1
|
Soukar J, Peppas NA, Gaharwar AK. Organelle-Targeting Nanoparticles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2411720. [PMID: 39806939 DOI: 10.1002/advs.202411720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/05/2024] [Indexed: 01/16/2025]
Abstract
Organelles are specialized subunits within cells which carry out vital functions crucial to cellular survival and form a tightly regulated network. Dysfunctions in any of these organelles are linked to numerous diseases impacting virtually every organ system in the human body. Targeted delivery of therapeutics to specific organelles within the cell holds great promise for overcoming challenging diseases and improving treatment outcomes through the minimization of therapeutic dosage and off-target effects. Nanoparticles are versatile and effective tools for therapeutic delivery to specific organelles. Nanoparticles offer several advantageous characteristics, including a high surface area-to-volume ratio for efficient therapeutic loading and the ability to attach targeting moieties (tethers) that enhance delivery. The choice of nanoparticle shape, size, composition, surface properties, and targeting ligands depends on the desired target organelle and therapeutic effect. Various nanoparticle platforms have been explored for organelle targeting, such as liposomes, polymeric nanoparticles, dendrimers, and inorganic nanoparticles. In this review, current and emerging approaches to nanoparticle design are examined in the context of various diseases linked to organelle dysfunction. Specifically, advances in nanoparticle therapies targeting organelles such as the nucleus, mitochondria, lysosomes/endosomes, Golgi apparatus, and endoplasmic reticulum are comprehensively and critically discussed.
Collapse
Affiliation(s)
- John Soukar
- Interdisiplinary program in Genetics and Genomics, Texas A&M University, College Station, TX, 77843, USA
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Nicholas A Peppas
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
- Institute of Biomaterials, Drug Delivery and Regenerative Medicine, University of Texas at Austin, Austin, TX, 78712, USA
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
- Department of Surgery and Perioperative Care, Dell Medical School, University of Texas at Austin, Austin, TX, 78712, USA
- Department of Pediatrics, Dell Medical School, University of Texas at Austin, Austin, TX, 78712, USA
| | - Akhilesh K Gaharwar
- Interdisiplinary program in Genetics and Genomics, Texas A&M University, College Station, TX, 77843, USA
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, 77843, USA
- Department of Material Science and Engineering, College of Engineering, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
2
|
Gao AYL, Inglebert Y, Shi R, Ilie A, Popic J, Mustian J, Sonenberg N, Orlowski J, McKinney RA. Impaired hippocampal plasticity associated with loss of recycling endosomal SLC9A6/NHE6 is ameliorated by the TrkB agonist 7,8-dihydroxyflavone. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167529. [PMID: 39341363 DOI: 10.1016/j.bbadis.2024.167529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/31/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
Proper maintenance of intracellular vesicular pH is essential for cargo trafficking during synaptic function and plasticity. Mutations in the SLC9A6 gene encoding the recycling endosomal pH regulator (Na+, K+)/H+ exchanger isoform 6 (NHE6) are causal for Christianson syndrome (CS), a severe form of X-linked intellectual disability. NHE6 expression is also downregulated in other neurodevelopmental and neurodegenerative disorders, such as autism spectrum disorder and Alzheimer's disease, suggesting its dysfunction could contribute more broadly to the pathophysiology of other neurological conditions. To understand how ablation of NHE6 function leads to severe learning impairments, we assessed synaptic structure, function, and cellular mechanisms of learning in a novel line of Nhe6 knockout (KO) mice expressing a plasma membrane-tethered green fluorescent protein within hippocampal neurons. We uncovered significant reductions in dendritic spines density, AMPA receptor (AMPAR) expression, and AMPAR-mediated neurotransmission in CA1 pyramidal neurons. The neurons also failed to undergo functional and structural enhancement during long-term potentiation (LTP). Significantly, the selective TrkB agonist 7,8-dihydroxyflavone restored spine density as well as functional and structural LTP in KO neurons. TrkB activation thus may act as a potential clinical intervention to ameliorate cognitive deficits in CS and other neurodegenerative disorders.
Collapse
MESH Headings
- Animals
- Neuronal Plasticity/drug effects
- Mice
- Flavones/pharmacology
- Mice, Knockout
- Receptor, trkB/metabolism
- Receptor, trkB/agonists
- Receptor, trkB/genetics
- Sodium-Hydrogen Exchangers/metabolism
- Sodium-Hydrogen Exchangers/genetics
- Hippocampus/metabolism
- Hippocampus/drug effects
- Hippocampus/pathology
- Endosomes/metabolism
- Endosomes/drug effects
- Receptors, AMPA/metabolism
- Receptors, AMPA/genetics
- Receptors, AMPA/agonists
- Mental Retardation, X-Linked/pathology
- Mental Retardation, X-Linked/genetics
- Mental Retardation, X-Linked/drug therapy
- Mental Retardation, X-Linked/metabolism
- Dendritic Spines/metabolism
- Dendritic Spines/drug effects
- Dendritic Spines/pathology
- Male
- Synaptic Transmission/drug effects
- Microcephaly
- Genetic Diseases, X-Linked
- Epilepsy
- Intellectual Disability
- Ocular Motility Disorders
- Ataxia
Collapse
Affiliation(s)
- Andy Y L Gao
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Canada
| | - Yanis Inglebert
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Canada
| | - Roy Shi
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Canada
| | - Alina Ilie
- Department of Physiology, McGill University, Montreal, Canada
| | - Jelena Popic
- Department of Biochemistry, McGill University, Montreal, Canada
| | - Jamie Mustian
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Canada
| | - Nahum Sonenberg
- Department of Biochemistry, McGill University, Montreal, Canada
| | - John Orlowski
- Department of Physiology, McGill University, Montreal, Canada
| | - R Anne McKinney
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Canada.
| |
Collapse
|
3
|
Adoff H, Novy B, Holland E, Lobingier BT. DNAJC13 localization to endosomes is opposed by its J domain and its disordered C-terminal tail. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.19.629517. [PMID: 39763938 PMCID: PMC11702692 DOI: 10.1101/2024.12.19.629517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2025]
Abstract
Endosomes are a central sorting hub for membrane cargos. DNAJC13/RME-8 plays a critical role in endosomal trafficking by regulating the endosomal recycling or degradative pathways. DNAJC13 localizes to endosomes through its N-terminal Plekstrin Homology (PH)-like domain, which directly binds endosomal phosphoinositol-3-phosphate (PI(3)P). However, little is known about how DNAJC13 localization is regulated. Here, we show that two regions within DNAJC13, its J domain and disordered C-terminal tail, act as negative regulators of its PH-like domain. Using a structure-function approach combined with quantitative proteomics, we mapped these control points to a conserved YLT motif in the C-terminal tail as well as the catalytic HPD triad in its J domain. Mutation of either motif enhanced DNAJC13 endosomal localization in cells and increased binding to PI(3)P in vitro. Further, these effects required the N-terminal PH-like domain. We show that, similar to other PI(3)P binding domains, the N-terminal PH-like domain binds PI(3)P weakly in isolation and requires oligomerization for efficient PI(3)P binding and endosomal localization. Together, these results demonstrate that interaction between DNAJC13 and PI(3)P serves as a molecular control point for regulating DNAJC13 localization to endosomes.
Collapse
Affiliation(s)
- Hayden Adoff
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Brandon Novy
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Emily Holland
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Braden T Lobingier
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
4
|
Calakos N, Zech M. Emerging Molecular-Genetic Families in Dystonia: Endosome-Autophagosome-Lysosome and Integrated Stress Response Pathways. Mov Disord 2024. [PMID: 39467044 DOI: 10.1002/mds.30037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/25/2024] [Accepted: 10/03/2024] [Indexed: 10/30/2024] Open
Abstract
Advances in genetic technologies and disease modeling have greatly accelerated the pace of introducing and validating molecular-genetic contributors to disease. In dystonia, there is a growing convergence across multiple distinct forms of the disease onto core biological processes. Here, we discuss two of these, the endosome-autophagosome-lysosome pathway and the integrated stress response, to highlight recent advances in the field. Using these two pathomechanisms as examples, we further discuss the opportunities that molecular-genetic grouping of dystonias present to transform dystonia care. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Nicole Calakos
- Department of Neurology, Duke University Medical Center, Durham, North Carolina, USA
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA
| | - Michael Zech
- Institute of Human Genetics, Technical University of Munich, School of Medicine and Health, Munich, Germany
- Institute of Neurogenomics, Helmholtz Munich, Neuherberg, Germany
- Institute for Advanced Study, Technical University of Munich, Garching, Germany
| |
Collapse
|
5
|
Prosper P, Rodríguez Puertas R, Guérin DMA, Branda MM. Computational method for designing vaccines applied to virus-like particles (VLPs) as epitope carriers. Vaccine 2024; 42:3916-3929. [PMID: 38782665 DOI: 10.1016/j.vaccine.2024.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 04/06/2024] [Accepted: 05/04/2024] [Indexed: 05/25/2024]
Abstract
Nonenveloped virus-like particles (VLPs) are self-assembled oligomeric structures composed of one or more proteins that originate from diverse viruses. Because these VLPs have similar antigenicity to the parental virus, they are successfully used as vaccines against cognate virus infection. Furthermore, after foreign antigenic sequences are inserted in their protein components (chimVLPs), some VLPs are also amenable to producing vaccines against pathogens other than the virus it originates from (these VLPs are named platform or epitope carrier). Designing chimVLP vaccines is challenging because the immunogenic response must be oriented against a given antigen without altering stimulant properties inherent to the VLP. An important step in this process is choosing the location of the sequence modifications because this must be performed without compromising the assembly and stability of the original VLP. Currently, many immunogenic data and computational tools can help guide the design of chimVLPs, thus reducing experimental costs and work. In this study, we analyze the structure of a novel VLP that originate from an insect virus and describe the putative regions of its three structural proteins amenable to insertion. For this purpose, we employed molecular dynamics (MD) simulations to assess chimVLP stability by comparing mutated and wild-type (WT) VLP protein trajectories. We applied this procedure to design a chimVLP that can serve as a prophylactic vaccine against the SARS-CoV-2 virus. The methodology described in this work is generally applicable for VLP-based vaccine development.
Collapse
Affiliation(s)
- Pascalita Prosper
- Instituto de Física Aplicada - INFAP, Universidad Nacional de San Luis/CONICET, Argentina, Av. Ejército de los Andes 950, 5700 San Luis, San Luis, Argentina
| | - Rafael Rodríguez Puertas
- Universidad del País Vasco (UPV/EHU), Dept. Farmacología, Facultad de Medicina, B° Sarriena S/N, 48940 Leioa, Vizcaya, Spain; Neurodegenerative Diseases, BioCruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Diego M A Guérin
- Universidad del País Vasco (UPV/EHU) and Instituto Biofisika (CSIC, UPV/EHU), B° Sarriena S/N, 48940 Leioa, Vizcaya, Spain
| | - María Marta Branda
- Instituto de Física Aplicada - INFAP, Universidad Nacional de San Luis/CONICET, Argentina, Av. Ejército de los Andes 950, 5700 San Luis, San Luis, Argentina.
| |
Collapse
|
6
|
Lin Z, Zhang Y, Ding L, Wang XD. Ultraphotostable Phosphorescent Nanosensors for Sensing the Lysosomal pH at the Single-Cell Level over Long Durations. Anal Chem 2024; 96:8622-8629. [PMID: 38717175 DOI: 10.1021/acs.analchem.4c00696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Ultraphotostable phosphorescent nanosensors have been designed for continuously sensing the lysosome pH over a long duration. The nanosensors exhibited excellent photostability, high accuracy, and capability to measure pH values during cell proliferation for up to 7 days. By arranging a metal-ligand complex of long phosphorescence lifetime and pH indicator in silica nanoparticles, we discover efficient Förster resonance energy transfer, which converts the pH-responsive UV-vis absorption signal of the pH indicator into a phosphorescent signal. Both the phosphorescent intensity and lifetime change at different pH values, and intracellular pH values can be accurately measured by our custom-built rapid phosphorescent lifetime imaging microscopy. The excellent photostability, high accuracy, and good biocompatibility prove that these nanosensors are a useful tool for tracing the fluctuation of pH values during endocytosis. The methodology can be easily adapted to design new nanosensors with different pKa or for different kinds of intracellular ions, as there are hundreds of pH and ion indicators readily available.
Collapse
Affiliation(s)
- Zhenzhen Lin
- Department of Chemistry and Human Phenome Institute, Fudan University, Shanghai 200438, P. R. China
| | - Yinglu Zhang
- Department of Chemistry and Human Phenome Institute, Fudan University, Shanghai 200438, P. R. China
| | - Longjiang Ding
- Department of Chemistry and Human Phenome Institute, Fudan University, Shanghai 200438, P. R. China
| | - Xu-Dong Wang
- Department of Chemistry and Human Phenome Institute, Fudan University, Shanghai 200438, P. R. China
| |
Collapse
|
7
|
Pattipeiluhu R, Zeng Y, Hendrix MMRM, Voets IK, Kros A, Sharp TH. Liquid crystalline inverted lipid phases encapsulating siRNA enhance lipid nanoparticle mediated transfection. Nat Commun 2024; 15:1303. [PMID: 38347001 PMCID: PMC10861598 DOI: 10.1038/s41467-024-45666-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 01/31/2024] [Indexed: 02/15/2024] Open
Abstract
Efficient cytosolic delivery of RNA molecules remains a formidable barrier for RNA therapeutic strategies. Lipid nanoparticles (LNPs) serve as state-of-the-art carriers that can deliver RNA molecules intracellularly, as exemplified by the recent implementation of several vaccines against SARS-CoV-2. Using a bottom-up rational design approach, we assemble LNPs that contain programmable lipid phases encapsulating small interfering RNA (siRNA). A combination of cryogenic transmission electron microscopy, cryogenic electron tomography and small-angle X-ray scattering reveals that we can form inverse hexagonal structures, which are present in a liquid crystalline nature within the LNP core. Comparison with lamellar LNPs reveals that the presence of inverse hexagonal phases enhances the intracellular silencing efficiency over lamellar structures. We then demonstrate that lamellar LNPs exhibit an in situ transition from a lamellar to inverse hexagonal phase upon interaction with anionic membranes, whereas LNPs containing pre-programmed liquid crystalline hexagonal phases bypass this transition for a more efficient one-step delivery mechanism, explaining the increased silencing effect. This rational design of LNPs with defined lipid structures aids in the understanding of the nano-bio interface and adds substantial value for LNP design, optimization and use.
Collapse
Affiliation(s)
- Roy Pattipeiluhu
- Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
- BioNTech SE, An der Goldgrube 12, 55131, Mainz, Germany
| | - Ye Zeng
- Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Marco M R M Hendrix
- Self-Organizing Soft Matter, Department of Chemical Engineering and Chemistry & Institute of Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Ilja K Voets
- Self-Organizing Soft Matter, Department of Chemical Engineering and Chemistry & Institute of Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Alexander Kros
- Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands.
| | - Thomas H Sharp
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands.
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, United Kingdom.
| |
Collapse
|
8
|
Li J, Lin Y, Wang X, Lu M. Interconnection of cellular autophagy and endosomal vesicle trafficking and its role in hepatitis B virus replication and release. Virol Sin 2024; 39:24-30. [PMID: 38211880 PMCID: PMC10877419 DOI: 10.1016/j.virs.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/06/2024] [Indexed: 01/13/2024] Open
Abstract
Hepatitis B virus (HBV) produces and releases various particle types, including complete virions, subviral particles with envelope proteins, and naked capsids. Recent studies demonstrate that HBV exploits distinct intracellular membrane trafficking pathways, including the endosomal vesicle trafficking and autophagy pathway, to assemble and release viral and subviral particles. Herein, we summarize the findings about the distinct roles of autophagy and endosomal membrane trafficking and the interaction of both pathways in HBV replication, assembly, and release.
Collapse
Affiliation(s)
- Jia Li
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, 45122, Germany
| | - Yong Lin
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing, 400016, China
| | - Xueyu Wang
- The Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Mengji Lu
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, 45122, Germany.
| |
Collapse
|
9
|
Liu A, Xie H, Tian F, Bai P, Weng H, Liu Y, Liu W, Tang L, You H, Zhou N, Shu X. ESCRT-III Component CHMP4C Attenuates Cardiac Hypertrophy by Targeting the Endo-Lysosomal Degradation of EGFR. Hypertension 2023; 80:2674-2686. [PMID: 37846580 DOI: 10.1161/hypertensionaha.123.21427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 10/04/2023] [Indexed: 10/18/2023]
Abstract
BACKGROUND Cardiac hypertrophy and subsequent heart failure impose a considerable burden on public health worldwide. Impaired protein degradation, especially endo-lysosome-mediated degradation of membrane proteins, is associated with cardiac hypertrophy progression. CHMP4C (charged multivesicular body protein 4C), a critical constituent of multivesicular bodies, is involved in cellular trafficking and signaling. However, the specific role of CHMP4C in the progression of cardiac hypertrophy remains largely unknown. METHODS Mouse models with CHMP4C knockout or cardiadc-specific overexpression were subjected to transverse aortic constriction surgery for 4 weeks. Cardiac morphology and function were assessed through histological staining and echocardiography. Confocal imaging and coimmunoprecipitation assays were performed to identify the direct target of CHMP4C. An EGFR (epidermal growth factor receptor) inhibitor was administrated to determine whether effects of CHMP4C on cardiac hypertrophy were EGFR dependent. RESULTS CHMP4C was significantly upregulated in both pressure-overloaded mice and spontaneously hypertensive rats. Compared with wild-type mice, CHMP4C deficiency exacerbated transverse aortic constriction-induced cardiac hypertrophy, whereas CHMP4C overexpression in cardiomyocytes attenuated cardiac dysfunction. Mechanistically, the effect of CHMP4C on cardiac hypertrophy relied on the EGFR signaling pathway. Fluorescent staining and coimmunoprecipitation assays confirmed that CHMP4C interacts directly with EGFR and promotes lysosome-mediated degradation of activated EGFR, thus attenuating cardiac hypertrophy. Notably, an EGFR inhibitor canertinib counteracted the exacerbation of cardiac hypertrophy induced by CHMP4C knockdown in vitro and in vivo. CONCLUSIONS CHMP4C represses cardiac hypertrophy by modulating lysosomal degradation of EGFR and is a potential therapeutic candidate for cardiac hypertrophy.
Collapse
Affiliation(s)
- Ao Liu
- Department of Echocardiography (A.L., H.X., F.T., H.W., Y.L., W.L., L.T., N.Z., X.S.), Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China
- Department of Cardiology (A.L., H.X., P.B., H.W., X.S.), Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China
| | - Huilin Xie
- Department of Echocardiography (A.L., H.X., F.T., H.W., Y.L., W.L., L.T., N.Z., X.S.), Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China
- Department of Cardiology (A.L., H.X., P.B., H.W., X.S.), Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China
| | - Fangyan Tian
- Department of Echocardiography (A.L., H.X., F.T., H.W., Y.L., W.L., L.T., N.Z., X.S.), Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China
- Department of Ultrasound Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, China (F.T.)
| | - Peiyuan Bai
- Department of Cardiology (A.L., H.X., P.B., H.W., X.S.), Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China
| | - Haobo Weng
- Department of Echocardiography (A.L., H.X., F.T., H.W., Y.L., W.L., L.T., N.Z., X.S.), Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China
- Department of Cardiology (A.L., H.X., P.B., H.W., X.S.), Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China
| | - Yu Liu
- Department of Echocardiography (A.L., H.X., F.T., H.W., Y.L., W.L., L.T., N.Z., X.S.), Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China
| | - Wen Liu
- Department of Echocardiography (A.L., H.X., F.T., H.W., Y.L., W.L., L.T., N.Z., X.S.), Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China
| | - Lu Tang
- Department of Echocardiography (A.L., H.X., F.T., H.W., Y.L., W.L., L.T., N.Z., X.S.), Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China
| | - Hongmin You
- Department of Cardiology, Changhai Hospital, Naval Medical University, Shanghai, China (H.Y.)
| | - Nianwei Zhou
- Department of Echocardiography (A.L., H.X., F.T., H.W., Y.L., W.L., L.T., N.Z., X.S.), Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China
| | - Xianhong Shu
- Department of Echocardiography (A.L., H.X., F.T., H.W., Y.L., W.L., L.T., N.Z., X.S.), Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China
- Department of Cardiology (A.L., H.X., P.B., H.W., X.S.), Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China
- epartment of Echocardiography, Shanghai Xuhui District Central Hospital, China (X.S.)
| |
Collapse
|
10
|
Chen R, Wang L, Ding G, Han G, Qiu K, Sun Y, Diao J. Constant Conversion Rate of Endolysosomes Revealed by a pH-Sensitive Fluorescent Probe. ACS Sens 2023; 8:2068-2078. [PMID: 37141429 DOI: 10.1021/acssensors.3c00340] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Endolysosome dynamics plays an important role in autophagosome biogenesis. Hence, imaging the subcellular dynamics of endolysosomes using high-resolution fluorescent imaging techniques would deepen our understanding of autophagy and benefit the development of pharmaceuticals against endosome-related diseases. Taking advantage of the intramolecular charge-transfer mechanism, herein we report a cationic quinolinium-based fluorescent probe (PyQPMe) that exhibits excellent pH-sensitive fluorescence in endolysosomes at different stages of interest. A systematic photophysical and computational study on PyQPMe was carried out to rationalize its highly pH-dependent absorption and emission spectra. The large Stokes shift and strong fluorescence intensity of PyQPMe can effectively reduce the background noise caused by excitation light and microenvironments and provide a high signal-to-noise ratio for high-resolution imaging of endolysosomes. By applying PyQPMe as a small molecular probe in live cells, we were able to reveal a constant conversion rate from early endosomes to late endosomes/lysosomes during autophagy at the submicron level.
Collapse
Affiliation(s)
- Rui Chen
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Lei Wang
- Department of Cancer Biology, College of Medicine, University of Cincinnati, Cincinnati, Ohio 45267, United States
| | - Guodong Ding
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Guanqun Han
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Kangqiang Qiu
- Department of Cancer Biology, College of Medicine, University of Cincinnati, Cincinnati, Ohio 45267, United States
| | - Yujie Sun
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Jiajie Diao
- Department of Cancer Biology, College of Medicine, University of Cincinnati, Cincinnati, Ohio 45267, United States
| |
Collapse
|
11
|
Morris I, Croes CA, Boes M, Kalkhoven E. Advanced omics techniques shed light on CD1d-mediated lipid antigen presentation to iNKT cells. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159292. [PMID: 36773690 DOI: 10.1016/j.bbalip.2023.159292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/26/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023]
Abstract
Invariant natural killer T cells (iNKT cells) can be activated through binding antigenic lipid/CD1d complexes to their TCR. Antigenic lipids are processed, loaded, and displayed in complex with CD1d by lipid antigen presenting cells (LAPCs). The mechanism of lipid antigen presentation via CD1d is highly conserved with recent work showing adipocytes are LAPCs that, besides having a role in lipid storage, can activate iNKT cells and play an important role in systemic metabolic disease. Recent studies shed light on parameters potentially dictating cytokine output and how obesity-associated metabolic disease may affect such parameters. By following a lipid antigen's journey, we identify five key areas which may dictate cytokine skew: co-stimulation, structural properties of the lipid antigen, stability of lipid antigen/CD1d complexes, intracellular and extracellular pH, and intracellular and extracellular lipid environment. Recent publications indicate that the combination of advanced omics-type approaches and machine learning may be a fruitful way to interconnect these 5 areas, with the ultimate goal to provide new insights for therapeutic exploration.
Collapse
Affiliation(s)
- Imogen Morris
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, 3584, CG, Utrecht, the Netherlands
| | - Cresci-Anne Croes
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, 6708WE Wageningen, the Netherlands
| | - Marianne Boes
- Center for Translational Immunology, University Medical Centre Utrecht, Utrecht University, Lundlaan 6, 3584, EA, Utrecht, the Netherlands; Department of Paediatric Immunology, University Medical Center Utrecht, Utrecht University, Lundlaan 6, 3584, EA, Utrecht, the Netherlands
| | - Eric Kalkhoven
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, 3584, CG, Utrecht, the Netherlands.
| |
Collapse
|
12
|
Massaro M, Wu S, Baudo G, Liu H, Collum S, Lee H, Stigliano C, Segura-Ibarra V, Karmouty-Quintana H, Blanco E. Lipid nanoparticle-mediated mRNA delivery in lung fibrosis. Eur J Pharm Sci 2023; 183:106370. [PMID: 36642345 PMCID: PMC10898324 DOI: 10.1016/j.ejps.2023.106370] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/14/2022] [Accepted: 01/01/2023] [Indexed: 01/15/2023]
Abstract
mRNA delivery enables the specific synthesis of proteins with therapeutic potential, representing a powerful strategy in diseases lacking efficacious pharmacotherapies. Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease characterized by excessive extracellular matrix (ECM) deposition and subsequent alveolar remodeling. Alveolar epithelial type 2 cells (AEC2) and fibroblasts represent important targets in IPF given their role in initiating and driving aberrant wound healing responses that lead to excessive ECM deposition. Our objective was to examine a lipid nanoparticle (LNP)-based mRNA construct as a viable strategy to target alveolar epithelial cells and fibroblasts in IPF. mRNA-containing LNPs measuring ∼34 nm had high encapsulation efficiency, protected mRNA from degradation, and exhibited sustained release kinetics. eGFP mRNA LNP transfection in human primary cells proved dose- and time-dependent in vitro. In a bleomycin mouse model of lung fibrosis, luciferase mRNA LNPs administered intratracheally led to site-specific lung accumulation. Importantly, bioluminescence signal was detected in lungs as early as 2 h after delivery, with signal still evident at 48 h. Of note, LNPs were found associated with AEC2 and fibroblasts in vivo. Findings highlight the potential for pulmonary delivery of mRNA in IPF, opening therapeutic avenues aimed at halting and potentially reversing disease progression.
Collapse
Affiliation(s)
- Matteo Massaro
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030 United States; College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049 China
| | - Suhong Wu
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030 United States
| | - Gherardo Baudo
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030 United States; College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049 China
| | - Haoran Liu
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030 United States
| | - Scott Collum
- Department of Biochemistry and Molecular Biology, Divisions of Critical Care, Pulmonary and Sleep Medicine, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, United States
| | - Hyunho Lee
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030 United States
| | - Cinzia Stigliano
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX 77030 United States
| | - Victor Segura-Ibarra
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030 United States
| | - Harry Karmouty-Quintana
- Department of Biochemistry and Molecular Biology, Divisions of Critical Care, Pulmonary and Sleep Medicine, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, United States
| | - Elvin Blanco
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030 United States; Department of Cardiology, Houston Methodist DeBakey Heart and Vascular Center, Houston Methodist Hospital, Houston, TX 77030 United States; Department of Medicine, Weill Cornell Medical College, New York, NY 10065, United States.
| |
Collapse
|
13
|
Shoup D, Priola SA. Cell biology of prion strains in vivo and in vitro. Cell Tissue Res 2023; 392:269-283. [PMID: 35107622 PMCID: PMC11249200 DOI: 10.1007/s00441-021-03572-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/22/2021] [Indexed: 02/01/2023]
Abstract
The properties of infectious prions and the pathology of the diseases they cause are dependent upon the unique conformation of each prion strain. How the pathology of prion disease correlates with different strains and genetic backgrounds has been investigated via in vivo assays, but how interactions between specific prion strains and cell types contribute to the pathology of prion disease has been dissected more effectively using in vitro cell lines. Observations made through in vivo and in vitro assays have informed each other with regard to not only how genetic variation influences prion properties, but also how infectious prions are taken up by cells, modified by cellular processes and propagated, and the cellular components they rely on for persistent infection. These studies suggest that persistent cellular infection results from a balance between prion propagation and degradation. This balance may be shifted depending upon how different cell lines process infectious prions, potentially altering prion stability, and how fast they can be transported to the lysosome. Thus, in vitro studies have given us a deeper understanding of the interactions between different prions and cell types and how they may influence prion disease phenotypes in vivo.
Collapse
Affiliation(s)
- Daniel Shoup
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institutes of Health, National Institute of Allergy and Infectious Diseases, Hamilton, MT, 59840, USA
| | - Suzette A Priola
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institutes of Health, National Institute of Allergy and Infectious Diseases, Hamilton, MT, 59840, USA.
| |
Collapse
|
14
|
Akwa Y, Di Malta C, Zallo F, Gondard E, Lunati A, Diaz-de-Grenu LZ, Zampelli A, Boiret A, Santamaria S, Martinez-Preciado M, Cortese K, Kordower JH, Matute C, Lozano AM, Capetillo-Zarate E, Vaccari T, Settembre C, Baulieu EE, Tampellini D. Stimulation of synaptic activity promotes TFEB-mediated clearance of pathological MAPT/Tau in cellular and mouse models of tauopathies. Autophagy 2023; 19:660-677. [PMID: 35867714 PMCID: PMC9851246 DOI: 10.1080/15548627.2022.2095791] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Synapses represent an important target of Alzheimer disease (AD), and alterations of their excitability are among the earliest changes associated with AD development. Synaptic activation has been shown to be protective in models of AD, and deep brain stimulation (DBS), a surgical strategy that modulates neuronal activity to treat neurological and psychiatric disorders, produced positive effects in AD patients. However, the molecular mechanisms underlying the protective role(s) of brain stimulation are still elusive. We have previously demonstrated that induction of synaptic activity exerts protection in mouse models of AD and frontotemporal dementia (FTD) by enhancing the macroautophagy/autophagy flux and lysosomal degradation of pathological MAPT/Tau. We now provide evidence that TFEB (transcription factor EB), a master regulator of lysosomal biogenesis and autophagy, is a key mediator of this cellular response. In cultured primary neurons from FTD-transgenic mice, synaptic stimulation inhibits MTORC1 signaling, thus promoting nuclear translocation of TFEB, which, in turn, induces clearance of MAPT/Tau oligomers. Conversely, synaptic activation fails to promote clearance of toxic MAPT/Tau in neurons expressing constitutively active RRAG GTPases, which sequester TFEB in the cytosol, or upon TFEB depletion. Activation of TFEB is also confirmed in vivo in DBS-stimulated AD mice. We also demonstrate that DBS reduces pathological MAPT/Tau and promotes neuroprotection in Parkinson disease patients with tauopathy. Altogether our findings indicate that stimulation of synaptic activity promotes TFEB-mediated clearance of pathological MAPT/Tau. This mechanism, underlying the protective effect of DBS, provides encouraging support for the use of synaptic stimulation as a therapeutic treatment against tauopathies.Abbreviations: 3xTg-AD: triple transgenic AD mice; AD: Alzheimer disease; CSA: cyclosporine A; DBS: deep brain stimulation; DIV: days in vitro; EC: entorhinal cortex; FTD: frontotemporal dementia; gLTP: glycine-induced long-term potentiation; GPi: internal segment of the globus pallidus; PD: Parkinson disease; STN: subthalamic nucleus; TFEB: transcription factor EB.
Collapse
Affiliation(s)
- Yvette Akwa
- Department of Diseases and Hormones of the Nervous System, U1195 INSERM - Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Chiara Di Malta
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy,Department. of Translational Medicine, Medical Genetics, Federico II University, Naples, Italy
| | - Fátima Zallo
- Achucarro Basque Center for Neuroscience, Departamento de Neurociencias, Universidad del País Vasco (UPV/EHU) and Centro de Investigación en Red de Enfermedades, Neurodegenerativas (CIBERNED), Leioa, Spain
| | - Elise Gondard
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Adele Lunati
- Institut Professeur Baulieu, Le Kremlin-Bicêtre, France
| | - Lara Z. Diaz-de-Grenu
- Achucarro Basque Center for Neuroscience, Departamento de Neurociencias, Universidad del País Vasco (UPV/EHU) and Centro de Investigación en Red de Enfermedades, Neurodegenerativas (CIBERNED), Leioa, Spain,TECNALIA, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Angela Zampelli
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Anne Boiret
- Department of Diseases and Hormones of the Nervous System, U1195 INSERM - Université Paris-Saclay, Le Kremlin-Bicêtre, France,Institut Professeur Baulieu, Le Kremlin-Bicêtre, France
| | - Sara Santamaria
- Cellular Electron Microscopy Lab, DIMES, Department of Experimental Medicine, University of Genoa, Genova, Italy
| | - Maialen Martinez-Preciado
- Achucarro Basque Center for Neuroscience, Departamento de Neurociencias, Universidad del País Vasco (UPV/EHU) and Centro de Investigación en Red de Enfermedades, Neurodegenerativas (CIBERNED), Leioa, Spain
| | - Katia Cortese
- Cellular Electron Microscopy Lab, DIMES, Department of Experimental Medicine, University of Genoa, Genova, Italy
| | - Jeffrey H. Kordower
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA,College of Liberal Arts and Sciences, Arizona State University, Tempe, AZ, USA
| | - Carlos Matute
- Achucarro Basque Center for Neuroscience, Departamento de Neurociencias, Universidad del País Vasco (UPV/EHU) and Centro de Investigación en Red de Enfermedades, Neurodegenerativas (CIBERNED), Leioa, Spain
| | - Andres M. Lozano
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada,Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Toronto, ON, Canada
| | - Estibaliz Capetillo-Zarate
- Achucarro Basque Center for Neuroscience, Departamento de Neurociencias, Universidad del País Vasco (UPV/EHU) and Centro de Investigación en Red de Enfermedades, Neurodegenerativas (CIBERNED), Leioa, Spain,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Thomas Vaccari
- Department of Biosciences, University of Milan, Milan, Italy
| | - Carmine Settembre
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy,Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Etienne E. Baulieu
- Department of Diseases and Hormones of the Nervous System, U1195 INSERM - Université Paris-Saclay, Le Kremlin-Bicêtre, France,Institut Professeur Baulieu, Le Kremlin-Bicêtre, France
| | - Davide Tampellini
- Department of Diseases and Hormones of the Nervous System, U1195 INSERM - Université Paris-Saclay, Le Kremlin-Bicêtre, France,Institut Professeur Baulieu, Le Kremlin-Bicêtre, France,CONTACT Davide Tampellini CHU Bicêtre, U 1195 Inserm - Université Paris-Saclay. Secteur Marron, Bât. G. Pincus, door 47, 80, rue du General Leclerc 94276 Kremlin-Bicêtre CedexFrance
| |
Collapse
|
15
|
Kumar A, Sarkar P, Chattopadhyay A. Metabolic depletion of sphingolipids inhibits agonist-induced endocytosis of the serotonin 1A receptor. Traffic 2023; 24:95-107. [PMID: 36533718 DOI: 10.1111/tra.12879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 10/11/2022] [Accepted: 10/18/2022] [Indexed: 12/23/2022]
Abstract
G protein-coupled receptors (GPCRs) are vital cellular signaling machinery and currently represent ~40% drug targets. Endocytosis of GPCRs is an important process that allows stringent spatiotemporal control over receptor population on the cell surface. Although the role of proteins in GPCR endocytosis is well addressed, the contribution of membrane lipids in this process is rather unexplored. Sphingolipids are essential functional lipids in higher eukaryotes and are implicated in several neurological functions. To understand the role of sphingolipids in GPCR endocytosis, we subjected cells expressing human serotonin1A receptors (an important neurotransmitter GPCR involved in cognitive and behavioral functions) to metabolic sphingolipid depletion using fumonisin B1 , an inhibitor of sphingolipid biosynthetic pathway. Our results, using flow cytometric analysis and confocal microscopic imaging, show that sphingolipid depletion inhibits agonist-induced endocytosis of the serotonin1A receptor in a concentration-dependent manner, which was restored when sphingolipid levels were replenished. We further show that there was no change in the internalization of transferrin, a marker for clathrin-mediated endocytosis, under sphingolipid-depleted condition, highlighting the specific requirement of sphingolipids for endocytosis of serotonin1A receptors. Our results reveal the regulatory role of sphingolipids in GPCR endocytosis and highlight the importance of neurotransmitter receptor trafficking in health and disease.
Collapse
Affiliation(s)
- Abhishek Kumar
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India.,Amity Institute of Biotechnology, Amity University Haryana, Gurugram, India
| | - Parijat Sarkar
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Amitabha Chattopadhyay
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| |
Collapse
|
16
|
Abstract
The global prevalences of obesity and type 2 diabetes mellitus have reached epidemic status, presenting a heavy burden on society. It is therefore essential to find novel mechanisms and targets that could be utilized in potential treatment strategies and, as such, intracellular membrane trafficking has re-emerged as a regulatory tool for controlling metabolic homeostasis. Membrane trafficking is an essential physiological process that is responsible for the sorting and distribution of signalling receptors, membrane transporters and hormones or other ligands between different intracellular compartments and the plasma membrane. Dysregulation of intracellular transport is associated with many human diseases, including cancer, neurodegeneration, immune deficiencies and metabolic diseases, such as type 2 diabetes mellitus and its associated complications. This Review focuses on the latest advances on the role of endosomal membrane trafficking in metabolic physiology and pathology in vivo, highlighting the importance of this research field in targeting metabolic diseases.
Collapse
Affiliation(s)
- Jerome Gilleron
- Université Côte d'Azur, Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1065 C3M, Team Cellular and Molecular Pathophysiology of Obesity, Nice, France.
| | - Anja Zeigerer
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
| |
Collapse
|
17
|
Griffiths G, Gruenberg J, Marsh M, Wohlmann J, Jones AT, Parton RG. Nanoparticle entry into cells; the cell biology weak link. Adv Drug Deliv Rev 2022; 188:114403. [PMID: 35777667 DOI: 10.1016/j.addr.2022.114403] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 12/22/2022]
Abstract
Nanoparticles (NP) are attractive options for the therapeutic delivery of active pharmaceutical drugs, proteins and nucleic acids into cells, tissues and organs. Research into the development and application of NP most often starts with a diverse group of scientists, including chemists, bioengineers and material and pharmaceutical scientists, who design, fabricate and characterize NP in vitro (Stage 1). The next step (Stage 2) generally investigates cell toxicity as well as the processes by which NP bind, are internalized and deliver their cargo to appropriate model tissue culture cells. Subsequently, in Stage 3, selected NP are tested in animal systems, mostly mouse. Whereas the chemistry-based development and analysis in Stage 1 is increasingly sophisticated, the investigations in Stage 2 are not what could be regarded as 'state-of-the-art' for the cell biology field and the quality of research into NP interactions with cells is often sub-standard. In this review we describe our current understanding of the mechanisms by which particles gain entry into mammalian cells via endocytosis. We summarize the most important areas for concern, highlight some of the most common mis-conceptions, and identify areas where NP scientists could engage with trained cell biologists. Our survey of the different mechanisms of uptake into cells makes us suspect that claims for roles for caveolae, as well as macropinocytosis, in NP uptake into cells have been exaggerated, whereas phagocytosis has been under-appreciated.
Collapse
Affiliation(s)
- Gareth Griffiths
- Department Biosciences, University of Oslo, Blindernveien 31, PO Box 1041, 0316 Oslo, Norway.
| | - Jean Gruenberg
- Department of Biochemistry, University of Geneva, 30 quai E. Ansermet, 1211-Geneva-4, Switzerland
| | - Mark Marsh
- Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Jens Wohlmann
- Department Biosciences, University of Oslo, Blindernveien 31, PO Box 1041, 0316 Oslo, Norway
| | - Arwyn T Jones
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, Cardiff, Wales CF103NB, UK
| | - Robert G Parton
- Institute for Molecular Bioscience and Centre for Microscopy and Microanalysis, The University of Queensland, Qld 4072, Australia
| |
Collapse
|
18
|
The Effect of Aggregated Alpha Synuclein on Synaptic and Axonal Proteins in Parkinson’s Disease—A Systematic Review. Biomolecules 2022; 12:biom12091199. [PMID: 36139038 PMCID: PMC9496556 DOI: 10.3390/biom12091199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/22/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022] Open
Abstract
α-synuclein is a core component of Lewy bodies, one of the pathological hallmarks of Parkinson’s disease. Aggregated α-synuclein can impair both synaptic functioning and axonal transport. However, understanding the pathological role that α-synuclein plays at a cellular level is complicated as existing findings are multifaceted and dependent on the mutation, the species, and the quantity of the protein that is involved. This systematic review aims to stratify the research findings to develop a more comprehensive understanding of the role of aggregated α-synuclein on synaptic and axonal proteins in Parkinson’s disease models. A literature search of the PubMed, Scopus, and Web of Science databases was conducted and a total of 39 studies were included for analysis. The review provides evidence for the dysregulation or redistribution of synaptic and axonal proteins due to α-synuclein toxicity. However, due to the high quantity of variables that were used in the research investigations, it was challenging to ascertain exactly what effect α-synuclein has on the expression of the proteins. A more standardized experimental approach regarding the variables that are employed in future studies is crucial so that existing literature can be consolidated. New research involving aggregated α-synuclein at the synapse and regarding axonal transport could be advantageous in guiding new treatment solutions.
Collapse
|
19
|
Chen P, Yang W, Hong T, Miyazaki T, Dirisala A, Kataoka K, Cabral H. Nanocarriers escaping from hyperacidified endo/lysosomes in cancer cells allow tumor-targeted intracellular delivery of antibodies to therapeutically inhibit c-MYC. Biomaterials 2022; 288:121748. [PMID: 36038419 DOI: 10.1016/j.biomaterials.2022.121748] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/09/2022] [Accepted: 08/16/2022] [Indexed: 11/02/2022]
Abstract
Intracellular protein delivery is a powerful strategy for developing innovative therapeutics. Nanocarriers present great potential to deliver proteins inside cells by promoting cellular uptake and overcoming entrapment and degradation in acidic endo/lysosomal compartments. Thus, because cytosolic access is essential for eliciting the function of proteins, significant efforts have been dedicated to engineering nanocarriers with maximal endosomal escape regardless of the cell type. On the other hand, controlling the ability of nanocarriers to escape from the endo/lysosomal compartments of particular cells may offer the opportunity for enhancing delivery precision. To test this hypothesis, we developed pH-sensitive polymeric nanocarriers with adjustable endosomal escape potency for selectively reaching the cytosol of defined cancer cells with dysregulated endo/lysosomal acidification. By loading antibodies against nuclear pore complex in the nanocarriers, we demonstrated the selective delivery into the cytosol and subsequent nucleus targeting of cancer cells rather than non-cancerous cells both in vitro and in vivo. Systemically injected nanocarriers loading anti-c-MYC antibodies suppressed c-MYC in solid tumors and inhibit tumor growth without side effects, confirming the therapeutic potential of our approach. These results indicated that regulating the ability of nanocarriers to escape from endo/lysosomal compartments in particular cells is a practical approach for gaining delivery specificity.
Collapse
Affiliation(s)
- Pengwen Chen
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Wenqian Yang
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Taehun Hong
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Takuya Miyazaki
- Kanagawa Institute of Industrial Science and Technology, 705-1 Shimoimaizumi, Ebina City, Kanagawa, 243-0435, Japan
| | - Anjaneyulu Dirisala
- Innovation Center of Nanomedicine (iCONM), Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki, 210-0821, Japan
| | - Kazunori Kataoka
- Innovation Center of Nanomedicine (iCONM), Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki, 210-0821, Japan.
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
20
|
Lan Y, He W, Wang G, Wang Z, Chen Y, Gao F, Song D. Potential Antiviral Strategy Exploiting Dependence of SARS-CoV-2 Replication on Lysosome-Based Pathway. Int J Mol Sci 2022; 23:ijms23116188. [PMID: 35682877 PMCID: PMC9181800 DOI: 10.3390/ijms23116188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 12/04/2022] Open
Abstract
The recent novel coronavirus (SARS-CoV-2) disease (COVID-19) outbreak created a severe public health burden worldwide. Unfortunately, the SARS-CoV-2 variant is still spreading at an unprecedented speed in many countries and regions. There is still a lack of effective treatment for moderate and severe COVID-19 patients, due to a lack of understanding of the SARS-CoV-2 life cycle. Lysosomes, which act as “garbage disposals” for nearly all types of eukaryotic cells, were shown in numerous studies to support SARS-CoV-2 replication. Lysosome-associated pathways are required for virus entry and exit during replication. In this review, we summarize experimental evidence demonstrating a correlation between lysosomal function and SARS-CoV-2 replication, and the development of lysosomal perturbation drugs as anti-SARS-CoV-2 agents.
Collapse
Affiliation(s)
- Yungang Lan
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130022, China; (W.H.); (Z.W.); (Y.C.); (F.G.)
- Correspondence: (Y.L.); (D.S.)
| | - Wenqi He
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130022, China; (W.H.); (Z.W.); (Y.C.); (F.G.)
| | - Gaili Wang
- Jilin Academy of Animal Husbandry and Veterinary Medicine, Changchun 130022, China;
| | - Zhenzhen Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130022, China; (W.H.); (Z.W.); (Y.C.); (F.G.)
| | - Yuzhu Chen
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130022, China; (W.H.); (Z.W.); (Y.C.); (F.G.)
| | - Feng Gao
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130022, China; (W.H.); (Z.W.); (Y.C.); (F.G.)
| | - Deguang Song
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130022, China; (W.H.); (Z.W.); (Y.C.); (F.G.)
- Correspondence: (Y.L.); (D.S.)
| |
Collapse
|
21
|
Gao AYL, Lourdin-De Filippis E, Orlowski J, McKinney RA. Roles of Endomembrane Alkali Cation/Proton Exchangers in Synaptic Function and Neurodevelopmental Disorders. Front Physiol 2022; 13:892196. [PMID: 35547574 PMCID: PMC9081726 DOI: 10.3389/fphys.2022.892196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 03/30/2022] [Indexed: 12/25/2022] Open
Abstract
Endomembrane alkali cation (Na+, K+)/proton (H+) exchangers (eNHEs) are increasingly associated with neurological disorders. These eNHEs play integral roles in regulating the luminal pH, processing, and trafficking of cargo along the secretory (Golgi and post-Golgi vesicles) and endocytic (early, recycling, and late endosomes) pathways, essential regulatory processes vital for neuronal development and plasticity. Given the complex morphology and compartmentalization of multipolar neurons, the contribution of eNHEs in maintaining optimal pH homeostasis and cargo trafficking is especially significant during periods of structural and functional development and remodeling. While the importance of eNHEs has been demonstrated in a variety of non-neuronal cell types, their involvement in neuronal function is less well understood. In this review, we will discuss their emerging roles in excitatory synaptic function, particularly as it pertains to cellular learning and remodeling. We will also explore their connections to neurodevelopmental conditions, including intellectual disability, autism, and attention deficit hyperactivity disorders.
Collapse
Affiliation(s)
- Andy Y L Gao
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada.,Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada
| | | | - John Orlowski
- Department of Physiology, McGill University, Montreal, QC, Canada
| | - R Anne McKinney
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada
| |
Collapse
|
22
|
Chandra A, Prasad S, Alemanno F, De Luca M, Rizzo R, Romano R, Gigli G, Bucci C, Barra A, del Mercato LL. Fully Automated Computational Approach for Precisely Measuring Organelle Acidification with Optical pH Sensors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:18133-18149. [PMID: 35404562 PMCID: PMC9052195 DOI: 10.1021/acsami.2c00389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
pH balance and regulation within organelles are fundamental to cell homeostasis and proliferation. The ability to track pH in cells becomes significantly important to understand these processes in detail. Fluorescent sensors based on micro- and nanoparticles have been applied to measure intracellular pH; however, an accurate methodology to precisely monitor acidification kinetics of organelles in living cells has not been established, limiting the scope of this class of sensors. Here, silica-based fluorescent microparticles were utilized to probe the pH of intracellular organelles in MDA-MB-231 and MCF-7 breast cancer cells. In addition to the robust, ratiometric, trackable, and bioinert pH sensors, we developed a novel dimensionality reduction algorithm to automatically track and screen massive internalization events of pH sensors. We found that the mean acidification time is comparable among the two cell lines (ΔTMCF-7 = 16.3 min; ΔTMDA-MB-231 = 19.5 min); however, MCF-7 cells showed a much broader heterogeneity in comparison to MDA-MB-231 cells. The use of pH sensors and ratiometric imaging of living cells in combination with a novel computational approach allow analysis of thousands of events in a computationally inexpensive and faster way than the standard routes. The reported methodology can potentially be used to monitor pH as well as several other parameters associated with endocytosis.
Collapse
Affiliation(s)
- Anil Chandra
- Institute
of Nanotechnology, National Research Council (CNR-NANOTEC), Campus Ecotekne, Via Monteroni, Lecce 73100, Italy
| | - Saumya Prasad
- Institute
of Nanotechnology, National Research Council (CNR-NANOTEC), Campus Ecotekne, Via Monteroni, Lecce 73100, Italy
| | - Francesco Alemanno
- Institute
of Nanotechnology, National Research Council (CNR-NANOTEC), Campus Ecotekne, Via Monteroni, Lecce 73100, Italy
- Dipartimento
di Matematica e Fisica, Università
del Salento, Via Monteroni, Lecce 73100, Italy
| | - Maria De Luca
- Dipartimento
di Scienze e Tecnologie Biologiche ed Ambientali (DiSTeBa), Università del Salento, Via Monteroni, Lecce 73100, Italy
| | - Riccardo Rizzo
- Institute
of Nanotechnology, National Research Council (CNR-NANOTEC), Campus Ecotekne, Via Monteroni, Lecce 73100, Italy
| | - Roberta Romano
- Dipartimento
di Scienze e Tecnologie Biologiche ed Ambientali (DiSTeBa), Università del Salento, Via Monteroni, Lecce 73100, Italy
| | - Giuseppe Gigli
- Institute
of Nanotechnology, National Research Council (CNR-NANOTEC), Campus Ecotekne, Via Monteroni, Lecce 73100, Italy
- Dipartimento
di Matematica e Fisica, Università
del Salento, Via Monteroni, Lecce 73100, Italy
| | - Cecilia Bucci
- Dipartimento
di Scienze e Tecnologie Biologiche ed Ambientali (DiSTeBa), Università del Salento, Via Monteroni, Lecce 73100, Italy
| | - Adriano Barra
- Dipartimento
di Matematica e Fisica, Università
del Salento, Via Monteroni, Lecce 73100, Italy
- Istituto
Nazionale di Fisica Nucleare, Sezione di Lecce, Via Monteroni, Lecce 73100, Italy
| | - Loretta L. del Mercato
- Institute
of Nanotechnology, National Research Council (CNR-NANOTEC), Campus Ecotekne, Via Monteroni, Lecce 73100, Italy
| |
Collapse
|
23
|
Gock N, Follett J, Rintoul GL, Beischlag TV, Lee FJ. Endosomal recycling and dopamine neurotransmission: Exploring the links between the retromer and Parkinson's disease. Synapse 2022; 76:e22224. [DOI: 10.1002/syn.22224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 12/17/2021] [Accepted: 01/23/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Nathan Gock
- Faculty of Health Sciences Simon Fraser University 8888 University Dr Burnaby BC V5A 1S6 Canada
- Centre for Cell Biology, Development, and Disease Simon Fraser University 8888 University Dr Burnaby BC V5A 1S6 Canada
| | - Jordan Follett
- Laboratory of Neurogenetics and Neuroscience Department of Neurology University of Florida 1149 Newell Dr Gainesville FL 32610‐0236 United States
| | - Gordon L Rintoul
- Department of Biological Sciences Simon Fraser University 8888 University Dr Burnaby BC V5A 1S6 Canada
- Centre for Cell Biology, Development, and Disease Simon Fraser University 8888 University Dr Burnaby BC V5A 1S6 Canada
| | - Timothy V Beischlag
- Faculty of Health Sciences Simon Fraser University 8888 University Dr Burnaby BC V5A 1S6 Canada
- Centre for Cell Biology, Development, and Disease Simon Fraser University 8888 University Dr Burnaby BC V5A 1S6 Canada
| | - Frank J.S. Lee
- Faculty of Health Sciences Simon Fraser University 8888 University Dr Burnaby BC V5A 1S6 Canada
- Centre for Cell Biology, Development, and Disease Simon Fraser University 8888 University Dr Burnaby BC V5A 1S6 Canada
| |
Collapse
|
24
|
Song J, Liu Y, Wan J, Zhao GN, Wang JC, Dai Z, Hu S, Yang L, Liu Z, Fu Y, Dong E, Tang YD. SIMPLE Is an Endosomal Regulator That Protects Against NAFLD by Targeting the Lysosomal Degradation of EGFR. Hepatology 2021; 74:3091-3109. [PMID: 34320238 DOI: 10.1002/hep.32075] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS NAFLD has become a tremendous burden for public health; however, there is no drug for NAFLD therapy at present. Impaired endo-lysosome-mediated protein degradation is observed in a variety of metabolic disorders, such as atherosclerosis, type 2 diabetes mellitus, and NAFLD. Small integral membrane protein of lysosome/late endosome (SIMPLE) is a regulator of endosome-to-lysosome trafficking and cell signaling, but the role that SIMPLE plays in NAFLD progression remains unknown. Here we investigated SIMPLE function in NAFLD development and sophisticated mechanism therein. APPROACH AND RESULTS This study found that in vitro knockdown of SIMPLE significantly aggravated lipid accumulation and inflammation in hepatocytes treated with metabolic stimulation. Consistently, in vivo experiments showed that liver-specific Simple-knockout (Simple-HKO) mice exhibited more severe high-fat diet (HFD)-induced, high-fat-high-cholesterol diet (HFHC)-induced, and methionine-choline-deficient diet (MCD)-induced steatosis, glucose intolerance, inflammation, and fibrosis than those fed with normal chow (NC) diet. Meanwhile, RNA-sequencing demonstrated the up-regulated signaling pathways and signature genes involved in lipid metabolism, inflammation, and fibrosis in Simple-HKO mice compared with control mice under metabolic stress. Mechanically, we found SIMPLE directly interact with epidermal growth factor receptor (EGFR). SIMPLE deficiency results in dysregulated degradation of EGFR, subsequently hyperactivated EGFR phosphorylation, thus exaggerating NAFLD development. Moreover, we demonstrated that using EGFR inhibitor or silencing EGFR expression could ameliorate lipid accumulation induced by the knockdown of SIMPLE. CONCLUSIONS SIMPLE ameliorated NASH by prompting EGFR degradation and can be a potential therapeutic candidate for NASH.
Collapse
Affiliation(s)
- Jingjing Song
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yupeng Liu
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Juan Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Guang-Nian Zhao
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jian-Cheng Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Zhifei Dai
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
| | - Sha Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ling Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhen Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yi Fu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Erdan Dong
- The Institute of Cardiovascular Sciences, Peking University, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China.,Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Yi-Da Tang
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| |
Collapse
|
25
|
Yuan D, Hu K, Loke CM, Teramoto H, Liu C, Hu B. Interruption of endolysosomal trafficking leads to stroke brain injury. Exp Neurol 2021; 345:113827. [PMID: 34363809 PMCID: PMC8429234 DOI: 10.1016/j.expneurol.2021.113827] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/08/2021] [Accepted: 07/28/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND PURPOSE Dysfunction of the endolysosomal system can cause cell death. A key molecule for controlling the endolysosomal trafficking activities is the N-ethylmaleimide-sensitive factor (NSF) ATPase. This study investigates the cascades of NSF ATPase inactivation events, endolysosomal damage, cathepsin release, and neuronal death after focal brain ischemia. METHODS A total of 62 rats were used in this study. They were subjected to sham surgery or 2 h of focal brain ischemia followed by 1, 4, and 24 h of reperfusion. Confocal microscopy and Western blot analysis were utilized to analyze the levels, redistribution, and co-localization of key proteins of the Golgi apparatus, late endosomes, endolysosomes, and lysosomes. Light and electron microscopy were used to examine the histopathology, protein aggregation, and endolysosomal ultrastructures. RESULTS Two hours of focal brain ischemia in rats led to acute neuronal death at the striatal core in 4 h and a slower type of neuronal death in the neocortical area during 1-24 h reperfusion periods. Confocal microscopy showed that NSF immunoreactivity was irreversibly and selectively depleted from most, if not all, post-ischemic penumbral neurons. Western blot analysis further demonstrated that NSF depletion from brain sections was due to its deposition into dense inactive aggregates that could not be recognized by the NSF antibody. Commitantly, the Golgi apparatus was completely fragmented and cathepsin B (CTSB)-containing endolysosomal structures, as well as p62/SQSTM1- and EEA1-immunopositive structures were massively accumulated in the post-ischemic penumbral neurons. Ultimately, CTSB was released into the cytoplasm and extracellular space, causing stroke brain injury. CONCLUSION Stroke Inactivates NSF, resulting in disruption of the reforming of functional endolysosomal compartments, blockade of the endocytic and autophagic pathways, a large scale of CTSB release into the cytoplasm and extracellular space, and stroke brain injury in the rat model.
Collapse
Affiliation(s)
- Dong Yuan
- Department of Anesthesiology, University of Maryland, Baltimore, MD, United States of America
| | - Kurt Hu
- Department of Medicine, Division of Pulmonary and Critical Care, Medical College of Wisconsin, United States of America
| | - Chun Mun Loke
- Veterans Affairs Maryland Health Center System, United States of America
| | - Hironori Teramoto
- Department of Anesthesiology, University of Maryland, Baltimore, MD, United States of America
| | - Chunli Liu
- Veterans Affairs Maryland Health Center System, United States of America
| | - Bingren Hu
- Department of Anesthesiology, University of Maryland, Baltimore, MD, United States of America; Veterans Affairs Maryland Health Center System, United States of America.
| |
Collapse
|
26
|
Behl T, Sehgal A, Grover M, Singh S, Sharma N, Bhatia S, Al-Harrasi A, Aleya L, Bungau S. Uncurtaining the pivotal role of ABC transporters in diabetes mellitus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:41533-41551. [PMID: 34085197 DOI: 10.1007/s11356-021-14675-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 05/27/2021] [Indexed: 06/12/2023]
Abstract
The metabolic disorders are the edge points for the initiation of various diseases. These disorders comprised of several diseases including diabetes, obesity, and cardiovascular complications. Worldwide, the prevalence of these disorders is increasing day by day. The world's population is at higher threat of developing metabolic disease, especially diabetes. Therefore, there is an impregnable necessity of searching for a newer therapeutic target to reduce the burden of these disorders. Diabetes mellitus (DM) is marked with the dysregulated insulin secretion and resistance. The lipid and glucose transporters portray a pivotal role in the metabolism and transport of both of these. The excess production of lipid and glucose and decreased clearance of these leads to the emergence of DM. The ATP-binding cassette transporters (ABCT) are important for the metabolism of glucose and lipid. Various studies suggest the key involvement of ABCT in the pathologic process of different diseases. In addition, the involvement of other pathways, including IGF signaling, P13-Akt/PKC/MAPK signaling, and GLP-1 via regulation of ABCT, may help develop new treatment strategies to cope with insulin resistance dysregulated glucose metabolism, key features in DM.
Collapse
Affiliation(s)
- Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Madhuri Grover
- BS Anangpuria Institute of Pharmacy, Faridabad, Haryana, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Saurabh Bhatia
- Amity Institute of Pharmacy, Amity University, Gurugram, Haryana, India
- Natural & Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, Nizwa, Oman
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, Nizwa, Oman
| | - Lotfi Aleya
- Chrono-Environment Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Besançon, France
| | - Simona Bungau
- Department of Pharmacy, Faculty of Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
27
|
Chakraborty K, Anees P, Surana S, Martin S, Aburas J, Moutel S, Perez F, Koushika SP, Kratsios P, Krishnan Y. Tissue-specific targeting of DNA nanodevices in a multicellular living organism. eLife 2021; 10:e67830. [PMID: 34318748 PMCID: PMC8360651 DOI: 10.7554/elife.67830] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/26/2021] [Indexed: 12/21/2022] Open
Abstract
Nucleic acid nanodevices present great potential as agents for logic-based therapeutic intervention as well as in basic biology. Often, however, the disease targets that need corrective action are localized in specific organs, and thus realizing the full potential of DNA nanodevices also requires ways to target them to specific cell types in vivo. Here, we show that by exploiting either endogenous or synthetic receptor-ligand interactions and leveraging the biological barriers presented by the organism, we can target extraneously introduced DNA nanodevices to specific cell types in Caenorhabditis elegans, with subcellular precision. The amenability of DNA nanostructures to tissue-specific targeting in vivo significantly expands their utility in biomedical applications and discovery biology.
Collapse
Affiliation(s)
- Kasturi Chakraborty
- Department of Chemistry, The University of ChicagoChicagoUnited States
- Grossman Institute of Neuroscience, Quantitative Biology and Human Behavior, The University of ChicagoChicagoUnited States
| | - Palapuravan Anees
- Department of Chemistry, The University of ChicagoChicagoUnited States
- Grossman Institute of Neuroscience, Quantitative Biology and Human Behavior, The University of ChicagoChicagoUnited States
| | - Sunaina Surana
- Department of Chemistry, The University of ChicagoChicagoUnited States
- Grossman Institute of Neuroscience, Quantitative Biology and Human Behavior, The University of ChicagoChicagoUnited States
| | - Simona Martin
- Department of Chemistry, The University of ChicagoChicagoUnited States
- Grossman Institute of Neuroscience, Quantitative Biology and Human Behavior, The University of ChicagoChicagoUnited States
| | - Jihad Aburas
- Department of Neurobiology, The University of ChicagoChicagoUnited States
| | - Sandrine Moutel
- Recombinant Antibody Platform (TAb-IP), Institut Curie, PSL Research University, CNRS UMR144ParisFrance
- Cell Biology and Cancer Unit, Institut Curie, PSL Research University, CNRS UMR144ParisFrance
| | - Franck Perez
- Cell Biology and Cancer Unit, Institut Curie, PSL Research University, CNRS UMR144ParisFrance
| | - Sandhya P Koushika
- Department of Biological Sciences, Tata Institute of Fundamental ResearchMumbaiIndia
| | - Paschalis Kratsios
- Grossman Institute of Neuroscience, Quantitative Biology and Human Behavior, The University of ChicagoChicagoUnited States
- Department of Neurobiology, The University of ChicagoChicagoUnited States
| | - Yamuna Krishnan
- Department of Chemistry, The University of ChicagoChicagoUnited States
- Grossman Institute of Neuroscience, Quantitative Biology and Human Behavior, The University of ChicagoChicagoUnited States
| |
Collapse
|
28
|
Silin VI, Hoogerheide DP. pH dependent electrical properties of the inner- and outer- leaflets of biomimetic cell membranes. J Colloid Interface Sci 2021; 594:279-289. [PMID: 33765647 DOI: 10.1016/j.jcis.2021.03.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 02/16/2021] [Accepted: 03/03/2021] [Indexed: 10/21/2022]
Abstract
Composition and asymmetry of lipid membranes provide a means for regulation of trans-membrane permeability of ions and small molecules. The pH dependence of these processes plays an important role in the functioning and survival of cells. In this work, we study the pH dependence of membrane electrical resistance and capacitance using electrochemical impedance spectroscopy (EIS), surface plasmon resonance (SPR) and neutron reflectometry (NR) measurements of biomimetic tethered bilayer lipid membranes (tBLMs). tBLMs were prepared with single-component phospholipid compositions, as well as mixtures of phospholipids (phosphatidylcholine, phosphatidylserine, phosphatidylethanolamine, sphingomyelin and cholesterol) that mimic the inner- and outer- leaflets of plasma cell membranes. We found that all studied tBLMs have a resistance maximum at pHs near the pKas of the phospholipids. SPR and NR indicated that surface concentration of phospholipids and the thickness of the hydrophobic part of the membrane did not change versus pH. We postulate that these maxima are the result of protonation of the phosphate oxygen of the phospholipids and that hydronium ions play a major role in the conductance at pHs < pKas while sodium ions play the major role at pHs > pKas. An additional sharp resistance maximum of the PE tBLMs found at pH 5.9 and most likely represents the phosphatidylethanolamine's isoelectric point. The data show the key roles of the characteristic parts of phospholipid molecules: terminal group (choline, carboxyl, amine), phosphate, glycerol and ester oxygens on the permeability and selectivity of ions through the membrane. The interactions between these groups lead to significant differences in the electrical properties of biomimetic models of inner- and outer- leaflets of the plasma cell membranes.
Collapse
Affiliation(s)
- Vitalii I Silin
- University of Maryland, Institute for Bioscience and Biotechnology Research, Rockville MD 20850, USA.
| | - David P Hoogerheide
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| |
Collapse
|
29
|
De D, Bhattacharyya SN. Amyloid-β oligomers block lysosomal targeting of miRNPs to prevent miRNP recycling and target repression in glial cells. J Cell Sci 2021; 134:269032. [PMID: 34096603 DOI: 10.1242/jcs.258360] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 05/04/2021] [Indexed: 11/20/2022] Open
Abstract
Upon exposure to amyloid-β oligomers (Aβ1-42), glial cells start expressing proinflammatory cytokines, despite an increase in levels of repressive microRNAs (miRNAs). Exploring the mechanism of this potential immunity of target cytokine mRNAs against repressive miRNAs in amyloid-β-exposed glial cells, we have identified differential compartmentalization of repressive miRNAs in glial cells that explains this aberrant miRNA function. In Aβ1-42-treated cells, whereas target mRNAs were found to be associated with polysomes attached to endoplasmic reticulum (ER), the miRNA ribonucleoprotein complexes (miRNPs) were found to be present predominantly with endosomes that failed to recycle to ER-attached polysomes, preventing repression of mRNA targets. Aβ1-42 oligomers, by masking Rab7a proteins on endosomal surfaces, affected Rab7a interaction with Rab-interacting lysosomal protein (RILP), restricting the lysosomal targeting and recycling of miRNPs. RNA-processing body (P-body) localization of the miRNPs was found to be enhanced in amyloid-β-treated cells as a consequence of enhanced endosomal retention of miRNPs. Interestingly, depletion of P-body components partly rescued the miRNA function in glial cells exposed to amyloid-β and restricted the excess cytokine expression. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Dipayan De
- RNA Biology Research Laboratory, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Suvendra N Bhattacharyya
- RNA Biology Research Laboratory, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| |
Collapse
|
30
|
Thioredoxin-80 protects against amyloid-beta pathology through autophagic-lysosomal pathway regulation. Mol Psychiatry 2021; 26:1410-1423. [PMID: 31520067 DOI: 10.1038/s41380-019-0521-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 07/02/2019] [Accepted: 08/02/2019] [Indexed: 12/15/2022]
Abstract
Aggregation and accumulation of amyloid beta (Aβ) are believed to play a key role in the pathogenesis of Alzheimer's disease (AD). We previously reported that Thioredoxin-80 (Trx80), a truncated form of Thioredoxin-1, prevents the toxic effects of Aβ and inhibits its aggregation in vitro. Trx80 levels were found to be dramatically reduced both in the human brain and cerebrospinal fluid of AD patients. In this study, we investigated the effect of Trx80 expression using in vivo and in vitro models of Aβ pathology. We developed Drosophila melanogaster models overexpressing either human Trx80, human Aβ42, or both Aβ42/Trx80 in the central nervous system. We found that Trx80 expression prevents Aβ42 accumulation in the brain and rescues the reduction in life span and locomotor impairments seen in Aβ42 expressing flies. Also, we show that Trx80 induces autophagosome formation and reverses the inhibition of Atg4b-Atg8a/b autophagosome formation pathway caused by Aβ42. These effects were also confirmed in human neuroblastoma cells. These results give insight into Trx80 function in vivo, suggesting its role in the autophagosome biogenesis and thus in Aβ42 degradation. Our findings put Trx80 on the spotlight as an endogenous agent against Aβ42-induced toxicity in the brain suggesting that strategies to enhance Trx80 levels in neurons could potentially be beneficial against AD pathology in humans.
Collapse
|
31
|
Qian C, Xia M, Yang X, Chen P, Ye Q. Long Noncoding RNAs in the Progression of Atherosclerosis: An Integrated Analysis Based on Competing Endogenous RNA Theory. DNA Cell Biol 2020; 40:283-292. [PMID: 33332208 DOI: 10.1089/dna.2020.6106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) have been increasingly accepted to function importantly in human diseases by serving as competing endogenous RNAs (ceRNAs). To date, the ceRNA mechanisms of lncRNAs in the progression of atherosclerosis (AS) remain largely unclear. On the basis of ceRNA theory, we implemented a multistep computational analysis to construct an lncRNA-mRNA network for AS progression (ASpLMN). The probe reannotation method and microRNA-target interactions from databases were systematically integrated. Three lncRNAs (GS1-358P8.4, OIP5-AS1, and TUG1) with central topological features in the ASpLMN were firstly identified. By using subnetwork analysis, we then obtained two highly clustered modules and one dysregulated module from the ASpLMN network. These modules, sharing three lncRNAs (GS1-358P8.4, OIP5-AS1, and RP11-690D19.3), were significantly enriched in biological pathways such as regulation of actin cytoskeleton, tryptophan metabolism, lysosome, and arginine and proline metabolism. In addition, random walking in the ASpLMN network indicated that lncRNA RP1-39G22.7 and MBNL1-AS1 may also play an essential role in the pathology of AS progression. The identified six lncRNAs from the aforementioned steps could distinguish advanced- from early-staged AS, with a strong diagnostic power for AS occurrence. In conclusion, the results of this study will improve our understanding about the ceRNA-mediated regulatory mechanisms in AS progression, and provide novel lncRNAs as biomarkers or therapeutic targets for acute cardiovascular events.
Collapse
Affiliation(s)
- Cheng Qian
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Meng Xia
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Xueying Yang
- Department of Medical Records, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei Province, China
| | - Pengfei Chen
- Department of Gastroenterology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei Province, China
| | - Qiang Ye
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| |
Collapse
|
32
|
Ser J, Lee JY, Kim YH, Cho H. Enhanced Efficacy of Photodynamic Therapy by Coupling a Cell-Penetrating Peptide with Methylene Blue. Int J Nanomedicine 2020; 15:5803-5811. [PMID: 32821102 PMCID: PMC7418162 DOI: 10.2147/ijn.s254881] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 07/21/2020] [Indexed: 01/19/2023] Open
Abstract
Introduction Photodynamic therapy (PDT), which induces tissue damage by exposing tissue to a specific wavelength of light in the presence of a photosensitizer and oxygen, is a promising alternative treatment that could be used as an adjunct to chemotherapy and surgery in oncology. Cell-penetrating peptides (CPPs) with high arginine content, such as protamine, have membrane translocation and lysosome localization activities. They have been used in an extensive range of drug delivery applications. Methods We conjugated cell-penetrating peptides (CPPs) with methylene blue (MB) and then purification by FPLC. Synthesis structure was characterized by the absorbance spectrum, FPLC, Maldi-TOF, and then evaluated cell viability by cytotoxicity assay after photodynamic therapy (PDT) assay. An uptake imaging assay was used to determine the sites of MB and MB-Pro in subcellular compartments. Results In vitro assays showed that MB-Pro has more efficient photodynamic activities than MB alone for the colon cancer cells, owing to lysosome rupture causing the rapid necrotic cell death. In this study, we coupled protamine with MB for high efficacy PDT. The conjugates localized in the lysosomes and enhanced the efficiency of PDT by inducing necrotic cell death, whereas PDT with non-coupled MB resulted in only apoptotic processes. Discussion Our research aimed to enhance PDT by engineering the photosensitizers using CPPs coupled with methylene blue (MB). MB alone permeates through the cell membrane and distributes into the cytoplasm, whereas coupling of MB dye with CPPs localizes the MB through an endocytic mechanism to a specific organelle where the localized conjugates enhance the generation of reactive oxygen species (ROS) and induce cell damage.
Collapse
Affiliation(s)
- Jinhui Ser
- School of Materials Science & Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Ji Yeon Lee
- Department of Anesthesiology and Pain Medicine, Gachon University, Gil Medical Center, Incheon 21565, Republic of Korea
| | - Yong Ho Kim
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| | - Hoonsung Cho
- School of Materials Science & Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
33
|
Prasad H, Rao R. Endosomal Acid-Base Homeostasis in Neurodegenerative Diseases. Rev Physiol Biochem Pharmacol 2020; 185:195-231. [PMID: 32737755 PMCID: PMC7614123 DOI: 10.1007/112_2020_25] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Neurodegenerative disorders are debilitating and largely untreatable conditions that pose a significant burden to affected individuals and caregivers. Overwhelming evidence supports a crucial preclinical role for endosomal dysfunction as an upstream pathogenic hub and driver in Alzheimer's disease (AD) and related neurodegenerative disorders. We present recent advances on the role of endosomal acid-base homeostasis in neurodegeneration and discuss evidence for converging mechanisms. The strongest genetic risk factor in sporadic AD is the ε4 allele of Apolipoprotein E (ApoE4), which potentiates pre-symptomatic endosomal dysfunction and prominent amyloid beta (Aβ) pathology, although how these pathways are linked mechanistically has remained unclear. There is emerging evidence that the Christianson syndrome protein NHE6 is a prominent ApoE4 effector linking endosomal function to Aβ pathologies. By functioning as a dominant leak pathway for protons, the Na+/H+ exchanger activity of NHE6 limits endosomal acidification and regulates β-secretase (BACE)-mediated Aβ production and LRP1 receptor-mediated Aβ clearance. Pathological endosomal acidification may impact both Aβ generation and clearance mechanisms and emerges as a promising therapeutic target in AD. We also offer our perspective on the complex role of endosomal acid-base homeostasis in the pathogenesis of neurodegeneration and its therapeutic implications for neuronal rescue and repair strategies.
Collapse
Affiliation(s)
- Hari Prasad
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India, Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rajini Rao
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
34
|
Fernández de Castro I, Tenorio R, Ortega-González P, Knowlton JJ, Zamora PF, Lee CH, Fernández JJ, Dermody TS, Risco C. A modified lysosomal organelle mediates nonlytic egress of reovirus. J Cell Biol 2020; 219:e201910131. [PMID: 32356864 PMCID: PMC7337502 DOI: 10.1083/jcb.201910131] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/20/2020] [Accepted: 04/06/2020] [Indexed: 12/20/2022] Open
Abstract
Mammalian orthoreoviruses (reoviruses) are nonenveloped viruses that replicate in cytoplasmic membranous organelles called viral inclusions (VIs) where progeny virions are assembled. To better understand cellular routes of nonlytic reovirus exit, we imaged sites of virus egress in infected, nonpolarized human brain microvascular endothelial cells (HBMECs) and observed one or two distinct egress zones per cell at the basal surface. Transmission electron microscopy and 3D electron tomography (ET) of the egress zones revealed clusters of virions within membrane-bound structures, which we term membranous carriers (MCs), approaching and fusing with the plasma membrane. These virion-containing MCs emerged from larger, LAMP-1-positive membranous organelles that are morphologically compatible with lysosomes. We call these structures sorting organelles (SOs). Reovirus infection induces an increase in the number and size of lysosomes and modifies the pH of these organelles from ∼4.5-5 to ∼6.1 after recruitment to VIs and before incorporation of virions. ET of VI-SO-MC interfaces demonstrated that these compartments are connected by membrane-fusion points, through which mature virions are transported. Collectively, our results show that reovirus uses a previously undescribed, membrane-engaged, nonlytic egress mechanism and highlights a potential new target for therapeutic intervention.
Collapse
Affiliation(s)
- Isabel Fernández de Castro
- Cell Structure Laboratory, National Center for Biotechnology, Spanish National Research Council, Madrid, Spain
| | - Raquel Tenorio
- Cell Structure Laboratory, National Center for Biotechnology, Spanish National Research Council, Madrid, Spain
| | - Paula Ortega-González
- Cell Structure Laboratory, National Center for Biotechnology, Spanish National Research Council, Madrid, Spain
| | - Jonathan J. Knowlton
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Paula F. Zamora
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Christopher H. Lee
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Center for Microbial Pathogenesis, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA
| | - José J. Fernández
- Department of Macromolecular Structures, National Center for Biotechnology, Spanish National Research Council, Madrid, Spain
| | - Terence S. Dermody
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Center for Microbial Pathogenesis, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA
| | - Cristina Risco
- Cell Structure Laboratory, National Center for Biotechnology, Spanish National Research Council, Madrid, Spain
| |
Collapse
|
35
|
GSK-3-TSC axis governs lysosomal acidification through autophagy and endocytic pathways. Cell Signal 2020; 71:109597. [DOI: 10.1016/j.cellsig.2020.109597] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/06/2020] [Accepted: 03/06/2020] [Indexed: 12/16/2022]
|
36
|
Rasheed A, Robichaud S, Nguyen MA, Geoffrion M, Wyatt H, Cottee ML, Dennison T, Pietrangelo A, Lee R, Lagace TA, Ouimet M, Rayner KJ. Loss of MLKL (Mixed Lineage Kinase Domain-Like Protein) Decreases Necrotic Core but Increases Macrophage Lipid Accumulation in Atherosclerosis. Arterioscler Thromb Vasc Biol 2020; 40:1155-1167. [PMID: 32212851 DOI: 10.1161/atvbaha.119.313640] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES During the advancement of atherosclerosis, plaque cellularity is governed by the influx of monocyte-derived macrophages and their turnover via apoptotic and nonapoptotic forms of cell death. Previous reports have demonstrated that programmed necrosis, or necroptosis, of plaque macrophages contribute to necrotic core formation. Knockdown or inhibition of the necrosome components RIPK1 (receptor-interacting protein kinase 1) and RIPK3 (receptor-interacting protein kinase 3) slow atherogenesis, and activation of the terminal step of necroptosis, MLKL (mixed lineage kinase domain-like protein), has been demonstrated in advanced human atherosclerotic plaques. However, whether MLKL directly contributes to lesion development and necrotic core formation has not been investigated. Approaches and Results: MLKL expression was knocked down in atherogenic Apoe-knockout mice via the administration of antisense oligonucleotides. During atherogenesis, Mlkl knockdown decreased both programmed cell death and the necrotic core in the plaque. However, total lesion area remained unchanged. Furthermore, treatment with the MLKL antisense oligonucleotide unexpectedly reduced circulating cholesterol levels compared with control antisense oligonucleotide but increased the accumulation of lipids within the plaque and in vitro in macrophage foam cells. MLKL colocalized with the late endosome and multivesicular bodies in peritoneal macrophages incubated with atherogenic lipoproteins. Transfection with MLKL antisense oligonucleotide increased lipid localization with the multivesicular bodies, suggesting that upon Mlkl knockdown, lipid trafficking becomes defective leading to enhanced lipid accumulation in macrophages. CONCLUSIONS These studies confirm the requirement for MLKL as the executioner of necroptosis, and as such a significant contributor to the necrotic core during atherogenesis. We also identified a previously unknown role for MLKL in regulating endosomal trafficking to facilitate lipid handling in macrophages during atherogenesis.
Collapse
Affiliation(s)
- Adil Rasheed
- From the University of Ottawa Heart Institute, ON, Canada (A.R., S.R., M.-A.N., M.G., H.W., M.L.C., T.D., A.P., T.A.L., M.O., K.J.R.)
| | - Sabrina Robichaud
- From the University of Ottawa Heart Institute, ON, Canada (A.R., S.R., M.-A.N., M.G., H.W., M.L.C., T.D., A.P., T.A.L., M.O., K.J.R.).,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, ON, Canada (S.R., M.-A.N., M.L.C., T.A.L., M.O., K.J.R.)
| | - My-Anh Nguyen
- From the University of Ottawa Heart Institute, ON, Canada (A.R., S.R., M.-A.N., M.G., H.W., M.L.C., T.D., A.P., T.A.L., M.O., K.J.R.).,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, ON, Canada (S.R., M.-A.N., M.L.C., T.A.L., M.O., K.J.R.)
| | - Michele Geoffrion
- From the University of Ottawa Heart Institute, ON, Canada (A.R., S.R., M.-A.N., M.G., H.W., M.L.C., T.D., A.P., T.A.L., M.O., K.J.R.)
| | - Hailey Wyatt
- From the University of Ottawa Heart Institute, ON, Canada (A.R., S.R., M.-A.N., M.G., H.W., M.L.C., T.D., A.P., T.A.L., M.O., K.J.R.)
| | - Mary Lynn Cottee
- From the University of Ottawa Heart Institute, ON, Canada (A.R., S.R., M.-A.N., M.G., H.W., M.L.C., T.D., A.P., T.A.L., M.O., K.J.R.).,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, ON, Canada (S.R., M.-A.N., M.L.C., T.A.L., M.O., K.J.R.)
| | - Taylor Dennison
- From the University of Ottawa Heart Institute, ON, Canada (A.R., S.R., M.-A.N., M.G., H.W., M.L.C., T.D., A.P., T.A.L., M.O., K.J.R.)
| | - Antonietta Pietrangelo
- From the University of Ottawa Heart Institute, ON, Canada (A.R., S.R., M.-A.N., M.G., H.W., M.L.C., T.D., A.P., T.A.L., M.O., K.J.R.)
| | - Richard Lee
- Cardiovascular Antisense Drug Discovery Group, Ionis Pharmaceuticals, Carlsbad, CA (R.L.)
| | - Thomas A Lagace
- From the University of Ottawa Heart Institute, ON, Canada (A.R., S.R., M.-A.N., M.G., H.W., M.L.C., T.D., A.P., T.A.L., M.O., K.J.R.).,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, ON, Canada (S.R., M.-A.N., M.L.C., T.A.L., M.O., K.J.R.)
| | - Mireille Ouimet
- From the University of Ottawa Heart Institute, ON, Canada (A.R., S.R., M.-A.N., M.G., H.W., M.L.C., T.D., A.P., T.A.L., M.O., K.J.R.).,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, ON, Canada (S.R., M.-A.N., M.L.C., T.A.L., M.O., K.J.R.)
| | - Katey J Rayner
- From the University of Ottawa Heart Institute, ON, Canada (A.R., S.R., M.-A.N., M.G., H.W., M.L.C., T.D., A.P., T.A.L., M.O., K.J.R.).,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, ON, Canada (S.R., M.-A.N., M.L.C., T.A.L., M.O., K.J.R.)
| |
Collapse
|
37
|
Meng Y, Heybrock S, Neculai D, Saftig P. Cholesterol Handling in Lysosomes and Beyond. Trends Cell Biol 2020; 30:452-466. [PMID: 32413315 DOI: 10.1016/j.tcb.2020.02.007] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/14/2020] [Accepted: 02/21/2020] [Indexed: 01/06/2023]
Abstract
Lysosomes are of major importance for the regulation of cellular cholesterol homeostasis. Food-derived cholesterol and cholesterol esters contained within lipoproteins are delivered to lysosomes by endocytosis. From the lysosomal lumen, cholesterol is transported to the inner surface of the lysosomal membrane through the glycocalyx; this shuttling requires Niemann-Pick C (NPC) 1 and NPC2 proteins. The lysosomal membrane proteins lysosomal-associated membrane protein (LAMP)-2 and lysosomal integral membrane protein (LIMP)-2/SCARB2 also bind cholesterol. LAMP-2 may serve as a cholesterol reservoir, whereas LIMP-2, like NPC1, is able to transport cholesterol through a transglycocalyx tunnel. Contact sites and fusion events between lysosomes and other organelles mediate the distribution of cholesterol. Lysosomal cholesterol content is sensed thereby regulating mammalian target of rapamycin complex (mTORC)-dependent signaling. This review summarizes our understanding of the major steps in cholesterol handling from the moment it enters the lysosome until it leaves this compartment.
Collapse
Affiliation(s)
- Ying Meng
- Department of Cell Biology, School of Basic Medical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Saskia Heybrock
- Biochemisches Institut, Christian-Albrechts-Universität Kiel, Kiel, Germany
| | - Dante Neculai
- Department of Cell Biology, School of Basic Medical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Paul Saftig
- Biochemisches Institut, Christian-Albrechts-Universität Kiel, Kiel, Germany.
| |
Collapse
|
38
|
Lee JH, Wolfe DM, Darji S, McBrayer MK, Colacurcio DJ, Kumar A, Stavrides P, Mohan PS, Nixon RA. β2-adrenergic Agonists Rescue Lysosome Acidification and Function in PSEN1 Deficiency by Reversing Defective ER-to-lysosome Delivery of ClC-7. J Mol Biol 2020; 432:2633-2650. [PMID: 32105735 DOI: 10.1016/j.jmb.2020.02.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 02/06/2023]
Abstract
Lysosomal dysfunction is considered pathogenic in Alzheimer disease (AD). Loss of presenilin-1 (PSEN1) function causing AD impedes acidification via defective vacuolar ATPase (vATPase) V0a1 subunit delivery to lysosomes. We report that isoproterenol (ISO) and related β2-adrenergic agonists reacidify lysosomes in PSEN1 Knock out (KO) cells and fibroblasts from PSEN1 familial AD patients, which restores lysosomal proteolysis, calcium homeostasis, and normal autophagy flux. We identify a novel rescue mechanism involving Portein Kinase A (PKA)-mediated facilitation of chloride channel-7 (ClC-7) delivery to lysosomes which reverses markedly lowered chloride (Cl-) content in PSEN1 KO lysosomes. Notably, PSEN1 loss of function impedes Endoplasmic Reticulum (ER)-to-lysosome delivery of ClC-7. Transcriptomics of PSEN1-deficient cells reveals strongly downregulated ER-to-lysosome transport pathways and reversibility by ISO, thus accounting for lysosomal Cl- deficits that compound pH elevation due to deficient vATPase and its rescue by β2-adrenergic agonists. Our findings uncover a broadened PSEN1 role in lysosomal ion homeostasis and novel pH modulation of lysosomes through β2-adrenergic regulation of ClC-7, which can potentially be modulated therapeutically.
Collapse
Affiliation(s)
- Ju-Hyun Lee
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY, 10962, USA; Department of Psychiatry, Langone Medical Center, New York, NY, 10016, USA.
| | - Devin M Wolfe
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY, 10962, USA
| | - Sandipkumar Darji
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY, 10962, USA
| | - Mary Kate McBrayer
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY, 10962, USA
| | - Daniel J Colacurcio
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY, 10962, USA
| | - Asok Kumar
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY, 10962, USA
| | - Philip Stavrides
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY, 10962, USA
| | - Panaiyur S Mohan
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY, 10962, USA; Department of Psychiatry, Langone Medical Center, New York, NY, 10016, USA
| | - Ralph A Nixon
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY, 10962, USA; Department of Psychiatry, Langone Medical Center, New York, NY, 10016, USA; Department of Cell Biology, Langone Medical Center, New York, NY, 10016, USA; Neuroscience Institute, New York University, New York, NY 10016, USA.
| |
Collapse
|
39
|
Mattiazzi Usaj M, Sahin N, Friesen H, Pons C, Usaj M, Masinas MPD, Shuteriqi E, Shkurin A, Aloy P, Morris Q, Boone C, Andrews BJ. Systematic genetics and single-cell imaging reveal widespread morphological pleiotropy and cell-to-cell variability. Mol Syst Biol 2020; 16:e9243. [PMID: 32064787 PMCID: PMC7025093 DOI: 10.15252/msb.20199243] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/16/2019] [Accepted: 01/15/2020] [Indexed: 12/13/2022] Open
Abstract
Our ability to understand the genotype-to-phenotype relationship is hindered by the lack of detailed understanding of phenotypes at a single-cell level. To systematically assess cell-to-cell phenotypic variability, we combined automated yeast genetics, high-content screening and neural network-based image analysis of single cells, focussing on genes that influence the architecture of four subcellular compartments of the endocytic pathway as a model system. Our unbiased assessment of the morphology of these compartments-endocytic patch, actin patch, late endosome and vacuole-identified 17 distinct mutant phenotypes associated with ~1,600 genes (~30% of all yeast genes). Approximately half of these mutants exhibited multiple phenotypes, highlighting the extent of morphological pleiotropy. Quantitative analysis also revealed that incomplete penetrance was prevalent, with the majority of mutants exhibiting substantial variability in phenotype at the single-cell level. Our single-cell analysis enabled exploration of factors that contribute to incomplete penetrance and cellular heterogeneity, including replicative age, organelle inheritance and response to stress.
Collapse
Affiliation(s)
| | - Nil Sahin
- The Donnelly CentreUniversity of TorontoTorontoONCanada
- Department of Molecular GeneticsUniversity of TorontoTorontoONCanada
| | | | - Carles Pons
- Institute for Research in Biomedicine (IRB Barcelona)The Barcelona Institute for Science and TechnologyBarcelona, CataloniaSpain
| | - Matej Usaj
- The Donnelly CentreUniversity of TorontoTorontoONCanada
| | | | | | - Aleksei Shkurin
- The Donnelly CentreUniversity of TorontoTorontoONCanada
- Department of Molecular GeneticsUniversity of TorontoTorontoONCanada
| | - Patrick Aloy
- Institute for Research in Biomedicine (IRB Barcelona)The Barcelona Institute for Science and TechnologyBarcelona, CataloniaSpain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)Barcelona, CataloniaSpain
| | - Quaid Morris
- The Donnelly CentreUniversity of TorontoTorontoONCanada
- Department of Molecular GeneticsUniversity of TorontoTorontoONCanada
- Computational and Systems Biology ProgramMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Charles Boone
- The Donnelly CentreUniversity of TorontoTorontoONCanada
- Department of Molecular GeneticsUniversity of TorontoTorontoONCanada
- RIKEN Centre for Sustainable Resource ScienceWakoSaitamaJapan
| | - Brenda J Andrews
- The Donnelly CentreUniversity of TorontoTorontoONCanada
- Department of Molecular GeneticsUniversity of TorontoTorontoONCanada
| |
Collapse
|
40
|
Weber RA, Yen FS, Nicholson SPV, Alwaseem H, Bayraktar EC, Alam M, Timson RC, La K, Abu-Remaileh M, Molina H, Birsoy K. Maintaining Iron Homeostasis Is the Key Role of Lysosomal Acidity for Cell Proliferation. Mol Cell 2020; 77:645-655.e7. [PMID: 31983508 DOI: 10.1016/j.molcel.2020.01.003] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/20/2019] [Accepted: 12/26/2019] [Indexed: 02/07/2023]
Abstract
The lysosome is an acidic multi-functional organelle with roles in macromolecular digestion, nutrient sensing, and signaling. However, why cells require acidic lysosomes to proliferate and which nutrients become limiting under lysosomal dysfunction are unclear. To address this, we performed CRISPR-Cas9-based genetic screens and identified cholesterol biosynthesis and iron uptake as essential metabolic pathways when lysosomal pH is altered. While cholesterol synthesis is only necessary, iron is both necessary and sufficient for cell proliferation under lysosomal dysfunction. Remarkably, iron supplementation restores cell proliferation under both pharmacologic and genetic-mediated lysosomal dysfunction. The rescue was independent of metabolic or signaling changes classically associated with increased lysosomal pH, uncoupling lysosomal function from cell proliferation. Finally, our experiments revealed that lysosomal dysfunction dramatically alters mitochondrial metabolism and hypoxia inducible factor (HIF) signaling due to iron depletion. Altogether, these findings identify iron homeostasis as the key function of lysosomal acidity for cell proliferation.
Collapse
Affiliation(s)
- Ross A Weber
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA; Tri-Institutional MD-PhD Program, Weill Cornell Medicine, Rockefeller University, Memorial Sloan Kettering Cancer Center, 1300 York Avenue, New York, NY 10065, USA
| | - Frederick S Yen
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Shirony P V Nicholson
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA; Institute of Pathology, Medical University of Graz, Auenbruggerplatz 25, Graz 8036, Austria
| | - Hanan Alwaseem
- Proteomics Resource Center, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Erol C Bayraktar
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Mohammad Alam
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Rebecca C Timson
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Konnor La
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Monther Abu-Remaileh
- Departments of Chemical Engineering and Genetics and the Institute for Chemistry, Engineering & Medicine for Human Health (ChEM-H), Stanford University, 443 Via Ortega, Stanford, CA 94205, USA
| | - Henrik Molina
- Proteomics Resource Center, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Kıvanç Birsoy
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
41
|
ER-lysosome contacts enable cholesterol sensing by mTORC1 and drive aberrant growth signalling in Niemann-Pick type C. Nat Cell Biol 2019; 21:1206-1218. [PMID: 31548609 PMCID: PMC6936960 DOI: 10.1038/s41556-019-0391-5] [Citation(s) in RCA: 198] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 08/15/2019] [Indexed: 12/24/2022]
Abstract
Cholesterol activates the master growth regulator, mTORC1 kinase, by promoting its recruitment to the surface of lysosomes via the Rag guanosine triphosphatases (GTPases). The mechanisms that regulate lysosomal cholesterol content to enable mTORC1 signaling are unknown. We show that Oxysterol Binding Protein (OSBP) and its anchors at the endoplasmic reticulum (ER), VAPA/B, deliver cholesterol across ER-lysosome contacts to activate mTORC1. In cells lacking OSBP, but not other VAP-interacting cholesterol carriers, mTORC1 recruitment by the Rag GTPases is inhibited due to impaired cholesterol transport to lysosomes. Conversely, OSBP-mediated cholesterol trafficking drives constitutive mTORC1 activation in a disease model caused by loss of the lysosomal cholesterol transporter, Niemann-Pick C1 (NPC1). Chemical and genetic inactivation of OSBP suppresses aberrant mTORC1 signaling and restores autophagic function in cellular models of NPC. Thus, ER-lysosome contacts are signaling hubs that enable cholesterol sensing by mTORC1, and targeting their sterol-transfer activity could be beneficial in NPC.
Collapse
|
42
|
Gilleron J, Gerdes JM, Zeigerer A. Metabolic regulation through the endosomal system. Traffic 2019; 20:552-570. [PMID: 31177593 PMCID: PMC6771607 DOI: 10.1111/tra.12670] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/05/2019] [Accepted: 06/05/2019] [Indexed: 12/13/2022]
Abstract
The endosomal system plays an essential role in cell homeostasis by controlling cellular signaling, nutrient sensing, cell polarity and cell migration. However, its place in the regulation of tissue, organ and whole body physiology is less well understood. Recent studies have revealed an important role for the endosomal system in regulating glucose and lipid homeostasis, with implications for metabolic disorders such as type 2 diabetes, hypercholesterolemia and non-alcoholic fatty liver disease. By taking insights from in vitro studies of endocytosis and exploring their effects on metabolism, we can begin to connect the fields of endosomal transport and metabolic homeostasis. In this review, we explore current understanding of how the endosomal system influences the systemic regulation of glucose and lipid metabolism in mice and humans. We highlight exciting new insights that help translate findings from single cells to a wider physiological level and open up new directions for endosomal research.
Collapse
Affiliation(s)
- Jerome Gilleron
- Université Côte d'Azur, Institut National de la Santé et de la Recherche Médicale (INSERM), Mediterranean Center of Molecular Medicine (C3M)NiceFrance
| | - Jantje M. Gerdes
- Institute for Diabetes and RegenerationHelmholtz Center MunichNeuherbergGermany
- German Center for Diabetes Research (DZD)NeuherbergGermany
| | - Anja Zeigerer
- German Center for Diabetes Research (DZD)NeuherbergGermany
- Institute for Diabetes and CancerHelmholtz Center MunichNeuherbergGermany
- Joint Heidelberg‐IDC Translational Diabetes ProgramHeidelberg University HospitalHeidelbergGermany
| |
Collapse
|
43
|
Ebrahim S, Weigert R. Intravital microscopy in mammalian multicellular organisms. Curr Opin Cell Biol 2019; 59:97-103. [PMID: 31125832 PMCID: PMC6726551 DOI: 10.1016/j.ceb.2019.03.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/25/2019] [Accepted: 03/29/2019] [Indexed: 12/22/2022]
Abstract
Imaging subcellular processes in live animals is no longer a dream. The development of Intravital Subcellular Microscopy (ISMic) combined with the astounding repertoire of available mouse models makes it possible to investigate processes such as membrane trafficking in mammalian living tissues under native conditions. This has provided the unique opportunity to answer questions that cannot be otherwise addressed in reductionist model systems and to link cell biology to tissue pathophysiology.
Collapse
Affiliation(s)
- Seham Ebrahim
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Dr. Rm 2050B, Bethesda, MD, 20892, USA
| | - Roberto Weigert
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Dr. Rm 2050B, Bethesda, MD, 20892, USA.
| |
Collapse
|
44
|
Korolenko TA, Shintyapina AB, Pupyshev AB, Akopyan AA, Russkikh GS, Dikovskaya MA, Vavilin VA, Zavjalov EL, Tikhonova MA, Amstislavskaya TG. The regulatory role of cystatin C in autophagy and neurodegeneration. Vavilovskii Zhurnal Genet Selektsii 2019. [DOI: 10.18699/vj19.507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Autophagy is a dynamic cellular process involved in the turnover of proteins, protein complexes, and organelles through lysosomal degradation. It is particularly important in neurons, which do not have a proliferative option for cellular repair. Autophagy has been shown to be suppressed in the striatum of a transgenic mouse model of Parkinson’s disease. Cystatin C is one of the potent regulators of autophagy. Changes in the expression and secretion of cystatin C in the brain have been shown in amyotrophic lateral sclerosis, Alzheimer’s and Parkinson’s diseases, and in some animal models of neurodegeneration, thus proving a protective function of cystatin C. It has been suggested that cystatin C plays the primary role in amyloidogenesis and shows promise as a therapeutic agent for neurodegenerative diseases (Alzheimer’s and Parkinson’s diseases). Cystatin C colocalizes with the amyloid β-protein in the brain during Alzheimer’s disease. Controlled expression of a cystatin C peptide has been proposed as a new approach to therapy for Alzheimer’s disease. In Parkinson’s disease, serum cystatin C levels can predict disease severity and cognitive dysfunction, although the exact involvement of cystatin C remains unclear. The aim: to study the role of cystatin C in neurodegeneration and evaluate the results in relation to the mechanism of autophagy. In our study on humans, a higher concentration of cystatin C was noted in cerebrospinal fluid than in serum; much lower concentrations were observed in other biological fluids (intraocular fluid, bile, and sweat). In elderly persons (61–80 years old compared to practically healthy people at 40–60 years of age), we revealed increased cystatin C levels both in serum and intraocular fluid. In an experiment on C57Bl/6J mice, cystatin C concentration was significantly higher in brain tissue than in the liver and spleen: an indication of an important function of this cysteine protease inhibitor in the brain. Using a transgenic mouse model of Parkinson’s disease (5 months old), we demonstrated a significant increase in osmotic susceptibility of brain lysosomes, depending on autophagy, while in a murine model of Alzheimer’s disease, this parameter did not differ from that in the appropriate control.
Collapse
Affiliation(s)
- T. A. Korolenko
- Scientific Research Institute of Physiology and Basic Medicine
| | - A. B. Shintyapina
- Scientific Research Institute of Molecular Biology and Biophysics, Federal Research Center for Basic and Translational Medicine
| | - A. B. Pupyshev
- Scientific Research Institute of Physiology and Basic Medicine
| | - A. A. Akopyan
- Scientific Research Institute of Physiology and Basic Medicine
| | - G. S. Russkikh
- Scientific Research Institute of Biochemistry, Federal Research Center for Basic and Translational Medicine
| | - M. A. Dikovskaya
- Scientific Research Institute of Physiology and Basic Medicine; S.N. Fedorov NMRC “MNTK “Eye Microsurgery”, Novosibirsk Branch
| | - V. A. Vavilin
- Scientific Research Institute of Molecular Biology and Biophysics, Federal Research Center for Basic and Translational Medicine; Institute of Cytology and Genetics, SB RAS
| | | | - M. A. Tikhonova
- Scientific Research Institute of Physiology and Basic Medicine; Novosibirsk State University
| | - T. G. Amstislavskaya
- Scientific Research Institute of Physiology and Basic Medicine; Novosibirsk State University
| |
Collapse
|
45
|
Fieweger RA, Wilburn KM, VanderVen BC. Comparing the Metabolic Capabilities of Bacteria in the Mycobacterium tuberculosis Complex. Microorganisms 2019; 7:E177. [PMID: 31216777 PMCID: PMC6617402 DOI: 10.3390/microorganisms7060177] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/10/2019] [Accepted: 06/15/2019] [Indexed: 02/06/2023] Open
Abstract
Pathogenic mycobacteria are known for their ability to maintain persistent infections in various mammals. The canonical pathogen in this genus is Mycobacterium tuberculosis and this bacterium is particularly successful at surviving and replicating within macrophages. Here, we will highlight the metabolic processes that M. tuberculosis employs during infection in macrophages and compare these findings with what is understood for other pathogens in the M. tuberculosis complex.
Collapse
Affiliation(s)
- Rachael A Fieweger
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850, USA.
| | - Kaley M Wilburn
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850, USA.
| | - Brian C VanderVen
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850, USA.
| |
Collapse
|
46
|
Burgstaller S, Bischof H, Gensch T, Stryeck S, Gottschalk B, Ramadani-Muja J, Eroglu E, Rost R, Balfanz S, Baumann A, Waldeck-Weiermair M, Hay JC, Madl T, Graier WF, Malli R. pH-Lemon, a Fluorescent Protein-Based pH Reporter for Acidic Compartments. ACS Sens 2019; 4:883-891. [PMID: 30864782 PMCID: PMC6488996 DOI: 10.1021/acssensors.8b01599] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Distinct subcellular pH levels, especially in lysosomes and endosomes, are essential for the degradation, modification, sorting, accumulation, and secretion of macromolecules. Here, we engineered a novel genetically encoded pH probe by fusing the pH-stable cyan fluorescent protein (FP) variant, mTurquoise2, to the highly pH-sensitive enhanced yellow fluorescent protein, EYFP. This approach yielded a ratiometric biosensor-referred to as pH-Lemon-optimized for live imaging of distinct pH conditions within acidic cellular compartments. Protonation of pH-Lemon under acidic conditions significantly decreases the yellow fluorescence while the cyan fluorescence increases due to reduced Förster resonance energy transfer (FRET) efficiency. Because of its freely reversible and ratiometric responses, pH-Lemon represents a fluorescent biosensor for pH dynamics. pH-Lemon also shows a sizable pH-dependent fluorescence lifetime change that can be used in fluorescence lifetime imaging microscopy as an alternative observation method for the study of pH in acidic cellular compartments. Fusion of pH-Lemon to the protein microtubule-associated protein 1A/1B-light chain 3B (LC3B), a specific marker of autophagic membranes, resulted in its targeting within autolysosomes of HeLa cells. Moreover, fusion of pH-Lemon to a glycophosphatidylinositol (GPI) anchor allowed us to monitor the entire luminal space of the secretory pathway and the exoplasmic leaflet of the plasma membrane. Utilizing this new pH probe, we revealed neutral and acidic vesicles and substructures inside cells, highlighting compartments of distinct pH throughout the endomembrane system. These data demonstrate, that this novel pH sensor, pH-Lemon, is very suitable for the study of local pH dynamics of subcellular microstructures in living cells.
Collapse
Affiliation(s)
- Sandra Burgstaller
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria
| | - Helmut Bischof
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria
| | - Thomas Gensch
- Institute of Complex Systems, Zelluläre Biophysik (ICS-4), Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Sarah Stryeck
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria
| | - Benjamin Gottschalk
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria
| | - Jeta Ramadani-Muja
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria
| | - Emrah Eroglu
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria
| | - Rene Rost
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria
| | - Sabine Balfanz
- Institute of Complex Systems, Zelluläre Biophysik (ICS-4), Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Arnd Baumann
- Institute of Complex Systems, Zelluläre Biophysik (ICS-4), Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Markus Waldeck-Weiermair
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria
| | - Jesse C. Hay
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria
- Division of Biological Sciences and Center for Structural and Functional Neuroscience, The University of Montana, 32 Campus Drive, HS410, Missoula 59812-4824, Montana United States
| | - Tobias Madl
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria
- BioTechMed Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | - Wolfgang F. Graier
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria
- BioTechMed Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | - Roland Malli
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria
- BioTechMed Graz, Mozartgasse 12/II, 8010 Graz, Austria
| |
Collapse
|
47
|
Patel SG, Sayers EJ, He L, Narayan R, Williams TL, Mills EM, Allemann RK, Luk LYP, Jones AT, Tsai YH. Cell-penetrating peptide sequence and modification dependent uptake and subcellular distribution of green florescent protein in different cell lines. Sci Rep 2019; 9:6298. [PMID: 31000738 PMCID: PMC6472342 DOI: 10.1038/s41598-019-42456-8] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/18/2019] [Indexed: 02/06/2023] Open
Abstract
Protein therapy holds great promise for treating a variety of diseases. To act on intracellular targets, therapeutic proteins must cross the plasma membrane. This has previously been achieved by covalent attachment to a variety of cell-penetrating peptides (CPPs). However, there is limited information on the relative performance of CPPs in delivering proteins to cells, specifically the cytosol and other intracellular locations. Here we use green fluorescent protein (GFP) as a model cargo to compare delivery capacity of five CPP sequences (Penetratin, R8, TAT, Transportan, Xentry) and cyclic derivatives in different human cell lines (HeLa, HEK, 10T1/2, HepG2) representing different tissues. Confocal microscopy analysis indicates that most fusion proteins when incubated with cells at 10 µM localise to endosomes. Quantification of cellular uptake by flow cytometry reveals that uptake depends on both cell type (10T1/2 > HepG2 > HeLa > HEK), and CPP sequence (Transportan > R8 > Penetratin≈TAT > Xentry). CPP sequence cyclisation or addition of a HA-sequence increased cellular uptake, but fluorescence was still contained in vesicles with no evidence of endosomal escape. Our results provide a guide to select CPP for endosomal/lysosomal delivery and a basis for developing more efficient CPPs in the future.
Collapse
Affiliation(s)
- Sanjay G Patel
- School of Chemistry, Cardiff University, Cardiff, CF10 3AT, UK
| | - Edward J Sayers
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, CF10 3NB, UK
| | - Lin He
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, CF10 3NB, UK
| | - Rohan Narayan
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, CF10 3NB, UK
| | | | - Emily M Mills
- School of Chemistry, Cardiff University, Cardiff, CF10 3AT, UK
| | | | - Louis Y P Luk
- School of Chemistry, Cardiff University, Cardiff, CF10 3AT, UK
| | - Arwyn T Jones
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, CF10 3NB, UK.
| | - Yu-Hsuan Tsai
- School of Chemistry, Cardiff University, Cardiff, CF10 3AT, UK.
| |
Collapse
|
48
|
Patel S, Kim J, Herrera M, Mukherjee A, Kabanov AV, Sahay G. Brief update on endocytosis of nanomedicines. Adv Drug Deliv Rev 2019; 144:90-111. [PMID: 31419450 PMCID: PMC6986687 DOI: 10.1016/j.addr.2019.08.004] [Citation(s) in RCA: 239] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/06/2019] [Accepted: 08/10/2019] [Indexed: 12/14/2022]
Abstract
The complexity of nanoscale interactions between biomaterials and cells has limited the realization of the ultimate vision of nanotechnology in diagnostics and therapeutics. As such, significant effort has been devoted to advancing our understanding of the biophysical interactions of the myriad nanoparticles. Endocytosis of nanomedicine has drawn tremendous interest in the last decade. Here, we highlight the ever-present barriers to efficient intracellular delivery of nanoparticles as well as the current advances and strategies deployed to breach these barriers. We also introduce new barriers that have been largely overlooked such as the glycocalyx and macromolecular crowding. Additionally, we draw attention to the potential complications arising from the disruption of the newly discovered functions of the lysosomes. Novel strategies of exploiting the inherent intracellular defects in disease states to enhance delivery and the use of exosomes for bioanalytics and drug delivery are explored. Furthermore, we discuss the advances in imaging techniques like electron microscopy, super resolution fluorescence microscopy, and single particle tracking which have been instrumental in our growing understanding of intracellular pathways and nanoparticle trafficking. Finally, we advocate for the push towards more intravital analysis of nanoparticle transport phenomena using the multitude of techniques available to us. Unraveling the underlying mechanisms governing the cellular barriers to delivery and biological interactions of nanoparticles will guide the innovations capable of breaching these barriers.
Collapse
Affiliation(s)
- Siddharth Patel
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Robertson Life Science Building, 2730 SW Moody Avenue, Portland, OR 97201, USA
| | - Jeonghwan Kim
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Robertson Life Science Building, 2730 SW Moody Avenue, Portland, OR 97201, USA
| | - Marco Herrera
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Robertson Life Science Building, 2730 SW Moody Avenue, Portland, OR 97201, USA
| | - Anindit Mukherjee
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Robertson Life Science Building, 2730 SW Moody Avenue, Portland, OR 97201, USA
| | - Alexander V Kabanov
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, USA; Laboratory of Chemical Design of Bionanomaterials, Faculty of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119992, Russia.
| | - Gaurav Sahay
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Robertson Life Science Building, 2730 SW Moody Avenue, Portland, OR 97201, USA; Department of Biomedical Engineering, Oregon Health and Science University, Robertson Life Science Building, 2730 SW Moody Avenue, Portland, OR 97201, USA.
| |
Collapse
|
49
|
Sharma D, Otto G, Warren EC, Beesley P, King JS, Williams RSB. Gamma secretase orthologs are required for lysosomal activity and autophagic degradation in Dictyostelium discoideum, independent of PSEN (presenilin) proteolytic function. Autophagy 2019; 15:1407-1418. [PMID: 30806144 PMCID: PMC6613883 DOI: 10.1080/15548627.2019.1586245] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mutations in the γ-secretase complex are strongly associated with familial Alzheimer disease. Both proteolytic and non-proteolytic functions for the γ-secretase complex have been previously described in mammalian model organisms, but their relative contributions to disease pathology remain unclear. Here, we dissect the roles of orthologs of the γ-secretase components in the model system Dictyostelium, focusing on endocytosis, lysosomal activity and autophagy. In this model, we show that the orthologs of PSEN (psenA and psenB), Ncstn (nicastrin) and Aph-1 (gamma-secretase subunit Aph-1), are necessary for optimal fluid-phase uptake by macropinocytosis and in multicellular development under basic pH conditions. Disruption of either psenA/B or Aph-1 proteins also leads to disrupted phagosomal proteolysis as well as decreased autophagosomal acidification and autophagic flux. This indicates a general defect in lysosomal trafficking and degradation, which we show leads to the accumulation of ubiquitinated protein aggregates in cells lacking psenA/B and Aph-1 proteins. Importantly, we find that all the endocytic defects observed in Dictyostelium PSEN ortholog mutants can be fully rescued by proteolytically inactive Dictyostelium psenB and human PSEN1 proteins. Our data therefore demonstrates an evolutionarily conserved non-proteolytic role for presenilin, and γ-secretase component orthologs, in maintaining Dictyostelium lysosomal trafficking and autophagy. Abbreviations: Atg8: autophagy protein 8a; Aph-1: gamma-secretase subunit Aph-1; crtA: calreticulin; ER: endoplasmic reticulum; GFP: green fluorescent protein; GSK3B: glycogen synthase kinase 3 beta; Ncstn: nicastrin; PSEN1: presenilin 1; psenA and psenB: Dictyostelium presenilin A and B; TRITC; tetramethylrhodamine isothiocyanate.
Collapse
Affiliation(s)
- Devdutt Sharma
- a School of Biological Sciences , Royal Holloway, University of London , Egham , UK
| | - Grant Otto
- a School of Biological Sciences , Royal Holloway, University of London , Egham , UK
| | - Eleanor C Warren
- a School of Biological Sciences , Royal Holloway, University of London , Egham , UK
| | - Philip Beesley
- a School of Biological Sciences , Royal Holloway, University of London , Egham , UK
| | - Jason S King
- b Department of Biomedical Sciences , University of Sheffield , Sheffield , UK
| | - Robin S B Williams
- a School of Biological Sciences , Royal Holloway, University of London , Egham , UK
| |
Collapse
|
50
|
Defective Sphingolipids Metabolism and Tumor Associated Macrophages as the Possible Links Between Gaucher Disease and Blood Cancer Development. Int J Mol Sci 2019; 20:ijms20040843. [PMID: 30781349 PMCID: PMC6412850 DOI: 10.3390/ijms20040843] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/12/2019] [Accepted: 02/13/2019] [Indexed: 01/19/2023] Open
Abstract
There is a rising number of evidence indicating the increased risk of cancer development in association with congenital metabolic errors. Although these diseases represent disorders of individual genes, they lead to the disruption of metabolic pathways resulting in metabolite accumulation or their deficiency. Gaucher disease (GD) is an autosomal recessive sphingolipidosis. It is a rare lysosomal storage disease. A strong correlation between GD and different types of cancers, such as multiple myeloma, leukemia, and hepatocellular carcinoma, has been reported. Common features for all types of GD include spleen and liver enlargement, cytopenia, and a variety of bone defects. Overall, the molecular bases leading to the association of GD and cancers are not clearly understood. Here, we describe the role of ceramides in GD, discuss the potential implications of immune cells activation and show how the disturbances in their metabolism might promote blood cancer development.
Collapse
|