1
|
Chen Y, Liu Y, Pu J, Gui S, Wang D, Zhong X, Tao W, Chen X, Chen W, Chen X, Qiao R, Li Z, Tao X, Xie P. Treatment response of venlafaxine induced alterations of gut microbiota and metabolites in a mouse model of depression. Metab Brain Dis 2024; 39:1505-1521. [PMID: 39150654 DOI: 10.1007/s11011-024-01403-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 08/05/2024] [Indexed: 08/17/2024]
Abstract
Antidepressants remain the first-line treatment for depression. However, the factors influencing medication response are still unclear. Accumulating evidence implicates an association between alterations in gut microbiota and antidepressant response. Therefore, the aim of this study is to investigate the role of the gut microbiota-brain axis in the treatment response of venlafaxine. After chronic social defeat stress and venlafaxine treatment, mice were divided into responders and non-responders groups. We compared the composition of gut microbiota using 16 S ribosomal RNA sequencing. Meanwhile, we quantified metabolomic alterations in serum and hippocampus, as well as hippocampal neurotransmitter levels using liquid chromatography-mass spectrometry. We found that the abundances of 29 amplicon sequence variants (ASVs) were significantly altered between the responders and non-responders groups. These ASVs belonged to 8 different families, particularly Muribaculaceae. Additionally, we identified 38 and 39 differential metabolites in serum and hippocampus between the responders and non-responders groups, respectively. Lipid, amino acid, and purine metabolisms were enriched in both serum and hippocampus. In hippocampus, the concentrations of tryptophan, phenylalanine, gamma-aminobutyric acid, glutamic acid, and glutamine were increased, while the level of succinic acid was decreased in the responders group, compared with the non-responders group. Our findings suggest that the gut microbiota may play a role in the antidepressant effect of venlafaxine by modulating metabolic processes in the central and peripheral tissues. This provides a novel microbial and metabolic framework for understanding the impact of the gut microbiota-brain axis on antidepressant response.
Collapse
Affiliation(s)
- Yue Chen
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi road, Yuzhong District, Chongqing, 400016, China
| | - Yiyun Liu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi road, Yuzhong District, Chongqing, 400016, China
| | - Juncai Pu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi road, Yuzhong District, Chongqing, 400016, China
| | - Siwen Gui
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Dongfang Wang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xiaogang Zhong
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Wei Tao
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi road, Yuzhong District, Chongqing, 400016, China
| | - Xiaopeng Chen
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi road, Yuzhong District, Chongqing, 400016, China
| | - Weiyi Chen
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xiang Chen
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi road, Yuzhong District, Chongqing, 400016, China
| | - Renjie Qiao
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi road, Yuzhong District, Chongqing, 400016, China
| | - Zhuocan Li
- Psychologic Medicine Science, Chongqing Medical University, Chongqing, China
| | - Xiangkun Tao
- Psychologic Medicine Science, Chongqing Medical University, Chongqing, China
| | - Peng Xie
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi road, Yuzhong District, Chongqing, 400016, China.
- Chongqing Institute for Brain and Intelligence, Chongqing, China.
| |
Collapse
|
2
|
Austelle CW, Cox SS, Wills KE, Badran BW. Vagus nerve stimulation (VNS): recent advances and future directions. Clin Auton Res 2024; 34:529-547. [PMID: 39363044 PMCID: PMC11543756 DOI: 10.1007/s10286-024-01065-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 09/09/2024] [Indexed: 10/05/2024]
Abstract
PURPOSE Vagus nerve stimulation (VNS) is emerging as a unique and potent intervention, particularly within neurology and psychiatry. The clinical value of VNS continues to grow, while the development of noninvasive options promises to change a landscape that is already quickly evolving. In this review, we highlight recent progress in the field and offer readers a glimpse of the future for this bright and promising modality. METHODS We compiled a narrative review of VNS literature using PubMed and organized the discussion by disease states with approved indications (epilepsy, depression, obesity, post-stroke motor rehabilitation, headache), followed by a section highlighting novel, exploratory areas of VNS research. In each section, we summarized the current role, recent advancements, and future directions of VNS in the treatment of each disease. RESULTS The field continues to gain appreciation for the clinical potential of this modality. VNS was initially developed for treatment-resistant epilepsy, with the first depression studies following shortly thereafter. Overall, VNS has gained approval or clearance in the treatment of medication-refractory epilepsy, treatment-resistant depression, obesity, migraine/cluster headache, and post-stroke motor rehabilitation. CONCLUSION Noninvasive VNS represents an opportunity to bridge the translational gap between preclinical and clinical paradigms and may offer the same therapeutic potential as invasive VNS. Further investigation into how VNS parameters modulate behavior and biology, as well as how to translate noninvasive options into the clinical arena, are crucial next steps for researchers and clinicians studying VNS.
Collapse
Affiliation(s)
- Christopher W Austelle
- Department of Psychiatry and Behavioral Sciences, Stanford University, 401 Quarry Road, Palo Alto, CA, 94305, USA.
- Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, CA, USA.
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA.
| | - Stewart S Cox
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Kristin E Wills
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Bashar W Badran
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
3
|
Liu FJ, Wu J, Gong LJ, Yang HS, Chen H. Non-invasive vagus nerve stimulation in anti-inflammatory therapy: mechanistic insights and future perspectives. Front Neurosci 2024; 18:1490300. [PMID: 39605787 PMCID: PMC11599236 DOI: 10.3389/fnins.2024.1490300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024] Open
Abstract
Non-invasive vagus nerve stimulation (VNS) represents a transformative approach for managing a broad spectrum of inflammatory and autoimmune conditions, including rheumatoid arthritis and inflammatory bowel disease. This comprehensive review delineates the mechanisms underlying VNS, emphasizing the cholinergic anti-inflammatory pathway, and explores interactions within the neuro-immune and vagus-gut axes based on both clinical outcomes and pre-clinical models. Clinical applications have confirmed the efficacy of VNS in managing specific autoimmune diseases, such as rheumatoid arthritis, and chronic inflammatory conditions like inflammatory bowel disease, showcasing the variability in stimulation parameters and patient responses. Concurrently, pre-clinical studies have provided insights into the potential of VNS in modulating cardiovascular and broader inflammatory responses, paving the way for its translational application in clinical settings. Innovations in non-invasive VNS technology and precision neuromodulation are enhancing its therapeutic potential, making it a viable option for patients who are unresponsive to conventional treatments. Nonetheless, the widespread adoption of this promising therapy is impeded by regulatory challenges, patient compliance issues, and the need for extensive studies on long-term efficacy and safety. Future research directions will focus on refining VNS technology, optimizing treatment parameters, and exploring synergistic effects with other therapeutic modalities, which could revolutionize the management of chronic inflammatory and autoimmune disorders.
Collapse
Affiliation(s)
- Fu-Jun Liu
- Neurology Medical Center II, Foresea Life Insurance Guangzhou General Hospital, Guangzhou, China
| | - Jing Wu
- Department of Medical Imaging, Foresea Life Insurance Guangzhou General Hospital, Guangzhou, China
| | - Li-Jun Gong
- Center of Surgical Anesthesia, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hong-Shuai Yang
- Central Operating Room, Foresea Life Insurance Guangzhou General Hospital, Guangzhou, China
| | - Huan Chen
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
4
|
Xu C, Song Y, Lan Y, Wang Y, Wang N, Lu X. Association between fecal incontinence and cardiovascular disease in adult Americans: evidence from NHANES 2005-2010. Front Cardiovasc Med 2024; 11:1447913. [PMID: 39484014 PMCID: PMC11524900 DOI: 10.3389/fcvm.2024.1447913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/01/2024] [Indexed: 11/03/2024] Open
Abstract
Objectives There is limited amount of research on the association between fecal incontinence (FI) and cardiovascular disease (CVD). This study aims to evaluate whether there is a relationship between FI and CVD among adults in the United States. Methods This study employed a cross-sectional design, encompassing 11,237 adults aged 20 years and older, drawn from the National Health and Nutrition Survey conducted from 2005 to 2010. FI was defined as the involuntary monthly leakage of solid, liquid, or mucus stool. The presence of CVD was evaluated through a questionnaire. Adjusted odds ratios (OR) were computed utilizing a multivariate logistic regression model. Subgroup analyses were conducted to ascertain the stability of the results. Results Following adjustments for population characteristics, lifestyle habits, laboratory tests, and comorbidities, a significant association was observed between FI and elevated CVD risk (OR: 1.47, 95% CI: 1.21-1.79, P < 0.001). Subgroup analysis uncovered a strong correlation between FI and CVD among participants aged 45-65 years (OR: 1.78, 95%CI: 1.31-2.43). In the participants to aged 66 and above, this correlation persisted (OR: 1.31, 95% CI: 1.01-1.70). Conclusions This study reveals a significant positive correlation between FI and CVD. Middle-aged and older adults are considered high-risk population for developing CVD, thus emphasizing the importance of screening and timely intervention.
Collapse
Affiliation(s)
- Chenkai Xu
- College of Integrative Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
- Precision Medicine Center, Jilin Province General Hospital, Changchun, Jilin, China
| | - Yongfu Song
- Department of Pediatrics, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Yuejiao Lan
- Precision Medicine Center, Jilin Province General Hospital, Changchun, Jilin, China
| | - Yongji Wang
- Department of Pediatrics, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Na Wang
- Department of Pediatrics, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Xiaodan Lu
- College of Integrative Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
- Precision Medicine Center, Jilin Province General Hospital, Changchun, Jilin, China
| |
Collapse
|
5
|
Wang W, Li R, Li C, Liang Q, Gao X. Advances in VNS efficiency and mechanisms of action on cognitive functions. Front Physiol 2024; 15:1452490. [PMID: 39444752 PMCID: PMC11496278 DOI: 10.3389/fphys.2024.1452490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/08/2024] [Indexed: 10/25/2024] Open
Abstract
Objective This systematic review aims to comprehensively analyze the efficacy and underlying mechanisms of vagus nerve stimulation (VNS) in enhancing cognitive functions and its therapeutic potential for various cognitive impairments. The review focuses on the impact of VNS on emotional processing, executive functions, learning, memory, and its clinical applications in conditions such as epilepsy, depression, Alzheimer's disease, and other neurological disorders. Methods A systematic search of electronic databases (PubMed, Scopus, Web of Science) was conducted using the keywords "vagus nerve stimulation," "cognitive enhancement," "emotional processing," "executive function," "learning and memory," "epilepsy," "depression," "Alzheimer's disease," "neurological disorders," "attention-deficit/hyperactivity disorder," "sleep disorders," and "long COVID." The inclusion criteria encompassed controlled trials, longitudinal studies, and meta-analyses published in English between 2000 and July 2024. Results A comprehensive review of 100 articles highlighted the cognitive effects of Vagus Nerve Stimulation (VNS). Studies show that VNS, especially through transcutaneous auricular VNS (taVNS), enhances emotional recognition, particularly for facial expressions, and improves selective attention under high cognitive demands. Additionally, VNS enhances learning and memory, including associative memory and spatial working memory tasks. In clinical applications, VNS exhibits promising benefits for improving cognitive functions in treatment-resistant epilepsy, depression, and Alzheimer's disease. Conclusion VNS represents a promising therapeutic approach for enhancing cognitive function across diverse patient populations. The reviewed evidence highlights its efficacy in modulating cognitive domains in healthy individuals and improving cognition in neurological conditions. However, the comparative effectiveness of different VNS modalities and the differential effects of online versus offline VNS on cognitive psychology require further investigation. Future research should focus on optimizing VNS protocols and elucidating specific cognitive domains that benefit most from VNS interventions. This ongoing exploration is essential for maximizing the therapeutic potential of VNS in clinical practice.
Collapse
Affiliation(s)
- Wendi Wang
- Sports Rehabilitation Research Center, China Institute of Sport Science, Beijing, China
| | - Rui Li
- School of Exercise Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Chuangtao Li
- School of Physical Education and Sport Science, Fujian Normal University, Fujian, China
| | - Qimin Liang
- School of Sport Science, Beijing Sport University, Beijing, China
| | - Xiaolin Gao
- Sports Rehabilitation Research Center, China Institute of Sport Science, Beijing, China
| |
Collapse
|
6
|
Aydin BN, Stinson EJ, Travis KT, Krakoff J, Rodzevik T, Chang DC, Gluck ME. Reduced plasma interleukin-6 concentration after transcranial direct current stimulation to the prefrontal cortex. Behav Brain Res 2024; 474:115201. [PMID: 39151649 PMCID: PMC11401619 DOI: 10.1016/j.bbr.2024.115201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/26/2024] [Accepted: 08/10/2024] [Indexed: 08/19/2024]
Abstract
OBJECTIVES Transcranial direct stimulation (tDCS) targeted to the dorsolateral prefrontal cortex (DLPFC) reduces food intake and hunger, but its effects on circulating factors are unclear. We assessed the effect of repeated administration of tDCS to the left DLPFC (L-DLPFC) on concentrations of pro/anti-inflammatory and appetitive hormone concentrations. MATERIALS AND METHODS Twenty-nine healthy adults with obesity (12 M; 42±11 y; BMI=39±8 kg/m2) received 3 consecutive inpatient sessions of either anodal or sham tDCS targeted to the L-DLPFC during a period of ad libitum food intake. Fasting plasma concentrations of IL-6, orexin, cortisol, TNF-α, IL-1β, ghrelin, PYY, and GLP-1 were measured before the initial and after the final tDCS sessions. RESULTS IL-6 (β=-0.92 pg/ml p=0.03) decreased in the anodal group compared with sham, even after adjusting for kcal intake; there were no changes in other hormones. Mean kcal intake was associated with higher IL-1β and ghrelin concentrations after the ad libitum period (β=0.00018 pg/ml/kcal, p=0.03; β=0.00011 pg/ml/kcal, p=0.02; respectively), but not differ by intervention groups. CONCLUSIONS IL-6 concentrations were reduced following anodal tDCS to the L-DLPFC independent of ad libitum intake. IL-6 concentrations reflect the inflammatory state of adiposity and may affect eating behavior and weight gain. These findings provide evidence of therapeutic benefit of tDCS.
Collapse
Affiliation(s)
- Beyza N Aydin
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ, United States
| | - Emma J Stinson
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ, United States
| | - Katherine T Travis
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ, United States
| | - Jonathan Krakoff
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ, United States
| | - Theresa Rodzevik
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ, United States
| | - Douglas C Chang
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ, United States
| | - Marci E Gluck
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ, United States.
| |
Collapse
|
7
|
Xie ZF, Wang SY, Gao Y, Zhang YD, Han YN, Huang J, Gao MN, Wang CG. Vagus nerve stimulation (VNS) preventing postoperative cognitive dysfunction (POCD): two potential mechanisms in cognitive function. Mol Cell Biochem 2024:10.1007/s11010-024-05091-0. [PMID: 39138750 DOI: 10.1007/s11010-024-05091-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
Postoperative cognitive dysfunction (POCD) impacts a significant number of patients annually, frequently impairing their cognitive abilities and resulting in unfavorable clinical outcomes. Aimed at addressing cognitive impairment, vagus nerve stimulation (VNS) is a therapeutic approach, which was used in many mental disordered diseases, through the modulation of vagus nerve activity. In POCD model, the enhancement of cognition function provided by VNS was shown, demonstrating VNS effect on cognition in POCD. In the present study, we primarily concentrates on elucidating the role of the VNS improving the cognitive function in POCD, via two potential mechanisms: the inflammatory microenvironment and epigenetics. This study provided a theoretical support for the feasibility that VNS can be a potential method to enhance cognition function in POCD.
Collapse
Affiliation(s)
- Zi-Feng Xie
- Department of Anesthesiology, The First Central Hospital of Baoding, Northern Great Wall Street 320#, Baoding, 071000, Hebei, China
- Department of Anesthesiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, Liaoning, China
- The First Clinical Medical College, Jinzhou Medical University, Jinzhou, 121000, Liaoning, China
| | - Sheng-Yu Wang
- Department of Anesthesiology, The First Central Hospital of Baoding, Northern Great Wall Street 320#, Baoding, 071000, Hebei, China
- Graduate College, Chengde Medical College, Chengde, 067000, Hebei, China
| | - Yuan Gao
- Department of Anesthesiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, Liaoning, China
- The First Clinical Medical College, Jinzhou Medical University, Jinzhou, 121000, Liaoning, China
| | - Yi-Dan Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, Liaoning, China
- The First Clinical Medical College, Jinzhou Medical University, Jinzhou, 121000, Liaoning, China
| | - Ya-Nan Han
- Department of Anesthesiology, The First Central Hospital of Baoding, Northern Great Wall Street 320#, Baoding, 071000, Hebei, China
- Graduate College, Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Jin Huang
- Department of Anesthesiology, The First Central Hospital of Baoding, Northern Great Wall Street 320#, Baoding, 071000, Hebei, China
- Graduate College, Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Mei-Na Gao
- Department of Anesthesiology, The First Central Hospital of Baoding, Northern Great Wall Street 320#, Baoding, 071000, Hebei, China
| | - Chun-Guang Wang
- Department of Anesthesiology, The First Central Hospital of Baoding, Northern Great Wall Street 320#, Baoding, 071000, Hebei, China.
| |
Collapse
|
8
|
Jiménez-Castillo RA, Frazier R, Venkatesan T, Remes-Troche JM. Cyclic vomiting syndrome: From pathophysiology to treatment. REVISTA DE GASTROENTEROLOGIA DE MEXICO (ENGLISH) 2024; 89:389-403. [PMID: 39034267 DOI: 10.1016/j.rgmxen.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/04/2024] [Indexed: 07/23/2024]
Abstract
Cyclic vomiting syndrome (CVS) is a disorder characterized by recurrent and unpredictable episodes of intense vomiting, interspersed with periods of apparent wellbeing. This disorder, which primarily affects children and adolescents but can persist into adulthood, has recently been the subject of extensive study and analysis in the medical literature. The aim of the present review is to examine the most important aspects of the epidemiology, pathophysiology, subtypes, diagnostic criteria, and current management of CVS. Even though the exact etiology remains unknown, genetic factors (polymorphisms), nervous system alterations and autonomic dysregulation, and environmental factors (use and abuse of cannabinoids) are postulated as possible triggers. CVS has significant diagnostic challenges, given that there is no specific test for confirming its presence. Thorough evaluation of symptoms and the ruling out of other possible causes of recurrent vomiting are required. Management of CVS typically involves a multidisciplinary approach. Pharmacologic options are explored, such as antiemetics and preventive medications, as well as behavioral and psychologic support therapies. Treatment personalization is essential, adapting it to the individual needs of each patient. Despite advances in the understanding of CVS, it remains a significant clinical challenge. This disorder impacts the quality of life of those affected and their families, underscoring the ongoing need for research and the development of more effective treatment strategies.
Collapse
Affiliation(s)
- R A Jiménez-Castillo
- Servicio de Gastroenterología y Endoscopía Digestiva, Hospital Universitario «Dr. José E. González», Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, Mexico
| | - R Frazier
- Servicio de Gastroenterología y Hepatología, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - T Venkatesan
- Servicio de Gastroenterología, Hepatología y Nutrición, The Ohio State University, Columbus, Ohio, USA
| | - J M Remes-Troche
- Laboratorio de Fisiología Digestiva y Motilidad Gastrointestinal, Instituto de Investigaciones Médico-Biológicas, Universidad Veracruzana, Veracruz, Mexico.
| |
Collapse
|
9
|
Scuto M, Rampulla F, Reali GM, Spanò SM, Trovato Salinaro A, Calabrese V. Hormetic Nutrition and Redox Regulation in Gut-Brain Axis Disorders. Antioxidants (Basel) 2024; 13:484. [PMID: 38671931 PMCID: PMC11047582 DOI: 10.3390/antiox13040484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/09/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
The antioxidant and anti-inflammatory effects of hormetic nutrition for enhancing stress resilience and overall human health have received much attention. Recently, the gut-brain axis has attracted prominent interest for preventing and therapeutically impacting neuropathologies and gastrointestinal diseases. Polyphenols and polyphenol-combined nanoparticles in synergy with probiotics have shown to improve gut bioavailability and blood-brain barrier (BBB) permeability, thus inhibiting the oxidative stress, metabolic dysfunction and inflammation linked to gut dysbiosis and ultimately the onset and progression of central nervous system (CNS) disorders. In accordance with hormesis, polyphenols display biphasic dose-response effects by activating at a low dose the Nrf2 pathway resulting in the upregulation of antioxidant vitagenes, as in the case of heme oxygenase-1 upregulated by hidrox® or curcumin and sirtuin-1 activated by resveratrol to inhibit reactive oxygen species (ROS) overproduction, microbiota dysfunction and neurotoxic damage. Importantly, modulation of the composition and function of the gut microbiota through polyphenols and/or probiotics enhances the abundance of beneficial bacteria and can prevent and treat Alzheimer's disease and other neurological disorders. Interestingly, dysregulation of the Nrf2 pathway in the gut and the brain can exacerbate selective susceptibility under neuroinflammatory conditions to CNS disorders due to the high vulnerability of vagal sensory neurons to oxidative stress. Herein, we aimed to discuss hormetic nutrients, including polyphenols and/or probiotics, targeting the Nrf2 pathway and vitagenes for the development of promising neuroprotective and therapeutic strategies to suppress oxidative stress, inflammation and microbiota deregulation, and consequently improve cognitive performance and brain health. In this review, we also explore interactions of the gut-brain axis based on sophisticated and cutting-edge technologies for novel anti-neuroinflammatory approaches and personalized nutritional therapies.
Collapse
Affiliation(s)
- Maria Scuto
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy; (F.R.); (G.M.R.); (S.M.S.); (V.C.)
| | | | | | | | - Angela Trovato Salinaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy; (F.R.); (G.M.R.); (S.M.S.); (V.C.)
| | | |
Collapse
|
10
|
Seifert O, Baerwald C. Stimulation of the vagus nerve as a therapeutic principle. Z Rheumatol 2024; 83:1-7. [PMID: 37597013 DOI: 10.1007/s00393-023-01398-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2023] [Indexed: 08/21/2023]
Abstract
Modulation of the parasympathetic tone leads to extensive physiological reactions at several levels, including the decreased production of proinflammatory cytokines. Many studies have demonstrated that chronic inflammatory diseases are associated with reduced parasympathetic and increased sympathetic activities. Moreover, it was demonstrated that a low parasympathetic and a high sympathetic activity in patients with rheumatoid arthritis (RA) predicts a poor therapeutic response to anti-tumor necrosis factor (TNF) treatment compared to RA patients with a more balanced autonomic nervous system. The autonomic equilibrium could be restored by electrical stimulation of the vagus nerve. Considering the patients who do not sufficiently respond to the available drugs, patients for whom the effectiveness of the drugs wanes over time, or have drug-related adverse events, a nonpharmacological approach such as bioelectronics might be a useful supplement as an instrument in the successful extension of the therapeutic armamentarium for rheumatic diseases; however, there is a great need for further studies and the development of novel therapeutic strategies in the field of neuroimmunology.
Collapse
Affiliation(s)
- O Seifert
- MK II Rheumatologie, Universitätsklinikum Leipzig, Liebigstr. 20, 04103, Leipzig, Germany.
| | - C Baerwald
- MK II Rheumatologie, Universitätsklinikum Leipzig, Liebigstr. 20, 04103, Leipzig, Germany
| |
Collapse
|
11
|
Ni H, Liu M, Cao M, Zhang L, Zhao Y, Yi L, Li Y, Liu L, Wang P, Du Q, Zhou H, Dong Y. Sinomenine regulates the cholinergic anti-inflammatory pathway to inhibit TLR4/NF-κB pathway and protect the homeostasis in brain and gut in scopolamine-induced Alzheimer's disease mice. Biomed Pharmacother 2024; 171:116190. [PMID: 38278026 DOI: 10.1016/j.biopha.2024.116190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024] Open
Abstract
Sinomenine (SIN), an alkaloid extracted from the Chinese herbal medicine Sinomenium acutum, has great potential in anti-inflammatory, immune regulation, analgesic and sedative, and is already a clinical drug for the treatment of rheumatoid arthritis in China. Our previous studies show SIN inhibits inflammation by regulating ɑ7nAChR, a key receptor of cholinergic anti-inflammatory pathway (CAP), which plays an important role in regulating peripheral and central nervous system inflammation. Growing evidence supports the cholinergic dysregulation and inflammatory responses play the key role in the pathogenesis of AD. The intervention effects of SIN on AD by regulating CAP and homeostasis in brain and gut were analyzed for the first time in the present study using scopolamine-induced AD model mice. Behavioral tests were used to assess the cognitive performance. The neurons loss, cholinergic function, inflammation responses, biological barrier function in the mouse brain and intestinal tissues were evaluated through a variety of techniques, and the gut microbiota was detected using 16SrRNA sequencing. The results showed that SIN significantly inhibited the cognitive decline, dysregulation of cholinergic system, peripheral and central inflammation, biological barrier damage as well as intestinal flora disturbance caused by SCOP in mice. More importantly, SIN effectively regulated CAP to suppress the activation of TLR4/NF-κB and protect the homeostasis in brain and gut to alleviate cognitive impairment.
Collapse
Affiliation(s)
- Haojie Ni
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Muqiu Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Mindie Cao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Lingyu Zhang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Yijing Zhao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Lang Yi
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Yanwu Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Liang Liu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Peixun Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Qun Du
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China.
| | - Hua Zhou
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China.
| | - Yan Dong
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China.
| |
Collapse
|
12
|
Bonaz B. The gut-brain axis in Parkinson's disease. Rev Neurol (Paris) 2024; 180:65-78. [PMID: 38129277 DOI: 10.1016/j.neurol.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023]
Abstract
There is a bi-directional communication between the gut, including the microbiota, and the brain through the autonomic nervous system. Accumulating evidence has suggested a bidirectional link between gastrointestinal inflammation and neurodegeneration, in accordance with the concept of the gut-rain axis. An abnormal microbiota-gut-brain interaction contributes to the pathogeny of Parkinson's disease. This supports the hypothesis that Parkinson's disease originates in the gut to spread to the central nervous system, in particular through the vagus nerve. Targeting the gut-to-brain axis with vagus nerve stimulation, fecal microbiota transplantation, gut-selective antibiotics, as well as drugs targeting the leaky gut might be of interest in the management of Parkinson's disease.
Collapse
Affiliation(s)
- B Bonaz
- Service d'hépato-gastroentérologie, Grenoble institut neurosciences, université Grenoble-Alpes, Grenoble, France.
| |
Collapse
|
13
|
Kocyigit BF, Assylbek MI, Akyol A, Abdurakhmanov R, Yessirkepov M. Vagus nerve stimulation as a therapeutic option in inflammatory rheumatic diseases. Rheumatol Int 2024; 44:1-8. [PMID: 37814148 DOI: 10.1007/s00296-023-05477-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 09/19/2023] [Indexed: 10/11/2023]
Abstract
The vagus nerve forms intricate neural connections with an extensive number of organs, particularly the digestive system. The vagus nerve has a pivotal role as a fundamental component of the autonomic nervous system, exhibiting an essential effect. It establishes a direct link with the parasympathetic system, consequently eliciting the synaptic release of acetylcholine. Recent studies have revealed the potential anti-inflammatory function of the vagus nerve. The activation of the hypothalamic system through the stimulation of vagal afferents is fundamentally involved in regulating inflammation. This activation process leads to the production of cortisol. The other mechanism, defined as the cholinergic anti-inflammatory pathway, is characterized by the involvement of vagal efferents. These fibers release the neurotransmitter acetylcholine at particular synaptic connections, involving interactions with macrophages and enteric neurons. The mechanism under consideration is ascribed to the α-7-nicotinic acetylcholine receptors. The fusion of acetylcholine receptors is responsible for the restricted secretion of inflammatory mediators by macrophages. A potential mechanism for anti-inflammatory effects involves the stimulation of the sympathetic system through the vagus nerve, leading to the control of immunological responses within the spleen. This article offers an extensive summary of the present knowledge regarding the therapeutic effectiveness of stimulating the vagus nerve in managing inflammatory rheumatic conditions based on the relationship of inflammation with the vagus nerve. Furthermore, the objective is to present alternatives that may be preferred while applying vagus nerve stimulation approaches.
Collapse
Affiliation(s)
- Burhan Fatih Kocyigit
- Department of Physical Medicine and Rehabilitation, University of Health Sciences, Adana Health Practice and Research Center, Adana, Turkey.
| | - Meirgul I Assylbek
- Department of Neurology, Psychiatry, Neurosurgery and Rehabilitation, South Kazakhstan Medical Academy, Shymkent, Kazakhstan
- Department of Social Health Insurance and Public Health, South Kazakhstan Medical Academy, Shymkent, Kazakhstan
- Medical Center ''Mediker'', Shymkent, Kazakhstan
| | - Ahmet Akyol
- Physiotherapy and Rehabilitation Application and Research Center, Hasan Kalyoncu University, Gaziantep, Turkey
| | - Ruslan Abdurakhmanov
- Department of Biology and Biochemistry, South Kazakhstan Medical Academy, Shymkent, Kazakhstan
| | - Marlen Yessirkepov
- Department of Biology and Biochemistry, South Kazakhstan Medical Academy, Shymkent, Kazakhstan
| |
Collapse
|
14
|
Zhou HB, Lu SZ, Yu ZS, Zhang JL, Mei ZN. Mechanisms for the biological activity of Gastrodia elata Blume and its constituents: A comprehensive review on sedative-hypnotic, and antidepressant properties. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155251. [PMID: 38056151 DOI: 10.1016/j.phymed.2023.155251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/15/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND Insomnia and depressive disorder are two common symptoms with a reciprocal causal relationship in clinical practice, which are usually manifested in comorbid form. Several medications have been widely used in the treatment of insomnia and depression, but most of these drugs show non-negligible side effects. Currently, many treatments are indicated for insomnia and depressive symptom, including Chinese herbal medicine such as Gastrodia elata Blume (G. elata), which has excellent sedative-hypnotic and antidepressant effects in clinical and animal studies. PURPOSE To summarize the mechanisms of insomnia and depression and the structure-activity mechanism for G. elata to alleviate these symptoms, particularly by hypothalamic-pituitary-adrenal (HPA) axis and intestinal flora, aiming to discover new approaches for the treatment of insomnia and depression. METHODS The following electronic databases were searched from the beginning to November 2023: PubMed, Web of Science, Google Scholar, Wanfang Database, and CNKI. The following keywords of G. elata were used truncated with other relevant topic terms, such as depression, insomnia, antidepressant, sedative-hypnotic, neuroprotection, application, safety, and toxicity. RESULTS Natural compounds derived from G. elata could alleviate insomnia and depressive disorder, which is involved in monoamine neurotransmitters, inflammatory response, oxidative stress, and gut microbes, etc. Several clinical trials showed that G. elata-derived natural compounds that treat depression and insomnia have significant and safe therapeutic effects, but further well-designed clinical and toxicological studies are needed. CONCLUSION G. elata exerts a critical role in treating depression and insomnia due to its multi-targeting properties and fewer side effects. However, more clinical and toxicological studies should be performed to further explore the sedative-hypnotic and antidepressant mechanisms of G. elata and provide more evidence and recommendations for its clinical application. Our review provides an overview of G. elata treating insomnia with depression for future research direction.
Collapse
Affiliation(s)
- Hai-Bo Zhou
- College of Food Science and Technology, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, Hubei Province 430070, China
| | - Sheng-Ze Lu
- College of Food Science and Technology, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, Hubei Province 430070, China
| | - Zhong-Shun Yu
- College of Food Science and Technology, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, Hubei Province 430070, China
| | - Jiu-Liang Zhang
- College of Food Science and Technology, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, Hubei Province 430070, China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan, 430070, China.
| | - Zhi-Nan Mei
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
15
|
Yan M, Man S, Sun B, Ma L, Guo L, Huang L, Gao W. Gut liver brain axis in diseases: the implications for therapeutic interventions. Signal Transduct Target Ther 2023; 8:443. [PMID: 38057297 PMCID: PMC10700720 DOI: 10.1038/s41392-023-01673-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/10/2023] [Accepted: 09/28/2023] [Indexed: 12/08/2023] Open
Abstract
Gut-liver-brain axis is a three-way highway of information interaction system among the gastrointestinal tract, liver, and nervous systems. In the past few decades, breakthrough progress has been made in the gut liver brain axis, mainly through understanding its formation mechanism and increasing treatment strategies. In this review, we discuss various complex networks including barrier permeability, gut hormones, gut microbial metabolites, vagus nerve, neurotransmitters, immunity, brain toxic metabolites, β-amyloid (Aβ) metabolism, and epigenetic regulation in the gut-liver-brain axis. Some therapies containing antibiotics, probiotics, prebiotics, synbiotics, fecal microbiota transplantation (FMT), polyphenols, low FODMAP diet and nanotechnology application regulate the gut liver brain axis. Besides, some special treatments targeting gut-liver axis include farnesoid X receptor (FXR) agonists, takeda G protein-coupled receptor 5 (TGR5) agonists, glucagon-like peptide-1 (GLP-1) receptor antagonists and fibroblast growth factor 19 (FGF19) analogs. Targeting gut-brain axis embraces cognitive behavioral therapy (CBT), antidepressants and tryptophan metabolism-related therapies. Targeting liver-brain axis contains epigenetic regulation and Aβ metabolism-related therapies. In the future, a better understanding of gut-liver-brain axis interactions will promote the development of novel preventative strategies and the discovery of precise therapeutic targets in multiple diseases.
Collapse
Affiliation(s)
- Mengyao Yan
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China.
| | - Benyue Sun
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China.
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Weijin Road, 300072, Tianjin, China.
| |
Collapse
|
16
|
Dirr EW, Jiracek LG, Baekey DM, J Martyniuk C, Otto KJ, Zubcevic J. Subdiaphragmatic vagal nerve stimulation attenuates the development of hypertension and alters nucleus of the solitary tract transcriptional networks in the spontaneously hypertensive rat. Physiol Genomics 2023; 55:606-617. [PMID: 37746712 PMCID: PMC11178265 DOI: 10.1152/physiolgenomics.00016.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/18/2023] [Accepted: 09/18/2023] [Indexed: 09/26/2023] Open
Abstract
Augmented vagal signaling may be therapeutic in hypertension. Most studies to date have used stimulation of the cervical vagal branches. Here, we investigated the effects of chronic intermittent electric stimulation of the ventral subdiaphragmatic vagal nerve branch (sdVNS) on long-term blood pressure, immune markers, and gut microbiota in the spontaneously hypertensive rat (SHR), a rodent model of hypertension characterized by vagal dysfunction, gut dysbiosis, and low-grade inflammation. We evaluated the effects of sdVNS on transcriptional networks in the nucleus of the solitary tract (NTS), a major cardioregulatory brain region with direct gut vagal projections. Male juvenile SHRs were implanted with radiotelemetry transmitters and vagal nerve cuffs for chronic intermittent electric sdVNS, applied three times per day for 7 consecutive weeks followed by 1 wk of no stimulation. Blood pressure was measured once a week using telemetry in the sdVNS group as well as age-matched sham-stimulated SHR controls. At the endpoint, colonic and circulating inflammatory markers, corticosterone, and circulating catecholamines were investigated. Bacterial 16 s sequencing measured gut bacterial abundance and composition. RNA sequencing evaluated the effects of sdVNS on transcriptional networks in the NTS. SHRs that received sdVNS exhibited attenuated development of hypertension compared with sham animals. No changes in peripheral inflammatory markers, corticosterone, or catecholamines and no major differences in gut bacterial diversity and composition were observed following sdVNS, apart from decreased abundance of Defluviitaleaceale bacterium detected in sdVNS SHRs compared with sham animals. RNA sequencing revealed significant sdVNS-dependent modulation of select NTS transcriptional networks, including catecholaminergic and corticosteroid networks.NEW & NOTEWORTHY We show that stimulation of the ventral subdiaphragmatic vagal nerve branch may be a promising potential approach to treating hypertension. The data are especially encouraging given that rodents received only 30 min per day of intermittent stimulation therapy and in view of the potential of long-term blood pressure effects that are not stimulus-locked.
Collapse
Affiliation(s)
- Elliott W Dirr
- Department of Physiology and Pharmacology, University of Toledo, Toledo, Ohio, United States
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, United States
| | - Ladan G Jiracek
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida, United States
| | - David M Baekey
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida, United States
| | - Christopher J Martyniuk
- Department of Physiological Sciences, University of Florida, Gainesville, Florida, United States
| | - Kevin J Otto
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, United States
- Department of Neuroscience, University of Florida, Gainesville, Florida, United States
- Department of Neurology, University of Florida, Gainesville, Florida, United States
- Department of Materials Science and Engineering, University of Florida, Gainesville, Florida, United States
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, Florida, United States
| | - Jasenka Zubcevic
- Department of Physiology and Pharmacology, University of Toledo, Toledo, Ohio, United States
| |
Collapse
|
17
|
Dorsey AF, Miller EM. Revisiting geophagy: An evolved sickness behavior to microbiome-mediated gastrointestinal inflammation. Evol Anthropol 2023; 32:325-335. [PMID: 37661330 DOI: 10.1002/evan.22004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/19/2023] [Accepted: 08/21/2023] [Indexed: 09/05/2023]
Abstract
Geophagy, the consumption of clay or similar substances, is known as an evolved behavior that protects vulnerable populations, such as pregnant women and children, against gastrointestinal injury. However, perplexing questions remain, like the presence of geophagy in the absence of overt gastrointestinal infection and the potential causal relationship between geophagy and iron deficiency anemia. In this review, we hypothesize that geophagy is an inflammation-mediated sickness behavior regulated via the vagus nerve. We further hypothesize that the gut microbiome plays a critical role in mediating the relationship between inflammation and geophagy. By including inflammation and the microbiome within the existing protection hypothesis, we can explain how subclinical gastrointestinal states induce geophagy. Furthermore, we can explain how gastrointestinal inflammation is responsible for both geophagy and iron-deficiency anemia, explaining why the two phenomena frequently co-occur. Ultimately, defining geophagy as a sickness behavior allows us to integrate the gut-brain axis into geophagy research.
Collapse
Affiliation(s)
- Achsah F Dorsey
- Department of Anthropology, University of Massachusetts, Amherst, Massachusetts, USA
| | - Elizabeth M Miller
- Department of Anthropology, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
18
|
Leon‐Mercado L, Tinajero A, Gautron L. Evidence of extraganglionic vagal mechanoreceptors in the mouse vagus nerve. J Anat 2023; 243:936-950. [PMID: 37403978 PMCID: PMC10641042 DOI: 10.1111/joa.13925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/06/2023] Open
Abstract
Vagal afferent neuronal somas are in the nodose and jugular ganglia. In this study, we identified extraganglionic neurons in whole-mount preparations of the vagus nerves from Phox2b-Cre-ZsGreen transgenic mice. These neurons are typically arranged in small clusters and monolayers along the cervical vagus nerve. Although infrequent, these neurons were sometimes observed along the thoracic and esophageal vagus. We performed RNAscope in situ hybridization and confirmed that the extraganglionic neurons detected in this transgenic mouse strain expressed vagal afferent markers (i.e., Phox2b and Slc17a6) as well as markers that identify them as potential gastrointestinal mechanoreceptors (i.e., Tmc3 and Glp1r). We also identified extraganglionic neurons in the vagus nerves of wild-type mice that were injected intraperitoneally with Fluoro-Gold, thereby ruling out possible anatomical discrepancies specific for transgenic mice. In wild-type mice, extraganglionic cells were positive for peripherin, confirming their neuronal nature. Taken together, our findings revealed a previously undiscovered population of extraganglionic neurons associated with the vagus nerve. Going forward, it is important to consider the possible existence of extraganglionic mechanoreceptors that transmit signals from the abdominal viscera in future studies related to vagal structure and function.
Collapse
Affiliation(s)
- Luis Leon‐Mercado
- Department of Internal MedicineCenter for Hypothalamic Research, UT Southwestern Medical CenterDallasTexasUSA
| | - Arely Tinajero
- Department of Internal MedicineCenter for Hypothalamic Research, UT Southwestern Medical CenterDallasTexasUSA
| | - Laurent Gautron
- Department of Internal MedicineCenter for Hypothalamic Research, UT Southwestern Medical CenterDallasTexasUSA
| |
Collapse
|
19
|
Yin J, Chen JD. Noninvasive electrical neuromodulation for gastrointestinal motility disorders. Expert Rev Gastroenterol Hepatol 2023; 17:1221-1232. [PMID: 38018087 PMCID: PMC10842705 DOI: 10.1080/17474124.2023.2288156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 11/22/2023] [Indexed: 11/30/2023]
Abstract
INTRODUCTION Gastrointestinal motility disorders are highly prevalent without satisfactory treatment. noninvasive electrical neuromodulation is an emerging therapy for treating various gastrointestinal motility disorders. AREAS COVERED In this review, several emerging noninvasive neuromodulation methods are introduced, including transcutaneous auricular vagal nerve stimulation, percutaneous auricular vagal nerve stimulation, transcutaneous cervical vagal nerve stimulation, transcutaneous electrical acustimulation, transabdominal interference stimulation, tibial nerve stimulation, and translumbosacral neuromodulation therapy. Their clinical applications in the most common gastrointestinal motility are discussed, including gastroesophageal reflux disease, functional dyspepsia, gastroparesis, functional constipation, irritable bowel syndrome, and fecal incontinence. PubMed database was searched from 1995 to June 2023 for relevant articles in English. EXPERT OPINION Noninvasive neuromodulation is effective and safe in improving both gastrointestinal symptoms and dysmotility; it can be used when pharmacotherapy is ineffective. Future directions include refining the methodology, improving device development and understanding mechanisms of action.
Collapse
Affiliation(s)
- Jieyun Yin
- Transtimulation Research Inc, Oklahoma City, OK, USA
| | - Jiande Dz Chen
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor MI, USA
| |
Collapse
|
20
|
Jin Z, Dong J, Wang Y, Liu Y. Exploring the potential of vagus nerve stimulation in treating brain diseases: a review of immunologic benefits and neuroprotective efficacy. Eur J Med Res 2023; 28:444. [PMID: 37853458 PMCID: PMC10585738 DOI: 10.1186/s40001-023-01439-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 10/09/2023] [Indexed: 10/20/2023] Open
Abstract
The vagus nerve serves as a critical connection between the central nervous system and internal organs. Originally known for its effectiveness in treating refractory epilepsy, vagus nerve stimulation (VNS) has shown potential for managing other brain diseases, including ischaemic stroke, traumatic brain injury, Parkinson's disease, and Alzheimer's disease. However, the precise mechanisms of VNS and its benefits for brain diseases are not yet fully understood. Recent studies have found that VNS can inhibit inflammation, promote neuroprotection, help maintain the integrity of the blood-brain barrier, have multisystemic modulatory effects, and even transmit signals from the gut flora to the brain. In this article, we will review several essential studies that summarize the current theories of VNS and its immunomodulatory effects, as well as the therapeutic value of VNS for brain disorders. By doing so, we aim to provide a better understanding of how the neuroimmune network operates and inspire future research in this field.
Collapse
Affiliation(s)
- Zeping Jin
- Department of Neurosurgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Jing Dong
- Department of Medical Engineering, Tsinghua University Yuquan Hospital, Beijing, People's Republic of China
| | - Yang Wang
- Department of Neurosurgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Yunpeng Liu
- Department of Neurosurgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China.
| |
Collapse
|
21
|
Khan MAS, Chang SL. Alcohol and the Brain-Gut Axis: The Involvement of Microglia and Enteric Glia in the Process of Neuro-Enteric Inflammation. Cells 2023; 12:2475. [PMID: 37887319 PMCID: PMC10605902 DOI: 10.3390/cells12202475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/25/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
Binge or chronic alcohol consumption causes neuroinflammation and leads to alcohol use disorder (AUD). AUD not only affects the central nervous system (CNS) but also leads to pathologies in the peripheral and enteric nervous systems (ENS). Thus, understanding the mechanism of the immune signaling to target the effector molecules in the signaling pathway is necessary to alleviate AUD. Growing evidence shows that excessive alcohol consumption can activate neuroimmune cells, including microglia, and change the status of neurotransmitters, affecting the neuroimmune system. Microglia, like peripheral macrophages, are an integral part of the immune defense and represent the reticuloendothelial system in the CNS. Microglia constantly survey the CNS to scavenge the neuronal debris. These cells also protect parenchymal cells in the brain and spinal cord by repairing nerve circuits to keep the nervous system healthy against infectious and stress-derived agents. In an activated state, they become highly dynamic and mobile and can modulate the levels of neurotransmitters in the CNS. In several ways, microglia, enteric glial cells, and macrophages are similar in terms of causing inflammation. Microglia also express most of the receptors that are constitutively present in macrophages. Several receptors on microglia respond to the inflammatory signals that arise from danger-associated molecular patterns (DAMPs), pathogen-associated molecular patterns (PAMPs), endotoxins (e.g., lipopolysaccharides), and stress-causing molecules (e.g., alcohol). Therefore, this review article presents the latest findings, describing the roles of microglia and enteric glial cells in the brain and gut, respectively, and their association with neurotransmitters, neurotrophic factors, and receptors under the influence of binge and chronic alcohol use, and AUD.
Collapse
Affiliation(s)
- Mohammed A. S. Khan
- Department of Neurosurgery, Brigham Hospital for Children, Harvard Medical School, Boston, MA 02115, USA;
| | - Sulie L. Chang
- Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, NJ 07079, USA
- Department of Biological Sciences, Seton Hall University, South Orange, NJ 07079, USA
| |
Collapse
|
22
|
Yan Q, Chen J, Ren X, Song Y, Xu J, Xuan S, Jiang X, Kuang Z, Tang Z. Vagus Nerve Stimulation Relives Irritable Bowel Syndrome and the Associated Depression via α7nAChR-mediated Anti-inflammatory Pathway. Neuroscience 2023; 530:26-37. [PMID: 37625687 DOI: 10.1016/j.neuroscience.2023.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 08/10/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023]
Abstract
OBJECTIVES The present study is designed to investigate the role of vagus nerve in the treatments of irritable bowel syndrome (IBS) and the associated central nervous system disorders. METHODS An IBS animal model was established by giving acetic acid and chronic-acute stress (AA-CAS) treatment in adult male Wistar rats. Subdiaphragmatic vagotomy (SDV) and vagus nerve stimulation (VNS) were performed to intervene the excitability of vagus nerve. Permeability of blood brain barrier (BBB) was measured and agonist and antagonist of α7 nicotinic acetylcholine receptor (α7nAChR) were used to explore the relevant mechanisms. RESULTS AA-CAS treatment resulted in abnormal fecal output, increased visceral sensitivity, depressive-like behaviors, and overexpression of inflammatory mediators, all of which were reversed by VNS treatment. The effects of VNS could also be observed when α7nAChR agonist was applied. Whereas α7nAChR antagonist (methyllycaconitine, MLA) reversed VNS's effects. Interestingly, VNS also reduced the increased permeability of blood brain barrier (BBB) following AA-CAS treatment in IBS rats. SDV treatment only show temporary efficacy on AA-CAS-induced symptoms and had no effect on the permeability of BBB. CONCLUSION The intestinal abnormalities and depressive symptoms in IBS rats can be improved by VNS treatment. This positive effect of VNS was achieved through α7nAChR-mediated inflammatory pathway and may also be associated with the decreased of BBB permeability.
Collapse
Affiliation(s)
- Qizhi Yan
- Shaoxing People's Hospital, Shaoxing 312000, China
| | - Jiawei Chen
- Shaoxing People's Hospital, Shaoxing 312000, China
| | - Xiuying Ren
- Shaoxing People's Hospital, Shaoxing 312000, China
| | - Yibo Song
- Shaoxing People's Hospital, Shaoxing 312000, China
| | - Jian Xu
- Shaoxing People's Hospital, Shaoxing 312000, China
| | - Shaoyan Xuan
- Shaoxing People's Hospital, Shaoxing 312000, China
| | - Xi Jiang
- Zhejiang University Mingzhou Hospital, Ningbo 315000, China
| | - Zhijian Kuang
- Zhejiang University Mingzhou Hospital, Ningbo 315000, China
| | - Zhihua Tang
- Shaoxing People's Hospital, Shaoxing 312000, China.
| |
Collapse
|
23
|
Tao R, Liu S, Crawford J, Tao F. Gut-Brain Crosstalk and the Central Mechanisms of Orofacial Pain. Brain Sci 2023; 13:1456. [PMID: 37891825 PMCID: PMC10605055 DOI: 10.3390/brainsci13101456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/21/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Accumulated evidence has demonstrated that the gut microbiome can contribute to pain modulation through the microbiome-gut-brain axis. Various relevant microbiome metabolites in the gut are involved in the regulation of pain signaling in the central nervous system. In this review, we summarize recent advances in gut-brain interactions by which the microbiome metabolites modulate pain, with a focus on orofacial pain, and we further discuss the role of gut-brain crosstalk in the central mechanisms of orofacial pain whereby the gut microbiome modulates orofacial pain via the vagus nerve-mediated direct pathway and the gut metabolites/molecules-mediated indirect pathway. The direct and indirect pathways both contribute to the central regulation of orofacial pain through different brain structures (such as the nucleus tractus solitarius and the parabrachial nucleus) and signaling transmission across the blood-brain barrier, respectively. Understanding the gut microbiome-regulated pain mechanisms in the brain could help us to develop non-opioid novel therapies for orofacial pain.
Collapse
Affiliation(s)
| | | | | | - Feng Tao
- Department of Biomedical Sciences, Texas A&M University School of Dentistry, 3302 Gaston Ave., Dallas, TX 75246, USA
| |
Collapse
|
24
|
Dudzińska E, Grabrucker AM, Kwiatkowski P, Sitarz R, Sienkiewicz M. The Importance of Visceral Hypersensitivity in Irritable Bowel Syndrome-Plant Metabolites in IBS Treatment. Pharmaceuticals (Basel) 2023; 16:1405. [PMID: 37895876 PMCID: PMC10609912 DOI: 10.3390/ph16101405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023] Open
Abstract
The visceral stimuli from the digestive tract are transmitted via afferent nerves through the spinal cord to the brain, where they are felt as pain. The overreaction observed in the brain of irritable bowel syndrome (IBS) patients may be due to increased peripheral sensitivity to stimuli from the gastrointestinal tract. Although the exact pathway is uncertain, attenuation of visceral hypersensitivity is still of interest in treating IBS. It has been shown that stress stimulates the sympathetic nervous system while inhibiting the vagus nerve (VN). In addition, stress factors lead to dysbiosis and chronic low-grade inflammation of the intestinal mucosa, which can lead to lower gastrointestinal visceral hypersensitivity. Therefore, an important goal in the treatment of IBS is the normalization of the intestinal microflora. An interesting option seems to be nutraceuticals, including Terminalia chebula, which has antibacterial and antimicrobial activity against various pathogenic Gram-positive and Gram-negative bacteria. Additionally, short-term transcutaneous vagus nerve stimulation can reduce the stress-induced increase in intestinal permeability, thereby reducing inflammation. The conducted studies also indicate a relationship between the stimulation of the vagus nerve (VN) and the activation of neuromodulatory networks in the central nervous system. Therefore, it seems reasonable to conclude that a two-way action through stimulating the VN and using nutraceuticals may become an effective therapy in treating IBS.
Collapse
Affiliation(s)
- Ewa Dudzińska
- Department of Dietetics and Nutrition Education, Medical University of Lublin, 20-093 Lublin, Poland
| | - Andreas M. Grabrucker
- Department of Biological Sciences, University of Limerick, V94 PH61 Limerick, Ireland;
- Bernal Institute, University of Limerick, V94 PH61 Limerick, Ireland
- Health Research Institute (HRI), University of Limerick, V94 PH61 Limerick, Ireland
| | - Paweł Kwiatkowski
- Department of Diagnostic Immunology, Pomeranian Medical University in Szczecin, Al. Powstancow Wlkp. 72, 70-111 Szczecin, Poland;
| | - Robert Sitarz
- Department of Human Anatomy, Medical University of Lublin, 20-090 Lublin, Poland;
- First Department of Surgical Oncology, St. John’s Cancer Center, 20-090 Lublin, Poland
| | - Monika Sienkiewicz
- Department of Pharmaceutical Microbiology and Microbiological Diagnostic, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland;
| |
Collapse
|
25
|
Blaise S, Sinniger V, Seinturier C. Literature review of transcutaneous electrical nerve stimulation in peripheral arterial occlusive disease of the lower limbs. JOURNAL DE MEDECINE VASCULAIRE 2023; 48:116-123. [PMID: 37914456 DOI: 10.1016/j.jdmv.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/20/2023] [Indexed: 11/03/2023]
Abstract
The therapeutic challenge in peripheral arterial occlusive disease (PAD) is often to increase walking distance, improve pain or heal a wound when PAD is symptomatic. Walking rehabilitation or surgical revascularization techniques are limited. Others strategies as alternatives and/or complementary treatments are needed. Among alternative options, Transcutaneous Electrical Nerve Stimulations (TENS) could be of interest, both for improved walking distance or pain reduction. The Transcutaneous Electrical Nerve Stimulation (TENS) is a non-pharmacological, mini-invasive technique involving transcutaneous electrical stimulation. However, there are other transcutaneous electrical nerve stimulation techniques based on the principle of vagus nerve stimulation with different mechanistics. Trans-auricular Vagus nerve stimulation (Ta-VNS) is another TENS technique (electrode on the external ear) which relies on the anti-inflammatory pathways of efferent and afferent vagal fibers. We propose here to review the literature of mini-invasive electrical stimulations, whatever the anatomical zone concerned, in PAD. METHOD The aim was to evaluate the use of non-invasive transcutaneous electrical stimulation therapies (regardless of location) in PAD of the lower limbs, whatever the disease grade. A review of the literature was carried out via a search of the MEDLINE/PubMed database from 1975 to 2023. The articles were selected via abstracts by checking (1) medical indications: PAD patients with claudication were retained, excluding neurological or venous claudication, PAD whatever the disease grade (intermittent claudication or critical limb ischemia [CLI]) and (2) non invasive electrical stimulations were considered (neuromuscular electrical stimulation and spinal cord stimulation were excluded) whatever the anatomical site. Non-electrical stimuli such as acupuncture and reflexotherapy were excluded. RESULTS Only 9 items were selected, including 7 studies with TENS treatment on the calf, one with trans-auricular vagus nerve stimulation and one with electro-acupuncture points of stimulation. CONCLUSION Even if the mechanisms involved are different, TENS on the calves or in the external ears show an improvement of walking distance in PAD patients with intermittent claudication. The results of the studies show few positive effects in arteriopathy but we should keep vigilant in the technics used since mechanisms are different and not fully understood. Electro-stimulation of the calf and external ear appears to be an easy-to-use and accessible therapeutic option, especially since some PAD patients are still failing to be released from pain, despite the rise of endovascular interventional techniques.
Collapse
Affiliation(s)
- S Blaise
- Service de médecine vasculaire, Grenoble University Hospital, BP 217, 38043 Grenoble Cedex 09, France; Université de Grenoble Alpes, Inserm U1300, HP2, Grenoble, France.
| | - V Sinniger
- Université de Grenoble Alpes, U1216, Grenoble Institut des Neurosciences, CHU deGrenoble Alpes, 38000 Grenoble, France
| | - C Seinturier
- Service de médecine vasculaire, Grenoble University Hospital, BP 217, 38043 Grenoble Cedex 09, France
| |
Collapse
|
26
|
Wolniczak E, Meyer F, Albrecht A. [The abdominal brain: neuroanatomic perspectives for the abdominal surgeon]. ZEITSCHRIFT FUR GASTROENTEROLOGIE 2023; 61:1037-1045. [PMID: 37142237 DOI: 10.1055/a-2013-7633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The "abdominal brain" does not only consist of a separate enteric nervous system but also of bidirectional connections to the autonomous nerve system with parasympathicus und sympathicus as well as brain and spinal cord. Novel studies have shown that these connections can quickly transfer information on the ingested nutrients to the brain to conduct the feeling of hunger and more complex behaviour, such as "reward-related learning". However, even emotional experience, in particular, stress, has a strong impact onto the gastrointestinal system. The immune system, motility and barrier function of the gastrointestinal tract are modulated by the intestinal microbiota. Local bacteria may directly influence neuronal communication by released metabolic products and neuropeptides as well as may control inflammatory factors. Intensive research over the last 10 years was able to provide evidence that intestinal microbiota may affect emotional and cognitive aspects of our behaviour and, thus, it might be in the focus of numerous neuropsychiatric diseases, such as depressions and anxiety disorders.The presented review is to provide a short summary of the I): anatomic basics of the so-called gut-brain axis and II): modi of the bidirectional regulation. Through indirect connections to the limbic system, gut-brain axis can substantially influence stress and anxiety but also the pain processing. In addition, the role of microbiota is outlined and future paths are shown, e.g., how the (microbiota-)gut-brain axis may alter emotional experience, pain processing and intestinal function. Such associations are relevant for further development of visceral medicine, and, thus, also for the abdominal surgeon to derive future treatment concepts with interdisciplinary orientation.
Collapse
Affiliation(s)
- Erik Wolniczak
- Institut für Anatomie, Otto-von-Guericke-Universität zu Magdeburg, Magdeburg, Deutschland
| | - Frank Meyer
- Klinik für Allgemein-, Viszeral-, Gefäß- und Transplantationschirurgie, Universitätsklinikum Magdeburg A.ö.R., Magdeburg, Deutschland
| | - Anne Albrecht
- Institut für Anatomie, Otto-von-Guericke-Universität zu Magdeburg, Magdeburg, Deutschland
- Center for Behavioral Brain Science (CBBS), Magdeburg, Germany
- Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying mental health (C-I-R-C), Jena-Magdeburg-Halle, Germany
| |
Collapse
|
27
|
Seifert O, Baerwald C. [Stimulation of the vagus nerve as a therapeutic principle. German Version]. Z Rheumatol 2023:10.1007/s00393-023-01390-x. [PMID: 37490129 DOI: 10.1007/s00393-023-01390-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2023] [Indexed: 07/26/2023]
Abstract
Modulation of the parasympathetic tone leads to extensive physiological reactions at several levels, including the decreased production of proinflammatory cytokines. Many studies have demonstrated that chronic inflammatory diseases are associated with reduced parasympathetic and increased sympathetic activities. Moreover, it was demonstrated that a low parasympathetic and a high sympathetic activity in patients with rheumatoid arthritis (RA) predicts a poor therapeutic response to anti-tumor necrosis factor (TNF) treatment compared to RA patients with a more balanced autonomic nervous system. The autonomic equilibrium could be restored by electrical stimulation of the vagus nerve. Considering the patients who do not sufficiently respond to the available drugs, patients for whom the effectiveness of the drugs wanes over time, or have drug-related adverse events, a nonpharmacological approach such as bioelectronics might be a useful supplement as an instrument in the successful extension of the therapeutic armamentarium for rheumatic diseases; however, there is a great need for further studies and the development of novel therapeutic strategies in the field of neuroimmunology.
Collapse
Affiliation(s)
- O Seifert
- MK II Rheumatologie, Universitätsklinikum Leipzig, Liebigstr. 20, 04103, Leipzig, Deutschland.
| | - C Baerwald
- MK II Rheumatologie, Universitätsklinikum Leipzig, Liebigstr. 20, 04103, Leipzig, Deutschland
| |
Collapse
|
28
|
Erin N, Szallasi A. Carcinogenesis and Metastasis: Focus on TRPV1-Positive Neurons and Immune Cells. Biomolecules 2023; 13:983. [PMID: 37371563 DOI: 10.3390/biom13060983] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/23/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Both sensory neurons and immune cells, albeit at markedly different levels, express the vanilloid (capsaicin) receptor, Transient Receptor Potential, Vanilloid-1 (TRPV1). Activation of TRPV1 channels in sensory afferent nerve fibers induces local effector functions by releasing neuropeptides (most notably, substance P) which, in turn, trigger neurogenic inflammation. There is good evidence that chronic activation or inactivation of this inflammatory pathway can modify tumor growth and metastasis. TRPV1 expression was also demonstrated in a variety of mammalian immune cells, including lymphocytes, dendritic cells, macrophages and neutrophils. Therefore, the effects of TRPV1 agonists and antagonists may vary depending on the prominent cell type(s) activated and/or inhibited. Therefore, a comprehensive understanding of TRPV1 activity on immune cells and nerve endings in distinct locations is necessary to predict the outcome of therapies targeting TRPV1 channels. Here, we review the neuro-immune modulation of cancer growth and metastasis, with focus on the consequences of TRPV1 activation in nerve fibers and immune cells. Lastly, the potential use of TRPV1 modulators in cancer therapy is discussed.
Collapse
Affiliation(s)
- Nuray Erin
- Department of Medical Pharmacology, School of Medicine, Akdeniz University, Antalya 07070, Turkey
- Immuno-Pharmacology and Immuno-Oncology Unit, School of Medicine, Akdeniz University, Antalya 07070, Turkey
| | - Arpad Szallasi
- Department of Pathology and Experimental Cancer Research, Semmelweis University, H-1085 Budapest, Hungary
| |
Collapse
|
29
|
Leisman G, Melillo R, Melillo T. Prefrontal Functional Connectivities in Autism Spectrum Disorders: A Connectopathic Disorder Affecting Movement, Interoception, and Cognition. Brain Res Bull 2023; 198:65-76. [PMID: 37087061 DOI: 10.1016/j.brainresbull.2023.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/05/2023] [Accepted: 04/17/2023] [Indexed: 04/24/2023]
Abstract
The prefrontal cortex is included in a neuronal system that includes the basal ganglia, the thalamus, and the cerebellum. Most of the higher and more complex motor, cognitive, and emotional behavioral functions are thought to be found primarily in the frontal lobes. Insufficient connectivity between the medial prefrontal cortex (mPFC) and other regions of the brain that are distant from each other involved in top-down information processing rely on the global integration of data from multiple input sources and enhance low level perception processes (bottom-up information processing). The reduced deactivation in mPFC and in the rest of the Default Network during global task processing is consistent with the integrative modulatory role served by the mPFC. We stress the importance of understanding the degree to which sensory and movement anomalies in individuals with autism spectrum disorder (ASD) can contribute to social impairment. Further investigation on the neurobiological basis of sensory symptoms and its relationship to other clinical features found in ASD is required Treatment perhaps should not be first behaviorally based but rather based on facilitating sensory motor development.
Collapse
Affiliation(s)
- Gerry Leisman
- Movement and Cognition Laboratory, Department of Physical Therapy, University of Haifa, Haifa, Israel; University of the Medical Sciences of Havana, Department of Clinical Neurophysiology, Institute of Neurology and Neurosurgery, Havana, Cuba.
| | - Robert Melillo
- Movement and Cognition Laboratory, Department of Physical Therapy, University of Haifa, Haifa, Israel
| | - Ty Melillo
- Northeast College of the Health Sciencs, Seneca Falls, NY USA
| |
Collapse
|
30
|
Li YT, Yuan WZ, Jin WL. Vagus innervation in the gastrointestinal tumor: Current understanding and challenges. Biochim Biophys Acta Rev Cancer 2023; 1878:188884. [PMID: 36990250 DOI: 10.1016/j.bbcan.2023.188884] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 02/17/2023] [Accepted: 02/28/2023] [Indexed: 03/30/2023]
Abstract
The vagus nerve (VN) is the main parasympathetic nerve of the autonomic nervous system. It is widely distributed in the gastrointestinal tract and maintains gastrointestinal homeostasis with the sympathetic nerve under physiological conditions. The VN communicates with various components of the tumor microenvironment to positively and dynamically affect the progression of gastrointestinal tumors (GITs). The intervention in vagus innervation delays GIT progression. Developments in adeno-associated virus vectors, nanotechnology, and in vivo neurobiological techniques have enabled the creation of precisely regulated "tumor neurotherapies". Furthermore, the combination of neurobiological techniques and single cell sequencing may reveal more insights into VN and GIT. The present review aimed to summarize the mechanisms of communication between the VN and the gastrointestinal TME and to explore the potential and challenges of VN-based tumor neurotherapy in GITs.
Collapse
|
31
|
Hashimoto K. Neuroinflammation through the vagus nerve-dependent gut–microbiota–brain axis in treatment-resistant depression. PROGRESS IN BRAIN RESEARCH 2023. [DOI: 10.1016/bs.pbr.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
32
|
Lan N, Smukalla STM, Chang S. Fecal Incontinence and Defecatory Disorders in Patients With Ileal Pouch-Anal Anastomosis. Gastroenterol Hepatol (N Y) 2023; 19:41-47. [PMID: 36865815 PMCID: PMC9972658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Functional anorectal disorders are common in patients with ileal pouch-anal anastomosis (IPAA) and often have a debilitating impact on quality of life. The diagnosis of functional anorectal disorders, including fecal incontinence (FI) and defecatory disorders, requires a combination of clinical symptoms and functional testing. Symptoms are generally underdiagnosed and underreported. Commonly utilized tests include anorectal manometry, balloon expulsion test, defecography, electromyography, and pouchoscopy. The treatment for FI begins with lifestyle modifications and medications. Sacral nerve stimulation and tibial nerve stimulation have been trialed on patients with IPAA and FI, resulting in improvement in symptoms. Biofeedback therapy has also been used in patients with FI but is more commonly utilized in defecatory disorders. Early diagnosis of functional anorectal disorders is important because a response to treatment may significantly improve a patient's quality of life. To date, there is limited literature describing the diagnosis and treatment of functional anorectal disorders in patients with IPAA. This article focuses on the clinical presentation, diagnosis, and treatment of FI and defecatory disorders in patients with IPAA.
Collapse
Affiliation(s)
- Nan Lan
- 1Department of Gastroenterology, Columbia University Irving Medical Center, New York, New York
| | - Scot t M. Smukalla
- 2Division of Gastroenterology, New York University Grossman School of Medicine, New York, New York
| | - Shannon Chang
- 2Division of Gastroenterology, New York University Grossman School of Medicine, New York, New York
| |
Collapse
|
33
|
Donahue MJ, Ejneby MS, Jakešová M, Caravaca AS, Andersson G, Sahalianov I, Đerek V, Hult H, Olofsson PS, Głowacki ED. Wireless optoelectronic devices for vagus nerve stimulation in mice. J Neural Eng 2022; 19. [PMID: 36356313 DOI: 10.1088/1741-2552/aca1e3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 11/10/2022] [Indexed: 11/12/2022]
Abstract
Objective.Vagus nerve stimulation (VNS) is a promising approach for the treatment of a wide variety of debilitating conditions, including autoimmune diseases and intractable epilepsy. Much remains to be learned about the molecular mechanisms involved in vagus nerve regulation of organ function. Despite an abundance of well-characterized rodent models of common chronic diseases, currently available technologies are rarely suitable for the required long-term experiments in freely moving animals, particularly experimental mice. Due to challenging anatomical limitations, many relevant experiments require miniaturized, less invasive, and wireless devices for precise stimulation of the vagus nerve and other peripheral nerves of interest. Our objective is to outline possible solutions to this problem by using nongenetic light-based stimulation.Approach.We describe how to design and benchmark new microstimulation devices that are based on transcutaneous photovoltaic stimulation. The approach is to use wired multielectrode cuffs to test different stimulation patterns, and then build photovoltaic stimulators to generate the most optimal patterns. We validate stimulation through heart rate analysis.Main results.A range of different stimulation geometries are explored with large differences in performance. Two types of photovoltaic devices are fabricated to deliver stimulation: photocapacitors and photovoltaic flags. The former is simple and more compact, but has limited efficiency. The photovoltaic flag approach is more elaborate, but highly efficient. Both can be used for wireless actuation of the vagus nerve using light impulses.Significance.These approaches can enable studies in small animals that were previously challenging, such as long-termin vivostudies for mapping functional vagus nerve innervation. This new knowledge may have potential to support clinical translation of VNS for treatment of select inflammatory and neurologic diseases.
Collapse
Affiliation(s)
- Mary J Donahue
- Laboratory of Organic Electronics, Campus Norrköping, Linköping University, SE-60174 Norrköping, Sweden
| | - Malin Silverå Ejneby
- Laboratory of Organic Electronics, Campus Norrköping, Linköping University, SE-60174 Norrköping, Sweden.,Wallenberg Centre for Molecular Medicine, Linköping University, SE-58185 Linköping, Sweden
| | - Marie Jakešová
- Bioelectronics Materials and Devices Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic
| | - April S Caravaca
- Laboratory of Immunobiology, Center for Bioelectronic Medicine, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Stockholm Center for Bioelectronic Medicine, MedTechLabs, Karolinska University Hospital, Solna, Sweden
| | | | - Ihor Sahalianov
- Bioelectronics Materials and Devices Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic
| | - Vedran Đerek
- Department of Physics, Faculty of Science, University of Zagreb, Bijenička c. 32, 10000 Zagreb, Croatia
| | - Henrik Hult
- Stockholm Center for Bioelectronic Medicine, MedTechLabs, Karolinska University Hospital, Solna, Sweden.,Department of Mathematics, KTH, 11428 Stockholm, Sweden
| | - Peder S Olofsson
- Laboratory of Immunobiology, Center for Bioelectronic Medicine, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Stockholm Center for Bioelectronic Medicine, MedTechLabs, Karolinska University Hospital, Solna, Sweden.,Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, United States of America
| | - Eric Daniel Głowacki
- Laboratory of Organic Electronics, Campus Norrköping, Linköping University, SE-60174 Norrköping, Sweden.,Bioelectronics Materials and Devices Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic
| |
Collapse
|
34
|
Chunduri A, Reddy SDM, Jahanavi M, Reddy CN. Gut-Brain Axis, Neurodegeneration and Mental Health: A Personalized Medicine Perspective. Indian J Microbiol 2022; 62:505-515. [PMID: 36458229 PMCID: PMC9705676 DOI: 10.1007/s12088-022-01033-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 07/26/2022] [Indexed: 11/05/2022] Open
Abstract
Neurological conditions such as neurodegenerative diseases and mental health disorders are a result of multifactorial underpinnings, leading to individual-based complex phenotypes. Demystification of these multifactorial connections will promote disease diagnosis and treatment. Personalized treatment rather than a one-size-fits-all approach would enable us to cater to the unmet healthcare needs based on protein-protein and gene-environment interactions. Gut-brain axis, as the name suggests, is a two-way biochemical communication pathway between the central nervous system (CNS) and enteric nervous system (ENS), enabling a mutual influence between brain and peripheral intestinal functions. The gut microbiota is a major component of this bidirectional communication, the composition of which is varied depending on the age, and disease conditions, among other factors. Gut microbiota profile is typically unique and personalized therapeutic intervention can aid in treating or delaying neurodegeneration and mental health conditions. Besides, research on the gut microbial influence on these conditions is gaining attention, and a better understanding of this concept can lead to identification of novel targeted therapies. Graphical Abstract
Collapse
Affiliation(s)
- Alisha Chunduri
- Department of Biotechnology, Chaitanya Bharathi Institute of Technology, Hyderabad, Telangana 500075 India
| | - S. Deepak Mohan Reddy
- Department of Biotechnology, Chaitanya Bharathi Institute of Technology, Hyderabad, Telangana 500075 India
| | - M. Jahanavi
- Department of Biotechnology, Chaitanya Bharathi Institute of Technology, Hyderabad, Telangana 500075 India
| | - C. Nagendranatha Reddy
- Department of Biotechnology, Chaitanya Bharathi Institute of Technology, Hyderabad, Telangana 500075 India
| |
Collapse
|
35
|
Tan C, Yan Q, Ma Y, Fang J, Yang Y. Recognizing the role of the vagus nerve in depression from microbiota-gut brain axis. Front Neurol 2022; 13:1015175. [PMID: 36438957 PMCID: PMC9685564 DOI: 10.3389/fneur.2022.1015175] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/12/2022] [Indexed: 08/08/2023] Open
Abstract
Depression is a worldwide disease causing severe disability, morbidity, and mortality. Despite abundant studies, the precise mechanisms underlying the pathophysiology of depression remain elusive. Recently, cumulate research suggests that a disturbance of microbiota-gut-brain axis may play a vital role in the etiology of depression while correcting this disturbance could alleviate depression symptoms. The vagus nerve, linking brain and gut through its afferent and efferent branches, is a critical route in the bidirectional communication of this axis. Directly or indirectly, the vagus afferent fibers can sense and relay gut microbiota signals to the brain and induce brain disorders including depression. Also, brain changes in response to stress may result in gut hyperpermeability and inflammation mediating by the vagal efferents, which may be detrimental to depression. Notably, vagus nerve stimulation owns an anti-inflammatory effect and was proved for depression treatment. Nevertheless, depression was accompanied by a low vagal tone, which may derive from response to stress and contribute to pathogenesis of depression. In this review, we aim to explore the role of the vagus nerve in depression from the perspective of the microbiota-gut-brain axis, highlighting the relationship among the vagal tone, the gut hyperpermeability, inflammation, and depression.
Collapse
Affiliation(s)
- Chaoren Tan
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Science, Beijing, China
| | - Qiqi Yan
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Science, Beijing, China
| | - Yue Ma
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiliang Fang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yongsheng Yang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Science, Beijing, China
| |
Collapse
|
36
|
Frazier R, Venkatesan T. Current understanding of the etiology of cyclic vomiting syndrome and therapeutic strategies in its management. Expert Rev Clin Pharmacol 2022; 15:1305-1316. [PMID: 36259482 DOI: 10.1080/17512433.2022.2138341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Cyclic vomiting syndrome is a chronic debilitating disorder of the gut-brain interaction and is characterized by recurrent episodes of nausea and vomiting.Recent studies indicate that it is common and affects 2% of the US population. Unfortunately, there is significant heterogeneity in the management of these patients in the medical community. This review article aims to bridge this gap and will review the epidemiology and etiology with a focus on management of CVS. AREAS COVERED This article reviews the epidemiology, and pathophysiology of CVS and impact on patients. It also discusses management based on recent guidelines based on which is intended for the busy clinician. A literature search was done using PubMed and key words "cyclic vomiting", "management", "etiology", and pathophysiology were used to identify articles of importance. EXPERT OPINION CVS is a complex, poorly understood disorder of gut-brain interaction (DGBI) and has a significant negative impact on patients, families and the healthcare system. Recent guidelines recommend a multidisciplinary approach to management using prophylactic therapy in moderate-severe CVS and abortive medication for acute flares. However more research is needed to better understand the pathophysiology and develop targeted therapies for CVS.
Collapse
Affiliation(s)
- Rosita Frazier
- Gastroenterology and Hepatology, Mayo Clinic, Scottsdale, Arizona
| | - Thangam Venkatesan
- Division of Gastroenterology, Hepatology and Nutrition, The Ohio State University, Columbus, OH
| |
Collapse
|
37
|
Wagner JL. The vagus nerve: current concepts in anaesthesia and ICU management. SOUTHERN AFRICAN JOURNAL OF ANAESTHESIA AND ANALGESIA 2022. [DOI: 10.36303/sajaa.2022.28.5.2811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- JL Wagner
- Department of Anaesthesiology, University of the Witwatersrand,
South Africa
| |
Collapse
|
38
|
Auricular Vagus Nerve Stimulation Ameliorates Functional Dyspepsia with Depressive-Like Behavior and Inhibits the Hypothalamus-Pituitary-Adrenal Axis in a Rat Model. Dig Dis Sci 2022; 67:4719-4731. [PMID: 35064375 DOI: 10.1007/s10620-021-07332-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 11/12/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND The hypothalamus-pituitary-adrenal axis is the most important endocrine system to control irritability response. Functional dyspepsia (FD) is closely related to irritability. This study aimed to preliminarily explore the corticotropin-releasing factor (CRF) mechanism of auricular vagus nerve stimulation (aVNS) for FD model rats. METHODS Sprague-Dawley adult male rats were randomly divided into normal group, model group, aVNS group, and sham-aVNS group. Except for the normal rats, all other rats were induced into the FD model through tail-clamping stimulation for 3 weeks. Once the rat model was developed successfully, rats in the aVNS group and sham-aVNS group were intervened with aVNS or sham-aVNS for 2 weeks. No intervention was given to rats in the normal and model groups. The effect of aVNS was assessed. The expressions of hippocampal corticotropin-releasing hormone receptor 1 (CRHR1), hypothalamus CRF, adrenocorticotropic hormone (ACTH), and corticosterone in serum were assessed. RESULTS 1. Compared with normal rats, model-developing rats showed FD-like behavior. 2. Compared with model rats, rats in the aVNS group showed an improved general condition score and gastric motility, and increased horizontal and vertical motion scores. 3. The release of corticosterone, ACTH in serum, and CRF in the hypothalamus all increased in model rats but decreased with aVNS instead of sham-aVNS. 4. The expression of hippocampus CRHR1 was lower in model rats but higher in the aVNS group. CONCLUSION aVNS ameliorates gastric motility and improves the mental state in the FD-like rat, probably via inhibiting the CRF pathway.
Collapse
|
39
|
Effects of Mo-Rubbing abdomen manipulation on glucose metabolism and inflammatory factors in rats with type 2 diabetes mellitus. JOURNAL OF ACUPUNCTURE AND TUINA SCIENCE 2022. [DOI: 10.1007/s11726-022-1336-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
40
|
Al-Beltagi M, Saeed NK. Epilepsy and the gut: Perpetrator or victim? World J Gastrointest Pathophysiol 2022; 13:143-156. [PMID: 36187601 PMCID: PMC9516455 DOI: 10.4291/wjgp.v13.i5.143] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/08/2022] [Accepted: 08/25/2022] [Indexed: 02/07/2023] Open
Abstract
The brain and the gut are linked together with a complex, bi-path link known as the gut-brain axis through the central and enteric nervous systems. So, the brain directly affects and controls the gut through various neurocrine and endocrine processes, and the gut impacts the brain via different mechanisms. Epilepsy is a central nervous system (CNS) disorder with abnormal brain activity, causing repeated seizures due to a transient excessive or synchronous alteration in the brain’s electrical activity. Due to the strong relationship between the enteric and the CNS, gastrointestinal dysfunction may increase the risk of epilepsy. Meanwhile, about 2.5% of patients with epilepsy were misdiagnosed as having gastrointestinal disorders, especially in children below the age of one year. Gut dysbiosis also has a significant role in epileptogenesis. Epilepsy, in turn, affects the gastrointestinal tract in different forms, such as abdominal aura, epilepsy with abdominal pain, and the adverse effects of medications on the gut and the gut microbiota. Epilepsy with abdominal pain, a type of temporal lobe epilepsy, is an uncommon cause of abdominal pain. Epilepsy also can present with postictal states with gastrointestinal manifestations such as postictal hypersalivation, hyperphagia, or compulsive water drinking. At the same time, antiseizure medications have many gastrointestinal side effects. On the other hand, some antiseizure medications may improve some gastrointestinal diseases. Many gut manipulations were used successfully to manage epilepsy. Prebiotics, probiotics, synbiotics, postbiotics, a ketogenic diet, fecal microbiota transplantation, and vagus nerve stimulation were used successfully to treat some patients with epilepsy. Other manipulations, such as omental transposition, still need more studies. This narrative review will discuss the different ways the gut and epilepsy affect each other.
Collapse
Affiliation(s)
- Mohammed Al-Beltagi
- Department of Pediatrics, Faculty of Medicine, Tanta University, Tanta 31527, Algharbia, Egypt
- Department of Pediatrics, University Medical Center, King Abdulla Medica City, Arabian Gulf University, Manama 26671, Bahrain
- Department of Pediatrics, University Medical Center, King Abdulla Medical City, Dr. Sulaiman Al Habib Medical Group, Manama 26671, Bahrain
| | - Nermin Kamal Saeed
- Medical Microbiology Section, Department of Pathology, Salmaniya Medical Complex, Ministry of Health, Kingdom of Bahrain, Manama 26612, Bahrain
- Department of Microbiology, Irish Royal College of Surgeon, Busaiteen 15503, Muharraq, Bahrain
| |
Collapse
|
41
|
Gama JFG, Cardoso LMDF, Bisaggio RDC, Lagrota-Candido J, Henriques-Pons A, Alves LA. Immunological Tolerance in Liver Transplant Recipients: Putative Involvement of Neuroendocrine-Immune Interactions. Cells 2022; 11:cells11152327. [PMID: 35954171 PMCID: PMC9367574 DOI: 10.3390/cells11152327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/20/2022] [Accepted: 06/29/2022] [Indexed: 02/04/2023] Open
Abstract
The transplantation world changed significantly following the introduction of immunosuppressants, with millions of people saved. Several physicians have noted that liver recipients that do not take their medication for different reasons became tolerant regarding kidney, heart, and lung transplantations at higher frequencies. Most studies have attempted to explain this phenomenon through unique immunological mechanisms and the fact that the hepatic environment is continuously exposed to high levels of pathogen-associated molecular patterns (PAMPs) or non-pathogenic microorganism-associated molecular patterns (MAMPs) from commensal flora. These components are highly inflammatory in the periphery but tolerated in the liver as part of the normal components that arrive via the hepatic portal vein. These immunological mechanisms are discussed herein based on current evidence, although we hypothesize the participation of neuroendocrine-immune pathways, which have played a relevant role in autoimmune diseases. Cells found in the liver present receptors for several cytokines, hormones, peptides, and neurotransmitters that would allow for system crosstalk. Furthermore, the liver is innervated by the autonomic system and may, thus, be influenced by the parasympathetic and sympathetic systems. This review therefore seeks to discuss classical immunological hepatic tolerance mechanisms and hypothesizes the possible participation of the neuroendocrine-immune system based on the current literature.
Collapse
Affiliation(s)
- Jaciara Fernanda Gomes Gama
- Laboratory of Cellular Communication, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Brazil Avenue, 4365-Manguinhos, Rio de Janeiro 21045-900, Brazil; (J.F.G.G.); (L.M.d.F.C.)
- Laboratory of Immunopathology, Department of Immunobiology, Biology Institute, Federal Fluminense University (UFF), Gragoatá Bl-M Campus, Niterói 24210-200, Brazil;
| | - Liana Monteiro da Fonseca Cardoso
- Laboratory of Cellular Communication, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Brazil Avenue, 4365-Manguinhos, Rio de Janeiro 21045-900, Brazil; (J.F.G.G.); (L.M.d.F.C.)
| | - Rodrigo da Cunha Bisaggio
- Department of Biotechnology, Federal Institute of Rio de Janeiro (IFRJ), Maracanã, Rio de Janeiro 20270-021, Brazil;
| | - Jussara Lagrota-Candido
- Laboratory of Immunopathology, Department of Immunobiology, Biology Institute, Federal Fluminense University (UFF), Gragoatá Bl-M Campus, Niterói 24210-200, Brazil;
| | - Andrea Henriques-Pons
- Laboratory of Innovations in Therapies, Education, and Bioproducts, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21041-361, Brazil;
| | - Luiz A. Alves
- Laboratory of Cellular Communication, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Brazil Avenue, 4365-Manguinhos, Rio de Janeiro 21045-900, Brazil; (J.F.G.G.); (L.M.d.F.C.)
- Correspondence: or ; Tel.: +55-(21)-2562-1816 (ext. 1841)
| |
Collapse
|
42
|
Johnson KVA, Steenbergen L. Gut feelings: vagal stimulation reduces emotional biases. Neuroscience 2022; 494:119-131. [PMID: 35550161 DOI: 10.1016/j.neuroscience.2022.04.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 04/05/2022] [Accepted: 04/30/2022] [Indexed: 10/18/2022]
Abstract
The vagus nerve is a key physical constituent of the gut-brain axis. Increasing attention has recently been paid to the role that the gut, and the microorganisms inhabiting it, play in emotion and cognition. Animal studies have revealed the importance of the vagus nerve in mediating communication between the gut microbiome and the central nervous system, resulting in changes in emotional behaviour. This has renewed interest in understanding the role of vagal signalling in human emotion, particularly since human studies have also shown that alterations in gut microbiome composition can affect emotion. While stimulating the vagus nerve can help treat some cases of severe depression, here we investigate whether vagal afferent signalling can influence emotional processing in healthy subjects. We use the dot-probe task to determine the effect of transcutaneous vagus nerve stimulation on attentional biases towards emotional stimuli in 42 volunteers. Participants received both active and sham treatments using a within-subject design. We show that transcutaneous vagus nerve stimulation reduces the emotional bias towards faces expressing sadness and happiness, indicating a decrease in emotional reactivity. While our novel findings reveal the effect that vagal signalling can have on emotional biases in healthy subjects, future studies should seek to develop our understanding of the ways in which the microbiome interacts with, and stimulates, the vagus nerve. Since we find a reduction in emotional bias, most notably towards sadness, this may partly account for the effective use of vagus nerve stimulation in treatment-resistant depression. While its clinical application currently involves surgical stimulation, our results support the potential benefit of transcutaneous vagus nerve stimulation as a non-invasive, intermittent adjunctive therapy for patients with depression given its frequent association with emotional biases.
Collapse
Affiliation(s)
- Katerina V A Johnson
- Leiden University, Institute of Psychology, Clinical Psychology Unit, Leiden 2333 AK, The Netherlands.
| | - Laura Steenbergen
- Leiden University, Institute of Psychology, Clinical Psychology Unit, Leiden 2333 AK, The Netherlands
| |
Collapse
|
43
|
Namgung U, Kim KJ, Jo BG, Park JM. Vagus nerve stimulation modulates hippocampal inflammation caused by continuous stress in rats. J Neuroinflammation 2022; 19:33. [PMID: 35109857 PMCID: PMC8812005 DOI: 10.1186/s12974-022-02396-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 01/20/2022] [Indexed: 12/12/2022] Open
Abstract
Background Previous studies have shown that vagus nerve stimulation (VNS) can attenuate inflammatory responses in peripheral tissues and also improve some neurological disorders and cognitive function in the brain. However, it is not clear how VNS is involved in neuropathological processes in brain tissues. Here, we investigated the regulatory effects of VNS on the production of proinflammatory cytokines in the hippocampus of an animal model of continuous stress (CS). Methods CS was induced by placing rats in cages immersed with water, and acute or chronic electrical stimulation was applied to the cervical vagus nerve of CS animals. Protein levels in the gastric and hippocampal tissues were measured by western blotting and protein signals analyzed by immunofluorescence staining. von Frey test and forced swimming test were performed to assess pain sensitivity and depressive-like behavior in rats, respectively. Results Levels of TNF-α, IL-1β, and IL-6 in the gastric and hippocampal tissues were significantly increased in CS animals compared to the untreated control and downregulated by acute VNS (aVNS). Iba-1-labeled microglial cells in the hippocampus of CS animals revealed morphological features of activated inflammatory cells and then changed to a normal shape by VNS. VNS elevated hippocampal expression of α7 nicotinic acetylcholine receptors (α7 nAChR) in CS animals, and pharmacological blockade of α7 nAChR increased the production of TNF-α, IL-1β, and IL-6, thus suppressing cholinergic anti-inflammatory activity that was mediated by VNS. Chronic VNS (cVNS) down-regulated the hippocampal production of active form of caspase 3 and 5-HT1A receptors and also decreased levels of TNF-α, IL-1β, and IL-6 in the gastric and hippocampal tissues of CS animals. Pain sensitivity and depressive-like behavior, which were increased by CS, were improved by cVNS. Conclusions Our data suggest that VNS may be involved in modulating pathophysiological processes caused by CS in the brain.
Collapse
Affiliation(s)
- Uk Namgung
- Department of Oriental Medicine, Institute of Bioscience and Integrative Medicine, Daejeon University, Daehak-ro 62, Daejeon, 34520, South Korea.
| | - Ki-Joong Kim
- Department of Oriental Medicine, Institute of Bioscience and Integrative Medicine, Daejeon University, Daehak-ro 62, Daejeon, 34520, South Korea
| | - Byung-Gon Jo
- Department of Oriental Medicine, Institute of Bioscience and Integrative Medicine, Daejeon University, Daehak-ro 62, Daejeon, 34520, South Korea
| | - Jong Min Park
- Department of Oriental Medicine, Institute of Bioscience and Integrative Medicine, Daejeon University, Daehak-ro 62, Daejeon, 34520, South Korea
| |
Collapse
|
44
|
Microbes and Parkinson’s disease: from associations to mechanisms. Trends Microbiol 2022; 30:749-760. [DOI: 10.1016/j.tim.2022.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/22/2021] [Accepted: 01/10/2022] [Indexed: 12/12/2022]
|
45
|
Kiryachkov YY, Bosenko SA, Muslimov BG, Petrova MV. Dysfunction of the Autonomic Nervous System and its Role in the Pathogenesis of Septic Critical Illness (Review). Sovrem Tekhnologii Med 2021; 12:106-116. [PMID: 34795998 PMCID: PMC8596275 DOI: 10.17691/stm2020.12.4.12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Indexed: 12/05/2022] Open
Abstract
Dysfunction of the autonomic nervous system (ANS) of the brain in sepsis can cause severe systemic inflammation and even death. Numerous data confirmed the role of ANS dysfunction in the occurrence, course, and outcome of systemic sepsis. The parasympathetic part of the ANS modifies the inflammation through cholinergic receptors of internal organs, macrophages, and lymphocytes (the cholinergic anti-inflammatory pathway). The sympathetic part of ANS controls the activity of macrophages and lymphocytes by influencing β2-adrenergic receptors, causing the activation of intracellular genes encoding the synthesis of cytokines (anti-inflammatory beta2-adrenergic receptor interleukin-10 pathway, β2AR–IL-10). The interaction of ANS with infectious agents and the immune system ensures the maintenance of homeostasis or the appearance of a critical generalized infection. During inflammation, the ANS participates in the inflammatory response by releasing sympathetic or parasympathetic neurotransmitters and neuropeptides. It is extremely important to determine the functional state of the ANS in critical conditions, since both cholinergic and sympathomimetic agents can act as either anti- or pro-inflammatory stimuli.
Collapse
Affiliation(s)
- Y Y Kiryachkov
- Head of the Department of Surgical and Resuscitation Technologies; Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 25, Bldg 2, Petrovka St., Moscow, 107031, Russia
| | - S A Bosenko
- Anesthesiologist; Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 25, Bldg 2, Petrovka St., Moscow, 107031, Russia
| | - B G Muslimov
- Deputy Chief Physician for Anesthesiology and Intensive Care; Konchalovsky Central City Hospital, 2, Bldg 1, Kashtanovaya Alley, Zelenograd, Moscow, 124489, Russia
| | - M V Petrova
- Professor, Deputy Director Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 25, Bldg 2, Petrovka St., Moscow, 107031, Russia
| |
Collapse
|
46
|
Liu X, Teng T, Li X, Fan L, Xiang Y, Jiang Y, Du K, Zhang Y, Zhou X, Xie P. Impact of Inosine on Chronic Unpredictable Mild Stress-Induced Depressive and Anxiety-Like Behaviors With the Alteration of Gut Microbiota. Front Cell Infect Microbiol 2021; 11:697640. [PMID: 34595128 PMCID: PMC8476956 DOI: 10.3389/fcimb.2021.697640] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/16/2021] [Indexed: 12/12/2022] Open
Abstract
Current antidepressants do not confer a clear advantage in children and adolescents with major depressive disorder (MDD). Accumulating evidence highlights the potential antidepressant-like effects of inosine on adult MDD, and gut microbiomes are significantly associated with MDD via the microbiota-gut-brain axis. However, few studies have investigated possible associations between inosine and gut microbiota in adolescents with MDD. The current study investigated the potential antidepressant effects of inosine in adolescent male C57BL/6 mice. After 4 weeks of chronic unpredictable mild stress (CUMS) stimulation, the mice were assessed by body weight, the sucrose preference test (SPT), open field test, and the elevated plus maze (EPM). The microbiota compositions of feces were determined by 16S rRNA gene sequencing. Inosine significantly improved CUMS-induced depressive and anxiety-like behaviors in adolescent mice including SPT and EPM results. Fecal microbial composition differed in the CON+saline, CUMS+saline, and CUMS+inosine groups, which were characterized by 126 discriminative amplicon sequence variants belonging to Bacteroidetes and Firmicute at the phylum level and Muribaculaceae and Lachnospiraceae at the family level. Muribaculaceae was positively associated with depressive and anxiety-like behaviors. KEGG functional analysis suggested that inosine might affect gut microbiota through carbohydrate metabolism and lipid metabolism pathways. The results of the study indicated that inosine improved depressive and anxiety-like behaviors in adolescent mice, in conjunction with the alteration of fecal microbial composition. Our findings may provide a novel perspective on the antidepressant effects of inosine in children and adolescents.
Collapse
Affiliation(s)
- Xueer Liu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Teng Teng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Xuemei Li
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Li Fan
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Yajie Xiang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Yuanliang Jiang
- National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Kang Du
- National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuqing Zhang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xinyu Zhou
- National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Neurobiology, Chongqing, China
| |
Collapse
|
47
|
Drobny A, Ngo PA, Neurath MF, Zunke F, López-Posadas R. Molecular Communication Between Neuronal Networks and Intestinal Epithelial Cells in Gut Inflammation and Parkinson's Disease. Front Med (Lausanne) 2021; 8:655123. [PMID: 34368179 PMCID: PMC8339315 DOI: 10.3389/fmed.2021.655123] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/14/2021] [Indexed: 12/18/2022] Open
Abstract
Intestinal symptoms, such as nausea, vomiting, and constipation, are common in Parkinson's disease patients. These clinical signs normally appear years before the diagnosis of the neurodegenerative disease, preceding the occurrence of motor manifestations. Moreover, it is postulated that Parkinson's disease might originate in the gut, due to a response against the intestinal microbiota leading to alterations in alpha-synuclein in the intestinal autonomic nervous system. Transmission of this protein to the central nervous system is mediated potentially via the vagus nerve. Thus, deposition of aggregated alpha-synuclein in the gastrointestinal tract has been suggested as a potential prodromal diagnostic marker for Parkinson's disease. Interestingly, hallmarks of chronic intestinal inflammation in inflammatory bowel disease, such as dysbiosis and increased intestinal permeability, are also observed in Parkinson's disease patients. Additionally, alpha-synuclein accumulations were detected in the gut of Crohn's disease patients. Despite a solid association between neurodegenerative diseases and gut inflammation, it is not clear whether intestinal alterations represent cause or consequence of neuroinflammation in the central nervous system. In this review, we summarize the bidirectional communication between the brain and the gut in the context of Parkinson's disease and intestinal dysfunction/inflammation as present in inflammatory bowel disease. Further, we focus on the contribution of intestinal epithelium, the communication between intestinal epithelial cells, microbiota, immune and neuronal cells, as well as mechanisms causing alterations of epithelial integrity.
Collapse
Affiliation(s)
- Alice Drobny
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Phuong A Ngo
- Medicine 1, University Hospital Erlangen, Erlangen, Germany
| | - Markus F Neurath
- Medicine 1, University Hospital Erlangen, Erlangen, Germany.,Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Friederike Zunke
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | | |
Collapse
|
48
|
Pohanka M. Pharmacological Influencing of The Cholinergic Anti-inflammatory Pathway in Infectious Diseases and Inflammatory Pathologies. Mini Rev Med Chem 2021; 21:660-669. [PMID: 33208075 DOI: 10.2174/1389557520666201117111715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/04/2020] [Accepted: 09/14/2020] [Indexed: 11/22/2022]
Abstract
The cholinergic anti-inflammatory pathway is a part of the parasympathetic nervous system and it can also be entitled as an anti-inflammatory reflex. It consists of terminations of the vagal nerve into blood, acetylcholine released from the terminations, macrophages and other cells having α7 nicotinic acetylcholine receptor (α7 nAChR), calcium ions crossing through the receptor and interacting with nuclear factors, and erythrocytes with acetylcholinesterase (AChE) terminating the neurotransmission. Stopping of inflammatory cytokines production is the major task for the cholinergic antiinflammatory pathway. The cholinergic anti-inflammatory pathway can be stimulated or suppressed by agonizing or antagonizing α7 nAChR or by inhibition of AChE. This review is focused on cholinergic anti-inflammatory pathway regulation by drugs. Compounds that inhibit cholinesterases (for instance, huperzine, rivastigmine, galantamine), and their impact on the cholinergic anti-inflammatory pathway are discussed here and a survey of actual literature is provided.
Collapse
Affiliation(s)
- Miroslav Pohanka
- Faculty of Military Health Sciences, University of Defense, Trebesska 1575, Hradec Kralove CZ-50001, Czech Republic
| |
Collapse
|
49
|
Uchida M, Yamamoto R, Matsuyama S, Murakami K, Hasebe R, Hojyo S, Tanaka Y, Murakami M. Gateway reflexes, neuronal circuits that regulate the gateways for autoreactive T cells in organs that have blood barriers. Int Immunol 2021; 34:59-65. [PMID: 33978730 DOI: 10.1093/intimm/dxab022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 05/07/2021] [Indexed: 12/17/2022] Open
Abstract
Gateway reflexes are neural circuits that maintain homeostasis of the immune system. They form gateways for autoreactive T cells to infiltrate the central nervous system in a noradrenaline-dependent manner despite the blood-brain barrier. This mechanism is critical not only for maintaining organ homeostasis but also for inflammatory disease development. Gateway reflexes can be regulated by environmental or artificial stimuli including electrical stimulation, suggesting that the infiltration of immune cells can be controlled by bioelectronic medicine. In this review, we describe the discovery of gateway reflexes and their future directions with special focus on bioelectronic medicine.
Collapse
Affiliation(s)
- Mona Uchida
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University
| | - Reiji Yamamoto
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University
| | - Shiina Matsuyama
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University
| | - Kaoru Murakami
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University
| | - Rie Hasebe
- Infectious Cancer, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University
| | - Shintaro Hojyo
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University
| | - Yuki Tanaka
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University
| | - Masaaki Murakami
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University
| |
Collapse
|
50
|
Pu Y, Tan Y, Qu Y, Chang L, Wang S, Wei Y, Wang X, Hashimoto K. A role of the subdiaphragmatic vagus nerve in depression-like phenotypes in mice after fecal microbiota transplantation from Chrna7 knock-out mice with depression-like phenotypes. Brain Behav Immun 2021; 94:318-326. [PMID: 33422641 DOI: 10.1016/j.bbi.2020.12.032] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/23/2020] [Accepted: 12/31/2020] [Indexed: 02/08/2023] Open
Abstract
The α7 subtype of the nicotinic acetylcholine receptor (α7 nAChR: coded by Chrna7) regulates the cholinergic ascending anti-inflammatory pathway involved in depression. We previously reported that Chrna7 knock-out (KO) mice show depression-like phenotypes through systemic inflammation. In this study, we investigated whether fecal microbiota transplantation (FMT) from Chrna7 KO mice causes depression-like phenotypes in mice treated with an antibiotic cocktail (ABX). Chrna7 KO mice with depression-like phenotypes show an abnormal gut microbiota composition, although the alpha diversity and beta diversity were not altered. FMT from Chrna7 KO mice caused depression-like phenotypes, systemic inflammation, and downregulation of synaptic proteins in the prefrontal cortex (PFC) in the ABX-treated mice compared to FMT from the control mice. The Principal component analysis based on the OTU level showed that the FMT group from the KO mice were different from the FMT group from the control mice. We found differences in abundance for several bacteria in the FMT group from the KO mice at the taxonomic level when compared with the other group. Interestingly, subdiaphragmatic vagotomy significantly blocked the development of depression-like phenotypes in the ABX-treated mice after FMT from Chrna7 KO mice. These data suggest that FMT from Chrna7 KO mice produce depression-like phenotypes in ABX-treated mice via the subdiaphragmatic vagus nerve. The brain-gut-microbiota axis association with the subdiaphragmatic vagus nerve plays an important role in the development of depression.
Collapse
Affiliation(s)
- Yaoyu Pu
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Yunfei Tan
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Youge Qu
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Lijia Chang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Siming Wang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Yan Wei
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Xingming Wang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan.
| |
Collapse
|