Virology Unit, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| | | |
Collapse
|
19
|
Forchette L, Sebastian W, Liu T. A Comprehensive Review of COVID-19 Virology, Vaccines, Variants, and Therapeutics. Curr Med Sci 2021; 41:1037-1051. [PMID: 34241776 PMCID: PMC8267225 DOI: 10.1007/s11596-021-2395-1] [Citation(s) in RCA: 122] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 06/25/2021] [Indexed: 02/08/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative pathogen of the coronavirus disease 2019 (COVID-19), has caused more than 179 million infections and 3.8 million deaths worldwide. Throughout the past year, multiple vaccines have already been developed and used, while some others are in the process of being developed. However, the emergence of new mutant strains of SARS-CoV-2 that have demonstrated immune-evading characteristics and an increase in infective capabilities leads to potential ineffectiveness of the vaccines against these variants. The purpose of this review article is to highlight the current understanding of the immunological mechanisms of the virus and vaccines, as well as to investigate some key variants and mutations of the virus driving the current pandemic and their impacts on current management guidelines. We also discussed new technologies being developed for the prevention, treatment, and detection of SARS-CoV-2. In this paper, we thoroughly reviewed and provided crucial information on SARS-CoV-2 virology, vaccines and drugs being used and developed for its prevention and treatment, as well as important variant strains. Our review paper will be beneficial to health care professionals and researchers so they can have a better understanding of the basic sciences, prevention, and clinical treatment of COVID-19 during the pandemic. This paper consists of the most updated information that has been available as of June 21, 2021.
Collapse
Affiliation(s)
- Lauren Forchette
- Department of Biomedical Sciences, West Virginia School of Osteopathic Medicine, 400 Lee Street North, Lewisburg, West Virginia 24901 USA
| | - William Sebastian
- Department of Biomedical Sciences, West Virginia School of Osteopathic Medicine, 400 Lee Street North, Lewisburg, West Virginia 24901 USA
| | - Tuoen Liu
- Department of Biomedical Sciences, West Virginia School of Osteopathic Medicine, 400 Lee Street North, Lewisburg, West Virginia 24901 USA
| |
Collapse
|
20
|
Van Egeren D, Novokhodko A, Stoddard M, Tran U, Zetter B, Rogers MS, Joseph-McCarthy D, Chakravarty A. Controlling long-term SARS-CoV-2 infections can slow viral evolution and reduce the risk of treatment failure. Sci Rep 2021; 11:22630. [PMID: 34799659 PMCID: PMC8604936 DOI: 10.1038/s41598-021-02148-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 10/27/2021] [Indexed: 12/23/2022] Open
Abstract
The rapid emergence and expansion of novel SARS-CoV-2 variants threatens our ability to achieve herd immunity for COVID-19. These novel SARS-CoV-2 variants often harbor multiple point mutations, conferring one or more evolutionarily advantageous traits, such as increased transmissibility, immune evasion and longer infection duration. In a number of cases, variant emergence has been linked to long-term infections in individuals who were either immunocompromised or treated with convalescent plasma. In this paper, we used a stochastic evolutionary modeling framework to explore the emergence of fitter variants of SARS-CoV-2 during long-term infections. We found that increased viral load and infection duration favor emergence of such variants. While the overall probability of emergence and subsequent transmission from any given infection is low, on a population level these events occur fairly frequently. Targeting these low-probability stochastic events that lead to the establishment of novel advantageous viral variants might allow us to slow the rate at which they emerge in the patient population, and prevent them from spreading deterministically due to natural selection. Our work thus suggests practical ways to achieve control of long-term SARS-CoV-2 infections, which will be critical for slowing the rate of viral evolution.
Collapse
Affiliation(s)
- Debra Van Egeren
- Harvard Medical School, Boston, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
- Boston Children's Hospital, Boston, MA, USA
| | | | | | - Uyen Tran
- Fractal Therapeutics, Cambridge, MA, USA
| | - Bruce Zetter
- Harvard Medical School, Boston, MA, USA
- Boston Children's Hospital, Boston, MA, USA
| | - Michael S Rogers
- Harvard Medical School, Boston, MA, USA
- Boston Children's Hospital, Boston, MA, USA
| | | | | |
Collapse
|
21
|
Ahmad L. Implication of SARS-CoV-2 Immune Escape Spike Variants on Secondary and Vaccine Breakthrough Infections. Front Immunol 2021; 12:742167. [PMID: 34804022 PMCID: PMC8596465 DOI: 10.3389/fimmu.2021.742167] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/14/2021] [Indexed: 11/20/2022] Open
Abstract
COVID-19 pandemic remains an on-going global health and economic threat that has amassed millions of deaths. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiological agent of this disease and is constantly under evolutionary pressures that drive the modification of its genome which may represent a threat to the efficacy of current COVID-19 vaccines available. This article highlights the pressures that facilitate the rise of new SARS-CoV-2 variants and the key mutations of the viral spike protein - L452R, E484K, N501Y and D614G- that promote immune escape mechanism and warrant a cautionary point for clinical and public health responses in terms of re-infection, vaccine breakthrough infection and therapeutic values.
Collapse
Affiliation(s)
- Liyana Ahmad
- Pengiran Anak Puteri Rashidah Sa'adatul Bolkiah (PAPRSB) Institute of Health Sciences, Universiti Brunei Darussalam, Bandar Seri Begawan, Brunei
| |
Collapse
|
22
|
Rizvi ZA, Tripathy MR, Sharma N, Goswami S, Srikanth N, Sastry JLN, Mani S, Surjit M, Awasthi A, Dikshit M. Effect of Prophylactic Use of Intranasal Oil Formulations in the Hamster Model of COVID-19. Front Pharmacol 2021; 12:746729. [PMID: 34721035 PMCID: PMC8551705 DOI: 10.3389/fphar.2021.746729] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 09/10/2021] [Indexed: 01/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) infection initiates with viral entry in the upper respiratory tract, leading to coronavirus disease 2019 (COVID-19). Severe COVID-19 is characterized by pulmonary pathologies associated with respiratory failure. Thus, therapeutics aimed at inhibiting the entry of the virus or its internalization in the upper respiratory tract are of interest. Herein, we report the prophylactic application of two intranasal formulations provided by the National Medicinal Plant Board (NMPB), Anu oil and til tailya, in the hamster model of SARS-CoV-2 infection. Prophylactic intra-nasal instillation of these oil formulations exhibited reduced viral load in lungs and resulted in reduced body weight loss and lung-pneumonitis. In line with reduced viral load, histopathological analysis revealed a reduction in lung pathology in the Anu oil group as compared to the control infected group. However, the til tailya group did not show a significant reduction in lung pathology. Furthermore, molecular analysis using mRNA expression profiling indicated reduced expression of pro-inflammatory cytokine genes, including Th1 and Th17 cytokines for both the intranasal formulations as a result of decreased viral load. Together, the prophylactic intranasal application of Anu oil seems to be useful in limiting both viral load and severity in SARS-CoV2 infection in the hamster model.
Collapse
Affiliation(s)
- Zaigham Abbas Rizvi
- Immuno-biology Laboratory, Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, India
| | - Manas Ranjan Tripathy
- Immuno-biology Laboratory, Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, India
| | - Nishant Sharma
- Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, India
| | - Sandeep Goswami
- Immuno-biology Laboratory, Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, India
| | - N Srikanth
- DG(I/C), Central Council for Ayurvedic Sciences, New Delhi, India
| | - J L N Sastry
- CEO-National Medicinal Plants Board, Ministry of AYUSH, New Delhi, India
| | - Shailendra Mani
- Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, India
| | - Milan Surjit
- Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, India
| | - Amit Awasthi
- Immuno-biology Laboratory, Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, India
| | - Madhu Dikshit
- Non-communicable Disease Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, India
| |
Collapse
|
23
|
Gupta Y, Kumar S, Zak SE, Jones KA, Upadhyay C, Sharma N, Azizi SA, Kathayat RS, Poonam, Herbert AS, Durvasula R, Dickinson BC, Dye JM, Rathi B, Kempaiah P. Antiviral evaluation of hydroxyethylamine analogs: Inhibitors of SARS-CoV-2 main protease (3CLpro), a virtual screening and simulation approach. Bioorg Med Chem 2021; 47:116393. [PMID: 34509862 PMCID: PMC8416325 DOI: 10.1016/j.bmc.2021.116393] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/25/2021] [Accepted: 08/30/2021] [Indexed: 12/22/2022]
Abstract
The continued toll of COVID-19 has halted the smooth functioning of civilization on a global scale. With a limited understanding of all the essential components of viral machinery and the lack of structural information of this new virus, initial drug discovery efforts had limited success. The availability of high-resolution crystal structures of functionally essential SARS-CoV-2 proteins, including 3CLpro, supports the development of target-specific therapeutics. 3CLpro, the main protease responsible for the processing of viral polypeptide, plays a vital role in SARS-CoV-2 viral replication and translation and is an important target in other coronaviruses. Additionally, 3CLpro is the target of repurposed drugs, such as lopinavir and ritonavir. In this study, target proteins were retrieved from the protein data bank (PDB IDs: 6 M03, 6LU7, 2GZ7, 6 W63, 6SQS, 6YB7, and 6YVF) representing different open states of the main protease to accommodate macromolecular substrate. A hydroxyethylamine (HEA) library was constructed from harvested chemical structures from all the series being used in our laboratories for screening against malaria and Leishmania parasites. The database consisted of ∼1000 structure entries, of which 70% were new to ChemSpider at the time of screening. This in-house library was subjected to high throughput virtual screening (HTVS), followed by standard precision (SP) and then extra precision (XP) docking (Schrodinger LLC 2021). The ligand strain and complex energy of top hits were calculated by Molecular Mechanics Generalized Born Surface Area (MM/GBSA) method. Promising hit compounds (n = 40) specifically binding to 3CLpro with high energy and average MM/GBSA scores were then subjected to (100-ns) MD simulations. Using this sequential selection followed by an in-silico validation approach, we found a promising HEA-based compound (N,N'-((3S,3'S)-piperazine-1,4-diylbis(3-hydroxy-1-phenylbutane-4,2-diyl))bis(2-(5-methyl-1,3-dioxoisoindolin-2-yl)-3-phenylpropanamide)), which showed high in vitro antiviral activity against SARS-CoV-2. Further to reduce the size of the otherwise larger ligand, a pharmacophore-based predicted library of ∼42 derivatives was constructed, which were added to the previous compound library and rescreened virtually. Out of several hits from the predicted library, two compounds were synthesized, tested against SARS-CoV-2 culture, and found to have markedly improved antiviral activity.
Collapse
Affiliation(s)
- Yash Gupta
- Department of Infectious Diseases, Mayo Clinic, Jacksonville, FL, USA
| | - Sumit Kumar
- Department of Chemistry, Miranda House, University of Delhi, Delhi, India
| | - Samantha E Zak
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA; The Geneva Foundation, 917 Pacific Avenue, Tacoma, WA, USA
| | - Krysten A Jones
- Department of Chemistry, The University of Chicago, 5801 South Ellis Avenue, Chicago, IL, USA
| | - Charu Upadhyay
- Department of Chemistry, Miranda House, University of Delhi, Delhi, India
| | - Neha Sharma
- Laboratory for Translational Chemistry and Drug Discovery, Department of Chemistry, Hansraj College, University of Delhi, India
| | - Saara-Anne Azizi
- Department of Chemistry, The University of Chicago, 5801 South Ellis Avenue, Chicago, IL, USA
| | - Rahul S Kathayat
- Department of Chemistry, The University of Chicago, 5801 South Ellis Avenue, Chicago, IL, USA
| | - Poonam
- Department of Chemistry, Miranda House, University of Delhi, Delhi, India
| | - Andrew S Herbert
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | - Ravi Durvasula
- Department of Infectious Diseases, Mayo Clinic, Jacksonville, FL, USA
| | - Bryan C Dickinson
- Department of Chemistry, The University of Chicago, 5801 South Ellis Avenue, Chicago, IL, USA
| | - John M Dye
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA; The Geneva Foundation, 917 Pacific Avenue, Tacoma, WA, USA.
| | - Brijesh Rathi
- Laboratory for Translational Chemistry and Drug Discovery, Department of Chemistry, Hansraj College, University of Delhi, India.
| | - Prakasha Kempaiah
- Department of Infectious Diseases, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
24
|
Xie J, Ding C, He J, Zhang Y, Ni S, Zhang X, Chen Q, Wang J, Huang L, He H, Li W, Ma H, Jin T, Zhang S, Gao Y. Novel Monoclonal Antibodies and Recombined Antibodies Against Variant SARS-CoV-2. Front Immunol 2021; 12:715464. [PMID: 34539645 PMCID: PMC8442604 DOI: 10.3389/fimmu.2021.715464] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/09/2021] [Indexed: 11/25/2022] Open
Abstract
The mutants resulted from the ongoing SARS-CoV-2 epidemic have showed resistance to antibody neutralization and vaccine-induced immune response. The present study isolated and identified two novel SARS-CoV-2 neutralizing antibodies (nAbs) from convalescent COVID-19 patients. These two nAbs (XG81 and XG83) were then systemically compared with nine nAbs that were reconstructed by using published data, and revealed that, even though these two nAbs shared targeting epitopes on spike protein, they were different from any of the nine nAbs. Compared with XG81, XG83 exhibited a higher RBD binding affinity and neutralization potency against wild-typed pseudovirus, variant pseudoviruses with mutated spike proteins, such as D614G, E484Q, and A475V, as well as the authentic SARS-CoV-2 virus. To explore potential broadly neutralizing antibodies, heavy and light chains from all 18 nAbs (16 published nAbs, XG81 and XG83) were cross-recombined, and some of the functional antibodies were screened and studied for RBD binding affinity, and neutralizing activity against pseudovirus and the authentic SARS-CoV-2 virus. The results demonstrated that several recombined antibodies had a more potent neutralization activity against variant pseudoviruses compared with the originally paired Abs. Taken together, the novel neutralizing antibodies identified in this study are a likely valuable addition to candidate antibody drugs for the development of clinical therapeutic agents against SARS-CoV-2 to minimize mutational escape.
Collapse
Affiliation(s)
- Jiajia Xie
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Chengchao Ding
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jun He
- Department of Microbiology, Anhui Provincial Center for Disease Control and Prevention, Hefei, China
| | - Yuqing Zhang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Shuangshuang Ni
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xiangyu Zhang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Qingqing Chen
- Department of Microbiology, Anhui Provincial Center for Disease Control and Prevention, Hefei, China
| | - Jing Wang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Lina Huang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Hongliang He
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wenting Li
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Huan Ma
- Division of Life Sciences and Medicine, Laboratory of Structural Immunology, University of Science and Technology of China (USTC), Hefei, China
| | - Tengchuan Jin
- Division of Life Sciences and Medicine, Laboratory of Structural Immunology, University of Science and Technology of China (USTC), Hefei, China
| | - Siping Zhang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yong Gao
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
25
|
Borisova NI, Kotov IA, Kolesnikov AA, Kaptelova VV, Speranskaya AS, Kondrasheva LY, Tivanova EV, Khafizov KF, Akimkin VG. [Monitoring the spread of the SARS-CoV-2 (Coronaviridae: Coronavirinae: Betacoronavirus; Sarbecovirus) variants in the Moscow region using targeted high-throughput sequencing]. Vopr Virusol 2021; 66:269-278. [PMID: 34545719 DOI: 10.36233/0507-4088-72] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 09/18/2021] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Since the outbreak of the COVID-19 pandemic caused by SARS-CoV-2 novel coronavirus, the international community has been concerned about the emergence of mutations altering some biological properties of the pathogen like increasing its infectivity or virulence. Particularly, since the end of 2020, several variants of concern have been identified around the world, including Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), and Delta (B.1.617.2). However, the existing mechanism of detecting important mutations are not always effective enough, since only a relatively small part of all pathogen samples can be examined by whole genome sequencing due to its high cost. MATERIAL AND METHODS In this study, we have designed special primer panel and used it for targeted highthroughput sequencing of several significant S-gene (spike) regions of SARS-CoV-2. The Illumina platform averaged approximately 50,000 paired-end reads with a length of ≥150 bp per sample. This method was used to examine 579 random samples obtained from COVID-19 patients in Moscow and the Moscow region from February to June 2021. RESULTS This study demonstrated the dynamics of distribution of several SARS-CoV-2 strains and its some single mutations. It was found that the Delta strain appeared in the region in May 2021, and became prevalent in June, partially displacing other strains. DISCUSSION The obtained results provide an opportunity to assign the viral samples to one of the strains, including the previously mentioned in time- and cost-effective manner. The approach can be used for standardization of the procedure of searching for mutations in individual regions of the SARS-CoV-2 genome. It allows to get a more detailed data about the epidemiological situation in a region.
Collapse
Affiliation(s)
- N I Borisova
- FSBI «Central Research Institute for Epidemiology» of the Federal Service for Supervision of Consumer Rights Protection and Human Welfare (Rospotrebnadzor)
| | - I A Kotov
- FSBI «Central Research Institute for Epidemiology» of the Federal Service for Supervision of Consumer Rights Protection and Human Welfare (Rospotrebnadzor); FSAEI HE «Moscow Institute of Physics and Technology (National Research University)»
| | - A A Kolesnikov
- FSBI «Central Research Institute for Epidemiology» of the Federal Service for Supervision of Consumer Rights Protection and Human Welfare (Rospotrebnadzor)
| | - V V Kaptelova
- FSBI «Central Research Institute for Epidemiology» of the Federal Service for Supervision of Consumer Rights Protection and Human Welfare (Rospotrebnadzor)
| | - A S Speranskaya
- FSBI «Central Research Institute for Epidemiology» of the Federal Service for Supervision of Consumer Rights Protection and Human Welfare (Rospotrebnadzor)
| | - L Yu Kondrasheva
- FSBI «Central Research Institute for Epidemiology» of the Federal Service for Supervision of Consumer Rights Protection and Human Welfare (Rospotrebnadzor)
| | - E V Tivanova
- FSBI «Central Research Institute for Epidemiology» of the Federal Service for Supervision of Consumer Rights Protection and Human Welfare (Rospotrebnadzor)
| | - K F Khafizov
- FSBI «Central Research Institute for Epidemiology» of the Federal Service for Supervision of Consumer Rights Protection and Human Welfare (Rospotrebnadzor)
| | - V G Akimkin
- FSBI «Central Research Institute for Epidemiology» of the Federal Service for Supervision of Consumer Rights Protection and Human Welfare (Rospotrebnadzor)
| |
Collapse
|
26
|
Zhang YN, Paynter J, Sou C, Fourfouris T, Wang Y, Abraham C, Ngo T, Zhang Y, He L, Zhu J. Mechanism of a COVID-19 nanoparticle vaccine candidate that elicits a broadly neutralizing antibody response to SARS-CoV-2 variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.03.26.437274. [PMID: 33791704 PMCID: PMC8010731 DOI: 10.1101/2021.03.26.437274] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Vaccines that induce potent neutralizing antibody (NAb) responses against emerging variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are essential for combating the coronavirus disease 2019 (COVID-19) pandemic. We demonstrated that mouse plasma induced by self-assembling protein nanoparticles (SApNPs) that present 20 rationally designed S2GΔHR2 spikes of the ancestral Wuhan-Hu-1 strain can neutralize the B.1.1.7, B.1.351, P.1, and B.1.617 variants with the same potency. The adjuvant effect on vaccine-induced immunity was investigated by testing 16 formulations for the multilayered I3-01v9 SApNP. Using single-cell sorting, monoclonal antibodies (mAbs) with diverse neutralization breadth and potency were isolated from mice immunized with the receptor binding domain (RBD), S2GΔHR2 spike, and SApNP vaccines. The mechanism of vaccine-induced immunity was examined in mice. Compared with the soluble spike, the I3-01v9 SApNP showed 6-fold longer retention, 4-fold greater presentation on follicular dendritic cell dendrites, and 5-fold stronger germinal center reactions in lymph node follicles.
Collapse
Affiliation(s)
- Yi-Nan Zhang
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Jennifer Paynter
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Cindy Sou
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Tatiana Fourfouris
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Ying Wang
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, Pennsylvania 19140, USA
- Department of Microbiology and Immunology, Temple University, Philadelphia, Pennsylvania 19140, USA
| | - Ciril Abraham
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, Pennsylvania 19140, USA
| | - Timothy Ngo
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Yi Zhang
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, Pennsylvania 19140, USA
- Department of Microbiology and Immunology, Temple University, Philadelphia, Pennsylvania 19140, USA
| | - Linling He
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Jiang Zhu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California 92037, USA
| |
Collapse
|
27
|
Kaplonek P, Cizmeci D, Fischinger S, Collier AR, Suscovich T, Linde C, Broge T, Mann C, Amanat F, Dayal D, Rhee J, de St. Aubin M, Nilles EJ, Musk ER, Menon AS, Saphire EO, Krammer F, Lauffenburger DA, Barouch DH, Alter G. Subtle immunological differences in mRNA-1273 and BNT162b2 COVID-19 vaccine induced Fc-functional profiles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.08.31.458247. [PMID: 34494026 PMCID: PMC8423223 DOI: 10.1101/2021.08.31.458247] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The successful development of several COVID-19 vaccines has substantially reduced morbidity and mortality in regions of the world where the vaccines have been deployed. However, in the wake of the emergence of viral variants, able to evade vaccine induced neutralizing antibodies, real world vaccine efficacy has begun to show differences across the mRNA platforms, suggesting that subtle variation in immune responses induced by the BNT162b2 and mRNA1273 vaccines may provide differential protection. Given our emerging appreciation for the importance of additional antibody functions, beyond neutralization, here we profiled the postboost binding and functional capacity of the humoral response induced by the BNT162b2 and mRNA-1273 in a cohort of hospital staff. Both vaccines induced robust humoral immune responses to WT SARS-CoV-2 and VOCs. However, differences emerged across epitopespecific responses, with higher RBD- and NTD-specific IgA, as well as functional antibodies (ADNP and ADNK) in mRNA-1273 vaccine recipients. Additionally, RBD-specific antibody depletion highlighted the different roles of non-RBD-specific antibody effector function induced across the mRNA vaccines, providing novel insights into potential differences in protective immunity generated across these vaccines in the setting of newly emerging VOCs.
Collapse
Affiliation(s)
| | - Deniz Cizmeci
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | | | - Ai-ris Collier
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | - Colin Mann
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Fatima Amanat
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Diana Dayal
- Space Exploration Technologies Corp, Hawthorne, CA, USA
| | - Justin Rhee
- Space Exploration Technologies Corp, Hawthorne, CA, USA
| | | | | | - Elon R. Musk
- Space Exploration Technologies Corp, Hawthorne, CA, USA
| | - Anil S. Menon
- Space Exploration Technologies Corp, Hawthorne, CA, USA
| | - Erica Ollmann Saphire
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Dan H. Barouch
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| |
Collapse
|
28
|
Bates TA, Leier HC, Lyski ZL, McBride SK, Coulter FJ, Weinstein JB, Goodman JR, Lu Z, Siegel SAR, Sullivan P, Strnad M, Brunton AE, Lee DX, Adey AC, Bimber BN, O'Roak BJ, Curlin ME, Messer WB, Tafesse FG. Neutralization of SARS-CoV-2 variants by convalescent and BNT162b2 vaccinated serum. Nat Commun 2021; 12:5135. [PMID: 34446720 PMCID: PMC8390486 DOI: 10.1038/s41467-021-25479-6] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 08/10/2021] [Indexed: 02/03/2023] Open
Abstract
SARS-CoV-2 and its variants continue to infect hundreds of thousands every day despite the rollout of effective vaccines. Therefore, it is essential to understand the levels of protection that these vaccines provide in the face of emerging variants. Here, we report two demographically balanced cohorts of BNT162b2 vaccine recipients and COVID-19 patients, from which we evaluate neutralizing antibody titers against SARS-CoV-2 as well as the B.1.1.7 (alpha) and B.1.351 (beta) variants. We show that both B.1.1.7 and B.1.351 are less well neutralized by serum from vaccinated individuals, and that B.1.351, but not B.1.1.7, is less well neutralized by convalescent serum. We also find that the levels of variant-specific anti-spike antibodies are proportional to neutralizing activities. Together, our results demonstrate the escape of the emerging SARS-CoV-2 variants from neutralization by serum antibodies, which may lead to reduced protection from re-infection or increased risk of vaccine breakthrough.
Collapse
Affiliation(s)
- Timothy A Bates
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University (OHSU), Portland, OR, USA
| | - Hans C Leier
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University (OHSU), Portland, OR, USA
| | - Zoe L Lyski
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University (OHSU), Portland, OR, USA
| | - Savannah K McBride
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University (OHSU), Portland, OR, USA
| | - Felicity J Coulter
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University (OHSU), Portland, OR, USA
| | - Jules B Weinstein
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University (OHSU), Portland, OR, USA
| | | | - Zhengchun Lu
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University (OHSU), Portland, OR, USA
| | - Sarah A R Siegel
- OHSU-PSU School of Public Health, Program in Epidemiology, Portland, OR, USA
| | - Peter Sullivan
- OHSU-PSU School of Public Health, Program in Epidemiology, Portland, OR, USA
| | - Matt Strnad
- OHSU-PSU School of Public Health, Program in Epidemiology, Portland, OR, USA
| | - Amanda E Brunton
- OHSU-PSU School of Public Health, Program in Epidemiology, Portland, OR, USA
| | - David X Lee
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University (OHSU), Portland, OR, USA
| | - Andrew C Adey
- Department of Molecular & Medical Genetics, OHSU, Portland, OR, USA
- Knight Cardiovascular Institute, OHSU, Portland, OR, USA
| | | | - Brian J O'Roak
- Department of Molecular & Medical Genetics, OHSU, Portland, OR, USA
| | - Marcel E Curlin
- Department of Medicine, Division of Infectious Diseases, OHSU, Portland, OR, USA.
| | - William B Messer
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University (OHSU), Portland, OR, USA.
- OHSU-PSU School of Public Health, Program in Epidemiology, Portland, OR, USA.
- Department of Medicine, Division of Infectious Diseases, OHSU, Portland, OR, USA.
| | - Fikadu G Tafesse
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University (OHSU), Portland, OR, USA.
| |
Collapse
|
29
|
Ding C, He J, Zhang X, Jiang C, Sun Y, Zhang Y, Chen Q, He H, Li W, Xie J, Liu Z, Gao Y. Crucial Mutations of Spike Protein on SARS-CoV-2 Evolved to Variant Strains Escaping Neutralization of Convalescent Plasmas and RBD-Specific Monoclonal Antibodies. Front Immunol 2021; 12:693775. [PMID: 34484190 PMCID: PMC8416052 DOI: 10.3389/fimmu.2021.693775] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/27/2021] [Indexed: 11/16/2022] Open
Abstract
Small number of SARS-CoV-2 epidemic lineages did not efficiently exhibit a neutralization profile, while single amino acid mutation in the spike protein has not been confirmed in altering viral antigenicity resulting in immune escape. To identify crucial mutations in spike protein that escape humoral immune response, we evaluated the cross-neutralization of convalescent plasmas and RBD-specific monoclonal antibodies (mAbs) against various spike protein-based pseudoviruses. Three of 24 SARS-CoV-2 pseudoviruses containing different mutations in spike protein, including D614G, A475V, and E484Q, consistently showed an altered sensitivity to neutralization by convalescent plasmas. A475V and E484Q mutants are highly resistant to neutralization by mAb B38 and 2-4, suggesting that some crucial mutations in spike protein might evolve SARS-CoV-2 variants capable of escaping humoral immune response.
Collapse
Affiliation(s)
- Chengchao Ding
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, China
| | - Jun He
- Department of Microbiology, Anhui Provincial Center for Disease Control and Prevention, Hefei, China
| | - Xiangyu Zhang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, China
| | - Chengcheng Jiang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, China
| | - Yong Sun
- Department of Microbiology, Anhui Provincial Center for Disease Control and Prevention, Hefei, China
| | - Yuqing Zhang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, China
| | - Qingqing Chen
- Department of Microbiology, Anhui Provincial Center for Disease Control and Prevention, Hefei, China
| | - Hongliang He
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, China
| | - Wenting Li
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, China
| | - Jiajia Xie
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, China
| | - Zhirong Liu
- Department of Microbiology, Anhui Provincial Center for Disease Control and Prevention, Hefei, China
| | - Yong Gao
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, China
| |
Collapse
|
30
|
Corbett KS, Gagne M, Wagner DA, Connell SO, Narpala SR, Flebbe DR, Andrew SF, Davis RL, Flynn B, Johnston TS, Stringham C, Lai L, Valentin D, Van Ry A, Flinchbaugh Z, Werner AP, Moliva JI, Sriparna M, O'Dell S, Schmidt SD, Tucker C, Choi A, Koch M, Bock KW, Minai M, Nagata BM, Alvarado GS, Henry AR, Laboune F, Schramm CA, Zhang Y, Wang L, Choe M, Boyoglu-Barnum S, Shi W, Lamb E, Nurmukhambetova ST, Provost SJ, Donaldson MM, Marquez J, Todd JPM, Cook A, Dodson A, Pekosz A, Boritz E, Ploquin A, Doria-Rose N, Pessaint L, Andersen H, Foulds KE, Misasi J, Wu K, Carfi A, Nason MC, Mascola J, Moore IN, Edwards DK, Lewis MG, Suthar MS, Roederer M, McDermott A, Douek DC, Sullivan NJ, Graham BS, Seder RA. Protection against SARS-CoV-2 Beta Variant in mRNA-1273 Boosted Nonhuman Primates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.08.11.456015. [PMID: 34426813 PMCID: PMC8382125 DOI: 10.1101/2021.08.11.456015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2023]
Abstract
UNLABELLED Neutralizing antibody responses gradually wane after vaccination with mRNA-1273 against several variants of concern (VOC), and additional boost vaccinations may be required to sustain immunity and protection. Here, we evaluated the immune responses in nonhuman primates that received 100 µg of mRNA-1273 vaccine at 0 and 4 weeks and were boosted at week 29 with mRNA-1273 (homologous) or mRNA-1273.β (heterologous), which encompasses the spike sequence of the B.1.351 (beta or β) variant. Reciprocal ID 50 pseudovirus neutralizing antibody geometric mean titers (GMT) against live SARS-CoV-2 D614G and the β variant, were 4700 and 765, respectively, at week 6, the peak of primary response, and 644 and 553, respectively, at a 5-month post-vaccination memory time point. Two weeks following homologous or heterologous boost β-specific reciprocal ID 50 GMT were 5000 and 3000, respectively. At week 38, animals were challenged in the upper and lower airway with the β variant. Two days post-challenge, viral replication was low to undetectable in both BAL and nasal swabs in most of the boosted animals. These data show that boosting with the homologous mRNA-1273 vaccine six months after primary immunization provides up to a 20-fold increase in neutralizing antibody responses across all VOC, which may be required to sustain high-level protection against severe disease, especially for at-risk populations. ONE-SENTENCE SUMMARY mRNA-1273 boosted nonhuman primates have increased immune responses and are protected against SARS-CoV-2 beta infection.
Collapse
|
31
|
Tada T, Zhou H, Samanovic MI, Dcosta BM, Cornelius A, Mulligan MJ, Landau NR. Comparison of Neutralizing Antibody Titers Elicited by mRNA and Adenoviral Vector Vaccine against SARS-CoV-2 Variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 34312623 DOI: 10.1101/2021.07.19.452771] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The increasing prevalence of SARS-CoV-2 variants has raised concerns regarding possible decreases in vaccine efficacy. Here, neutralizing antibody titers elicited by mRNA-based and an adenoviral vector-based vaccine against variant pseudotyped viruses were compared. BNT162b2 and mRNA-1273-elicited antibodies showed modest neutralization resistance against Beta, Delta, Delta plus and Lambda variants whereas Ad26.COV2.S-elicited antibodies from a significant fraction of vaccinated individuals were of low neutralizing titer (IC 50 <50). The data underscore the importance of surveillance for breakthrough infections that result in severe COVID-19 and suggest the benefit of a second immunization following Ad26.COV2.S to increase protection against the variants.
Collapse
|
32
|
Neidleman J, Luo X, McGregor M, Xie G, Murray V, Greene WC, Lee SA, Roan NR. mRNA vaccine-induced T cells respond identically to SARS-CoV-2 variants of concern but differ in longevity and homing properties depending on prior infection status. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.05.12.443888. [PMID: 34013277 PMCID: PMC8132283 DOI: 10.1101/2021.05.12.443888] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
While mRNA vaccines are proving highly efficacious against SARS-CoV-2, it is important to determine how booster doses and prior infection influence the immune defense they elicit, and whether they protect against variants. Focusing on the T cell response, we conducted a longitudinal study of infection-naïve and COVID-19 convalescent donors before vaccination and after their first and second vaccine doses, using a high-parameter CyTOF analysis to phenotype their SARS-CoV-2-specific T cells. Vaccine-elicited spike-specific T cells responded similarly to stimulation by spike epitopes from the ancestral, B.1.1.7 and B.1.351 variant strains, both in terms of cell numbers and phenotypes. In infection-naïve individuals, the second dose boosted the quantity and altered the phenotypic properties of SARS-CoV-2-specific T cells, while in convalescents the second dose changed neither. Spike-specific T cells from convalescent vaccinees differed strikingly from those of infection-naïve vaccinees, with phenotypic features suggesting superior long-term persistence and ability to home to the respiratory tract including the nasopharynx. These results provide reassurance that vaccine-elicited T cells respond robustly to emerging viral variants, confirm that convalescents may not need a second vaccine dose, and suggest that vaccinated convalescents may have more persistent nasopharynx-homing SARS-CoV-2-specific T cells compared to their infection-naïve counterparts.
Collapse
Affiliation(s)
- Jason Neidleman
- Gladstone Institute of Virology, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, CA, USA
| | - Xiaoyu Luo
- Gladstone Institute of Virology, San Francisco, CA, USA
| | - Matthew McGregor
- Gladstone Institute of Virology, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, CA, USA
| | - Guorui Xie
- Gladstone Institute of Virology, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, CA, USA
| | - Victoria Murray
- Zuckerberg San Francisco General Hospital and the University of California, San Francisco, CA, USA
| | - Warner C. Greene
- Gladstone Institute of Virology, San Francisco, CA, USA
- Departments of Medicine, and Microbiology and Immunology, University of California, San Francisco, CA, USA
| | | | - Nadia R. Roan
- Gladstone Institute of Virology, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, CA, USA
| |
Collapse
|
33
|
Wang H, Jean S, Eltringham R, Madison J, Snyder P, Tu H, Jones DM, Leber AL. Mutation-Specific SARS-CoV-2 PCR Screen: Rapid and Accurate Detection of Variants of Concern and the Identification of a Newly Emerging Variant with Spike L452R Mutation. J Clin Microbiol 2021; 59:e0092621. [PMID: 34011523 PMCID: PMC8288299 DOI: 10.1128/jcm.00926-21] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 05/13/2021] [Indexed: 12/19/2022] Open
Abstract
The emergence of more transmissible and/or more virulent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOC) has triggered intensive genomic surveillance, which is costly and difficult to sustain operationally over the long term. To address this problem, we developed a set of four multiplex mutation-specific PCR-based assays with same-day reporting that can detect five VOC and three variants of interest (VOI), as defined in the March 2021 guidelines from the U.S. Centers for Disease Control and Prevention (https://www.cdc.gov/coronavirus/2019-ncov/). The screening results were compared to the whole-genome sequencing (WGS) and showed 100% concordance for strain typing for B.1.1.7 (n = 25) and P.1 (n = 5) variants using spike (S) mutation S-N501Y, S-E484K, and S-H69-V70del assays. The S-L450R assay, designed to detect the B.1.427/429 VOC, also identified multiple isolates of a newly emerging multiply mutated B.1.526.1 variant that is now rapidly increasing in the eastern United States. PCR approaches can be easily adopted in clinical laboratories, providing rapid screening methods to allow early detection of newly emergent variants and to efficiently triage cases for full genomic sequencing.
Collapse
Affiliation(s)
- Huanyu Wang
- Department of Pathology and Laboratory Medicine, Nationwide Children’s Hospital, Columbus, Ohio, USA
- Department of Pathology, The Ohio State University, Columbus, Ohio, USA
| | - Sophonie Jean
- Department of Pathology and Laboratory Medicine, Nationwide Children’s Hospital, Columbus, Ohio, USA
- Department of Pathology, The Ohio State University, Columbus, Ohio, USA
| | - Richard Eltringham
- Department of Pathology and Laboratory Medicine, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - John Madison
- Department of Pathology and Laboratory Medicine, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Pamela Snyder
- Department of Pathology, The Ohio State University, Columbus, Ohio, USA
| | - Huolin Tu
- Department of Pathology, The Ohio State University, Columbus, Ohio, USA
| | - Daniel M. Jones
- Department of Pathology, The Ohio State University, Columbus, Ohio, USA
| | - Amy L. Leber
- Department of Pathology and Laboratory Medicine, Nationwide Children’s Hospital, Columbus, Ohio, USA
- Department of Pathology, The Ohio State University, Columbus, Ohio, USA
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
34
|
Hauser BM, Sangesland M, Denis KJS, Windsor IW, Feldman J, Lam EC, Kannegieter T, Balazs AB, Lingwood D, Schmidt AG. Rationally designed immunogens enable immune focusing to the SARS-CoV-2 receptor binding motif. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.03.15.435440. [PMID: 33758851 PMCID: PMC7987010 DOI: 10.1101/2021.03.15.435440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Eliciting antibodies to surface-exposed viral glycoproteins can lead to protective responses that ultimately control and prevent future infections. Targeting functionally conserved epitopes may help reduce the likelihood of viral escape and aid in preventing the spread of related viruses with pandemic potential. One such functionally conserved viral epitope is the site to which a receptor must bind to facilitate viral entry. Here, we leveraged rational immunogen design strategies to focus humoral responses to the receptor binding motif (RBM) on the SARS-CoV-2 spike. Using glycan engineering and epitope scaffolding, we find an improved targeting of the serum response to the RBM in context of SARS-CoV-2 spike imprinting. Furthermore, we observed a robust SARS-CoV-2-neutralizing serum response with increased potency against related sarbecoviruses, SARS-CoV, WIV1-CoV, RaTG13-CoV, and SHC014-CoV. Thus, RBM focusing is a promising strategy to elicit breadth across emerging sarbecoviruses and represents an adaptable design approach for targeting conserved epitopes on other viral glycoproteins. ONE SENTENCE SUMMARY SARS-CoV-2 immune focusing with engineered immunogens.
Collapse
|
35
|
Receptor-binding domain recombinant protein RBD219-N1C1 on alum-CpG induces broad protection against SARS-CoV-2 variants of concern. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 34268512 DOI: 10.1101/2021.07.06.451353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We conducted preclinical studies in mice using a yeast-produced SARS-CoV-2 RBD219-N1C1 subunit vaccine candidate formulated with aluminum hydroxide (alum) and CpG deoxynucleotides. This vaccine formulation is similar to one that entered advanced phase 3 clinical development in India. We compared the immune response of mice vaccinated with RBD219-N1C1/alum to mice vaccinated with RBD219-N1C1/alum+CpG. We also evaluated mice immunized with RBD219-N1C1/alum+CpG and boosted with RBD219-N1C1/alum. Mice were immunized twice intramuscularly at a 21-day interval. Compared to two doses of the RBD219-N1C1/alum formulation, the RBD219-N1C1/alum+CpG vaccine induced a stronger and more balanced Th1/Th2 cellular immune response, with high levels of neutralizing antibodies against the original Wuhan isolate of SARS-CoV-2 as well as the B.1.1.7 (Alpha), B.1.351 (Beta) and B.1.617.1 (Kappa) variants. Notably, the sera from mice that received two 7 µg doses of RBD219-N1C1/alum+CpG showed more than 18 times higher neutralizing antibody titers against B.1.351, than the WHO International Standard for anti-SARS-CoV-2 immunoglobulin NIBSC 20/136. Interestingly, a booster dose did not require the addition of CpG to induce this effect. The data reported here reinforces that the RBD219-N1C1/alum+CpG vaccine formulation is suitable for inducing broadly neutralizing antibodies against SARS-CoV-2 including three variants of concern, B.1.1.7 (Alpha), B.1.351 (Beta), and B.1.617.1 (Kappa).
Collapse
|
36
|
Böttcher L, Nagler J. Decisive Conditions for Strategic Vaccination against SARS-CoV-2. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.03.05.21252962. [PMID: 33758886 PMCID: PMC7987045 DOI: 10.1101/2021.03.05.21252962] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
While vaccines against SARS-CoV-2 are being administered, in most countries it may still take months until their supply can meet demand. The majority of available vaccines elicits strong immune responses when administered as prime-boost regimens. Since the immunological response to the first ("prime") injection may provide already a substantial reduction in infectiousness and protection against severe disease, it may be more effective-under certain immunological and epidemiological conditions-to vaccinate as many people as possible with only one shot, instead of administering a person a second ("boost") shot. Such a vaccination campaign may help to more effectively slow down the spread of SARS-CoV-2, reduce hospitalizations, and reduce fatalities, which is our objective. Yet, the conditions which make single-dose vaccination favorable over prime-boost administrations are not well understood. By combining epidemiological modeling, random sampling techniques, and decision tree learning, we find that single-dose vaccination is robustly favored over prime-boost vaccination campaigns, even for low single-dose efficacies. For realistic scenarios and assumptions for SARS-CoV-2, recent data on new variants included, we show that the difference between prime-boost and single-shot waning rates is the only discriminative threshold, falling in the narrow range of 0.01-0.02 day-1 below which single-dose vaccination should be considered.
Collapse
Affiliation(s)
- Lucas Böttcher
- Dept. of Computational Medicine, University of California, Los Angeles, CA 90095-1766, United States of America
- Computational Social Science, Frankfurt School of Finance & Management, Frankfurt am Main, 60322, Germany
| | - Jan Nagler
- Deep Dynamics Group, Centre for Human and Machine Intelligence, Frankfurt School of Finance & Management, Frankfurt am Main, 60322, Germany
| |
Collapse
|
37
|
A Review on the Effectivity of the Current COVID-19 Drugs and Vaccines: Are They Really Working Against the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Variants? CURRENT CLINICAL MICROBIOLOGY REPORTS 2021; 8:186-193. [PMID: 34249605 PMCID: PMC8254629 DOI: 10.1007/s40588-021-00172-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2021] [Indexed: 12/21/2022]
Abstract
Purpose of Review In order to eradicate the COVID-19 pandemic, scientists around the world have been working very hard for a year or more with the motto of designing effective drugs and vaccines against the severe acute respiratory coronavirus 2 (SARS-CoV-2). Along with the positive results with the antiviral drugs and a few commercialized vaccines, the unresponsiveness as well as some side effects of such therapies have also been noticed, possibly due to the emergence of the SARS-CoV-2 variants. Therefore, current review summarized the actual effectiveness of the antivirals and vaccines which are in current use for the treatment of the COVID-19 patients. Recent Findings So far, some drugs have been found with hopeful results among which remdesivir and arbidol are with momentous clinical progress. Besides drug designing, vaccine development has been a major effort whereby the mRNA-1273 (Moderna) and BNT162b2 (Pfizer-BioNTech) vaccines showed the required efficacy and have been approved by the US Food and Drug Administration (USFDA). Summary While a number of existing/repurposed/repositioned or new drugs and the currently used commercial vaccines against SARS-CoV-2 apparently seem to be effective against COVID-19 mitigation, the new variants of the virus as well as the recently increased cases raised the doubt about the usefulness of these agents. Current review figured out the efficacy of different drugs and vaccines in terms of their action potential against SARS-CoV-2 and further recommended some useful measures which may be useful for future remedies.
Collapse
|
38
|
Engineered receptor binding domain immunogens elicit pan-sarbecovirus neutralizing antibodies outside the receptor binding motif. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 33330872 DOI: 10.1101/2020.12.07.415216] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Effective countermeasures are needed against emerging coronaviruses of pandemic potential, similar to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Designing immunogens that elicit broadly neutralizing antibodies to conserved viral epitopes on the major surface glycoprotein, spike, such as the receptor binding domain (RBD) is one potential approach. Here, we report the generation of homotrimeric RBD immunogens from different sarbecoviruses using a stabilized, immune-silent trimerization tag. In mice, we find that a cocktail of these homotrimeric sarbecovirus RBDs elicits antibodies to conserved viral epitopes outside of the ACE2 receptor binding motif (RBM). Importantly, these responses neutralize all sarbecovirus components even in context of prior SARS-CoV-2 imprinting. We further show that a substantial fraction of the neutralizing antibodies elicited after vaccination in humans also engages non-RBM epitopes on the RBD. Collectively, our results suggest a strategy for eliciting broadly neutralizing responses leading to a pan-sarbecovirus vaccine. Author summary Immunity to SARS-CoV-2 in the human population will be widespread due to natural infection and vaccination. However, another novel coronavirus will likely emerge in the future and may cause a subsequent pandemic. Humoral responses induced by SARS-CoV-2 infection and vaccination provide limited protection against even closely related coronaviruses. We show immunization with a cocktail of trimeric coronavirus receptor binding domains induces a neutralizing antibody response that is broadened to related coronaviruses with pandemic potential. Importantly, this broadening occurs in context of an initial imprinted SARS-CoV-2 spike immunization showing that preexisting immunity can be expanded to recognize other related coronaviruses. Our immunogens focused the serum antibody response to conserved epitopes on the receptor binding domain outside of the ACE2 receptor binding motif; this contrasts with current SARS-CoV-2 therapeutic antibodies, which predominantly target the receptor binding motif.
Collapse
|
39
|
Zhao LP, Lybrand TP, Gilbert PB, Hawn TR, Schiffer JT, Stamatatos L, Payne TH, Carpp LN, Geraghty DE, Jerome KR. Tracking SARS-CoV-2 Spike Protein Mutations in the United States (2020/01 - 2021/03) Using a Statistical Learning Strategy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.06.15.448495. [PMID: 34159336 PMCID: PMC8219100 DOI: 10.1101/2021.06.15.448495] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The emergence and establishment of SARS-CoV-2 variants of interest (VOI) and variants of concern (VOC) highlight the importance of genomic surveillance. We propose a statistical learning strategy (SLS) for identifying and spatiotemporally tracking potentially relevant Spike protein mutations. We analyzed 167,893 Spike protein sequences from US COVID-19 cases (excluding 21,391 sequences from VOI/VOC strains) deposited at GISAID from January 19, 2020 to March 15, 2021. Alignment against the reference Spike protein sequence led to the identification of viral residue variants (VRVs), i.e., residues harboring a substitution compared to the reference strain. Next, generalized additive models were applied to model VRV temporal dynamics, to identify VRVs with significant and substantial dynamics (false discovery rate q-value <0.01; maximum VRV proportion > 10% on at least one day). Unsupervised learning was then applied to hierarchically organize VRVs by spatiotemporal patterns and identify VRV-haplotypes. Finally, homology modelling was performed to gain insight into potential impact of VRVs on Spike protein structure. We identified 90 VRVs, 71 of which have not previously been observed in a VOI/VOC, and 35 of which have emerged recently and are durably present. Our analysis identifies 17 VRVs ∼91 days earlier than their first corresponding VOI/VOC publication. Unsupervised learning revealed eight VRV-haplotypes of 4 VRVs or more, suggesting two emerging strains (B1.1.222 and B.1.234). Structural modeling supported potential functional impact of the D1118H and L452R mutations. The SLS approach equally monitors all Spike residues over time, independently of existing phylogenic classifications, and is complementary to existing genomic surveillance methods.
Collapse
Affiliation(s)
- Lue Ping Zhao
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center; Seattle, WA, USA
| | - Terry P. Lybrand
- Quintepa Computing LLC; Nashville, TN, USA
- Department of Chemistry; Department of Pharmacology, Vanderbilt University; Nashville, TN, USA
| | - Peter B. Gilbert
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center; Seattle, WA, USA
| | - Thomas R. Hawn
- Department of Medicine, University of Washington School of Medicine; Seattle, WA, USA
- Department of Global Health, University of Washington; Seattle, WA, USA
| | - Joshua T. Schiffer
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center; Seattle, WA, USA
- Department of Medicine, University of Washington School of Medicine; Seattle, WA, USA
| | - Leonidas Stamatatos
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center; Seattle, WA, USA
- Department of Global Health, University of Washington; Seattle, WA, USA
| | - Thomas H. Payne
- Department of Medicine, University of Washington School of Medicine; Seattle, WA, USA
| | - Lindsay N. Carpp
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center; Seattle, WA, USA
| | - Daniel E. Geraghty
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle; WA, USA
| | - Keith R. Jerome
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center; Seattle, WA, USA
| |
Collapse
|
40
|
Sherman EJ, Mirabelli C, Tang VT, Khan TG, Kennedy AA, Graham SE, Willer CJ, Tai AW, Sexton JZ, Wobus CE, Emmer BT. Identification of ACE2 modifiers by CRISPR screening. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.06.10.447768. [PMID: 34127970 PMCID: PMC8202422 DOI: 10.1101/2021.06.10.447768] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
SARS-CoV-2 infection is initiated by binding of the viral spike protein to its receptor, ACE2, on the surface of host cells. ACE2 expression is heterogeneous both in vivo and in immortalized cell lines, but the molecular pathways that govern ACE2 expression remain unclear. We now report high-throughput CRISPR screens for functional modifiers of ACE2 surface abundance. We identified 35 genes whose disruption was associated with a change in the surface abundance of ACE2 in HuH7 cells. Enriched among these ACE2 regulators were established transcription factors, epigenetic regulators, and functional networks. We further characterized individual cell lines with disruption of SMAD4, EP300, PIAS1 , or BAMBI and found these genes to regulate ACE2 at the mRNA level and to influence cellular susceptibility to SARS-CoV-2 infection. Collectively, our findings clarify the host factors involved in SARS-CoV-2 entry and suggest potential targets for therapeutic development.
Collapse
|
41
|
Capoferri AA, Shao W, Spindler J, Coffin JM, Rausch JW, Kearney MF. 2020 SARS-CoV-2 diversification in the United States: Establishing a pre-vaccination baseline. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.06.01.21258185. [PMID: 34127980 PMCID: PMC8202437 DOI: 10.1101/2021.06.01.21258185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
UNLABELLED In 2020, SARS-CoV-2 spread across the United States (U.S.) in three phases distinguished by peaks in the numbers of infections and shifting geographical distribution. We investigated the viral genetic diversity in each phase using sequences publicly available prior to December 15 th , 2020, when vaccination was initiated in the U.S. In Phase 1 (winter/spring), sequences were already dominated by the D614G Spike mutation and by Phase 3 (fall), genetic diversity of the viral population had tripled and at least 54 new amino acid changes had emerged at frequencies above 5%, several of which were within known antibody epitopes. These findings highlight the need to track the evolution of SARS-CoV-2 variants in the U.S. to ensure continued efficacy of vaccines and antiviral treatments. ONE SENTENCE SUMMARY SARS-CoV-2 genetic diversity in the U.S. increased 3-fold in 2020 and 54 emergent nonsynonymous mutations were detected.
Collapse
Affiliation(s)
- Adam A. Capoferri
- HIV Dynamics and Replication Program, National Cancer Institute, Frederick, Maryland, USA
- Department of Microbiology and Immunology, Georgetown University, Washington D.C., USA
| | - Wei Shao
- Advanced Biomedical Computing Science, Frederick National Laboratory for Cancer Research (FNLCR) sponsored by the National Cancer Institute, Frederick, Maryland, USA
| | - Jon Spindler
- HIV Dynamics and Replication Program, National Cancer Institute, Frederick, Maryland, USA
| | - John M. Coffin
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, USA
| | - Jason W. Rausch
- HIV Dynamics and Replication Program, National Cancer Institute, Frederick, Maryland, USA
| | - Mary F. Kearney
- HIV Dynamics and Replication Program, National Cancer Institute, Frederick, Maryland, USA
| |
Collapse
|
42
|
Nanishi E, Borriello F, O'Meara TR, McGrath ME, Saito Y, Haupt RE, Seo HS, van Haren SD, Brook B, Chen J, Diray-Arce J, Doss-Gollin S, Leon MD, Chew K, Menon M, Song K, Xu AZ, Caradonna TM, Feldman J, Hauser BM, Schmidt AG, Sherman AC, Baden LR, Ernst RK, Dillen C, Weston SM, Johnson RM, Hammond HL, Mayer R, Burke A, Bottazzi ME, Hotez PJ, Strych U, Chang A, Yu J, Barouch DH, Dhe-Paganon S, Zanoni I, Ozonoff A, Frieman MB, Levy O, Dowling DJ. Alum:CpG adjuvant enables SARS-CoV-2 RBD-induced protection in aged mice and synergistic activation of human elder type 1 immunity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 34031655 DOI: 10.1101/2021.05.20.444848] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Global deployment of vaccines that can provide protection across several age groups is still urgently needed to end the COVID-19 pandemic especially for low- and middle-income countries. While vaccines against SARS-CoV-2 based on mRNA and adenoviral-vector technologies have been rapidly developed, additional practical and scalable SARS-CoV-2 vaccines are needed to meet global demand. In this context, protein subunit vaccines formulated with appropriate adjuvants represent a promising approach to address this urgent need. Receptor-binding domain (RBD) is a key target of neutralizing antibodies (Abs) but is poorly immunogenic. We therefore compared pattern recognition receptor (PRR) agonists, including those activating STING, TLR3, TLR4 and TLR9, alone or formulated with aluminum hydroxide (AH), and benchmarked them to AS01B and AS03-like emulsion-based adjuvants for their potential to enhance RBD immunogenicity in young and aged mice. We found that the AH and CpG adjuvant formulation (AH:CpG) demonstrated the highest enhancement of anti-RBD neutralizing Ab titers in both age groups (∼80-fold over AH), and protected aged mice from the SARS-CoV-2 challenge. Notably, AH:CpG-adjuvanted RBD vaccine elicited neutralizing Abs against both wild-type SARS-CoV-2 and B.1.351 variant at serum concentrations comparable to those induced by the authorized mRNA BNT162b2 vaccine. AH:CpG induced similar cytokine and chemokine gene enrichment patterns in the draining lymph nodes of both young adult and aged mice and synergistically enhanced cytokine and chemokine production in human young adult and elderly mononuclear cells. These data support further development of AH:CpG-adjuvanted RBD as an affordable vaccine that may be effective across multiple age groups. One Sentence Summary Alum and CpG enhance SARS-CoV-2 RBD protective immunity, variant neutralization in aged mice and Th1-polarizing cytokine production by human elder leukocytes.
Collapse
|
43
|
Adaptive immune determinants of viral clearance and protection in mouse models of SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 34031656 DOI: 10.1101/2021.05.19.444825] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused more than 160 million infections and more than 3 million deaths worldwide. While effective vaccines are currently being deployed, the adaptive immune determinants which promote viral clearance and confer protection remain poorly defined. Using mouse models of SARS-CoV-2, we demonstrate that both humoral and cellular adaptive immunity contributes to viral clearance in the setting of primary infection. Furthermore, we find that either convalescent mice, or mice that receive mRNA vaccination are protected from both homologous infection and infection with a variant of concern, B.1.351. Additionally, we find this protection to be largely mediated by antibody response and not cellular immunity. These results highlight the in vivo protective capacity of antibodies generated to both vaccine and natural infection. One-Sentence Summary Defining the roles of humoral and cellular adaptive immunity in viral clearance and protection from SARS-CoV-2 and a variant of concern.
Collapse
|
44
|
Bates TA, Leier HC, Lyski ZL, McBride SK, Coulter FJ, Weinstein JB, Goodman JR, Lu Z, Siegel SAR, Sullivan P, Strnad M, Brunton AE, Lee DX, Curlin ME, Messer WB, Tafesse FG. Neutralization of SARS-CoV-2 variants by convalescent and vaccinated serum. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.04.04.21254881. [PMID: 33851185 PMCID: PMC8043482 DOI: 10.1101/2021.04.04.21254881] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
We tested human sera from large, demographically balanced cohorts of BNT162b2 vaccine recipients (n=51) and COVID-19 patients (n=44) for neutralizing antibodies against SARS-CoV-2 variants B.1.1.7 and B.1.351. Although the effect is more pronounced in the vaccine cohort, both B.1.1.7 and B.1.351 show significantly reduced levels of neutralization by vaccinated and convalescent sera. Age is negatively correlated with neutralization in vaccinee, and levels of variant-specific RBD antibodies are proportional to neutralizing activities.
Collapse
Affiliation(s)
- Timothy A. Bates
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University (OHSU), Portland, OR 97239, USA
| | - Hans C. Leier
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University (OHSU), Portland, OR 97239, USA
| | - Zoe L. Lyski
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University (OHSU), Portland, OR 97239, USA
| | - Savannah K. McBride
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University (OHSU), Portland, OR 97239, USA
| | - Felicity J. Coulter
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University (OHSU), Portland, OR 97239, USA
| | - Jules B. Weinstein
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University (OHSU), Portland, OR 97239, USA
| | - James R. Goodman
- Medical Scientist Training Program, Oregon Health & Science University (OHSU), Portland, OR 97239, USA
| | - Zhengchun Lu
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University (OHSU), Portland, OR 97239, USA
| | - Sarah A. R. Siegel
- OHSU-PSU School of Public Health, Program in Epidemiology, Portland, OR 97339
| | - Peter Sullivan
- OHSU-PSU School of Public Health, Program in Epidemiology, Portland, OR 97339
| | - Matt Strnad
- OHSU-PSU School of Public Health, Program in Epidemiology, Portland, OR 97339
| | - Amanda E. Brunton
- OHSU-PSU School of Public Health, Program in Epidemiology, Portland, OR 97339
| | - David X. Lee
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University (OHSU), Portland, OR 97239, USA
| | - Marcel E. Curlin
- USA Department of Medicine, Division of Infectious Diseases, Oregon Health & Science University (OHSU), Portland, OR 97239, USA
| | - William B. Messer
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University (OHSU), Portland, OR 97239, USA
- OHSU-PSU School of Public Health, Program in Epidemiology, Portland, OR 97339
- USA Department of Medicine, Division of Infectious Diseases, Oregon Health & Science University (OHSU), Portland, OR 97239, USA
| | - Fikadu G. Tafesse
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University (OHSU), Portland, OR 97239, USA
| |
Collapse
|
45
|
Moore JP. Approaches for Optimal Use of Different COVID-19 Vaccines: Issues of Viral Variants and Vaccine Efficacy. JAMA 2021; 325:1251-1252. [PMID: 33662101 DOI: 10.1001/jama.2021.3465] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- John P Moore
- Weill Cornell Medicine, Cornell University, New York, New York
| |
Collapse
|
46
|
Bian L, Gao F, Zhang J, He Q, Mao Q, Xu M, Liang Z. Effects of SARS-CoV-2 variants on vaccine efficacy and response strategies. Expert Rev Vaccines 2021; 20:365-373. [PMID: 33851875 PMCID: PMC8054487 DOI: 10.1080/14760584.2021.1903879] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 03/12/2021] [Indexed: 12/26/2022]
Abstract
INTRODUCTION As the global severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic continues to spread, several variants have emerged. Variants B.1.1.7 and B.1.351 have attracted significant attention owing to their widespread transmission and possible immune evasion. A total of 19 SARS-CoV-2 vaccines based on original strains have entered clinical studies, including nine vaccines that have obtained emergency use or conditional marketing authorizations. However, newly emerging variants may affect their protective efficacy. Decreased efficacy of the Novartis, Johnson & Johnson, and AstraZeneca vaccines against B.1.351 has been reported. The spread of variants creates a tremendous challenge for the prevention and control of the SARS-CoV-2 pandemic via vaccination. Several response strategies, including accelerating massive rollouts of current vaccines, increasing vaccine immunogenicity by increasing vaccination doses, and accelerating next-generation vaccines against variants, have been suggested. AREAS COVERED SARS-CoV-2 vaccine efficacy against variants and response strategies for emerging variants. EXPERT OPINION Current SARS-CoV-2 vaccines authorized for emergency use or under clinical trials have shown certain advantages in providing adequate protection against new variants. We analyzed the effects of reported variants on neutralizing antibodies and the protective efficacy of different vaccines and propose strategies for applying current vaccines against variants and developing next-generation vaccines.
Collapse
Affiliation(s)
- Lianlian Bian
- Institute of Biological Products, Division of Hepatitis and Enterovirus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Fan Gao
- Institute of Biological Products, Division of Hepatitis and Enterovirus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Jialu Zhang
- Institute of Biological Products, Division of Hepatitis and Enterovirus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Qian He
- Institute of Biological Products, Division of Hepatitis and Enterovirus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Qunying Mao
- Institute of Biological Products, Division of Hepatitis and Enterovirus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Miao Xu
- Institute of Biological Products, Division of Hepatitis and Enterovirus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Zhenglun Liang
- Institute of Biological Products, Division of Hepatitis and Enterovirus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| |
Collapse
|
47
|
Klein J, Brito AF, Trubin P, Lu P, Wong P, Alpert T, Peña-Hernández MA, Haynes W, Kamath K, Liu F, Vogels CBF, Fauver JR, Lucas C, Oh J, Mao T, Silva J, Wyllie AL, Muenker MC, Casanovas-Massana A, Moore AJ, Petrone ME, Kalinich CC, Cruz CD, Farhadian S, Ring A, Shon J, Ko AI, Grubaugh ND, Israelow B, Iwasaki A, Azar MM. Case Study: Longitudinal immune profiling of a SARS-CoV-2 reinfection in a solid organ transplant recipient. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021. [PMID: 33791729 DOI: 10.1101/2021.03.24.21253992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Prior to the emergence of antigenically distinct SARS-CoV-2 variants, reinfections were reported infrequently - presumably due to the generation of durable and protective immune responses. However, case reports also suggested that rare, repeated infections may occur as soon as 48 days following initial disease onset. The underlying immunologic deficiencies enabling SARS-CoV-2 reinfections are currently unknown. Here we describe a renal transplant recipient who developed recurrent, symptomatic SARS-CoV-2 infection - confirmed by whole virus genome sequencing - 7 months after primary infection. To elucidate the immunological mechanisms responsible for SARS-CoV-2 reinfection, we performed longitudinal profiling of cellular and humoral responses during both primary and recurrent SARS-CoV-2 infection. We found that the patient responded to the primary infection with transient, poor-quality adaptive immune responses. The patient's immune system was further compromised by intervening treatment for acute rejection of the renal allograft prior to reinfection. Importantly, we also identified the development of neutralizing antibodies and the formation of humoral memory responses prior to SARS-CoV-2 reinfection. However, these neutralizing antibodies failed to confer protection against reinfection, suggesting that additional factors are required for efficient prevention of SARS-CoV-2 reinfection. Further, we found no evidence supporting viral evasion of primary adaptive immune responses, suggesting that susceptibility to reinfection may be determined by host factors rather than pathogen adaptation in this patient. In summary, our study suggests that a low neutralizing antibody presence alone is not sufficient to confer resistance against reinfection. Thus, patients with solid organ transplantation, or patients who are otherwise immunosuppressed, who recover from infection with SARS-CoV-2 may not develop sufficient protective immunity and are at risk of reinfection.
Collapse
|
48
|
Rajczewski AT, Mehta S, Nguyen DDA, Grüning BA, Johnson JE, McGowan T, Griffin TJ, Jagtap PD. A rigorous evaluation of optimal peptide targets for MS-based clinical diagnostics of Coronavirus Disease 2019 (COVID-19). MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.02.09.21251427. [PMID: 33688669 PMCID: PMC7941646 DOI: 10.1101/2021.02.09.21251427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The Coronavirus Disease 2019 (COVID-19) global pandemic has had a profound, lasting impact on the world's population. A key aspect to providing care for those with COVID-19 and checking its further spread is early and accurate diagnosis of infection, which has been generally done via methods for amplifying and detecting viral RNA molecules. Detection and quantitation of peptides using targeted mass spectrometry-based strategies has been proposed as an alternative diagnostic tool due to direct detection of molecular indicators from non-invasively collected samples as well as the potential for high-throughput analysis in a clinical setting; many studies have revealed the presence of viral peptides within easily accessed patient samples. However, evidence suggests that some viral peptides could serve as better indicators of COVID-19 infection status than others, due to potential misidentification of peptides derived from human host proteins, poor spectral quality, high limits of detection etc. In this study we have compiled a list of 639 peptides identified from Sudden Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) samples, including from in vitro and clinical sources. These datasets were rigorously analyzed using automated, Galaxy-based workflows containing tools such as PepQuery, BLAST-P, and the Multi-omic Visualization Platform as well as the open-source tools MetaTryp and Proteomics Data Viewer (PDV). Using PepQuery for confirming peptide spectrum matches, we were able to narrow down the 639 peptide possibilities to 87 peptides which were most robustly detected and specific to the SARS-CoV-2 virus. The specificity of these sequences to coronavirus taxa was confirmed using Unipept and BLAST-P. Applying stringent statistical scoring thresholds, combined with manual verification of peptide spectrum match quality, 4 peptides derived from the nucleocapsid phosphoprotein and membrane protein were found to be most robustly detected across all cell culture and clinical samples, including those collected non-invasively. We propose that these peptides would be of the most value for clinical proteomics applications seeking to detect COVID-19 from a variety of sample types. We also contend that samples taken from the upper respiratory tract and oral cavity have the highest potential for diagnosis of SARS-CoV-2 infection from easily collected patient samples using mass spectrometry-based proteomics assays.
Collapse
Affiliation(s)
- Andrew T. Rajczewski
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Subina Mehta
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Dinh Duy An Nguyen
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Björn A. Grüning
- Department of Computer Science, University of Freiburg, Freiburg, Germany
| | - James E. Johnson
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Thomas McGowan
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Timothy J. Griffin
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Pratik D. Jagtap
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
49
|
TANZI ELISABETTA, GENOVESE CAMILLA, TETTAMANZI MATILDE, FAPPANI CLARA, RAVIGLIONE MARIOCARLO, AMENDOLA ANTONELLA. COVID-19 vaccines: evidence, challenges and the future. JOURNAL OF PREVENTIVE MEDICINE AND HYGIENE 2021; 62:E18-E29. [PMID: 34622080 PMCID: PMC8452286 DOI: 10.15167/2421-4248/jpmh2021.62.1s3.2084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/11/2021] [Indexed: 11/30/2022]
Abstract
Through an unprecedented research and development process, in early 2021, just one year after the COVID-19 pandemic started devastating the world, there are several vaccines commercially available or in advances phase of testing, each with its own characteristics and challenges. For the first time in the history of vaccination, a global immunization program has started at a time of intense pandemic activity characterized by high virus transmission, facilitating selection of variants potentially able to escape the vaccine-induced antibody response. The reality is that one cannot rely on a single vaccine when dealing with a pandemic emergency: the urgent need of billions of doses clashes with the production capacity of the pharmaceutical industry. There is therefore no ideal vaccine, but there are many good vaccines to be used immediately. The current international debate about COVID-19 vaccines is today the hottest topic in global health whether it relates to technical and scientific issues or to the ethical aspects of access to vaccinations for all. This article aims at reviewing the status of vaccines that are used, or about to be used, in immunization campaigns worldwide.
Collapse
Affiliation(s)
- ELISABETTA TANZI
- EpiSoMI - Centre for Epidemiology and Molecular Surveillance of Infections, University of Milan, Milan, Italy
| | - CAMILLA GENOVESE
- MACH - Centre for Multidisciplinary Research in Health Science, University of Milan, Milan, Italy
| | - MATILDE TETTAMANZI
- MACH - Centre for Multidisciplinary Research in Health Science, University of Milan, Milan, Italy
| | - CLARA FAPPANI
- EpiSoMI - Centre for Epidemiology and Molecular Surveillance of Infections, University of Milan, Milan, Italy
| | - MARIO CARLO RAVIGLIONE
- MACH - Centre for Multidisciplinary Research in Health Science, University of Milan, Milan, Italy
| | - ANTONELLA AMENDOLA
- EpiSoMI - Centre for Epidemiology and Molecular Surveillance of Infections, University of Milan, Milan, Italy
| |
Collapse
|
50
|
[Genomics and epidemiology of SARS-CoV-2 lineage]. Uirusu 2021; 71:19-32. [PMID: 35526991 DOI: 10.2222/jsv.71.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Coronavirus disease 2019(COVID-19)is a newly emerging human infectious disease caused by severe acute respiratory syndrome coronavirus 2(SARS-CoV-2).It had been first identified in Wuhan at the end of 2019 and the spread of SARS-CoV-2 variants has become a crucial issue worldwide. WHO categorized SARS-CoV-2 variants as "Variants of Concern; VOCs" and "Variants of Interest; VOIs" based on transmissibility, disease severity or their susceptibility to vaccines. Especially, the spread of SARS-CoV-2 variant categorized in VOCs, such as B.1.1.7 and B.1.617.2, has been a serious concern worldwide. In Japan, in addition to the B.1.1.214/B.1.1.284 variants, the B.1.1.7 variant has been rapidly spreading in Osaka and Tokyo. The B.1.617 variant was first identified in April 2021 in a patient who was under domestic quarantine and cases of community-acquired infections of the B.1.617.2 variant were first observed in May 2021. Amino acid changes in the spike protein, such as the N501Y, E484K or L452R mutations mainly observed in VOCs in addition to the D614G mutation are thought to affect the transmissibility and immune escape of the virus as well as the disease severity and this may be contributory to the rapid spread of SARS-CoV-2 variants. Now, several SARS-CoV-2 variants with additional mutations are continuously emerging worldwide and the prevailing SARS-CoV-2 variants are rapidly changing.
Collapse
|