1
|
Martinez DR, Schafer A, Gavitt TD, Mallory ML, Lee E, Catanzaro NJ, Chen H, Gully K, Scobey T, Korategere P, Brown A, Smith L, Parks R, Barr M, Newman A, Bowman C, Powers JM, Mansouri K, Edwards RJ, Baric RS, Haynes BF, Saunders KO. Vaccine-mediated protection against merbecovirus and sarbecovirus challenge in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.22.540829. [PMID: 37293083 PMCID: PMC10245799 DOI: 10.1101/2023.05.22.540829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The emergence of three distinct highly pathogenic human coronaviruses - SARS-CoV in 2003, MERS-CoV in 2012, and SARS-CoV-2 in 2019 - underlines the need to develop broadly active vaccines against the Merbecovirus and Sarbecovirus betacoronavirus subgenera. While SARS-CoV-2 vaccines are highly protective against severe COVID-19 disease, they do not protect against other sarbecoviruses or merbecoviruses. Here, we vaccinate mice with a trivalent sortase-conjugate nanoparticle (scNP) vaccine containing the SARS-CoV-2, RsSHC014, and MERS-CoV receptor binding domains (RBDs), which elicited live-virus neutralizing antibody responses and broad protection. Specifically, a monovalent SARS-CoV-2 RBD scNP vaccine only protected against sarbecovirus challenge, whereas the trivalent RBD scNP vaccine protected against both merbecovirus and sarbecovirus challenge in highly pathogenic and lethal mouse models. Moreover, the trivalent RBD scNP elicited serum neutralizing antibodies against SARS-CoV, MERS-CoV and SARS-CoV-2 BA.1 live viruses. Our findings show that a trivalent RBD nanoparticle vaccine displaying merbecovirus and sarbecovirus immunogens elicits immunity that broadly protects mice against disease. This study demonstrates proof-of-concept for a single pan-betacoronavirus vaccine to protect against three highly pathogenic human coronaviruses spanning two betacoronavirus subgenera.
Collapse
Affiliation(s)
- David R. Martinez
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, 06510, USA
- Yale Center for Infection and Immunity, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Alexandra Schafer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Tyler D. Gavitt
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Michael L. Mallory
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Esther Lee
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Nicholas J. Catanzaro
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Haiyan Chen
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Kendra Gully
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Trevor Scobey
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Pooja Korategere
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Alecia Brown
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Lena Smith
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Rob Parks
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Maggie Barr
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Amanda Newman
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Cindy Bowman
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - John M. Powers
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Katayoun Mansouri
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Robert J. Edwards
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Ralph S. Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Barton F. Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Kevin O. Saunders
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| |
Collapse
|
2
|
Sarangi MK, Padhi S, Rath G, Nanda SS, Yi DK. Success of nano-vaccines against COVID-19: a transformation in nanomedicine. Expert Rev Vaccines 2022; 21:1739-1761. [PMID: 36384360 DOI: 10.1080/14760584.2022.2148659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
INTRODUCTION The vaccines being used against COVID-19 are composed of either non-viral or viral nanoparticles (NPs). Nanotechnology-based vaccine technology was studied for its potentially transformative advancement of medicine. AREAS COVERED NPs protect the encapsulated mRNA in vaccines, thereby enhancing the stability of the ribonucleic acids and facilitating their intact delivery to their specific targets. Compared to liposomes, lipid nanoparticles (LNPs) are unique and, through their rigid morphology and better cellular penetrability, render enhanced cargo stability. To explore nanotechnology-mediated vaccine delivery and its potential in future pandemics, we assessed articles from various databases, such as PubMed, Embase, and Scopus, including editorial/research notes, expert opinions, and collections of data from several clinical research trials. In the current review, we focus on the nanoparticulate approach of the different SARS-CoV-2 vaccines and explore their success against the pandemic. EXPERT OPINION The mRNA-based vaccines, with their tremendous efficacy of ~95% (under phase III-IV clinical trials) and distinct nanocarriers (LNPs), represent a new medical front alongside DNA and siRNA-based vaccines.
Collapse
Affiliation(s)
- Manoj Kumar Sarangi
- Department of Pharmacy, School of Pharmaceutical Sciences, Sardar Bhagwan Singh University, Dehradun, India
| | - Sasmita Padhi
- Department of Pharmacy, School of Pharmaceutical Sciences, Sardar Bhagwan Singh University, Dehradun, India
| | - Gautam Rath
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan University, Bhubaneswar, India
| | | | - Dong Kee Yi
- Department of Chemistry, Myongji University, Yongin, South Korea
| |
Collapse
|
3
|
Grigoryan L, Lee A, Walls AC, Lai L, Franco B, Arunachalam PS, Feng Y, Luo W, Vanderheiden A, Floyd K, Wrenn S, Pettie D, Miranda MC, Kepl E, Ravichandran R, Sydeman C, Brunette N, Murphy M, Fiala B, Carter L, Coffman RL, Novack D, Kleanthous H, O’Hagan DT, van der Most R, McLellan JS, Suthar M, Veesler D, King NP, Pulendran B. Adjuvanting a subunit SARS-CoV-2 vaccine with clinically relevant adjuvants induces durable protection in mice. NPJ Vaccines 2022; 7:55. [PMID: 35606518 PMCID: PMC9126867 DOI: 10.1038/s41541-022-00472-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 02/03/2022] [Indexed: 01/27/2023] Open
Abstract
Adjuvants enhance the magnitude and the durability of the immune response to vaccines. However, there is a paucity of comparative studies on the nature of the immune responses stimulated by leading adjuvant candidates. In this study, we compared five clinically relevant adjuvants in mice-alum, AS03 (a squalene-based adjuvant supplemented with α-tocopherol), AS37 (a TLR7 ligand emulsified in alum), CpG1018 (a TLR9 ligand emulsified in alum), O/W 1849101 (a squalene-based adjuvant)-for their capacity to stimulate immune responses when combined with a subunit vaccine under clinical development. We found that all four of the adjuvant candidates surpassed alum with respect to their capacity to induce enhanced and durable antigen-specific antibody responses. The TLR-agonist-based adjuvants CpG1018 (TLR9) and AS37 (TLR7) induced Th1-skewed CD4+ T cell responses, while alum, O/W, and AS03 induced a balanced Th1/Th2 response. Consistent with this, adjuvants induced distinct patterns of early innate responses. Finally, vaccines adjuvanted with AS03, AS37, and CpG1018/alum-induced durable neutralizing-antibody responses and significant protection against the B.1.351 variant 7 months following immunization. These results, together with our recent results from an identical study in non-human primates (NHPs), provide a comparative benchmarking of five clinically relevant vaccine adjuvants for their capacity to stimulate immunity to a subunit vaccine, demonstrating the capacity of adjuvanted SARS-CoV-2 subunit vaccines to provide durable protection against the B.1.351 variant. Furthermore, these results reveal differences between the widely-used C57BL/6 mouse strain and NHP animal models, highlighting the importance of species selection for future vaccine and adjuvant studies.
Collapse
Affiliation(s)
- Lilit Grigoryan
- grid.168010.e0000000419368956Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA USA
| | - Audrey Lee
- grid.168010.e0000000419368956Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA USA
| | - Alexandra C. Walls
- grid.34477.330000000122986657Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA USA ,grid.34477.330000000122986657Present Address: Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195 USA
| | - Lilin Lai
- grid.189967.80000 0001 0941 6502Emory Vaccine Center, 954 Gatewood Road, Atlanta, GA 30329 USA
| | - Benjamin Franco
- Veterinary Service Center, Department of Comparative Medicine, Stanford, CA USA
| | - Prabhu S. Arunachalam
- grid.168010.e0000000419368956Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA USA
| | - Yupeng Feng
- grid.168010.e0000000419368956Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA USA
| | - Wei Luo
- grid.168010.e0000000419368956Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA USA
| | - Abigail Vanderheiden
- grid.189967.80000 0001 0941 6502Emory Vaccine Center, 954 Gatewood Road, Atlanta, GA 30329 USA
| | - Katharine Floyd
- grid.189967.80000 0001 0941 6502Emory Vaccine Center, 954 Gatewood Road, Atlanta, GA 30329 USA
| | - Samuel Wrenn
- grid.34477.330000000122986657Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA USA
| | - Deleah Pettie
- grid.34477.330000000122986657Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA USA
| | - Marcos C. Miranda
- grid.34477.330000000122986657Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA USA
| | - Elizabeth Kepl
- grid.34477.330000000122986657Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA USA
| | - Rashmi Ravichandran
- grid.34477.330000000122986657Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA USA
| | - Claire Sydeman
- grid.34477.330000000122986657Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA USA
| | - Natalie Brunette
- grid.34477.330000000122986657Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA USA
| | - Michael Murphy
- grid.34477.330000000122986657Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA USA
| | - Brooke Fiala
- grid.34477.330000000122986657Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA USA
| | - Lauren Carter
- grid.34477.330000000122986657Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA USA
| | - Robert L. Coffman
- grid.418630.80000 0004 0409 1245Dynavax Technologies Corporation, Emeryville, CA USA
| | - David Novack
- grid.418630.80000 0004 0409 1245Dynavax Technologies Corporation, Emeryville, CA USA
| | - Harry Kleanthous
- grid.418309.70000 0000 8990 8592Bill and Melinda Gates Foundation, Seattle, WA 98102 USA
| | | | | | - Jason S. McLellan
- grid.55460.320000000121548364Department of Molecular Biosciences, University of Texas, Austin, TX USA
| | - Mehul Suthar
- grid.189967.80000 0001 0941 6502Emory Vaccine Center, 954 Gatewood Road, Atlanta, GA 30329 USA
| | - David Veesler
- grid.34477.330000000122986657Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA USA ,grid.34477.330000000122986657Present Address: Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195 USA
| | - Neil P. King
- grid.34477.330000000122986657Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA USA
| | - Bali Pulendran
- grid.168010.e0000000419368956Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA USA ,grid.168010.e0000000419368956Department of Pathology, Stanford University School of Medicine, Stanford University, Stanford, CA USA ,grid.168010.e0000000419368956Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA USA
| |
Collapse
|
4
|
Walls AC, Sprouse KR, Joshi A, Bowen JE, Franko N, Navarro MJ, Stewart C, McCallum M, Goecker EA, Degli-Angeli EJ, Logue J, Greninger A, Chu H, Veesler D. Delta breakthrough infections elicit potent, broad and durable neutralizing antibody responses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.12.08.471707. [PMID: 34931192 PMCID: PMC8687475 DOI: 10.1101/2021.12.08.471707] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The SARS-CoV-2 Delta variant is currently responsible for most infections worldwide, including among fully vaccinated individuals. Although these latter infections are associated with milder COVID-19 disease relative to unvaccinated subjects, the specificity and durability of antibody responses elicited by Delta breakthrough cases remain unknown. Here, we demonstrate that breakthrough infections induce serum binding and neutralizing antibody responses that are markedly more potent, durable and resilient to spike mutations observed in variants of concern than those observed in subjects who were infected only or received only two doses of COVID-19 vaccine. However, wee show that Delta breakthrough cases, subjects who were vaccinated after SARS-CoV-2 infection and individuals vaccinated three times (without infection) have serum neutralizing activity of comparable magnitude and breadth indicate that multiple types of exposure or increased number of exposures to SARS-CoV-2 antigen(s) enhance spike-specific antibody responses. Neutralization of the genetically divergent SARS-CoV, however, was moderate with all four cohorts examined, except after four exposures to the SARS-CoV-2 spike, underscoring the importance of developing vaccines eliciting broad sarbecovirus immunity for pandemic preparedness.
Collapse
Affiliation(s)
- Alexandra C Walls
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Kaitlin R Sprouse
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Anshu Joshi
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - John E Bowen
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Nicholas Franko
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98195, USA
| | - Mary Jane Navarro
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Cameron Stewart
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Matthew McCallum
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Erin A Goecker
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Emily J Degli-Angeli
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Jenni Logue
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98195, USA
| | - Alex Greninger
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Helen Chu
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98195, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
5
|
Vu MN, Kelly HG, Kent SJ, Wheatley AK. Current and future nanoparticle vaccines for COVID-19. EBioMedicine 2021; 74:103699. [PMID: 34801965 PMCID: PMC8602808 DOI: 10.1016/j.ebiom.2021.103699] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/21/2021] [Accepted: 11/03/2021] [Indexed: 02/06/2023] Open
Abstract
COVID-19 has become a major cause of global mortality and driven massive health and economic disruptions. Mass global vaccination offers the most efficient pathway towards ending the pandemic. The development and deployment of first-generation COVID-19 vaccines, encompassing mRNA or viral vectors, has proceeded at a phenomenal pace. Going forward, nanoparticle-based vaccines which deliver SARS-CoV-2 antigens will play an increasing role in extending or improving vaccination outcomes against COVID-19. At present, over 26 nanoparticle vaccine candidates have advanced into clinical testing, with ∼60 more in pre-clinical development. Here, we discuss the emerging promise of nanotechnology in vaccine design and manufacturing to combat SARS-CoV-2, and highlight opportunities and challenges presented by these novel vaccine platforms.
Collapse
Affiliation(s)
- Mai N Vu
- Peter Doherty Institute for Infection and Immunity, Department of Microbiology and Immunology, University of Melbourne, Melbourne, VIC 3000, Australia; Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Parkville, VIC 3052, Australia; Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; Department of Pharmaceutics, Hanoi University of Pharmacy, Hanoi 10000, Vietnam
| | - Hannah G Kelly
- Peter Doherty Institute for Infection and Immunity, Department of Microbiology and Immunology, University of Melbourne, Melbourne, VIC 3000, Australia; Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Parkville, VIC 3052, Australia
| | - Stephen J Kent
- Peter Doherty Institute for Infection and Immunity, Department of Microbiology and Immunology, University of Melbourne, Melbourne, VIC 3000, Australia; Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Parkville, VIC 3052, Australia; Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Hospital and Central Clinical School, Monash University, Melbourne, VIC 3004, Australia.
| | - Adam K Wheatley
- Peter Doherty Institute for Infection and Immunity, Department of Microbiology and Immunology, University of Melbourne, Melbourne, VIC 3000, Australia; Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Parkville, VIC 3052, Australia.
| |
Collapse
|
6
|
Pinto D, Sauer MM, Czudnochowski N, Low JS, Tortorici MA, Housley MP, Noack J, Walls AC, Bowen JE, Guarino B, Rosen LE, di Iulio J, Jerak J, Kaiser H, Islam S, Jaconi S, Sprugasci N, Culap K, Abdelnabi R, Foo C, Coelmont L, Bartha I, Bianchi S, Silacci-Fregni C, Bassi J, Marzi R, Vetti E, Cassotta A, Ceschi A, Ferrari P, Cippà PE, Giannini O, Ceruti S, Garzoni C, Riva A, Benigni F, Cameroni E, Piccoli L, Pizzuto MS, Smithey M, Hong D, Telenti A, Lempp FA, Neyts J, Havenar-Daughton C, Lanzavecchia A, Sallusto F, Snell G, Virgin HW, Beltramello M, Corti D, Veesler D. Broad betacoronavirus neutralization by a stem helix-specific human antibody. Science 2021; 373:1109-1116. [PMID: 34344823 PMCID: PMC9268357 DOI: 10.1126/science.abj3321] [Citation(s) in RCA: 270] [Impact Index Per Article: 90.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/29/2021] [Indexed: 12/11/2022]
Abstract
The spillovers of betacoronaviruses in humans and the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants highlight the need for broad coronavirus countermeasures. We describe five monoclonal antibodies (mAbs) cross-reacting with the stem helix of multiple betacoronavirus spike glycoproteins isolated from COVID-19 convalescent individuals. Using structural and functional studies, we show that the mAb with the greatest breadth (S2P6) neutralizes pseudotyped viruses from three different subgenera through the inhibition of membrane fusion, and we delineate the molecular basis for its cross-reactivity. S2P6 reduces viral burden in hamsters challenged with SARS-CoV-2 through viral neutralization and Fc-mediated effector functions. Stem helix antibodies are rare, oftentimes of narrow specificity, and can acquire neutralization breadth through somatic mutations. These data provide a framework for structure-guided design of pan-betacoronavirus vaccines eliciting broad protection.
Collapse
Affiliation(s)
- Dora Pinto
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Maximilian M. Sauer
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | | | - Jun Siong Low
- Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland
| | | | | | - Julia Noack
- Vir Biotechnology, San Francisco, CA 94158, USA
| | - Alexandra C. Walls
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - John E. Bowen
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Barbara Guarino
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | | | | | - Josipa Jerak
- Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland
| | | | | | - Stefano Jaconi
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Nicole Sprugasci
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Katja Culap
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Rana Abdelnabi
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, 3000 Leuven, Belgium
| | - Caroline Foo
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, 3000 Leuven, Belgium
| | - Lotte Coelmont
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, 3000 Leuven, Belgium
| | - Istvan Bartha
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Siro Bianchi
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | | | - Jessica Bassi
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Roberta Marzi
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Eneida Vetti
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Antonino Cassotta
- Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland
| | - Alessandro Ceschi
- Clinical Trial Unit, Ente Ospedaliero Cantonale, 6900 Lugano, Switzerland
- Division of Clinical Pharmacology and Toxicology, Institute of Pharmacological Sciences of Southern Switzerland, Ente Ospedaliero Cantonale, 6900 Lugano, Switzerland
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, 8091 Zurich, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera italiana, 6900 Lugano, Switzerland
| | - Paolo Ferrari
- Faculty of Biomedical Sciences, Università della Svizzera italiana, 6900 Lugano, Switzerland
- Department of Medicine, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland
- Clinical School, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Pietro E. Cippà
- Department of Medicine, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland
- Faculty of Medicine, University of Zurich, 8057 Zurich, Switzerland
| | - Olivier Giannini
- Faculty of Biomedical Sciences, Università della Svizzera italiana, 6900 Lugano, Switzerland
- Department of Medicine, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland
| | - Samuele Ceruti
- Intensive Care Unit, Clinica Luganese Moncucco, 6900 Lugano, Switzerland
| | - Christian Garzoni
- Clinic of Internal Medicine and Infectious Diseases, Clinica Luganese Moncucco, 6900 Lugano, Switzerland
| | - Agostino Riva
- III Division of Infectious Diseases, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, 20157 Milan, Italy
| | - Fabio Benigni
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Elisabetta Cameroni
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Luca Piccoli
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Matteo S. Pizzuto
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | | | - David Hong
- Vir Biotechnology, San Francisco, CA 94158, USA
| | | | | | - Johan Neyts
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, 3000 Leuven, Belgium
| | | | - Antonio Lanzavecchia
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Federica Sallusto
- Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland
- Institute of Microbiology, ETH Zurich, 8093 Zurich, Switzerland
| | | | - Herbert W. Virgin
- Vir Biotechnology, San Francisco, CA 94158, USA
- UT Southwestern Medical Center, Dallas, TX 75390, USA
- Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Martina Beltramello
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Davide Corti
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
7
|
Tortorici MA, Czudnochowski N, Starr TN, Marzi R, Walls AC, Zatta F, Bowen JE, Jaconi S, Di Iulio J, Wang Z, De Marco A, Zepeda SK, Pinto D, Liu Z, Beltramello M, Bartha I, Housley MP, Lempp FA, Rosen LE, Dellota E, Kaiser H, Montiel-Ruiz M, Zhou J, Addetia A, Guarino B, Culap K, Sprugasci N, Saliba C, Vetti E, Giacchetto-Sasselli I, Fregni CS, Abdelnabi R, Foo SYC, Havenar-Daughton C, Schmid MA, Benigni F, Cameroni E, Neyts J, Telenti A, Virgin HW, Whelan SPJ, Snell G, Bloom JD, Corti D, Veesler D, Pizzuto MS. Broad sarbecovirus neutralization by a human monoclonal antibody. Nature 2021; 597:103-108. [PMID: 34280951 PMCID: PMC9341430 DOI: 10.1038/s41586-021-03817-4] [Citation(s) in RCA: 194] [Impact Index Per Article: 64.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/09/2021] [Indexed: 02/06/2023]
Abstract
The recent emergence of SARS-CoV-2 variants of concern1-10 and the recurrent spillovers of coronaviruses11,12 into the human population highlight the need for broadly neutralizing antibodies that are not affected by the ongoing antigenic drift and that can prevent or treat future zoonotic infections. Here we describe a human monoclonal antibody designated S2X259, which recognizes a highly conserved cryptic epitope of the receptor-binding domain and cross-reacts with spikes from all clades of sarbecovirus. S2X259 broadly neutralizes spike-mediated cell entry of SARS-CoV-2, including variants of concern (B.1.1.7, B.1.351, P.1, and B.1.427/B.1.429), as well as a wide spectrum of human and potentially zoonotic sarbecoviruses through inhibition of angiotensin-converting enzyme 2 (ACE2) binding to the receptor-binding domain. Furthermore, deep-mutational scanning and in vitro escape selection experiments demonstrate that S2X259 possesses an escape profile that is limited to a single substitution, G504D. We show that prophylactic and therapeutic administration of S2X259 protects Syrian hamsters (Mesocricetus auratus) against challenge with the prototypic SARS-CoV-2 and the B.1.351 variant of concern, which suggests that this monoclonal antibody is a promising candidate for the prevention and treatment of emergent variants and zoonotic infections. Our data reveal a key antigenic site that is targeted by broadly neutralizing antibodies and will guide the design of vaccines that are effective against all sarbecoviruses.
Collapse
Affiliation(s)
- M Alejandra Tortorici
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institut Pasteur and CNRS UMR 3569, Unité de Virologie Structurale, Paris, France
| | | | - Tyler N Starr
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Roberta Marzi
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Alexandra C Walls
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Fabrizia Zatta
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - John E Bowen
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Stefano Jaconi
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | | | - Zhaoqian Wang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Anna De Marco
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Samantha K Zepeda
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Dora Pinto
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Zhuoming Liu
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Martina Beltramello
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Istvan Bartha
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | | | | | | | | | | | | | - Jiayi Zhou
- Vir Biotechnology, San Francisco, CA, USA
| | - Amin Addetia
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Katja Culap
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Nicole Sprugasci
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Christian Saliba
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Eneida Vetti
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | | | | | - Rana Abdelnabi
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Leuven, Belgium
| | - Shi-Yan Caroline Foo
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Leuven, Belgium
| | | | - Michael A Schmid
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Fabio Benigni
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Elisabetta Cameroni
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Johan Neyts
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Leuven, Belgium
| | | | | | - Sean P J Whelan
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | | | - Jesse D Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| | - Davide Corti
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland.
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
| | | |
Collapse
|
8
|
Starr TN, Czudnochowski N, Liu Z, Zatta F, Park YJ, Addetia A, Pinto D, Beltramello M, Hernandez P, Greaney AJ, Marzi R, Glass WG, Zhang I, Dingens AS, Bowen JE, Tortorici MA, Walls AC, Wojcechowskyj JA, De Marco A, Rosen LE, Zhou J, Montiel-Ruiz M, Kaiser H, Dillen JR, Tucker H, Bassi J, Silacci-Fregni C, Housley MP, di Iulio J, Lombardo G, Agostini M, Sprugasci N, Culap K, Jaconi S, Meury M, Dellota E, Abdelnabi R, Foo SYC, Cameroni E, Stumpf S, Croll TI, Nix JC, Havenar-Daughton C, Piccoli L, Benigni F, Neyts J, Telenti A, Lempp FA, Pizzuto MS, Chodera JD, Hebner CM, Virgin HW, Whelan SPJ, Veesler D, Corti D, Bloom JD, Snell G. SARS-CoV-2 RBD antibodies that maximize breadth and resistance to escape. Nature 2021; 597:97-102. [PMID: 34261126 PMCID: PMC9282883 DOI: 10.1038/s41586-021-03807-6] [Citation(s) in RCA: 336] [Impact Index Per Article: 112.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/06/2021] [Indexed: 02/07/2023]
Abstract
An ideal therapeutic anti-SARS-CoV-2 antibody would resist viral escape1-3, have activity against diverse sarbecoviruses4-7, and be highly protective through viral neutralization8-11 and effector functions12,13. Understanding how these properties relate to each other and vary across epitopes would aid the development of therapeutic antibodies and guide vaccine design. Here we comprehensively characterize escape, breadth and potency across a panel of SARS-CoV-2 antibodies targeting the receptor-binding domain (RBD). Despite a trade-off between in vitro neutralization potency and breadth of sarbecovirus binding, we identify neutralizing antibodies with exceptional sarbecovirus breadth and a corresponding resistance to SARS-CoV-2 escape. One of these antibodies, S2H97, binds with high affinity across all sarbecovirus clades to a cryptic epitope and prophylactically protects hamsters from viral challenge. Antibodies that target the angiotensin-converting enzyme 2 (ACE2) receptor-binding motif (RBM) typically have poor breadth and are readily escaped by mutations despite high neutralization potency. Nevertheless, we also characterize a potent RBM antibody (S2E128) with breadth across sarbecoviruses related to SARS-CoV-2 and a high barrier to viral escape. These data highlight principles underlying variation in escape, breadth and potency among antibodies that target the RBD, and identify epitopes and features to prioritize for therapeutic development against the current and potential future pandemics.
Collapse
MESH Headings
- Adult
- Aged
- Animals
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/immunology
- Antibodies, Viral/chemistry
- Antibodies, Viral/immunology
- Antibody Affinity
- Broadly Neutralizing Antibodies/chemistry
- Broadly Neutralizing Antibodies/immunology
- COVID-19/immunology
- COVID-19/virology
- COVID-19 Vaccines/chemistry
- COVID-19 Vaccines/immunology
- Cell Line
- Cricetinae
- Cross Reactions/immunology
- Epitopes, B-Lymphocyte/chemistry
- Epitopes, B-Lymphocyte/genetics
- Epitopes, B-Lymphocyte/immunology
- Female
- Humans
- Immune Evasion/genetics
- Immune Evasion/immunology
- Male
- Mesocricetus
- Middle Aged
- Models, Molecular
- SARS-CoV-2/chemistry
- SARS-CoV-2/classification
- SARS-CoV-2/genetics
- SARS-CoV-2/immunology
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/immunology
- Vaccinology
- COVID-19 Drug Treatment
Collapse
Affiliation(s)
- Tyler N Starr
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Zhuoming Liu
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Fabrizia Zatta
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Young-Jun Park
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Amin Addetia
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Dora Pinto
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Martina Beltramello
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | | | - Allison J Greaney
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Roberta Marzi
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - William G Glass
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ivy Zhang
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tri-Institutional PhD Program in Computational Biology and Medicine, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Adam S Dingens
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - John E Bowen
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | | | - Alexandra C Walls
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | | | - Anna De Marco
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | | | - Jiayi Zhou
- Vir Biotechnology, San Francisco, CA, USA
| | | | | | | | | | - Jessica Bassi
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | | | | | | | - Gloria Lombardo
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | | | - Nicole Sprugasci
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Katja Culap
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Stefano Jaconi
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | | | | | - Rana Abdelnabi
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Leuven, Belgium
| | - Shi-Yan Caroline Foo
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Leuven, Belgium
| | - Elisabetta Cameroni
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Spencer Stumpf
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Tristan I Croll
- Cambridge Institute for Medical Research, Department of Haematology, University of Cambridge, Cambridge, UK
| | - Jay C Nix
- Molecular Biology Consortium, Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | - Luca Piccoli
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Fabio Benigni
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Johan Neyts
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Leuven, Belgium
| | | | | | - Matteo S Pizzuto
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - John D Chodera
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Herbert W Virgin
- Vir Biotechnology, San Francisco, CA, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Sean P J Whelan
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Davide Corti
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland.
| | - Jesse D Bloom
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
- Howard Hughes Medical Institute, Seattle, WA, USA.
| | | |
Collapse
|
9
|
McCallum M, Walls AC, Sprouse KR, Bowen JE, Rosen L, Dang HV, deMarco A, Franko N, Tilles SW, Logue J, Miranda MC, Ahlrichs M, Carter L, Snell G, Pizzuto MS, Chu HY, Van Voorhis WC, Corti D, Veesler D. Molecular basis of immune evasion by the delta and kappa SARS-CoV-2 variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 34401880 DOI: 10.1101/2021.08.11.455956] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Worldwide SARS-CoV-2 transmission leads to the recurrent emergence of variants, such as the recently described B.1.617.1 (kappa), B.1.617.2 (delta) and B.1.617.2+ (delta+). The B.1.617.2 (delta) variant of concern is causing a new wave of infections in many countries, mostly affecting unvaccinated individuals, and has become globally dominant. We show that these variants dampen the in vitro potency of vaccine-elicited serum neutralizing antibodies and provide a structural framework for describing the impact of individual mutations on immune evasion. Mutations in the B.1.617.1 (kappa) and B.1.617.2 (delta) spike glycoproteins abrogate recognition by several monoclonal antibodies via alteration of key antigenic sites, including an unexpected remodeling of the B.1.617.2 (delta) N-terminal domain. The binding affinity of the B.1.617.1 (kappa) and B.1.617.2 (delta) receptor-binding domain for ACE2 is comparable to the ancestral virus whereas B.1.617.2+ (delta+) exhibits markedly reduced affinity. We describe a previously uncharacterized class of N-terminal domain-directed human neutralizing monoclonal antibodies cross-reacting with several variants of concern, revealing a possible target for vaccine development.
Collapse
|
10
|
Ellis D, Brunette N, Crawford KHD, Walls AC, Pham MN, Chen C, Herpoldt KL, Fiala B, Murphy M, Pettie D, Kraft JC, Malone KD, Navarro MJ, Ogohara C, Kepl E, Ravichandran R, Sydeman C, Ahlrichs M, Johnson M, Blackstone A, Carter L, Starr TN, Greaney AJ, Lee KK, Veesler D, Bloom JD, King NP. Stabilization of the SARS-CoV-2 Spike Receptor-Binding Domain Using Deep Mutational Scanning and Structure-Based Design. Front Immunol 2021; 12:710263. [PMID: 34267764 PMCID: PMC8276696 DOI: 10.3389/fimmu.2021.710263] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 06/15/2021] [Indexed: 11/13/2022] Open
Abstract
The unprecedented global demand for SARS-CoV-2 vaccines has demonstrated the need for highly effective vaccine candidates that are thermostable and amenable to large-scale manufacturing. Nanoparticle immunogens presenting the receptor-binding domain (RBD) of the SARS-CoV-2 Spike protein (S) in repetitive arrays are being advanced as second-generation vaccine candidates, as they feature robust manufacturing characteristics and have shown promising immunogenicity in preclinical models. Here, we used previously reported deep mutational scanning (DMS) data to guide the design of stabilized variants of the RBD. The selected mutations fill a cavity in the RBD that has been identified as a linoleic acid binding pocket. Screening of several designs led to the selection of two lead candidates that expressed at higher yields than the wild-type RBD. These stabilized RBDs possess enhanced thermal stability and resistance to aggregation, particularly when incorporated into an icosahedral nanoparticle immunogen that maintained its integrity and antigenicity for 28 days at 35-40°C, while corresponding immunogens displaying the wild-type RBD experienced aggregation and loss of antigenicity. The stabilized immunogens preserved the potent immunogenicity of the original nanoparticle immunogen, which is currently being evaluated in a Phase I/II clinical trial. Our findings may improve the scalability and stability of RBD-based coronavirus vaccines in any format and more generally highlight the utility of comprehensive DMS data in guiding vaccine design.
Collapse
Affiliation(s)
- Daniel Ellis
- Institute for Protein Design, University of Washington, Seattle, WA, United States
- Department of Biochemistry, University of Washington, Seattle, WA, United States
- Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, WA, United States
| | - Natalie Brunette
- Institute for Protein Design, University of Washington, Seattle, WA, United States
- Department of Biochemistry, University of Washington, Seattle, WA, United States
| | - Katharine H. D. Crawford
- Basic Sciences and Computational Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
- Department of Genome Sciences, University of Washington, Seattle, WA, United States
- Medical Scientist Training Program, University of Washington, Seattle, WA, United States
| | - Alexandra C. Walls
- Department of Biochemistry, University of Washington, Seattle, WA, United States
| | - Minh N. Pham
- Institute for Protein Design, University of Washington, Seattle, WA, United States
- Department of Biochemistry, University of Washington, Seattle, WA, United States
| | - Chengbo Chen
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, United States
- Biological Physics Structure and Design Program, University of Washington, Seattle, WA, United States
| | - Karla-Luise Herpoldt
- Institute for Protein Design, University of Washington, Seattle, WA, United States
- Department of Biochemistry, University of Washington, Seattle, WA, United States
| | - Brooke Fiala
- Institute for Protein Design, University of Washington, Seattle, WA, United States
- Department of Biochemistry, University of Washington, Seattle, WA, United States
| | - Michael Murphy
- Institute for Protein Design, University of Washington, Seattle, WA, United States
- Department of Biochemistry, University of Washington, Seattle, WA, United States
| | - Deleah Pettie
- Institute for Protein Design, University of Washington, Seattle, WA, United States
- Department of Biochemistry, University of Washington, Seattle, WA, United States
| | - John C. Kraft
- Institute for Protein Design, University of Washington, Seattle, WA, United States
- Department of Biochemistry, University of Washington, Seattle, WA, United States
| | - Keara D. Malone
- Basic Sciences and Computational Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Mary Jane Navarro
- Department of Biochemistry, University of Washington, Seattle, WA, United States
| | - Cassandra Ogohara
- Institute for Protein Design, University of Washington, Seattle, WA, United States
- Department of Biochemistry, University of Washington, Seattle, WA, United States
| | - Elizabeth Kepl
- Institute for Protein Design, University of Washington, Seattle, WA, United States
- Department of Biochemistry, University of Washington, Seattle, WA, United States
| | - Rashmi Ravichandran
- Institute for Protein Design, University of Washington, Seattle, WA, United States
- Department of Biochemistry, University of Washington, Seattle, WA, United States
| | - Claire Sydeman
- Institute for Protein Design, University of Washington, Seattle, WA, United States
- Department of Biochemistry, University of Washington, Seattle, WA, United States
| | - Maggie Ahlrichs
- Institute for Protein Design, University of Washington, Seattle, WA, United States
- Department of Biochemistry, University of Washington, Seattle, WA, United States
| | - Max Johnson
- Institute for Protein Design, University of Washington, Seattle, WA, United States
- Department of Biochemistry, University of Washington, Seattle, WA, United States
| | - Alyssa Blackstone
- Institute for Protein Design, University of Washington, Seattle, WA, United States
- Department of Biochemistry, University of Washington, Seattle, WA, United States
| | - Lauren Carter
- Institute for Protein Design, University of Washington, Seattle, WA, United States
- Department of Biochemistry, University of Washington, Seattle, WA, United States
| | - Tyler N. Starr
- Basic Sciences and Computational Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Allison J. Greaney
- Basic Sciences and Computational Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
- Department of Genome Sciences, University of Washington, Seattle, WA, United States
- Medical Scientist Training Program, University of Washington, Seattle, WA, United States
| | - Kelly K. Lee
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, United States
- Biological Physics Structure and Design Program, University of Washington, Seattle, WA, United States
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA, United States
| | - Jesse D. Bloom
- Basic Sciences and Computational Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
- Department of Genome Sciences, University of Washington, Seattle, WA, United States
- Howard Hughes Medical Institute, Seattle, WA, United States
| | - Neil P. King
- Institute for Protein Design, University of Washington, Seattle, WA, United States
- Department of Biochemistry, University of Washington, Seattle, WA, United States
| |
Collapse
|
11
|
Tortorici MA, Czudnochowski N, Starr TN, Marzi R, Walls AC, Zatta F, Bowen JE, Jaconi S, di iulio J, Wang Z, De Marco A, Zepeda SK, Pinto D, Liu Z, Beltramello M, Bartha I, Housley MP, Lempp FA, Rosen LE, Dellota E, Kaiser H, Montiel-Ruiz M, Zhou J, Addetia A, Guarino B, Culap K, Sprugasci N, Saliba C, Vetti E, Giacchetto-Sasselli I, Silacci Fregni C, Abdelnabi R, Caroline Foo SY, Havenar-Daughton C, Schmid MA, Benigni F, Cameroni E, Neyts J, Telenti A, Snell G, Virgin HW, Whelan SP, Bloom JD, Corti D, Veesler D, Pizzuto MS. Structural basis for broad sarbecovirus neutralization by a human monoclonal antibody. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.04.07.438818. [PMID: 33851169 PMCID: PMC8043460 DOI: 10.1101/2021.04.07.438818] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The recent emergence of SARS-CoV-2 variants of concern (VOC) and the recurrent spillovers of coronaviruses in the human population highlight the need for broadly neutralizing antibodies that are not affected by the ongoing antigenic drift and that can prevent or treat future zoonotic infections. Here, we describe a human monoclonal antibody (mAb), designated S2X259, recognizing a highly conserved cryptic receptor-binding domain (RBD) epitope and cross-reacting with spikes from all sarbecovirus clades. S2X259 broadly neutralizes spike-mediated entry of SARS-CoV-2 including the B.1.1.7, B.1.351, P.1 and B.1.427/B.1.429 VOC, as well as a wide spectrum of human and zoonotic sarbecoviruses through inhibition of ACE2 binding to the RBD. Furthermore, deep-mutational scanning and in vitro escape selection experiments demonstrate that S2X259 possesses a remarkably high barrier to the emergence of resistance mutants. We show that prophylactic administration of S2X259 protects Syrian hamsters against challenges with the prototypic SARS-CoV-2 and the B.1.351 variant, suggesting this mAb is a promising candidate for the prevention and treatment of emergent VOC and zoonotic infections. Our data unveil a key antigenic site targeted by broadly-neutralizing antibodies and will guide the design of pan-sarbecovirus vaccines.
Collapse
Affiliation(s)
- M. Alejandra Tortorici
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
- Institut Pasteur and CNRS UMR 3569, Unité de Virologie Structurale, Paris, France
| | | | - Tyler N. Starr
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Roberta Marzi
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Alexandra C. Walls
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | - Fabrizia Zatta
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - John E. Bowen
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | - Stefano Jaconi
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | | | - Zhaoqian Wang
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | - Anna De Marco
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Samantha K. Zepeda
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | - Dora Pinto
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Zhuoming Liu
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Martina Beltramello
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Istvan Bartha
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | | | | | | | | | | | | | - Jiayi Zhou
- Vir Biotechnology, San Francisco, CA 94158, USA
| | - Amin Addetia
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | - Katja Culap
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Nicole Sprugasci
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Christian Saliba
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Eneida Vetti
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | | | | | - Rana Abdelnabi
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Belgium
| | - Shi-Yan Caroline Foo
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Belgium
| | | | - Michael A. Schmid
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Fabio Benigni
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Elisabetta Cameroni
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Johan Neyts
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Belgium
| | | | | | | | - Sean P.J. Whelan
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jesse D. Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Howard Hughes Medical Institute, Seattle, WA 98109, USA
| | - Davide Corti
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | | |
Collapse
|
12
|
Abstract
SARS-CoV-2 entry is mediated by the spike (S) glycoprotein which contains the receptor-binding domain (RBD) and the N-terminal domain (NTD) as the two main targets of neutralizing antibodies (Abs). A novel variant of concern (VOC) named CAL.20C (B.1.427/B.1.429) was originally detected in California and is currently spreading throughout the US and 29 additional countries. It is unclear whether antibody responses to SARS-CoV-2 infection or to the prototypic Wuhan-1 isolate-based vaccines will be impacted by the three B.1.427/B.1.429 S mutations: S13I, W152C and L452R. Here, we assessed neutralizing Ab responses following natural infection or mRNA vaccination using pseudoviruses expressing the wildtype or the B.1.427/B.1.429 S protein. Plasma from vaccinated or convalescent individuals exhibited neutralizing titers, which were reduced 3-6 fold against the B.1.427/B.1.429 variant relative to wildtype pseudoviruses. The RBD L452R mutation reduced or abolished neutralizing activity of 14 out of 35 RBD-specific monoclonal antibodies (mAbs), including three clinical-stage mAbs. Furthermore, we observed a complete loss of B.1.427/B.1.429 neutralization for a panel of mAbs targeting the N-terminal domain due to a large structural rearrangement of the NTD antigenic supersite involving an S13I-mediated shift of the signal peptide cleavage site. These data warrant closer monitoring of signal peptide variants and their involvement in immune evasion and show that Abs directed to the NTD impose a selection pressure driving SARS-CoV-2 viral evolution through conventional and unconventional escape mechanisms.
Collapse
|