1
|
Chernokal B, Ferrick BJ, Gleghorn JP. Zonal patterning of extracellular matrix and stromal cell populations along a perfusable cellular microchannel. LAB ON A CHIP 2024. [PMID: 39479925 PMCID: PMC11525951 DOI: 10.1039/d4lc00579a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/09/2024] [Indexed: 11/02/2024]
Abstract
The spatial organization of biophysical and biochemical cues in the extracellular matrix (ECM) in concert with reciprocal cell-cell signaling is vital to tissue patterning during development. However, elucidating the role an individual microenvironmental factor plays using existing in vivo models is difficult due to their inherent complexity. In this work, we have developed a microphysiological system to spatially pattern the biochemical, biophysical, and stromal cell composition of the ECM along an epithelialized 3D microchannel. This technique is adaptable to multiple hydrogel compositions and scalable to the number of zones patterned. We confirmed that the methodology to create distinct zones resulted in a continuous, annealed hydrogel with regional interfaces that did not hinder the transport of soluble molecules. Further, the interface between hydrogel regions did not disrupt microchannel structure, epithelial lumen formation, or media perfusion through an acellular or cellularized microchannel. Finally, we demonstrated spatially patterned tubulogenic sprouting of a continuous epithelial tube into the surrounding hydrogel confined to local regions with stromal cell populations, illustrating spatial control of cell-cell interactions and signaling gradients. This easy-to-use system has wide utility for modeling three-dimensional epithelial and endothelial tissue interactions with heterogeneous hydrogel compositions and/or stromal cell populations to investigate their mechanistic roles during development, homeostasis, or disease.
Collapse
Affiliation(s)
- Brea Chernokal
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19713, USA.
| | - Bryan J Ferrick
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19713, USA.
| | - Jason P Gleghorn
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19713, USA.
| |
Collapse
|
2
|
Chernokal B, Ferrick BJ, Gleghorn JP. Zonal Patterning of Extracellular Matrix and Stromal Cell Populations Along a Perfusable Cellular Microchannel. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.09.602744. [PMID: 39026757 PMCID: PMC11257519 DOI: 10.1101/2024.07.09.602744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The spatial organization of biophysical and biochemical cues in the extracellular matrix (ECM) in concert with reciprocal cell-cell signaling is vital to tissue patterning during development. However, elucidating the role an individual microenvironmental factor plays using existing in vivo models is difficult due to their inherent complexity. In this work, we have developed a microphysiological system to spatially pattern the biochemical, biophysical, and stromal cell composition of the ECM along an epithelialized 3D microchannel. This technique is adaptable to multiple hydrogel compositions and scalable to the number of zones patterned. We confirmed that the methodology to create distinct zones resulted in a continuous, annealed hydrogel with regional interfaces that did not hinder the transport of soluble molecules. Further, the interface between hydrogel regions did not disrupt microchannel structure, epithelial lumen formation, or media perfusion through an acellular or cellularized microchannel. Finally, we demonstrated spatially patterned tubulogenic sprouting of a continuous epithelial tube into the surrounding hydrogel confined to local regions with stromal cell populations, illustrating spatial control of cell-cell interactions and signaling gradients. This easy-to-use system has wide utility for modeling three-dimensional epithelial and endothelial tissue interactions with heterogeneous hydrogel compositions and/or stromal cell populations to investigate their mechanistic roles during development, homeostasis, or disease.
Collapse
Affiliation(s)
- Brea Chernokal
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19713
| | - Bryan J. Ferrick
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19713
| | - Jason P. Gleghorn
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19713
| |
Collapse
|
3
|
Stevens RP, Lee JY, Bauer N, Stevens T. Got Oxygen? Studies on Mesenchymal Cell Hypoxia Inducible Factor-1α in Lung Development. Am J Respir Cell Mol Biol 2023; 69:380-382. [PMID: 37478332 PMCID: PMC10557915 DOI: 10.1165/rcmb.2023-0247ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 07/20/2023] [Indexed: 07/23/2023] Open
Affiliation(s)
- Reece P Stevens
- Department of Physiology and Cell Biology and Center for Lung Biology University of South Alabama Mobile, Alabama
| | - Ji Young Lee
- Department of Physiology and Cell Biology Center for Lung Biology and Department of Internal Medicine University of South Alabama Mobile, Alabama
| | - Natalie Bauer
- Center for Lung Biology and Department of Pharmacology University of South Alabama Mobile, Alabama
| | - Troy Stevens
- Department of Physiology and Cell Biology Center for Lung Biology and Department of Internal Medicine University of South Alabama Mobile, Alabama
| |
Collapse
|
4
|
Weckerle J, Mayr CH, Fundel-Clemens K, Lämmle B, Boryn L, Thomas MJ, Bretschneider T, Luippold AH, Huber HJ, Viollet C, Rist W, Veyel D, Ramirez F, Klee S, Kästle M. Transcriptomic and Proteomic Changes Driving Pulmonary Fibrosis Resolution in Young and Old Mice. Am J Respir Cell Mol Biol 2023; 69:422-440. [PMID: 37411041 DOI: 10.1165/rcmb.2023-0012oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 07/06/2023] [Indexed: 07/08/2023] Open
Abstract
Bleomycin-induced pulmonary fibrosis in mice mimics major hallmarks of idiopathic pulmonary fibrosis. Yet in this model, it spontaneously resolves over time. We studied molecular mechanisms of fibrosis resolution and lung repair, focusing on transcriptional and proteomic signatures and the effect of aging. Old mice showed incomplete and delayed lung function recovery 8 weeks after bleomycin instillation. This shift in structural and functional repair in old bleomycin-treated mice was reflected in a temporal shift in gene and protein expression. We reveal gene signatures and signaling pathways that underpin the lung repair process. Importantly, the downregulation of WNT, BMP, and TGFβ antagonists Frzb, Sfrp1, Dkk2, Grem1, Fst, Fstl1, and Inhba correlated with lung function improvement. Those genes constitute a network with functions in stem cell pathways, wound, and pulmonary healing. We suggest that insufficient and delayed downregulation of those antagonists during fibrosis resolution in old mice explains the impaired regenerative outcome. Together, we identified signaling pathway molecules with relevance to lung regeneration that should be tested in-depth experimentally as potential therapeutic targets for pulmonary fibrosis.
Collapse
Affiliation(s)
| | | | | | - Bärbel Lämmle
- Global Computational Biology and Digital Sciences, and
| | | | | | - Tom Bretschneider
- Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany; and
| | - Andreas H Luippold
- Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany; and
| | | | | | - Wolfgang Rist
- Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany; and
| | - Daniel Veyel
- Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany; and
| | - Fidel Ramirez
- Global Computational Biology and Digital Sciences, and
| | - Stephan Klee
- Department of Immunology and Respiratory Disease Research
| | - Marc Kästle
- Department of Immunology and Respiratory Disease Research
| |
Collapse
|
5
|
Baguma-Nibasheka M, Kablar B. Mechanics of Lung Development. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2023; 236:131-150. [PMID: 37955774 DOI: 10.1007/978-3-031-38215-4_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
We summarize how skeletal muscle and lung developmental biology fields have been bridged to benefit from mouse genetic engineering technologies and to explore the role of fetal breathing-like movements (FBMs) in lung development, by using skeletal muscle-specific mutant mice. It has been known for a long time that FBMs are essential for the lung to develop properly. However, the cellular and molecular mechanisms transducing the mechanical forces of muscular activity into specific genetic programs that propel lung morphogenesis (development of the shape, form and size of the lung, its airways, and gas exchange surface) as well as its differentiation (acquisition of specialized cell structural and functional features from their progenitor cells) are only starting to be revealed. This chapter is a brief synopsis of the cumulative findings from that ongoing quest. An update on and the rationale for our recent International Mouse Phenotyping Consortium (IMPC) search is also provided.
Collapse
Affiliation(s)
- Mark Baguma-Nibasheka
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada.
| | - Boris Kablar
- Department of Medical Neuroscience, Anatomy and Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
6
|
Kablar B. Skeletal Muscle's Role in Prenatal Inter-organ Communication: A Phenogenomic Study with Qualitative Citation Analysis. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2023; 236:1-19. [PMID: 37955769 DOI: 10.1007/978-3-031-38215-4_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Gene targeting in mice allows for a complete elimination of skeletal (striated or voluntary) musculature in the body, from the beginning of its development, resulting in our ability to study the consequences of this ablation on other organs. Here I focus on the relationship between the muscle and lung, motor neurons, skeleton, and special senses. Since the inception of my independent laboratory, in 2000, with my team, we published more than 30 papers (and a book chapter), nearly 400 pages of data, on these specific relationships. Here I trace, using Web of Science, nearly 600 citations of this work, to understand its impact. The current report contains a summary of our work and its impact, NCBI's Gene Expression Omnibus accession numbers of all our microarray data, and three clear future directions doable by anyone using our publicly available data. Together, this effort furthers our understanding of inter-organ communication during prenatal development.
Collapse
Affiliation(s)
- Boris Kablar
- Department of Medical Neuroscience, Anatomy and Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
7
|
Ornitz DM, Itoh N. New developments in the biology of fibroblast growth factors. WIREs Mech Dis 2022; 14:e1549. [PMID: 35142107 PMCID: PMC10115509 DOI: 10.1002/wsbm.1549] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 01/28/2023]
Abstract
The fibroblast growth factor (FGF) family is composed of 18 secreted signaling proteins consisting of canonical FGFs and endocrine FGFs that activate four receptor tyrosine kinases (FGFRs 1-4) and four intracellular proteins (intracellular FGFs or iFGFs) that primarily function to regulate the activity of voltage-gated sodium channels and other molecules. The canonical FGFs, endocrine FGFs, and iFGFs have been reviewed extensively by us and others. In this review, we briefly summarize past reviews and then focus on new developments in the FGF field since our last review in 2015. Some of the highlights in the past 6 years include the use of optogenetic tools, viral vectors, and inducible transgenes to experimentally modulate FGF signaling, the clinical use of small molecule FGFR inhibitors, an expanded understanding of endocrine FGF signaling, functions for FGF signaling in stem cell pluripotency and differentiation, roles for FGF signaling in tissue homeostasis and regeneration, a continuing elaboration of mechanisms of FGF signaling in development, and an expanding appreciation of roles for FGF signaling in neuropsychiatric diseases. This article is categorized under: Cardiovascular Diseases > Molecular and Cellular Physiology Neurological Diseases > Molecular and Cellular Physiology Congenital Diseases > Stem Cells and Development Cancer > Stem Cells and Development.
Collapse
Affiliation(s)
- David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nobuyuki Itoh
- Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto, Japan
| |
Collapse
|
8
|
Regeneration or Repair? The Role of Alveolar Epithelial Cells in the Pathogenesis of Idiopathic Pulmonary Fibrosis (IPF). Cells 2022; 11:cells11132095. [PMID: 35805179 PMCID: PMC9266271 DOI: 10.3390/cells11132095] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/26/2022] [Accepted: 06/29/2022] [Indexed: 02/01/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive interstitial lung disease (ILD) with unknown etiology in which gradual fibrotic scarring of the lungs leads to usual interstitial pneumonia (UIP) and, ultimately, to death. IPF affects three million people worldwide, and the only currently available treatments include the antifibrotic drugs nintedanib and pirfenidone, which effectively reduce fibrosis progression are, unfortunately, not effective in curing the disease. In recent years, the paradigm of IPF pathogenesis has shifted from a fibroblast-driven disease to an epithelium-driven disease, wherein, upon recurrent microinjuries, dysfunctional alveolar type II epithelial cells (ATII) are not only unable to sustain physiological lung regeneration but also promote aberrant epithelial–mesenchymal crosstalk. This creates a drift towards fibrosis rather than regeneration. In the context of this review article, we discuss the most relevant mechanisms involved in IPF pathogenesis with a specific focus on the role of dysfunctional ATII cells in promoting disease progression. In particular, we summarize the main causes of ATII cell dysfunction, such as aging, environmental factors, and genetic determinants. Next, we describe the known mechanisms of physiological lung regeneration by drawing a parallel between embryonic lung development and the known pathways involved in ATII-driven alveolar re-epithelization after injury. Finally, we review the most relevant interventional clinical trials performed in the last 20 years with the aim of underlining the urgency of developing new therapies against IPF that are not only aimed at reducing disease progression by hampering ECM deposition but also boost the physiological processes of ATII-driven alveolar regeneration.
Collapse
|
9
|
Chioni AM, Grose RP. Biological Significance and Targeting of the FGFR Axis in Cancer. Cancers (Basel) 2021; 13:5681. [PMID: 34830836 PMCID: PMC8616401 DOI: 10.3390/cancers13225681] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 12/15/2022] Open
Abstract
The pleiotropic effects of fibroblast growth factors (FGFs), the widespread expression of all seven signalling FGF receptors (FGFRs) throughout the body, and the dramatic phenotypes shown by many FGF/R knockout mice, highlight the diversity, complexity and functional importance of FGFR signalling. The FGF/R axis is critical during normal tissue development, homeostasis and repair. Therefore, it is not surprising that substantial evidence also pinpoints the involvement of aberrant FGFR signalling in disease, including tumourigenesis. FGFR aberrations in cancer include mutations, gene fusions, and amplifications as well as corrupted autocrine/paracrine loops. Indeed, many clinical trials on cancer are focusing on targeting the FGF/FGFR axis, using selective FGFR inhibitors, nonselective FGFR tyrosine kinase inhibitors, ligand traps, and monoclonal antibodies and some have already been approved for the treatment of cancer patients. The heterogeneous tumour microenvironment and complexity of FGFR signalling may be some of the factors responsible for the resistance or poor response to therapy with FGFR axis-directed therapeutic agents. In the present review we will focus on the structure and function of FGF(R)s, their common irregularities in cancer and the therapeutic value of targeting their function in cancer.
Collapse
Affiliation(s)
- Athina-Myrto Chioni
- School of Life Sciences Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames KT1 2EE, UK
| | - Richard P. Grose
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK;
| |
Collapse
|
10
|
Funk EC, Breen C, Sanketi BD, Kurpios N, McCune A. Changes in Nkx2.1, Sox2, Bmp4, and Bmp16 expression underlying the lung-to-gas bladder evolutionary transition in ray-finned fishes. Evol Dev 2021; 22:384-402. [PMID: 33463017 DOI: 10.1111/ede.12354] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/05/2020] [Accepted: 08/28/2020] [Indexed: 02/06/2023]
Abstract
The key to understanding the evolutionary origin and modification of phenotypic traits is revealing the responsible underlying developmental genetic mechanisms. An important organismal trait of ray-finned fishes is the gas bladder, an air-filled organ that, in most fishes, functions for buoyancy control, and is homologous to the lungs of lobe-finned fishes. The critical morphological difference between lungs and gas bladders, which otherwise share many characteristics, is the general direction of budding during development. Lungs bud ventrally and the gas bladder buds dorsally from the anterior foregut. We investigated the genetic underpinnings of this ventral-to-dorsal shift in budding direction by studying the expression patterns of known lung genes (Nkx2.1, Sox2, and Bmp4) during the development of lungs or gas bladder in three fishes: bichir, bowfin, and zebrafish. Nkx2.1 and Sox2 show reciprocal dorsoventral expression patterns during tetrapod lung development and are important regulators of lung budding; their expression during bichir lung development is conserved. Surprisingly, we find during gas bladder development, Nkx2.1 and Sox2 expression are inconsistent with the hypothesis that they regulate the direction of gas bladder budding. Bmp4 is expressed ventrally during lung development in bichir, akin to the pattern during mouse lung development. During gas bladder development, Bmp4 is not expressed. However, Bmp16, a paralogue of Bmp4, is expressed dorsally in the developing gas bladder of bowfin. Bmp16 is present in the known genomes of Actinopteri (ray-finned fishes excluding bichir) but absent from mammalian genomes. We hypothesize that Bmp16 was recruited to regulate gas bladder development in the Actinopteri in place of Bmp4.
Collapse
Affiliation(s)
- Emily C Funk
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA.,Animal Science Department, Genomic Variation Lab, University of California Davis, Davis, California, USA
| | - Catriona Breen
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - Bhargav D Sanketi
- Department of Molecular Medicine, Veterinary Medical Center, Cornell University, Ithaca, New York, USA
| | - Natasza Kurpios
- Department of Molecular Medicine, Veterinary Medical Center, Cornell University, Ithaca, New York, USA
| | - Amy McCune
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
11
|
Kolesnichenko OA, Whitsett JA, Kalin TV, Kalinichenko VV. Therapeutic Potential of Endothelial Progenitor Cells in Pulmonary Diseases. Am J Respir Cell Mol Biol 2021; 65:473-488. [PMID: 34293272 DOI: 10.1165/rcmb.2021-0152tr] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Compromised alveolar development and pulmonary vascular remodeling are hallmarks of pediatric lung diseases such as bronchopulmonary dysplasia (BPD) and alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV). Although advances in surfactant therapy, corticosteroids, and anti-inflammatory drugs have improved clinical management of preterm infants, still those who suffer with severe vascular complications lack viable treatment options. Paucity of the alveolar capillary network in ACDMPV causes respiratory distress and leads to mortality in a vast majority of ACDMPV infants. The discovery of endothelial progenitor cells (EPCs) in 1997 brought forth the paradigm of postnatal vasculogenesis and hope for promoting vascularization in fragile patient populations, such as those with BPD and ACDMPV. The identification of diverse EPC populations, both hematopoietic and nonhematopoietic in origin, provided a need to identify progenitor cell selective markers which are linked to progenitor properties needed to develop cell-based therapies. Focusing to the future potential of EPCs for regenerative medicine, this review will discuss various aspects of EPC biology, beginning with the identification of hematopoietic, nonhematopoietic, and tissue-resident EPC populations. We will review knowledge related to cell surface markers, signature gene expression, key transcriptional regulators, and will explore the translational potential of EPCs for cell-based therapy for BPD and ACDMPV. The ability to produce pulmonary EPCs from patient-derived induced pluripotent stem cells (iPSCs) in vitro, holds promise for restoring vascular growth and function in the lungs of patients with pediatric pulmonary disorders.
Collapse
Affiliation(s)
- Olena A Kolesnichenko
- Cincinnati Children's Hospital Medical Center, 2518, Cincinnati, Ohio, United States
| | - Jeffrey A Whitsett
- The Perinatal Institute and Section of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
| | - Tanya V Kalin
- Cincinnati Children\'s Hospital Medical Center, 2518, Pediatrics, Cincinnati, Ohio, United States
| | - Vladimir V Kalinichenko
- Cincinnati Children's Hospital Medical Center, Pediatrics, Division of Pulmonary Biology, Cincinnati, Ohio, United States;
| |
Collapse
|
12
|
Lee J, Kim JH, Hong SH, Yang SR. Organoid Model in Idiopathic Pulmonary Fibrosis. Int J Stem Cells 2021; 14:1-8. [PMID: 33122472 PMCID: PMC7904526 DOI: 10.15283/ijsc20093] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/13/2020] [Accepted: 08/10/2020] [Indexed: 12/12/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive- fibrosing disease characterized by extensive deposition of extracellular matrix (ECM), scarring of the lung parenchyma. Despite increased awareness of IPF, etiology and physiological mechanism of IPF are unclear. Therefore, preclinical model will require relevant and recapitulative features of IPF. Recently, pluripotent stem cells (PSC)-based organoid studies are emerging as an alternative approach able to recapitulate tissue architecture with remarkable fidelity. Moreover, these biomimetic tissue models can be served to investigate the mechanisms of diverse disease progression. In this review, we will overview the current organoids technology for human disease modeling including lung organoids for IPF.
Collapse
Affiliation(s)
- Jooyeon Lee
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, Chuncheon, Korea
| | - Jung-Hyun Kim
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, Korea
| | - Se-Ran Yang
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, Chuncheon, Korea
| |
Collapse
|
13
|
Di Cicco M, Kantar A, Masini B, Nuzzi G, Ragazzo V, Peroni D. Structural and functional development in airways throughout childhood: Children are not small adults. Pediatr Pulmonol 2021; 56:240-251. [PMID: 33179415 DOI: 10.1002/ppul.25169] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/30/2020] [Accepted: 11/09/2020] [Indexed: 12/19/2022]
Abstract
Children are not small adults and this fact is particularly true when we consider the respiratory tract. The anatomic peculiarities of the upper airway make infants preferential nasal breathers between 2 and 6 months of life. The pediatric larynx has a more complex shape than previously believed, with the narrowest point located anatomically at the subglottic level and functionally at the cricoid cartilage. Alveolarization of the distal airways starts conventionally at 36-37 weeks of gestation, but occurs mainly after birth, continuing until adolescence. The pediatric chest wall has unique features that are particularly pronounced in infants. Neonates, infants, and toddlers have a higher metabolic rate, and consequently, their oxygen consumption at rest is more than double that of adults. The main anatomical and functional differences between pediatric and adult airways contribute to the understanding of various respiratory symptoms and disease conditions in childhood. Knowing the peculiarities of pediatric airways is helpful in the prevention, management, and treatment of acute and chronic diseases of the respiratory tract. Developmental modifications in the structure of the respiratory tract, in addition to immunological and neurological maturation, should be taken into consideration during childhood.
Collapse
Affiliation(s)
- Maria Di Cicco
- Allergology Section, Paediatrics Unit, Pisa University Hospital, Pisa, Italy.,Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Ahmad Kantar
- Paediatric Asthma and Cough Centre, Istituti Ospedalieri Bergamaschi, Gruppo Ospedaliero San Donato, Bergamo, Italy.,Nursing School, Vita-Salute San Raffaele University, Milan, Italy
| | - Beatrice Masini
- Allergology Section, Paediatrics Unit, Pisa University Hospital, Pisa, Italy.,Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giulia Nuzzi
- Allergology Section, Paediatrics Unit, Pisa University Hospital, Pisa, Italy.,Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Vincenzo Ragazzo
- Paediatrics and Neonatology Division, Women's and Children's Health Department, Versilia Hospital, Lido di Camaiore, Italy
| | - Diego Peroni
- Allergology Section, Paediatrics Unit, Pisa University Hospital, Pisa, Italy.,Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
14
|
Fgf10-CRISPR mosaic mutants demonstrate the gene dose-related loss of the accessory lobe and decrease in the number of alveolar type 2 epithelial cells in mouse lung. PLoS One 2020; 15:e0240333. [PMID: 33057360 PMCID: PMC7561199 DOI: 10.1371/journal.pone.0240333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/23/2020] [Indexed: 11/19/2022] Open
Abstract
CRISPR/Cas9-mediated gene editing often generates founder generation (F0) mice that exhibit somatic mosaicism in the targeted gene(s). It has been known that Fibroblast growth factor 10 (Fgf10)-null mice exhibit limbless and lungless phenotypes, while intermediate limb phenotypes (variable defective limbs) are observed in the Fgf10-CRISPR F0 mice. However, how the lung phenotype in the Fgf10-mosaic mutants is related to the limb phenotype and genotype has not been investigated. In this study, we examined variable lung phenotypes in the Fgf10-targeted F0 mice to determine if the lung phenotype was correlated with percentage of functional Fgf10 genotypes. Firstly, according to a previous report, Fgf10-CRISPR F0 embryos on embryonic day 16.5 (E16.5) were classified into three types: type I, no limb; type II, limb defect; and type III, normal limbs. Cartilage and bone staining showed that limb truncations were observed in the girdle, (type I), stylopodial, or zeugopodial region (type II). Deep sequencing of the Fgf10-mutant genomes revealed that the mean proportion of codons that encode putative functional FGF10 was 8.3 ± 6.2% in type I, 25.3 ± 2.7% in type II, and 54.3 ± 9.5% in type III (mean ± standard error of the mean) mutants at E16.5. Histological studies showed that almost all lung lobes were absent in type I embryos. The accessory lung lobe was often absent in type II embryos with other lobes dysplastic. All lung lobes formed in type III embryos. The number of terminal tubules was significantly lower in type I and II embryos, but unchanged in type III embryos. To identify alveolar type 2 epithelial (AECII) cells, known to be reduced in the Fgf10-heterozygous mutant, immunostaining using anti-surfactant protein C (SPC) antibody was performed: In the E18.5 lungs, the number of AECII was correlated to the percentage of functional Fgf10 genotypes. These data suggest the Fgf10 gene dose-related loss of the accessory lobe and decrease in the number of alveolar type 2 epithelial cells in mouse lung. Since dysfunction of AECII cells has been implicated in the pathogenesis of parenchymal lung diseases, the Fgf10-CRISPR F0 mouse would present an ideal experimental system to explore it.
Collapse
|
15
|
Lee DD, Hochstetler A, Sah E, Xu H, Lowe CW, Santiaguel S, Thornton JL, Pajakowski A, Schwarz MA. Influence of aminoacyl-tRNA synthetase complex-interacting multifunctional protein 1 on epithelial differentiation and organization during lung development. Am J Physiol Lung Cell Mol Physiol 2020; 319:L369-L379. [PMID: 32579851 DOI: 10.1152/ajplung.00518.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Proper development of the respiratory bronchiole and alveolar epithelium proceeds through coordinated cross talk between the interface of epithelium and neighboring mesenchyme. Signals that facilitate and coordinate the cross talk as the bronchial forming canalicular stage transitions to construction of air-exchanging capillary-alveoli niche in the alveolar stage are poorly understood. Expressed within this decisive region, levels of aminoacyl-tRNA synthetase complex-interacting multifunctional protein 1 (AIMP1) inversely correlate with the maturation of the lung. The present study addresses the role of AIMP1 in lung development through the generation and characterization of Aimp1-/- mutant mice. Mating of Aimp1+/- produced offspring in expected Mendelian ratios throughout embryonic development. However, newborn Aimp1-/- pups exhibited neonatal lethality with mild cyanosis. Imaging both structure and ultrastructure of Aimp1-/- lungs showed disorganized bronchial epithelium, decreased type I but not type II cell differentiation, increased distal vessels, and disruption of E-cadherin deposition in cell-cell junctions. Supporting the in vivo findings of disrupted epithelial cell-cell junctions, in vitro biochemical experiments show that a portion of AIMP1 binds to phosphoinositides, the lipid anchor of proteins that have a fundamental role in both cellular membrane and actin cytoskeleton organization; a dramatic disruption in F-actin cytoskeleton was observed in Aimp1-/- mouse embryonic fibroblasts. Such observed structural defects may lead to disrupted cell-cell boundaries. Together, these results suggest a requirement of AIMP1 in epithelial cell differentiation in proper lung development.
Collapse
Affiliation(s)
- Daniel D Lee
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, South Bend, Indiana.,Department of Pediatrics, Indiana University School of Medicine, South Bend, Indiana
| | - Alexandra Hochstetler
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, South Bend, Indiana.,Department of Pediatrics, Indiana University School of Medicine, South Bend, Indiana
| | - Eric Sah
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, South Bend, Indiana
| | - Haiming Xu
- Department of Pediatrics, University of Texas-Southwestern, Dallas, Texas
| | - Chinn-Woan Lowe
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, South Bend, Indiana.,Department of Pediatrics, Indiana University School of Medicine, South Bend, Indiana
| | - Sara Santiaguel
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, South Bend, Indiana.,Department of Pediatrics, Indiana University School of Medicine, South Bend, Indiana
| | - Janet Lea Thornton
- Department of Pediatrics, University of Texas-Southwestern, Dallas, Texas
| | - Adam Pajakowski
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, South Bend, Indiana.,Department of Pediatrics, Indiana University School of Medicine, South Bend, Indiana
| | - Margaret A Schwarz
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, South Bend, Indiana.,Department of Pediatrics, Indiana University School of Medicine, South Bend, Indiana.,Department of Biological Sciences, University of Notre Dame, South Bend, Indiana.,Department of Pediatrics, University of Texas-Southwestern, Dallas, Texas
| |
Collapse
|
16
|
Cellular signalling pathways mediating the pathogenesis of chronic inflammatory respiratory diseases: an update. Inflammopharmacology 2020; 28:795-817. [PMID: 32189104 DOI: 10.1007/s10787-020-00698-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/02/2020] [Indexed: 02/06/2023]
|
17
|
Yin Y, Ornitz DM. FGF9 and FGF10 activate distinct signaling pathways to direct lung epithelial specification and branching. Sci Signal 2020; 13:eaay4353. [PMID: 32127497 PMCID: PMC7271816 DOI: 10.1126/scisignal.aay4353] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Fibroblast growth factors (FGFs) 9 and 10 are essential during the pseudoglandular stage of lung development. Mesothelium-produced FGF9 is principally responsible for mesenchymal growth, whereas epithelium-produced FGF9 and mesenchyme-produced FGF10 guide lung epithelial development, and loss of either of these ligands affects epithelial branching. Because FGF9 and FGF10 activate distinct FGF receptors (FGFRs), we hypothesized that they would control distinct developmental processes. Here, we found that FGF9 signaled through epithelial FGFR3 to directly promote distal epithelial fate specification and inhibit epithelial differentiation. By contrast, FGF10 signaled through epithelial FGFR2b to promote epithelial proliferation and differentiation. Furthermore, FGF9-FGFR3 signaling functionally opposed FGF10-FGFR2b signaling, and FGFR3 preferentially used downstream phosphoinositide 3-kinase (PI3K) pathways, whereas FGFR2b relied on downstream mitogen-activated protein kinase (MAPK) pathways. These data demonstrate that, within lung epithelial cells, different FGFRs function independently; they bind receptor-specific ligands and direct distinct developmental functions through the activation of distinct downstream signaling pathways.
Collapse
Affiliation(s)
- Yongjun Yin
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| |
Collapse
|
18
|
Fernandes-Silva H, Araújo-Silva H, Correia-Pinto J, Moura RS. Retinoic Acid: A Key Regulator of Lung Development. Biomolecules 2020; 10:biom10010152. [PMID: 31963453 PMCID: PMC7022928 DOI: 10.3390/biom10010152] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 12/14/2022] Open
Abstract
Retinoic acid (RA) is a key molecular player in embryogenesis and adult tissue homeostasis. In embryo development, RA plays a crucial role in the formation of different organ systems, namely, the respiratory system. During lung development, there is a spatiotemporal regulation of RA levels that assures the formation of a fully functional organ. RA signaling influences lung specification, branching morphogenesis, and alveolarization by regulating the expression of particular target genes. Moreover, cooperation with other developmental pathways is essential to shape lung organogenesis. This review focuses on the events regulated by retinoic acid during lung developmental phases and pulmonary vascular development; also, it aims to provide a snapshot of RA interplay with other well-known regulators of lung development.
Collapse
Affiliation(s)
- Hugo Fernandes-Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (H.F.-S.); (H.A.-S.); (J.C.-P.)
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
- PhDOC PhD Program, ICVS/3B’s, School of Medicine, University of Minho, 4710-057 Braga, Portugal
| | - Henrique Araújo-Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (H.F.-S.); (H.A.-S.); (J.C.-P.)
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Jorge Correia-Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (H.F.-S.); (H.A.-S.); (J.C.-P.)
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
- Department of Pediatric Surgery, Hospital of Braga, 4710-243 Braga, Portugal
| | - Rute S Moura
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (H.F.-S.); (H.A.-S.); (J.C.-P.)
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
- Correspondence: ; Tel.: +35-12-5360-4911
| |
Collapse
|
19
|
Bordoni B, Simonelli M, Morabito B. The Other Side of the Fascia: The Smooth Muscle Part 1. Cureus 2019; 11:e4651. [PMID: 31312576 PMCID: PMC6624154 DOI: 10.7759/cureus.4651] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 05/13/2019] [Indexed: 02/06/2023] Open
Abstract
According to current scientific standards, the fascia is a connective tissue derived from two separate germ layers, the mesoderm (trunk and limbs, part of the neck) and the ectoderm (cervical tract and skull). The fascia has the property of maintaining the shape and function of its anatomical district, but it also can adapt to mechanical-metabolic stimuli. Smooth muscle and non-voluntary striated musculature originated from the mesoderm have never been properly considered as a type of fascia. They are some of the viscera present in the mediastinum, in the abdomen and in the pelvic floor. This text represents the first article in the international scientific field that discusses the inclusion of some viscera in the context of what is considered fascia, thanks to the efforts of our committee for the definition and nomenclature of the fascial tissue of the Foundation of Osteopathic Research and Clinical Endorsement (FORCE).
Collapse
Affiliation(s)
- Bruno Bordoni
- Cardiology, Foundation Don Carlo Gnocchi, Milan, ITA
| | | | - Bruno Morabito
- Osteopathy, School of Osteopathic Centre for Research and Studies, Milan, ITA
| |
Collapse
|
20
|
Bordoni B, Simonelli M, Morabito B. The Other Side of the Fascia: Visceral Fascia, Part 2. Cureus 2019; 11:e4632. [PMID: 31312558 PMCID: PMC6623997 DOI: 10.7759/cureus.4632] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 05/10/2019] [Indexed: 12/15/2022] Open
Abstract
In osteopathic clinical practice and in the teaching of osteopathic medicine, the visceral manipulation approach is included. The knowledge that some viscera satisfy the definition of fascial tissue will allow the osteopath to improve its practice. In the second part of the article, we will give a conclusive definition of fascia, and we will explain the embryological development of the heart and how the fascial tissue can be subject to manual treatment. This text is the first in the international scientific field that discusses the inclusion of some viscera in the context of what is considered fascia, through our committee for the definition and nomenclature of the fascial tissue of the Foundation of Osteopathic Research and Clinical Endorsement (FORCE).
Collapse
Affiliation(s)
- Bruno Bordoni
- Cardiology, Foundation Don Carlo Gnocchi, Milan, ITA
| | | | - Bruno Morabito
- Osteopathy, School of Osteopathic Centre for Research and Studies, Milan, ITA
| |
Collapse
|
21
|
Park J, Ivey MJ, Deana Y, Riggsbee KL, Sörensen E, Schwabl V, Sjöberg C, Hjertberg T, Park GY, Swonger JM, Rosengreen T, Morty RE, Ahlbrecht K, Tallquist MD. The Tcf21 lineage constitutes the lung lipofibroblast population. Am J Physiol Lung Cell Mol Physiol 2019; 316:L872-L885. [PMID: 30675802 PMCID: PMC6589586 DOI: 10.1152/ajplung.00254.2018] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 11/29/2018] [Accepted: 01/18/2019] [Indexed: 01/18/2023] Open
Abstract
Transcription factor 21 (Tcf21) is a basic helix-loop-helix transcription factor required for mesenchymal development in several organs. Others have demonstrated that Tcf21 is expressed in embryonic lung mesenchyme and that loss of Tcf21 results in a pulmonary hypoplasia phenotype. Although recent single-cell transcriptome analysis has described multiple mesenchymal cell types in the lung, few have characterized the Tcf21 expressing population. To explore the Tcf21 mesenchymal lineage, we traced Tcf21-expressing cells during embryogenesis and in the adult. Our results showed that Tcf21 progenitor cells at embryonic day (E)11.5 generated a subpopulation of fibroblasts and lipofibroblasts and a limited number of smooth muscle cells. After E15.5, Tcf21 progenitor cells exclusively become lipofibroblasts and interstitial fibroblasts. Lipid metabolism genes were highly expressed in perinatal and adult Tcf21 lineage cells. Overexpression of Tcf21 in primary neonatal lung fibroblasts led to increases in intracellular neutral lipids, suggesting a regulatory role for Tcf21 in lipofibroblast function. Collectively, our results reveal that Tcf21 expression after E15.5 delineates the lipofibroblast and a population of interstitial fibroblasts. The Tcf21 inducible Cre mouse line provides a novel method for identifying and manipulating the lipofibroblast.
Collapse
Affiliation(s)
- Juwon Park
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii at Manoa , Honolulu, Hawaii
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa , Honolulu, Hawaii
| | - Malina J Ivey
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii at Manoa , Honolulu, Hawaii
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa , Honolulu, Hawaii
| | - Yanik Deana
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii at Manoa , Honolulu, Hawaii
| | - Kara L Riggsbee
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii at Manoa , Honolulu, Hawaii
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa , Honolulu, Hawaii
| | - Emelie Sörensen
- Department of Medicine and Health Sciences, Linköping University , Linköping , Sweden
| | - Veronika Schwabl
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii at Manoa , Honolulu, Hawaii
| | - Caroline Sjöberg
- Department of Medicine and Health Sciences, Linköping University , Linköping , Sweden
| | - Tilda Hjertberg
- Department of Medicine and Health Sciences, Linköping University , Linköping , Sweden
| | - Ga Young Park
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii at Manoa , Honolulu, Hawaii
| | - Jessica M Swonger
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii at Manoa , Honolulu, Hawaii
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa , Honolulu, Hawaii
| | - Taylor Rosengreen
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii at Manoa , Honolulu, Hawaii
| | - Rory E Morty
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, German Center for Lung Research , Bad Nauheim , Germany
| | - Katrin Ahlbrecht
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, German Center for Lung Research , Bad Nauheim , Germany
| | - Michelle D Tallquist
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii at Manoa , Honolulu, Hawaii
| |
Collapse
|
22
|
An actin-based nucleoskeleton involved in gene regulation and genome organization. Biochem Biophys Res Commun 2018; 506:378-386. [DOI: 10.1016/j.bbrc.2017.11.206] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 11/30/2017] [Indexed: 12/21/2022]
|
23
|
Commodore A, Mukherjee N, Chung D, Svendsen E, Vena J, Pearce J, Roberts J, Arshad SH, Karmaus W. Frequency of heavy vehicle traffic and association with DNA methylation at age 18 years in a subset of the Isle of Wight birth cohort. ENVIRONMENTAL EPIGENETICS 2018; 4:dvy028. [PMID: 30697444 PMCID: PMC6343046 DOI: 10.1093/eep/dvy028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 12/04/2018] [Accepted: 12/07/2018] [Indexed: 05/08/2023]
Abstract
Assessment of changes in DNA methylation (DNA-m) has the potential to identify adverse environmental exposures. To examine DNA-m among a subset of participants (n = 369) in the Isle of Wight birth cohort who reported variable near resident traffic frequencies. We used self-reported frequencies of heavy vehicles passing by the homes of study subjects as a proxy measure for TRAP, which were: never, seldom, 10 per day, 1-9 per hour and >10 per hour. Methylation of cytosine-phosphate-guanine (CpG) dinucleotide sequences in the DNA was assessed from blood samples collected at age 18 years (n = 369) in the F1 generation. We conducted an epigenome wide association study to examine CpGs related to the frequency of heavy vehicles passing by subjects' homes, and employed multiple linear regression models to assess potential associations. We repeated some of these analysis in the F2 generation (n = 140). Thirty-five CpG sites were associated with heavy vehicular traffic. After adjusting for confounders, we found 23 CpGs that were more methylated, and 11 CpGs that were less methylated with increasing heavy vehicular traffic frequency among all subjects. In the F2 generation, 2 of 31 CpGs were associated with traffic frequencies and the direction of the effect was the same as in the F1 subset while differential methylation of 7 of 31 CpG sites correlated with gene expression. Our findings reveal differences in DNA-m in participants who reported higher heavy vehicular traffic frequencies when compared to participants who reported lower frequencies.
Collapse
Affiliation(s)
- A Commodore
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - N Mukherjee
- Division of Epidemiology, Biostatistics, and Environmental Health, University of Memphis, Memphis, TN 38152, USA
| | - D Chung
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - E Svendsen
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - J Vena
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - J Pearce
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - J Roberts
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - S H Arshad
- Faculty of Medicine, University of Southampton, Southampton, UK
- The David Hide Asthma and Allergy Research Centre, Isle of Wight, UK
| | - W Karmaus
- Division of Epidemiology, Biostatistics, and Environmental Health, University of Memphis, Memphis, TN 38152, USA
| |
Collapse
|
24
|
Ostrin EJ, Little DR, Gerner-Mauro KN, Sumner EA, Ríos-Corzo R, Ambrosio E, Holt SE, Forcioli-Conti N, Akiyama H, Hanash SM, Kimura S, Huang SXL, Chen J. β-Catenin maintains lung epithelial progenitors after lung specification. Development 2018; 145:dev.160788. [PMID: 29440304 DOI: 10.1242/dev.160788] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 02/02/2018] [Indexed: 12/18/2022]
Abstract
The entire lung epithelium arises from SRY box 9 (SOX9)-expressing progenitors that form the respiratory tree and differentiate into airway and alveolar cells. Despite progress in understanding their initial specification within the embryonic foregut, how these progenitors are subsequently maintained is less clear. Using inducible, progenitor-specific genetic mosaic mouse models, we showed that β-catenin (CTNNB1) maintains lung progenitors by promoting a hierarchical lung progenitor gene signature, suppressing gastrointestinal (GI) genes, and regulating NK2 homeobox 1 (NKX2.1) and SRY box 2 (SOX2) in a developmental stage-dependent manner. At the early, but not later, stage post-lung specification, CTNNB1 cell-autonomously maintained normal NKX2.1 expression levels and suppressed ectopic SOX2 expression. Genetic epistasis analyses revealed that CTNNB1 is required for fibroblast growth factor (Fgf)/Kirsten rat sarcoma viral oncogene homolog (Kras)-mediated promotion of the progenitors. In silico screening of Eurexpress and translating ribosome affinity purification (TRAP)-RNAseq identified a progenitor gene signature, a subset of which depends on CTNNB1. Wnt signaling also maintained NKX2.1 expression and suppressed GI genes in cultured human lung progenitors derived from embryonic stem cells.
Collapse
Affiliation(s)
- Edwin J Ostrin
- Department of Pulmonary Medicine, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Department of General Internal Medicine, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Danielle R Little
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas 77030, USA
| | - Kamryn N Gerner-Mauro
- Department of Pulmonary Medicine, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Elizabeth A Sumner
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas 77030, USA
| | - Ricardo Ríos-Corzo
- School of Medicine and Health Sciences, Tecnológico de Monterrey, Monterrey, Nuevo León 64849, Mexico
| | - Elizabeth Ambrosio
- School of Engineering and Sciences, Tecnológico de Monterrey, Monterrey, Nuevo León 64849, Mexico
| | - Samantha E Holt
- Department of Clinical Cancer Prevention, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Nicolas Forcioli-Conti
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, the University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Haruhiko Akiyama
- Department of Orthopedics, Kyoto University, Sakyo, Kyoto 606-8507, Japan
| | - Sam M Hanash
- Department of Clinical Cancer Prevention, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Shioko Kimura
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sarah X L Huang
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, the University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Jichao Chen
- Department of Pulmonary Medicine, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
25
|
Fernandes-Silva H, Vaz-Cunha P, Barbosa VB, Silva-Gonçalves C, Correia-Pinto J, Moura RS. Retinoic acid regulates avian lung branching through a molecular network. Cell Mol Life Sci 2017; 74:4599-4619. [PMID: 28735443 PMCID: PMC11107646 DOI: 10.1007/s00018-017-2600-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 07/04/2017] [Accepted: 07/18/2017] [Indexed: 12/14/2022]
Abstract
Retinoic acid (RA) is of major importance during vertebrate embryonic development and its levels need to be strictly regulated otherwise congenital malformations will develop. Through the action of specific nuclear receptors, named RAR/RXR, RA regulates the expression of genes that eventually influence proliferation and tissue patterning. RA has been described as crucial for different stages of mammalian lung morphogenesis, and as part of a complex molecular network that contributes to precise organogenesis; nonetheless, nothing is known about its role in avian lung development. The current report characterizes, for the first time, the expression pattern of RA signaling members (stra6, raldh2, raldh3, cyp26a1, rarα, and rarβ) and potential RA downstream targets (sox2, sox9, meis1, meis2, tgfβ2, and id2) by in situ hybridization. In the attempt of unveiling the role of RA in chick lung branching, in vitro lung explants were performed. Supplementation studies revealed that RA stimulates lung branching in a dose-dependent manner. Moreover, the expression levels of cyp26a1, sox2, sox9, rarβ, meis2, hoxb5, tgfβ2, id2, fgf10, fgfr2, and shh were evaluated after RA treatment to disclose a putative molecular network underlying RA effect. In situ hybridization analysis showed that RA is able to alter cyp26a1, sox9, tgfβ2, and id2 spatial distribution; to increase rarβ, meis2, and hoxb5 expression levels; and has a very modest effect on sox2, fgf10, fgfr2, and shh expression levels. Overall, these findings support a role for RA in the proximal-distal patterning and branching morphogenesis of the avian lung and reveal intricate molecular interactions that ultimately orchestrate branching morphogenesis.
Collapse
Affiliation(s)
- Hugo Fernandes-Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, 4710-057, Braga/Guimarães, Portugal
| | - Patrícia Vaz-Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, 4710-057, Braga/Guimarães, Portugal
| | - Violina Baranauskaite Barbosa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, 4710-057, Braga/Guimarães, Portugal
| | - Carla Silva-Gonçalves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, 4710-057, Braga/Guimarães, Portugal
| | - Jorge Correia-Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, 4710-057, Braga/Guimarães, Portugal
- Department of Pediatric Surgery, Hospital de Braga, 4710-243, Braga, Portugal
| | - Rute Silva Moura
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal.
- ICVS/3B's, PT Government Associate Laboratory, 4710-057, Braga/Guimarães, Portugal.
- Biology Department, School of Sciences, University of Minho, 4710-057, Braga, Portugal.
| |
Collapse
|
26
|
Fernandes-Silva H, Alves MG, Correia-Pinto J, Oliveira PF, Moura RS. Lung branching morphogenesis, in the chicken model, is accompanied by temporal metabolic changes: PS185. Porto Biomed J 2017; 2:222-223. [PMID: 32258722 DOI: 10.1016/j.pbj.2017.07.111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Affiliation(s)
- H Fernandes-Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - M G Alves
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal.,Department of Microscopy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - J Correia-Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal.,Department of Pediatric Surgery, Hospital de Braga, 4710-243 Braga, Portugal
| | - P F Oliveira
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal.,Department of Microscopy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal.,i3S - Instituto de Inovação e Investigação em Saúde, University of Porto, 4050-313 Porto, Portugal.,Department of Genetics, Faculty of Medicine (FMUP), University of Porto
| | - R S Moura
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| |
Collapse
|
27
|
Irx1 regulates dental outer enamel epithelial and lung alveolar type II epithelial differentiation. Dev Biol 2017; 429:44-55. [PMID: 28746823 PMCID: PMC5599132 DOI: 10.1016/j.ydbio.2017.07.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/20/2017] [Accepted: 07/20/2017] [Indexed: 01/01/2023]
Abstract
The Iroquois genes (Irx) appear to regulate fundamental processes that lead to cell proliferation, differentiation, and maturation during development. In this report, the Iroquois homeobox 1 (Irx1) transcription factor was functionally disrupted using a LacZ insert and LacZ expression demonstrated stage-specific expression during embryogenesis. Irx1 is highly expressed in the brain, lung, digits, kidney, testis and developing teeth. Irx1 null mice are neonatal lethal and this lethality it due to pulmonary immaturity. Irx1-/- mice show delayed lung maturation characterized by defective surfactant protein secretion and Irx1 marks a population of SP-C expressing alveolar type II cells. Irx1 is specifically expressed in the outer enamel epithelium (OEE), stellate reticulum (SR) and stratum intermedium (SI) layers of the developing tooth. Irx1 mediates dental epithelial cell differentiation in the lower incisors resulting in delayed growth of the lower incisors. Irx1 is specifically and temporally expressed during developmental stages and we have focused on lung and dental development in this report. Irx1+ cells are unique to the development of the incisor outer enamel epithelium, patterning of Lef-1+ and Sox2+ cells as well as a new marker for lung alveolar type II cells. Mechanistically, Irx1 regulates Foxj1 and Sox9 to control cell differentiation during development.
Collapse
|
28
|
Lin C, Yao E, Zhang K, Jiang X, Croll S, Thompson-Peer K, Chuang PT. YAP is essential for mechanical force production and epithelial cell proliferation during lung branching morphogenesis. eLife 2017; 6. [PMID: 28323616 PMCID: PMC5360446 DOI: 10.7554/elife.21130] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 02/06/2017] [Indexed: 02/06/2023] Open
Abstract
Branching morphogenesis is a fundamental program for tissue patterning. We show that active YAP, a key mediator of Hippo signaling, is distributed throughout the murine lung epithelium and loss of epithelial YAP severely disrupts branching. Failure to branch is restricted to regions where YAP activity is removed. This suggests that YAP controls local epithelial cell properties. In support of this model, mechanical force production is compromised and cell proliferation is reduced in Yap mutant lungs. We propose that defective force generation and insufficient epithelial cell number underlie the branching defects. Through genomic analysis, we also uncovered a feedback control of pMLC levels, which is critical for mechanical force production, likely through the direct induction of multiple regulators by YAP. Our work provides a molecular pathway that could control epithelial cell properties required for proper morphogenetic movement and pattern formation. DOI:http://dx.doi.org/10.7554/eLife.21130.001 Air enters our lungs through a system of airways that spread outwards from the windpipe like the branches of a tree. Before we are born, each branch is shaped by the organization and movement of cells that form the walls of the airways, called epithelial cells. This process requires the cells to communicate and coordinate with each other by receiving and/or sending chemical signals. One important system that epithelial cells use to communicate is called the Hippo pathway, which uses a molecule called YAP to execute received messages. Exactly how YAP helps airways in the lungs to develop was not well understood. By studying developing mouse lungs, Lin et al. have now found that YAP is present in the epithelial cells of all developing airways. Inactivating YAP in specific parts of the lungs prevented the formation of new branches of the airway in just those regions that lacked YAP. This suggests that YAP is needed for airways to branch properly and form the extensive network present in healthy lungs. Further investigation using genomics approaches revealed that YAP regulates the activity of genes that control how epithelial cells divide and contract. Without YAP, fewer cells were produced and they were unable to produce the forces required to change shape and move to form airways. In particular, YAP controls the production of a modified form of a protein called phosphorylated myosin light chain (pMLC) through a regulatory pathway. The pMLC protein is critical for the cells to produce the mechanical forces that they need to be able to contract correctly. Overall, the results presented by Lin et al. suggest that YAP controls the properties of the epithelial cells to enable them to form new airway branches. Branched structures also form in a number of other organs, and the mechanisms that cause these structures to form are thought to be similar to those that form the airways. Lin et al.’s work could therefore help us to understand how organs develop more generally. DOI:http://dx.doi.org/10.7554/eLife.21130.002
Collapse
Affiliation(s)
- Chuwen Lin
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
| | - Erica Yao
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
| | - Kuan Zhang
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
| | - Xuan Jiang
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
| | - Stacey Croll
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
| | - Katherine Thompson-Peer
- Department of Physiology, Howard Hughes Medical institute, University of California, San Francisco, San Francisco, United States
| | - Pao-Tien Chuang
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
29
|
Canonical Sonic Hedgehog Signaling in Early Lung Development. J Dev Biol 2017; 5:jdb5010003. [PMID: 29615561 PMCID: PMC5831770 DOI: 10.3390/jdb5010003] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 02/28/2017] [Accepted: 03/08/2017] [Indexed: 12/31/2022] Open
Abstract
The canonical hedgehog (HH) signaling pathway is of major importance during embryonic development. HH is a key regulatory morphogen of numerous cellular processes, namely, cell growth and survival, differentiation, migration, and tissue polarity. Overall, it is able to trigger tissue-specific responses that, ultimately, contribute to the formation of a fully functional organism. Of all three HH proteins, Sonic Hedgehog (SHH) plays an essential role during lung development. In fact, abnormal levels of this secreted protein lead to severe foregut defects and lung hypoplasia. Canonical SHH signal transduction relies on the presence of transmembrane receptors, such as Patched1 and Smoothened, accessory proteins, as Hedgehog-interacting protein 1, and intracellular effector proteins, like GLI transcription factors. Altogether, this complex signaling machinery contributes to conveying SHH response. Pulmonary morphogenesis is deeply dependent on SHH and on its molecular interactions with other signaling pathways. In this review, the role of SHH in early stages of lung development, specifically in lung specification, primary bud formation, and branching morphogenesis is thoroughly reviewed.
Collapse
|
30
|
Unachukwu U, Trischler J, Goldklang M, Xiao R, D'Armiento J. Maternal smoke exposure decreases mesenchymal proliferation and modulates Rho-GTPase-dependent actin cytoskeletal signaling in fetal lungs. FASEB J 2017; 31:2340-2351. [PMID: 28209772 DOI: 10.1096/fj.201601063r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 01/30/2017] [Indexed: 12/12/2022]
Abstract
The present study tested the hypothesis that maternal smoke exposure results in fetal lung growth retardation due to dysregulation in various signaling pathways, including the Wnt (wingless-related integration site)/β-catenin pathway. Pregnant female C57BL/6J mice were exposed to cigarette smoke (100-150 mg/m3) or room air, and offspring were humanely killed on 12.5, 14.5, 16.5, and 18.5 d post coitum (dpc). We assessed lung stereology with Cavalieri estimation; apoptosis with proliferating cell nuclear antigen, TUNEL, and caspase assays; and gene expression with quantitative PCR (qPCR) and RNA sequencing on lung epithelium and mesenchyme retrieved by laser capture microdissection. Results demonstrated a significant decrease in body weight and lung volume of smoke-exposed embryos. At 16.5 dpc, the reduction in lung volume was due to loss of lung mesenchymal tissue correlating with a decrease in cell proliferation (n = 10; air: 61.65% vs. smoke: 44.21%, P < 0.05). RNA sequence analysis demonstrated an alteration in the Wnt pathway, and qPCR confirmed an increased expression of secreted frizzled-related protein 1 (sFRP-1) [n = 12; relative quantification (RQ) 1 vs. 2.33, P < 0.05] and down-regulation of Cyclin D1 (n = 7; RQ 1 vs. 0.61, P < 0.05) in mesenchymal tissue. Furthermore, genome expression studies revealed a smoke-induced up-regulation of Rho-GTPase-dependent actin cytoskeletal signaling that can lead to loss of tissue integrity.-Unachukwu, U., Trischler, J., Goldklang, M., Xiao, R., D'Armiento, J. Maternal smoke exposure decreases mesenchymal proliferation and modulates Rho-GTPase-dependent actin cytoskeletal signaling in fetal lungs.
Collapse
Affiliation(s)
- Uchenna Unachukwu
- Center for Pulmonary Disease, Department of Anesthesiology, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Jordis Trischler
- Center for Pulmonary Disease, Department of Anesthesiology, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Monica Goldklang
- Center for Pulmonary Disease, Department of Anesthesiology, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Rui Xiao
- Center for Pulmonary Disease, Department of Anesthesiology, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Jeanine D'Armiento
- Center for Pulmonary Disease, Department of Anesthesiology, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| |
Collapse
|
31
|
Lüdtke TH, Rudat C, Wojahn I, Weiss AC, Kleppa MJ, Kurz J, Farin HF, Moon A, Christoffels VM, Kispert A. Tbx2 and Tbx3 Act Downstream of Shh to Maintain Canonical Wnt Signaling during Branching Morphogenesis of the Murine Lung. Dev Cell 2016; 39:239-253. [PMID: 27720610 DOI: 10.1016/j.devcel.2016.08.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 07/25/2016] [Accepted: 08/19/2016] [Indexed: 12/11/2022]
Abstract
Numerous signals drive the proliferative expansion of the distal endoderm and the underlying mesenchyme during lung branching morphogenesis, but little is known about how these signals are integrated. Here, we show by analysis of conditional double mutants that the two T-box transcription factor genes Tbx2 and Tbx3 act together in the lung mesenchyme to maintain branching morphogenesis. Expression of both genes depends on epithelially derived Shh signaling, with additional modulation by Bmp, Wnt, and Tgfβ signaling. Genetic rescue experiments reveal that Tbx2 and Tbx3 function downstream of Shh to maintain pro-proliferative mesenchymal Wnt signaling, in part by direct repression of the Wnt antagonists Frzb and Shisa3. In combination with our previous finding that Tbx2 and Tbx3 repress the cell-cycle inhibitors Cdkn1a and Cdkn1b, we conclude that Tbx2 and Tbx3 maintain proliferation of the lung mesenchyme by way of at least two molecular mechanisms: regulating cell-cycle regulation and integrating the activity of multiple signaling pathways.
Collapse
Affiliation(s)
- Timo H Lüdtke
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Carsten Rudat
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Irina Wojahn
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Anna-Carina Weiss
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Marc-Jens Kleppa
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Jennifer Kurz
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Henner F Farin
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Anne Moon
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Vincent M Christoffels
- Department of Anatomy, Embryology and Physiology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Andreas Kispert
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, 30625 Hannover, Germany.
| |
Collapse
|
32
|
Chimenti I, Pagano F, Angelini F, Siciliano C, Mangino G, Picchio V, De Falco E, Peruzzi M, Carnevale R, Ibrahim M, Biondi‐Zoccai G, Messina E, Frati G. Human Lung Spheroids as In Vitro Niches of Lung Progenitor Cells with Distinctive Paracrine and Plasticity Properties. Stem Cells Transl Med 2016; 6:767-777. [PMID: 28297570 PMCID: PMC5442776 DOI: 10.5966/sctm.2015-0374] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 08/09/2016] [Indexed: 02/05/2023] Open
Abstract
Basic and translational research on lung biology has discovered multiple progenitor cell types, specialized or facultative, responsible for turnover, renewal, and repair. Isolation of populations of resident lung progenitor cells (LPCs) has been described by multiple protocols, and some have been successfully applied to healthy human lung tissue. We aimed at understanding how different cell culture conditions may affect, in vitro, the phenotype of LPCs to create an ideal niche‐like microenvironment. The influence of different substrates (i.e., fibronectin, gelatin, laminin) and the impact of a three‐dimensional/two‐dimensional (3D/2D) culture switch on the biology of LPCs isolated as lung spheroids (LSs) from normal adult human lung biopsy specimens were investigated. We applied a spheroid culture system as the selective/inductive step for progenitor cell culture, as described in many biological systems. The data showed a niche‐like proepithelial microenvironment inside the LS, highly sensitive to the 3D culture system and significantly affecting the phenotype of adult LPCs more than culture substrate. LSs favor epithelial phenotypes and LPC maintenance and contain cells more responsive to specific commitment stimuli than 2D monolayer cultures, while secreting a distinctive set of paracrine factors. We have shown for the first time, to our knowledge, how culture as 3D LSs can affect LPC epithelial phenotype and produce strong paracrine signals with a distinctive secretomic profile compared with 2D monolayer conditions. These findings suggest novel approaches to maintain ex vivo LPCs for basic and translational studies. Stem Cells Translational Medicine2017;6:767–777
Collapse
Affiliation(s)
- Isotta Chimenti
- Department of Medical‐Surgical Sciences and Biotechnology, “Sapienza” University of Rome, Rome, Italy
| | - Francesca Pagano
- Department of Medical‐Surgical Sciences and Biotechnology, “Sapienza” University of Rome, Rome, Italy
| | - Francesco Angelini
- Department of Medical‐Surgical Sciences and Biotechnology, “Sapienza” University of Rome, Rome, Italy
| | - Camilla Siciliano
- Department of Medical‐Surgical Sciences and Biotechnology, “Sapienza” University of Rome, Rome, Italy
| | - Giorgio Mangino
- Department of Medical‐Surgical Sciences and Biotechnology, “Sapienza” University of Rome, Rome, Italy
| | - Vittorio Picchio
- Department of Medical‐Surgical Sciences and Biotechnology, “Sapienza” University of Rome, Rome, Italy
| | - Elena De Falco
- Department of Medical‐Surgical Sciences and Biotechnology, “Sapienza” University of Rome, Rome, Italy
| | - Mariangela Peruzzi
- Department of Medical‐Surgical Sciences and Biotechnology, “Sapienza” University of Rome, Rome, Italy
| | - Roberto Carnevale
- Department of Medical‐Surgical Sciences and Biotechnology, “Sapienza” University of Rome, Rome, Italy
| | - Mohsen Ibrahim
- Department of Medical‐Surgical Science and Translational Medicine, “La Sapienza” University of Rome, Rome, Italy
| | - Giuseppe Biondi‐Zoccai
- Department of Medical‐Surgical Sciences and Biotechnology, “Sapienza” University of Rome, Rome, Italy
- Department of AngioCardioNeurology, Istituto di Ricovero e Cura a Carattere Scientifico Neuromed, Pozzilli, Italy
| | - Elisa Messina
- Department of Pediatrics and Neuropsychiatry, “Umberto I” Hospital, Rome, Italy
| | - Giacomo Frati
- Department of Medical‐Surgical Sciences and Biotechnology, “Sapienza” University of Rome, Rome, Italy
- Department of AngioCardioNeurology, Istituto di Ricovero e Cura a Carattere Scientifico Neuromed, Pozzilli, Italy
| |
Collapse
|
33
|
Varner VD, Nelson CM. Computational models of airway branching morphogenesis. Semin Cell Dev Biol 2016; 67:170-176. [PMID: 27269374 DOI: 10.1016/j.semcdb.2016.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/01/2016] [Accepted: 06/02/2016] [Indexed: 12/13/2022]
Abstract
The bronchial network of the mammalian lung consists of millions of dichotomous branches arranged in a highly complex, space-filling tree. Recent computational models of branching morphogenesis in the lung have helped uncover the biological mechanisms that construct this ramified architecture. In this review, we focus on three different theoretical approaches - geometric modeling, reaction-diffusion modeling, and continuum mechanical modeling - and discuss how, taken together, these models have identified the geometric principles necessary to build an efficient bronchial network, as well as the patterning mechanisms that specify airway geometry in the developing embryo. We emphasize models that are integrated with biological experiments and suggest how recent progress in computational modeling has advanced our understanding of airway branching morphogenesis.
Collapse
Affiliation(s)
- Victor D Varner
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, United States
| | - Celeste M Nelson
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, United States; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, United States.
| |
Collapse
|
34
|
Joannes A, Brayer S, Besnard V, Marchal-Sommé J, Jaillet M, Mordant P, Mal H, Borie R, Crestani B, Mailleux AA. FGF9 and FGF18 in idiopathic pulmonary fibrosis promote survival and migration and inhibit myofibroblast differentiation of human lung fibroblasts in vitro. Am J Physiol Lung Cell Mol Physiol 2016; 310:L615-29. [PMID: 26773067 DOI: 10.1152/ajplung.00185.2015] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 01/10/2016] [Indexed: 12/15/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is characterized by an accumulation of extracellular matrix proteins and fibroblasts in the distal airways. Key developmental lung signaling pathways are reactivated in IPF. For instance, fibroblast growth factor 9 (FGF9) and FGF18, involved in epithelial-mesenchymal interactions, are critical for lung development. We evaluated the expression of FGF9, FGF18, and FGF receptors (FGFRs) in lung tissue from controls and IPF patients and assessed their effect on proliferation, survival, migration, and differentiation of control and IPF human lung fibroblasts (HLFs). FGF9, FGF18, and all FGFRs were present in the remodeled alveolar epithelium close to the fibroblast foci in IPF lungs. FGFR3 was generally detected in fibroblast foci by immunohistochemistry. In vitro, HLFs mainly expressed mesenchyme-associated FGFR isoforms (FGFR1c and FGFR3c) and FGFR4. FGF9 did not affect fibroblast proliferation, whereas FGF18 inhibited cell growth in control fibroblasts. FGF9 and FGF18 decreased Fas-ligand-induced apoptosis in control but not in IPF fibroblasts. FGF9 prevented transforming growth factor β1-induced myofibroblast differentiation. FGF9 and FGF18 increased the migratory capacities of HLF, and FGF9 actively modulated matrix metalloproteinase activity. In addition, FGFR3 inhibition by small interfering RNA impacted p-ERK activation by FGF9 and FGF18 and their effects on differentiation and migration. These results identify FGF9 as an antiapoptotic and promigratory growth factor on HLF, maintaining fibroblasts in an undifferentiated state. The biological effects of FGF9 and FGF18 were partially driven by FGFR3. FGF18 was a less potent molecule. Both growth factors likely contribute to the fibrotic process in vivo.
Collapse
Affiliation(s)
- Audrey Joannes
- INSERM U1152, DHU FIRE, Labex Inflamex, Université Paris Diderot, Sorbonne Paris Cité
| | - Stéphanie Brayer
- INSERM U1152, DHU FIRE, Labex Inflamex, Université Paris Diderot, Sorbonne Paris Cité
| | - Valérie Besnard
- INSERM U1152, DHU FIRE, Labex Inflamex, Université Paris Diderot, Sorbonne Paris Cité
| | - Joëlle Marchal-Sommé
- INSERM U1152, DHU FIRE, Labex Inflamex, Université Paris Diderot, Sorbonne Paris Cité
| | - Madeleine Jaillet
- INSERM U1152, DHU FIRE, Labex Inflamex, Université Paris Diderot, Sorbonne Paris Cité
| | - Pierre Mordant
- INSERM U1152, DHU FIRE, Labex Inflamex, Université Paris Diderot, Sorbonne Paris Cité, Assistance Publique-Hôpitaux de Paris, Hôpital Bichat, Service de Chirurgie Thoracique et Vasculaire, and
| | - Hervé Mal
- INSERM U1152, DHU FIRE, Labex Inflamex, Université Paris Diderot, Sorbonne Paris Cité, Assistance Publique-Hôpitaux de Paris, Hôpital Bichat, Service de Pneumologie et Transplantation, Paris, France
| | - Raphael Borie
- INSERM U1152, DHU FIRE, Labex Inflamex, Université Paris Diderot, Sorbonne Paris Cité, Assistance Publique-Hôpitaux de Paris, Hôpital Bichat, Service de Pneumologie A
| | - Bruno Crestani
- INSERM U1152, DHU FIRE, Labex Inflamex, Université Paris Diderot, Sorbonne Paris Cité, Assistance Publique-Hôpitaux de Paris, Hôpital Bichat, Service de Pneumologie A,
| | - Arnaud A Mailleux
- INSERM U1152, DHU FIRE, Labex Inflamex, Université Paris Diderot, Sorbonne Paris Cité
| |
Collapse
|
35
|
Han L, Nasr T, Zorn AM. Mesodermal lineages in the developing respiratory system. TRENDS IN DEVELOPMENTAL BIOLOGY 2016; 9:91-110. [PMID: 34707332 PMCID: PMC8547324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The life-sustaining air-blood interface of the respiratory system requires the exquisite integration of the epithelial lining with the mesenchymal capillary network, all supported by elastic smooth muscle and rigid cartilage keeping the expandable airways open. These intimate tissue interactions originate in the early embryo, where bidirectional paracrine signaling between the endoderm epithelium and adjacent mesoderm orchestrates lung and trachea development and controls the stereotypical branching morphogenesis. Although much attention has focused on how these interactions impact the differentiation of the respiratory epithelium, relatively less is known about the patterning and differentiation of the mesenchyme. Endothelial cells, smooth muscle cells, and chondrocytes together with other types of mesenchymal cells are essential components of a functional respiratory system, and malformation of these cells can lead to various congenital defects. In this review, we summarize the current understanding of mesenchymal development in the fetal trachea and lung, focusing on recent findings from animal models that have begun to shed light on the poorly understood respiratory mesenchyme lineages.
Collapse
|
36
|
Abstract
This article highlights some of the significant advances in our understanding of lung developmental biology made over the last few years, which challenge existing paradigms and are relevant to a fundamental understanding of this process. Additional comments address how these new insights may be informative for chronic lung diseases that occur, or initiate, in the neonatal period. This is not meant to be an exhaustive review of the molecular biology of lung development. For a more comprehensive, contemporary review of the cellular and molecular aspects of lung development, readers can refer to recent reviews by others.
Collapse
|
37
|
Abstract
Collections of cells must be patterned spatially during embryonic development to generate the intricate architectures of mature tissues. In several cases, including the formation of the branched airways of the lung, reciprocal signaling between an epithelium and its surrounding mesenchyme helps generate these spatial patterns. Several molecular signals are thought to interact via reaction-diffusion kinetics to create distinct biochemical patterns, which act as molecular precursors to actual, physical patterns of biological structure and function. Here, however, we show that purely physical mechanisms can drive spatial patterning within embryonic epithelia. Specifically, we find that a growth-induced physical instability defines the relative locations of branches within the developing murine airway epithelium in the absence of mesenchyme. The dominant wavelength of this instability determines the branching pattern and is controlled by epithelial growth rates. These data suggest that physical mechanisms can create the biological patterns that underlie tissue morphogenesis in the embryo.
Collapse
|
38
|
Hegab AE, Arai D, Gao J, Kuroda A, Yasuda H, Ishii M, Naoki K, Soejima K, Betsuyaku T. Mimicking the niche of lung epithelial stem cells and characterization of several effectors of their in vitro behavior. Stem Cell Res 2015; 15:109-21. [DOI: 10.1016/j.scr.2015.05.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 04/08/2015] [Accepted: 05/11/2015] [Indexed: 11/27/2022] Open
|
39
|
Yin Y, Castro AM, Hoekstra M, Yan TJ, Kanakamedala AC, Dehner LP, Hill DA, Ornitz DM. Fibroblast Growth Factor 9 Regulation by MicroRNAs Controls Lung Development and Links DICER1 Loss to the Pathogenesis of Pleuropulmonary Blastoma. PLoS Genet 2015; 11:e1005242. [PMID: 25978641 PMCID: PMC4433140 DOI: 10.1371/journal.pgen.1005242] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 04/26/2015] [Indexed: 11/19/2022] Open
Abstract
Pleuropulmonary Blastoma (PPB) is the primary neoplastic manifestation of a pediatric cancer predisposition syndrome that is associated with several diseases including cystic nephroma, Wilms tumor, neuroblastoma, rhabdomyosarcoma, medulloblastoma, and ovarian Sertoli-Leydig cell tumor. The primary pathology of PPB, epithelial cysts with stromal hyperplasia and risk for progression to a complex primitive sarcoma, is associated with familial heterozygosity and lesion-associated epithelial loss-of-heterozygosity of DICER1. It has been hypothesized that loss of heterozygosity of DICER1 in lung epithelium is a non-cell autonomous etiology of PPB and a critical pathway that regulates lung development; however, there are no known direct targets of epithelial microRNAs (miRNAs) in the lung. Fibroblast Growth Factor 9 (FGF9) is expressed in the mesothelium and epithelium during lung development and primarily functions to regulate lung mesenchyme; however, there are no known mechanisms that regulate FGF9 expression during lung development. Using mouse genetics and molecular phenotyping of human PPB tissue, we show that FGF9 is overexpressed in lung epithelium in the initial multicystic stage of Type I PPB and that in mice lacking epithelial Dicer1, or induced to overexpress epithelial Fgf9, increased Fgf9 expression results in pulmonary mesenchymal hyperplasia and a multicystic architecture that is histologically and molecularly indistinguishable from Type I PPB. We further show that miR-140 is expressed in lung epithelium, regulates epithelial Fgf9 expression, and regulates pseudoglandular stages of lung development. These studies identify an essential miRNA-FGF9 pathway for lung development and a non-cell autonomous signaling mechanism that contributes to the mesenchymal hyperplasia that is characteristic of Type I PPB.
Collapse
Affiliation(s)
- Yongjun Yin
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Angela M. Castro
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Marrit Hoekstra
- Department of Pathology, Children’s National Medical Center, Washington, D.C., United States of America
| | - Thomas J. Yan
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Ajay C. Kanakamedala
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Louis P. Dehner
- Lauren V. Ackerman Division of Surgical Pathology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - D. Ashley Hill
- Lauren V. Ackerman Division of Surgical Pathology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail: (DAH); (DMO)
| | - David M. Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail: (DAH); (DMO)
| |
Collapse
|
40
|
Ornitz DM, Itoh N. The Fibroblast Growth Factor signaling pathway. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2015; 4:215-66. [PMID: 25772309 PMCID: PMC4393358 DOI: 10.1002/wdev.176] [Citation(s) in RCA: 1360] [Impact Index Per Article: 151.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 11/23/2014] [Accepted: 01/08/2015] [Indexed: 12/13/2022]
Abstract
The signaling component of the mammalian Fibroblast Growth Factor (FGF) family is comprised of eighteen secreted proteins that interact with four signaling tyrosine kinase FGF receptors (FGFRs). Interaction of FGF ligands with their signaling receptors is regulated by protein or proteoglycan cofactors and by extracellular binding proteins. Activated FGFRs phosphorylate specific tyrosine residues that mediate interaction with cytosolic adaptor proteins and the RAS-MAPK, PI3K-AKT, PLCγ, and STAT intracellular signaling pathways. Four structurally related intracellular non-signaling FGFs interact with and regulate the family of voltage gated sodium channels. Members of the FGF family function in the earliest stages of embryonic development and during organogenesis to maintain progenitor cells and mediate their growth, differentiation, survival, and patterning. FGFs also have roles in adult tissues where they mediate metabolic functions, tissue repair, and regeneration, often by reactivating developmental signaling pathways. Consistent with the presence of FGFs in almost all tissues and organs, aberrant activity of the pathway is associated with developmental defects that disrupt organogenesis, impair the response to injury, and result in metabolic disorders, and cancer. For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- David M Ornitz
- Department of Developmental Biology, Washington University School of MedicineSt. Louis, MO, USA
- *
Correspondence to:
| | - Nobuyuki Itoh
- Graduate School of Pharmaceutical Sciences, Kyoto UniversitySakyo, Kyoto, Japan
| |
Collapse
|
41
|
Chao CM, El Agha E, Tiozzo C, Minoo P, Bellusci S. A breath of fresh air on the mesenchyme: impact of impaired mesenchymal development on the pathogenesis of bronchopulmonary dysplasia. Front Med (Lausanne) 2015; 2:27. [PMID: 25973420 PMCID: PMC4412070 DOI: 10.3389/fmed.2015.00027] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 04/11/2015] [Indexed: 12/14/2022] Open
Abstract
The early mouse embryonic lung, with its robust and apparently reproducible branching pattern, has always fascinated developmental biologists. They have extensively used this embryonic organ to decipher the role of mammalian orthologs of Drosophila genes in controlling the process of branching morphogenesis. During the early pseudoglandular stage, the embryonic lung is formed mostly of tubes that keep on branching. As the branching takes place, progenitor cells located in niches are also amplified and progressively differentiate along the proximo-distal and dorso-ventral axes of the lung. Such elaborate processes require coordinated interactions between signaling molecules arising from and acting on four functional domains: the epithelium, the endothelium, the mesenchyme, and the mesothelium. These interactions, quite well characterized in a relatively simple lung tubular structure remain elusive in the successive developmental and postnatal phases of lung development. In particular, a better understanding of the process underlying the formation of secondary septa, key structural units characteristic of the alveologenesis phase, is still missing. This structure is critical for the formation of a mature lung as it allows the subdivision of saccules in the early neonatal lung into alveoli, thereby considerably expanding the respiratory surface. Interruption of alveologenesis in preterm neonates underlies the pathogenesis of chronic neonatal lung disease known as bronchopulmonary dysplasia. De novo formation of secondary septae appears also to be the limiting factor for lung regeneration in human patients with emphysema. In this review, we will therefore focus on what is known in terms of interactions between the different lung compartments and discuss the current understanding of mesenchymal cell lineage formation in the lung, focusing on secondary septae formation.
Collapse
Affiliation(s)
- Cho-Ming Chao
- Department of General Pediatrics and Neonatology, University Children's Hospital Giessen , Giessen , Germany ; Department of Internal Medicine II, Universities of Giessen and Marburg Lung Center , Giessen , Germany ; Member of the German Center for Lung Research (DZL) , Giessen , Germany
| | - Elie El Agha
- Department of Internal Medicine II, Universities of Giessen and Marburg Lung Center , Giessen , Germany ; Member of the German Center for Lung Research (DZL) , Giessen , Germany
| | - Caterina Tiozzo
- Division of Neonatology, Department of Pediatrics, Columbia University , New York, NY , USA
| | - Parviz Minoo
- Division of Newborn Medicine, Department of Pediatrics, Children's Hospital Los Angeles, University of Southern California , Los Angeles, CA , USA
| | - Saverio Bellusci
- Department of Internal Medicine II, Universities of Giessen and Marburg Lung Center , Giessen , Germany ; Member of the German Center for Lung Research (DZL) , Giessen , Germany ; Saban Research Institute, Childrens Hospital Los Angeles, University of Southern California , Los Angeles, CA , USA ; Kazan Federal University , Kazan , Russia
| |
Collapse
|
42
|
Lin C, Yao E, Chuang PT. A conserved MST1/2-YAP axis mediates Hippo signaling during lung growth. Dev Biol 2015; 403:101-13. [PMID: 25912685 DOI: 10.1016/j.ydbio.2015.04.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 03/06/2015] [Accepted: 04/09/2015] [Indexed: 11/29/2022]
Abstract
Hippo signaling is a critical player in controlling the growth of several tissues and organs in diverse species. The current model of Hippo signaling postulates a cascade of kinase activity initiated by the MST1/2 kinases in response to external stimuli. This leads to inactivation of the transcriptional coactivators, YAP/TAZ, due to their cytoplasmic retention and degradation that is correlated with YAP/TAZ phosphorylation. In most tissues examined, YAP plays a more dominant role than TAZ. Whether a conserved Hippo pathway is utilized during lung growth and development is unclear. In particular, the regulatory relationship between MST1/2 and YAP/TAZ in the lung remains controversial. By employing the Shh-Cre mouse line to efficiently inactivate genes in the lung epithelium, we show that loss of MST1/2 kinases in the epithelium can lead to neonatal lethality caused by lung defects. This is manifested by perturbation of lung epithelial cell proliferation and differentiation. These phenotypes are more severe than those produced by Nkx2.1-Cre, highlighting the effects of differential Cre activity on phenotypic outcomes. Importantly, expression of YAP targets is upregulated and the ratio of phospho-YAP to total YAP protein levels is reduced in Mst1/2-deficient lungs, all of which are consistent with a negative role of MST1/2 in controlling YAP function. This model gains further support from both in vivo and in vitro studies. Genetic removal of one allele of Yap or one copy of both Yap and Taz rescues neonatal lethality and lung phenotypes due to loss of Mst1/2. Moreover, knockdown of Yap in lung epithelial cell lines restores diminished alveolar marker expression caused by Mst1/2 inactivation. These results demonstrate that MST1/2 inhibit YAP/TAZ activity and establish a conserved MST1/2-YAP axis in coordinating lung growth during development.
Collapse
Affiliation(s)
- Chuwen Lin
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158, United States
| | - Erica Yao
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158, United States
| | - Pao-Tien Chuang
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158, United States.
| |
Collapse
|
43
|
Arai D, Hegab AE, Soejima K, Kuroda A, Ishioka K, Yasuda H, Naoki K, Shizuko K, Hamamoto J, Yin Y, Ornitz DM, Betsuyaku T. Characterization of the cell of origin and propagation potential of the fibroblast growth factor 9-induced mouse model of lung adenocarcinoma. J Pathol 2015; 235:593-605. [PMID: 25413587 PMCID: PMC4329097 DOI: 10.1002/path.4486] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 10/29/2014] [Accepted: 11/08/2014] [Indexed: 12/22/2022]
Abstract
Fibroblast growth factor 9 (FGF9) is essential for lung development and is highly expressed in a subset of human lung adenocarcinomas. We recently described a mouse model in which FGF9 expression in the lung epithelium caused proliferation of the airway epithelium at the terminal bronchioles and led to rapid development of adenocarcinoma. Here, we used this model to characterize the effects of prolonged FGF9 induction on the proximal and distal lung epithelia, and examined the propagation potential of FGF9-induced lung tumours. We showed that prolonged FGF9 over-expression in the lung resulted in the development of adenocarcinomas arising from both alveolar type II and airway secretory cells in the lung parenchyma and airways, respectively. We found that tumour cells harboured tumour-propagating cells that were able to form secondary tumours in recipient mice, regardless of FGF9 expression. However, the highest degree of tumour propagation was observed when unfractionated tumour cells were co-administered with autologous, tumour-associated mesenchymal cells. Although the initiation of lung adenocarcinomas was dependent on activation of the FGF9-FGF receptor 3 (FGFR3) signalling axis, maintenance and propagation of the tumour was independent of this signalling. Activation of an alternative FGF-FGFR axis and the interaction with tumour stromal cells is likely to be responsible for the development of this independence. This study demonstrates the complex role of FGF-FGFR signalling in the initiation, growth and propagation of lung cancer. Our findings suggest that analysing the expressions of FGF-FGFRs in human lung cancer will be a useful tool for guiding customized therapy.
Collapse
Affiliation(s)
- Daisuke Arai
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Ahmed E. Hegab
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Kenzo Soejima
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Aoi Kuroda
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Kota Ishioka
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hiroyuki Yasuda
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Katsuhiko Naoki
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Kagawa Shizuko
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Junko Hamamoto
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yongjun Yin
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, USA
| | - David M. Ornitz
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, USA
| | - Tomoko Betsuyaku
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
44
|
Volckaert T, De Langhe SP. Wnt and FGF mediated epithelial-mesenchymal crosstalk during lung development. Dev Dyn 2014; 244:342-66. [PMID: 25470458 DOI: 10.1002/dvdy.24234] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 11/20/2014] [Accepted: 11/26/2014] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The adaptation to terrestrial life required the development of an organ capable of efficient air-blood gas exchange. To meet the metabolic load of cellular respiration, the mammalian respiratory system has evolved from a relatively simple structure, similar to the two-tube amphibian lung, to a highly complex tree-like system of branched epithelial airways connected to a vast network of gas exchanging units called alveoli. The development of such an elaborate organ in a relatively short time window is therefore an extraordinary feat and involves an intimate crosstalk between mesodermal and endodermal cell lineages. RESULTS This review describes the molecular processes governing lung development with an emphasis on the current knowledge on the role of Wnt and FGF signaling in lung epithelial differentiation. CONCLUSIONS The Wnt and FGF signaling pathways are crucial for the dynamic and reciprocal communication between epithelium and mesenchyme during lung development. In addition, some of this developmental crosstalk is reemployed in the adult lung after injury to drive regeneration, and may, when aberrantly or chronically activated, result in chronic lung diseases. Novel insights into how the Wnt and FGF pathways interact and are integrated into a complex gene regulatory network will not only provide us with essential information about how the lung regenerates itself, but also enhance our understanding of the pathogenesis of chronic lung diseases, as well as improve the controlled differentiation of lung epithelium from pluripotent stem cells.
Collapse
Affiliation(s)
- Thomas Volckaert
- Department of Pediatrics, Division of Cell Biology, National Jewish Health, Denver, Colorado; The Inflammation Research Center, Unit of Molecular Signal Transduction in Inflammation, VIB, Technologiepark 927, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052 Ghent, Belgium
| | | |
Collapse
|
45
|
Bird AD, McDougall ARA, Seow B, Hooper SB, Cole TJ. Glucocorticoid regulation of lung development: lessons learned from conditional GR knockout mice. Mol Endocrinol 2014; 29:158-71. [PMID: 25535891 DOI: 10.1210/me.2014-1362] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Glucocorticoid (GC) steroid hormones have well-characterized roles in the regulation of systemic homeostasis, yet less understood is their known role in utero to mature the developing respiratory system in preparation for birth. During late gestation, endogenously produced GCs thin the interstitial tissue of the lung, causing the vasculature and future airspaces to come into close alignment, allowing for efficient gas exchange at birth. More potent synthetic GCs are also used worldwide to reduce the severity of respiratory distress suffered by preterm infants; however, their clinical benefits are somewhat offset by potential detrimental long-term effects on health and development. Here, we review the recent literature studying both global and conditional gene-targeted respiratory mouse models of either GC deficiency or glucocorticoid receptor ablation. Although some discrepancies exist between these transgenic mouse strains, these models have revealed specific roles for GCs in particular tissue compartments of the developing lung and identify the mesenchyme as the critical site for glucocorticoid receptor-mediated lung maturation, particularly for the inhibition of cell proliferation and epithelial cell differentiation. Specific mesenchymal and epithelial cell-expressed gene targets that may potentially mediate the effect of GCs have also been identified in these studies and imply a GC-regulated system of cross talk between compartments during lung development. A better understanding of the specific roles of GCs in specific cell types and compartments of the fetal lung will allow the development of a new generation of selective GC ligands, enabling better therapeutic treatments with fewer side effects for lung immaturity at birth in preterm infants.
Collapse
Affiliation(s)
- A Daniel Bird
- Department of Biochemistry and Molecular Biology (A.D.B., A.R.A.M., B.S., T.J.C.), Monash University, Clayton, 3800, Victoria, Australia; and The Ritchie Centre (A.R.A.M., B.S., S.B.H.), Monash Institute of Medical Research, Clayton, 3168, Victoria, Australia
| | | | | | | | | |
Collapse
|
46
|
El Agha E, Bellusci S. Walking along the Fibroblast Growth Factor 10 Route: A Key Pathway to Understand the Control and Regulation of Epithelial and Mesenchymal Cell-Lineage Formation during Lung Development and Repair after Injury. SCIENTIFICA 2014; 2014:538379. [PMID: 25298902 PMCID: PMC4178922 DOI: 10.1155/2014/538379] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 08/07/2014] [Indexed: 06/04/2023]
Abstract
Basic research on embryonic lung development offers unique opportunities to make important discoveries that will impact human health. Developmental biologists interested in the molecular control of branching morphogenesis have intensively studied the developing lung, with its complex and seemingly stereotyped ramified structure. However, it is also an organ that is linked to a vast array of clinical problems in humans such as bronchopulmonary dysplasia in premature babies and emphysema, chronic obstructive pulmonary disease, fibrosis, and cancer in adults. Epithelial stem/progenitor cells reside in niches where they interact with specific extracellular matrices as well as with mesenchymal cells; the latter are still poorly characterized. Interactions of epithelial stem/progenitor cells with their microenvironments are usually instructive, controlling quiescence versus activation, proliferation, differentiation, and migration. During the past 18 years, Fgf10 has emerged not only as a marker for the distal lung mesenchyme during early lung development, but also as a key player in branching morphogenesis and a critical component of the niche for epithelial stem cells. In this paper, we will present the current knowledge regarding the lineage tree in the lung, with special emphasis on cell-lineage decisions in the lung mesenchyme and the role of Fgf10 in this context.
Collapse
Affiliation(s)
- Elie El Agha
- Department of Internal Medicine II, Universities of Giessen and Marburg Lung Center (UGMLC), Klinikstraße 36, 35392 Giessen, Hessen, Germany
- Member of the German Center for Lung Research (DZL), 35392 Giessen, Hessen, Germany
| | - Saverio Bellusci
- Department of Internal Medicine II, Universities of Giessen and Marburg Lung Center (UGMLC), Klinikstraße 36, 35392 Giessen, Hessen, Germany
- Member of the German Center for Lung Research (DZL), 35392 Giessen, Hessen, Germany
- Developmental Biology and Regenerative Program of the Saban Research Institute at Childrens Hospital Los Angeles and University of Southern California, Los Angeles, CA 90027, USA
| |
Collapse
|
47
|
Rankin SA, Thi Tran H, Wlizla M, Mancini P, Shifley ET, Bloor SD, Han L, Vleminckx K, Wert SE, Zorn AM. A Molecular atlas of Xenopus respiratory system development. Dev Dyn 2014; 244:69-85. [PMID: 25156440 DOI: 10.1002/dvdy.24180] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 08/14/2014] [Accepted: 08/18/2014] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Respiratory system development is regulated by a complex series of endoderm-mesoderm interactions that are not fully understood. Recently Xenopus has emerged as an alternative model to investigate early respiratory system development, but the extent to which the morphogenesis and molecular pathways involved are conserved between Xenopus and mammals has not been systematically documented. RESULTS In this study, we provide a histological and molecular atlas of Xenopus respiratory system development, focusing on Nkx2.1+ respiratory cell fate specification in the developing foregut. We document the expression patterns of Wnt/β-catenin, fibroblast growth factor (FGF), and bone morphogenetic protein (BMP) signaling components in the foregut and show that the molecular mechanisms of respiratory lineage induction are remarkably conserved between Xenopus and mice. Finally, using several functional experiments we refine the epistatic relationships among FGF, Wnt, and BMP signaling in early Xenopus respiratory system development. CONCLUSIONS We demonstrate that Xenopus trachea and lung development, before metamorphosis, is comparable at the cellular and molecular levels to embryonic stages of mouse respiratory system development between embryonic days 8.5 and 10.5. This molecular atlas provides a fundamental starting point for further studies using Xenopus as a model to define the conserved genetic programs controlling early respiratory system development.
Collapse
Affiliation(s)
- Scott A Rankin
- Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital, and the Department of Pediatrics, College of Medicine University of Cincinnati, Cincinnati, Ohio
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Hogan BLM, Barkauskas CE, Chapman HA, Epstein JA, Jain R, Hsia CCW, Niklason L, Calle E, Le A, Randell SH, Rock J, Snitow M, Krummel M, Stripp BR, Vu T, White ES, Whitsett JA, Morrisey EE. Repair and regeneration of the respiratory system: complexity, plasticity, and mechanisms of lung stem cell function. Cell Stem Cell 2014; 15:123-38. [PMID: 25105578 PMCID: PMC4212493 DOI: 10.1016/j.stem.2014.07.012] [Citation(s) in RCA: 632] [Impact Index Per Article: 63.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Respiratory disease is the third leading cause of death in the industrialized world. Consequently, the trachea, lungs, and cardiopulmonary vasculature have been the focus of extensive investigations. Recent studies have provided new information about the mechanisms driving lung development and differentiation. However, there is still much to learn about the ability of the adult respiratory system to undergo repair and to replace cells lost in response to injury and disease. This Review highlights the multiple stem/progenitor populations in different regions of the adult lung, the plasticity of their behavior in injury models, and molecular pathways that support homeostasis and repair.
Collapse
Affiliation(s)
- Brigid L M Hogan
- Department of Cell Biology, Duke Medicine, Durham, NC 27705, USA.
| | - Christina E Barkauskas
- Division of Pulmonary, Allergy and Critical Care Medicine, Duke Medicine, Durham, NC 27705, USA
| | - Harold A Chapman
- Division of Pulmonary and Critical Care, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jonathan A Epstein
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rajan Jain
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Connie C W Hsia
- Department of Internal Medicine, University of Texas, Southwestern Medical Center, Dallas, TX 75390, USA
| | - Laura Niklason
- Departments of Anesthesiology and Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Elizabeth Calle
- Department of Cell Biology, Duke Medicine, Durham, NC 27705, USA
| | - Andrew Le
- Department of Cell Biology, Duke Medicine, Durham, NC 27705, USA
| | - Scott H Randell
- Department of Cell Biology and Physiology, The University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Jason Rock
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Melinda Snitow
- Perleman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew Krummel
- Division of Pulmonary and Critical Care, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Barry R Stripp
- Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Thiennu Vu
- Division of Pulmonary and Critical Care, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Eric S White
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jeffrey A Whitsett
- Section of Neonatology, Perinatal and Pulmonary Biology, Department of Pediatrics, Cincinnati Children's Hospital Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Edward E Morrisey
- Departments of Medicine and Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
49
|
Volckaert T, De Langhe S. Lung epithelial stem cells and their niches: Fgf10 takes center stage. FIBROGENESIS & TISSUE REPAIR 2014; 7:8. [PMID: 24891877 PMCID: PMC4041638 DOI: 10.1186/1755-1536-7-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 04/04/2014] [Indexed: 12/20/2022]
Abstract
Throughout life adult animals crucially depend on stem cell populations to maintain and repair their tissues to ensure life-long organ function. Stem cells are characterized by their capacity to extensively self-renew and give rise to one or more differentiated cell types. These powerful stem cell properties are key to meet the changing demand for tissue replacement during normal lung homeostasis and regeneration after lung injury. Great strides have been made over the last few years to identify and characterize lung epithelial stem cells as well as their lineage relationships. Unfortunately, knowledge on what regulates the behavior and fate specification of lung epithelial stem cells is still limited, but involves communication with their microenvironment or niche, a local tissue environment that hosts and influences the behaviors or characteristics of stem cells and that comprises other cell types and extracellular matrix. As such, an intimate and dynamic epithelial-mesenchymal cross-talk, which is also essential during lung development, is required for normal homeostasis and to mount an appropriate regenerative response after lung injury. Fibroblast growth factor 10 (Fgf10) signaling in particular seems to be a well-conserved signaling pathway governing epithelial-mesenchymal interactions during lung development as well as between different adult lung epithelial stem cells and their niches. On the other hand, disruption of these reciprocal interactions leads to a dysfunctional epithelial stem cell-niche unit, which may culminate in chronic lung diseases such as chronic obstructive pulmonary disease (COPD), chronic asthma and idiopathic pulmonary fibrosis (IPF).
Collapse
Affiliation(s)
- Thomas Volckaert
- Department of Pediatrics, Division of Cell Biology, National Jewish Health, 1400 Jackson St, Denver, CO 80206, USA ; The Inflammation Research Center, Unit of Molecular Signal Transduction in Inflammation, VIB, Technologiepark 927, 9052 Ghent, Belgium ; Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052 Ghent, Belgium
| | - Stijn De Langhe
- Department of Pediatrics, Division of Cell Biology, National Jewish Health, 1400 Jackson St, Denver, CO 80206, USA ; Department of Cellular and Developmental Biology, School of Medicine, University of Colorado Denver, 12605 E 16th Avenue, Aurora CO 80045, USA
| |
Collapse
|
50
|
Carraro G, Shrestha A, Rostkovius J, Contreras A, Chao CM, El Agha E, MacKenzie B, Dilai S, Guidolin D, Taketo MM, Günther A, Kumar ME, Seeger W, De Langhe S, Barreto G, Bellusci S. miR-142-3p balances proliferation and differentiation of mesenchymal cells during lung development. Development 2014; 141:1272-81. [PMID: 24553287 PMCID: PMC3943182 DOI: 10.1242/dev.105908] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 01/15/2014] [Indexed: 01/05/2023]
Abstract
The regulation of the balance between proliferation and differentiation in the mesenchymal compartment of the lung is largely uncharacterized, unlike its epithelial counterpart. In this study, we determined that miR-142-3p contributes to the proper proliferation of mesenchymal progenitors by controlling the level of WNT signaling. miR-142-3p can physically bind to adenomatous polyposis coli mRNA, functioning to regulate its expression level. In miR-142-3p loss-of-function experiments, proliferation of parabronchial smooth muscle cell progenitors is significantly impaired, leading to premature differentiation. Activation of WNT signaling in the mesenchyme, or Apc loss of function, can both rescue miR-142-3p knockdown. These findings show that in the embryonic lung mesenchyme, the microRNA machinery modulates the level of WNT signaling, adding an extra layer of control in the feedback loop between FGFR2C and β-catenin-mediated WNT signaling.
Collapse
Affiliation(s)
- Gianni Carraro
- University of Giessen Lung Center, Excellence Cluster in Cardio-Pulmonary Systems, member of the German Lung Center (DZL), Department of Internal Medicine II, Aulweg 130, 35392 Giessen, Germany
| | - Amit Shrestha
- University of Giessen Lung Center, Excellence Cluster in Cardio-Pulmonary Systems, member of the German Lung Center (DZL), Department of Internal Medicine II, Aulweg 130, 35392 Giessen, Germany
| | - Jana Rostkovius
- University of Giessen Lung Center, Excellence Cluster in Cardio-Pulmonary Systems, member of the German Lung Center (DZL), Department of Internal Medicine II, Aulweg 130, 35392 Giessen, Germany
| | - Adriana Contreras
- LOEWE Research Group Lung Cancer Epigenetic, Max Planck Institute for Heart and Lung Research, Member of the German Lung Center (DZL), 61231 Bad Nauheim, Germany
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Member of the German Lung Center (DZL), 61231 Bad Nauheim, Germany
| | - Cho-Ming Chao
- University of Giessen Lung Center, Excellence Cluster in Cardio-Pulmonary Systems, member of the German Lung Center (DZL), Department of Internal Medicine II, Aulweg 130, 35392 Giessen, Germany
| | - Elie El Agha
- University of Giessen Lung Center, Excellence Cluster in Cardio-Pulmonary Systems, member of the German Lung Center (DZL), Department of Internal Medicine II, Aulweg 130, 35392 Giessen, Germany
| | - Breanne MacKenzie
- University of Giessen Lung Center, Excellence Cluster in Cardio-Pulmonary Systems, member of the German Lung Center (DZL), Department of Internal Medicine II, Aulweg 130, 35392 Giessen, Germany
| | - Salma Dilai
- University of Giessen Lung Center, Excellence Cluster in Cardio-Pulmonary Systems, member of the German Lung Center (DZL), Department of Internal Medicine II, Aulweg 130, 35392 Giessen, Germany
| | - Diego Guidolin
- University of Padova, Department of Molecular Medicine, 35121 Padova, Italy
| | - Makoto Mark Taketo
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Yoshida-Konoé-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Andreas Günther
- University of Giessen Lung Center, Excellence Cluster in Cardio-Pulmonary Systems, member of the German Lung Center (DZL), Department of Internal Medicine II, Aulweg 130, 35392 Giessen, Germany
| | - Maya E. Kumar
- Department of Biochemistry and HHMI, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Werner Seeger
- University of Giessen Lung Center, Excellence Cluster in Cardio-Pulmonary Systems, member of the German Lung Center (DZL), Department of Internal Medicine II, Aulweg 130, 35392 Giessen, Germany
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Member of the German Lung Center (DZL), 61231 Bad Nauheim, Germany
| | - Stijn De Langhe
- Department of Pediatrics, National Jewish Health, Denver, CO 80206, USA
- Department of Cellular and Developmental Biology, University of Colorado Denver, Aurora, CO 80045, USA
| | - Guillermo Barreto
- LOEWE Research Group Lung Cancer Epigenetic, Max Planck Institute for Heart and Lung Research, Member of the German Lung Center (DZL), 61231 Bad Nauheim, Germany
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Member of the German Lung Center (DZL), 61231 Bad Nauheim, Germany
| | - Saverio Bellusci
- University of Giessen Lung Center, Excellence Cluster in Cardio-Pulmonary Systems, member of the German Lung Center (DZL), Department of Internal Medicine II, Aulweg 130, 35392 Giessen, Germany
- Developmental Biology Program, Saban Research Institute of Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
| |
Collapse
|