1
|
Jalakas P, Tulva I, Bērziņa NM, Hõrak H. Stomatal patterning is differently regulated in adaxial and abaxial epidermis in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6476-6488. [PMID: 39158985 PMCID: PMC11523041 DOI: 10.1093/jxb/erae354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 08/16/2024] [Indexed: 08/21/2024]
Abstract
Stomatal pores in leaves mediate CO2 uptake into the plant and water loss via transpiration. Most plants are hypostomatous with stomata present only in the lower leaf surface (abaxial epidermis). Many herbs, including the model plant Arabidopsis, have substantial numbers of stomata also on the upper (adaxial) leaf surface. Studies of stomatal development have mostly focused on abaxial stomata and very little is known of adaxial stomatal formation. We analysed the role of leaf number in determining stomatal density and stomatal ratio, and studied adaxial and abaxial stomatal patterns in Arabidopsis mutants deficient in known abaxial stomatal development regulators. We found that stomatal density in some genetic backgrounds varies between different fully expanded leaves, and thus we recommend using defined leaves for analyses of stomatal patterning. Our results indicate that stomatal development is at least partly independently regulated in adaxial and abaxial epidermis, as (i) plants deficient in ABA biosynthesis and perception have increased stomatal ratios, (ii) the epf1epf2, tmm, and sdd1 mutants have reduced stomatal ratios, (iii) erl2 mutants have increased adaxial but not abaxial stomatal index, and (iv) stomatal precursors preferentially occur in abaxial epidermis. Further studies of adaxial stomata can reveal new insights into stomatal form and function.
Collapse
Affiliation(s)
- Pirko Jalakas
- Institute of Technology, University of Tartu, Nooruse 1, 50411, Tartu, Estonia
| | - Ingmar Tulva
- Institute of Technology, University of Tartu, Nooruse 1, 50411, Tartu, Estonia
| | | | - Hanna Hõrak
- Institute of Technology, University of Tartu, Nooruse 1, 50411, Tartu, Estonia
| |
Collapse
|
2
|
Nakagawa A, Sepuru KM, Yip SJ, Seo H, Coffin CM, Hashimoto K, Li Z, Segawa Y, Iwasaki R, Kato H, Kurihara D, Aihara Y, Kim S, Kinoshita T, Itami K, Han SK, Murakami K, Torii KU. Chemical inhibition of stomatal differentiation by perturbation of the master-regulatory bHLH heterodimer via an ACT-Like domain. Nat Commun 2024; 15:8996. [PMID: 39443460 PMCID: PMC11500415 DOI: 10.1038/s41467-024-53214-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 10/05/2024] [Indexed: 10/25/2024] Open
Abstract
Selective perturbation of protein interactions with chemical compounds enables dissection and control of developmental processes. Differentiation of stomata, cellular valves vital for plant growth and survival, is specified by the basic-helix-loop-helix (bHLH) heterodimers. Harnessing a new amination reaction, we here report a synthesis, derivatization, target identification, and mode of action of an atypical doubly-sulfonylated imidazolone, Stomidazolone, which triggers stomatal stem cell arrest. Our forward chemical genetics followed by biophysical analyses elucidates that Stomidazolone directly binds to the C-terminal ACT-Like (ACTL) domain of MUTE, a master regulator of stomatal differentiation, and perturbs its heterodimerization with a partner bHLH, SCREAM in vitro and in plant cells. On the other hand, Stomidazolone analogs that are biologically inactive do not bind to MUTE or disrupt the SCREAM-MUTE heterodimers. Guided by structural docking modeling, we rationally design MUTE with reduced Stomidazolone binding. These engineered MUTE proteins are fully functional and confer Stomidazolone resistance in vivo. Our study identifies doubly-sulfonylated imidazolone as a direct inhibitor of the stomatal master regulator, further expanding the chemical space for perturbing bHLH-ACTL proteins to manipulate plant development.
Collapse
Affiliation(s)
- Ayami Nakagawa
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Aichi, Japan
| | - Krishna Mohan Sepuru
- Howard Hughes Medical Institute, The University of Texas at Austin, Austin, TX, USA
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Shu Jan Yip
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Aichi, Japan
| | - Hyemin Seo
- Howard Hughes Medical Institute, The University of Texas at Austin, Austin, TX, USA
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Calvin M Coffin
- Howard Hughes Medical Institute, The University of Texas at Austin, Austin, TX, USA
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Kota Hashimoto
- Department of Chemistry, Kwansei Gakuin University, Sanda, Hyogo, Japan
| | - Zixuan Li
- Department of Chemistry, Kwansei Gakuin University, Sanda, Hyogo, Japan
| | - Yasutomo Segawa
- Institute for Molecular Science and SOKENDAI, Myodaiji, Okazaki, Japan
| | - Rie Iwasaki
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Aichi, Japan
| | - Hiroe Kato
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Aichi, Japan
| | - Daisuke Kurihara
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Aichi, Japan
- Institute for Advanced Research (IAR), Nagoya University, Nagoya, Aichi, Japan
| | - Yusuke Aihara
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Aichi, Japan
- PRESTO, Japan Science and Technology Agency (JST), Chiyoda, Tokyo, Japan
| | - Stephanie Kim
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Toshinori Kinoshita
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Aichi, Japan
| | - Kenichiro Itami
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Aichi, Japan
| | - Soon-Ki Han
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Aichi, Japan
- Institute for Advanced Research (IAR), Nagoya University, Nagoya, Aichi, Japan
| | - Kei Murakami
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Aichi, Japan.
- Department of Chemistry, Kwansei Gakuin University, Sanda, Hyogo, Japan.
- PRESTO, Japan Science and Technology Agency (JST), Chiyoda, Tokyo, Japan.
| | - Keiko U Torii
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Aichi, Japan.
- Howard Hughes Medical Institute, The University of Texas at Austin, Austin, TX, USA.
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
3
|
Chua LC, Lau OS. Stomatal development in the changing climate. Development 2024; 151:dev202681. [PMID: 39431330 PMCID: PMC11528219 DOI: 10.1242/dev.202681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Stomata, microscopic pores flanked by symmetrical guard cells, are vital regulators of gas exchange that link plant processes with environmental dynamics. The formation of stomata involves the multi-step progression of a specialized cell lineage. Remarkably, this process is heavily influenced by environmental factors, allowing plants to adjust stomatal production to local conditions. With global warming set to alter our climate at an unprecedented pace, understanding how environmental factors impact stomatal development and plant fitness is becoming increasingly important. In this Review, we focus on the effects of carbon dioxide, high temperature and drought - three environmental factors tightly linked to global warming - on stomatal development. We summarize the stomatal response of a variety of plant species and highlight the existence of species-specific adaptations. Using the model plant Arabidopsis, we also provide an update on the molecular mechanisms involved in mediating the plasticity of stomatal development. Finally, we explore how knowledge on stomatal development is being applied to generate crop varieties with optimized stomatal traits that enhance their resilience against climate change and maintain agricultural productivity.
Collapse
Affiliation(s)
- Li Cong Chua
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117557, Singapore
| | - On Sun Lau
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117557, Singapore
| |
Collapse
|
4
|
Wu M, Wang S, Ma P, Li B, Hu H, Wang Z, Qiu Q, Qiao Y, Niu D, Lukowitz W, Zhang S, Zhang M. Dual roles of the MPK3 and MPK6 mitogen-activated protein kinases in regulating Arabidopsis stomatal development. THE PLANT CELL 2024; 36:4576-4593. [PMID: 39102898 DOI: 10.1093/plcell/koae225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/24/2024] [Accepted: 07/24/2024] [Indexed: 08/07/2024]
Abstract
An Arabidopsis (Arabidopsis thaliana) mitogen-activated protein kinase (MAPK) cascade composed of YODA (YDA)-MKK4/MKK5-MPK3/MPK6 plays an essential role downstream of the ERECTA (ER)/ER-LIKE (ERL) receptor complex in regulating stomatal development in the leaf epidermis. STOMAGEN (STO), a peptide ligand produced in mesophyll cells, competes with EPIDERMAL PATTERNING FACTOR2 (EPF2) for binding ER/ERL receptors to promote stomatal formation. In this study, we found that activation of MPK3/MPK6 suppresses STO expression. Using MUTE and STO promoters that confer epidermis- and mesophyll-specific expression, respectively, we generated lines with cell-specific activation and suppression of MPK3/MPK6. The activation or suppression of MPK3/MPK6 in either epidermis or mesophyll cells is sufficient to alter stomatal differentiation. Epistatic analyses demonstrated that STO overexpression can rescue the suppression of stomatal formation conferred by the mesophyll-specific expression of the constitutively active MKK4DD or MKK5DD, but not by the epidermis-specific expression of these constitutively active MKKs. These data suggest that STO is downstream of MPK3/MPK6 in mesophyll cells, but upstream of MPK3/MPK6 in epidermal cells in stomatal development signaling. This function of the MPK3/MPK6 cascade allows it to coordinate plant epidermis development based on its activity in mesophyll cells during leaf development.
Collapse
Affiliation(s)
- Mengyun Wu
- College of Plant Protection, The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Shiyuan Wang
- College of Plant Protection, The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Panpan Ma
- College of Plant Protection, The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Bixin Li
- College of Plant Protection, The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Huiqing Hu
- College of Plant Protection, The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Ziling Wang
- College of Plant Protection, The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Qin Qiu
- College of Plant Protection, The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yujie Qiao
- College of Plant Protection, The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Dongdong Niu
- College of Plant Protection, The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Wolfgang Lukowitz
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602, USA
| | - Shuqun Zhang
- Division of Biochemistry, University of Missouri, Columbia, Missouri 65211, USA
| | - Mengmeng Zhang
- College of Plant Protection, The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| |
Collapse
|
5
|
Zhou W, Liu J, Wang W, Li Y, Ma Z, He H, Wang X, Lian X, Dong X, Zhao X, Zhou Y. Molecular Mechanisms for Regulating Stomatal Formation across Diverse Plant Species. Int J Mol Sci 2024; 25:10403. [PMID: 39408731 PMCID: PMC11476680 DOI: 10.3390/ijms251910403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Plant stomata play a crucial role in photosynthesis by regulating transpiration and gas exchange. Meanwhile, environmental cues can also affect the formation of stomata. Stomatal formation, therefore, is optimized for the survival and growth of the plant despite variable environmental conditions. To adapt to environmental conditions, plants open and close stomatal pores and even regulate the number of stomata that develop on the epidermis. There are great differences in the leaf structure and developmental origin of the cell in the leaf between Arabidopsis and grass plants. These differences affect the fine regulation of stomatal formation due to different plant species. In this paper, a comprehensive overview of stomatal formation and the molecular networks and genetic mechanisms regulating the polar division and cell fate of stomatal progenitor cells in dicotyledonous plants such as Arabidopsis and Poaceae plants such as Oryza sativa and Zea mays is provided. The processes of stomatal formation mediated by plant hormones and environmental factors are summarized, and a model of stomatal formation in plants based on the regulation of multiple signaling pathways is outlined. These results contribute to a better understanding of the mechanisms of stomatal formation and epidermal morphogenesis in plants and provide a valuable theoretical basis and gene resources for improving crop resilience and yield traits.
Collapse
Affiliation(s)
- Wenqi Zhou
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China; (W.Z.); (J.L.); (Y.L.); (Z.M.); (H.H.); (X.W.); (X.L.); (X.D.)
| | - Jieshan Liu
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China; (W.Z.); (J.L.); (Y.L.); (Z.M.); (H.H.); (X.W.); (X.L.); (X.D.)
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Wenjin Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China;
| | - Yongsheng Li
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China; (W.Z.); (J.L.); (Y.L.); (Z.M.); (H.H.); (X.W.); (X.L.); (X.D.)
| | - Zixu Ma
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China; (W.Z.); (J.L.); (Y.L.); (Z.M.); (H.H.); (X.W.); (X.L.); (X.D.)
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Haijun He
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China; (W.Z.); (J.L.); (Y.L.); (Z.M.); (H.H.); (X.W.); (X.L.); (X.D.)
| | - Xiaojuan Wang
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China; (W.Z.); (J.L.); (Y.L.); (Z.M.); (H.H.); (X.W.); (X.L.); (X.D.)
| | - Xiaorong Lian
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China; (W.Z.); (J.L.); (Y.L.); (Z.M.); (H.H.); (X.W.); (X.L.); (X.D.)
| | - Xiaoyun Dong
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China; (W.Z.); (J.L.); (Y.L.); (Z.M.); (H.H.); (X.W.); (X.L.); (X.D.)
| | - Xiaoqiang Zhao
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuqian Zhou
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China; (W.Z.); (J.L.); (Y.L.); (Z.M.); (H.H.); (X.W.); (X.L.); (X.D.)
| |
Collapse
|
6
|
Chen L, Maes M, Cochran AM, Avila JR, Derbyshire P, Sklenar J, Haas KM, Villén J, Menke FL, Torii KU. Preventing Inappropriate Signals Pre- and Post-Ligand Perception by a Toggle-Switch Mechanism of ERECTA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.20.612365. [PMID: 39345552 PMCID: PMC11429954 DOI: 10.1101/2024.09.20.612365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Dynamic control of signaling events requires swift regulation of receptors at an active state. By focusing on Arabidopsis ERECTA (ER) receptor kinase, which perceives peptide ligands to control multiple developmental processes, we report a mechanism preventing inappropriate receptor activity. The ER C-terminal tail (ER_CT) functions as an autoinhibitory domain: its removal confers higher kinase activity and hyperactivity during inflorescence and stomatal development. ER_CT is required for the binding of a receptor kinase inhibitor, BKI1, and two U-box E3 ligases PUB30 and PUB31 that inactivate activated ER. We further identify ER_CT as a phosphodomain transphosphorylated by the co-receptor BAK1. The phosphorylation impacts the tail structure, likely releasing from autoinhibition. The phosphonull version enhances BKI1 association, whereas the phosphomimetic version promotes PUB30/31 association. Thus, ER_CT acts as an off-on-off toggle switch, facilitating the release of BKI1 inhibition, enabling signal activation, and swiftly turning over the receptors afterwards. Our results elucidate a mechanism fine-tuning receptor signaling via a phosphoswitch module, keeping the receptor at a low basal state and ensuring the robust yet transient activation upon ligand perception.
Collapse
Affiliation(s)
- Liangliang Chen
- Howard Hughes Medical Institute, The University of Texas at Austin, Austin, TX, 78712 USA
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712 USA
- Department of Biology, University of Washington, Seattle, WA, 98195 USA
| | - Michal Maes
- Howard Hughes Medical Institute, The University of Texas at Austin, Austin, TX, 78712 USA
- Department of Biology, University of Washington, Seattle, WA, 98195 USA
| | - Alicia M. Cochran
- Howard Hughes Medical Institute, The University of Texas at Austin, Austin, TX, 78712 USA
| | - Julian R. Avila
- Howard Hughes Medical Institute, The University of Texas at Austin, Austin, TX, 78712 USA
- Department of Biology, University of Washington, Seattle, WA, 98195 USA
| | | | - Jan Sklenar
- The Sainsbury Laboratory, Colney Lane, NR4 7UH, Norwich, UK
| | - Kelsey M. Haas
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195 USA
| | - Judit Villén
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195 USA
| | | | - Keiko U. Torii
- Howard Hughes Medical Institute, The University of Texas at Austin, Austin, TX, 78712 USA
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712 USA
- Department of Biology, University of Washington, Seattle, WA, 98195 USA
| |
Collapse
|
7
|
Jia M, Wang Y, Jin H, Li J, Song T, Chen Y, Yuan Y, Hu H, Li R, Wu Z, Jiao P. Comparative Genomics Analysis of the Populus Epidermal Pattern Factor (EPF) Family Revealed Their Regulatory Effects in Populus euphratica Stomatal Development. Int J Mol Sci 2024; 25:10052. [PMID: 39337538 PMCID: PMC11432118 DOI: 10.3390/ijms251810052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Drought stress seriously threatens plant growth. The improvement of plant water use efficiency (WUE) and drought tolerance through stomatal regulation is an effective strategy for coping with water shortages. Epidermal patterning factor (EPF)/EPF-like (EPFL) family proteins regulate stomatal formation and development in plants and thus contribute to plant stress adaptation. Here, our analysis revealed the presence of 14 PeEPF members in the Populus euphratica genome, which exhibited a relatively conserved gene structure with 1-3 introns. Subcellular localisation prediction revealed that 9 PeEPF members were distributed in the chloroplasts of P. euphratica, and 5 were located extracellularly. Phylogenetic analysis indicated that PeEPFs can be divided into three clades, with genes within the same clade revealing a relatively conserved structure. Furthermore, we observed the evolutionary conservation of PeEPFs and AtEPF/EPFLs in certain domains, which suggests their conserved function. The analysis of cis-acting elements suggested the possible involvement of PeEPFs in plant response to multiple hormones. Transcriptomic analysis revealed considerable changes in the expression level of PeEPFs during treatment with polyethylene glycol and abscisic acid. The overexpression of PeEPF2 resulted in low stomatal density in transgenetic lines. These findings provide a basis for gaining insights into the function of PeEPFs in response to abiotic stress.
Collapse
Affiliation(s)
- Mingyu Jia
- Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, College of Life Science, Tarim University, Alar 843300, China
| | - Ying Wang
- Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, College of Life Science, Tarim University, Alar 843300, China
| | - Hongyan Jin
- Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, College of Life Science, Tarim University, Alar 843300, China
| | - Jing Li
- Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, College of Life Science, Tarim University, Alar 843300, China
| | - Tongrui Song
- Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, College of Life Science, Tarim University, Alar 843300, China
| | - Yongqiang Chen
- Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yang Yuan
- Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Honghong Hu
- Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, College of Life Science, Tarim University, Alar 843300, China
- Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Ruting Li
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Zhihua Wu
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Peipei Jiao
- Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, College of Life Science, Tarim University, Alar 843300, China
- Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
8
|
Chen L, Cao X, Li Y, Liu M, Liu Y, Guan Y, Ruan J, Mao Z, Wang W, Yang HQ, Guo T. Photoexcited Cryptochrome 1 Interacts With SPCHLESS to Regulate Stomatal Development in Arabidopsis. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39253954 DOI: 10.1111/pce.15123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 08/06/2024] [Accepted: 08/14/2024] [Indexed: 09/11/2024]
Abstract
Stomata are epidermal openings that facilitate plant-atmosphere gas and water exchange during photosynthesis, respiration and water evaporation. SPEECHLESS (SPCH) is a master basic helix-loop-helix (bHLH) transcription factor that determines the initiation of stomatal development. It is known that blue light promotes stomatal development through the blue light photoreceptor cryptochromes (CRYs, CRY1 and CRY2). Whether CRYs regulate stomatal development through directly modulating SPCH is unknown. Here, we demonstrate by biochemical studies that CRY1 physically interacts with SPCH in a blue light-dependent manner. Genetic studies show that SPCH acts downstream of CRY1 to promote stomatal development in blue light. Furthermore, we show that CRY1 enhances the DNA-binding activity of SPCH and promotes the expression of its target genes in blue light. These results suggest that the mechanism by which CRY1 promotes stomatal development involves positive regulation of the DNA-binding activity of SPCH, which is likely mediated by blue light-induced CRY1-SPCH interaction. The precise regulation of SPCH DNA-binding activity by CRY1 may allow plants to optimize stomatal density and pattern according to ambient light conditions.
Collapse
Affiliation(s)
- Li Chen
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
- Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Xiaoli Cao
- School of Life Sciences, Fudan University, Shanghai, China
| | - Yupeng Li
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
- Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Minqing Liu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Yao Liu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Yan Guan
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
- Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Jiaqi Ruan
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Zhilei Mao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
- Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Wenxiu Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
- Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Hong-Quan Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
- Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Tongtong Guo
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
- Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, China
| |
Collapse
|
9
|
Lang PLM, Erberich JM, Lopez L, Weiß CL, Amador G, Fung HF, Latorre SM, Lasky JR, Burbano HA, Expósito-Alonso M, Bergmann DC. Century-long timelines of herbarium genomes predict plant stomatal response to climate change. Nat Ecol Evol 2024; 8:1641-1653. [PMID: 39117952 PMCID: PMC11383800 DOI: 10.1038/s41559-024-02481-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 06/21/2024] [Indexed: 08/10/2024]
Abstract
Dissecting plant responses to the environment is key to understanding whether and how plants adapt to anthropogenic climate change. Stomata, plants' pores for gas exchange, are expected to decrease in density following increased CO2 concentrations, a trend already observed in multiple plant species. However, it is unclear whether such responses are based on genetic changes and evolutionary adaptation. Here we make use of extensive knowledge of 43 genes in the stomatal development pathway and newly generated genome information of 191 Arabidopsis thaliana historical herbarium specimens collected over 193 years to directly link genetic variation with climate change. While we find that the essential transcription factors SPCH, MUTE and FAMA, central to stomatal development, are under strong evolutionary constraints, several regulators of stomatal development show signs of local adaptation in contemporary samples from different geographic regions. We then develop a functional score based on known effects of gene knock-out on stomatal development that recovers a classic pattern of stomatal density decrease over the past centuries, suggesting a genetic component contributing to this change. This approach combining historical genomics with functional experimental knowledge could allow further investigations of how different, even in historical samples unmeasurable, cellular plant phenotypes may have already responded to climate change through adaptive evolution.
Collapse
Affiliation(s)
- Patricia L M Lang
- Department of Biology, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA.
| | - Joel M Erberich
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Lua Lopez
- Department of Biological Sciences, California State University San Bernardino, San Bernardino, CA, USA
- Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Clemens L Weiß
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Gabriel Amador
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Hannah F Fung
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Sergio M Latorre
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London, UK
- Research Group for Ancient Genomics and Evolution, Department of Molecular Biology, Max Planck Institute for Biology, Tübingen, Germany
| | - Jesse R Lasky
- Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Hernán A Burbano
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London, UK
- Research Group for Ancient Genomics and Evolution, Department of Molecular Biology, Max Planck Institute for Biology, Tübingen, Germany
| | - Moisés Expósito-Alonso
- Department of Biology, Stanford University, Stanford, CA, USA
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
- Department of Global Ecology, Carnegie Institution for Science, Stanford, CA, USA
- Department of Integrative Biology, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| | - Dominique C Bergmann
- Department of Biology, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| |
Collapse
|
10
|
Tulva I, Koolmeister K, Hõrak H. Low relative air humidity and increased stomatal density independently hamper growth in young Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2718-2736. [PMID: 39072887 DOI: 10.1111/tpj.16944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/26/2024] [Accepted: 07/13/2024] [Indexed: 07/30/2024]
Abstract
Stomatal pores in plant leaves mediate CO2 uptake for photosynthesis and water loss via transpiration. Altered stomatal density can affect plant photosynthetic capacity, water use efficiency, and growth, potentially providing either benefits or drawbacks depending on the environment. Here we explore, at different air humidity regimes, gas exchange, stomatal anatomy, and growth of Arabidopsis lines designed to combine increased stomatal density (epf1, epf2) with high stomatal sensitivity (ht1-2, cyp707a1/a3). We show that the stomatal density and sensitivity traits combine as expected: higher stomatal density increases stomatal conductance, whereas the effect is smaller in the high stomatal sensitivity mutant backgrounds than in the epf1epf2 double mutant. Growth under low air humidity increases plant stomatal ratio with relatively more stomata allocated to the adaxial epidermis. Low relative air humidity and high stomatal density both independently impair plant growth. Higher evaporative demand did not punish increased stomatal density, nor did inherently low stomatal conductance provide any protection against low relative humidity. We propose that the detrimental effects of high stomatal density on plant growth at a young age are related to the cost of producing stomata; future experiments need to test if high stomatal densities might pay off in later life stages.
Collapse
Affiliation(s)
- Ingmar Tulva
- Institute of Technology, University of Tartu, Nooruse 1, 50411, Tartu, Estonia
| | - Kaspar Koolmeister
- Institute of Technology, University of Tartu, Nooruse 1, 50411, Tartu, Estonia
- Institute of Bioengineering, University of Tartu, Nooruse 1, 50411, Tartu, Estonia
| | - Hanna Hõrak
- Institute of Technology, University of Tartu, Nooruse 1, 50411, Tartu, Estonia
| |
Collapse
|
11
|
Kim ED, Torii KU. Stomatal cell fate commitment via transcriptional and epigenetic control: Timing is crucial. PLANT, CELL & ENVIRONMENT 2024; 47:3288-3298. [PMID: 37996970 DOI: 10.1111/pce.14761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/25/2023] [Accepted: 10/29/2023] [Indexed: 11/25/2023]
Abstract
The formation of stomata presents a compelling model system for comprehending the initiation, proliferation, commitment and differentiation of de novo lineage-specific stem cells. Precise, timely and robust cell fate and identity decisions are crucial for the proper progression and differentiation of functional stomata. Deviations from this precise specification result in developmental abnormalities and nonfunctional stomata. However, the molecular underpinnings of timely cell fate commitment have just begun to be unravelled. In this review, we explore the key regulatory strategies governing cell fate commitment, emphasizing the distinctions between embryonic and postembryonic stomatal development. Furthermore, the interplay of transcription factors and cell cycle machineries is pivotal in specifying the transition into differentiation. We aim to synthesize recent studies utilizing single-cell as well as cell-type-specific transcriptomics, epigenomics and chromatin accessibility profiling to shed light on how master-regulatory transcription factors and epigenetic machineries mutually influence each other to drive fate commitment and maintenance.
Collapse
Affiliation(s)
- Eun-Deok Kim
- Howard Hughes Medical Institute and Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Keiko U Torii
- Howard Hughes Medical Institute and Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
- Institute of Transformative Biomolecules, Nagoya University, Nagoya, Japan
| |
Collapse
|
12
|
Del Corpo D, Coculo D, Greco M, De Lorenzo G, Lionetti V. Pull the fuzes: Processing protein precursors to generate apoplastic danger signals for triggering plant immunity. PLANT COMMUNICATIONS 2024; 5:100931. [PMID: 38689495 PMCID: PMC11371470 DOI: 10.1016/j.xplc.2024.100931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/29/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
The apoplast is one of the first cellular compartments outside the plasma membrane encountered by phytopathogenic microbes in the early stages of plant tissue invasion. Plants have developed sophisticated surveillance mechanisms to sense danger events at the cell surface and promptly activate immunity. However, a fine tuning of the activation of immune pathways is necessary to mount a robust and effective defense response. Several endogenous proteins and enzymes are synthesized as inactive precursors, and their post-translational processing has emerged as a critical mechanism for triggering alarms in the apoplast. In this review, we focus on the precursors of phytocytokines, cell wall remodeling enzymes, and proteases. The physiological events that convert inactive precursors into immunomodulatory active peptides or enzymes are described. This review also explores the functional synergies among phytocytokines, cell wall damage-associated molecular patterns, and remodeling, highlighting their roles in boosting extracellular immunity and reinforcing defenses against pests.
Collapse
Affiliation(s)
- Daniele Del Corpo
- Department of Biology and Biotechnology "Charles Darwin," Sapienza University of Rome, Rome, Italy
| | - Daniele Coculo
- Department of Biology and Biotechnology "Charles Darwin," Sapienza University of Rome, Rome, Italy
| | - Marco Greco
- Department of Biology and Biotechnology "Charles Darwin," Sapienza University of Rome, Rome, Italy
| | - Giulia De Lorenzo
- Department of Biology and Biotechnology "Charles Darwin," Sapienza University of Rome, Rome, Italy
| | - Vincenzo Lionetti
- Department of Biology and Biotechnology "Charles Darwin," Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
13
|
Váczy KZ, Otto M, Gomba-Tóth A, Geiger A, Golen R, Hegyi-Kaló J, Cels T, Geml J, Zsófi Z, Hegyi ÁI. Botrytis cinerea causes different plant responses in grape ( Vitis vinifera) berries during noble and grey rot: diverse metabolism versus simple defence. FRONTIERS IN PLANT SCIENCE 2024; 15:1433161. [PMID: 39166245 PMCID: PMC11333459 DOI: 10.3389/fpls.2024.1433161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/19/2024] [Indexed: 08/22/2024]
Abstract
The complexity of the interaction between the necrotrophic pathogen Botrytis cinerea and grape berries (Vitis vinifera spp.) can result in the formation of either the preferred noble rot (NR) or the loss-making grey rot (GR), depending on the prevailing climatic conditions. In this study, we focus on the functional gene set of V. vinifera by performing multidimensional scaling followed by differential expression and enrichment analyses. The aim of this study is to identify the differences in gene expression between grape berries in the phases of grey rot, noble rot, and developing rot (DR, in its early stages) phases. The grapevine transcriptome at the NR phase was found to exhibit significant differences from that at the DR and GR stages, which displayed strong similarities. Similarly, several plant defence-related pathways, including plant-pathogen interactions as hypersensitive plant responses were found to be enriched. The results of the analyses identified a potential plant stress response pathway (SGT1 activated hypersensitive response) that was found to be upregulated in the GR berry but downregulated in the NR berry. The study revealed a decrease in defence-related in V. vinifera genes during the NR stages, with a high degree of variability in functions, particularly in enriched pathways. This indicates that the plant is not actively defending itself against Botrytis cinerea, which is otherwise present on its surface with high biomass. This discrepancy underscores the notion that during the NR phase, the grapevine and the pathogenic fungi interact in a state of equilibrium. Conversely the initial stages of botrytis infection manifest as a virulent fungus-plant interaction, irrespective of whether the outcome is grey or noble rot.
Collapse
Affiliation(s)
- Kálmán Z. Váczy
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Eger, Hungary
| | - Margot Otto
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Eger, Hungary
- Centre for Epidemic Response and Innovation (CERI), Stellenbosch University, Stellenbosch, South Africa
| | - Adrienn Gomba-Tóth
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Eger, Hungary
| | - Adrienn Geiger
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Eger, Hungary
| | - Richárd Golen
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Eger, Hungary
| | - Júlia Hegyi-Kaló
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Eger, Hungary
| | - Thomas Cels
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Eger, Hungary
| | - József Geml
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Eger, Hungary
- HUN-REN-EKKE Lendület Environmental Microbiome Research Group, Eszterházy Károly Catholic University, Eger, Hungary
| | - Zsolt Zsófi
- Institute for Viticulture and Enology, Eszterházy Károly Catholic University, Eger, Hungary
| | - Ádám István Hegyi
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Eger, Hungary
| |
Collapse
|
14
|
Jiao Y, Lv W, Teng W, Li L, Lan H, Bai L, Li Z, Lian Y, Wang Z, Xin Z, Ren Y, Lin T. Peroxidase gene TaPrx109-B1 enhances wheat tolerance to water deficit via modulating stomatal density. PLANT, CELL & ENVIRONMENT 2024; 47:2954-2970. [PMID: 38629794 DOI: 10.1111/pce.14918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/23/2024] [Accepted: 04/07/2024] [Indexed: 07/12/2024]
Abstract
Increasing the tolerance of crops to water deficit is crucial for the improvement of crop production in water-restricted regions. Here, a wheat peroxidase gene (TaPrx109-B1) belonging to the class III peroxidase gene family was identified and its function in water deficit tolerance was revealed. We demonstrated that overexpression of TaPrx109-B1 reduced leaf H2O2 level and stomatal density, increased leaf relative water content, water use efficiency, and tolerance to water deficit. The expression of TaEPF1 and TaEPF2, two key negative regulators of stomatal development, were significantly upregulated in TaPrx109-B1 overexpression lines. Furthermore, exogenous H2O2 downregulated the expression of TaEPF1 and TaEPF2 and increased stomatal density, while exogenous application of diphenyleneiodonium chloride, a potent NADPH oxidase inhibitor that repressed the synthesis of H2O2, upregulated the expression of TaEPF1 and TaEPF2, decreased stomatal density, and enhanced wheat tolerance to water deficit. These findings suggest that TaPrx109-B1 influences leaf stomatal density by modulation of H2O2 level and the expression of TaEPF1 and TaEPF2. The results of the field trial showed that overexpressing TaPrx109-B1 increased grain number per spike, which reduced the yield loss caused by water deficiency. Therefore, TaPrx109-B1 has great potential in breeding wheat varieties with improved water deficit tolerance.
Collapse
Affiliation(s)
- Yanqing Jiao
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
- State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
| | - Weizeng Lv
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
- State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
- Department of Modern Agriculture, Lankao Vocational College of San Nong, Kaifeng, China
| | - Wan Teng
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Le Li
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Haibin Lan
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Lu Bai
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Zongzhen Li
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Yanhao Lian
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Zhiqiang Wang
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
- State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
| | - Zeyu Xin
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
- State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
| | - Yongzhe Ren
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
- State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
| | - Tongbao Lin
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
15
|
Zhou L, Yu S, Liu Y, Wang Y, Wen Y, Zhang Z, Ru Y, He Z, Chen X. Nitric oxide is involved in the regulation of guard mother cell division by inhibiting the synthesis of ACC. PLANT, CELL & ENVIRONMENT 2024; 47:2716-2732. [PMID: 37842726 DOI: 10.1111/pce.14734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/10/2023] [Accepted: 10/03/2023] [Indexed: 10/17/2023]
Abstract
A stoma forms by a series of asymmetric divisions of stomatal lineage precursor cell and the terminal division of a guard mother cell (GMC). GMC division is restricted to once through genetic regulation mechanisms. Here, we show that nitric oxide (NO) is involved in the regulation of the GMC division. NO donor treatment results in the formation of single guard cells (SGCs). SGCs are also produced in plants that accumulate high NO, whereas clustered guard cells (GCs) appear in plants with low NO accumulation. NO treatment promotes the formation of SGCs in the stomatal signalling mutants sdd1, epf1 epf2, tmm1, erl1 erl2 and er erl1 erl2, reduces the cell number per stomatal cluster in the fama-1 and flp1 myb88, but has no effect on stomatal of cdkb1;1 cyca2;234. Aminocyclopropane-1-carboxylic acid (ACC), a positive regulator of GMC division, reduces the NO-induced SGC formation. Further investigation found NO inhibits ACC synthesis by repressing the expression of several ACC SYNTHASE (ACS) genes, and in turn ACC represses NO accumulation by promoting the expression of HEMOGLOBIN 1 (HB1) encoding a NO scavenger. This work shows NO plays a role in the regulation of GMC division by modulating ACC accumulation in the Arabidopsis cotyledon.
Collapse
Affiliation(s)
- Lijuan Zhou
- School of Life Sciences, Yunnan University, Kunming, Yunnan, China
- College of Agriculture and Life Sciences, Kunming University, Kunming, Yunnan, China
| | - Shuangshuang Yu
- School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Yue Liu
- School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Yanyan Wang
- International Agricultural Research Institute, Yunnan Academy of Agriculture Sciences, Kunming, Yunnan, China
| | - Yuanyuan Wen
- School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Zijing Zhang
- School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Yanyu Ru
- School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Zhaorong He
- School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Xiaolan Chen
- School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| |
Collapse
|
16
|
Herrmann A, Sepuru KM, Endo H, Nakagawa A, Kusano S, Bai P, Ziadi A, Kato H, Sato A, Liu J, Shan L, Kimura S, Itami K, Uchida N, Hagihara S, Torii KU. Chemical genetics reveals cross-activation of plant developmental signaling by the immune peptide-receptor pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.29.605519. [PMID: 39131359 PMCID: PMC11312451 DOI: 10.1101/2024.07.29.605519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Cells sense and integrate multiple signals to coordinate development and defence. A receptor-kinase signaling pathway for plant stomatal development shares components with the immunity pathway. The mechanism ensuring their signal specificities remains unclear. Using chemical genetics, here we report the identification of a small molecule, kC9, that triggers excessive stomatal differentiation by inhibiting the canonical ERECTA receptor-kinase pathway. kC9 binds to and inhibits the downstream MAP kinase MPK6, perturbing its substrate interaction. Strikingly, activation of immune signaling by a bacterial flagellin peptide nullified kC9's effects on stomatal development. This cross-activation of stomatal development by immune signaling depends on the immune receptor FLS2 and occurs even in the absence of kC9 if the ERECTA-family receptor population becomes suboptimal. Furthermore, proliferating stomatal-lineage cells are vulnerable to the immune signal penetration. Our findings suggest that the signal specificity between development and immunity can be ensured by MAP Kinase homeostasis reflecting the availability of upstream receptors, thereby providing a novel view on signal specificity.
Collapse
Affiliation(s)
- Arvid Herrmann
- Howard Hughes Medical Institute, The University of Texas at Austin, Austin, TX 78712 USA
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712 USA
| | - Krishna Mohan Sepuru
- Howard Hughes Medical Institute, The University of Texas at Austin, Austin, TX 78712 USA
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712 USA
| | - Hitoshi Endo
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Ayami Nakagawa
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Shuhei Kusano
- RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Pengfei Bai
- Howard Hughes Medical Institute, The University of Texas at Austin, Austin, TX 78712 USA
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712 USA
| | - Asraa Ziadi
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Hiroe Kato
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Ayato Sato
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Jun Liu
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Libo Shan
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Seisuke Kimura
- Faculty of Life Sciences and Center for Plant Sciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku, Kyoto 603–8555, Japan
| | - Kenichiro Itami
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Naoyuki Uchida
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Shinya Hagihara
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Aichi 464-8601, Japan
- RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Keiko U. Torii
- Howard Hughes Medical Institute, The University of Texas at Austin, Austin, TX 78712 USA
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712 USA
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Aichi 464-8601, Japan
| |
Collapse
|
17
|
Liu S, Chen T, Li X, Cui J, Tian Y. Genome-wide identification and expression analysis of EPF/EPFL gene family in Populus trichocarpa. Front Genet 2024; 15:1432376. [PMID: 39092431 PMCID: PMC11291230 DOI: 10.3389/fgene.2024.1432376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/01/2024] [Indexed: 08/04/2024] Open
Abstract
The Epidermal Patterning Factor/EPF-like (EPF/EPFL) family encodes a specific type of secreted protein in plants and plays an important role in plant growth and development, especially in the process of morphogenesis. To investigate the characteristics of EPF/EPFL gene family members and their regulatory functions in stomatal development of Populus trichocarpa, a total of 15 EPF/EPFL family genes were identified. Then the gene structure, chromosome location, phylogenetic relationship, protein conserved domain and gene expression profile were analyzed. According to phylogenetic analysis, PtEPF/EPFL can be classified into four groups. The gene structure and protein conservation motifs within the EPF family indicate the high conservation of the PtEPF/EPFL sequence. The promoter region of PtEPF/EPFL was found to contain cis-elements in response to stress and plant hormones. In addition, RT-qPCR results indicated that the PtEPF/EPFL have a differentially expressed in different tissues. Under drought stress treatment, a substantial upregulation was observed in the majority of PtEPF/EPFL members, suggesting their potential involvement in drought response. These results provide a theoretical basis for future exploration of the characteristics and functions of more PtEPF/EPFL genes.
Collapse
Affiliation(s)
| | | | | | | | - Yinshuai Tian
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| |
Collapse
|
18
|
Lu S, Xiao F. Small Peptides: Orchestrators of Plant Growth and Developmental Processes. Int J Mol Sci 2024; 25:7627. [PMID: 39062870 PMCID: PMC11276966 DOI: 10.3390/ijms25147627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 07/28/2024] Open
Abstract
Small peptides (SPs), ranging from 5 to 100 amino acids, play integral roles in plants due to their diverse functions. Despite their low abundance and small molecular weight, SPs intricately regulate critical aspects of plant life, including cell division, growth, differentiation, flowering, fruiting, maturation, and stress responses. As vital mediators of intercellular signaling, SPs have garnered significant attention in plant biology research. This comprehensive review delves into SPs' structure, classification, and identification, providing a detailed understanding of their significance. Additionally, we summarize recent findings on the biological functions and signaling pathways of prominent SPs that regulate plant growth and development. This review also offers a perspective on future research directions in peptide signaling pathways.
Collapse
Affiliation(s)
| | - Fei Xiao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China;
| |
Collapse
|
19
|
Koga H, Ikematsu S, Kimura S. Diving into the Water: Amphibious Plants as a Model for Investigating Plant Adaptations to Aquatic Environments. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:579-604. [PMID: 38424069 DOI: 10.1146/annurev-arplant-062923-024919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Amphibious plants can grow and survive in both aquatic and terrestrial environments. This review explores the diverse adaptations that enable them to thrive in such contrasting habitats. Plants with amphibious lifestyles possess fascinating traits, and their phenotypic plasticity plays an important role in adaptations. Heterophylly, the ability to produce different leaf forms, is one such trait, with submerged leaves generally being longer, narrower, and thinner than aerial leaves. In addition to drastic changes in leaf contours, amphibious plants display significant anatomical and physiological changes, including a reduction in stomatal number and cuticle thickness and changes in photosynthesis mode. This review summarizes and compares the regulatory mechanisms and evolutionary origins of amphibious plants based on molecular biology studies actively conducted in recent years using novel model amphibious plant species. Studying amphibious plants will enhance our understanding of plant adaptations to aquatic environments.
Collapse
Affiliation(s)
- Hiroyuki Koga
- Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-Ku, Tokyo, Japan
| | - Shuka Ikematsu
- Center for Plant Sciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-Ku, Kyoto, Japan;
| | - Seisuke Kimura
- Center for Plant Sciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-Ku, Kyoto, Japan;
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-Ku, Kyoto, Japan
| |
Collapse
|
20
|
Liu R, Xu K, Li Y, Zhao W, Ji H, Lei X, Ma T, Ye J, Zhang J, Du H, Cao SK. Investigation on the Potential Functions of ZmEPF/EPFL Family Members in Response to Abiotic Stress in Maize. Int J Mol Sci 2024; 25:7196. [PMID: 39000300 PMCID: PMC11241529 DOI: 10.3390/ijms25137196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Maize is an important crop used for food, feed, and fuel. Abiotic stress is an important factor affecting maize yield. The EPF/EPFL gene family encodes class-specific secretory proteins that play an important role in the response to abiotic stress in plants. In order to explore and utilize the EPF/EPFL family in maize, the family members were systematically identified, and their chromosomal localization, physicochemical properties, cis-acting element prediction in promoters, phylogenetic tree construction, and expression pattern analysis were carried out using bioinformatics techniques. A total of 18 ZmEPF/EPFL proteins were identified in maize, which are mostly alkaline and a small portion acidic. Subcellular localization results showed that ZmEPF6, ZmEPF12, and ZmEPFL2 are localized in the nucleus and cytoplasm. Analysis of cis-acting elements revealed that members of the ZmEPF/EPFL family contain regulatory elements such as light response, anoxic, low temperature, and hormone response regulatory elements. RT-qPCR results showed that these family members are indeed responding to cold stress and hormone treatments. These results of this study provide a theoretical basis for improving the abiotic stress resistance of maize in future research.
Collapse
Affiliation(s)
- Rui Liu
- School of Life Science, Yangtze University, Jingzhou 434025, China; (R.L.); (K.X.); (Y.L.); (W.Z.); (H.J.); (X.L.); (T.M.); (J.Y.)
- Department of Biology, Hong Kong Baptist University, Hong Kong, China;
| | - Keli Xu
- School of Life Science, Yangtze University, Jingzhou 434025, China; (R.L.); (K.X.); (Y.L.); (W.Z.); (H.J.); (X.L.); (T.M.); (J.Y.)
| | - Yu Li
- School of Life Science, Yangtze University, Jingzhou 434025, China; (R.L.); (K.X.); (Y.L.); (W.Z.); (H.J.); (X.L.); (T.M.); (J.Y.)
| | - Wanqing Zhao
- School of Life Science, Yangtze University, Jingzhou 434025, China; (R.L.); (K.X.); (Y.L.); (W.Z.); (H.J.); (X.L.); (T.M.); (J.Y.)
| | - Hongjing Ji
- School of Life Science, Yangtze University, Jingzhou 434025, China; (R.L.); (K.X.); (Y.L.); (W.Z.); (H.J.); (X.L.); (T.M.); (J.Y.)
| | - Xiongbiao Lei
- School of Life Science, Yangtze University, Jingzhou 434025, China; (R.L.); (K.X.); (Y.L.); (W.Z.); (H.J.); (X.L.); (T.M.); (J.Y.)
| | - Tian Ma
- School of Life Science, Yangtze University, Jingzhou 434025, China; (R.L.); (K.X.); (Y.L.); (W.Z.); (H.J.); (X.L.); (T.M.); (J.Y.)
| | - Juan Ye
- School of Life Science, Yangtze University, Jingzhou 434025, China; (R.L.); (K.X.); (Y.L.); (W.Z.); (H.J.); (X.L.); (T.M.); (J.Y.)
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University, Hong Kong, China;
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Hewei Du
- School of Life Science, Yangtze University, Jingzhou 434025, China; (R.L.); (K.X.); (Y.L.); (W.Z.); (H.J.); (X.L.); (T.M.); (J.Y.)
| | - Shi-Kai Cao
- School of Life Science, Yangtze University, Jingzhou 434025, China; (R.L.); (K.X.); (Y.L.); (W.Z.); (H.J.); (X.L.); (T.M.); (J.Y.)
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
21
|
Chen L. Regulation of stomatal development by epidermal, subepidermal and long-distance signals. PLANT MOLECULAR BIOLOGY 2024; 114:80. [PMID: 38940934 DOI: 10.1007/s11103-024-01456-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/20/2024] [Indexed: 06/29/2024]
Abstract
Plant leaves consist of three layers, including epidermis, mesophyll and vascular tissues. Their development is meticulously orchestrated. Stomata are the specified structures on the epidermis for uptake of carbon dioxide (CO2) while release of water vapour and oxygen (O2), and thus play essential roles in regulation of plant photosynthesis and water use efficiency. To function efficiently, stomatal formation must coordinate with the development of other epidermal cell types, such as pavement cell and trichome, and tissues of other layers, such as mesophyll and leaf vein. This review summarizes the regulation of stomatal development in three dimensions (3D). In the epidermis, specific stomatal transcription factors determine cell fate transitions and also activate a ligand-receptor- MITOGEN-ACTIVATED PROTEIN KINASE (MAPK) signaling for ensuring proper stomatal density and patterning. This forms the core regulation network of stomatal development, which integrates various environmental cues and phytohormone signals to modulate stomatal production. Under the epidermis, mesophyll, endodermis of hypocotyl and inflorescence stem, and veins in grasses secrete mobile signals to influence stomatal formation in the epidermis. In addition, long-distance signals which may include phytohormones, RNAs, peptides and proteins originated from other plant organs modulate stomatal development, enabling plants to systematically adapt to the ever changing environment.
Collapse
Affiliation(s)
- Liang Chen
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
22
|
Pečenková T, Potocký M, Stegmann M. More than meets the eye: knowns and unknowns of the trafficking of small secreted proteins in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3713-3730. [PMID: 38693754 DOI: 10.1093/jxb/erae172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 05/01/2024] [Indexed: 05/03/2024]
Abstract
Small proteins represent a significant portion of the cargo transported through plant secretory pathways, playing crucial roles in developmental processes, fertilization, and responses to environmental stresses. Despite the importance of small secreted proteins, substantial knowledge gaps persist regarding the regulatory mechanisms governing their trafficking along the secretory pathway, and their ultimate localization or destination. To address these gaps, we conducted a comprehensive literature review, focusing particularly on trafficking and localization of Arabidopsis small secreted proteins with potential biochemical and/or signaling roles in the extracellular space, typically those within the size range of 101-200 amino acids. Our investigation reveals that while at least six members of the 21 mentioned families have a confirmed extracellular localization, eight exhibit intracellular localization, including cytoplasmic, nuclear, and chloroplastic locations, despite the presence of N-terminal signal peptides. Further investigation into the trafficking and secretion mechanisms of small protein cargo could not only deepen our understanding of plant cell biology and physiology but also provide a foundation for genetic manipulation strategies leading to more efficient plant cultivation.
Collapse
Affiliation(s)
- Tamara Pečenková
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44, Prague 2, Czech Republic
| | - Martin Potocký
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44, Prague 2, Czech Republic
| | - Martin Stegmann
- Technical University Munich, School of Life Sciences, Phytopathology, Emil-Ramann-Str. 2, 85354 Freising, Germany
| |
Collapse
|
23
|
Li P, Zhao Z, Wang W, Wang T, Hu N, Wei Y, Sun Z, Chen Y, Li Y, Liu Q, Yang S, Gong J, Xiao X, Liu Y, Shi Y, Peng R, Lu Q, Yuan Y. Genome-wide analyses of member identification, expression pattern, and protein-protein interaction of EPF/EPFL gene family in Gossypium. BMC PLANT BIOLOGY 2024; 24:554. [PMID: 38877405 PMCID: PMC11177404 DOI: 10.1186/s12870-024-05262-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 06/06/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND Epidermal patterning factor / -like (EPF/EPFL) gene family encodes a class of cysteine-rich secretory peptides, which are widelyfound in terrestrial plants.Multiple studies has indicated that EPF/EPFLs might play significant roles in coordinating plant development and growth, especially as the morphogenesis processes of stoma, awn, stamen, and fruit skin. However, few research on EPF/EPFL gene family was reported in Gossypium. RESULTS We separately identified 20 G. raimondii, 24 G. arboreum, 44 G. hirsutum, and 44 G. barbadense EPF/EPFL genes in the 4 representative cotton species, which were divided into four clades together with 11 Arabidopsis thaliana, 13 Oryza sativa, and 17 Selaginella moellendorffii ones based on their evolutionary relationships. The similar gene structure and common motifs indicated the high conservation among the EPF/EPFL members, while the uneven distribution in chromosomes implied the variability during the long-term evolutionary process. Hundreds of collinearity relationships were identified from the pairwise comparisons of intraspecifc and interspecific genomes, which illustrated gene duplication might contribute to the expansion of cotton EPF/EPFL gene family. A total of 15 kinds of cis-regulatory elements were predicted in the promoter regions, and divided into three major categories relevant to the biological processes of development and growth, plant hormone response, and abiotic stress response. Having performing the expression pattern analyses with the basic of the published RNA-seq data, we found most of GhEPF/EPFL and GbEPF/EPFL genes presented the relatively low expression levels among the 9 tissues or organs, while showed more dramatically different responses to high/low temperature and salt or drought stresses. Combined with transcriptome data of developing ovules and fibers and quantitative Real-time PCR results (qRT-PCR) of 15 highly expressed GhEPF/EPFL genes, it could be deduced that the cotton EPF/EPFL genes were closely related with fiber development. Additionally, the networks of protein-protein interacting among EPF/EPFLs concentrated on the cores of GhEPF1 and GhEPF7, and thosefunctional enrichment analyses indicated that most of EPF/EPFLs participate in the GO (Gene Ontology) terms of stomatal development and plant epidermis development, and the KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways of DNA or base excision repair. CONCLUSION Totally, 132 EPF/EPFL genes were identified for the first time in cotton, whose bioinformatic analyses of cis-regulatory elements and expression patterns combined with qRT-PCR experiments to prove the potential functions in the biological processes of plant growth and responding to abiotic stresses, specifically in the fiber development. These results not only provide comprehensive and valuable information for cotton EPF/EPFL gene family, but also lay solid foundation for screening candidate EPF/EPFL genes in further cotton breeding.
Collapse
Affiliation(s)
- Pengtao Li
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang , Henan, 455000, China
| | - Zilin Zhao
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang , Henan, 455000, China
| | - Wenkui Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Tao Wang
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang , Henan, 455000, China
| | - Nan Hu
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang , Henan, 455000, China
| | - Yangyang Wei
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang , Henan, 455000, China
| | - Zhihao Sun
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Yu Chen
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Yanfang Li
- College of Agriculture, Tarim University, Alaer , Xinjiang, 843300, China
| | - Qiankun Liu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Shuhan Yang
- College of Agriculture, Tarim University, Alaer , Xinjiang, 843300, China
| | - Juwu Gong
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Xianghui Xiao
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Yuling Liu
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang , Henan, 455000, China
| | - Yuzhen Shi
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Renhai Peng
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang , Henan, 455000, China
| | - Quanwei Lu
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang , Henan, 455000, China.
| | - Youlu Yuan
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China.
| |
Collapse
|
24
|
Gray J, Dunn J. Optimizing Crop Plant Stomatal Density to Mitigate and Adapt to Climate Change. Cold Spring Harb Perspect Biol 2024; 16:a041672. [PMID: 37923396 PMCID: PMC11146307 DOI: 10.1101/cshperspect.a041672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Plants take up carbon dioxide, and lose water, through pores on their leaf surfaces called stomata. We have a good understanding of the biochemical signals that control the production of stomata, and over the past decade, these have been manipulated to produce crops with fewer stomata. Crops with abnormally low stomatal densities require less water to produce the same yield and have enhanced drought tolerance. These "water-saver" crops also have improved salinity tolerance and are expected to have increased resistance to some diseases. We calculate that the widespread adoption of water-saver crops could lead to reductions in greenhouse gas emissions equivalent to a maximum of 0.5 GtCO2/yr and thus could help to mitigate the impacts of climate change on agriculture and food security through protecting yields in stressful environments and requiring fewer inputs.
Collapse
Affiliation(s)
- Julie Gray
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield S10 2TN, United Kingdom
- Institute for Sustainable Food, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Jessica Dunn
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield S10 2TN, United Kingdom
- Institute for Sustainable Food, University of Sheffield, Sheffield S10 2TN, United Kingdom
| |
Collapse
|
25
|
Li S, Yan J, Chen LG, Meng G, Zhou Y, Wang CM, Jiang L, Luo J, Jiang Y, Li QF, Tang W, He JX. Brassinosteroid regulates stomatal development in etiolated Arabidopsis cotyledons via transcription factors BZR1 and BES1. PLANT PHYSIOLOGY 2024; 195:1382-1400. [PMID: 38345866 DOI: 10.1093/plphys/kiae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 12/19/2023] [Indexed: 06/02/2024]
Abstract
Brassinosteroids (BRs) are phytohormones that regulate stomatal development. In this study, we report that BR represses stomatal development in etiolated Arabidopsis (Arabidopsis thaliana) cotyledons via transcription factors BRASSINAZOLE RESISTANT 1 (BZR1) and bri1-EMS SUPPRESSOR1 (BES1), which directly target MITOGEN-ACTIVATED PROTEIN KINASE KINASE 9 (MKK9) and FAMA, 2 important genes for stomatal development. BZR1/BES1 bind MKK9 and FAMA promoters in vitro and in vivo, and mutation of the BZR1/BES1 binding motif in MKK9/FAMA promoters abolishes their transcription regulation by BZR1/BES1 in plants. Expression of a constitutively active MKK9 (MKK9DD) suppressed overproduction of stomata induced by BR deficiency, while expression of a constitutively inactive MKK9 (MKK9KR) induced high-density stomata in bzr1-1D. In addition, bzr-h, a sextuple mutant of the BZR1 family of proteins, produced overabundant stomata, and the dominant bzr1-1D and bes1-D mutants effectively suppressed the stomata-overproducing phenotype of brassinosteroid insensitive 1-116 (bri1-116) and brassinosteroid insensitive 2-1 (bin2-1). In conclusion, our results revealed important roles of BZR1/BES1 in stomatal development, and their transcriptional regulation of MKK9 and FAMA expression may contribute to BR-regulated stomatal development in etiolated Arabidopsis cotyledons.
Collapse
Affiliation(s)
- Shuo Li
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR 00000, China
- Ministry of Education Key Laboratory of Plant Development and Environmental Adaptation Biology, School of Life Sciences, Shandong University, Qingdao 266237, Shandong, China
| | - Jin Yan
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei, China
| | - Lian-Ge Chen
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei, China
| | - Guanghua Meng
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR 00000, China
| | - Yuling Zhou
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR 00000, China
| | - Chun-Ming Wang
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR 00000, China
| | - Lei Jiang
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR 00000, China
| | - Juan Luo
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR 00000, China
| | - Yueming Jiang
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, Guangdong, China
| | - Qian-Feng Li
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR 00000, China
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Wenqiang Tang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei, China
| | - Jun-Xian He
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR 00000, China
| |
Collapse
|
26
|
Zhiling L, Wenhua D, Fangyuan Z. Genome-wide identification and phylogenetic and expression pattern analyses of EPF/EPFL family genes in the Rye (Secale cereale L.). BMC Genomics 2024; 25:532. [PMID: 38816796 PMCID: PMC11137924 DOI: 10.1186/s12864-024-10425-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/16/2024] [Indexed: 06/01/2024] Open
Abstract
Rye (Secale cereale L.) is one of the major cereal crop species in the Triticeae family and is known to be most tolerant to diverse abiotic stresses, such as cold, heat, osmotic, and salt stress. The EPIDERMAL PATTERNING FACTOR (EPF) and EPF-LIKE (EPFL) families of small secreted peptides act to regulate many aspects of plant growth and development; however, their functions are not widely characterized in rye. In this study, we identified 12 ScEPF/EPFL genes, which can be divided into six groups and are evenly distributed on six rye chromosomes. Further examination of the gene structure and protein conservation motifs of EPF/EPFL family members demonstrated the high conservation of the ScEPF/EPFL sequence. Interactions between ScEPF/EPFL proteins and promoters containing hormone- and stress-responsive cis-acting elements suggest that the regulation of ScEPF/EPFL expression is complex. Expression profiling analyses revealed that ScEPF/EPFL genes exhibited tissue-specific expression patterns. Notably, ScEPFL1,ScEPFL7, ScEPFL9, and ScEPFL10 displayed significantly higher expression levels in spikelets compared to other tissues. Moreover, fluorescence quantification experiments demonstrated that these genes exhibited distinct expression patterns in response to various stress conditions, suggesting that each gene plays a unique role in stress signaling pathways. Our research findings provide a solid basis for further investigation into the functions of ScEPF/EPFLs. Furthermore, these genes can serve as potential candidates for breeding stress-resistant rye varieties and improving production yields.
Collapse
Affiliation(s)
- Lin Zhiling
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Centers for Grazing Land Ecosystem Sustainability, Gansu Agricultural University, Lanzhou, China
| | - Du Wenhua
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Centers for Grazing Land Ecosystem Sustainability, Gansu Agricultural University, Lanzhou, China.
| | - Zhao Fangyuan
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Centers for Grazing Land Ecosystem Sustainability, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
27
|
Wang L, Chang C. Stomatal improvement for crop stress resistance. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1823-1833. [PMID: 38006251 DOI: 10.1093/jxb/erad477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/23/2023] [Indexed: 11/26/2023]
Abstract
The growth and yield of crop plants are threatened by environmental challenges such as water deficit, soil flooding, high salinity, and extreme temperatures, which are becoming increasingly severe under climate change. Stomata contribute greatly to plant adaptation to stressful environments by governing transpirational water loss and photosynthetic gas exchange. Increasing evidence has revealed that stomata formation is shaped by transcription factors, signaling peptides, and protein kinases, which could be exploited to improve crop stress resistance. The past decades have seen unprecedented progress in our understanding of stomata formation, but most of these advances have come from research on model plants. This review highlights recent research in stomata formation in crops and its multifaceted functions in abiotic stress tolerance. Current strategies, limitations, and future directions for harnessing stomatal development to improve crop stress resistance are discussed.
Collapse
Affiliation(s)
- Lu Wang
- College of Life Sciences, Qingdao University, Qingdao, Shandong, China
| | - Cheng Chang
- College of Life Sciences, Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
28
|
Xia Y, Han Q, Shu J, Jiang S, Kang X. Stomatal density suppressor PagSDD1 is a "generalist" gene that promotes plant growth and improves water use efficiency. Int J Biol Macromol 2024; 262:129721. [PMID: 38296132 DOI: 10.1016/j.ijbiomac.2024.129721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 02/13/2024]
Abstract
The serine protease SDD1 regulates stomatal density, but its potential impact on plant vegetative growth is unclear. Our study reveals a substantial upregulation of SDD1 in triploid poplar apical buds and leaves, suggesting its possible role in their growth regulation. We cloned PagSDD1 from poplar 84 K (Populus alba × P. glandulosa) and found that overexpression in poplar, soybean, and lettuce led to decreased leaf stomatal density. Furthermore, PagSDD1 represses PagEPF1, PagEPF2, PagEPFL9, PagSPCH, PagMUTE, and PagFAMA expression. In contrast, PagSDD1 promotes the expression of its receptors, PagTMM and PagERECTA. PagSDD1-OE poplars showed stronger drought tolerance than wild-type poplars. Simultaneously, PagSDD1-OE poplar, soybean, and lettuce had vegetative growth advantages. RNA sequencing revealed a significant upregulation of genes PagLHCB2.1 and PagGRF5, correlating positively with photosynthetic rate, and PagCYCA3;4 and PagEXPA8 linked to cell division and differentiation in PagSDD1-OE poplars. This increase promoted leaf photosynthesis, boosted auxin and cytokinin accumulation, and enhanced vegetative growth. SDD1 overexpression can increase the biomass of poplar, soybean, and lettuce by approximately 70, 176, and 155 %, respectively, and increase the water use efficiency of poplar leaves by over 52 %, which is of great value for the molecular design and breeding of plants with growth and water-saving target traits.
Collapse
Affiliation(s)
- Yufei Xia
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| | - Qiang Han
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China.
| | - Jianghai Shu
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| | - Shenxiu Jiang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| | - Xiangyang Kang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
29
|
Xia Y, Jiang S, Wu W, Du K, Kang X. MYC2 regulates stomatal density and water use efficiency via targeting EPF2/EPFL4/EPFL9 in poplar. THE NEW PHYTOLOGIST 2024; 241:2506-2522. [PMID: 38258389 DOI: 10.1111/nph.19531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024]
Abstract
Although polyploid plants have lower stomatal density than their diploid counterparts, the molecular mechanisms underlying this difference remain elusive. Here, we constructed a network based on the triploid poplar transcriptome data and triple-gene mutual interaction algorithm and found that PpnMYC2 was related to stomatal development-related genes PpnEPF2, PpnEPFL4, and PpnEPFL9. The interactions between PpnMYC2 and PagJAZs were experimentally validated. PpnMYC2-overexpressing poplar and Arabidopsis thaliana had reduced stomatal density. Poplar overexpressing PpnMYC2 had higher water use efficiency and drought resistance. RNA-sequencing data of poplars overexpressing PpnMYC2 showed that PpnMYC2 promotes the expression of stomatal density inhibitors PagEPF2 and PagEPFL4 and inhibits the expression of the stomatal density-positive regulator PagEPFL9. Yeast one-hybrid system, electrophoretic mobility shift assay, ChIP-qPCR, and dual-luciferase assay were employed to substantiate that PpnMYC2 directly regulated PagEPF2, PagEPFL4, and PagEPFL9. PpnMYC2, PpnEPF2, and PpnEPFL4 were significantly upregulated, whereas PpnEPFL9 was downregulated during stomatal formation in triploid poplar. Our results are of great significance for revealing the regulation mechanism of plant stomatal occurrence and polyploid stomatal density, as well as reducing stomatal density and improving plant water use efficiency by overexpressing MYC2.
Collapse
Affiliation(s)
- Yufei Xia
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Shenxiu Jiang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Wenqi Wu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Kang Du
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Xiangyang Kang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
30
|
Xue X, Wang L, Huang A, Liu Z, Guo X, Sang Y, Zhu JK, Xue H, Dong J. Membrane-associated NRPM proteins are novel suppressors of stomatal production in Arabidopsis. Curr Biol 2024; 34:881-894.e7. [PMID: 38350447 PMCID: PMC10939298 DOI: 10.1016/j.cub.2024.01.052] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 10/30/2023] [Accepted: 01/19/2024] [Indexed: 02/15/2024]
Abstract
In Arabidopsis, stomatal development and patterning require tightly regulated cell division and cell-fate differentiation that are controlled by key transcription factors and signaling molecules. To identify new regulators of stomatal development, we assay the transcriptomes of plants bearing enriched stomatal lineage cells that undergo active division. A member of the novel regulators at the plasma membrane (NRPM) family annotated as hydroxyproline-rich glycoproteins was identified to highly express in stomatal lineage cells. Overexpressing each of the four NRPM genes suppressed stomata formation, while the loss-of-function nrpm triple mutants generated severely overproduced stomata and abnormal patterning, mirroring those of the erecta receptor family and MAPKKK yoda null mutants. Manipulation of the subcellular localization of NRPM1 surprisingly revealed its regulatory roles as a peripheral membrane protein instead of a predicted cell wall protein. Further functional characterization suggests that NRPMs function downstream of the EPF1/2 peptide ligands and upstream of the YODA MAPK pathway. Genetic and cell biological analyses reveal that NRPM may promote the localization and function of the ERECTA receptor proteins at the cell surface. Therefore, we identify NRPM as a new class of signaling molecules at the plasma membrane to regulate many aspects of plant growth and development.
Collapse
Affiliation(s)
- Xueyi Xue
- The Waksman Institute of Microbiology, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA; Sanya Institute of China Agricultural University, Sanya 572025, China.
| | - Lu Wang
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Aobo Huang
- The Waksman Institute of Microbiology, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Zehao Liu
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiaoyu Guo
- The Waksman Institute of Microbiology, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Yuying Sang
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai 201602, China
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai 201602, China
| | - Huiling Xue
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Juan Dong
- The Waksman Institute of Microbiology, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA; Department of Plant Biology, Rutgers, the State University of New Jersey, New Brunswick, NJ 08901, USA.
| |
Collapse
|
31
|
Mohamed D, Vonapartis E, Corcega DY, Gazzarrini S. ABA guides stomatal proliferation and patterning through the EPF-SPCH signaling pathway in Arabidopsis thaliana. Development 2023; 150:dev201258. [PMID: 37997741 DOI: 10.1242/dev.201258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 11/06/2023] [Indexed: 11/25/2023]
Abstract
Adaptation to dehydration stress requires plants to coordinate environmental and endogenous signals to inhibit stomatal proliferation and modulate their patterning. The stress hormone abscisic acid (ABA) induces stomatal closure and restricts stomatal lineage to promote stress tolerance. Here, we report that mutants with reduced ABA levels, xer-1, xer-2 and aba2-2, developed stomatal clusters. Similarly, the ABA signaling mutant snrk2.2/2.3/2.6, which lacks core ABA signaling kinases, also displayed stomatal clusters. Exposure to ABA or inhibition of ABA catabolism rescued the increased stomatal density and spacing defects observed in xer and aba2-2, suggesting that basal ABA is required for correct stomatal density and spacing. xer-1 and aba2-2 displayed reduced expression of EPF1 and EPF2, and enhanced expression of SPCH and MUTE. Furthermore, ABA suppressed elevated SPCH and MUTE expression in epf2-1 and epf1-1, and partially rescued epf2-1 stomatal index and epf1-1 clustering defects. Genetic analysis demonstrated that XER acts upstream of the EPF2-SPCH pathway to suppress stomatal proliferation, and in parallel with EPF1 to ensure correct stomatal spacing. These results show that basal ABA and functional ABA signaling are required to fine-tune stomatal density and patterning.
Collapse
Affiliation(s)
- Deka Mohamed
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada
| | - Eliana Vonapartis
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada
| | - Dennedy Yrvin Corcega
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Sonia Gazzarrini
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada
| |
Collapse
|
32
|
Smit ME, Bergmann DC. The stomatal fates: Understanding initiation and enforcement of stomatal cell fate transitions. CURRENT OPINION IN PLANT BIOLOGY 2023; 76:102449. [PMID: 37709566 DOI: 10.1016/j.pbi.2023.102449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/09/2023] [Accepted: 08/15/2023] [Indexed: 09/16/2023]
Abstract
In the stomatal lineage, repeated arcs of initiation, stem-cell proliferation, and terminal cell fate commitment are displayed on the surface of aerial organs. Over the past two decades, the core transcription and signaling elements that guide cell divisions, patterning, and fate transitions were defined. Here we highlight recent work that extends the core using a variety of cutting-edge techniques in different plant species. New work has discovered transcriptional circuits that initiate and reinforce stomatal fate transitions, while also enabling the lineage to interpret and respond to environmental inputs. Recent developments show that some key stomatal factors are more flexible or potentially even interchangeable, opening up avenues to explore stomatal fates and regulatory networks.
Collapse
Affiliation(s)
- Margot E Smit
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305-5020, USA
| | - Dominique C Bergmann
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305-5020, USA.
| |
Collapse
|
33
|
Nguyen TBA, Lefoulon C, Nguyen TH, Blatt MR, Carroll W. Engineering stomata for enhanced carbon capture and water-use efficiency. TRENDS IN PLANT SCIENCE 2023; 28:1290-1309. [PMID: 37423785 DOI: 10.1016/j.tplants.2023.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/29/2023] [Accepted: 06/02/2023] [Indexed: 07/11/2023]
Abstract
Stomatal pores facilitate gaseous exchange between the inner air spaces of the leaf and the atmosphere. As gatekeepers that balance CO2 entry for photosynthesis against transpirational water loss, they are a focal point for efforts to improve crop performance, especially in the efficiency of water use, within the changing global environment. Until recently, engineering strategies had focused on stomatal conductance in the steady state. These strategies are limited by the physical constraints of CO2 and water exchange such that gains in water-use efficiency (WUE) commonly come at a cost in carbon assimilation. Attention to stomatal speed and responsiveness circumvents these constraints and offers alternatives to enhancing WUE that also promise increases in carbon assimilation in the field.
Collapse
Affiliation(s)
- Thu Binh-Anh Nguyen
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Cecile Lefoulon
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Thanh-Hao Nguyen
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Michael R Blatt
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - William Carroll
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
34
|
Brazel AJ, Fattorini R, McCarthy J, Franzen R, Rümpler F, Coupland G, Ó’Maoiléidigh DS. AGAMOUS mediates timing of guard cell formation during gynoecium development. PLoS Genet 2023; 19:e1011000. [PMID: 37819989 PMCID: PMC10593234 DOI: 10.1371/journal.pgen.1011000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 10/23/2023] [Accepted: 09/27/2023] [Indexed: 10/13/2023] Open
Abstract
In Arabidopsis thaliana, stomata are composed of two guard cells that control the aperture of a central pore to facilitate gas exchange between the plant and its environment, which is particularly important during photosynthesis. Although leaves are the primary photosynthetic organs of flowering plants, floral organs are also photosynthetically active. In the Brassicaceae, evidence suggests that silique photosynthesis is important for optimal seed oil content. A group of transcription factors containing MADS DNA binding domains is necessary and sufficient to confer floral organ identity. Elegant models, such as the ABCE model of flower development and the floral quartet model, have been instrumental in describing the molecular mechanisms by which these floral organ identity proteins govern flower development. However, we lack a complete understanding of how the floral organ identity genes interact with the underlying leaf development program. Here, we show that the MADS domain transcription factor AGAMOUS (AG) represses stomatal development on the gynoecial valves, so that maturation of stomatal complexes coincides with fertilization. We present evidence that this regulation by AG is mediated by direct transcriptional repression of a master regulator of the stomatal lineage, MUTE, and show data that suggests this interaction is conserved among several members of the Brassicaceae. This work extends our understanding of the mechanisms underlying floral organ formation and provides a framework to decipher the mechanisms that control floral organ photosynthesis.
Collapse
Affiliation(s)
- Ailbhe J. Brazel
- Department of Biology, Maynooth University, Ireland
- The Max Plank Institute for Plant Breeding Research, Cologne, Germany
| | - Róisín Fattorini
- Department of Biochemistry and Systems Biology, The University of Liverpool, United Kingdom
| | - Jesse McCarthy
- Department of Biochemistry and Systems Biology, The University of Liverpool, United Kingdom
| | - Rainer Franzen
- The Max Plank Institute for Plant Breeding Research, Cologne, Germany
| | - Florian Rümpler
- Department of Genetics, Friedrich Schiller University Jena, Jena, Germany
| | - George Coupland
- The Max Plank Institute for Plant Breeding Research, Cologne, Germany
| | - Diarmuid S. Ó’Maoiléidigh
- Department of Biology, Maynooth University, Ireland
- The Max Plank Institute for Plant Breeding Research, Cologne, Germany
- Department of Biochemistry and Systems Biology, The University of Liverpool, United Kingdom
| |
Collapse
|
35
|
Doll Y, Koga H, Tsukaya H. Experimental validation of the mechanism of stomatal development diversification. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5667-5681. [PMID: 37555400 PMCID: PMC10540739 DOI: 10.1093/jxb/erad279] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/18/2023] [Indexed: 08/10/2023]
Abstract
Stomata are the structures responsible for gas exchange in plants. The established framework for stomatal development is based on the model plant Arabidopsis, but diverse patterns of stomatal development have been observed in other plant lineages and species. The molecular mechanisms behind these diversified patterns are still poorly understood. We recently proposed a model for the molecular mechanisms of the diversification of stomatal development based on the genus Callitriche (Plantaginaceae), according to which a temporal shift in the expression of key stomatal transcription factors SPEECHLESS and MUTE leads to changes in the behavior of meristemoids (stomatal precursor cells). In the present study, we genetically manipulated Arabidopsis to test this model. By altering the timing of MUTE expression, we successfully generated Arabidopsis plants with early differentiation or prolonged divisions of meristemoids, as predicted by the model. The epidermal morphology of the generated lines resembled that of species with prolonged or no meristemoid divisions. Thus, the evolutionary process can be reproduced by varying the SPEECHLESS to MUTE transition. We also observed unexpected phenotypes, which indicated the participation of additional factors in the evolution of the patterns observed in nature. This study provides novel experimental insights into the diversification of meristemoid behaviors.
Collapse
Affiliation(s)
- Yuki Doll
- Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiroyuki Koga
- Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hirokazu Tsukaya
- Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
36
|
Kim EJ, Zhang C, Guo B, Eekhout T, Houbaert A, Wendrich JR, Vandamme N, Tiwari M, Simon--Vezo C, Vanhoutte I, Saeys Y, Wang K, Zhu Y, De Rybel B, Russinova E. Cell type-specific attenuation of brassinosteroid signaling precedes stomatal asymmetric cell division. Proc Natl Acad Sci U S A 2023; 120:e2303758120. [PMID: 37639582 PMCID: PMC10483622 DOI: 10.1073/pnas.2303758120] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/16/2023] [Indexed: 08/31/2023] Open
Abstract
In Arabidopsis thaliana, brassinosteroid (BR) signaling and stomatal development are connected through the SHAGGY/GSK3-like kinase BR INSENSITIVE2 (BIN2). BIN2 is a key negative regulator of BR signaling but it plays a dual role in stomatal development. BIN2 promotes or restricts stomatal asymmetric cell division (ACD) depending on its subcellular localization, which is regulated by the stomatal lineage-specific scaffold protein POLAR. BRs inactivate BIN2, but how they govern stomatal development remains unclear. Mapping the single-cell transcriptome of stomatal lineages after triggering BR signaling with either exogenous BRs or the specific BIN2 inhibitor, bikinin, revealed that the two modes of BR signaling activation generate spatiotemporally distinct transcriptional responses. We established that BIN2 is always sensitive to the inhibitor but, when in a complex with POLAR and its closest homolog POLAR-LIKE1, it becomes protected from BR-mediated inactivation. Subsequently, BR signaling in ACD precursors is attenuated, while it remains active in epidermal cells devoid of scaffolds and undergoing differentiation. Our study demonstrates how scaffold proteins contribute to cellular signal specificity of hormonal responses in plants.
Collapse
Affiliation(s)
- Eun-Ji Kim
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent9052, Belgium
| | - Cheng Zhang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent9052, Belgium
| | - Boyu Guo
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent9052, Belgium
- College of Life Sciences, Wuhan University, Wuhan430072, China
| | - Thomas Eekhout
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent9052, Belgium
- VIB Single Cell Core, VIB, Ghent9052, Belgium
| | - Anaxi Houbaert
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent9052, Belgium
| | - Jos R. Wendrich
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent9052, Belgium
| | | | - Manish Tiwari
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent9052, Belgium
| | - Claire Simon--Vezo
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent9052, Belgium
| | - Isabelle Vanhoutte
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent9052, Belgium
| | - Yvan Saeys
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent9000, Belgium
- Data Mining and Modeling for Biomedicine, Center for Inflammation Research, VIB, Ghent9052, Belgium
| | - Kun Wang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent9052, Belgium
- College of Life Sciences, Wuhan University, Wuhan430072, China
| | - Yuxian Zhu
- College of Life Sciences, Wuhan University, Wuhan430072, China
| | - Bert De Rybel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent9052, Belgium
| | - Eugenia Russinova
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent9052, Belgium
| |
Collapse
|
37
|
Xu K, Tian D, Wang T, Zhang A, Elsadek MAY, Liu W, Chen L, Guo Y. Small secreted peptides (SSPs) in tomato and their potential roles in drought stress response. MOLECULAR HORTICULTURE 2023; 3:17. [PMID: 37789434 PMCID: PMC10515272 DOI: 10.1186/s43897-023-00063-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/28/2023] [Indexed: 10/05/2023]
Abstract
Tomato (Solanum lycopersicum) is one of the most important vegetable crops in the world and abiotic stresses often cause serious problems in tomato production. It is thus important to identify new regulators in stress response and to devise new approaches to promote stress tolerance in tomato. Previous studies have shown that small secreted peptides (SSPs) are important signal molecules regulating plant growth and stress response by mediating intercellular communication. However, little is known about tomato SSPs, especially their roles in responding to abiotic stresses. Here we report the identification of 1,050 putative SSPs in the tomato genome, 557 of which were classified into 38 known SSP families based on their conserved domains. GO and transcriptome analyses revealed that a large proportion of SlSSPs might be involved in abiotic stress response. Further analysis indicated that stress response related cis-elements were present on the SlCEP promotors and a number of SlCEPs were significantly upregulated by drought treatments. Among the drought-inducible SlCEPs, SlCEP10 and SlCEP11b were selected for further analysis via exogenous application of synthetic peptides. The results showed that treatments with both SlCEP10 and SlCEP11b peptides enhanced tomato drought stress tolerance, indicating the potential roles of SlSSPs in abiotic stress response.
Collapse
Affiliation(s)
- Kexin Xu
- Department of HorticultureCollege of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Dongdong Tian
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - TingJin Wang
- Department of HorticultureCollege of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Aijun Zhang
- Department of HorticultureCollege of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | | | - Weihong Liu
- Department of HorticultureCollege of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Liping Chen
- Department of HorticultureCollege of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Yongfeng Guo
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
| |
Collapse
|
38
|
Hartman KS, Muroyama A. Polarizing to the challenge: New insights into polarity-mediated division orientation in plant development. CURRENT OPINION IN PLANT BIOLOGY 2023; 74:102383. [PMID: 37285693 DOI: 10.1016/j.pbi.2023.102383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/24/2023] [Accepted: 05/02/2023] [Indexed: 06/09/2023]
Abstract
Land plants depend on oriented cell divisions that specify cell identities and tissue architecture. As such, the initiation and subsequent growth of plant organs require pathways that integrate diverse systemic signals to inform division orientation. Cell polarity is one solution to this challenge, allowing cells to generate internal asymmetry both spontaneously and in response to extrinsic cues. Here, we provide an update on our understanding of how plasma membrane-associated polarity domains control division orientation in plant cells. These cortical polar domains are flexible protein platforms whose positions, dynamics, and recruited effectors can be modulated by varied signals to control cellular behavior. Several recent reviews have explored the formation and maintenance of polar domains during plant development [1-4], so we focus here on substantial advances in our understanding of polarity-mediated division orientation from the last five years to provide a current snapshot of the field and highlight areas for future exploration.
Collapse
Affiliation(s)
- Kensington S Hartman
- Department of Cell and Developmental Biology, Division of Biological Sciences, UC San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Andrew Muroyama
- Department of Cell and Developmental Biology, Division of Biological Sciences, UC San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA.
| |
Collapse
|
39
|
Chen L, Torii KU. Signaling in plant development and immunity through the lens of the stomata. Curr Biol 2023; 33:R733-R742. [PMID: 37433278 DOI: 10.1016/j.cub.2023.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
The proper development and function of stomata - turgor-driven valves for efficient gas-exchange and water control - impact plant survival and productivity. It has become apparent that various receptor kinases regulate stomatal development and immunity. Although stomatal development and immunity occur over different cellular time scales, their signaling components and regulatory modules are strikingly similar, and often shared. In this review, we survey the current knowledge of stomatal development and immunity signaling components, and provide a synthesis and perspectives on the key concepts to further understand the conservation and specificity of these two signaling pathways.
Collapse
Affiliation(s)
- Liangliang Chen
- Howard Hughes Medical Institute and Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Keiko U Torii
- Howard Hughes Medical Institute and Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
40
|
Muroyama A, Gong Y, Hartman KS, Bergmann D. Cortical polarity ensures its own asymmetric inheritance in the stomatal lineage to pattern the leaf surface. Science 2023; 381:54-59. [PMID: 37410832 PMCID: PMC10328556 DOI: 10.1126/science.add6162] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 05/11/2023] [Indexed: 07/08/2023]
Abstract
Asymmetric cell divisions specify differential cell fates across kingdoms. In metazoans, preferential inheritance of fate determinants into one daughter cell frequently depends on polarity-cytoskeleton interactions. Despite the prevalence of asymmetric divisions throughout plant development, evidence for analogous mechanisms that segregate fate determinants remains elusive. Here, we describe a mechanism in the Arabidopsis leaf epidermis that ensures unequal inheritance of a fate-enforcing polarity domain. By defining a cortical region depleted of stable microtubules, the polarity domain limits possible division orientations. Accordingly, uncoupling the polarity domain from microtubule organization during mitosis leads to aberrant division planes and accompanying cell identity defects. Our data highlight how a common biological module, coupling polarity to fate segregation through the cytoskeleton, can be reconfigured to accommodate unique features of plant development.
Collapse
Affiliation(s)
- Andrew Muroyama
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Division of Biological Sciences, Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Yan Gong
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Current Address: Department of Organismic & Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Kensington S. Hartman
- Division of Biological Sciences, Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Dominique Bergmann
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
41
|
Karavolias NG, Patel-Tupper D, Seong K, Tjahjadi M, Gueorguieva GA, Tanaka J, Gallegos Cruz A, Lieberman S, Litvak L, Dahlbeck D, Cho MJ, Niyogi KK, Staskawicz BJ. Paralog editing tunes rice stomatal density to maintain photosynthesis and improve drought tolerance. PLANT PHYSIOLOGY 2023; 192:1168-1182. [PMID: 36960567 PMCID: PMC10231365 DOI: 10.1093/plphys/kiad183] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/03/2023] [Accepted: 03/03/2023] [Indexed: 06/01/2023]
Abstract
Rice (Oryza sativa) is of paramount importance for global nutrition, supplying at least 20% of global calories. However, water scarcity and increased drought severity are anticipated to reduce rice yields globally. We explored stomatal developmental genetics as a mechanism for improving drought resilience in rice while maintaining yield under climate stress. CRISPR/Cas9-mediated knockouts of the positive regulator of stomatal development STOMAGEN and its paralog EPIDERMAL PATTERNING FACTOR-LIKE10 (EPFL10) yielded lines with ∼25% and 80% of wild-type stomatal density, respectively. epfl10 lines with moderate reductions in stomatal density were able to conserve water to similar extents as stomagen lines but did not suffer from the concomitant reductions in stomatal conductance, carbon assimilation, or thermoregulation observed in stomagen knockouts. Moderate reductions in stomatal density achieved by editing EPFL10 present a climate-adaptive approach for safeguarding yield in rice. Editing the paralog of STOMAGEN in other species may provide a means for tuning stomatal density in agriculturally important crops beyond rice.
Collapse
Affiliation(s)
- Nicholas G Karavolias
- Plant and Microbial Biology Department, UC Berkeley, Berkeley, CA 94720, USA
- Innovative Genomics Institute, Berkeley, CA 94704, USA
| | - Dhruv Patel-Tupper
- Plant and Microbial Biology Department, UC Berkeley, Berkeley, CA 94720, USA
- Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kyungyong Seong
- Plant and Microbial Biology Department, UC Berkeley, Berkeley, CA 94720, USA
| | | | - Gloria-Alexandra Gueorguieva
- Plant and Microbial Biology Department, UC Berkeley, Berkeley, CA 94720, USA
- Innovative Genomics Institute, Berkeley, CA 94704, USA
| | - Jaclyn Tanaka
- Innovative Genomics Institute, Berkeley, CA 94704, USA
| | | | | | | | - Douglas Dahlbeck
- Plant and Microbial Biology Department, UC Berkeley, Berkeley, CA 94720, USA
- Innovative Genomics Institute, Berkeley, CA 94704, USA
| | - Myeong-Je Cho
- Innovative Genomics Institute, Berkeley, CA 94704, USA
| | - Krishna K Niyogi
- Plant and Microbial Biology Department, UC Berkeley, Berkeley, CA 94720, USA
- Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Brian J Staskawicz
- Plant and Microbial Biology Department, UC Berkeley, Berkeley, CA 94720, USA
- Innovative Genomics Institute, Berkeley, CA 94704, USA
| |
Collapse
|
42
|
Phetluan W, Wanchana S, Aesomnuk W, Adams J, Pitaloka MK, Ruanjaichon V, Vanavichit A, Toojinda T, Gray JE, Arikit S. Candidate genes affecting stomatal density in rice (Oryza sativa L.) identified by genome-wide association. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 330:111624. [PMID: 36737006 DOI: 10.1016/j.plantsci.2023.111624] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/18/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Stomata regulate photosynthesis and water loss. They have been an active subject of research for centuries, but our knowledge of the genetic components that regulate stomatal development in crops remains very limited in comparison to the model plant Arabidopsis thaliana. Leaf stomatal density was found to vary by over 2.5-fold across a panel of 235 rice accessions. Using GWAS, we successfully identified five different QTLs associated with stomatal density on chromosomes 2, 3, 9, and 12. Forty-two genes were identified within the haplotype blocks corresponding to these QTLs. Of these, nine genes contained haplotypes that were associated with different stomatal densities. These include a gene encoding a trehalose-6-phosphate synthase, an enzyme that has previously been associated with altered stomatal density in Arabidopsis, and genes encoding a B-BOX zinc finger family protein, a leucine-rich repeat family protein, and the 40 S ribosomal protein S3a, none of which have previously been linked to stomatal traits. We investigated further and show that a closely related B-BOX protein regulates stomatal development in Arabidopsis. The results of this study provide information on genetic associations with stomatal density in rice. The QTLs and candidate genes may be useful in future breeding programs for low or high stomatal density and, consequently, improved photosynthetic capacity, water use efficiency, or drought tolerance.
Collapse
Affiliation(s)
- Watchara Phetluan
- Center for Agricultural Biotechnology, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand; Center of Excellence on Agricultural Biotechnology: (AG-BIO/MHESI), Bangkok 10900, Thailand.
| | - Samart Wanchana
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Pahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand.
| | - Wanchana Aesomnuk
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Pahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand.
| | - Julian Adams
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield S102TN, United Kingdom.
| | - Mutiara K Pitaloka
- Rice Science Center, Kasetsart University, Kamphaeng Saen, Nakhon Pathom 73140, Thailand.
| | - Vinitchan Ruanjaichon
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Pahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand.
| | - Apichart Vanavichit
- Rice Science Center, Kasetsart University, Kamphaeng Saen, Nakhon Pathom 73140, Thailand; Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom 73140, Thailand.
| | - Theerayut Toojinda
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Pahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand.
| | - Julie E Gray
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield S102TN, United Kingdom.
| | - Siwaret Arikit
- Rice Science Center, Kasetsart University, Kamphaeng Saen, Nakhon Pathom 73140, Thailand; Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom 73140, Thailand.
| |
Collapse
|
43
|
He Y, He X, Wang X, Hao M, Gao J, Wang Y, Yang ZN, Meng X. An EPFL peptide signaling pathway promotes stamen elongation via enhancing filament cell proliferation to ensure successful self-pollination in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2023; 238:1045-1058. [PMID: 36772858 DOI: 10.1111/nph.18806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Proper stamen filament elongation is essential for plant self-pollination and reproduction. Several phytohormones such as jasmonate and gibberellin play important roles in controlling filament elongation, but other endogenous signals involved in this developmental process remain unknown. We report here that three EPIDERMAL PATTERNING FACTOR-LIKE (EPFL) family peptides, EPFL4, EPFL5 and EPFL6, act redundantly to promote stamen filament elongation via enhancing filament cell proliferation in Arabidopsis thaliana. Knockout of EPFL4-6 genes led to shortened filaments due to defective filament cell proliferation, resulting in pollination failure and male sterility. Further genetic and biochemical analyses indicated that the ERECTA family and the SOMATIC EMBRYOGENESIS RECEPTOR KINASE (SERK) family RLKs form receptor complexes to perceive EPFL4-6 peptides and promote filament cell proliferation. Moreover, based on both loss- and gain-of-function genetic analyses, the mitogen-activated protein kinase cascade MKK4/MKK5-MPK6 was shown to function downstream of EPFL4-6 to positively regulate cell proliferation in stamen filaments. Together, this study reveals that an EPFL peptide signaling pathway composed of the EPFL4-6 peptide ligands, the ERECTA-SERK receptor complexes and the downstream MKK4/MKK5-MPK6 cascade promotes stamen filament elongation via enhancing filament cell proliferation to ensure successful self-pollination and normal fertility in Arabidopsis.
Collapse
Affiliation(s)
- Yunxia He
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Xiaomeng He
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Xiaoyang Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Mengyue Hao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Jiale Gao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yangxiayu Wang
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Zhong-Nan Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Xiangzong Meng
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| |
Collapse
|
44
|
Rathnasamy SA, Kambale R, Elangovan A, Mohanavel W, Shanmugavel P, Ramasamy G, Alagarsamy S, Marimuthu R, Rajagopalan VR, Manickam S, Ramanathan V, Muthurajan R, Vellingiri G. Altering Stomatal Density for Manipulating Transpiration and Photosynthetic Traits in Rice through CRISPR/Cas9 Mutagenesis. Curr Issues Mol Biol 2023; 45:3801-3814. [PMID: 37232714 DOI: 10.3390/cimb45050245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/12/2023] [Accepted: 02/28/2023] [Indexed: 05/27/2023] Open
Abstract
Stomata regulates conductance, transpiration and photosynthetic traits in plants. Increased stomatal density may contribute to enhanced water loss and thereby help improve the transpirational cooling process and mitigate the high temperature-induced yield losses. However, genetic manipulation of stomatal traits through conventional breeding still remains a challenge due to problems involved in phenotyping and the lack of suitable genetic materials. Recent advances in functional genomics in rice identified major effect genes determining stomatal traits, including its number and size. Widespread applications of CRISPR/Cas9 in creating targeted mutations paved the way for fine tuning the stomatal traits for enhancing climate resilience in crops. In the current study, attempts were made to create novel alleles of OsEPF1 (Epidermal Patterning Factor), a negative regulator of stomatal frequency/density in a popular rice variety, ASD 16, using the CRISPR/Cas9 approach. Evaluation of 17 T0 progenies identified varying mutations (seven multiallelic, seven biallelic and three monoallelic mutations). T0 mutant lines showed a 3.7-44.3% increase in the stomatal density, and all the mutations were successfully inherited into the T1 generation. Evaluation of T1 progenies through sequencing identified three homozygous mutants for one bp insertion. Overall, T1 plants showed 54-95% increased stomatal density. The homozygous T1 lines (# E1-1-4, # E1-1-9 and # E1-1-11) showed significant increase in the stomatal conductance (60-65%), photosynthetic rate (14-31%) and the transpiration rate (58-62%) compared to the nontransgenic ASD 16. Results demonstrated that the genetic alterations in OsEPF1 altered the stomatal density, stomatal conductance and photosynthetic efficiency in rice. Further experiments are needed to associate this technology with canopy cooling and high temperature tolerance.
Collapse
Affiliation(s)
- Sakthi Ambothi Rathnasamy
- Department of Plant Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India
| | - Rohit Kambale
- Department of Plant Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India
| | - Allimuthu Elangovan
- Department of Plant Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India
| | - Williams Mohanavel
- Department of Plant Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India
| | - Priyanka Shanmugavel
- Agro-Climatology Research Centre, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India
| | - Gowtham Ramasamy
- Agro-Climatology Research Centre, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India
| | - Senthil Alagarsamy
- Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India
| | - Rajavel Marimuthu
- Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India
| | - Veera Ranjani Rajagopalan
- Department of Plant Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India
| | - Sudha Manickam
- Department of Plant Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India
| | | | - Raveendran Muthurajan
- Department of Plant Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India
| | - Geethalakshmi Vellingiri
- Agro-Climatology Research Centre, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India
| |
Collapse
|
45
|
Jiao P, Liang Y, Chen S, Yuan Y, Chen Y, Hu H. Bna.EPF2 Enhances Drought Tolerance by Regulating Stomatal Development and Stomatal Size in Brassica napus. Int J Mol Sci 2023; 24:ijms24098007. [PMID: 37175713 PMCID: PMC10179174 DOI: 10.3390/ijms24098007] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/28/2023] [Accepted: 04/14/2023] [Indexed: 05/15/2023] Open
Abstract
Drought stress severely affects global plant growth and production. The enhancement of plant water-use efficiency (WUE) and drought tolerance by the manipulation of the stomata is an effective strategy to deal with water shortage. However, increasing the WUE and drought tolerance by manipulation on the stomata has rarely been tested in Brassica napus. Here, we isolated Bna.EPF2, an epidermal patterning factor (EPF) in Brassica napus (ecotype Westar), and identified its role in drought performance. Bna.EPF2 overexpression lines had a reduction average of 19.02% in abaxial stomatal density and smaller stomatal pore size, leading to approximately 25% lower transpiration, which finally resulted in greater instantaneous WUE and enhanced drought tolerance. Interestingly, the reduction in stomatal density did not affect the CO2 assimilation or yield-related agronomic traits in Bna.EPF2 overexpression plants. Together with the complementation of Bna.EPF2 significantly decreasing the stomatal density of Arabidopsis epf2, and Bna.EPF2 being expressed in mature guard cells, these results suggest that Bna.EPF2 not only functions in stomatal density development, but also in stomatal dimension in Brassicas. Taken together, our results suggest that Bna.EPF2 improves WUE and drought tolerance by the regulation of stomatal density and stomatal size in Brassica without growth and yield penalty, and provide insight into the manipulation of this gene in the breeding of drought tolerant plants with increased production under water deficit conditions.
Collapse
Affiliation(s)
- Peipei Jiao
- Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, College of Life Science, Tarim University, Alar 843300, China
| | - Yuanlin Liang
- Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Shaoping Chen
- Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yang Yuan
- Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongqiang Chen
- Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Honghong Hu
- Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
46
|
Li P, Chen L, Gu X, Zhao M, Wang W, Hou S. FOUR LIPS plays a role in meristemoid-to-GMC fate transition during stomatal development in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:424-436. [PMID: 36786686 DOI: 10.1111/tpj.16146] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/07/2023] [Indexed: 05/10/2023]
Abstract
Meristemoids, which are stomatal precursor cells, exhibit self-renewal and differentiation abilities. However, the only known core factor associated with meristemoid division termination and fate transition is the heterodimer formed by the basic helix-loop-helix proteins MUTE and SCREAMs (SCRMs). FOUR LIPS (FLP), a well-known transcription factor that restricts guard mother cell (GMC) division, is a direct target of MUTE. Whether FLP involves in meristemoid differentiation is unknown. Through sensitized genetic screening of flp-1, we identified a mute-like (mutl) mutant with arrested meristemoids. The mutant carried a novel allele of the MUTE locus, i.e., mute-4. Intriguingly, mute-4 is a hypomorphic allele that exhibits wild-type appearance with slightly delayed meristemoid-to-GMC transition, whereas it renders an unexpected mutl epidermis with most meristemoids arrested and very few stomata when combined with flp (flp mute-4), suggesting that FLP is a positive regulator during this transition process. Consistently, the expression of FLP increased during GMC commitment, and the number of cells at this stage was markedly increased in flp. flp scrm double mutants produced arrested meristemoids similar to mute, and FLP was able to interact physically with SCRM. Taken together, our results demonstrate that FLP functions together with MUTE and SCRMs to direct meristemoid-to-GMC fate transition.
Collapse
Affiliation(s)
- Ping Li
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Key Laboratory of Gene Editing for Breeding, Gansu Province, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Liang Chen
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Key Laboratory of Gene Editing for Breeding, Gansu Province, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xiaoli Gu
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Key Laboratory of Gene Editing for Breeding, Gansu Province, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Mingfeng Zhao
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Key Laboratory of Gene Editing for Breeding, Gansu Province, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Wenjin Wang
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Key Laboratory of Gene Editing for Breeding, Gansu Province, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Suiwen Hou
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Key Laboratory of Gene Editing for Breeding, Gansu Province, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
47
|
Li M, Lv M, Wang X, Cai Z, Yao H, Zhang D, Li H, Zhu M, Du W, Wang R, Wang Z, Kui H, Hou S, Li J, Yi J, Gou X. The EPFL-ERf-SERK signaling controls integument development in Arabidopsis. THE NEW PHYTOLOGIST 2023; 238:186-201. [PMID: 36564978 DOI: 10.1111/nph.18701] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
As the seed precursor, the ovule produces the female gametophyte (or embryo sac), and the subsequent double fertilization occurs in it. The integuments emerge sequentially from the integument primordia at the early stages of ovule development and finally enwrap the embryo sac gradually during gametogenesis, protecting and nursing the embryo sac. However, the mechanisms regulating integument development are still obscure. In this study, we show that SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASES (SERKs) play essential roles during integument development in Arabidopsis thaliana. The serk1/2/3 triple mutant shows arrested integuments and abnormal embryo sacs, similar defects also found in the triple loss-of-function mutants of ERECTA family (ERf) genes. Ovules of serk1/2/3 er erl1/2 show defects similar to er erl1/2 and serk1/2/3. Results of yeast two-hybrid analyses, bimolecular fluorescence complementation (BiFC) analyses, and co-immunoprecipitation assays demonstrated that SERKs interact with ERf, which depends on EPIDERMAL PATTERNING FACTOR-LIKE (EPFL) family small peptides. The sextuple mutant epfl1/2/3/4/5/6 shows integument defects similar to both of er erl1/2 and serk1/2/3. Our results demonstrate that ERf-SERK-mediated EPFL signaling orchestrates the development of the female gametophyte and the surrounding sporophytic integuments.
Collapse
Affiliation(s)
- Meizhen Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Minghui Lv
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
- School of Life Sciences, Guangzhou University, Guangzhou, Guangdong, 510006, China
| | - Xiaojuan Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Zeping Cai
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
- College of Forestry, Hainan University, Haikou, Hainan, 570228, China
| | - Hongrui Yao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Dongyang Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Huiqiang Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
- College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan, 450002, China
| | - Mingsong Zhu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Wenbin Du
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Ruoshi Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Zhe Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Hong Kui
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Suiwen Hou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Jia Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
- School of Life Sciences, Guangzhou University, Guangzhou, Guangdong, 510006, China
| | - Jing Yi
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Xiaoping Gou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| |
Collapse
|
48
|
Fedoreyeva LI. Molecular Mechanisms of Regulation of Root Development by Plant Peptides. PLANTS (BASEL, SWITZERLAND) 2023; 12:1320. [PMID: 36987008 PMCID: PMC10053774 DOI: 10.3390/plants12061320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/14/2023] [Accepted: 03/01/2023] [Indexed: 06/19/2023]
Abstract
Peptides perform many functions, participating in the regulation of cell differentiation, regulating plant growth and development, and also involved in the response to stress factors and in antimicrobial defense. Peptides are an important class biomolecules for intercellular communication and in the transmission of various signals. The intercellular communication system based on the ligand-receptor bond is one of the most important molecular bases for creating complex multicellular organisms. Peptide-mediated intercellular communication plays a critical role in the coordination and determination of cellular functions in plants. The intercellular communication system based on the receptor-ligand is one of the most important molecular foundations for creating complex multicellular organisms. Peptide-mediated intercellular communication plays a critical role in the coordination and determination of cellular functions in plants. The identification of peptide hormones, their interaction with receptors, and the molecular mechanisms of peptide functioning are important for understanding the mechanisms of both intercellular communications and for regulating plant development. In this review, we drew attention to some peptides involved in the regulation of root development, which implement this regulation by the mechanism of a negative feedback loop.
Collapse
Affiliation(s)
- Larisa I Fedoreyeva
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, 127550 Moscow, Russia
| |
Collapse
|
49
|
Chen F, Yong J, Zhang G, Liu M, Wang Q, Zhong H, Pan Y, Chen P, Weng Y, Li Y. An LTR retrotransposon insertion inside CsERECTA for an LRR receptor-like serine/threonine-protein kinase results in compact (cp) plant architecture in cucumber. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:31. [PMID: 36894705 DOI: 10.1007/s00122-023-04273-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/26/2022] [Indexed: 06/18/2023]
Abstract
The compact (cp) phenotype in cucumber (Cucumis sativus L.) is an important plant architecture-related trait with a great potential for cucumber improvement. In this study, we conducted map-based cloning of the cp locus, identified and functionally characterized the candidate gene. Comparative microscopic analysis suggested that the short internode in the cp mutant is due to fewer cell numbers. Fine genetic mapping delimited cp into an 8.8-kb region on chromosome 4 harboring only one gene, CsERECTA (CsER) that encodes a leucine-rich repeat receptor-like kinase. A 5.5-kb insertion of a long terminal repeat retrotransposon in the 22nd exon resulted in loss-of-function of CsER in the cp plant. Spatiotemporal expression analysis in cucumber and CsER promoter-driven GUS assays in Arabidopsis indicated that CsER was highly expressed in the stem apical meristem and young organs, but the expression level was similar in the wild type and mutant cucumber plants. However, CsER protein accumulation was reduced in the mutant as revealed by western hybridization. The mutation in cp also did not seem to affect self-association of CsER for formation of dimers. Ectopic expression of CsER in Arabidopsis was able to rescue the plant height of the loss-of-function AtERECTA mutant, whereas the compact inflorescence and small rosette leaves of the mutant could be partially recovered. Transcriptome profiling in the mutant and wild type cucumber plants revealed hormone biosynthesis/signaling, and photosynthesis pathways associated with CsER-dependent regulatory network. Our work provides new insights for the use of cp in cucumber breeding.
Collapse
Affiliation(s)
- Feifan Chen
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Horticulture Department, University of Wisconsin, Madison, WI, 53706, USA
| | - Jianpeng Yong
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Gaoyuan Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
| | - Mengying Liu
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qiqi Wang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Huili Zhong
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yupeng Pan
- Horticulture Department, University of Wisconsin, Madison, WI, 53706, USA
| | - Peng Chen
- College of Life Science, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yiqun Weng
- Horticulture Department, University of Wisconsin, Madison, WI, 53706, USA.
- USDA-ARS Vegetable Crops Research Unit, Madison, WI, 53705, USA.
| | - Yuhong Li
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
50
|
Smit ME, Vatén A, Mair A, Northover CAM, Bergmann DC. Extensive embryonic patterning without cellular differentiation primes the plant epidermis for efficient post-embryonic stomatal activities. Dev Cell 2023; 58:506-521.e5. [PMID: 36931268 DOI: 10.1016/j.devcel.2023.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/12/2022] [Accepted: 02/20/2023] [Indexed: 03/18/2023]
Abstract
Plant leaves feature epidermal stomata that are organized in stereotyped patterns. How does the pattern originate? We provide transcriptomic, imaging, and genetic evidence that Arabidopsis embryos engage known stomatal fate and patterning factors to create regularly spaced stomatal precursor cells. Analysis of embryos from 36 plant species indicates that this trait is widespread among angiosperms. Embryonic stomatal patterning in Arabidopsis is established in three stages: first, broad SPEECHLESS (SPCH) expression; second, coalescence of SPCH and its targets into discrete domains; and third, one round of asymmetric division to create stomatal precursors. Lineage progression is then halted until after germination. We show that the embryonic stomatal pattern enables fast stomatal differentiation and photosynthetic activity upon germination, but it also guides the formation of additional stomata as the leaf expands. In addition, key stomatal regulators are prevented from driving the fate transitions they can induce after germination, identifying stage-specific layers of regulation that control lineage progression during embryogenesis.
Collapse
Affiliation(s)
- Margot E Smit
- Department of Biology, Stanford University, Stanford, CA 94305-5020, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Anne Vatén
- Department of Biology, Stanford University, Stanford, CA 94305-5020, USA
| | - Andrea Mair
- Department of Biology, Stanford University, Stanford, CA 94305-5020, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | | | - Dominique C Bergmann
- Department of Biology, Stanford University, Stanford, CA 94305-5020, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|