1
|
Pan J, Teng H, Liu F, Chen S, Liu Y, Teng Y, Liang D, Li Z, Wu L. Oligogenic effect is associated with the clinical heterogeneity of autosomal dominant deafness-15. Sci Rep 2025; 15:1981. [PMID: 39809934 PMCID: PMC11733205 DOI: 10.1038/s41598-025-85881-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 01/07/2025] [Indexed: 01/30/2025] Open
Abstract
Autosomal dominant deafness-15 which is caused by mutation in the POU4F3 gene, has been reported with a wide degree of clinical heterogeneity, even between intrafamilial members. However, the reason is still elusive. In this study, A four-generation Chinese family with 11 patients manifesting late-onset progressive non-syndromic hearing loss was recruited. The phenotype of hearing loss in this family showed a large variability in terms of onset age and progression speed. A novel mutation (c.706 C > T, p.L236F) was identified by the whole exome sequencing, and its pathogenicity was confirmed by altering the subcellular localization of POU4F3. In addition, we found that two individuals with earlier age of onset and more rapid progression of hearing loss carry additional pathogenic variants in other deafness genes (III-7, STRC:c.4057 C > T; IV-1, GJB2:c.109G > A; CDC14A:c.935G > A). By using the real time quantitative PCR, western blot, luciferase assays and electrophoretic mobility-shift assay, POU4F3 was proved to directly regulate the expression of STRC, GJB2 and CDC14A respectively. ChIP-seq further revealed that POU4F3 can also bind to a series of deafness genes. In summary we expanded the mutation spectrum of POU4F3 by identifying a novel mutation and its pathogenicity. Meanwhile, three genes STRC, GJB2 and CDC14A were validated as POU4F3 new targets, implicating that the variants in the three genes may play a role of genetic modifier to generate a synergistic and enhancement effect on the progression of DFNA15.
Collapse
Affiliation(s)
- Jianyan Pan
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, 410000, Hunan, China
- Department of Birth Health and Genetics, The Reproductive Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530000, Guangxi, China
| | - Hua Teng
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, 410000, Hunan, China
| | - Fang Liu
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, 410000, Hunan, China
| | - Siyi Chen
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, 410000, Hunan, China
| | - Yaning Liu
- Laboratory of Molecular Genetics, Hunan Jiahui Genetics Hospital, Changsha, 410000, Hunan, China
| | - Yanling Teng
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, 410000, Hunan, China
| | - Desheng Liang
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, 410000, Hunan, China
- Laboratory of Molecular Genetics, Hunan Jiahui Genetics Hospital, Changsha, 410000, Hunan, China
| | - Zhuo Li
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, 410000, Hunan, China.
| | - Lingqian Wu
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, 410000, Hunan, China.
- Laboratory of Molecular Genetics, Hunan Jiahui Genetics Hospital, Changsha, 410000, Hunan, China.
- Bright Prosperity Institute, Room 1006-2, 10th Floor, Building 1, No. 180 Kecheng Street, Hangzhou, 310000, China.
| |
Collapse
|
2
|
Ford LM, Petersen-Jones SM. Modifiers and their impact on inherited retinal diseases: a review. Ophthalmic Genet 2025:1-14. [PMID: 39780424 DOI: 10.1080/13816810.2024.2445221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/24/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND The phenotypic variability of inherited conditions can be due to several factors including environmental, epigenetic, and genetic. One of those genetic factors is the presence of modifying loci which alter the phenotypic expression of a primary disease or phenotype-causing variant. Modifiers are known to affect penetrance, dominance, expressivity, and pleiotropy of disease. METHODS We review the literature to highlight the impact of modifiers on inherited retinal diseases. RESULTS Modifiers have been identified or associated with phenotypic variation in many inherited retinal diseases including retinitis pigmentosa and Stargardt disease. Despite being notoriously difficult to identify, proposed candidate modifiers have been identified using multiple methods including GWAS, family and population studies, and variant calling methods. CONCLUSIONS Overall, modifiers present themselves as an interesting target for further understanding of underlying disease pathways that could ultimately lead to therapeutic targets.
Collapse
Affiliation(s)
- Laura M Ford
- Genetics and Genome Sciences, Michigan State University, East Lansing, Michigan, USA
| | - Simon M Petersen-Jones
- Department of Small Animal Clinical Sciences, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
3
|
Jarayseh T, Debaenst S, De Saffel H, Rosseel T, Milazzo M, Bek JW, Hudson DM, Van Nieuwerburgh F, Gansemans Y, Josipovic I, Boone MN, Witten PE, Willaert A, Coucke PJ. Bmpr1aa modulates the severity of the skeletal phenotype in an fkbp10-deficient Bruck syndrome zebrafish model. J Bone Miner Res 2024; 40:154-166. [PMID: 39566080 DOI: 10.1093/jbmr/zjae185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/23/2024] [Accepted: 11/19/2024] [Indexed: 11/22/2024]
Abstract
Rare monogenic disorders often exhibit significant phenotypic variability among individuals sharing identical genetic mutations. Bruck syndrome (BS), a prime example, is characterized by bone fragility and congenital contractures, although with a pronounced variability among family members. BS arises from recessive biallelic mutations in FKBP10 or PLOD2. FKBP65, the protein encoded by FKBP10, collaborates with the LH2 enzyme (PLOD2) in type I collagen telopeptide lysine hydroxylation, crucial for collagen cross-linking. To identify potential modifier genes and to investigate the mechanistic role of FKBP10 in BS pathogenesis, we established an fkbp10a knockout zebrafish model. Mass-spectrometry analysis in fkbp10a-/- mutants revealed a generally decreased type I collagen lysyl hydroxylation, paralleled by a wide skeletal variability similar to human patients. Ultrastructural examination of the skeleton in severely affected mutants showed enlarged type I collagen fibrils and disturbed elastin layers. Whole-exome sequencing of 7 mildly and 7 severely affected mutant zebrafish siblings, followed by single nucleotide polymorphism-based linkage analysis, indicated a linked region on chromosome 13, which segregates with phenotypic severity. Transcriptome analysis identified 6 differentially expressed genes (DEGs) between mildly and severely affected mutants. The convergence of genes within the linked region and DEGs highlighted bmpr1aa as a potential modifier gene, as its reduced expression correlates with increased skeletal severity. In summary, our study provides deeper insights into the role of FKBP10 in BS pathogenesis. Additionally, we identified a pivotal gene that influences phenotypic severity in a zebrafish model of BS. These findings hold promise for novel treatments in the field of bone diseases.
Collapse
Affiliation(s)
- Tamara Jarayseh
- Department of Biomolecular Medicine, Center for Medical Genetics, Ghent University, 9000, Ghent, Belgium
| | - Sophie Debaenst
- Department of Biomolecular Medicine, Center for Medical Genetics, Ghent University, 9000, Ghent, Belgium
| | - Hanna De Saffel
- Department of Biomolecular Medicine, Center for Medical Genetics, Ghent University, 9000, Ghent, Belgium
| | - Toon Rosseel
- Department of Biomolecular Medicine, Center for Medical Genetics, Ghent University, 9000, Ghent, Belgium
| | - Mauro Milazzo
- Department of Biomolecular Medicine, Center for Medical Genetics, Ghent University, 9000, Ghent, Belgium
| | - Jan Willem Bek
- Department of Biomolecular Medicine, Center for Medical Genetics, Ghent University, 9000, Ghent, Belgium
| | - David M Hudson
- Department of Orthopaedics and Sports Medicine, University of Washington, WA 98195, Seattle, United States
| | - Filip Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, 9000, Ghent, Belgium
| | - Yannick Gansemans
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, 9000, Ghent, Belgium
| | - Iván Josipovic
- Radiation Physics Research GroupCentre for X-ray Tomography (UGCT), Ghent University, 9000, Ghent, Belgium
| | - Matthieu N Boone
- Radiation Physics Research GroupCentre for X-ray Tomography (UGCT), Ghent University, 9000, Ghent, Belgium
| | | | - Andy Willaert
- Department of Biomolecular Medicine, Center for Medical Genetics, Ghent University, 9000, Ghent, Belgium
| | - Paul J Coucke
- Department of Biomolecular Medicine, Center for Medical Genetics, Ghent University, 9000, Ghent, Belgium
| |
Collapse
|
4
|
Sangermano R, Gupta P, Price C, Han J, Navarro J, Condroyer C, Place EM, Antonio A, Mukai S, Zanlonghi X, Sahel JA, DiTroia S, O'Heir E, Duncan JL, Pierce EA, Zeitz C, Audo I, Huckfeldt RM, Bujakowska KM. Coding and non-coding variants in the ciliopathy gene CFAP410 cause early-onset non-syndromic retinal degeneration. NPJ Genom Med 2024; 9:58. [PMID: 39516462 PMCID: PMC11549414 DOI: 10.1038/s41525-024-00439-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 10/12/2024] [Indexed: 11/16/2024] Open
Abstract
Inherited retinal degenerations are blinding genetic disorders characterized by high genetic and phenotypic heterogeneity. In this retrospective study, we describe sixteen families with early-onset non-syndromic retinal degenerations in which affected probands carried rare bi-allelic variants in CFAP410, a ciliary gene previously associated with recessive Jeune syndrome. We detected twelve variants, eight of which were novel, including c.373+91A>G, which led to aberrant splicing. To our knowledge this is the first likely pathogenic deep-intronic variant identified in this gene. Analysis of all reported and novel CFAP410 variants revealed no clear correlation between the severity of the CFAP410-associated phenotypes and the identified causal variants. This is supported by the fact that the frequently encountered missense variant p.(Arg73Pro), often found in syndromic cases, was also associated with non-syndromic retinal degeneration. This study expands the current knowledge of CFAP410-associated ciliopathy by enriching its mutational landscape and supports its association with non-syndromic retinal degeneration.
Collapse
Affiliation(s)
- Riccardo Sangermano
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Priya Gupta
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Cherrell Price
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Jinu Han
- Department of Ophthalmology, Gangnam Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Julien Navarro
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | | | - Emily M Place
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Aline Antonio
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Shizuo Mukai
- Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Xavier Zanlonghi
- Centre de compétence maladies rares, Service d'Ophtalmologie, CHU Rennes, Rennes, France
| | - José-Alain Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
- Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, Centre de Référence Maladies Rares REFERET and INSERM-DGOS, CIC 1423, Paris, France
- Vision Institute, University of Pittsburgh Medical Center and School of Medicine, Pittsburgh, PA, USA
| | - Stephanie DiTroia
- Center for Mendelian Genomics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Emily O'Heir
- Center for Mendelian Genomics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Jacque L Duncan
- Department of Ophthalmology, University of California, San Francisco, CA, USA
| | - Eric A Pierce
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Christina Zeitz
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Isabelle Audo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France.
- Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, Centre de Référence Maladies Rares REFERET and INSERM-DGOS, CIC 1423, Paris, France.
| | - Rachel M Huckfeldt
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Kinga M Bujakowska
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Green DJ, Michaud V, Lasseaux E, Plaisant C, Fitzgerald T, Birney E, Black GC, Arveiler B, Sergouniotis PI. The co-occurrence of genetic variants in the TYR and OCA2 genes confers susceptibility to albinism. Nat Commun 2024; 15:8436. [PMID: 39349469 PMCID: PMC11443028 DOI: 10.1038/s41467-024-52763-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 09/19/2024] [Indexed: 10/02/2024] Open
Abstract
Although rare genetic conditions are mostly caused by DNA sequence alterations that functionally disrupt individual genes, large-scale studies using genome sequencing have started to unmask additional complexity. Understanding how combinations of variants in different genes shape human phenotypes is expected to provide important insights into the clinical and genetic heterogeneity of rare disorders. Here, we use albinism, an archetypal rare condition associated with hypopigmentation, as an exemplar for the study of genetic interactions. We analyse data from the Genomics England 100,000 Genomes Project alongside a cohort of 1120 individuals with albinism, and investigate the effect of dual heterozygosity for the combination of two established albinism-related variants: TYR:c.1205 G > A (p.Arg402Gln) [rs1126809] and OCA2:c.1327 G > A (p.Val443Ile) [rs74653330]. As each of these changes alone is insufficient to cause disease when present in the heterozygous state, we sought evidence of synergistic effects. We show that, when both variants are present, the probability of receiving a diagnosis of albinism is significantly increased (odds ratio 12.8; 95% confidence interval 6.0 - 24.7; p-value 2.1 ×10-8). Further analyses in an independent cohort, the UK Biobank, support this finding and highlight that heterozygosity for the TYR:c.1205 G > A and OCA2:c.1327 G > A variant combination is associated with statistically significant alterations in visual acuity and central retinal thickness (traits that are considered albinism endophenotypes). The approach discussed in this report opens up new avenues for the investigation of oligogenic patterns in apparently Mendelian disorders.
Collapse
Affiliation(s)
- David J Green
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Vincent Michaud
- Department of Medical Genetics, University Hospital of Bordeaux, Bordeaux, France
- INSERM U1211, Rare Diseases, Genetics and Metabolism, University of Bordeaux, Bordeaux, France
| | - Eulalie Lasseaux
- Department of Medical Genetics, University Hospital of Bordeaux, Bordeaux, France
| | - Claudio Plaisant
- Department of Medical Genetics, University Hospital of Bordeaux, Bordeaux, France
| | - Tomas Fitzgerald
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL- EBI), Wellcome Genome Campus, Cambridge, UK
| | - Ewan Birney
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL- EBI), Wellcome Genome Campus, Cambridge, UK
| | - Graeme C Black
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Centre for Genomic Medicine, Saint Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Benoît Arveiler
- Department of Medical Genetics, University Hospital of Bordeaux, Bordeaux, France
- INSERM U1211, Rare Diseases, Genetics and Metabolism, University of Bordeaux, Bordeaux, France
| | - Panagiotis I Sergouniotis
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL- EBI), Wellcome Genome Campus, Cambridge, UK.
- Manchester Centre for Genomic Medicine, Saint Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK.
- Manchester Royal Eye Hospital, Manchester University NHS Foundation Trust, Manchester, UK.
| |
Collapse
|
6
|
Grandi FC, Astord S, Pezet S, Gidaja E, Mazzucchi S, Chapart M, Vasseur S, Mamchaoui K, Smeriglio P. Characterization of SMA type II skeletal muscle from treated patients shows OXPHOS deficiency and denervation. JCI Insight 2024; 9:e180992. [PMID: 39264856 PMCID: PMC11530132 DOI: 10.1172/jci.insight.180992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 09/10/2024] [Indexed: 09/14/2024] Open
Abstract
Spinal muscular atrophy (SMA) is a recessive developmental disorder caused by the genetic loss or mutation of the gene SMN1 (survival of motor neuron 1). SMA is characterized by neuromuscular symptoms and muscle weakness. Several years ago, SMA treatment underwent a radical transformation, with the approval of 3 different SMN-dependent disease-modifying therapies. This includes 2 SMN2 splicing therapies - risdiplam and nusinersen. One main challenge for type II SMA patients treated with these drugs is ongoing muscle fatigue, limited mobility, and other skeletal problems. To date, few molecular studies have been conducted on SMA patient-derived tissues after treatment, limiting our understanding of what targets remain unchanged after the spinal cord-targeted therapies are applied. Therefore, we collected paravertebral muscle from 8 type II patients undergoing spinal surgery for scoliosis and 7 controls. We used RNA-seq to characterize their transcriptional profiles and correlate these molecular changes with muscle histology. Despite the limited cohort size and heterogeneity, we observed a consistent loss of oxidative phosphorylation (OXPHOS) machinery of the mitochondria, a decrease in mitochondrial DNA copy number, and a correlation between signals of cellular stress, denervation, and increased fibrosis. This work provides new putative targets for combination therapies for type II SMA.
Collapse
Affiliation(s)
- Fiorella Carla Grandi
- Sorbonne Université, INSERM, Institut de Myologie, Centre de recherche en Myologie F-75013 Paris, France
| | - Stéphanie Astord
- Sorbonne Université, INSERM, Institut de Myologie, Centre de recherche en Myologie F-75013 Paris, France
| | - Sonia Pezet
- Sorbonne Université, INSERM, Institut de Myologie, Centre de recherche en Myologie F-75013 Paris, France
| | - Elèna Gidaja
- Sorbonne Université, INSERM, Institut de Myologie, Centre de recherche en Myologie F-75013 Paris, France
| | - Sabrina Mazzucchi
- Sorbonne Université, INSERM, Institut de Myologie, Centre de recherche en Myologie F-75013 Paris, France
| | - Maud Chapart
- Centre de Ressources Biologiques - Myobank-AFM de l’Institut de Myologie, Hôpital de la Pitié-Salpêtrière F - 75013 Paris, France
| | - Stéphane Vasseur
- Centre de Ressources Biologiques - Myobank-AFM de l’Institut de Myologie, Hôpital de la Pitié-Salpêtrière F - 75013 Paris, France
| | - Kamel Mamchaoui
- Sorbonne Université, INSERM, Institut de Myologie, Centre de recherche en Myologie F-75013 Paris, France
| | - Piera Smeriglio
- Sorbonne Université, INSERM, Institut de Myologie, Centre de recherche en Myologie F-75013 Paris, France
| |
Collapse
|
7
|
Zhang JH, Chen H, Ruan DD, Chen Y, Zhang L, Gao MZ, Chen Q, Yu HP, Wu JY, Lin XF, Fang ZT, Zheng XL, Luo JW, Liao LS, Li H. Adult type I Gaucher disease with splenectomy caused by a compound heterozygous GBA1 mutation in a Chinese patient: a case report. Ann Hematol 2024; 103:1765-1774. [PMID: 38509388 DOI: 10.1007/s00277-024-05710-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 03/12/2024] [Indexed: 03/22/2024]
Abstract
Gaucher disease (GD) is an autosomal recessive ailment resulting from glucocerebrosidase deficiency caused by a mutation in the GBA1 gene, leading to multi-organ problems in the liver, spleen, and bone marrow. In China, GD is extremely uncommon and has a lower incidence rate than worldwide. In this study, we report the case of an adult male with an enlarged spleen for 13 years who presented with abdominal distension, severe loss of appetite and weight, reduction of the three-line due to hypersplenism, frequent nosebleeds, and bloody stools. Regrettably, the unexpected discovery of splenic pathology suggestive of splenic Gaucher disease was only made after a splenectomy due to a lack of knowledge about rare disorders. Our patient's delayed diagnosis may have been due to the department where he was originally treated, but it highlights the need for multidisciplinary consultation in splenomegaly of unknown etiology. We then investigated the patient's clinical phenotypes and gene mutation features using genetically phenotypical analysis. The analysis of the GBA1 gene sequence indicated that the patient carried a compound heterozygous mutation consisting of two potentially disease-causing mutations: c.907C > A (p. Leu303Ile) and c.1448 T > C (p. Leu483Pro). While previous research has linked the p. Leu483Pro mutation site to neurologic GD phenotypes (GD2 and GD3), the patients in this investigation were identified as having non-neuronopathic GD1. The other mutation, p. Leu303Ile, is a new GD-related mutation not indexed in PubMed that enriches the GBA1 gene mutation spectrum. Biosignature analysis has shown that both mutations alter the protein's three-dimensional structure, which may be a pathogenic mechanism for GD1 in this patient.
Collapse
Affiliation(s)
- Jian-Hui Zhang
- Department of Traditional Chinese Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Hui Chen
- Department of Traditional Chinese Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Dan-Dan Ruan
- Department of Traditional Chinese Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Ying Chen
- Department of Traditional Chinese Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
- Department of Traditional Chinese Medicine, Fujian Provincial Hospital, Fuzhou, China
| | - Li Zhang
- Department of Traditional Chinese Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
- Department of Nephrology, Fujian Provincial Hospital, Fuzhou, China
| | - Mei-Zhu Gao
- Department of Traditional Chinese Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
- Department of Nephrology, Fujian Provincial Hospital, Fuzhou, China
| | - Qian Chen
- Department of Traditional Chinese Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Hong-Ping Yu
- Department of Traditional Chinese Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Jia-Yi Wu
- Department of Traditional Chinese Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Xin-Fu Lin
- Department of Traditional Chinese Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
- Department of Pediatrics, Fujian Provincial Hospital, Fuzhou, China
| | - Zhu-Ting Fang
- Department of Traditional Chinese Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Xiao-Ling Zheng
- Department of Traditional Chinese Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China.
- Department of Digestive Endoscopy, Fujian Provincial Hospital, Fuzhou, China.
| | - Jie-Wei Luo
- Department of Traditional Chinese Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China.
- Department of Traditional Chinese Medicine, Fujian Provincial Hospital, Fuzhou, China.
| | - Li-Sheng Liao
- Department of Traditional Chinese Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China.
- Department of Hematology, Fujian Provincial Hospital, Fuzhou, China.
| | - Hong Li
- Department of Traditional Chinese Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China.
- Department of Traditional Chinese Medicine, Fujian Provincial Hospital, Fuzhou, China.
| |
Collapse
|
8
|
Brlek P, Bulić L, Bračić M, Projić P, Škaro V, Shah N, Shah P, Primorac D. Implementing Whole Genome Sequencing (WGS) in Clinical Practice: Advantages, Challenges, and Future Perspectives. Cells 2024; 13:504. [PMID: 38534348 PMCID: PMC10969765 DOI: 10.3390/cells13060504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/04/2024] [Accepted: 03/11/2024] [Indexed: 03/28/2024] Open
Abstract
The integration of whole genome sequencing (WGS) into all aspects of modern medicine represents the next step in the evolution of healthcare. Using this technology, scientists and physicians can observe the entire human genome comprehensively, generating a plethora of new sequencing data. Modern computational analysis entails advanced algorithms for variant detection, as well as complex models for classification. Data science and machine learning play a crucial role in the processing and interpretation of results, using enormous databases and statistics to discover new and support current genotype-phenotype correlations. In clinical practice, this technology has greatly enabled the development of personalized medicine, approaching each patient individually and in accordance with their genetic and biochemical profile. The most propulsive areas include rare disease genomics, oncogenomics, pharmacogenomics, neonatal screening, and infectious disease genomics. Another crucial application of WGS lies in the field of multi-omics, working towards the complete integration of human biomolecular data. Further technological development of sequencing technologies has led to the birth of third and fourth-generation sequencing, which include long-read sequencing, single-cell genomics, and nanopore sequencing. These technologies, alongside their continued implementation into medical research and practice, show great promise for the future of the field of medicine.
Collapse
Affiliation(s)
- Petar Brlek
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia; (P.B.)
- International Center for Applied Biological Research, 10000 Zagreb, Croatia
- School of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Luka Bulić
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia; (P.B.)
| | - Matea Bračić
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia; (P.B.)
| | - Petar Projić
- International Center for Applied Biological Research, 10000 Zagreb, Croatia
| | | | - Nidhi Shah
- Dartmouth Hitchcock Medical Center, Lebannon, NH 03766, USA
| | - Parth Shah
- Dartmouth Hitchcock Medical Center, Lebannon, NH 03766, USA
| | - Dragan Primorac
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia; (P.B.)
- International Center for Applied Biological Research, 10000 Zagreb, Croatia
- School of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Medical School, University of Split, 21000 Split, Croatia
- Eberly College of Science, The Pennsylvania State University, State College, PA 16802, USA
- The Henry C. Lee College of Criminal Justice and Forensic Sciences, University of New Haven, West Haven, CT 06516, USA
- REGIOMED Kliniken, 96450 Coburg, Germany
- Medical School, University of Rijeka, 51000 Rijeka, Croatia
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Medical School, University of Mostar, 88000 Mostar, Bosnia and Herzegovina
- National Forensic Sciences University, Gujarat 382007, India
| |
Collapse
|
9
|
Núñez-Carpintero I, Rigau M, Bosio M, O'Connor E, Spendiff S, Azuma Y, Topf A, Thompson R, 't Hoen PAC, Chamova T, Tournev I, Guergueltcheva V, Laurie S, Beltran S, Capella-Gutiérrez S, Cirillo D, Lochmüller H, Valencia A. Rare disease research workflow using multilayer networks elucidates the molecular determinants of severity in Congenital Myasthenic Syndromes. Nat Commun 2024; 15:1227. [PMID: 38418480 PMCID: PMC10902324 DOI: 10.1038/s41467-024-45099-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/15/2024] [Indexed: 03/01/2024] Open
Abstract
Exploring the molecular basis of disease severity in rare disease scenarios is a challenging task provided the limitations on data availability. Causative genes have been described for Congenital Myasthenic Syndromes (CMS), a group of diverse minority neuromuscular junction (NMJ) disorders; yet a molecular explanation for the phenotypic severity differences remains unclear. Here, we present a workflow to explore the functional relationships between CMS causal genes and altered genes from each patient, based on multilayer network community detection analysis of complementary biomedical information provided by relevant data sources, namely protein-protein interactions, pathways and metabolomics. Our results show that CMS severity can be ascribed to the personalized impairment of extracellular matrix components and postsynaptic modulators of acetylcholine receptor (AChR) clustering. This work showcases how coupling multilayer network analysis with personalized -omics information provides molecular explanations to the varying severity of rare diseases; paving the way for sorting out similar cases in other rare diseases.
Collapse
Affiliation(s)
- Iker Núñez-Carpintero
- Barcelona Supercomputing Center (BSC), Plaça Eusebi Güell, 1-3, 08034, Barcelona, Spain
| | - Maria Rigau
- Barcelona Supercomputing Center (BSC), Plaça Eusebi Güell, 1-3, 08034, Barcelona, Spain
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Mattia Bosio
- Barcelona Supercomputing Center (BSC), Plaça Eusebi Güell, 1-3, 08034, Barcelona, Spain
- Coordination Unit Spanish National Bioinformatics Institute (INB/ELIXIR-ES), Barcelona Supercomputing Center, Barcelona, Spain
| | - Emily O'Connor
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Sally Spendiff
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Yoshiteru Azuma
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Pediatrics, Aichi Medical University, Nagakute, Japan
| | - Ana Topf
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Rachel Thompson
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Peter A C 't Hoen
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Teodora Chamova
- Department of Neurology, Expert Centre for Hereditary Neurologic and Metabolic Disorders, Alexandrovska University Hospital, Medical University-Sofia, Sofia, Bulgaria
| | - Ivailo Tournev
- Department of Neurology, Expert Centre for Hereditary Neurologic and Metabolic Disorders, Alexandrovska University Hospital, Medical University-Sofia, Sofia, Bulgaria
- Department of Cognitive Science and Psychology, New Bulgarian University, Sofia, 1618, Bulgaria
| | - Velina Guergueltcheva
- Clinic of Neurology, University Hospital Sofiamed, Sofia University St. Kliment Ohridski, Sofia, Bulgaria
| | - Steven Laurie
- Centro Nacional de Análisis Genómico (CNAG-CRG), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Catalonia, Spain
| | - Sergi Beltran
- Centro Nacional de Análisis Genómico (CNAG-CRG), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Catalonia, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain
| | - Salvador Capella-Gutiérrez
- Barcelona Supercomputing Center (BSC), Plaça Eusebi Güell, 1-3, 08034, Barcelona, Spain
- Coordination Unit Spanish National Bioinformatics Institute (INB/ELIXIR-ES), Barcelona Supercomputing Center, Barcelona, Spain
| | - Davide Cirillo
- Barcelona Supercomputing Center (BSC), Plaça Eusebi Güell, 1-3, 08034, Barcelona, Spain.
| | - Hanns Lochmüller
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
- Centro Nacional de Análisis Genómico (CNAG-CRG), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Catalonia, Spain
- Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, ON, Canada
- Department of Neuropediatrics and Muscle Disorders, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Alfonso Valencia
- Barcelona Supercomputing Center (BSC), Plaça Eusebi Güell, 1-3, 08034, Barcelona, Spain
- Coordination Unit Spanish National Bioinformatics Institute (INB/ELIXIR-ES), Barcelona Supercomputing Center, Barcelona, Spain
- ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Spain
| |
Collapse
|
10
|
Derrick CJ, Szenker-Ravi E, Santos-Ledo A, Alqahtani A, Yusof A, Eley L, Coleman AHL, Tohari S, Ng AYJ, Venkatesh B, Alharby E, Mansard L, Bonnet-Dupeyron MN, Roux AF, Vaché C, Roume J, Bouvagnet P, Almontashiri NAM, Henderson DJ, Reversade B, Chaudhry B. Functional analysis of germline VANGL2 variants using rescue assays of vangl2 knockout zebrafish. Hum Mol Genet 2024; 33:150-169. [PMID: 37815931 PMCID: PMC10772043 DOI: 10.1093/hmg/ddad171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/11/2023] [Accepted: 09/28/2023] [Indexed: 10/12/2023] Open
Abstract
Developmental studies have shown that the evolutionarily conserved Wnt Planar Cell Polarity (PCP) pathway is essential for the development of a diverse range of tissues and organs including the brain, spinal cord, heart and sensory organs, as well as establishment of the left-right body axis. Germline mutations in the highly conserved PCP gene VANGL2 in humans have only been associated with central nervous system malformations, and functional testing to understand variant impact has not been performed. Here we report three new families with missense variants in VANGL2 associated with heterotaxy and congenital heart disease p.(Arg169His), non-syndromic hearing loss p.(Glu465Ala) and congenital heart disease with brain defects p.(Arg135Trp). To test the in vivo impact of these and previously described variants, we have established clinically-relevant assays using mRNA rescue of the vangl2 mutant zebrafish. We show that all variants disrupt Vangl2 function, although to different extents and depending on the developmental process. We also begin to identify that different VANGL2 missense variants may be haploinsufficient and discuss evidence in support of pathogenicity. Together, this study demonstrates that zebrafish present a suitable pipeline to investigate variants of unknown significance and suggests new avenues for investigation of the different developmental contexts of VANGL2 function that are clinically meaningful.
Collapse
Affiliation(s)
- Christopher J Derrick
- Biosciences Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | | | - Adrian Santos-Ledo
- Biosciences Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | - Ahlam Alqahtani
- Biosciences Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | - Amirah Yusof
- Genome Institute of Singapore (GIS), A*STAR, 60 Biopolis St, 138672, Singapore
| | - Lorraine Eley
- Biosciences Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | - Alistair H L Coleman
- Biosciences Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | - Sumanty Tohari
- Institute of Molecular and Cell Biology, A*STAR, 61 Biopolis Dr, Proteos, 138673, Singapore
| | - Alvin Yu-Jin Ng
- Institute of Molecular and Cell Biology, A*STAR, 61 Biopolis Dr, Proteos, 138673, Singapore
- MGI Tech Singapore Pte Ltd, 21 Biopolis Rd, 138567, Singapore
| | - Byrappa Venkatesh
- Institute of Molecular and Cell Biology, A*STAR, 61 Biopolis Dr, Proteos, 138673, Singapore
| | - Essa Alharby
- Center for Genetics and Inherited Diseases, Taibah University, 7534 Abdul Muhsin Ibn Abdul Aziz, Al Ihn, Al-Madinah al-Munawwarah 42318, Saudi Arabia
- Faculty of Applied Medical Sciences, Taibah University, Janadah Bin Umayyah Road, Tayba, Al-Madinah al-Munawwarah 42353, Saudi Arabia
| | - Luke Mansard
- Molecular Genetics Laboratory, University of Montpellier, CHU Montpellier, 163 Rue Auguste Broussonnet, 34090 Montpellier, France
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, Inserm, 80 Av. Augustin Fliche, 34000 Montpellier, France
| | | | - Anne-Francoise Roux
- Molecular Genetics Laboratory, University of Montpellier, CHU Montpellier, 163 Rue Auguste Broussonnet, 34090 Montpellier, France
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, Inserm, 80 Av. Augustin Fliche, 34000 Montpellier, France
| | - Christel Vaché
- Molecular Genetics Laboratory, University of Montpellier, CHU Montpellier, 163 Rue Auguste Broussonnet, 34090 Montpellier, France
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, Inserm, 80 Av. Augustin Fliche, 34000 Montpellier, France
| | - Joëlle Roume
- Département de Génétique, CHI Poissy, St Germain-en-Laye, 10 Rue du Champ Gaillard, 78300 Poissy, France
| | - Patrice Bouvagnet
- CPDPN, Hôpital MFME, CHU de Martinique, Fort de France, Fort-de-France 97261, Martinique, France
| | - Naif A M Almontashiri
- Center for Genetics and Inherited Diseases, Taibah University, 7534 Abdul Muhsin Ibn Abdul Aziz, Al Ihn, Al-Madinah al-Munawwarah 42318, Saudi Arabia
- Faculty of Applied Medical Sciences, Taibah University, Janadah Bin Umayyah Road, Tayba, Al-Madinah al-Munawwarah 42353, Saudi Arabia
| | - Deborah J Henderson
- Biosciences Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | - Bruno Reversade
- Genome Institute of Singapore (GIS), A*STAR, 60 Biopolis St, 138672, Singapore
- Institute of Molecular and Cell Biology, A*STAR, 61 Biopolis Dr, Proteos, 138673, Singapore
- Smart-Health Initiative, BESE, KAUST, Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Medical Genetics Department, Koç Hospital Davutpaşa Caddesi 34010 Topkapı Istanbul, Istanbul, Turkey
| | - Bill Chaudhry
- Biosciences Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, United Kingdom
| |
Collapse
|
11
|
Renaux A, Terwagne C, Cochez M, Tiddi I, Nowé A, Lenaerts T. A knowledge graph approach to predict and interpret disease-causing gene interactions. BMC Bioinformatics 2023; 24:324. [PMID: 37644440 PMCID: PMC10463539 DOI: 10.1186/s12859-023-05451-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Understanding the impact of gene interactions on disease phenotypes is increasingly recognised as a crucial aspect of genetic disease research. This trend is reflected by the growing amount of clinical research on oligogenic diseases, where disease manifestations are influenced by combinations of variants on a few specific genes. Although statistical machine-learning methods have been developed to identify relevant genetic variant or gene combinations associated with oligogenic diseases, they rely on abstract features and black-box models, posing challenges to interpretability for medical experts and impeding their ability to comprehend and validate predictions. In this work, we present a novel, interpretable predictive approach based on a knowledge graph that not only provides accurate predictions of disease-causing gene interactions but also offers explanations for these results. RESULTS We introduce BOCK, a knowledge graph constructed to explore disease-causing genetic interactions, integrating curated information on oligogenic diseases from clinical cases with relevant biomedical networks and ontologies. Using this graph, we developed a novel predictive framework based on heterogenous paths connecting gene pairs. This method trains an interpretable decision set model that not only accurately predicts pathogenic gene interactions, but also unveils the patterns associated with these diseases. A unique aspect of our approach is its ability to offer, along with each positive prediction, explanations in the form of subgraphs, revealing the specific entities and relationships that led to each pathogenic prediction. CONCLUSION Our method, built with interpretability in mind, leverages heterogenous path information in knowledge graphs to predict pathogenic gene interactions and generate meaningful explanations. This not only broadens our understanding of the molecular mechanisms underlying oligogenic diseases, but also presents a novel application of knowledge graphs in creating more transparent and insightful predictors for genetic research.
Collapse
Affiliation(s)
- Alexandre Renaux
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles - Vrije Universiteit Brussel, Brussels, Belgium
- Machine Learning Group, Université Libre de Bruxelles, Brussels, Belgium
- Artificial Intelligence lab, Vrije Universiteit Brussel, Brussels, Belgium
| | - Chloé Terwagne
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles - Vrije Universiteit Brussel, Brussels, Belgium
- Machine Learning Group, Université Libre de Bruxelles, Brussels, Belgium
| | - Michael Cochez
- Computer Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Discovery Lab, Elsevier, Amsterdam, The Netherlands
| | - Ilaria Tiddi
- Computer Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Ann Nowé
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles - Vrije Universiteit Brussel, Brussels, Belgium
- Artificial Intelligence lab, Vrije Universiteit Brussel, Brussels, Belgium
| | - Tom Lenaerts
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles - Vrije Universiteit Brussel, Brussels, Belgium
- Machine Learning Group, Université Libre de Bruxelles, Brussels, Belgium
- Artificial Intelligence lab, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
12
|
Glotov OS, Chernov AN, Glotov AS. Human Exome Sequencing and Prospects for Predictive Medicine: Analysis of International Data and Own Experience. J Pers Med 2023; 13:1236. [PMID: 37623486 PMCID: PMC10455459 DOI: 10.3390/jpm13081236] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/26/2023] Open
Abstract
Today, whole-exome sequencing (WES) is used to conduct the massive screening of structural and regulatory genes in order to identify the allele frequencies of disease-associated polymorphisms in various populations and thus detect pathogenic genetic changes (mutations or polymorphisms) conducive to malfunctional protein sequences. With its extensive capabilities, exome sequencing today allows both the diagnosis of monogenic diseases (MDs) and the examination of seemingly healthy populations to reveal a wide range of potential risks prior to disease manifestation (in the future, exome sequencing may outpace costly and less informative genome sequencing to become the first-line examination technique). This review establishes the human genetic passport as a new WES-based clinical concept for the identification of new candidate genes, gene variants, and molecular mechanisms in the diagnosis, prediction, and treatment of monogenic, oligogenic, and multifactorial diseases. Various diseases are addressed to demonstrate the extensive potential of WES and consider its advantages as well as disadvantages. Thus, WES can become a general test with a broad spectrum pf applications, including opportunistic screening.
Collapse
Affiliation(s)
- Oleg S. Glotov
- Department of Genomic Medicine, D. O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 St. Petersburg, Russia;
- Department of Experimental Medical Virology, Molecular Genetics and Biobanking of Pediatric Research and Clinical Center for Infectious Diseases, 197022 St. Petersburg, Russia
| | - Alexander N. Chernov
- Department of Genomic Medicine, D. O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 St. Petersburg, Russia;
- Department of General Pathology and Pathological Physiology, Institute of Experimental Medicine, 197376 St. Petersburg, Russia
| | - Andrey S. Glotov
- Department of Genomic Medicine, D. O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 St. Petersburg, Russia;
| |
Collapse
|
13
|
Leggatt GP, Seaby EG, Veighey K, Gast C, Gilbert RD, Ennis S. A Role for Genetic Modifiers in Tubulointerstitial Kidney Diseases. Genes (Basel) 2023; 14:1582. [PMID: 37628633 PMCID: PMC10454709 DOI: 10.3390/genes14081582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
With the increased availability of genomic sequencing technologies, the molecular bases for kidney diseases such as nephronophthisis and mitochondrially inherited and autosomal-dominant tubulointerstitial kidney diseases (ADTKD) has become increasingly apparent. These tubulointerstitial kidney diseases (TKD) are monogenic diseases of the tubulointerstitium and result in interstitial fibrosis and tubular atrophy (IF/TA). However, monogenic inheritance alone does not adequately explain the highly variable onset of kidney failure and extra-renal manifestations. Phenotypes vary considerably between individuals harbouring the same pathogenic variant in the same putative monogenic gene, even within families sharing common environmental factors. While the extreme end of the disease spectrum may have dramatic syndromic manifestations typically diagnosed in childhood, many patients present a more subtle phenotype with little to differentiate them from many other common forms of non-proteinuric chronic kidney disease (CKD). This review summarises the expanding repertoire of genes underpinning TKD and their known phenotypic manifestations. Furthermore, we collate the growing evidence for a role of modifier genes and discuss the extent to which these data bridge the historical gap between apparently rare monogenic TKD and polygenic non-proteinuric CKD (excluding polycystic kidney disease).
Collapse
Affiliation(s)
- Gary P. Leggatt
- Human Genetics & Genomic Medicine, University of Southampton, Southampton SO16 6YD, UK; (E.G.S.); (K.V.); (C.G.); (R.D.G.); (S.E.)
- Wessex Kidney Centre, Queen Alexandra Hospital, Portsmouth Hospitals NHS Trust, Portsmouth PO6 3LY, UK
- Renal Department, University Hospital Southampton, Southampton SO16 6YD, UK
| | - Eleanor G. Seaby
- Human Genetics & Genomic Medicine, University of Southampton, Southampton SO16 6YD, UK; (E.G.S.); (K.V.); (C.G.); (R.D.G.); (S.E.)
| | - Kristin Veighey
- Human Genetics & Genomic Medicine, University of Southampton, Southampton SO16 6YD, UK; (E.G.S.); (K.V.); (C.G.); (R.D.G.); (S.E.)
- Renal Department, University Hospital Southampton, Southampton SO16 6YD, UK
| | - Christine Gast
- Human Genetics & Genomic Medicine, University of Southampton, Southampton SO16 6YD, UK; (E.G.S.); (K.V.); (C.G.); (R.D.G.); (S.E.)
- Wessex Kidney Centre, Queen Alexandra Hospital, Portsmouth Hospitals NHS Trust, Portsmouth PO6 3LY, UK
| | - Rodney D. Gilbert
- Human Genetics & Genomic Medicine, University of Southampton, Southampton SO16 6YD, UK; (E.G.S.); (K.V.); (C.G.); (R.D.G.); (S.E.)
- Department of Paediatric Nephrology, Southampton Children’s Hospital, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - Sarah Ennis
- Human Genetics & Genomic Medicine, University of Southampton, Southampton SO16 6YD, UK; (E.G.S.); (K.V.); (C.G.); (R.D.G.); (S.E.)
| |
Collapse
|
14
|
Ripolles-Garcia A, Murgiano L, Ziolkowska N, Marinho FP, Roszak K, Iffrig S, Aguirre GD, Miyadera K. Natural disease history of a canine model of oligogenic RPGRIP1-cone-rod dystrophy establishes variable effects of previously and newly mapped modifier loci. Hum Mol Genet 2023; 32:2139-2151. [PMID: 36951959 PMCID: PMC10281748 DOI: 10.1093/hmg/ddad046] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/23/2023] [Accepted: 03/21/2023] [Indexed: 03/24/2023] Open
Abstract
Canine RPGRIP1-cone-rod dystrophy (CRD), a model for human inherited retinal diseases (IRDs), was originally identified as autosomal recessive early-onset blindness. However, later studies revealed extensive phenotypic variability among RPGRIP1 mutants. This led to the identification of a homozygous MAP9 variant as a modifier associated with early-onset disease. Based on further phenotypic variation affecting cone photoreceptor function, we report mapping of L3 as an additional modifier locus, within a 4.1-Mb locus on canine chromosome 30. We establish the natural disease history of RPGRIP1-CRD based on up to 9-year long-term functional and structural retinal data from 58 dogs including 44 RPGRIP1 mutants grouped according to the modifier status. RPGRIP1 mutants affected by both MAP9 and L3 modifiers exhibited the most severe phenotypes with rapid disease progression. MAP9 alone was found to act as an overall accelerator of rod and cone diseases, while L3 had a cone-specific effect. Ultrastructural analysis of photoreceptors revealed varying degrees of rod and cone damage, while the connecting cilia appeared structurally preserved in all groups. We conclude that RPGRIP1-CRD is an oligogenic disease with at least three loci contributing to the pathogenesis. While the RPGRIP1 variant is required for developing the disease, MAP9 and L3 modifiers exacerbate the phenotype, individually and cumulatively. Oligogenic canine RPGRIP1-CRD illustrates the impact of multiple genetic modifiers on disease phenotype and thus has the potential to reveal new targets for broad-spectrum therapies for oligogenic or polygenic forms of human IRDs.
Collapse
Affiliation(s)
- Ana Ripolles-Garcia
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Leonardo Murgiano
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Natalia Ziolkowska
- Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Olsztyn 10-719, Poland
| | - Felipe Pompeo Marinho
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Karolina Roszak
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sommer Iffrig
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gustavo D Aguirre
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Keiko Miyadera
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
15
|
Siguero-Álvarez M, Salguero-Jiménez A, Grego-Bessa J, de la Barrera J, MacGrogan D, Prados B, Sánchez-Sáez F, Piñeiro-Sabarís R, Felipe-Medina N, Torroja C, Gómez MJ, Sabater-Molina M, Escribá R, Richaud-Patin I, Iglesias-García O, Sbroggio M, Callejas S, O'Regan DP, McGurk KA, Dopazo A, Giovinazzo G, Ibañez B, Monserrat L, Pérez-Pomares JM, Sánchez-Cabo F, Pendas AM, Raya A, Gimeno-Blanes JR, de la Pompa JL. A Human Hereditary Cardiomyopathy Shares a Genetic Substrate With Bicuspid Aortic Valve. Circulation 2023; 147:47-65. [PMID: 36325906 DOI: 10.1161/circulationaha.121.058767] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 09/27/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND The complex genetics underlying human cardiac disease is evidenced by its heterogenous manifestation, multigenic basis, and sporadic occurrence. These features have hampered disease modeling and mechanistic understanding. Here, we show that 2 structural cardiac diseases, left ventricular noncompaction (LVNC) and bicuspid aortic valve, can be caused by a set of inherited heterozygous gene mutations affecting the NOTCH ligand regulator MIB1 (MINDBOMB1) and cosegregating genes. METHODS We used CRISPR-Cas9 gene editing to generate mice harboring a nonsense or a missense MIB1 mutation that are both found in LVNC families. We also generated mice separately carrying these MIB1 mutations plus 5 additional cosegregating variants in the ASXL3, APCDD1, TMX3, CEP192, and BCL7A genes identified in these LVNC families by whole exome sequencing. Histological, developmental, and functional analyses of these mouse models were carried out by echocardiography and cardiac magnetic resonance imaging, together with gene expression profiling by RNA sequencing of both selected engineered mouse models and human induced pluripotent stem cell-derived cardiomyocytes. Potential biochemical interactions were assayed in vitro by coimmunoprecipitation and Western blot. RESULTS Mice homozygous for the MIB1 nonsense mutation did not survive, and the mutation caused LVNC only in heteroallelic combination with a conditional allele inactivated in the myocardium. The heterozygous MIB1 missense allele leads to bicuspid aortic valve in a NOTCH-sensitized genetic background. These data suggest that development of LVNC is influenced by genetic modifiers present in affected families, whereas valve defects are highly sensitive to NOTCH haploinsufficiency. Whole exome sequencing of LVNC families revealed single-nucleotide gene variants of ASXL3, APCDD1, TMX3, CEP192, and BCL7A cosegregating with the MIB1 mutations and LVNC. In experiments with mice harboring the orthologous variants on the corresponding Mib1 backgrounds, triple heterozygous Mib1 Apcdd1 Asxl3 mice showed LVNC, whereas quadruple heterozygous Mib1 Cep192 Tmx3;Bcl7a mice developed bicuspid aortic valve and other valve-associated defects. Biochemical analysis suggested interactions between CEP192, BCL7A, and NOTCH. Gene expression profiling of mutant mouse hearts and human induced pluripotent stem cell-derived cardiomyocytes revealed increased cardiomyocyte proliferation and defective morphological and metabolic maturation. CONCLUSIONS These findings reveal a shared genetic substrate underlying LVNC and bicuspid aortic valve in which MIB1-NOTCH variants plays a crucial role in heterozygous combination with cosegregating genetic modifiers.
Collapse
Affiliation(s)
- Marcos Siguero-Álvarez
- Intercellular Signaling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares and Ciber de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain (M.S.-A., A.S.-J., J.G.-B., D.M., B.P., R.P.-S., M.S., S.C.' A.D.' B.I., J.L.d.l.P.)
- Center for Chromosome Stability and Institut for Cellulær og Molekylær Medicin, University of Copenhagen, Denmark (M.S.)
| | - Alejandro Salguero-Jiménez
- Intercellular Signaling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares and Ciber de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain (M.S.-A., A.S.-J., J.G.-B., D.M., B.P., R.P.-S., M.S., S.C.' A.D.' B.I., J.L.d.l.P.)
| | - Joaquim Grego-Bessa
- Intercellular Signaling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares and Ciber de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain (M.S.-A., A.S.-J., J.G.-B., D.M., B.P., R.P.-S., M.S., S.C.' A.D.' B.I., J.L.d.l.P.)
| | - Jorge de la Barrera
- Bioinformatics Unit (J.d.l.B., C.T., M.J.G., F.S.-C.), Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Donal MacGrogan
- Intercellular Signaling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares and Ciber de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain (M.S.-A., A.S.-J., J.G.-B., D.M., B.P., R.P.-S., M.S., S.C.' A.D.' B.I., J.L.d.l.P.)
| | - Belén Prados
- Intercellular Signaling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares and Ciber de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain (M.S.-A., A.S.-J., J.G.-B., D.M., B.P., R.P.-S., M.S., S.C.' A.D.' B.I., J.L.d.l.P.)
- Pluripotent Cell Technology Unit (B.P., G.G.), Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Fernando Sánchez-Sáez
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer Universidad de Salamanca, Spain (F.S.-S., N.F.-M., A.M.P.)
| | - Rebeca Piñeiro-Sabarís
- Intercellular Signaling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares and Ciber de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain (M.S.-A., A.S.-J., J.G.-B., D.M., B.P., R.P.-S., M.S., S.C.' A.D.' B.I., J.L.d.l.P.)
| | - Natalia Felipe-Medina
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer Universidad de Salamanca, Spain (F.S.-S., N.F.-M., A.M.P.)
| | - Carlos Torroja
- Bioinformatics Unit (J.d.l.B., C.T., M.J.G., F.S.-C.), Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Manuel José Gómez
- Genomics Unit (S.C., A.D.), Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- Laboratorio de Cardiogenética, Instituto Murciano de Investigación Biosanitaria, European Reference Networks and Unidad de Referencia-European Reference Networks Guard Heart de Cardiopatias Familiares, Hospital Universitario Virgen de la Arrixaca-Universidad de Murcia, El Palmar, Spain (M.S.-M., J.R.G.-B.)
| | - María Sabater-Molina
- Intercellular Signaling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares and Ciber de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain (M.S.-A., A.S.-J., J.G.-B., D.M., B.P., R.P.-S., M.S., S.C.' A.D.' B.I., J.L.d.l.P.)
| | - Rubén Escribá
- Regenerative Medicine Program, Bellvitge Institute for Biomedical Research, Program for Clinical Translation of Regenerative Medicine in Catalonia, Centre for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine and Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain (R.E., I.R.-P., O.I.-G., A.R.)
| | - Ivonne Richaud-Patin
- Regenerative Medicine Program, Bellvitge Institute for Biomedical Research, Program for Clinical Translation of Regenerative Medicine in Catalonia, Centre for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine and Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain (R.E., I.R.-P., O.I.-G., A.R.)
| | - Olalla Iglesias-García
- Regenerative Medicine Program, Bellvitge Institute for Biomedical Research, Program for Clinical Translation of Regenerative Medicine in Catalonia, Centre for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine and Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain (R.E., I.R.-P., O.I.-G., A.R.)
- Regenerative Medicine Program, Cima Universidad de Navarra, Navarra Institute for Health Research, Pamplona, Spain (O.I.-G.)
| | - Mauro Sbroggio
- Intercellular Signaling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares and Ciber de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain (M.S.-A., A.S.-J., J.G.-B., D.M., B.P., R.P.-S., M.S., S.C.' A.D.' B.I., J.L.d.l.P.)
| | - Sergio Callejas
- Intercellular Signaling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares and Ciber de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain (M.S.-A., A.S.-J., J.G.-B., D.M., B.P., R.P.-S., M.S., S.C.' A.D.' B.I., J.L.d.l.P.)
- Genomics Unit (S.C., A.D.), Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Declan P O'Regan
- Medical Research Council London Institute of Medical Sciences (D.P.O.' K.A.M.), Imperial College London, United Kingdom
| | - Kathryn A McGurk
- Medical Research Council London Institute of Medical Sciences (D.P.O.' K.A.M.), Imperial College London, United Kingdom
- National Heart and Lung Institute (K.A.M.), Imperial College London, United Kingdom
| | - Ana Dopazo
- Intercellular Signaling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares and Ciber de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain (M.S.-A., A.S.-J., J.G.-B., D.M., B.P., R.P.-S., M.S., S.C.' A.D.' B.I., J.L.d.l.P.)
- Genomics Unit (S.C., A.D.), Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Giovanna Giovinazzo
- Pluripotent Cell Technology Unit (B.P., G.G.), Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Borja Ibañez
- Intercellular Signaling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares and Ciber de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain (M.S.-A., A.S.-J., J.G.-B., D.M., B.P., R.P.-S., M.S., S.C.' A.D.' B.I., J.L.d.l.P.)
- Translational Laboratory (B.I.), Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- Cardiology Department, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz Hospital, Madrid, Spain (B.I.)
| | - Lorenzo Monserrat
- Instituto de Investigación Biomédica de A Coruña and Departamento Científico, Health in Code S.L., A Coruña, Spain (L.M.)
| | - José María Pérez-Pomares
- Intercellular Signaling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares and Ciber de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain (M.S.-A., A.S.-J., J.G.-B., D.M., B.P., R.P.-S., M.S., S.C.' A.D.' B.I., J.L.d.l.P.)
- Department of Animal Biology, Faculty of Sciences, Instituto de Investigación Biomédica de Málaga and Centro Andaluz de Nanomedicina y Biotecnología, Universidad de Málaga, Spain (J.M.P.-P.)
| | - Fátima Sánchez-Cabo
- Bioinformatics Unit (J.d.l.B., C.T., M.J.G., F.S.-C.), Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Alberto M Pendas
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer Universidad de Salamanca, Spain (F.S.-S., N.F.-M., A.M.P.)
| | - Angel Raya
- Regenerative Medicine Program, Bellvitge Institute for Biomedical Research, Program for Clinical Translation of Regenerative Medicine in Catalonia, Centre for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine and Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain (R.E., I.R.-P., O.I.-G., A.R.)
| | - Juan R Gimeno-Blanes
- Laboratorio de Cardiogenética, Instituto Murciano de Investigación Biosanitaria, European Reference Networks and Unidad de Referencia-European Reference Networks Guard Heart de Cardiopatias Familiares, Hospital Universitario Virgen de la Arrixaca-Universidad de Murcia, El Palmar, Spain (M.S.-M., J.R.G.-B.)
| | - José Luis de la Pompa
- Intercellular Signaling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares and Ciber de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain (M.S.-A., A.S.-J., J.G.-B., D.M., B.P., R.P.-S., M.S., S.C.' A.D.' B.I., J.L.d.l.P.)
| |
Collapse
|
16
|
Mondal AK, Swaroop A. Network Biology and Medicine to Rescue: Applications for Retinal Disease Mechanisms and Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1415:165-171. [PMID: 37440030 PMCID: PMC11377069 DOI: 10.1007/978-3-031-27681-1_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Inherited retinal degenerations (IRDs) are clinically and genetically heterogenous blinding diseases that manifest through dysfunction of target cells, photoreceptors, and retinal pigment epithelium (RPE) in the retina. Despite knowledge of numerous underlying genetic defects, current therapeutic approaches, including gene centric applications, have had limited success, thereby asserting the need of new directions for basic and translational research. Human diseases have commonalities that can be represented in a network form, called diseasome, which captures relationships among disease genes, proteins, metabolites, and patient meta-data. Clinical and genetic information of IRDs suggest shared relationships among pathobiological factors, making these a model case for network medicine. Characterization of the diseasome would considerably improve our understanding of retinal pathologies and permit better design of targeted therapies for disrupted regions within the integrated disease network. Network medicine in synergy with the ongoing artificial intelligence revolution can boost therapeutic developments, especially gene agnostic treatment opportunities.
Collapse
Affiliation(s)
- Anupam K Mondal
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Anand Swaroop
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
17
|
Nagirnaja L, Lopes AM, Charng WL, Miller B, Stakaitis R, Golubickaite I, Stendahl A, Luan T, Friedrich C, Mahyari E, Fadial E, Kasak L, Vigh-Conrad K, Oud MS, Xavier MJ, Cheers SR, James ER, Guo J, Jenkins TG, Riera-Escamilla A, Barros A, Carvalho F, Fernandes S, Gonçalves J, Gurnett CA, Jørgensen N, Jezek D, Jungheim ES, Kliesch S, McLachlan RI, Omurtag KR, Pilatz A, Sandlow JI, Smith J, Eisenberg ML, Hotaling JM, Jarvi KA, Punab M, Rajpert-De Meyts E, Carrell DT, Krausz C, Laan M, O’Bryan MK, Schlegel PN, Tüttelmann F, Veltman JA, Almstrup K, Aston KI, Conrad DF. Diverse monogenic subforms of human spermatogenic failure. Nat Commun 2022; 13:7953. [PMID: 36572685 PMCID: PMC9792524 DOI: 10.1038/s41467-022-35661-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 12/16/2022] [Indexed: 12/27/2022] Open
Abstract
Non-obstructive azoospermia (NOA) is the most severe form of male infertility and typically incurable. Defining the genetic basis of NOA has proven challenging, and the most advanced classification of NOA subforms is not based on genetics, but simple description of testis histology. In this study, we exome-sequenced over 1000 clinically diagnosed NOA cases and identified a plausible recessive Mendelian cause in 20%. We find further support for 21 genes in a 2-stage burden test with 2072 cases and 11,587 fertile controls. The disrupted genes are primarily on the autosomes, enriched for undescribed human "knockouts", and, for the most part, have yet to be linked to a Mendelian trait. Integration with single-cell RNA sequencing data shows that azoospermia genes can be grouped into molecular subforms with synchronized expression patterns, and analogs of these subforms exist in mice. This analysis framework identifies groups of genes with known roles in spermatogenesis but also reveals unrecognized subforms, such as a set of genes expressed across mitotic divisions of differentiating spermatogonia. Our findings highlight NOA as an understudied Mendelian disorder and provide a conceptual structure for organizing the complex genetics of male infertility, which may provide a rational basis for disease classification.
Collapse
Affiliation(s)
- Liina Nagirnaja
- grid.5288.70000 0000 9758 5690Division of Genetics, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR USA
| | - Alexandra M. Lopes
- grid.5808.50000 0001 1503 7226i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal ,grid.5808.50000 0001 1503 7226IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
| | - Wu-Lin Charng
- grid.4367.60000 0001 2355 7002Department of Neurology, Washington University, St. Louis, MO USA
| | - Brian Miller
- grid.5288.70000 0000 9758 5690Division of Genetics, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR USA
| | - Rytis Stakaitis
- grid.475435.4Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark ,grid.475435.4International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark ,grid.45083.3a0000 0004 0432 6841Laboratory of Molecular Neurooncology, Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Ieva Golubickaite
- grid.475435.4Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark ,grid.475435.4International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark ,grid.45083.3a0000 0004 0432 6841Department of Genetics and Molecular Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Alexandra Stendahl
- grid.5288.70000 0000 9758 5690Division of Genetics, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR USA
| | - Tianpengcheng Luan
- grid.1008.90000 0001 2179 088XSchool of BioSciences, Faculty of Science, The University of Melbourne, Parkville, VIC Australia
| | - Corinna Friedrich
- grid.5949.10000 0001 2172 9288Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - Eisa Mahyari
- grid.5288.70000 0000 9758 5690Division of Genetics, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR USA
| | - Eloise Fadial
- grid.5288.70000 0000 9758 5690Division of Genetics, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR USA
| | - Laura Kasak
- grid.10939.320000 0001 0943 7661Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Katinka Vigh-Conrad
- grid.5288.70000 0000 9758 5690Division of Genetics, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR USA
| | - Manon S. Oud
- grid.10417.330000 0004 0444 9382Department of Human Genetics, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Miguel J. Xavier
- grid.1006.70000 0001 0462 7212Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, UK
| | - Samuel R. Cheers
- grid.1008.90000 0001 2179 088XSchool of BioSciences, Faculty of Science, The University of Melbourne, Parkville, VIC Australia
| | - Emma R. James
- grid.223827.e0000 0001 2193 0096Andrology and IVF Laboratory, Department of Surgery (Urology), University of Utah School of Medicine, Salt Lake City, UT USA ,grid.223827.e0000 0001 2193 0096Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT USA
| | - Jingtao Guo
- grid.223827.e0000 0001 2193 0096Andrology and IVF Laboratory, Department of Surgery (Urology), University of Utah School of Medicine, Salt Lake City, UT USA
| | - Timothy G. Jenkins
- grid.223827.e0000 0001 2193 0096Andrology and IVF Laboratory, Department of Surgery (Urology), University of Utah School of Medicine, Salt Lake City, UT USA
| | - Antoni Riera-Escamilla
- grid.418813.70000 0004 1767 1951Andrology Department, Fundació Puigvert, Universitat Autònoma de Barcelona, Instituto de Investigaciones Biomédicas Sant Pau (IIB-Sant Pau), Barcelona, Catalonia Spain ,grid.7080.f0000 0001 2296 0625Molecular Biology Laboratory, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau (IIB Sant Pau), Universitat Autònoma de Barcelona, Barcelona, Catalonia 08025 Spain
| | - Alberto Barros
- grid.5808.50000 0001 1503 7226i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal ,grid.5808.50000 0001 1503 7226Serviço de Genética, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Filipa Carvalho
- grid.5808.50000 0001 1503 7226i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal ,grid.5808.50000 0001 1503 7226Serviço de Genética, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Susana Fernandes
- grid.5808.50000 0001 1503 7226i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal ,grid.5808.50000 0001 1503 7226Serviço de Genética, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - João Gonçalves
- grid.422270.10000 0001 2287 695XDepartamento de Genética Humana, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa, Portugal ,grid.10772.330000000121511713Centre for Toxicogenomics and Human Health, Nova Medical School, Lisbon, Portugal
| | - Christina A. Gurnett
- grid.4367.60000 0001 2355 7002Department of Neurology, Washington University, St. Louis, MO USA
| | - Niels Jørgensen
- grid.475435.4Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark ,grid.475435.4International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Davor Jezek
- grid.4808.40000 0001 0657 4636Department of Histology and Embryology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Emily S. Jungheim
- grid.16753.360000 0001 2299 3507Department of Obstetrics and Gynecology at Northwestern University, Division of Reproductive Endocrinology, Chicago, IL USA
| | - Sabine Kliesch
- grid.16149.3b0000 0004 0551 4246Department of Clinical and Surgical Andrology, Centre of Reproductive Medicine and Andrology, University Hospital Münster, Münster, Germany
| | - Robert I. McLachlan
- grid.1002.30000 0004 1936 7857Hudson Institute of Medical Research and the Department of Obstetrics and Gynecology, Monash University, Clayton, VIC Australia
| | - Kenan R. Omurtag
- grid.34477.330000000122986657Department of Obstetrics and Gynecology at Washington University, Division of Reproductive Endocrinology, St. Louis, MO USA
| | - Adrian Pilatz
- grid.8664.c0000 0001 2165 8627Clinic for Urology, Pediatric Urology and Andrology, Justus Liebig University, Giessen, Germany
| | - Jay I. Sandlow
- grid.30760.320000 0001 2111 8460Department of Urology, Medical College of Wisconsin, Milwaukee, WI USA
| | - James Smith
- grid.266102.10000 0001 2297 6811Department of Urology, University California San Francisco, San Francisco, CA USA
| | - Michael L. Eisenberg
- grid.168010.e0000000419368956Department of Urology, Stanford University School of Medicine, Stanford, CA USA
| | - James M. Hotaling
- grid.223827.e0000 0001 2193 0096Andrology and IVF Laboratory, Department of Surgery (Urology), University of Utah School of Medicine, Salt Lake City, UT USA
| | - Keith A. Jarvi
- grid.17063.330000 0001 2157 2938Division of Urology, Department of Surgery, Mount Sinai Hospital, University of Toronto, Toronto, ON Canada
| | - Margus Punab
- grid.412269.a0000 0001 0585 7044Andrology Center, Tartu University Hospital, Tartu, Estonia ,grid.10939.320000 0001 0943 7661Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Ewa Rajpert-De Meyts
- grid.475435.4Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark ,grid.475435.4International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Douglas T. Carrell
- grid.223827.e0000 0001 2193 0096Andrology and IVF Laboratory, Department of Surgery (Urology), University of Utah School of Medicine, Salt Lake City, UT USA
| | - Csilla Krausz
- grid.8404.80000 0004 1757 2304Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Maris Laan
- grid.10939.320000 0001 0943 7661Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Moira K. O’Bryan
- grid.1008.90000 0001 2179 088XSchool of BioSciences, Faculty of Science, The University of Melbourne, Parkville, VIC Australia ,grid.1002.30000 0004 1936 7857School of Biological Sciences, Monash University, Clayton, VIC Australia
| | - Peter N. Schlegel
- grid.5386.8000000041936877XDepartment of Urology, Weill Cornell Medicine, New York, NY USA
| | - Frank Tüttelmann
- grid.5949.10000 0001 2172 9288Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - Joris A. Veltman
- grid.1006.70000 0001 0462 7212Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, UK
| | - Kristian Almstrup
- grid.475435.4Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark ,grid.475435.4International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Kenneth I. Aston
- grid.223827.e0000 0001 2193 0096Andrology and IVF Laboratory, Department of Surgery (Urology), University of Utah School of Medicine, Salt Lake City, UT USA
| | - Donald F. Conrad
- grid.5288.70000 0000 9758 5690Division of Genetics, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR USA
| |
Collapse
|
18
|
Papadimitriou S, Gravel B, Nachtegael C, De Baere E, Loeys B, Vikkula M, Smits G, Lenaerts T. Toward reporting standards for the pathogenicity of variant combinations involved in multilocus/oligogenic diseases. HGG ADVANCES 2022; 4:100165. [PMID: 36578772 PMCID: PMC9791921 DOI: 10.1016/j.xhgg.2022.100165] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Although standards and guidelines for the interpretation of variants identified in genes that cause Mendelian disorders have been developed, this is not the case for more complex genetic models including variant combinations in multiple genes. During a large curation process conducted on 318 research articles presenting oligogenic variant combinations, we encountered several recurring issues concerning their proper reporting and pathogenicity assessment. These mainly concern the absence of strong evidence that refutes a monogenic model and the lack of a proper genetic and functional assessment of the joint effect of the involved variants. With the increasing accumulation of such cases, it has become essential to develop standards and guidelines on how these oligogenic/multilocus variant combinations should be interpreted, validated, and reported in order to provide high-quality data and supporting evidence to the scientific community.
Collapse
Affiliation(s)
- Sofia Papadimitriou
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles-Vrije Universiteit Brussel, 1050 Brussels, Belgium,Machine Learning Group, Université Libre de Bruxelles, 1050 Brussels, Belgium,Artificial Intelligence Laboratory, Vrije Universiteit Brussel, 1050 Brussels, Belgium,Corresponding author
| | - Barbara Gravel
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles-Vrije Universiteit Brussel, 1050 Brussels, Belgium,Machine Learning Group, Université Libre de Bruxelles, 1050 Brussels, Belgium,Artificial Intelligence Laboratory, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Charlotte Nachtegael
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles-Vrije Universiteit Brussel, 1050 Brussels, Belgium,Machine Learning Group, Université Libre de Bruxelles, 1050 Brussels, Belgium
| | - Elfride De Baere
- Center for Medical Genetics, Ghent University Hospital, Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Bart Loeys
- Center for Medical Genetics, Antwerp University Hospital/University of Antwerp, 2650 Antwerp, Belgium
| | - Miikka Vikkula
- Human Molecular Genetics, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Guillaume Smits
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles-Vrije Universiteit Brussel, 1050 Brussels, Belgium,Center of Human Genetics, Hôpital Erasme, Université Libre de Bruxelles, 1070 Brussels, Belgium,Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles, 1020 Brussels, Belgium
| | - Tom Lenaerts
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles-Vrije Universiteit Brussel, 1050 Brussels, Belgium,Machine Learning Group, Université Libre de Bruxelles, 1050 Brussels, Belgium,Artificial Intelligence Laboratory, Vrije Universiteit Brussel, 1050 Brussels, Belgium,Corresponding author
| |
Collapse
|
19
|
New Developments and Possibilities in Reanalysis and Reinterpretation of Whole Exome Sequencing Datasets for Unsolved Rare Diseases Using Machine Learning Approaches. Int J Mol Sci 2022; 23:ijms23126792. [PMID: 35743235 PMCID: PMC9224427 DOI: 10.3390/ijms23126792] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 11/21/2022] Open
Abstract
Rare diseases impact the lives of 300 million people in the world. Rapid advances in bioinformatics and genomic technologies have enabled the discovery of causes of 20–30% of rare diseases. However, most rare diseases have remained as unsolved enigmas to date. Newer tools and availability of high throughput sequencing data have enabled the reanalysis of previously undiagnosed patients. In this review, we have systematically compiled the latest developments in the discovery of the genetic causes of rare diseases using machine learning methods. Importantly, we have detailed methods available to reanalyze existing whole exome sequencing data of unsolved rare diseases. We have identified different reanalysis methodologies to solve problems associated with sequence alterations/mutations, variation re-annotation, protein stability, splice isoform malfunctions and oligogenic analysis. In addition, we give an overview of new developments in the field of rare disease research using whole genome sequencing data and other omics.
Collapse
|
20
|
Hereditary spastic paraplegia type 56: what a mouse can tell – a narrative review. JOURNAL OF BIO-X RESEARCH 2022. [DOI: 10.1097/jbr.0000000000000127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
21
|
Martinez G, Coutton C, Loeuillet C, Cazin C, Muroňová J, Boguenet M, Lambert E, Dhellemmes M, Chevalier G, Hograindleur JP, Vilpreux C, Neirijnck Y, Kherraf ZE, Escoffier J, Nef S, Ray PF, Arnoult C. Oligogenic heterozygous inheritance of sperm abnormalities in mouse. eLife 2022; 11:75373. [PMID: 35451961 PMCID: PMC9071268 DOI: 10.7554/elife.75373] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
Male infertility is an important health concern that is expected to have a major genetic etiology. Although high-throughput sequencing has linked gene defects to more than 50% of rare and severe sperm anomalies, less than 20% of common and moderate forms are explained. We hypothesized that this low success rate could at least be partly due to oligogenic defects – the accumulation of several rare heterozygous variants in distinct, but functionally connected, genes. Here, we compared fertility and sperm parameters in male mice harboring one to four heterozygous truncating mutations of genes linked to multiple morphological anomalies of the flagellum (MMAF) syndrome. Results indicated progressively deteriorating sperm morphology and motility with increasing numbers of heterozygous mutations. This first evidence of oligogenic inheritance in failed spermatogenesis strongly suggests that oligogenic heterozygosity could explain a significant proportion of asthenoteratozoospermia cases. The findings presented pave the way to further studies in mice and man.
Collapse
Affiliation(s)
| | | | - Corinne Loeuillet
- Institute for Advanced Biosciences, INSERM, CNRS, University Grenoble-Alpes, Grenoble, France
| | | | - Jana Muroňová
- Institute for Advanced Biosciences, INSERM, CNRS, University Grenoble-Alpes, Grenoble, France
| | - Magalie Boguenet
- Institute for Advanced Biosciences, INSERM, CNRS, University Grenoble-Alpes, Grenoble, France
| | - Emeline Lambert
- Institute for Advanced Biosciences, INSERM, CNRS, University Grenoble-Alpes, Grenoble, France
| | - Magali Dhellemmes
- Institute for Advanced Biosciences, INSERM, CNRS, University Grenoble-Alpes, Grenoble, France
| | - Geneviève Chevalier
- Institute for Advanced Biosciences, INSERM, CNRS, University Grenoble-Alpes, Grenoble, France
| | | | - Charline Vilpreux
- Institute for Advanced Biosciences, INSERM, CNRS, University Grenoble-Alpes, Grenoble, France
| | - Yasmine Neirijnck
- Department of Genetic Medicine and Development, University of Geneva Medical School, Genève, Switzerland
| | - Zine Eddine Kherraf
- Institute for Advanced Biosciences, INSERM, CNRS, University Grenoble-Alpes, Grenoble, France
| | - Jessica Escoffier
- Institute for Advanced Biosciences, INSERM, CNRS, University Grenoble-Alpes, Grenoble, France
| | - Serge Nef
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Pierre F Ray
- Institute for Advanced Biosciences, INSERM, CNRS, University Grenoble-Alpes, Grenoble, France
| | - Christophe Arnoult
- Institute for Advanced Biosciences, INSERM, CNRS, University Grenoble-Alpes, Grenoble, France
| |
Collapse
|
22
|
Zernant J, Lee W, Wang J, Goetz K, Ullah E, Nagasaki T, Su PY, Fishman GA, Tsang SH, Tumminia SJ, Brooks BP, Hufnagel RB, Chen R, Allikmets R. Rare and common variants in ROM1 and PRPH2 genes trans-modify Stargardt/ABCA4 disease. PLoS Genet 2022; 18:e1010129. [PMID: 35353811 PMCID: PMC9000055 DOI: 10.1371/journal.pgen.1010129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 04/11/2022] [Accepted: 03/02/2022] [Indexed: 11/18/2022] Open
Abstract
Over 1,500 variants in the ABCA4 locus cause phenotypes ranging from severe, early-onset retinal degeneration to very late-onset maculopathies. The resulting ABCA4/Stargardt disease is the most prevalent Mendelian eye disorder, although its underlying clinical heterogeneity, including penetrance of many alleles, are not well-understood. We hypothesized that a share of this complexity is explained by trans-modifiers, i.e., variants in unlinked loci, which are currently unknown. We sought to identify these by performing exome sequencing in a large cohort for a rare disease of 622 cases and compared variation in seven genes known to clinically phenocopy ABCA4 disease to cohorts of ethnically matched controls. We identified a significant enrichment of variants in 2 out of the 7 genes. Moderately rare, likely functional, variants, at the minor allele frequency (MAF) <0.005 and CADD>25, were enriched in ROM1, where 1.3% of 622 patients harbored a ROM1 variant compared to 0.3% of 10,865 controls (p = 2.41E04; OR 3.81 95% CI [1.77; 8.22]). More importantly, analysis of common variants (MAF>0.1) identified a frequent haplotype in PRPH2, tagged by the p.Asp338 variant with MAF = 0.21 in the matched general population that was significantly increased in the patient cohort, MAF 0.25, p = 0.0014. Significant differences were also observed between ABCA4 disease subgroups. In the late-onset subgroup, defined by the hypomorphic p.Asn1868Ile variant and including c.4253+43G>A, the allele frequency for the PRPH2 p.Asp338 variant was 0.15 vs 0.27 in the remaining cohort, p = 0.00057. Known functional data allowed suggesting a mechanism by which the PRPH2 haplotype influences the ABCA4 disease penetrance. These associations were replicated in an independent cohort of 408 patients. The association was highly statistically significant in the combined cohorts of 1,030 cases, p = 4.00E-05 for all patients and p = 0.00014 for the hypomorph subgroup, suggesting a substantial trans-modifying role in ABCA4 disease for both rare and common variants in two unlinked loci.
Collapse
Affiliation(s)
- Jana Zernant
- Department of Ophthalmology, Columbia University, New York, New York, United States of America
| | - Winston Lee
- Department of Ophthalmology, Columbia University, New York, New York, United States of America
- Department of Genetics & Development, Columbia University, New York, New York, United States of America
| | - Jun Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Kerry Goetz
- National Eye Institute, NIH, Bethesda, Maryland, United States of America
| | - Ehsan Ullah
- National Eye Institute, NIH, Bethesda, Maryland, United States of America
| | - Takayuki Nagasaki
- Department of Ophthalmology, Columbia University, New York, New York, United States of America
| | - Pei-Yin Su
- Department of Ophthalmology, Columbia University, New York, New York, United States of America
| | - Gerald A. Fishman
- The Pangere Center for Inherited Retinal Diseases, The Chicago Lighthouse, Chicago, Illinois, United States of America
| | - Stephen H. Tsang
- Department of Ophthalmology, Columbia University, New York, New York, United States of America
- Department of Pathology & Cell Biology, Columbia University, New York, New York, United States of America
| | - Santa J. Tumminia
- National Eye Institute, NIH, Bethesda, Maryland, United States of America
| | - Brian P. Brooks
- National Eye Institute, NIH, Bethesda, Maryland, United States of America
| | - Robert B. Hufnagel
- National Eye Institute, NIH, Bethesda, Maryland, United States of America
| | - Rui Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Rando Allikmets
- Department of Ophthalmology, Columbia University, New York, New York, United States of America
- Department of Pathology & Cell Biology, Columbia University, New York, New York, United States of America
| |
Collapse
|
23
|
Pezeshkpoor B, Oldenburg J, Pavlova A. Experiences in Routine Genetic Analysis of Hereditary Hemorrhagic, Thrombotic, and Platelet Disorders. Hamostaseologie 2022; 42:S5-S12. [PMID: 35226963 DOI: 10.1055/a-1726-4793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Hemostasis is a complex and tightly regulated system that attempts to maintain a homeostatic balance to permit normal blood flow, without bleeding or thrombosis. Hemostasis reflects the subtle balance between procoagulant and anticoagulant factors in the pathways of primary hemostasis, secondary hemostasis, and fibrinolysis. The major components in this interplay include the vascular endothelium, platelets, coagulation factors, and fibrinolytic factors. After vessel wall injury, the subendothelium is exposed to the blood stream, followed by rapid activation of platelets via collagen binding and von Willebrand factor-mediated platelet adhesion to the damaged vessel wall through platelet glycoprotein receptor Ib/IX/V. Activated platelets change their shape, release bioactive molecules from their granules, and expose negatively charged phospholipids on their surface. For a proper function of this process, an adequate number of functional platelets are required. Subsequently, a rapid generation of sufficient amounts of thrombin begins; followed by activation of the coagulation system and its coagulation factors (secondary hemostasis), generating fibrin that consolidates the platelet plug. To maintain equilibrium between coagulation and anticoagulation, the naturally occurring anticoagulants such as protein C, protein S, and antithrombin keep this process in balance. Deficiencies (inherited or acquired) at any level of this fine-tuned system result in pathologic bleedings or increased hypercoagulability states leading to thrombosis. This review will focus on genetic diagnosis of inherited bleeding, thrombotic, and platelet disorders, discussing strengths and limitations of existing diagnostic settings and genetic tools and highlight some important considerations necessary for clinical application.
Collapse
Affiliation(s)
- B Pezeshkpoor
- Institute of Experimental Hematology and Transfusion Medicine, University Hospital Bonn, Medical Faculty, University of Bonn, Bonn, Germany.,Center for Rare Diseases Bonn (ZSEB), University Clinic Bonn, Bonn, Germany
| | - J Oldenburg
- Institute of Experimental Hematology and Transfusion Medicine, University Hospital Bonn, Medical Faculty, University of Bonn, Bonn, Germany.,Center for Rare Diseases Bonn (ZSEB), University Clinic Bonn, Bonn, Germany
| | - A Pavlova
- Institute of Experimental Hematology and Transfusion Medicine, University Hospital Bonn, Medical Faculty, University of Bonn, Bonn, Germany.,Center for Rare Diseases Bonn (ZSEB), University Clinic Bonn, Bonn, Germany
| |
Collapse
|
24
|
Frederiksen SD, Avramović V, Maroilley T, Lehman A, Arbour L, Tarailo-Graovac M. Rare disorders have many faces: in silico characterization of rare disorder spectrum. Orphanet J Rare Dis 2022; 17:76. [PMID: 35193637 PMCID: PMC8864832 DOI: 10.1186/s13023-022-02217-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 02/06/2022] [Indexed: 11/18/2022] Open
Abstract
Background The diagnostic journey for many rare disease patients remains challenging despite use of latest genetic technological advancements. We hypothesize that some patients remain undiagnosed due to more complex diagnostic scenarios that are currently not considered in genome analysis pipelines. To better understand this, we characterized the rare disorder (RD) spectrum using various bioinformatics resources (e.g., Orphanet/Orphadata, Human Phenotype Ontology, Reactome pathways) combined with custom-made R scripts. Results Our in silico characterization led to identification of 145 borderline-common, 412 rare and 2967 ultra-rare disorders. Based on these findings and point prevalence, we would expect that approximately 6.53%, 0.34%, and 0.30% of individuals in a randomly selected population have a borderline-common, rare, and ultra-rare disorder, respectively (equaling to 1 RD patient in 14 people). Importantly, our analyses revealed that (1) a higher proportion of borderline-common disorders were caused by multiple gene defects and/or other factors compared with the rare and ultra-rare disorders, (2) the phenotypic expressivity was more variable for the borderline-common disorders than for the rarer disorders, and (3) unique clinical characteristics were observed across the disorder categories forming the spectrum. Conclusions Recognizing that RD patients who remain unsolved even after genome sequencing might belong to the more common end of the RD spectrum support the usage of computational pipelines that account for more complex genetic and phenotypic scenarios. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-022-02217-9.
Collapse
Affiliation(s)
- Simona D Frederiksen
- Departments of Biochemistry, Molecular Biology and Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Vladimir Avramović
- Departments of Biochemistry, Molecular Biology and Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Tatiana Maroilley
- Departments of Biochemistry, Molecular Biology and Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Anna Lehman
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z2, Canada
| | - Laura Arbour
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z2, Canada
| | - Maja Tarailo-Graovac
- Departments of Biochemistry, Molecular Biology and Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada. .,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
25
|
Tarozzi M, Bartoletti-Stella A, Dall'Olio D, Matteuzzi T, Baiardi S, Parchi P, Castellani G, Capellari S. Identification of recurrent genetic patterns from targeted sequencing panels with advanced data science: a case-study on sporadic and genetic neurodegenerative diseases. BMC Med Genomics 2022; 15:26. [PMID: 35144616 PMCID: PMC8830183 DOI: 10.1186/s12920-022-01173-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 02/02/2022] [Indexed: 11/10/2022] Open
Abstract
Background Targeted Next Generation Sequencing is a common and powerful approach used in both clinical and research settings. However, at present, a large fraction of the acquired genetic information is not used since pathogenicity cannot be assessed for most variants. Further complicating this scenario is the increasingly frequent description of a poli/oligogenic pattern of inheritance showing the contribution of multiple variants in increasing disease risk. We present an approach in which the entire genetic information provided by target sequencing is transformed into binary data on which we performed statistical, machine learning, and network analyses to extract all valuable information from the entire genetic profile. To test this approach and unbiasedly explore the presence of recurrent genetic patterns, we studied a cohort of 112 patients affected either by genetic Creutzfeldt–Jakob (CJD) disease caused by two mutations in the PRNP gene (p.E200K and p.V210I) with different penetrance or by sporadic Alzheimer disease (sAD). Results Unsupervised methods can identify functionally relevant sources of variation in the data, like haplogroups and polymorphisms that do not follow Hardy–Weinberg equilibrium, such as the NOTCH3 rs11670823 (c.3837 + 21 T > A). Supervised classifiers can recognize clinical phenotypes with high accuracy based on the mutational profile of patients. In addition, we found a similar alteration of allele frequencies compared the European population in sporadic patients and in V210I-CJD, a poorly penetrant PRNP mutation, and sAD, suggesting shared oligogenic patterns in different types of dementia. Pathway enrichment and protein–protein interaction network revealed different altered pathways between the two PRNP mutations. Conclusions We propose this workflow as a possible approach to gain deeper insights into the genetic information derived from target sequencing, to identify recurrent genetic patterns and improve the understanding of complex diseases. This work could also represent a possible starting point of a predictive tool for personalized medicine and advanced diagnostic applications. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01173-4.
Collapse
Affiliation(s)
- M Tarozzi
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - A Bartoletti-Stella
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy.,IRCCS Institute of Neurological Sciences of Bologna, Bologna, Italy
| | - D Dall'Olio
- Department of Physics and Astronomy, University of Bologna, Bologna, Italy
| | - T Matteuzzi
- Department of Physics and Astronomy, University of Bologna, Bologna, Italy
| | - S Baiardi
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy.,IRCCS Institute of Neurological Sciences of Bologna, Bologna, Italy
| | - P Parchi
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy.,IRCCS Institute of Neurological Sciences of Bologna, Bologna, Italy
| | - G Castellani
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy.
| | - S Capellari
- IRCCS Institute of Neurological Sciences of Bologna, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
26
|
Andres EM, Earnest KK, Zhong C, Rice ML, Raza MH. Family-Based Whole-Exome Analysis of Specific Language Impairment (SLI) Identifies Rare Variants in BUD13, a Component of the Retention and Splicing (RES) Complex. Brain Sci 2021; 12:47. [PMID: 35053791 PMCID: PMC8773923 DOI: 10.3390/brainsci12010047] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/18/2021] [Accepted: 12/27/2021] [Indexed: 12/12/2022] Open
Abstract
Specific language impairment (SLI) is a common neurodevelopmental disorder (NDD) that displays high heritability estimates. Genetic studies have identified several loci, but the molecular basis of SLI remains unclear. With the aim to better understand the genetic architecture of SLI, we performed whole-exome sequencing (WES) in a single family (ID: 489; n = 11). We identified co-segregating rare variants in three new genes: BUD13, APLP2, and NDRG2. To determine the significance of these genes in SLI, we Sanger sequenced all coding regions of each gene in unrelated individuals with SLI (n = 175). We observed 13 additional rare variants in 18 unrelated individuals. Variants in BUD13 reached genome-wide significance (p-value < 0.01) upon comparison with similar variants in the 1000 Genomes Project, providing gene level evidence that BUD13 is involved in SLI. Additionally, five BUD13 variants showed cohesive variant level evidence of likely pathogenicity. Bud13 is a component of the retention and splicing (RES) complex. Additional supportive evidence from studies of an animal model (loss-of-function mutations in BUD13 caused a profound neural phenotype) and individuals with an NDD phenotype (carrying a CNV spanning BUD13), indicates BUD13 could be a target for investigation of the neural basis of language.
Collapse
Affiliation(s)
- Erin M. Andres
- Child Language Doctoral Program, University of Kansas, Lawrence, KS 66045, USA; (E.M.A.); (M.L.R.)
| | | | - Cuncong Zhong
- Department of Electrical Engineering and Computer Science, University of Kansas, Lawrence, KS 66045, USA;
| | - Mabel L. Rice
- Child Language Doctoral Program, University of Kansas, Lawrence, KS 66045, USA; (E.M.A.); (M.L.R.)
- Language Acquisition Studies Lab, University of Kansas, Lawrence, KS 66045, USA;
| | - Muhammad Hashim Raza
- Child Language Doctoral Program, University of Kansas, Lawrence, KS 66045, USA; (E.M.A.); (M.L.R.)
| |
Collapse
|
27
|
Elsayed LEO, Eltazi IZ, Ahmed AE, Stevanin G. Insights into Clinical, Genetic, and Pathological Aspects of Hereditary Spastic Paraplegias: A Comprehensive Overview. Front Mol Biosci 2021; 8:690899. [PMID: 34901147 PMCID: PMC8662366 DOI: 10.3389/fmolb.2021.690899] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 10/19/2021] [Indexed: 12/31/2022] Open
Abstract
Hereditary spastic paraplegias (HSP) are a heterogeneous group of motor neurodegenerative disorders that have the core clinical presentation of pyramidal syndrome which starts typically in the lower limbs. They can present as pure or complex forms with all classical modes of monogenic inheritance reported. To date, there are more than 100 loci/88 spastic paraplegia genes (SPG) involved in the pathogenesis of HSP. New patterns of inheritance are being increasingly identified in this era of huge advances in genetic and functional studies. A wide range of clinical symptoms and signs are now reported to complicate HSP with increasing overall complexity of the clinical presentations considered as HSP. This is especially true with the emergence of multiple HSP phenotypes that are situated in the borderline zone with other neurogenetic disorders. The genetic diagnostic approaches and the utilized techniques leave a diagnostic gap of 25% in the best studies. In this review, we summarize the known types of HSP with special focus on those in which spasticity is the principal clinical phenotype ("SPGn" designation). We discuss their modes of inheritance, clinical phenotypes, underlying genetics, and molecular pathways, providing some observations about therapeutic opportunities gained from animal models and functional studies. This review may pave the way for more analytic approaches that take into consideration the overall picture of HSP. It will shed light on subtle associations that can explain the occurrence of the disease and allow a better understanding of its observed variations. This should help in the identification of future biomarkers, predictors of disease onset and progression, and treatments for both better functional outcomes and quality of life.
Collapse
Affiliation(s)
- Liena E. O. Elsayed
- Department of Basic Sciences, College of Medicine, Princess Nourah bint Abdulrahman University [PNU], Riyadh, Saudi Arabia
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | | | - Ammar E. Ahmed
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Giovanni Stevanin
- Institut du Cerveau – Paris Brain Institute - ICM, Sorbonne Université, INSERM, CNRS, APHP, Paris, France
- CNRS, INCIA, Université de Bordeaux, Bordeaux, France
- Ecole Pratique des Hautes Etudes, EPHE, PSL Research University, Paris, France
| |
Collapse
|
28
|
Schneider N, Sundaresan Y, Gopalakrishnan P, Beryozkin A, Hanany M, Levanon EY, Banin E, Ben-Aroya S, Sharon D. Inherited retinal diseases: Linking genes, disease-causing variants, and relevant therapeutic modalities. Prog Retin Eye Res 2021; 89:101029. [PMID: 34839010 DOI: 10.1016/j.preteyeres.2021.101029] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 12/11/2022]
Abstract
Inherited retinal diseases (IRDs) are a clinically complex and heterogenous group of visual impairment phenotypes caused by pathogenic variants in at least 277 nuclear and mitochondrial genes, affecting different retinal regions, and depleting the vision of affected individuals. Genes that cause IRDs when mutated are unique by possessing differing genotype-phenotype correlations, varying inheritance patterns, hypomorphic alleles, and modifier genes thus complicating genetic interpretation. Next-generation sequencing has greatly advanced the identification of novel IRD-related genes and pathogenic variants in the last decade. For this review, we performed an in-depth literature search which allowed for compilation of the Global Retinal Inherited Disease (GRID) dataset containing 4,798 discrete variants and 17,299 alleles published in 31 papers, showing a wide range of frequencies and complexities among the 194 genes reported in GRID, with 65% of pathogenic variants being unique to a single individual. A better understanding of IRD-related gene distribution, gene complexity, and variant types allow for improved genetic testing and therapies. Current genetic therapeutic methods are also quite diverse and rely on variant identification, and range from whole gene replacement to single nucleotide editing at the DNA or RNA levels. IRDs and their suitable therapies thus require a range of effective disease modelling in human cells, granting insight into disease mechanisms and testing of possible treatments. This review summarizes genetic and therapeutic modalities of IRDs, provides new analyses of IRD-related genes (GRID and complexity scores), and provides information to match genetic-based therapies such as gene-specific and variant-specific therapies to the appropriate individuals.
Collapse
Affiliation(s)
- Nina Schneider
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Yogapriya Sundaresan
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Prakadeeswari Gopalakrishnan
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Avigail Beryozkin
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Mor Hanany
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Erez Y Levanon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Eyal Banin
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Shay Ben-Aroya
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Dror Sharon
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel.
| |
Collapse
|
29
|
Davis EE, Balasubramanian R, Kupchinsky ZA, Keefe DL, Plummer L, Khan K, Meczekalski B, Heath KE, Lopez-Gonzalez V, Ballesta-Martinez MJ, Margabanthu G, Price S, Greening J, Brauner R, Valenzuela I, Cusco I, Fernandez-Alvarez P, Wierman ME, Li T, Lage K, Barroso PS, Chan YM, Crowley WF, Katsanis N. TCF12 haploinsufficiency causes autosomal dominant Kallmann syndrome and reveals network-level interactions between causal loci. Hum Mol Genet 2021; 29:2435-2450. [PMID: 32620954 DOI: 10.1093/hmg/ddaa120] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/27/2020] [Accepted: 06/11/2020] [Indexed: 12/12/2022] Open
Abstract
Dysfunction of the gonadotropin-releasing hormone (GnRH) axis causes a range of reproductive phenotypes resulting from defects in the specification, migration and/or function of GnRH neurons. To identify additional molecular components of this system, we initiated a systematic genetic interrogation of families with isolated GnRH deficiency (IGD). Here, we report 13 families (12 autosomal dominant and one autosomal recessive) with an anosmic form of IGD (Kallmann syndrome) with loss-of-function mutations in TCF12, a locus also known to cause syndromic and non-syndromic craniosynostosis. We show that loss of tcf12 in zebrafish larvae perturbs GnRH neuronal patterning with concomitant attenuation of the orthologous expression of tcf3a/b, encoding a binding partner of TCF12, and stub1, a gene that is both mutated in other syndromic forms of IGD and maps to a TCF12 affinity network. Finally, we report that restored STUB1 mRNA rescues loss of tcf12 in vivo. Our data extend the mutational landscape of IGD, highlight the genetic links between craniofacial patterning and GnRH dysfunction and begin to assemble the functional network that regulates the development of the GnRH axis.
Collapse
Affiliation(s)
- Erica E Davis
- Center for Human Disease Modeling, Duke University, Durham, NC 27701, USA.,Advanced Center for Translational and Genetic Medicine (ACT-GeM), Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA.,Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ravikumar Balasubramanian
- Harvard Reproductive Endocrine Science Center, Massachusetts General Hospital (MGH), Boston, MA 02114, USA.,Harvard Medical School, Boston, MA 02115, USA
| | | | - David L Keefe
- Harvard Reproductive Endocrine Science Center, Massachusetts General Hospital (MGH), Boston, MA 02114, USA
| | - Lacey Plummer
- Harvard Reproductive Endocrine Science Center, Massachusetts General Hospital (MGH), Boston, MA 02114, USA
| | - Kamal Khan
- Advanced Center for Translational and Genetic Medicine (ACT-GeM), Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA.,Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Blazej Meczekalski
- Department of Gynecological Endocrinology, Poznan University of Medical Sciences, 60-512 Poznan, Poland
| | - Karen E Heath
- Institute of Medical and Molecular Genetics (INGEMM) Hospital Universitario La Paz, Universidad Autonoma de Madrid, IdiPAZ, Madrid, Spain and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, 28046 Madrid, Spain
| | - Vanesa Lopez-Gonzalez
- Medical Genetics Unit, Department of Pediatrics, Hospital Clinico, Universitario Virgen de la Arrixaca, IMIB-Arrixaca, Murcia, Spain and CIBERER, ISCIII, 28046 Madrid, Spain
| | - Mary J Ballesta-Martinez
- Medical Genetics Unit, Department of Pediatrics, Hospital Clinico, Universitario Virgen de la Arrixaca, IMIB-Arrixaca, Murcia, Spain and CIBERER, ISCIII, 28046 Madrid, Spain
| | | | - Susan Price
- Northampton General Hospital, Northampton NN1 5BD, UK
| | - James Greening
- University Hospitals of Leicester, Leicester LE3 9QP, UK
| | - Raja Brauner
- Pediatric Endocrinology Unit, Fondation Ophtalmologique Adolphe de Rothschild and Université Paris Descartes, 75019 Paris, France
| | - Irene Valenzuela
- Department of Clinical and Molecular Genetics, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain.,Medicine Genetics Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Ivon Cusco
- Department of Clinical and Molecular Genetics, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain.,Medicine Genetics Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Paula Fernandez-Alvarez
- Department of Clinical and Molecular Genetics, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain.,Medicine Genetics Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Margaret E Wierman
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Taibo Li
- Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Kasper Lage
- Harvard Medical School, Boston, MA 02115, USA.,Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Priscila Sales Barroso
- Divisao de Endocrinologia e Metabologia, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, 05403-900 Brazil
| | - Yee-Ming Chan
- Division of Endocrinology, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
| | - William F Crowley
- Harvard Medical School, Boston, MA 02115, USA.,MGH Center for Human Genetics & The Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston MA 02114, USA
| | - Nicholas Katsanis
- Center for Human Disease Modeling, Duke University, Durham, NC 27701, USA.,Advanced Center for Translational and Genetic Medicine (ACT-GeM), Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA.,Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
30
|
Roman-Naranjo P, Gallego-Martinez A, Soto-Varela A, Aran I, Moleon MDC, Espinosa-Sanchez JM, Amor-Dorado JC, Batuecas-Caletrio A, Perez-Vazquez P, Lopez-Escamez JA. Burden of Rare Variants in the OTOG Gene in Familial Meniere's Disease. Ear Hear 2021; 41:1598-1605. [PMID: 33136635 DOI: 10.1097/aud.0000000000000878] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
OBJECTIVES Meniere's disease (MD) is a rare inner ear disorder characterized by sensorineural hearing loss, episodic vertigo, and tinnitus. Familial MD has been reported in 6 to 9% of sporadic cases, and few genes including FAM136A, DTNA, PRKCB, SEMA3D, and DPT have been involved in single families, suggesting genetic heterogeneity. In this study, the authors recruited 46 families with MD to search for relevant candidate genes for hearing loss in familial MD. DESIGN Exome sequencing data from MD patients were analyzed to search for rare variants in hearing loss genes in a case-control study. A total of 109 patients with MD (73 familial cases and 36 early-onset sporadic patients) diagnosed according to the diagnostic criteria defined by the Barany Society were recruited in 11 hospitals. The allelic frequencies of rare variants in hearing loss genes were calculated in individuals with familial MD. A single rare variant analysis and a gene burden analysis (GBA) were conducted in the dataset selecting 1 patient from each family. Allelic frequencies from European and Spanish reference datasets were used as controls. RESULTS A total of 5136 single-nucleotide variants in hearing loss genes were considered for single rare variant analysis in familial MD cases, but only 1 heterozygous likely pathogenic variant in the OTOG gene (rs552304627) was found in 2 unrelated families. The gene burden analysis found an enrichment of rare missense variants in the OTOG gene in familial MD. So, 15 of 46 families (33%) showed at least 1 rare missense variant in the OTOG gene, suggesting a key role in familial MD. CONCLUSIONS The authors found an enrichment of multiplex rare missense variants in the OTOG gene in familial MD. This finding supports OTOG as a relevant gene in familial MD and set the groundwork for genetic testing in MD.
Collapse
Affiliation(s)
- Pablo Roman-Naranjo
- Otology & Neurotology Group CTS 495, Department of Genomic Medicine, Centro Pfizer-Universidad de Granada-Junta de Andalucía de Genómica e Investigación Oncológica, Granada, Spain
| | - Alvaro Gallego-Martinez
- Otology & Neurotology Group CTS 495, Department of Genomic Medicine, Centro Pfizer-Universidad de Granada-Junta de Andalucía de Genómica e Investigación Oncológica, Granada, Spain
| | - Andrés Soto-Varela
- Division of Otoneurology, Department of Otorhinolaryngology, Complexo Hospitalario Universitario, Santiago de Compostela, Spain
| | - Ismael Aran
- Department of Otolaryngology, Complexo Hospitalario de Pontevedra, Pontevedra, Spain
| | - Maria Del Carmen Moleon
- Department of Otolaryngology, Instituto de Investigación Biosanitaria, ibs.GRANADA, Hospital Universitario Virgen de las Nieves, Granada, Spain
| | - Juan Manuel Espinosa-Sanchez
- Department of Otolaryngology, Instituto de Investigación Biosanitaria, ibs.GRANADA, Hospital Universitario Virgen de las Nieves, Granada, Spain
| | | | - Angel Batuecas-Caletrio
- Department of Otolaryngology, Hospital Universitario Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Paz Perez-Vazquez
- Department of Otorhinolaryngology, Hospital Universitario de Cabueñes, Gijón, Spain
| | - Jose Antonio Lopez-Escamez
- Otology & Neurotology Group CTS 495, Department of Genomic Medicine, Centro Pfizer-Universidad de Granada-Junta de Andalucía de Genómica e Investigación Oncológica, Granada, Spain
- Department of Otolaryngology, Instituto de Investigación Biosanitaria, ibs.GRANADA, Hospital Universitario Virgen de las Nieves, Granada, Spain
- Department of Surgery, Division of Otolaryngology, Universidad de Granada, Granada, Spain
| |
Collapse
|
31
|
Broadening INPP5E phenotypic spectrum: detection of rare variants in syndromic and non-syndromic IRD. NPJ Genom Med 2021; 6:53. [PMID: 34188062 PMCID: PMC8242099 DOI: 10.1038/s41525-021-00214-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 05/21/2021] [Indexed: 02/06/2023] Open
Abstract
Pathogenic variants in INPP5E cause Joubert syndrome (JBTS), a ciliopathy with retinal involvement. However, despite sporadic cases in large cohort sequencing studies, a clear association with non-syndromic inherited retinal degenerations (IRDs) has not been made. We validate this association by reporting 16 non-syndromic IRD patients from ten families with bi-allelic mutations in INPP5E. Additional two patients showed early onset IRD with limited JBTS features. Detailed phenotypic description for all probands is presented. We report 14 rare INPP5E variants, 12 of which have not been reported in previous studies. We present tertiary protein modeling and analyze all INPP5E variants for deleteriousness and phenotypic correlation. We observe that the combined impact of INPP5E variants in JBTS and non-syndromic IRD patients does not reveal a clear genotype-phenotype correlation, suggesting the involvement of genetic modifiers. Our study cements the wide phenotypic spectrum of INPP5E disease, adding proof that sequence defects in this gene can lead to early-onset non-syndromic IRD.
Collapse
|
32
|
Chang CF, Brown KM, Yang Y, Brugmann SA. Centriolar Protein C2cd3 Is Required for Craniofacial Development. Front Cell Dev Biol 2021; 9:647391. [PMID: 34211969 PMCID: PMC8239364 DOI: 10.3389/fcell.2021.647391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 05/17/2021] [Indexed: 11/13/2022] Open
Abstract
The primary cilium is a ubiquitous, microtubule-based cellular organelle. Primary cilia dysfunction results in a group of disorders termed ciliopathies. C2 domain containing 3 centriole elongation regulator (C2cd3), encodes a centriolar protein essential for ciliogenesis. Mutations in human C2CD3 are associated with the human ciliopathy Oral-Facial-Digital syndrome type 14 (OFD14). In order to better understand the etiology of ciliopathies including OFD14, we generated numerous murine models targeting C2cd3. Initial analysis revealed several tissue-specific isoforms of C2cd3, and while the loss of C2cd3 has previously been reported to result in exencephaly, tight mesencephalic flexure, pericardial edema, abnormal heart looping and a twisted body axis, further analysis revealed that genetic background may also contribute to phenotypic variation. Additional analyses of a conditional allelic series targeting C-terminal PKC-C2 domains or the N-terminal C2CD3N-C2 domain of C2cd3 revealed a variable degree of phenotypic severity, suggesting that while the N-terminal C2CD3N-C2 domain was critical for early embryonic development as a whole, there was also a craniofacial specific role for the C2CD3N-C2 domains. Together, through generation of novel models and evaluation of C2cd3 expression, these data provide valuable insight into mechanisms of pathology for craniofacial ciliopathies that can be further explored in the future.
Collapse
Affiliation(s)
- Ching-Fang Chang
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Kari M Brown
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Yanfen Yang
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Samantha A Brugmann
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Division of Plastic Surgery, Department of Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Shriners Children's Hospital, Cincinnati, OH, United States
| |
Collapse
|
33
|
George MN, Leavens KF, Gadue P. Genome Editing Human Pluripotent Stem Cells to Model β-Cell Disease and Unmask Novel Genetic Modifiers. Front Endocrinol (Lausanne) 2021; 12:682625. [PMID: 34149620 PMCID: PMC8206553 DOI: 10.3389/fendo.2021.682625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/13/2021] [Indexed: 01/21/2023] Open
Abstract
A mechanistic understanding of the genetic basis of complex diseases such as diabetes mellitus remain elusive due in large part to the activity of genetic disease modifiers that impact the penetrance and/or presentation of disease phenotypes. In the face of such complexity, rare forms of diabetes that result from single-gene mutations (monogenic diabetes) can be used to model the contribution of individual genetic factors to pancreatic β-cell dysfunction and the breakdown of glucose homeostasis. Here we review the contribution of protein coding and non-protein coding genetic disease modifiers to the pathogenesis of diabetes subtypes, as well as how recent technological advances in the generation, differentiation, and genome editing of human pluripotent stem cells (hPSC) enable the development of cell-based disease models. Finally, we describe a disease modifier discovery platform that utilizes these technologies to identify novel genetic modifiers using induced pluripotent stem cells (iPSC) derived from patients with monogenic diabetes caused by heterozygous mutations.
Collapse
Affiliation(s)
- Matthew N. George
- Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Karla F. Leavens
- Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Paul Gadue
- Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| |
Collapse
|
34
|
Lacerda RHW, Furtado PGC, Vieira AR. Multiple Structural Microform Defects Suggest Role of Modifier Genes. J Craniofac Surg 2021; 32:e358-e360. [PMID: 33027179 DOI: 10.1097/scs.0000000000007163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
ABSTRACT One of the biggest challenges in clinical genetics is establishing associations between specific germline mutations and the resulting spectrum of phenotypes. The careful characterization of clinical presentations continues to be a tool for establishing these genotype phenotype correlations. The authors intend, by presenting a case study, proposing that the concomitant occurrence of a combinations of mild structural anomalies in the same individual may be due to changes in genes that can be linked by related pathways. A new born with cleft lip and palate was referred at the Cleft Lip and Palate Center. The anamnese was performed and collected data of familiar history, parental consanguinity, and information about pregnancy period. The careful characterization of clinical presentations and the genetic pathways was studied. It is possible that there is no single mutation that can be clearly identified as the etiology of the combination of the defects displayed in the present case.
Collapse
Affiliation(s)
| | - Paulo Germano Cavalcanti Furtado
- Center for Treatment of Cleft Lip and Palate, University Hospital Lauro Wanderley, Universidade Federal da Paraíba, João Pessoa, PB, Brazil
| | - Alexandre Rezende Vieira
- Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA.,Graduate Program in Dentistry, Universidade Federal da Paraíba, João Pessoa, PB, Brazil
| |
Collapse
|
35
|
Shen L, Estrada AH, Meurs KM, Sleeper M, Vulpe C, Martyniuk CJ, Pacak CA. A review of the underlying genetics and emerging therapies for canine cardiomyopathies. J Vet Cardiol 2021; 40:2-14. [PMID: 34147413 DOI: 10.1016/j.jvc.2021.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 10/21/2022]
Abstract
Cardiomyopathies such as dilated cardiomyopathy and arrhythmogenic right ventricular cardiomyopathy are common in large breed dogs and carry an overall poor prognosis. Research shows that these diseases have strong breed predilections, and selective breeding has historically been recommended to reduce the disease prevalence in affected breeds. Treatment of these diseases is typically palliative and aimed at slowing disease progression and managing clinical signs of heart failure as they develop. The discovery of specific genetic mutations underlying cardiomyopathies, such as the striatin mutation in Boxer arrhythmogenic right ventricular cardiomyopathy and the pyruvate dehydrogenase kinase 4 and titin mutations in Doberman Pinschers, has strengthened our ability to screen and selectively breed individuals in an attempt to produce unaffected offspring. The discovery of these disease-linked mutations has also opened avenues for the development of gene therapies, including gene transfer and genome-editing approaches. This review article discusses the known genetics of cardiomyopathies in dogs, reviews existing gene therapy strategies and the status of their development in canines, and discusses ongoing challenges in the clinical translation of these technologies for treating heart disease. While challenges remain in using these emerging technologies, the exponential growth of the gene therapy field holds great promise for future clinical applications.
Collapse
Affiliation(s)
- L Shen
- Program for Applied Research and Development in Genomic Medicine, College of Pharmacy, University of Florida, 1225 Center Drive, Gainesville, FL, 32610, USA.
| | - A H Estrada
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, PO Box 100136, Gainesville, FL, 32610, USA
| | - K M Meurs
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, 27607, USA
| | - M Sleeper
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, PO Box 100136, Gainesville, FL, 32610, USA
| | - C Vulpe
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, 1333 Center Dr, Gainesville, FL, 32603, USA
| | - C J Martyniuk
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, 1333 Center Dr, Gainesville, FL, 32603, USA
| | - C A Pacak
- Department of Neurology, College of Medicine, University of Minnesota, 516 Delaware Street SE, Minneapolis, MN, 55455, USA
| |
Collapse
|
36
|
Magrinelli F, Balint B, Bhatia KP. Challenges in Clinicogenetic Correlations: One Gene - Many Phenotypes. Mov Disord Clin Pract 2021; 8:299-310. [PMID: 33816657 PMCID: PMC8015894 DOI: 10.1002/mdc3.13165] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/02/2020] [Accepted: 12/19/2020] [Indexed: 12/25/2022] Open
Abstract
Background Progress in genetics – particularly the advent of next‐generation sequencing (NGS) – has enabled an unparalleled gene discovery and revealed unmatched complexity of genotype–phenotype correlations in movement disorders. Among other things, it has emerged that mutations in one and the same gene can cause multiple, often markedly different phenotypes. Consequently, movement disorder specialists have increasingly experienced challenges in clinicogenetic correlations. Objectives To deconstruct biological phenomena and mechanistic bases of phenotypic heterogeneity in monogenic movement disorders and neurodegenerative diseases. To discuss the evolving role of movement disorder specialists in reshaping disease phenotypes in the NGS era. Methods This scoping review details phenomena contributing to phenotypic heterogeneity and their underlying mechanisms. Results Three phenomena contribute to phenotypic heterogeneity, namely incomplete penetrance, variable expressivity and pleiotropy. Their underlying mechanisms, which are often shared across phenomena and non‐mutually exclusive, are not fully elucidated. They involve genetic factors (ie, different mutation types, dynamic mutations, somatic mosaicism, intragenic intra‐ and inter‐allelic interactions, modifiers and epistatic genes, mitochondrial heteroplasmy), epigenetic factors (ie, genomic imprinting, X‐chromosome inactivation, modulation of genetic and chromosomal defects), and environmental factors. Conclusion Movement disorders is unique in its reliance on clinical judgment to accurately define disease phenotypes. This has been reaffirmed by the NGS revolution, which provides ever‐growing sequencing data and fuels challenges in variant pathogenicity assertions for such clinically heterogeneous disorders. Deep phenotyping, with characterization and continual updating of “core” phenotypes, and comprehension of determinants of genotype–phenotype complex relationships are crucial for clinicogenetic correlations and have implications for the diagnosis, treatment and counseling.
Collapse
Affiliation(s)
- Francesca Magrinelli
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology University College London London United Kingdom.,Department of Neurosciences, Biomedicine and Movement Sciences University of Verona Verona Italy
| | - Bettina Balint
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology University College London London United Kingdom.,Department of Neurology University Hospital Heidelberg Heidelberg Germany
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology University College London London United Kingdom
| |
Collapse
|
37
|
Gusic M, Prokisch H. Genetic basis of mitochondrial diseases. FEBS Lett 2021; 595:1132-1158. [PMID: 33655490 DOI: 10.1002/1873-3468.14068] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 12/13/2022]
Abstract
Mitochondrial disorders are monogenic disorders characterized by a defect in oxidative phosphorylation and caused by pathogenic variants in one of over 340 different genes. The implementation of whole-exome sequencing has led to a revolution in their diagnosis, duplicated the number of associated disease genes, and significantly increased the diagnosed fraction. However, the genetic etiology of a substantial fraction of patients exhibiting mitochondrial disorders remains unknown, highlighting limitations in variant detection and interpretation, which calls for improved computational and DNA sequencing methods, as well as the addition of OMICS tools. More intriguingly, this also suggests that some pathogenic variants lie outside of the protein-coding genes and that the mechanisms beyond the Mendelian inheritance and the mtDNA are of relevance. This review covers the current status of the genetic basis of mitochondrial diseases, discusses current challenges and perspectives, and explores the contribution of factors beyond the protein-coding regions and monogenic inheritance in the expansion of the genetic spectrum of disease.
Collapse
Affiliation(s)
- Mirjana Gusic
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany.,Institute of Human Genetics, Technical University of Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Germany
| | - Holger Prokisch
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany.,Institute of Human Genetics, Technical University of Munich, Germany
| |
Collapse
|
38
|
Bajaj S, Nabi F, Shah J, Sheth H. Recurrent variant c.1680C>A in FAM20C gene and genotype-phenotype correlation in a patient with Raine syndrome: a case report. BMC Pediatr 2021; 21:113. [PMID: 33676444 PMCID: PMC7936445 DOI: 10.1186/s12887-021-02582-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/01/2021] [Indexed: 12/17/2022] Open
Abstract
Background Bi-allelic mutations in FAM20C gene are known to cause a rare genetic disorder- Raine syndrome (RS). The FAM20C protein binds calcium and phosphorylates proteins involved in biomineralization of bones and teeth. RS is recognized as an osteosclerotic bone dysplasia. It is characterized by distinctive facial features, generalized osteosclerosis and respiratory insufficiency along with periosteal bone formation. RS is typically described as being an aggressive skeletal dysplasia with death in the neonatal period or early infancy. However, in the recent past an increasing number of individuals having an extended life span along with a highly heterogeneous phenotype has led to classifying RS into short and extended lifespan categories. Case presentation We report a case of RS with antenatal fractures, facial dysmorphism and osteosclerosis without significant respiratory manifestations. The child has a relatively extended lifespan, whereby she died at 17-months of age. Clinical exome sequencing revealed a previously known, homozygous, nonsense variant c.1680C > A (p.Cys560Ter) in exon 10 of FAM20C. Whilst the variant was initially classified as a variant of uncertain significance (VUS), through the latest release of gnomAD and GTEx data, this was subsequently re-classified as likely pathogenic. Furthermore, segregation analysis showed both parents to be carriers. In contrast, a previously reported case with the same variant had polyhydramnios, complex facial abnormalities and bright echogenic brain parenchyma with oval shaped skull and anterior flattening at 26 weeks of gestation. Conclusion The variant identified has been previously reported as a VUS. The present case provides further evidence towards the pathogenicity of the variant. A plausible genotype-phenotype correlation based on the location of the variant has been verified, wherein the position of a nonsense variant in the terminal exon of FAM20C gene, could have had a partial effect on the protein function, thereby resulting in a relatively milder phenotype and extended lifespan. Furthermore, the vast phenotypic variation on clinical comparison current case and a previously reported case, despite having the same genotype, could suggest an oligogenic effect and/ or environmental influence.
Collapse
Affiliation(s)
- Shruti Bajaj
- NH SRCC Children's Hospital, 1-1A, Keshavrao Khadye Marg, Haji Ali, Haji Ali Government Colony, Mahalakshmi, Mumbai, Maharashtra, 400034, India.
| | - Fazal Nabi
- NH SRCC Children's Hospital, 1-1A, Keshavrao Khadye Marg, Haji Ali, Haji Ali Government Colony, Mahalakshmi, Mumbai, Maharashtra, 400034, India
| | - Jhanvi Shah
- FRIGE's Institute of Human Genetics, FRIGE House, Jodhpur Gam Road, Satellite, Ahmedabad, 380015, India
| | - Harsh Sheth
- FRIGE's Institute of Human Genetics, FRIGE House, Jodhpur Gam Road, Satellite, Ahmedabad, 380015, India.
| |
Collapse
|
39
|
Hoogmartens J, Cacace R, Van Broeckhoven C. Insight into the genetic etiology of Alzheimer's disease: A comprehensive review of the role of rare variants. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2021; 13:e12155. [PMID: 33665345 PMCID: PMC7896636 DOI: 10.1002/dad2.12155] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/22/2020] [Accepted: 12/29/2020] [Indexed: 12/12/2022]
Abstract
Early-onset Alzheimer's disease (EOAD) is generally known as a dominant disease due to highly penetrant pathogenic mutations in the amyloid precursor protein, presenilin 1 and 2. However, they explain only a fraction of EOAD patients (5% to 10%). Furthermore, only 10% to 15% of EOAD families present with clear autosomal dominant inheritance. Studies showed that only 35% to 60% of EOAD patients have at least one affected first-degree relative. Parent-offspring concordance in EOAD was estimated to be <10%, indicating that full penetrant dominant alleles are not the sole players in EOAD. We aim to summarize current knowledge of rare variants underlying familial and seemingly sporadic Alzheimer's disease (AD) patients. Genetic findings indicate that in addition to the amyloid beta pathway, other pathways are of importance in AD pathophysiology. We discuss the difficulties in interpreting the influence of rare variants on disease onset and we underline the value of carefully selected ethnicity-matched cohorts in AD genetic research.
Collapse
Affiliation(s)
- Julie Hoogmartens
- Neurodegenerative Brain DiseasesVIB Center for Molecular NeurologyAntwerpBelgium
- Department of Biomedical SciencesUniversity of AntwerpAntwerpBelgium
| | - Rita Cacace
- Neurodegenerative Brain DiseasesVIB Center for Molecular NeurologyAntwerpBelgium
- Department of Biomedical SciencesUniversity of AntwerpAntwerpBelgium
| | - Christine Van Broeckhoven
- Neurodegenerative Brain DiseasesVIB Center for Molecular NeurologyAntwerpBelgium
- Department of Biomedical SciencesUniversity of AntwerpAntwerpBelgium
| |
Collapse
|
40
|
Miressi F, Magdelaine C, Cintas P, Bourthoumieux S, Nizou A, Derouault P, Favreau F, Sturtz F, Faye PA, Lia AS. One Multilocus Genomic Variation Is Responsible for a Severe Charcot-Marie-Tooth Axonal Form. Brain Sci 2020; 10:brainsci10120986. [PMID: 33333791 PMCID: PMC7765239 DOI: 10.3390/brainsci10120986] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/06/2020] [Accepted: 12/09/2020] [Indexed: 12/17/2022] Open
Abstract
Charcot-Marie-Tooth (CMT) disease is a heterogeneous group of inherited disorders affecting the peripheral nervous system, with a prevalence of 1/2500. So far, mutations in more than 80 genes have been identified causing either demyelinating forms (CMT1) or axonal forms (CMT2). Consequentially, the genotype-phenotype correlation is not always easy to assess. Diagnosis could require multiple analysis before the correct causative mutation is detected. Moreover, it seems that approximately 5% of overall diagnoses for genetic diseases involves multiple genomic loci, although they are often underestimated or underreported. In particular, the combination of multiple variants is rarely described in CMT pathology and often neglected during the diagnostic process. Here, we present the complex genetic analysis of a family including two CMT cases with various severities. Interestingly, next generation sequencing (NGS) associated with Cov'Cop analysis, allowing structural variants (SV) detection, highlighted variations in MORC2 (microrchidia family CW-type zinc-finger 2) and AARS1 (alanyl-tRNA-synthetase) genes for one patient and an additional mutation in MFN2 (Mitofusin 2) in the more affected patient.
Collapse
Affiliation(s)
- Federica Miressi
- Maintenance Myélinique et Neuropathies Périphériques, Université de Limoges, EA 6309, F-87000 Limoges, France; (C.M.); (S.B.); (A.N.); (F.F.); (F.S.); (P.-A.F.); (A.-S.L.)
- Correspondence:
| | - Corinne Magdelaine
- Maintenance Myélinique et Neuropathies Périphériques, Université de Limoges, EA 6309, F-87000 Limoges, France; (C.M.); (S.B.); (A.N.); (F.F.); (F.S.); (P.-A.F.); (A.-S.L.)
- Service de Biochimie et Génétique Moléculaire, Centre Hospitalier Universitaire à Limoges, F-87000 Limoges, France
| | - Pascal Cintas
- Service de Neurologie, Centre Hospitalier Universitaire à Toulouse, F-31000 Toulouse, France;
| | - Sylvie Bourthoumieux
- Maintenance Myélinique et Neuropathies Périphériques, Université de Limoges, EA 6309, F-87000 Limoges, France; (C.M.); (S.B.); (A.N.); (F.F.); (F.S.); (P.-A.F.); (A.-S.L.)
- Service de Cytogénétique, Centre Hospitalier Universitaire à Limoges, F-87000 Limoges, France
| | - Angélique Nizou
- Maintenance Myélinique et Neuropathies Périphériques, Université de Limoges, EA 6309, F-87000 Limoges, France; (C.M.); (S.B.); (A.N.); (F.F.); (F.S.); (P.-A.F.); (A.-S.L.)
| | - Paco Derouault
- Service de Bioinformatique, Centre Hospitalier Universitaire à Limoges, F-87000 Limoges, France;
| | - Frédéric Favreau
- Maintenance Myélinique et Neuropathies Périphériques, Université de Limoges, EA 6309, F-87000 Limoges, France; (C.M.); (S.B.); (A.N.); (F.F.); (F.S.); (P.-A.F.); (A.-S.L.)
- Service de Biochimie et Génétique Moléculaire, Centre Hospitalier Universitaire à Limoges, F-87000 Limoges, France
| | - Franck Sturtz
- Maintenance Myélinique et Neuropathies Périphériques, Université de Limoges, EA 6309, F-87000 Limoges, France; (C.M.); (S.B.); (A.N.); (F.F.); (F.S.); (P.-A.F.); (A.-S.L.)
- Service de Biochimie et Génétique Moléculaire, Centre Hospitalier Universitaire à Limoges, F-87000 Limoges, France
| | - Pierre-Antoine Faye
- Maintenance Myélinique et Neuropathies Périphériques, Université de Limoges, EA 6309, F-87000 Limoges, France; (C.M.); (S.B.); (A.N.); (F.F.); (F.S.); (P.-A.F.); (A.-S.L.)
- Service de Biochimie et Génétique Moléculaire, Centre Hospitalier Universitaire à Limoges, F-87000 Limoges, France
| | - Anne-Sophie Lia
- Maintenance Myélinique et Neuropathies Périphériques, Université de Limoges, EA 6309, F-87000 Limoges, France; (C.M.); (S.B.); (A.N.); (F.F.); (F.S.); (P.-A.F.); (A.-S.L.)
- Service de Biochimie et Génétique Moléculaire, Centre Hospitalier Universitaire à Limoges, F-87000 Limoges, France
- Service de Bioinformatique, Centre Hospitalier Universitaire à Limoges, F-87000 Limoges, France;
| |
Collapse
|
41
|
Martín-Sánchez M, Bravo-Gil N, González-del Pozo M, Méndez-Vidal C, Fernández-Suárez E, Rodríguez-de la Rúa E, Borrego S, Antiñolo G. A Multi-Strategy Sequencing Workflow in Inherited Retinal Dystrophies: Routine Diagnosis, Addressing Unsolved Cases and Candidate Genes Identification. Int J Mol Sci 2020; 21:E9355. [PMID: 33302505 PMCID: PMC7763277 DOI: 10.3390/ijms21249355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 01/17/2023] Open
Abstract
The management of unsolved inherited retinal dystrophies (IRD) cases is challenging since no standard pipelines have been established. This study aimed to define a diagnostic algorithm useful for the diagnostic routine and to address unsolved cases. Here, we applied a Next-Generation Sequencing-based workflow, including a first step of panel sequencing (PS) followed by clinical-exome sequencing (CES) and whole-exome sequencing (WES), in 46 IRD patients belonging to 42 families. Twenty-six likely causal variants in retinal genes were found by PS and CES. CES and WES allowed proposing two novel candidate loci (WDFY3 and a X-linked region including CITED1), both abundantly expressed in human retina according to RT-PCR and immunohistochemistry. After comparison studies, PS showed the best quality and cost values, CES and WES involved similar analytical efforts and WES presented the highest diagnostic yield. These results reinforce the relevance of panels as a first step in the diagnostic routine and suggest WES as the next strategy for unsolved cases, reserving CES for the simultaneous study of multiple conditions. Standardizing this algorithm would enhance the efficiency and equity of clinical genetics practice. Furthermore, the identified candidate genes could contribute to increase the diagnostic yield and expand the mutational spectrum in these disorders.
Collapse
Affiliation(s)
- Marta Martín-Sánchez
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain; (M.M.-S.); (N.B.-G.); (M.G.-d.P.); (C.M.-V.); (E.F.-S.); (S.B.)
| | - Nereida Bravo-Gil
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain; (M.M.-S.); (N.B.-G.); (M.G.-d.P.); (C.M.-V.); (E.F.-S.); (S.B.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 41013 Seville, Spain
| | - María González-del Pozo
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain; (M.M.-S.); (N.B.-G.); (M.G.-d.P.); (C.M.-V.); (E.F.-S.); (S.B.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 41013 Seville, Spain
| | - Cristina Méndez-Vidal
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain; (M.M.-S.); (N.B.-G.); (M.G.-d.P.); (C.M.-V.); (E.F.-S.); (S.B.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 41013 Seville, Spain
| | - Elena Fernández-Suárez
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain; (M.M.-S.); (N.B.-G.); (M.G.-d.P.); (C.M.-V.); (E.F.-S.); (S.B.)
| | - Enrique Rodríguez-de la Rúa
- Department of Ophthalmology, University Hospital Virgen Macarena, 41013 Seville, Spain;
- Retics Patologia Ocular, OFTARED, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Salud Borrego
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain; (M.M.-S.); (N.B.-G.); (M.G.-d.P.); (C.M.-V.); (E.F.-S.); (S.B.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 41013 Seville, Spain
| | - Guillermo Antiñolo
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain; (M.M.-S.); (N.B.-G.); (M.G.-d.P.); (C.M.-V.); (E.F.-S.); (S.B.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 41013 Seville, Spain
| |
Collapse
|
42
|
Vig A, Poulter JA, Ottaviani D, Tavares E, Toropova K, Tracewska AM, Mollica A, Kang J, Kehelwathugoda O, Paton T, Maynes JT, Wheway G, Arno G, Khan KN, McKibbin M, Toomes C, Ali M, Di Scipio M, Li S, Ellingford J, Black G, Webster A, Rydzanicz M, Stawiński P, Płoski R, Vincent A, Cheetham ME, Inglehearn CF, Roberts A, Heon E. DYNC2H1 hypomorphic or retina-predominant variants cause nonsyndromic retinal degeneration. Genet Med 2020; 22:2041-2051. [PMID: 32753734 PMCID: PMC7708302 DOI: 10.1038/s41436-020-0915-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 07/16/2020] [Accepted: 07/16/2020] [Indexed: 01/02/2023] Open
Abstract
PURPOSE Determining the role of DYNC2H1 variants in nonsyndromic inherited retinal disease (IRD). METHODS Genome and exome sequencing were performed for five unrelated cases of IRD with no identified variant. In vitro assays were developed to validate the variants identified (fibroblast assay, induced pluripotent stem cell [iPSC] derived retinal organoids, and a dynein motility assay). RESULTS Four novel DYNC2H1 variants (V1, g.103327020_103327021dup; V2, g.103055779A>T; V3, g.103112272C>G; V4, g.103070104A>C) and one previously reported variant (V5, g.103339363T>G) were identified. In proband 1 (V1/V2), V1 was predicted to introduce a premature termination codon (PTC), whereas V2 disrupted the exon 41 splice donor site causing incomplete skipping of exon 41. V1 and V2 impaired dynein-2 motility in vitro and perturbed IFT88 distribution within cilia. V3, homozygous in probands 2-4, is predicted to cause a PTC in a retina-predominant transcript. Analysis of retinal organoids showed that this new transcript expression increased with organoid differentiation. V4, a novel missense variant, was in trans with V5, previously associated with Jeune asphyxiating thoracic dystrophy (JATD). CONCLUSION The DYNC2H1 variants discussed herein were either hypomorphic or affecting a retina-predominant transcript and caused nonsyndromic IRD. Dynein variants, specifically DYNC2H1 variants are reported as a cause of non syndromic IRD.
Collapse
Affiliation(s)
- Anjali Vig
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
- Institute of Medical Science, The University of Toronto, Toronto, Canada
| | - James A Poulter
- Department of Ophthalmology, St James' University Hospital, Leeds, UK
| | | | - Erika Tavares
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - Katerina Toropova
- Department of Biological Sciences, Birbeck, University of London, London, UK
| | - Anna Maria Tracewska
- DNA Analysis Unit, ŁUKASIEWICZ Research Network-PORT Polish Center for Technology Development, Wrocław, Poland
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | - Antonio Mollica
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - Jasmine Kang
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | | | - Tara Paton
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Canada
| | - Jason T Maynes
- Department of Anesthesia and Pain Medicine, The Hospital for Sick Children, Toronto, Canada
| | | | - Gavin Arno
- UCL Institute of Ophthalmology, London, UK
- Moorfields Eye Hospital, London, UK
| | - Kamron N Khan
- Department of Ophthalmology, St James' University Hospital, Leeds, UK
| | - Martin McKibbin
- Department of Ophthalmology, St James' University Hospital, Leeds, UK
| | - Carmel Toomes
- Department of Ophthalmology, St James' University Hospital, Leeds, UK
| | - Manir Ali
- Department of Ophthalmology, St James' University Hospital, Leeds, UK
| | - Matteo Di Scipio
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - Shuning Li
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - Jamie Ellingford
- Division of Evolution and Genomic Sciences, Faculty of Biology, Medicines and health, The University of Manchester, Manchester, UK
- Manchester Academic Health Science Centre (MAHSC), University of Manchester, Manchester, UK
| | - Graeme Black
- Division of Evolution and Genomic Sciences, Faculty of Biology, Medicines and health, The University of Manchester, Manchester, UK
- Manchester Centre for Genomic Medicine, Saint Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Andrew Webster
- UCL Institute of Ophthalmology, London, UK
- Moorfields Eye Hospital, London, UK
| | | | - Piotr Stawiński
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | - Rafał Płoski
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | - Ajoy Vincent
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
- Institute of Medical Science, The University of Toronto, Toronto, Canada
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, Canada
| | | | | | - Anthony Roberts
- Department of Biological Sciences, Birbeck, University of London, London, UK.
| | - Elise Heon
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada.
- Institute of Medical Science, The University of Toronto, Toronto, Canada.
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, Canada.
| |
Collapse
|
43
|
Auslander N, Ramos DM, Zelaya I, Karathia H, Crawford TO, Schäffer AA, Sumner CJ, Ruppin E. The GENDULF algorithm: mining transcriptomics to uncover modifier genes for monogenic diseases. Mol Syst Biol 2020; 16:e9701. [PMID: 33438800 PMCID: PMC7754056 DOI: 10.15252/msb.20209701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 10/20/2020] [Accepted: 11/03/2020] [Indexed: 12/15/2022] Open
Abstract
Modifier genes are believed to account for the clinical variability observed in many Mendelian disorders, but their identification remains challenging due to the limited availability of genomics data from large patient cohorts. Here, we present GENDULF (GENetic moDULators identiFication), one of the first methods to facilitate prediction of disease modifiers using healthy and diseased tissue gene expression data. GENDULF is designed for monogenic diseases in which the mechanism is loss of function leading to reduced expression of the mutated gene. When applied to cystic fibrosis, GENDULF successfully identifies multiple, previously established disease modifiers, including EHF, SLC6A14, and CLCA1. It is then utilized in spinal muscular atrophy (SMA) and predicts U2AF1 as a modifier whose low expression correlates with higher SMN2 pre-mRNA exon 7 retention. Indeed, knockdown of U2AF1 in SMA patient-derived cells leads to increased full-length SMN2 transcript and SMN protein expression. Taking advantage of the increasing availability of transcriptomic data, GENDULF is a novel addition to existing strategies for prediction of genetic disease modifiers, providing insights into disease pathogenesis and uncovering novel therapeutic targets.
Collapse
Affiliation(s)
- Noam Auslander
- Cancer Data Science Laboratory (CDSL)National Cancer InstituteNational Institutes of HealthBethesdaMDUSA
- National Center for Biotechnology InformationNational Library of MedicineNational Institutes of HealthBethesdaMDUSA
| | - Daniel M Ramos
- Department of NeuroscienceJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Ivette Zelaya
- Interdepartmental Program in BioinformaticsUniversity of California Los AngelesLos AngelesCAUSA
| | - Hiren Karathia
- Laboratory of Receptor Biology and Gene ExpressionNational Cancer InstituteNational Institutes of HealthMDUSA
| | - Thomas O. Crawford
- Department of PediatricsJohns Hopkins University School of MedicineBaltimoreMDUSA
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Alejandro A Schäffer
- Cancer Data Science Laboratory (CDSL)National Cancer InstituteNational Institutes of HealthBethesdaMDUSA
| | - Charlotte J Sumner
- Department of NeuroscienceJohns Hopkins University School of MedicineBaltimoreMDUSA
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Eytan Ruppin
- Cancer Data Science Laboratory (CDSL)National Cancer InstituteNational Institutes of HealthBethesdaMDUSA
| |
Collapse
|
44
|
Kong JH, Young CB, Pusapati GV, Patel CB, Ho S, Krishnan A, Lin JHI, Devine W, Moreau de Bellaing A, Athni TS, Aravind L, Gunn TM, Lo CW, Rohatgi R. A Membrane-Tethered Ubiquitination Pathway Regulates Hedgehog Signaling and Heart Development. Dev Cell 2020; 55:432-449.e12. [PMID: 32966817 PMCID: PMC7686252 DOI: 10.1016/j.devcel.2020.08.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/23/2020] [Accepted: 08/27/2020] [Indexed: 12/30/2022]
Abstract
The etiology of congenital heart defects (CHDs), which are among the most common human birth defects, is poorly understood because of its complex genetic architecture. Here, we show that two genes implicated in CHDs, Megf8 and Mgrn1, interact genetically and biochemically to regulate the strength of Hedgehog signaling in target cells. MEGF8, a transmembrane protein, and MGRN1, a RING superfamily E3 ligase, assemble to form a receptor-like ubiquitin ligase complex that catalyzes the ubiquitination and degradation of the Hedgehog pathway transducer Smoothened. Homozygous Megf8 and Mgrn1 mutations increased Smoothened abundance and elevated sensitivity to Hedgehog ligands. While mice heterozygous for loss-of-function Megf8 or Mgrn1 mutations were normal, double heterozygous embryos exhibited an incompletely penetrant syndrome of CHDs with heterotaxy. Thus, genetic interactions can arise from biochemical mechanisms that calibrate morphogen signaling strength, a conclusion broadly relevant for the many human diseases in which oligogenic inheritance is emerging as a mechanism for heritability.
Collapse
Affiliation(s)
- Jennifer H Kong
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Cullen B Young
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201, USA
| | - Ganesh V Pusapati
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Chandni B Patel
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sebastian Ho
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201, USA
| | - Arunkumar Krishnan
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Jiuann-Huey Ivy Lin
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201, USA
| | - William Devine
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201, USA
| | - Anne Moreau de Bellaing
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201, USA; Department of Pediatric Cardiology, Necker-Sick Children Hospital and The University of Paris Descartes, Paris 75015, France
| | - Tejas S Athni
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Teresa M Gunn
- McLaughlin Research Institute, Great Falls, MT 59405, USA.
| | - Cecilia W Lo
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201, USA.
| | - Rajat Rohatgi
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
45
|
Mroczek M, Sanchez MG. Genetic modifiers and phenotypic variability in neuromuscular disorders. J Appl Genet 2020; 61:547-558. [PMID: 32918245 DOI: 10.1007/s13353-020-00580-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/31/2020] [Accepted: 09/06/2020] [Indexed: 12/13/2022]
Abstract
Neuromuscular disorders are mostly rare diseases with autosomal dominant, recessive, or X-linked inheritance. Interestingly, among patients carrying the same mutations, a range of phenotypic severity is reported. This phenotypic variability in neuromuscular disorders is still not fully understood. This review will focus on genetic modifiers and will briefly describe metabolic pathways, in which they are involved. Genetic modifiers are variants in the same or other genes that modulate the phenotype. Proteins encoded by genetic modifiers in neuromuscular diseases are taking part in different metabolic processes, most commonly in inflammation, growth and regeneration, endoplasmic reticulum metabolism, and cytoskeletal activities. Recent advances in omics technologies, development of computational algorithms, and establishing large international consortia intensified discovery sped up investigation of genetic modifiers. As more individuals affected by neuromuscular disorders are tested, it is often suggested that classic models of genetic causation cannot explain phenotypic variability. There is a growing interest in their discovery and identifying shared metabolic pathways can contribute to design targeted therapies. We provide an update on variants acting as genetic modifiers in neuromuscular disorders and strategies used for their discovery.
Collapse
Affiliation(s)
- Magdalena Mroczek
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK.
| | - Maria Gabriela Sanchez
- Molecular Biology Department, Simon Bolivar University, Sartenejas Valley, Caracas, Venezuela
| |
Collapse
|
46
|
Ver Donck F, Downes K, Freson K. Strengths and limitations of high-throughput sequencing for the diagnosis of inherited bleeding and platelet disorders. J Thromb Haemost 2020; 18:1839-1845. [PMID: 32521110 DOI: 10.1111/jth.14945] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/27/2020] [Accepted: 05/31/2020] [Indexed: 12/23/2022]
Abstract
Inherited bleeding and platelet disorders (BPD) are highly heterogeneous and their diagnosis involves a combination of clinical investigations, laboratory tests, and genetic screening. This review will outline some of the challenges that geneticists and experts in clinical hemostasis face when implementing high-throughput sequencing (HTS) for patient care. We will provide an overview of the strengths and limitations of the different HTS techniques that can be used to diagnose BPD. An HTS test is cost-efficient and expected to increase the diagnostic rate with a possibility to detect unexpected diagnoses and decrease the turnaround time to diagnose patients. On the other hand, technical shortcomings, variant interpretation difficulties, and ethical issues related to HTS for BPD will also be documented. Delivering a genetic diagnosis to patients is highly desirable to improve clinical management and allow family counseling, but making incorrect assumptions about variants and providing insufficient information to patients before initiating the test could be harmful. Data-sharing and improved HTS guidelines are essential to limit these major drawbacks of HTS.
Collapse
Affiliation(s)
- Fabienne Ver Donck
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
| | - Kate Downes
- East Midlands and East of England Genomics Laboratory Hub, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Kathleen Freson
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
| |
Collapse
|
47
|
Du LL. Resurrection from lethal knockouts: Bypass of gene essentiality. Biochem Biophys Res Commun 2020; 528:405-412. [PMID: 32507598 DOI: 10.1016/j.bbrc.2020.05.207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 01/03/2023]
Abstract
Understanding genotype-phenotype relationships is a central pursuit in biology. Gene knockout generates a complete loss-of-function genotype and is a commonly used approach for probing gene functions. The most severe phenotypic consequence of gene knockout is lethality. Genes with a lethal knockout phenotype are called essential genes. Based on genome-wide knockout analyses in yeasts, up to approximately a quarter of genes in a genome can be essential. Like other genotype-phenotype relationships, gene essentiality is subject to background effects and can vary due to gene-gene interactions. In particular, for some essential genes, lethality caused by knockout can be rescued by extragenic suppressors. Such "bypass of essentiality" (BOE) gene-gene interactions have been an understudied type of genetic suppression. A recent systematic analysis revealed that, remarkably, the essentiality of nearly 30% of essential genes in the fission yeast Schizosaccharomyces pombe can be bypassed by BOE interactions. Here, I review the history and recent progress on uncovering and understanding the bypass of gene essentiality.
Collapse
Affiliation(s)
- Li-Lin Du
- National Institute of Biological Sciences, Beijing, 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
48
|
Lalonde E, Rentas S, Lin F, Dulik MC, Skraban CM, Spinner NB. Genomic Diagnosis for Pediatric Disorders: Revolution and Evolution. Front Pediatr 2020; 8:373. [PMID: 32733828 PMCID: PMC7360789 DOI: 10.3389/fped.2020.00373] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 06/02/2020] [Indexed: 12/14/2022] Open
Abstract
Powerful, recent advances in technologies to analyze the genome have had a profound impact on the practice of medical genetics, both in the laboratory and in the clinic. Increasing utilization of genome-wide testing such as chromosomal microarray analysis and exome sequencing have lead a shift toward a "genotype-first" approach. Numerous techniques are now available to diagnose a particular syndrome or phenotype, and while traditional techniques remain efficient tools in certain situations, higher-throughput technologies have become the de facto laboratory tool for diagnosis of most conditions. However, selecting the right assay or technology is challenging, and the wrong choice may lead to prolonged time to diagnosis, or even a missed diagnosis. In this review, we will discuss current core technologies for the diagnosis of classic genetic disorders to shed light on the benefits and disadvantages of these strategies, including diagnostic efficiency, variant interpretation, and secondary findings. Finally, we review upcoming technologies posed to impart further changes in the field of genetic diagnostics as we move toward "genome-first" practice.
Collapse
Affiliation(s)
- Emilie Lalonde
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, School of Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, United States
| | - Stefan Rentas
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, School of Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, United States
| | - Fumin Lin
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, School of Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, United States
| | - Matthew C. Dulik
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, School of Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, United States
| | - Cara M. Skraban
- Division of Human Genetics, Department of Pediatrics, School of Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, United States
| | - Nancy B. Spinner
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, School of Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
49
|
Cogné B, Latypova X, Senaratne LDS, Martin L, Koboldt DC, Kellaris G, Fievet L, Le Meur G, Caldari D, Debray D, Nizon M, Frengen E, Bowne SJ, Cadena EL, Daiger SP, Bujakowska KM, Pierce EA, Gorin M, Katsanis N, Bézieau S, Petersen-Jones SM, Occelli LM, Lyons LA, Legeai-Mallet L, Sullivan LS, Davis EE, Isidor B, Buckley RM, Aberdein D, Alves PC, Barsh GS, Bellone RR, Bergström TF, Boyko AR, Brockman JA, Casal ML, Castelhano MG, Distl O, Dodman NH, Ellinwood NM, Fogle JE, Forman OP, Garrick DJ, Ginns EI, Häggström J, Harvey RJ, Hasegawa D, Haase B, Helps CR, Hernandez I, Hytönen MK, Kaukonen M, Kaelin CB, Kosho T, Leclerc E, Lear TL, Leeb T, Li RH, Lohi H, Longeri M, Magnuson MA, Malik R, Mane SP, Munday JS, Murphy WJ, Pedersen NC, Rothschild MF, Rusbridge C, Shapiro B, Stern JA, Swanson WF, Terio KA, Todhunter RJ, Warren WC, Wilcox EA, Wildschutte JH, Yu Y. Mutations in the Kinesin-2 Motor KIF3B Cause an Autosomal-Dominant Ciliopathy. Am J Hum Genet 2020; 106:893-904. [PMID: 32386558 DOI: 10.1016/j.ajhg.2020.04.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 04/02/2020] [Indexed: 11/26/2022] Open
Abstract
Kinesin-2 enables ciliary assembly and maintenance as an anterograde intraflagellar transport (IFT) motor. Molecular motor activity is driven by a heterotrimeric complex comprised of KIF3A and KIF3B or KIF3C plus one non-motor subunit, KIFAP3. Using exome sequencing, we identified heterozygous KIF3B variants in two unrelated families with hallmark ciliopathy phenotypes. In the first family, the proband presents with hepatic fibrosis, retinitis pigmentosa, and postaxial polydactyly; he harbors a de novo c.748G>C (p.Glu250Gln) variant affecting the kinesin motor domain encoded by KIF3B. The second family is a six-generation pedigree affected predominantly by retinitis pigmentosa. Affected individuals carry a heterozygous c.1568T>C (p.Leu523Pro) KIF3B variant segregating in an autosomal-dominant pattern. We observed a significant increase in primary cilia length in vitro in the context of either of the two mutations while variant KIF3B proteins retained stability indistinguishable from wild type. Furthermore, we tested the effects of KIF3B mutant mRNA expression in the developing zebrafish retina. In the presence of either missense variant, rhodopsin was sequestered to the photoreceptor rod inner segment layer with a concomitant increase in photoreceptor cilia length. Notably, impaired rhodopsin trafficking is also characteristic of recessive KIF3B models as exemplified by an early-onset, autosomal-recessive, progressive retinal degeneration in Bengal cats; we identified a c.1000G>A (p.Ala334Thr) KIF3B variant by genome-wide association study and whole-genome sequencing. Together, our genetic, cell-based, and in vivo modeling data delineate an autosomal-dominant syndromic retinal ciliopathy in humans and suggest that multiple KIF3B pathomechanisms can impair kinesin-driven ciliary transport in the photoreceptor.
Collapse
|
50
|
Wang H, Kong X, Pei Y, Cui X, Zhu Y, He Z, Wang Y, Zhang L, Zhuo L, Chen C, Yan X. Mutation spectrum analysis of 29 causative genes in 43 Chinese patients with congenital hypothyroidism. Mol Med Rep 2020; 22:297-309. [PMID: 32319661 PMCID: PMC7248516 DOI: 10.3892/mmr.2020.11078] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 02/13/2020] [Indexed: 12/11/2022] Open
Abstract
Congenital hypothyroidism (CH) is the most common neonatal endocrine disorder with a genetic origin. The purpose of the present study was to analyze the mutation spectrum of CH patients in China. A targeted next-generation sequencing panel covering all exons of 29 CH-related causative genes was used in 43 Han Chinese patients with CH [11 dysgenesis and 32 glands in situ (GIS)]. The functional impact and pathogenicity of detected variants were analyzed using a comprehensive bioinformatics approach and co-segregation studies. A total of 47 rare non-polymorphic variants in 9 target genes associated with thyroid hormone synthesis (DUOX2, DUOXA2, TPO, TG, SLC26A4 and SLC5A5), thyroid stimulating hormone resistance (TSHR) and central hypothyroidism (PROP1 and TRHR) were identified in 31 patients (31/43, 72%). Of these variants, 8 were novel, including 3 in DUOX2, 2 in TPO, 3 in TSHR and 1 in SLC5A5. Variants were mostly affected by DUOX2, TG, TPO and TSHR. Approximately 44% of the patients (19/43) carried DUOX2 variants. The mutation detection rates in patients with GIS were higher compared with patients with dysgenesis [25/32 (78%) vs. 6/11 (54%)]. Oligogenic mutations were detected in 25.6% of the total cases and 35% of the mutated cases. Genetic basis was ascertained in 13 patients, reaching a diagnosis detection rate of 30%. In conclusion, genetic defects in dyshormonogenesis, mainly in DUOX2, were the main genetic cause of CH in the Chinese population. Oligogenicity is highly involved in CH pathogenesis and may thus be an important factor in common phenotypic variability observed in patients with CH.
Collapse
Affiliation(s)
- Huijuan Wang
- The National Engineering Research Center for Miniaturized Detection Systems, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, P.R. China
| | - Xiaohong Kong
- The National Engineering Research Center for Miniaturized Detection Systems, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, P.R. China
| | - Yanrui Pei
- The National Engineering Research Center for Miniaturized Detection Systems, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, P.R. China
| | - Xuemei Cui
- The Tianyou Children's Hospital of Xi'an, Xi'an, Shaanxi 710061, P.R. China
| | - Yijie Zhu
- The Chang An Hospital, Xi'an, Shaanxi 710016, P.R. China
| | - Zixuan He
- Beijing Shijitan Hospital, Beijing 100080, P.R. China
| | - Yanxia Wang
- The National Engineering Research Center for Miniaturized Detection Systems, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, P.R. China
| | - Lirong Zhang
- The National Engineering Research Center for Miniaturized Detection Systems, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, P.R. China
| | - Lixia Zhuo
- The National Engineering Research Center for Miniaturized Detection Systems, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, P.R. China
| | - Chao Chen
- The National Engineering Research Center for Miniaturized Detection Systems, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, P.R. China
| | - Xiaoli Yan
- Endocrine Department, Xi'an Children's Hospital, Xi'an, Shaanxi 710003, P.R. China
| |
Collapse
|