1
|
Zhu B, Zhu X, Borland MG, Ralph DH, Chiaro CR, Krausz KW, Ntambi JM, Glick AB, Patterson AD, Perdew GH, Gonzalez FJ, Peters JM. Activation of Peroxisome Proliferator-Activated Receptor-β/δ (PPARβ/δ) in Keratinocytes by Endogenous Fatty Acids. Biomolecules 2024; 14:606. [PMID: 38927010 PMCID: PMC11201440 DOI: 10.3390/biom14060606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024] Open
Abstract
Nuclear hormone receptors exist in dynamic equilibrium between transcriptionally active and inactive complexes dependent on interactions with ligands, proteins, and chromatin. The present studies examined the hypothesis that endogenous ligands activate peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) in keratinocytes. The phorbol ester treatment or HRAS infection of primary keratinocytes increased fatty acids that were associated with enhanced PPARβ/δ activity. Fatty acids caused PPARβ/δ-dependent increases in chromatin occupancy and the expression of angiopoietin-like protein 4 (Angptl4) mRNA. Analyses demonstrated that stearoyl Co-A desaturase 1 (Scd1) mediates an increase in intracellular monounsaturated fatty acids in keratinocytes that act as PPARβ/δ ligands. The activation of PPARβ/δ with palmitoleic or oleic acid causes arrest at the G2/M phase of the cell cycle of HRAS-expressing keratinocytes that is not found in similarly treated HRAS-expressing Pparb/d-null keratinocytes. HRAS-expressing Scd1-null mouse keratinocytes exhibit enhanced cell proliferation, an effect that is mitigated by treatment with palmitoleic or oleic acid. Consistent with these findings, the ligand activation of PPARβ/δ with GW0742 or oleic acid prevented UVB-induced non-melanoma skin carcinogenesis, an effect that required PPARβ/δ. The results from these studies demonstrate that PPARβ/δ has endogenous roles in keratinocytes and can be activated by lipids found in diet and cellular components.
Collapse
Affiliation(s)
- Bokai Zhu
- Department of Veterinary and Biomedical Sciences, The Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802, USA; (B.Z.); (X.Z.); (M.G.B.); (D.H.R.); (C.R.C.); (A.B.G.); (A.D.P.); (G.H.P.)
| | - Xiaoyang Zhu
- Department of Veterinary and Biomedical Sciences, The Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802, USA; (B.Z.); (X.Z.); (M.G.B.); (D.H.R.); (C.R.C.); (A.B.G.); (A.D.P.); (G.H.P.)
| | - Michael G. Borland
- Department of Veterinary and Biomedical Sciences, The Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802, USA; (B.Z.); (X.Z.); (M.G.B.); (D.H.R.); (C.R.C.); (A.B.G.); (A.D.P.); (G.H.P.)
- Department of Biochemistry, Microbiology and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Douglas H. Ralph
- Department of Veterinary and Biomedical Sciences, The Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802, USA; (B.Z.); (X.Z.); (M.G.B.); (D.H.R.); (C.R.C.); (A.B.G.); (A.D.P.); (G.H.P.)
| | - Christopher R. Chiaro
- Department of Veterinary and Biomedical Sciences, The Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802, USA; (B.Z.); (X.Z.); (M.G.B.); (D.H.R.); (C.R.C.); (A.B.G.); (A.D.P.); (G.H.P.)
- Department of Genetics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Kristopher W. Krausz
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA; (K.W.K.); (F.J.G.)
| | - James M. Ntambi
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA;
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Adam B. Glick
- Department of Veterinary and Biomedical Sciences, The Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802, USA; (B.Z.); (X.Z.); (M.G.B.); (D.H.R.); (C.R.C.); (A.B.G.); (A.D.P.); (G.H.P.)
| | - Andrew D. Patterson
- Department of Veterinary and Biomedical Sciences, The Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802, USA; (B.Z.); (X.Z.); (M.G.B.); (D.H.R.); (C.R.C.); (A.B.G.); (A.D.P.); (G.H.P.)
| | - Gary H. Perdew
- Department of Veterinary and Biomedical Sciences, The Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802, USA; (B.Z.); (X.Z.); (M.G.B.); (D.H.R.); (C.R.C.); (A.B.G.); (A.D.P.); (G.H.P.)
- Department of Biochemistry, Microbiology and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Genetics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Frank J. Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA; (K.W.K.); (F.J.G.)
| | - Jeffrey M. Peters
- Department of Veterinary and Biomedical Sciences, The Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802, USA; (B.Z.); (X.Z.); (M.G.B.); (D.H.R.); (C.R.C.); (A.B.G.); (A.D.P.); (G.H.P.)
- Department of Biochemistry, Microbiology and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Genetics, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
2
|
Farrell M, Fairfield H, Karam M, D'Amico A, Murphy CS, Falank C, Pistofidi RS, Cao A, Marinac CR, Dragon JA, McGuinness L, Gartner CG, Iorio RD, Jachimowicz E, DeMambro V, Vary C, Reagan MR. Targeting the fatty acid binding proteins disrupts multiple myeloma cell cycle progression and MYC signaling. eLife 2023; 12:e81184. [PMID: 36880649 PMCID: PMC9995119 DOI: 10.7554/elife.81184] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Abstract
Multiple myeloma is an incurable plasma cell malignancy with only a 53% 5-year survival rate. There is a critical need to find new multiple myeloma vulnerabilities and therapeutic avenues. Herein, we identified and explored a novel multiple myeloma target: the fatty acid binding protein (FABP) family. In our work, myeloma cells were treated with FABP inhibitors (BMS3094013 and SBFI-26) and examined in vivo and in vitro for cell cycle state, proliferation, apoptosis, mitochondrial membrane potential, cellular metabolism (oxygen consumption rates and fatty acid oxidation), and DNA methylation properties. Myeloma cell responses to BMS309403, SBFI-26, or both, were also assessed with RNA sequencing (RNA-Seq) and proteomic analysis, and confirmed with western blotting and qRT-PCR. Myeloma cell dependency on FABPs was assessed using the Cancer Dependency Map (DepMap). Finally, MM patient datasets (CoMMpass and GEO) were mined for FABP expression correlations with clinical outcomes. We found that myeloma cells treated with FABPi or with FABP5 knockout (generated via CRISPR/Cas9 editing) exhibited diminished proliferation, increased apoptosis, and metabolic changes in vitro. FABPi had mixed results in vivo, in two pre-clinical MM mouse models, suggesting optimization of in vivo delivery, dosing, or type of FABP inhibitors will be needed before clinical applicability. FABPi negatively impacted mitochondrial respiration and reduced expression of MYC and other key signaling pathways in MM cells in vitro. Clinical data demonstrated worse overall and progression-free survival in patients with high FABP5 expression in tumor cells. Overall, this study establishes the FABP family as a potentially new target in multiple myeloma. In MM cells, FABPs have a multitude of actions and cellular roles that result in the support of myeloma progression. Further research into the FABP family in MM is warrented, especially into the effective translation of targeting these in vivo.
Collapse
Affiliation(s)
- Mariah Farrell
- Center for Molecular Medicine, Maine Health Institute for ResearchScarboroughUnited States
- Graduate School of Biomedical Science and Engineering, University of MaineOronoUnited States
- Tufts University School of MedicineBostonUnited States
| | - Heather Fairfield
- Center for Molecular Medicine, Maine Health Institute for ResearchScarboroughUnited States
- Graduate School of Biomedical Science and Engineering, University of MaineOronoUnited States
- Tufts University School of MedicineBostonUnited States
| | - Michelle Karam
- Center for Molecular Medicine, Maine Health Institute for ResearchScarboroughUnited States
| | - Anastasia D'Amico
- Center for Molecular Medicine, Maine Health Institute for ResearchScarboroughUnited States
| | - Connor S Murphy
- Center for Molecular Medicine, Maine Health Institute for ResearchScarboroughUnited States
- Graduate School of Biomedical Science and Engineering, University of MaineOronoUnited States
| | - Carolyne Falank
- Center for Molecular Medicine, Maine Health Institute for ResearchScarboroughUnited States
| | | | - Amanda Cao
- Dana-Farber Cancer InstituteBostonUnited States
- Harvard Medical SchoolBostonUnited States
| | - Catherine R Marinac
- Dana-Farber Cancer InstituteBostonUnited States
- Harvard Medical SchoolBostonUnited States
| | | | - Lauren McGuinness
- Center for Molecular Medicine, Maine Health Institute for ResearchScarboroughUnited States
- University of New EnglandBiddefordUnited States
| | - Carlos G Gartner
- Center for Molecular Medicine, Maine Health Institute for ResearchScarboroughUnited States
- Graduate School of Biomedical Science and Engineering, University of MaineOronoUnited States
- Tufts University School of MedicineBostonUnited States
| | - Reagan Di Iorio
- Center for Molecular Medicine, Maine Health Institute for ResearchScarboroughUnited States
- University of New EnglandBiddefordUnited States
| | - Edward Jachimowicz
- Center for Molecular Medicine, Maine Health Institute for ResearchScarboroughUnited States
| | - Victoria DeMambro
- Center for Molecular Medicine, Maine Health Institute for ResearchScarboroughUnited States
- Graduate School of Biomedical Science and Engineering, University of MaineOronoUnited States
| | - Calvin Vary
- Center for Molecular Medicine, Maine Health Institute for ResearchScarboroughUnited States
- Graduate School of Biomedical Science and Engineering, University of MaineOronoUnited States
- Tufts University School of MedicineBostonUnited States
| | - Michaela R Reagan
- Center for Molecular Medicine, Maine Health Institute for ResearchScarboroughUnited States
- Graduate School of Biomedical Science and Engineering, University of MaineOronoUnited States
- Tufts University School of MedicineBostonUnited States
| |
Collapse
|
3
|
The Role of PPARs in Breast Cancer. Cells 2022; 12:cells12010130. [PMID: 36611922 PMCID: PMC9818187 DOI: 10.3390/cells12010130] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/07/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
Breast cancer is a malignant tumor with high morbidity and lethality. Its pathogenesis is related to the abnormal expression of many genes. The peroxisome proliferator-activated receptors (PPARs) are a class of ligand-dependent transcription factors in the nuclear receptor superfamily. They can regulate the transcription of a large number of target genes, which are involved in life activities such as cell proliferation, differentiation, metabolism, and apoptosis, and regulate physiological processes such as glucose metabolism, lipid metabolism, inflammation, and wound healing. Further, the changes in its expression are associated with various diseases, including breast cancer. The experimental reports related to "PPAR" and "breast cancer" were retrieved from PubMed since the discovery of PPARs and summarized in this paper. This review (1) analyzed the roles and potential molecular mechanisms of non-coordinated and ligand-activated subtypes of PPARs in breast cancer progression; (2) discussed the correlations between PPARs and estrogen receptors (ERs) as the nuclear receptor superfamily; and (3) investigated the interaction between PPARs and key regulators in several signaling pathways. As a result, this paper identifies PPARs as targets for breast cancer prevention and treatment in order to provide more evidence for the synthesis of new drugs targeting PPARs or the search for new drug combination treatments.
Collapse
|
4
|
Helder RWJ, Rousel J, Boiten WA, Gooris GS, Nadaban A, El Ghalbzouri A, Bouwstra JA. The effect of PPAR isoform (de)activation on the lipid composition in full-thickness skin models. Exp Dermatol 2022; 32:469-478. [PMID: 36541108 DOI: 10.1111/exd.14733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 10/28/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
Human skin equivalents (HSEs) are 3D-cultured human skin models that mimic many aspects of native human skin (NHS). Although HSEs resemble NHS very closely, the barrier located in the stratum corneum (SC) is impaired. This is caused by an altered lipid composition in the SC of HSEs compared with NHS. One of the most pronounced changes in this lipid composition is a high level of monounsaturation. One key enzyme in this change is stearoyl-CoA desaturase-1 (SCD1), which catalyses the monounsaturation of lipids. In order to normalize the lipid composition, we aimed to target a group of nuclear receptors that are important regulators in the lipid synthesis. This group of receptors are known as the peroxisome proliferating activating receptors (PPARs). By (de)activating each isoform (PPAR-α, PPAR-δ and PPAR-γ), the PPAR isoforms may have normalizing effects on the lipid composition. In addition, another PPAR-α agonist Wy14643 was included as this supplement demonstrated normalizing effects in the lipid composition in a more recent study. After PPAR (ant)agonists supplementation, the mRNA of downstream targets, lipid synthesis genes and lipid composition were investigated. The PPAR downstream targets were activated, indicating that the supplements reached the keratinocytes to trigger their effect. However, minimal impact was observed on the lipid composition after PPAR isoform (de) activation. Only the highest concentration Wy14643 resulted in strong, but negative effects on CER composition. Although the novel tested modifications did not result in an improvement, more insight is gained on the nuclear receptors PPARs and their effects on the lipid barrier in full-thickness skin models.
Collapse
Affiliation(s)
- Richard W J Helder
- Division of Biotherapeutics, LACDR, Leiden University, Leiden, The Netherlands
| | - Jannik Rousel
- Division of Biotherapeutics, LACDR, Leiden University, Leiden, The Netherlands
| | - Walter A Boiten
- Division of Biotherapeutics, LACDR, Leiden University, Leiden, The Netherlands
| | - Gerrit S Gooris
- Division of Biotherapeutics, LACDR, Leiden University, Leiden, The Netherlands
| | - Andreea Nadaban
- Division of Biotherapeutics, LACDR, Leiden University, Leiden, The Netherlands
| | | | - Joke A Bouwstra
- Division of Biotherapeutics, LACDR, Leiden University, Leiden, The Netherlands
| |
Collapse
|
5
|
Srimadh Bhagavatham SK, Pulukool SK, Pradhan SS, R S, Ashok Naik A, V M DD, Sivaramakrishnan V. Systems biology approach delineates critical pathways associated with disease progression in rheumatoid arthritis. J Biomol Struct Dyn 2022:1-22. [PMID: 36047508 DOI: 10.1080/07391102.2022.2115555] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Rheumatoid Arthritis (RA) is a chronic systemic autoimmune disease leading to inflammation, cartilage cell death, synoviocyte proliferation, and increased and impaired differentiation of osteoclasts and osteoblasts leading to joint erosions and deformities. Transcriptomics, proteomics, and metabolomics datasets were analyzed to identify the critical pathways that drive the RA pathophysiology. Single nucleotide polymorphisms (SNPs) associated with RA were analyzed for the functional implications, clinical outcomes, and blood parameters later validated by literature. SNPs associated with RA were grouped into pathways that drive the immune response and cytokine production. Further gene set enrichment analysis (GSEA) was performed on gene expression omnibus (GEO) data sets of peripheral blood mononuclear cells (PBMCs), synovial macrophages, and synovial biopsies from RA patients showed enrichment of Th1, Th2, Th17 differentiation, viral and bacterial infections, metabolic signalling and immunological pathways with potential implications for RA. The proteomics data analysis presented pathways with genes involved in immunological signaling and metabolic pathways, including vitamin B12 and folate metabolism. Metabolomics datasets analysis showed significant pathways like amino-acyl tRNA biosynthesis, metabolism of amino acids (arginine, alanine aspartate, glutamate, glutamine, phenylalanine, and tryptophan), and nucleotide metabolism. Furthermore, our commonality analysis of multi-omics datasets identified common pathways with potential implications for joint remodeling in RA. Disease-modifying anti-rheumatic drugs (DMARDs) and biologics treatments were found to modulate many of the pathways that were deregulated in RA. Overall, our analysis identified molecular signatures associated with the observed symptoms, joint erosions, potential biomarkers, and therapeutic targets in RA. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Sujith Kumar Pulukool
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Anantapur, A.P., India
| | - Sai Sanwid Pradhan
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Anantapur, A.P., India
| | - Saiswaroop R
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Anantapur, A.P., India
| | - Ashwin Ashok Naik
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Anantapur, A.P., India
| | - Datta Darshan V M
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Anantapur, A.P., India
| | - Venketesh Sivaramakrishnan
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Anantapur, A.P., India
| |
Collapse
|
6
|
Wagner N, Wagner KD. Peroxisome Proliferator-Activated Receptors and the Hallmarks of Cancer. Cells 2022; 11:cells11152432. [PMID: 35954274 PMCID: PMC9368267 DOI: 10.3390/cells11152432] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 12/11/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) function as nuclear transcription factors upon the binding of physiological or pharmacological ligands and heterodimerization with retinoic X receptors. Physiological ligands include fatty acids and fatty-acid-derived compounds with low specificity for the different PPAR subtypes (alpha, beta/delta, and gamma). For each of the PPAR subtypes, specific pharmacological agonists and antagonists, as well as pan-agonists, are available. In agreement with their natural ligands, PPARs are mainly focused on as targets for the treatment of metabolic syndrome and its associated complications. Nevertheless, many publications are available that implicate PPARs in malignancies. In several instances, they are controversial for very similar models. Thus, to better predict the potential use of PPAR modulators for personalized medicine in therapies against malignancies, it seems necessary and timely to review the three PPARs in relation to the didactic concept of cancer hallmark capabilities. We previously described the functions of PPAR beta/delta with respect to the cancer hallmarks and reviewed the implications of all PPARs in angiogenesis. Thus, the current review updates our knowledge on PPAR beta and the hallmarks of cancer and extends the concept to PPAR alpha and PPAR gamma.
Collapse
Affiliation(s)
- Nicole Wagner
- Correspondence: (N.W.); (K.-D.W.); Tel.: +33-489-153-713 (K.-D.W.)
| | | |
Collapse
|
7
|
Dixit G, Prabhu A. The pleiotropic peroxisome proliferator activated receptors: Regulation and therapeutics. Exp Mol Pathol 2021; 124:104723. [PMID: 34822814 DOI: 10.1016/j.yexmp.2021.104723] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/02/2021] [Accepted: 11/15/2021] [Indexed: 02/07/2023]
Abstract
The Peroxisome proliferator-activated receptors (PPARs) are key regulators of metabolic events in our body. Owing to their implication in maintenance of homeostasis, both PPAR agonists and antagonists assume therapeutic significance. Understanding the molecular mechanisms of each of the PPAR isotypes in the healthy body and during disease is crucial to exploiting their full therapeutic potential. This article is an attempt to present a rational analysis of the multifaceted therapeutic effects and underlying mechanisms of isotype-specific PPAR agonists, dual PPAR agonists, pan PPAR agonists as well as PPAR antagonists. A holistic understanding of the mechanistic dimensions of these key metabolic regulators will guide future efforts to identify novel molecules in the realm of metabolic, inflammatory and immunotherapeutic diseases.
Collapse
Affiliation(s)
- Gargi Dixit
- Department of Pharmaceutical Chemistry & Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Arati Prabhu
- Department of Pharmaceutical Chemistry & Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India.
| |
Collapse
|
8
|
Morin S, Simard M, Flamand N, Pouliot R. Biological action of docosahexaenoic acid in a 3D tissue-engineered psoriatic skin model: Focus on the PPAR signaling pathway. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:159032. [PMID: 34428549 DOI: 10.1016/j.bbalip.2021.159032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/02/2021] [Accepted: 08/16/2021] [Indexed: 12/15/2022]
Abstract
N-3 polyunsaturated fatty acids (n-3 PUFAs), and in particular docosahexaenoic acid (DHA), have many beneficial metabolic effects, including reducing epidermal thickness in patients with psoriasis. The positive impacts of DHA in psoriasis could be mediated by its interactions with the PPAR signaling pathway, as well as by its secretion of anti-inflammatory bioactive metabolites, but the detailed metabolism is still not understood. In the present study, we evaluated the influence of DHA on the main features of psoriasis and its effects on the PPAR signaling pathway, in a psoriatic in vitro skin model. Healthy and psoriatic skin substitutes were produced according to the tissue-engineered self-assembly method, using culture media supplemented with 10 μM of DHA. The presence of DHA led to a reduction in the abnormal cell differentiation of psoriatic keratinocytes, seen in the increased expression of filaggrin and keratin 10. DHA was incorporated into the membrane phospholipids of the epidermis and transformed principally into eicosapentaenoic acid (EPA). Furthermore, the addition of DHA into the culture medium led to a decrease in the levels of lipid mediators derived from n-6 PUFAs, mainly prostaglandin E2 (PGE2) and 12-hydroxyeicosatetraenoic acid (12-HETE). Finally, DHA supplementation rebalanced the expression of PPAR receptors and caused a decrease in the secretion of TNF-α. Altogether, our results show that DHA possesses the ability to attenuate the psoriatic characteristics of psoriatic skin substitutes, mostly by restoring epidermal cell differentiation and proliferation, as well as by reducing inflammation.
Collapse
Affiliation(s)
- Sophie Morin
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Axe médecine régénératrice, Centre de recherche du CHU de Québec-Université Laval, Québec, QC G1J 1Z4, Canada; Faculté de pharmacie de l'Université Laval, Québec, QC G1J 1A4, Canada.
| | - Mélissa Simard
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Axe médecine régénératrice, Centre de recherche du CHU de Québec-Université Laval, Québec, QC G1J 1Z4, Canada; Faculté de pharmacie de l'Université Laval, Québec, QC G1J 1A4, Canada.
| | - Nicolas Flamand
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, QC G1V 4G5, Canada; Département de médecine, Faculté de médecine de l'Université Laval, Québec, QC G1V 0A6, Canada.
| | - Roxane Pouliot
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Axe médecine régénératrice, Centre de recherche du CHU de Québec-Université Laval, Québec, QC G1J 1Z4, Canada; Faculté de pharmacie de l'Université Laval, Québec, QC G1J 1A4, Canada.
| |
Collapse
|
9
|
Hur J, Kang ES, Hwang JS, Lee WJ, Won JP, Lee HG, Kim E, Seo HG. Peroxisome proliferator-activated receptor-δ-mediated upregulation of catalase helps to reduce ultraviolet B-induced cellular injury in dermal fibroblasts. J Dermatol Sci 2021; 103:167-175. [PMID: 34420848 DOI: 10.1016/j.jdermsci.2021.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/20/2021] [Accepted: 08/10/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND Previous studies suggested that the nuclear receptor peroxisome proliferator-activated receptor (PPAR)-δ plays an essential role in cellular responses against oxidative stress. OBJECTIVE To investigate how PPAR-δ elicits cellular responses against oxidative stress in primary human dermal fibroblasts (HDFs) exposed to ultraviolet B (UVB). METHODS The present study was undertaken in HDFs by performing real-time polymerase chain reaction, gene silencing, cytotoxicity and reporter gene assay, analyses for catalase and reactive oxygen species, and immunoblot analyses. RESULTS The PPAR-δ activator GW501516 upregulated expression of catalase and this upregulation was attenuated by PPAR-δ-targeting siRNA. GW501516-activated PPAR-δ induced catalase promoter activity through a direct repeat 1 response element. Mutation of this response element completely abrogated transcriptional activation, indicating that this site is a novel type of PPAR-δ response element. In addition, GW501516-activated PPAR-δ counteracted the reductions in activity and expression of catalase induced by UVB irradiation. These recovery effects were significantly attenuated in the presence of PPAR-δ-targeting siRNA or the specific PPAR-δ antagonist GSK0660. GW501516-activated PPAR-δ also protected HDFs from cellular damage triggered by UVB irradiation, and this PPAR-δ-mediated reduction of cellular damage was reversed by the catalase inhibitor or catalase-targeting siRNA. These effects of catalase blockade were positively correlated with accumulation of reactive oxygen species in HDFs exposed to UVB. Furthermore, GW501516-activated PPAR-δ targeted peroxisomal hydrogen peroxide through catalase in UVB-irradiated HDFs. CONCLUSION The gene encoding catalase is a target of PPAR-δ, and this novel catalase-mediated pathway plays a critical role in the cellular response elicited by PPAR-δ against oxidative stress.
Collapse
Affiliation(s)
- Jinwoo Hur
- College of Sang-Huh Life Science, Konkuk University, Seoul, Republic of Korea
| | - Eun Sil Kang
- College of Sang-Huh Life Science, Konkuk University, Seoul, Republic of Korea
| | - Jung Seok Hwang
- College of Sang-Huh Life Science, Konkuk University, Seoul, Republic of Korea
| | - Won Jin Lee
- College of Sang-Huh Life Science, Konkuk University, Seoul, Republic of Korea
| | - Jun Pil Won
- College of Sang-Huh Life Science, Konkuk University, Seoul, Republic of Korea
| | - Hyuk Gyoon Lee
- College of Sang-Huh Life Science, Konkuk University, Seoul, Republic of Korea
| | - Eunsu Kim
- College of Sang-Huh Life Science, Konkuk University, Seoul, Republic of Korea
| | - Han Geuk Seo
- College of Sang-Huh Life Science, Konkuk University, Seoul, Republic of Korea.
| |
Collapse
|
10
|
Adhikari UK, Sakiz E, Zhou X, Habiba U, Kumar S, Mikhael M, Senesi M, Guang Li C, Guillemin GJ, Ooi L, David MA, Collins S, Karl T, Tayebi M. Cross-Linking Cellular Prion Protein Induces Neuronal Type 2-Like Hypersensitivity. Front Immunol 2021; 12:639008. [PMID: 34394070 PMCID: PMC8361482 DOI: 10.3389/fimmu.2021.639008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 07/13/2021] [Indexed: 01/13/2023] Open
Abstract
Background Previous reports identified proteins associated with ‘apoptosis’ following cross-linking PrPC with motif-specific anti-PrP antibodies in vivo and in vitro. The molecular mechanisms underlying this IgG-mediated neurotoxicity and the role of the activated proteins in the apoptotic pathways leading to neuronal death has not been properly defined. Previous reports implicated a number of proteins, including apolipoprotein E, cytoplasmic phospholipase A2, prostaglandin and calpain with anti-PrP antibody-mediated ‘apoptosis’, however, these proteins are also known to play an important role in allergy. In this study, we investigated whether cross-linking PrPC with anti-PrP antibodies stimulates a neuronal allergenic response. Methods Initially, we predicted the allergenicity of the epitope sequences associated with ‘neurotoxic’ anti-PrP antibodies using allergenicity prediction servers. We then investigated whether anti-PrP antibody treatment of mouse primary neurons (MPN), neuroblastoma cells (N2a) and microglia (N11) cell lines lead to a neuronal allergenic response. Results In-Silico studies showed that both tail- and globular-epitopes were allergenic. Specifically, binding regions that contain epitopes for previously reported ‘neurotoxic’ antibodies such as ICSM18 (146-159), ICSM35 (91-110), POM 1 (138-147) and POM 3 (95-100) lead to activation of allergenic related proteins. Following direct application of anti-PrPC antibodies on N2a cells, we identified 4 neuronal allergenic-related proteins when compared with untreated cells. Furthermore, we identified 8 neuronal allergenic-related proteins following treatment of N11 cells with anti-PrPC antibodies prior to co-culture with N2a cells when compared with untreated cells. Antibody treatment of MPN or MPN co-cultured with antibody-treated N11 led to identifying 10 and 7 allergenic-related proteins when compared with untreated cells. However, comparison with 3F4 antibody treatment revealed 5 and 4 allergenic-related proteins respectively. Of importance, we showed that the allergenic effects triggered by the anti-PrP antibodies were more potent when antibody-treated microglia were co-cultured with the neuroblastoma cell line. Finally, co-culture of N2a or MPN with N11-treated with anti-PrP antibodies resulted in significant accumulation of NO and IL6 but not TNF-α in the cell culture media supernatant. Conclusions This study showed for the first time that anti-PrP antibody binding to PrPC triggers a neuronal hypersensitivity response and highlights the important role of microglia in triggering an IgG-mediated neuronal hypersensitivity response. Moreover, this study provides an important impetus for including allergenic assessment of therapeutic antibodies for neurodegenerative disorders to derive safe and targeted biotherapeutics.
Collapse
Affiliation(s)
| | - Elif Sakiz
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Xian Zhou
- National Institute of Complementary Medicine (NICM) Health Research Institute, Western Sydney University, Campbelltown, NSW, Australia
| | - Umma Habiba
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Sachin Kumar
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Meena Mikhael
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Matteo Senesi
- Australian National Creutzfeldt-Jakob Disease Registry, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia.,Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Chun Guang Li
- National Institute of Complementary Medicine (NICM) Health Research Institute, Western Sydney University, Campbelltown, NSW, Australia
| | - Gilles J Guillemin
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Wollongong, NSW, Australia
| | - Lezanne Ooi
- School of Chemistry and Molecular Bioscience, Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.,School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | | | - Steven Collins
- Australian National Creutzfeldt-Jakob Disease Registry, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia.,Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Tim Karl
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia.,Neuroscience Research Australia (NeuRA), Sydney, NSW, Australia.,School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Mourad Tayebi
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| |
Collapse
|
11
|
Kim BK, Shon JC, Seo HS, Liu KH, Lee JW, Ahn SK, Hong SP. Decrease of ceramides with long-chain fatty acids in psoriasis: Possible inhibitory effect of interferon gamma on chain elongation. Exp Dermatol 2021; 31:122-132. [PMID: 34270128 DOI: 10.1111/exd.14431] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 01/24/2023]
Abstract
Reportedly, decreases in fatty acid (FA) chain length of ceramide (CER) are associated with interferon-γ (IFN-γ), which shows increased expression in psoriasis. However, the underlying mechanism of this association remains unclear. Therefore, in this study, we aimed to clarify this association between FA chain length of CER, IFN-γ, and the major transcriptional factors involving psoriasis. CER profiling according to FA chain length and class was performed in murine epidermis (n = 10 BALB/c mice topically treated with imiquimod, n = 10 controls) and human stratum corneum (SC) (n = 12 psoriasis, n = 11 controls). The expression of lipid synthetic enzymes, including elongases (ELOVLs), in murine epidermis was also measured using RT-PCR. Furthermore, the association of IFN-γ with various enzymes and transcription factors involved in the generation of long-chain CERs was also investigated using in vitro keratinocyte. A significant decrease in the percentage of long-chain CERs was observed in psoriasis-like murine epidermis and human psoriatic SC. Additionally, the expression levels of ELOVL1, ELOVL4, and ceramide synthase3 (CerS3) were significantly decreased in psoriasis-like murine epidermis and IFN-γ-treated keratinocyte. There was also a significant decrease in the expression of transcriptional factors, including peroxisome proliferator-activated receptor (PPAR), in IFN-γ treated keratinocyte. Thus, it could be suggested that IFN-γ may regulate ELOVL and CerS levels by down-regulating the transcriptional factors. Additionally, given the possible involvement of PPARs or liver X receptor agonist in the CER elongation process, they may serve as potential therapeutic agents for lengthening the CER FAs in psoriasis.
Collapse
Affiliation(s)
- Bo-Kyung Kim
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Jong Cheol Shon
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Hee Seok Seo
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Kwang-Hyeon Liu
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Jong Won Lee
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Sung Ku Ahn
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Seung Phil Hong
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| |
Collapse
|
12
|
Blunder S, Pavel P, Minzaghi D, Dubrac S. PPARdelta in Affected Atopic Dermatitis and Psoriasis: A Possible Role in Metabolic Reprograming. Int J Mol Sci 2021; 22:7354. [PMID: 34298981 PMCID: PMC8303290 DOI: 10.3390/ijms22147354] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 12/16/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors expressed in the skin. Three PPAR isotypes, α (NRC1C1), β or δ (NRC1C2) and γ (NRC1C3), have been identified. After activation through ligand binding, PPARs heterodimerize with the 9-cis-retinoic acid receptor (RXR), another nuclear hormone receptor, to bind to specific PPAR-responsive elements in regulatory regions of target genes mainly involved in organogenesis, cell proliferation, cell differentiation, inflammation and metabolism of lipids or carbohydrates. Endogenous PPAR ligands are fatty acids and fatty acid metabolites. In past years, much emphasis has been given to PPARα and γ in skin diseases. PPARβ/δ is the least studied PPAR family member in the skin despite its key role in several important pathways regulating inflammation, keratinocyte proliferation and differentiation, metabolism and the oxidative stress response. This review focuses on the role of PPARβ/δ in keratinocytes and its involvement in psoriasis and atopic dermatitis. Moreover, the relevance of targeting PPARβ/δ to alleviate skin inflammation is discussed.
Collapse
Affiliation(s)
| | | | | | - Sandrine Dubrac
- Epidermal Biology Laboratory, Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria; (S.B.); (P.P.); (D.M.)
| |
Collapse
|
13
|
Escandon P, Vasini B, Whelchel AE, Nicholas SE, Matlock HG, Ma JX, Karamichos D. The role of peroxisome proliferator-activated receptors in healthy and diseased eyes. Exp Eye Res 2021; 208:108617. [PMID: 34010603 PMCID: PMC8594540 DOI: 10.1016/j.exer.2021.108617] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 12/23/2022]
Abstract
Peroxisome Proliferator-Activated Receptors (PPARs) are a family of nuclear receptors that play essential roles in modulating cell differentiation, inflammation, and metabolism. Three subtypes of PPARs are known: PPAR-alpha (PPARα), PPAR-gamma (PPARγ), and PPAR-beta/delta (PPARβ/δ). PPARα activation reduces lipid levels and regulates energy homeostasis, activation of PPARγ results in regulation of adipogenesis, and PPARβ/δ activation increases fatty acid metabolism and lipolysis. PPARs are linked to various diseases, including but not limited to diabetes, non-alcoholic fatty liver disease, glaucoma and atherosclerosis. In the past decade, numerous studies have assessed the functional properties of PPARs in the eye and key PPAR mechanisms have been discovered, particularly regarding the retina and cornea. PPARγ and PPARα are well established in their functions in ocular homeostasis regarding neuroprotection, neovascularization, and inflammation, whereas PPARβ/δ isoform function remains understudied. Naturally, studies on PPAR agonists and antagonists, associated with ocular pathology, have also gained traction with the development of PPAR synthetic ligands. Studies on PPARs has significantly influenced novel therapeutics for diabetic eye disease, ocular neuropathy, dry eye, and age-related macular degeneration (AMD). In this review, therapeutic potentials and implications will be highlighted, as well as reported adverse effects. Further investigations are necessary before any of the PPARs ligands can be utilized, in the clinics, to treat eye diseases. Future research on the prominent role of PPARs will help unravel the complex mechanisms involved in order to prevent and treat ocular diseases.
Collapse
Affiliation(s)
- Paulina Escandon
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA; Department of Pharmaceutical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| | - Brenda Vasini
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA; Department of Pharmaceutical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| | - Amy E Whelchel
- Department of Physiology, University of Oklahoma Health Sciences Center, 940 Stanton L Young, Oklahoma City, OK, USA
| | - Sarah E Nicholas
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA; Department of Pharmaceutical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| | - H Greg Matlock
- Department of Physiology, University of Oklahoma Health Sciences Center, 940 Stanton L Young, Oklahoma City, OK, USA
| | - Jian-Xing Ma
- Department of Physiology, University of Oklahoma Health Sciences Center, 940 Stanton L Young, Oklahoma City, OK, USA; Harold Hamm Oklahoma Diabetes Center, 1000 N Lincoln Blvd, Oklahoma City, OK, USA
| | - Dimitrios Karamichos
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA; Department of Pharmaceutical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA; Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA.
| |
Collapse
|
14
|
Zolini AM, Block J, Rabaglino MB, Tríbulo P, Hoelker M, Rincon G, Bromfield JJ, Hansen PJ. Molecular fingerprint of female bovine embryos produced in vitro with high competence to establish and maintain pregnancy†. Biol Reprod 2021; 102:292-305. [PMID: 31616926 DOI: 10.1093/biolre/ioz190] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/06/2019] [Accepted: 10/01/2019] [Indexed: 12/11/2022] Open
Abstract
The objective was to identify the transcriptomic profile of in vitro-derived embryos with high competence to establish and maintain gestation. Embryos produced with X-sorted sperm were cultured from day 5 to day 7 in serum-free medium containing 10 ng/ml recombinant bovine colony-stimulating factor 2 (CSF2) or vehicle. The CSF2 was administered because this molecule can increase blastocyst competence for survival after embryo transfer. Blastocysts were harvested on day 7 of culture and manually bisected. One demi-embryo from a single blastocyst was transferred into a synchronized recipient and the other half was used for RNA-seq analysis. Using P < 0.01 and a fold change >2-fold or <0.5 fold as cutoffs, there were 617 differentially expressed genes (DEG) between embryos that survived to day 30 of gestation vs those that did not, 470 DEG between embryos that survived to day 60 and those that did not, 432 DEG between embryos that maintained pregnancy from day 30 to day 60 vs those where pregnancy failed after day 30, and 635 DEG regulated by CSF2. Pathways and ontologies in which DEG were overrepresented included many related to cellular responses to stress and cell survival. It was concluded that gene expression in the blastocyst is different between embryos that are competent to establish and maintain pregnancy vs those that are not. The relationship between expression of genes related to cell stress and subsequent embryonic survival probably reflects cellular perturbations caused by embryonic development taking place in the artificial environment associated with cell culture.
Collapse
Affiliation(s)
- A M Zolini
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, Florida, USA
| | - J Block
- Zoetis Inc., Kalamazoo, Michigan, USA
| | - M B Rabaglino
- Department of Applied Mathematics and Computer Science, Instituto de Investigación en Ciencias de la Salud, CONICET, Córdoba, Argentina.,Quantitative Genetics, Bioinformatics and Computational Biology Group, Technical University of Denmark, Kongens Lyngby, Denmark
| | - P Tríbulo
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, Florida, USA
| | - M Hoelker
- Department of Animal Breeding and Husbandry, Institute of Animal Science, University of Bonn, Bonn, Germany.,Teaching and Research Station Frankenforst, Faculty of Agriculture, University of Bonn, Königswinter, Germany.,Center of Integrated Dairy Research, University of Bonn, Bonn, Germany
| | - G Rincon
- Zoetis Inc., Kalamazoo, Michigan, USA
| | - J J Bromfield
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, Florida, USA
| | - P J Hansen
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
15
|
Yang J, Deng P, Qi Y, Feng X, Wen H, Chen F. MicroRNA-185 inhibits the proliferation and migration of HaCaT keratinocytes by targeting peroxisome proliferator-activated receptor β. Exp Ther Med 2021; 21:366. [PMID: 33732339 PMCID: PMC7903386 DOI: 10.3892/etm.2021.9797] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 12/12/2020] [Indexed: 11/06/2022] Open
Abstract
Proliferation and migration of keratinocytes are major processes of skin wound repair after injury. It has been indicated that microRNAs (miRNAs/miRs) are associated with the proliferation and migration of keratinocytes. However, the mechanism by which miR-185 affects these processes in keratinocytes remains unclear. In the present study, the expression level of miR-185 and peroxisome proliferator-activated receptor β (PPARβ) was examined by reverse transcription-quantitative PCR in HaCaT keratinocytes. Cell proliferation was evaluated using Cell Counting Kit-8 and colony formation assays. Western blot analysis was used to detect the levels of cell proliferation, migration and PI3K/AKT signaling pathway-associated proteins. In addition, the migratory capacity of the cells was determined using Transwell assay. The target gene of miR-185 was verified using dual-luciferase reporter assay. The results indicated that overexpression of miR-185 inhibited proliferation, migration and activation of the PI3K/AKT signaling pathway in HaCaT keratinocytes. PPARβ was indicated to be a target of miR-185 and its overexpression promoted the proliferation and migration of HaCaT keratinocytes, while its knockdown exhibited the adverse effects. Furthermore, PI3K inhibitor LY294002 inhibited activation of the PI3K/AKT signaling pathway and decreased the proliferation and migration of HaCaT keratinocytes. In addition, overexpressed PPARβ reversed the suppressive effects of miR-185 overexpression on proliferation, migration and activation of the PI3K/AKT signaling pathway. In conclusion, the results of the present study demonstrated that miR-185 suppressed activation of the PI3K/AKT signaling pathway via targeting PPARβ, thereby regulating proliferation and migration in HaCaT keratinocytes. The present study provided a novel theoretical basis for the use of miR-185 as a target in wound repair.
Collapse
Affiliation(s)
- Jingzhe Yang
- Department of Burn and Plastic Surgery, Affiliated Hospital of Chengde Medical University, South Wing Hospital of Chengde Medical College, Chengde, Hebei 067000, P.R. China
| | - Pingyang Deng
- Department of Burn and Plastic Surgery, Bayingol Mongolia Autonomous Prefecture People's Hospital, Urumqi, Xinjiang Uyghur Autonomous Region 841000, P.R. China
| | - Yonggang Qi
- Department of General Surgery, Bayingol Mongolia Autonomous Prefecture People's Hospital, Urumqi, Xinjiang Uyghur Autonomous Region 841000, P.R. China
| | - Xinshu Feng
- Department of Burn and Plastic Surgery, Affiliated Hospital of Chengde Medical University, South Wing Hospital of Chengde Medical College, Chengde, Hebei 067000, P.R. China
| | - Hailing Wen
- Department of Burn and Plastic Surgery, Affiliated Hospital of Chengde Medical University, South Wing Hospital of Chengde Medical College, Chengde, Hebei 067000, P.R. China
| | - Fengping Chen
- Department of Burn and Plastic Surgery, Affiliated Hospital of Chengde Medical University, South Wing Hospital of Chengde Medical College, Chengde, Hebei 067000, P.R. China
| |
Collapse
|
16
|
Caioni G, Viscido A, d’Angelo M, Panella G, Castelli V, Merola C, Frieri G, Latella G, Cimini A, Benedetti E. Inflammatory Bowel Disease: New Insights into the Interplay between Environmental Factors and PPARγ. Int J Mol Sci 2021; 22:985. [PMID: 33498177 PMCID: PMC7863964 DOI: 10.3390/ijms22030985] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/14/2021] [Accepted: 01/18/2021] [Indexed: 12/19/2022] Open
Abstract
The pathophysiological processes of inflammatory bowel diseases (IBDs), i.e., Crohn's disease (CD) and ulcerative colitis (UC), are still not completely understood. The exact etiology remains unknown, but it is well established that the pathogenesis of the inflammatory lesions is due to a dysregulation of the gut immune system resulting in over-production of pro-inflammatory cytokines. Increasing evidence underlines the involvement of both environmental and genetic factors. Regarding the environment, the microbiota seems to play a crucial role. Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors that exert pleiotropic effects on glucose homeostasis, lipid metabolism, inflammatory/immune processes, cell proliferation, and fibrosis. Furthermore, PPARs modulate interactions with several environmental factors, including microbiota. A significantly impaired PPARγ expression was observed in UC patients' colonic epithelial cells, suggesting that the disruption of PPARγ signaling may represent a critical step of the IBD pathogenesis. This paper will focus on the role of PPARγ in the interaction between environmental factors and IBD, and it will analyze the most suitable in vitro and in vivo models available to better study these relationships.
Collapse
Affiliation(s)
- Giulia Caioni
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (G.C.); (A.V.); (M.d.); (G.P.); (V.C.); (G.F.); (G.L.); (A.C.)
| | - Angelo Viscido
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (G.C.); (A.V.); (M.d.); (G.P.); (V.C.); (G.F.); (G.L.); (A.C.)
| | - Michele d’Angelo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (G.C.); (A.V.); (M.d.); (G.P.); (V.C.); (G.F.); (G.L.); (A.C.)
| | - Gloria Panella
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (G.C.); (A.V.); (M.d.); (G.P.); (V.C.); (G.F.); (G.L.); (A.C.)
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100 Teramo, Italy;
| | - Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (G.C.); (A.V.); (M.d.); (G.P.); (V.C.); (G.F.); (G.L.); (A.C.)
| | - Carmine Merola
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100 Teramo, Italy;
| | - Giuseppe Frieri
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (G.C.); (A.V.); (M.d.); (G.P.); (V.C.); (G.F.); (G.L.); (A.C.)
| | - Giovanni Latella
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (G.C.); (A.V.); (M.d.); (G.P.); (V.C.); (G.F.); (G.L.); (A.C.)
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (G.C.); (A.V.); (M.d.); (G.P.); (V.C.); (G.F.); (G.L.); (A.C.)
- Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, Temple University, Philadelphia, PA 19122, USA
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (G.C.); (A.V.); (M.d.); (G.P.); (V.C.); (G.F.); (G.L.); (A.C.)
| |
Collapse
|
17
|
Pardeshi SS, Khemani UN, Kamath RR, Kura MM, Jafferany M. Therapeutic implications of dermoscopic findings in acanthosis nigricans: A clinical and histopathological study. Dermatol Ther 2020; 33:e14521. [PMID: 33176058 DOI: 10.1111/dth.14521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 11/29/2022]
Abstract
Acanthosis nigricans is associated with numerous systemic disorders. These include endocrinological conditions such as, diabetes, acromegaly, Cushing's syndrome, thyroid dysfunction, as well as metabolic abnormalities like obesity and polycystic ovarian disease. Its association with visceral malignancy is known. Moreover, Acanthosis nigricans is known to be a cutaneous marker of insulin resistance (IR) and hyperinsulinemia. The primary aim of this study was to study clinical and histopathological patterns of acanthosis nigricans and its correlation with dermoscopic patterns and treatment implications. 103 patients clinically diagnosed as acanthosis nigricans were enrolled in the study. Clinical evaluation, dermoscopy, and skin biopsy was done for histopathological evaluation. Consistency was observed in the changes seen on dermoscopy with clinical and histopathological findings. Common dermoscopy findings were Crista Cutis, Sulcus Cutis, Papillary projections, hyperpigmented dots, crypts, and blotching Dermoscopic findings can be correlated with histopathological features. Dermoscopy allows visualization on higher magnification which helps to pick up subtle changes which are not visible to naked eye. Dermoscopy can be a useful tool to distinguish acanthosis nigricans from other pigmentary disorders in patients who are not willing for histopathological examination and helps in treatment making decisions.
Collapse
Affiliation(s)
| | - Usha N Khemani
- Grant Medical College and Sir JJ Group of Hospitals, Mumbai, India
| | | | - Mahendra M Kura
- Grant Medical College and Sir JJ Group of Hospitals, Mumbai, India
| | - Mohammad Jafferany
- Central Michigan University/CMU Medical Education Partners Saginaw, Michigan, USA
| |
Collapse
|
18
|
Kadayat TM, Shrestha A, Jeon YH, An H, Kim J, Cho SJ, Chin J. Targeting Peroxisome Proliferator-Activated Receptor Delta (PPARδ): A Medicinal Chemistry Perspective. J Med Chem 2020; 63:10109-10134. [DOI: 10.1021/acs.jmedchem.9b01882] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Tara Man Kadayat
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Aarajana Shrestha
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Yong Hyun Jeon
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu 41404, Republic of Korea
| | - Hongchan An
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Jina Kim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Sung Jin Cho
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu 41404, Republic of Korea
| | - Jungwook Chin
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| |
Collapse
|
19
|
da Cruz BO, Cardozo LFMDF, Magliano DC, Stockler-Pinto MB. Nutritional strategies to modulate inflammation pathways via regulation of peroxisome proliferator-activated receptor β/δ. Nutr Rev 2020; 78:207-214. [PMID: 31584650 DOI: 10.1093/nutrit/nuz058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The peroxisome proliferator-activated receptor (PPAR) β/δ has an important role in multiple inflammatory conditions, including obesity, hypertension, cancer, cardiovascular disease, diabetes mellitus, and autoimmune diseases. PPARβ/δ forms a heterodimer with the retinoic acid receptor and binds to peroxisome proliferator response elements to initiate transcription of its target genes. PPARβ/δ is also able to suppress the activities of several transcription factors, including nuclear factor κB, and activator protein 1, thus regulating anti-inflammatory cellular responses and playing a protective role in several diseases. Recent studies have shown that nutritional compounds, including nutrients and bioactive compounds, can regulate PPARβ/δ expression. This review discusses key nutritional compounds that are known to modulate PPARβ/δ and are likely to affect human health.
Collapse
Affiliation(s)
- Beatriz O da Cruz
- B.O. da Cruz, L.F.M. de F. Cardozo, D.C. Magliano, and M.B. Stockler-Pinto are with the Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói-RJ, Brazil
| | - Ludmila F M de França Cardozo
- B.O. da Cruz, L.F.M. de F. Cardozo, D.C. Magliano, and M.B. Stockler-Pinto are with the Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói-RJ, Brazil
| | - D'Angelo C Magliano
- B.O. da Cruz, L.F.M. de F. Cardozo, D.C. Magliano, and M.B. Stockler-Pinto are with the Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói-RJ, Brazil.,D.C. Magliano is with Laboratory of Morphological and Metabolic Analyses, Fluminense Federal University (UFF), Niterói-RJ, Brazil
| | - Milena B Stockler-Pinto
- B.O. da Cruz, L.F.M. de F. Cardozo, D.C. Magliano, and M.B. Stockler-Pinto are with the Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói-RJ, Brazil.,M.B. Stockler-Pinto is with the Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói-RJ, Brazil
| |
Collapse
|
20
|
Cam ME, Yildiz S, Alenezi H, Cesur S, Ozcan GS, Erdemir G, Edirisinghe U, Akakin D, Kuruca DS, Kabasakal L, Gunduz O, Edirisinghe M. Evaluation of burst release and sustained release of pioglitazone-loaded fibrous mats on diabetic wound healing: an in vitro and in vivo comparison study. J R Soc Interface 2020; 17:20190712. [PMID: 31964272 DOI: 10.1098/rsif.2019.0712] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In order to provide more effective treatment strategies for the rapid healing of diabetic wounds, novel therapeutic approaches need to be developed. The therapeutic potential of peroxisome proliferator-activated receptor-γ (PPAR-γ) agonist pioglitazone hydrochloride (PHR) in two different release kinetic scenarios, burst release and sustained release, was investigated and compared with in vitro and in vivo tests as potential wound healing dressings. PHR-loaded fibrous mats were successfully fabricated using polyvinyl-pyrrolidone and polycaprolactone by scalable pressurized gyration. The results indicated that PHR-loaded fibrous mats expedited diabetic wound healing in type-1 diabetic rats and did not show any cytotoxic effect on NIH/3T3 (mouse embryo fibroblast) cells, albeit with different release kinetics and efficacies. The wound healing effects of fibrous mats are presented with histological and biochemical evaluations. PHR-loaded fibrous mats improved neutrophil infiltration, oedema, and inflammation and increased epidermal regeneration and fibroblast proliferation, but the formation of hair follicles and completely improved oedema were observed only in the sustained release form. Thus, topical administration of PPAR-γ agonist in sustained release form has high potential for the treatment of diabetic wounds in inflammatory and proliferative phases of healing with high bioavailability and fewer systemic side effects.
Collapse
Affiliation(s)
- Muhammet Emin Cam
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK.,Center for Nanotechnology and Biomaterials Research, Marmara University, Istanbul 34722, Turkey.,Department of Pharmacology, Faculty of Pharmacy, Marmara University, Istanbul 34716, Turkey
| | - Sila Yildiz
- Centre for Discovery Brain Sciences, University of Edinburgh, George Square, Edinburgh EH8 9XD, UK
| | - Hussain Alenezi
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK.,Department of Manufacturing Engineering, College of Technological Studies, PAAET, 13092 Kuwait City, Kuwait
| | - Sumeyye Cesur
- Center for Nanotechnology and Biomaterials Research, Marmara University, Istanbul 34722, Turkey.,Department of Metallurgy and Material Engineering, Faculty of Technology, Marmara University, Istanbul 34722, Turkey
| | - Gul Sinemcan Ozcan
- Department of Histology and Embryology, Faculty of Medicine, Marmara University, Istanbul 34854, Turkey
| | - Gokce Erdemir
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul 34093, Turkey
| | - Ursula Edirisinghe
- Accident and Emergency Department, Hillingdon Hospital, NHS Foundation Trust, Pield Heath Road, Uxbridge UB8 3NN, UK
| | - Dilek Akakin
- Department of Histology and Embryology, Faculty of Medicine, Marmara University, Istanbul 34854, Turkey
| | - Durdane Serap Kuruca
- Department of Physiology, Faculty of Medicine, Istanbul University, Istanbul 34093, Turkey
| | - Levent Kabasakal
- Department of Pharmacology, Faculty of Pharmacy, Marmara University, Istanbul 34716, Turkey
| | - Oguzhan Gunduz
- Center for Nanotechnology and Biomaterials Research, Marmara University, Istanbul 34722, Turkey.,Department of Metallurgy and Material Engineering, Faculty of Technology, Marmara University, Istanbul 34722, Turkey
| | - Mohan Edirisinghe
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| |
Collapse
|
21
|
Barbosa JE, Stockler-Pinto MB, da Cruz BO, da Silva ACT, Anjos JS, Mesquita CT, Mafra D, Cardozo LFMF. Nrf2, NF-κB and PPARβ/δ mRNA Expression Profile in Patients with Coronary Artery Disease. Arq Bras Cardiol 2019; 113:1121-1127. [PMID: 31340238 PMCID: PMC7021271 DOI: 10.5935/abc.20190125] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 02/07/2019] [Accepted: 02/13/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Oxidative stress and inflammation are present in coronary artery disease (CAD) and are linked to the activation of the transcription nuclear factor kappa B (NF-κB). To attenuate these complications, transcription factors like nuclear factor erythroid 2-related factor 2 (Nrf2) and peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) can be activated to inhibit NF-κB. However, the available data on expression of NF-κB, Nrf2 and PPARβ/δ in CAD patients are limited. OBJECTIVE To evaluate the expression of the transcription factors NF-κB and Nrf2 and PPAR𝛽/𝛿 in CAD patients. METHODS Thirty-five patients (17 men, mean age 62.4 ? 7.55 years) with CAD and twelve patients (5 men, mean age 63.50 ? 11.46 years) without CAD were enrolled. Peripheral blood mononuclear cells (PBMCs) were isolated and processed for mRNA expression of Nrf2, NF-κB, NADPH: quinone oxidoreductase 1 (NQO1) and PPARβ/δ mRNAs using quantitative real-time polymerase chain reaction (qPCR). p < 0.05 was considered statistically significant. RESULTS There was no difference in the mRNA expressions of Nrf2 (1.35 ? 0.57), NF-κB (1.08 ? 0.50) or in the antioxidant enzyme NQO1 (1.05 ? 0.88) in the CAD group compared to the group without CAD (1.16 ? 0.76, 0.95 ? 0.33, 0.81 ? 0.55, respectively). However, PPARβ/δ was highest expressed in the CAD group (1.17 ? 0.86 vs. 0.56 ? 0.34, p = 0.008). CONCLUSION The main finding of this study was the PPARβ/δ being more expressed in the PBMC of patients with CAD compared to the control group, whereas no differences were observed in Nrf2 or NF-κB mRNA expressions.
Collapse
Affiliation(s)
- Jaqueline Ermida Barbosa
- Universidade Federal Fluminense - Programa de Pós-Graduação em Ciências Cardiovasculares, Niterói, RJ - Brazil
| | | | - Beatriz Oliveira da Cruz
- Universidade Federal Fluminense - Programa de Pós-Graduação em Ciências Cardiovasculares, Niterói, RJ - Brazil
| | - Ana Carla Tavares da Silva
- Universidade Federal Fluminense - Programa de Pós-Graduação em Ciências Cardiovasculares, Niterói, RJ - Brazil
| | - Juliana Saraiva Anjos
- Universidade Federal Fluminense - Programa de Pós-Graduação em Ciências Cardiovasculares, Niterói, RJ - Brazil
| | - Claudio Tinoco Mesquita
- Universidade Federal Fluminense - Programa de Pós-Graduação em Ciências Cardiovasculares, Niterói, RJ - Brazil
| | - Denise Mafra
- Universidade Federal Fluminense - Programa de Pós-Graduação em Ciências Cardiovasculares, Niterói, RJ - Brazil
| | - Ludmila F. M. F. Cardozo
- Universidade Federal Fluminense - Programa de Pós-Graduação em Ciências Cardiovasculares, Niterói, RJ - Brazil
| |
Collapse
|
22
|
Peters JM, Walter V, Patterson AD, Gonzalez FJ. Unraveling the role of peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) expression in colon carcinogenesis. NPJ Precis Oncol 2019; 3:26. [PMID: 31602402 PMCID: PMC6779880 DOI: 10.1038/s41698-019-0098-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 09/17/2019] [Indexed: 01/09/2023] Open
Abstract
The peroxisome proliferator-activated-β/δ (PPARβ/δ) was identified in 1994, but not until 1999 was PPARβ/δ suggested to be involved in carcinogenesis. Initially, it was hypothesized that expression of PPARβ/δ was increased during colon cancer progression, which led to increased transcription of yet-to-be confirmed target genes that promote cell proliferation and tumorigenesis. It was also hypothesized at this time that lipid-metabolizing enzymes generated lipid metabolites that served as ligands for PPARβ/δ. These hypothetical mechanisms were attractive because they potentially explained how non-steroidal anti-inflammatory drugs inhibited tumorigenesis by potentially limiting the concentration of endogenous PPARβ/δ ligands that could activate this receptor that was increased in cancer cells. However, during the last 20 years, considerable research was undertaken describing expression of PPARβ/δ in normal and cancer cells that has led to a significant impact on the mechanisms by which PPARβ/δ functions in carcinogenesis. Whereas results from earlier studies led to much uncertainty about the role of PPARβ/δ in cancer, more recent analyses of large databases have revealed a more consistent understanding. The focus of this review is on the fundamental level of PPARβ/δ expression in normal tissues and cancerous tissue as described by studies during the past two decades and what has been delineated during this timeframe about how PPARβ/δ expression influences carcinogenesis, with an emphasis on colon cancer.
Collapse
Affiliation(s)
- Jeffrey M. Peters
- Department of Veterinary and Biomedical Sciences, The Center of Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, State College, PA 16801 USA
| | - Vonn Walter
- Departments of Public Health Sciences and Biochemistry, The Pennsylvania State University, College of Medicine, Hershey, State College, PA 16801 USA
| | - Andrew D. Patterson
- Department of Veterinary and Biomedical Sciences, The Center of Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, State College, PA 16801 USA
| | - Frank J. Gonzalez
- Laboratory of Metabolism, National Cancer Institute, Bethesda, MD USA
| |
Collapse
|
23
|
Drohomyrecky PC, Doroshenko ER, Akkermann R, Moshkova M, Yi TJ, Zhao FL, Ahn JJ, McGaha TL, Pahan K, Dunn SE. Peroxisome Proliferator-Activated Receptor-δ Acts within Peripheral Myeloid Cells to Limit Th Cell Priming during Experimental Autoimmune Encephalomyelitis. THE JOURNAL OF IMMUNOLOGY 2019; 203:2588-2601. [PMID: 31578267 DOI: 10.4049/jimmunol.1801200] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 09/02/2019] [Indexed: 12/14/2022]
Abstract
Peroxisome proliferator-activated receptor (PPAR)-δ is a fatty acid-activated transcription factor that regulates metabolic homeostasis, cell growth, and differentiation. Previously, we reported that mice with a global deficiency of PPAR-δ develop an exacerbated course of experimental autoimmune encephalomyelitis (EAE), highlighting a role for this nuclear receptor in limiting the development of CNS inflammation. However, the cell-specific contribution of PPAR-δ to the more severe CNS inflammatory response remained unclear. In this study, we studied the specific involvement of PPAR-δ in myeloid cells during EAE using mice that had Cre-mediated excision of floxed Ppard driven by the lysozyme M (LysM) promoter (LysM Cre :Ppard fl/fl). We observed that LysM Cre :Ppard fl/fl mice were more susceptible to EAE and developed a more severe course of this disease compared with Ppard fl/fl controls. The more severe EAE in LysM Cre :Ppard fl/fl mice was associated with an increased accumulation of pathogenic CD4+ T cells in the CNS and enhanced myelin-specific Th1 and Th17 responses in the periphery. Adoptive transfer EAE studies linked this EAE phenotype in LysM Cre :Ppard fl/fl mice to heightened Th responses. Furthermore, studies using an in vitro CD11b+ cell:Th cell coculture system revealed that CD11b+CD11c+ dendritic cells (DC) from LysM Cre :Ppard fl/fl mice had a heightened capacity to prime myelin oligodendrocyte glycoprotein (MOG)-specific Th cells compared with Ppard fl/fl counterparts; the effects of DC on Th1 cytokine production were mediated through production of the IL-12p40 homodimer. These studies revealed a role for PPAR-δ in DC in limiting Th cell priming during EAE.
Collapse
Affiliation(s)
| | | | - Rainer Akkermann
- Toronto General Hospital Research Institute, Toronto, Ontario M5G 2C4, Canada
| | - Marina Moshkova
- Toronto General Hospital Research Institute, Toronto, Ontario M5G 2C4, Canada
| | - Tae Joon Yi
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Toronto General Hospital Research Institute, Toronto, Ontario M5G 2C4, Canada
| | - Fei L Zhao
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Jeeyoon Jennifer Ahn
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Tracy L McGaha
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Princess Margaret Cancer Centre, Toronto, Ontario M5G 2M9, Canada
| | - Kalipada Pahan
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612
| | - Shannon E Dunn
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; .,Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada; and.,Women's College Research Institute, Toronto, Ontario M5G 1N8, Canada
| |
Collapse
|
24
|
Physiological and pathophysiological aspects of peroxisome proliferator-activated receptor regulation by fatty acids in poultry species. WORLD POULTRY SCI J 2019. [DOI: 10.1017/s0043933916000490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
25
|
Conserva MR, Anelli L, Zagaria A, Specchia G, Albano F. The Pleiotropic Role of Retinoic Acid/Retinoic Acid Receptors Signaling: From Vitamin A Metabolism to Gene Rearrangements in Acute Promyelocytic Leukemia. Int J Mol Sci 2019; 20:ijms20122921. [PMID: 31207999 PMCID: PMC6627493 DOI: 10.3390/ijms20122921] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/07/2019] [Accepted: 06/13/2019] [Indexed: 12/18/2022] Open
Abstract
The family of retinoic acid receptors (RARs: RARα, -β, and -γ) has remarkable pleiotropy characteristics, since the retinoic acid/RARs pathway is involved in numerous biological processes not only during embryonic development, but also in the postnatal phase and during adulthood. In this review, we trace the roles of RA/RARs signaling in the immune system (where this pathway has both an immunosuppressive role or is involved in the inflammatory response), in hematopoiesis (enhancing hematopoietic stem cell self-renewal, progenitor cells differentiation or maintaining the bone marrow microenvironment homeostasis), and in bone remodeling (where this pathway seems to have controversial effects on bone formation or osteoclast activation). Moreover, in this review is shown the involvement of RAR genes in multiple chromosomal rearrangements generating different fusion genes in hematological neoplasms, with a particular focus on acute promyelocytic leukemia and its variant subtypes. The effect of different RARs fusion proteins on leukemic transformation, on patients’ outcome, and on therapy response is also discussed.
Collapse
Affiliation(s)
- Maria Rosa Conserva
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, 70124 Bari, Italy.
| | - Luisa Anelli
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, 70124 Bari, Italy.
| | - Antonella Zagaria
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, 70124 Bari, Italy.
| | - Giorgina Specchia
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, 70124 Bari, Italy.
| | - Francesco Albano
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, 70124 Bari, Italy.
| |
Collapse
|
26
|
Peters JM, Kim DJ, Bility MT, Borland MG, Zhu B, Gonzalez FJ. Regulatory mechanisms mediated by peroxisome proliferator-activated receptor-β/δ in skin cancer. Mol Carcinog 2019; 58:1612-1622. [PMID: 31062422 DOI: 10.1002/mc.23033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/12/2019] [Accepted: 04/15/2019] [Indexed: 12/21/2022]
Abstract
Considerable progress has been made during the past 20 years towards elucidating the role of peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) in skin cancer. In 1999, the original notion that PPARβ/δ was involved with epithelial cell function was postulated based on a correlation between PPARβ/δ expression and the induction of messenger RNAs encoding proteins that mediate terminal differentiation in keratinocytes. Subsequent studies definitively revealed that PPARβ/δ could induce terminal differentiation and inhibit proliferation of keratinocytes. Molecular mechanisms have since been discovered to explain how this nuclear receptor can be targeted for preventing and treating skin cancer. This includes the regulation of terminal differentiation, mitotic signaling, endoplasmic reticulum stress, and cellular senescence. Interestingly, the effects of activating PPARβ/δ can preferentially target keratinocytes with genetic mutations associated with skin cancer. This review provides the history and current understanding of how PPARβ/δ can be targeted for both nonmelanoma skin cancer and melanoma and postulates how future approaches that modulate PPARβ/δ signaling may be developed for the prevention and treatment of these diseases.
Collapse
Affiliation(s)
- Jeffrey M Peters
- Department of Veterinary and Biomedical Sciences, The Center of Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania
| | - Dae J Kim
- Department of Molecular Science, School of Medicine, University of Texas Rio Grande Valley, Edinburg, Texas
| | - Moses T Bility
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Michael G Borland
- Department of Chemistry & Biochemistry, Bloomsburg University of Pennsylvania, Bloomsburg, Pennsylvania
| | - Bokai Zhu
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
27
|
Synthesis of a unique dimethyl thiazoline containing intermediate of novel peroxisome proliferator-activated receptors(PPAR)δ agonists. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.10.051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Abstract
The nuclear receptor peroxisome proliferator-activated receptor δ (PPARδ) can transcriptionally regulate target genes. PPARδ exerts essential regulatory functions in the heart, which requires constant energy supply. PPARδ plays a key role in energy metabolism, controlling not only fatty acid (FA) and glucose oxidation, but also redox homeostasis, mitochondrial biogenesis, inflammation, and cardiomyocyte proliferation. PPARδ signaling is impaired in the heart under various pathological conditions, such as pathological cardiac hypertrophy, myocardial ischemia/reperfusion, doxorubicin cardiotoxicity and diabetic cardiomyopathy. PPARδ deficiency in the heart leads to cardiac dysfunction, myocardial lipid accumulation, cardiac hypertrophy/remodeling and heart failure. This article provides an up-today overview of this research area and discusses the role of PPARδ in the heart in light of the complex mechanisms of its transcriptional regulation and its potential as a translatable therapeutic target for the treatment of cardiac disorders.
Collapse
Affiliation(s)
- Qinglin Yang
- Cardiovascular Center of Excellence, LSU Healther Science Center, 533 Bolivar St, New Orleans, LA 70112, USA
| | - Qinqiang Long
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| |
Collapse
|
29
|
Wu R, Liao Y, Shen W, Liu Y, Zhang J, Zheng M, Chen G, Su Y, Zhao M, Lu Q. Overexpression of Wilms' tumor 1 in skin lesions of psoriasis is associated with abnormal proliferation and apoptosis of keratinocytes. Mol Med Rep 2018; 18:3973-3982. [PMID: 30132523 DOI: 10.3892/mmr.2018.9391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 07/12/2018] [Indexed: 11/05/2022] Open
Abstract
Psoriasis vulgaris (PV) is a chronic inflammatory skin disease, which is characterized by the abnormal proliferation and apoptosis of keratinocytes. Previous studies have demonstrated that transcription factor Wilms' tumor 1 (WT1) is involved in a number of pathophysiological processes, including organ development, tumorigenesis and cell proliferation. However, the role of WT1 in PV remains unclear. In the present study, WT1 expression was analyzed by reverse transcription‑quantitative polymerase chain reaction and western blot analyses. WT1 was stably overexpressed or inhibited in HaCaT cells using Lipofectamine® 2000, and cell proliferation and apoptosis were determined using a Cell Counting Kit‑8 or Fluorescein Isothiocyanate Annexin V Apoptosis Detection kit II, respectively. We demonstrated that compared with normal controls, the mRNA and protein expression levels of WT1 were significantly increased in non‑lesional skins (human, P<0.0001 and P=0.0291, respectively; mouse, P=0.0020 and P=0.0150, respectively) and lesional skins (human, P<0.0001 and P=0.0060, respectively; mouse, P=0.0010 and P=0.0172, respectively) of patients with PV, in addition to the imiquimod (IMQ)‑induced psoriasis‑like mouse model. WT1 mRNA and protein expression levels in lesional skins were slightly increased compared with those in non‑lesional skins from patients with psoriasis (P=0.2510 and P=0.1690, respectively) and IMQ‑treated mice (P=0.9590 and P=0.2552, respectively), although there were no statistical differences. Knockdown of WT1 inhibited the proliferation of HaCaT cells [day (D)4, P=0.0454; D5, P=0.0021] and promoted their apoptosis (P=0.0007), while overexpressing WT1 exhibited the opposite effects (proliferation D3, P=0.0216; D4, P=0.0356; D5, P=0.0188; apoptosis, P=0.0003). Furthermore, it was identified that the inflammatory cytokines interleukin‑17A (IL‑17A), interferon‑γ and IL‑22 induced the overexpression of WT1 in HaCaT cells. The results of the present study suggested that inflammatory cytokine‑induced WT1 overexpression may promote the formation of psoriatic skin lesions via regulation of the proliferation and apoptosis of keratinocytes.
Collapse
Affiliation(s)
- Ruifang Wu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Yuan Liao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Weiyun Shen
- Department of Anesthesiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Yu Liu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Jianzhong Zhang
- Department of Dermatology, Peking University People's Hospital, Beijing 100044, P.R. China
| | - Min Zheng
- Department of Dermatology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Genghui Chen
- Beijing Wenfeng Tianji Pharmaceuticals Ltd., Beijing 100027, P.R. China
| | - Yuwen Su
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Ming Zhao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Qianjin Lu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
30
|
Kim DS, Lee J, Londhe AM, Kadayat TM, Joo J, Hwang H, Kim KH, Pae AN, Chin J, Cho SJ, Kang H. Synthesis and evaluation of an orally available "Y"-shaped biaryl peroxisome proliferator-activated receptor δ agonist. Bioorg Med Chem 2018; 26:4382-4389. [PMID: 30054191 DOI: 10.1016/j.bmc.2018.06.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/29/2018] [Accepted: 06/30/2018] [Indexed: 11/18/2022]
Abstract
In this study, we designed and synthesized several novel "Y"-shaped biaryl PPARδ agonists. Structure-activity relationship (SAR) studies demonstrated that compound 3a was the most active agonist with an EC50 of 2.6 nM. We also synthesized and evaluated enantiospecific R and S isomers of compound 3a to confirm that R isomer (EC50 = 0.7 nM) shows much more potent activity than S isomer (EC50 = 6.1 nM). Molecular docking studies between the PPAR ligand binding domain and enantiospecific R and S isomers of compound 3a were performed. In vitro absorption, distribution, metabolism, excretion, and toxicity (ADMET) and in vivo PK profiles show that compound 3a possesses superior drug-like properties including good bioavailability. Our overall results clearly demonstrate that this orally administrable PPARδ agonist 3a is a viable drug candidate for the treatment of various PPARδ-related disorders.
Collapse
Affiliation(s)
- Dong-Su Kim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Jaehwan Lee
- The Center for Marine Natural Products and Drug Discovery, School of Earth and Environmental Sciences, Seoul National University, NS-80, Seoul 151-747, Republic of Korea
| | - Ashwini M Londhe
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, PO Box 131, Cheongryang, Seoul 130-650, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Tara Man Kadayat
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Jeongmin Joo
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Hayoung Hwang
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Kyung-Hee Kim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Ae Nim Pae
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, PO Box 131, Cheongryang, Seoul 130-650, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Jungwook Chin
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea.
| | - Sung Jin Cho
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea.
| | - Heonjoong Kang
- The Center for Marine Natural Products and Drug Discovery, School of Earth and Environmental Sciences, Seoul National University, NS-80, Seoul 151-747, Republic of Korea; Research Institute of Oceanography, Seoul National University, NS-80, Seoul 151-747, Republic of Korea.
| |
Collapse
|
31
|
PPARβ/δ: Linking Metabolism to Regeneration. Int J Mol Sci 2018; 19:ijms19072013. [PMID: 29996502 PMCID: PMC6073704 DOI: 10.3390/ijms19072013] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 06/29/2018] [Accepted: 07/05/2018] [Indexed: 01/10/2023] Open
Abstract
In contrast to the general belief that regeneration is a rare event, mainly occurring in simple organisms, the ability of regeneration is widely distributed in the animal kingdom. Yet, the efficiency and extent of regeneration varies greatly. Humans can recover from blood loss as well as damage to tissues like bone and liver. Yet damage to the heart and brain cannot be reversed, resulting in scaring. Thus, there is a great interest in understanding the molecular mechanisms of naturally occurring regeneration and to apply this knowledge to repair human organs. During regeneration, injury-activated immune cells induce wound healing, extracellular matrix remodeling, migration, dedifferentiation and/or proliferation with subsequent differentiation of somatic or stem cells. An anti-inflammatory response stops the regenerative process, which ends with tissue remodeling to achieve the original functional state. Notably, many of these processes are associated with enhanced glycolysis. Therefore, peroxisome proliferator-activated receptor (PPAR) β/δ—which is known to be involved for example in lipid catabolism, glucose homeostasis, inflammation, survival, proliferation, differentiation, as well as mammalian regeneration of the skin, bone and liver—appears to be a promising target to promote mammalian regeneration. This review summarizes our current knowledge of PPARβ/δ in processes associated with wound healing and regeneration.
Collapse
|
32
|
Prevalence of type 2 diabetes mellitus among patients with hidradenitis suppurativa in the United States. J Am Acad Dermatol 2018; 79:71-76. [PMID: 29339240 DOI: 10.1016/j.jaad.2018.01.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/02/2018] [Accepted: 01/03/2018] [Indexed: 12/31/2022]
|
33
|
The Involvement of PPARs in the Peculiar Energetic Metabolism of Tumor Cells. Int J Mol Sci 2018; 19:ijms19071907. [PMID: 29966227 PMCID: PMC6073339 DOI: 10.3390/ijms19071907] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/10/2018] [Accepted: 06/24/2018] [Indexed: 12/13/2022] Open
Abstract
Energy homeostasis is crucial for cell fate, since all cellular activities are strongly dependent on the balance between catabolic and anabolic pathways. In particular, the modulation of metabolic and energetic pathways in cancer cells has been discussed in some reports, but subsequently has been neglected for a long time. Meanwhile, over the past 20 years, a recovery of the study regarding cancer metabolism has led to an increasing consideration of metabolic alterations in tumors. Cancer cells must adapt their metabolism to meet their energetic and biosynthetic demands, which are associated with the rapid growth of the primary tumor and colonization of distinct metastatic sites. Cancer cells are largely dependent on aerobic glycolysis for their energy production, but are also associated with increased fatty acid synthesis and increased rates of glutamine consumption. In fact, emerging evidence has shown that therapeutic resistance to cancer treatment may arise from the deregulation of glucose metabolism, fatty acid synthesis, and glutamine consumption. Cancer cells exhibit a series of metabolic alterations induced by mutations that lead to a gain-of-function of oncogenes, and a loss-of-function of tumor suppressor genes, including increased glucose consumption, reduced mitochondrial respiration, an increase of reactive oxygen species, and cell death resistance; all of these are responsible for cancer progression. Cholesterol metabolism is also altered in cancer cells and supports uncontrolled cell growth. In this context, we discuss the roles of peroxisome proliferator-activated receptors (PPARs), which are master regulators of cellular energetic metabolism in the deregulation of the energetic homeostasis, which is observed in cancer. We highlight the different roles of PPAR isotypes and the differential control of their transcription in various cancer cells.
Collapse
|
34
|
Ji Y, Li H, Wang F, Gu L. PPARβ/δ Agonist GW501516 Inhibits Tumorigenicity of Undifferentiated Nasopharyngeal Carcinoma in C666-1 Cells by Promoting Apoptosis. Front Pharmacol 2018; 9:648. [PMID: 30002625 PMCID: PMC6031703 DOI: 10.3389/fphar.2018.00648] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 05/31/2018] [Indexed: 12/21/2022] Open
Abstract
Activation of peroxisome proliferator-activated receptor β/δ (PPARβ/δ) had been linked to inhibition on the proliferation and apoptosis in a few cancer cell lines. However, limited data exists regarding the role of PPARβ/δ in nasopharyngeal carcinoma (NPC). This study was undertaken to determine the effect of PPARβ/δ on cell proliferation, anchorage-dependent clonogenicity, and ectopic xenografts in the human NPC cell lines. Gene and protein expression of PPARβ/δ were reduced specifically in the poor- and un-differentiated NPC cell lines as compared with the control NP-69 cells. Ligand activation of PPARβ/δ by GW501516, a specific PPARβ/δ selective agonist, inhibited cell proliferation and colony formation strikingly, and induced a G2/M phase arrest in the EBV positive undifferentiated NPC C666-1 cells relative to the control cells. Moreover, GW501516 induced C666-1 cell apoptosis in a caspase and BAX dependent manner. In accordance with the in vitro result, GW501516 significantly suppressed the ectopic NPC xenograft tumorigenicity that derived from the C666-1 NPC cells in BALB/c nu/nu mice. This effect is greatly associated with its inhibition on the gene and protein expression of integrin-linked kinase (ILK) through activation of the AMPKα-dependent signaling pathways. Collectively, we showed that PPARβ/δ expression is in reverse correlation with the degree of differentiation in the NPC cell lines, and revealed the anti-tumorigenic effects of GW501516 in NPC cells by activation of AMPKα. This study suggested that PPARβ/δ targeting molecules may be useful for the poor-, and particularly un-differentiated NPC chemoprevention.
Collapse
Affiliation(s)
- Yangyang Ji
- Department of ENT, Central Hospital of Minhang District (Minhang Hospital Fudan University), Shanghai, China
| | - Hui Li
- Department of ENT, Central Hospital of Minhang District (Minhang Hospital Fudan University), Shanghai, China
| | - Fang Wang
- Department of ENT, Central Hospital of Minhang District (Minhang Hospital Fudan University), Shanghai, China
| | - Linglan Gu
- Department of ENT, Central Hospital of Minhang District (Minhang Hospital Fudan University), Shanghai, China
| |
Collapse
|
35
|
Sng MK, Chan JSK, Teo Z, Phua T, Tan EHP, Wee JWK, Koh NJN, Tan CK, Chen JP, Pal M, Tong BMK, Tnay YL, Ng XR, Zhu P, Chiba S, Wang X, Wahli W, Tan NS. Selective deletion of PPARβ/δ in fibroblasts causes dermal fibrosis by attenuated LRG1 expression. Cell Discov 2018; 4:15. [PMID: 29619245 PMCID: PMC5880809 DOI: 10.1038/s41421-018-0014-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 01/04/2018] [Indexed: 01/04/2023] Open
Abstract
Connective tissue diseases of the skin are characterized by excessive collagen deposition in the skin and internal organs. Fibroblasts play a pivotal role in the clinical presentation of these conditions. Nuclear receptor peroxisome-proliferator activated receptors (PPARs) are therapeutic targets for dermal fibrosis, but the contribution of the different PPAR subtypes are poorly understood. Particularly, the role of fibroblast PPARβ/δ in dermal fibrosis has not been elucidated. Thus, we generated a mouse strain with selective deletion of PPARβ/δ in the fibroblast (FSPCre-Pparb/d-/-) and interrogated its epidermal and dermal transcriptome profiles. We uncovered a downregulated gene, leucine-rich alpha-2-glycoprotein-1 (Lrg1), of previously unknown function in skin development and architecture. Our findings suggest that the regulation of Lrg1 by PPARβ/δ in fibroblasts is an important signaling conduit integrating PPARβ/δ and TGFβ1-signaling networks in skin health and disease. Thus, the FSPCre-Pparb/d-/- mouse model could serve as a novel tool in the current gunnery of animal models to better understand dermal fibrosis.
Collapse
Affiliation(s)
- Ming Keat Sng
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551 Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Novena Campus, 11 Mandalay Road, Singapore, 308232 Singapore
| | - Jeremy Soon Kiat Chan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551 Singapore
| | - Ziqiang Teo
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551 Singapore
| | - Terri Phua
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551 Singapore
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Nobels väg 16, 17177 Stockholm, Sweden
| | - Eddie Han Pin Tan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551 Singapore
| | - Jonathan Wei Kiat Wee
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551 Singapore
| | - Nikki Jun Ning Koh
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551 Singapore
| | - Chek Kun Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Novena Campus, 11 Mandalay Road, Singapore, 308232 Singapore
| | - Jia Peng Chen
- Lee Kong Chian School of Medicine, Nanyang Technological University, Novena Campus, 11 Mandalay Road, Singapore, 308232 Singapore
| | - Mintu Pal
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006 India
| | - Benny Meng Kiat Tong
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371 Singapore
| | - Ya Lin Tnay
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371 Singapore
| | - Xuan Rui Ng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Novena Campus, 11 Mandalay Road, Singapore, 308232 Singapore
| | - Pengcheng Zhu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551 Singapore
| | - Shunsuke Chiba
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371 Singapore
| | - Xiaomeng Wang
- Lee Kong Chian School of Medicine, Nanyang Technological University, Novena Campus, 11 Mandalay Road, Singapore, 308232 Singapore
- Institute of Molecular and Cell Biology, Agency for Science Technology & Research, 61 Biopolis Drive, Proteos, Singapore, 138673 Singapore
- Department of Cell Biology, Institute of Ophthalmology, University College London, London, UK
- Singapore Eye Research Institute, Singapore, 169856 Singapore
| | - Walter Wahli
- Lee Kong Chian School of Medicine, Nanyang Technological University, Novena Campus, 11 Mandalay Road, Singapore, 308232 Singapore
- INRA ToxAlim, Chemin de Tournefeuille, Toulouse Cedex 3, UMR1331 France
- Center for Integrative Genomics, University of Lausanne, Le Genopode, Lausanne, Switzerland
| | - Nguan Soon Tan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551 Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Novena Campus, 11 Mandalay Road, Singapore, 308232 Singapore
- Institute of Molecular and Cell Biology, Agency for Science Technology & Research, 61 Biopolis Drive, Proteos, Singapore, 138673 Singapore
- KK Research Centre, KK Women’s and Children Hospital, 100 Bukit Timah Road, Singapore, 229899 Singapore
| |
Collapse
|
36
|
Banno A, Reddy AT, Lakshmi SP, Reddy RC. PPARs: Key Regulators of Airway Inflammation and Potential Therapeutic Targets in Asthma. NUCLEAR RECEPTOR RESEARCH 2017; 5. [PMID: 29450204 DOI: 10.11131/2018/101306] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Asthma affects approximately 300 million people worldwide, significantly impacting quality of life and healthcare costs. While current therapies are effective in controlling many patients' symptoms, a large number continue to experience exacerbations or treatment-related adverse effects. Alternative therapies are thus urgently needed. Accumulating evidence has shown that the peroxisome proliferator-activated receptor (PPAR) family of nuclear hormone receptors, comprising PPARα, PPARβ/δ, and PPARγ, is involved in asthma pathogenesis and that ligand-induced activation of these receptors suppresses asthma pathology. PPAR agonists exert their anti-inflammatory effects primarily by suppressing pro-inflammatory mediators and antagonizing the pro-inflammatory functions of various cell types relevant to asthma pathophysiology. Experimental findings strongly support the potential clinical benefits of PPAR agonists in the treatment of asthma. We review current literature, highlighting PPARs' key role in asthma pathogenesis and their agonists' therapeutic potential. With additional research and rigorous clinical studies, PPARs may become attractive therapeutic targets in this disease.
Collapse
Affiliation(s)
- Asoka Banno
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Aravind T Reddy
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213.,Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA 15240
| | - Sowmya P Lakshmi
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213.,Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA 15240
| | - Raju C Reddy
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213.,Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA 15240
| |
Collapse
|
37
|
Govindarajan R, Siegel ER. The effect of exposure to thiazolidinediones on the development of head-and-neck cancer in patients with diabetes mellitus. TRANSLATIONAL RESEARCH IN ORAL ONCOLOGY 2017. [DOI: 10.1177/2057178x17739809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Rangaswamy Govindarajan
- Central Arkansas Veterans Health Care System, University of Arkansa for Medical Sciences, Little Rock, AR, USA
| | - Eric R Siegel
- Central Arkansas Veterans Health Care System, University of Arkansa for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
38
|
Román-Malo L, Bullon P. Influence of the Periodontal Disease, the Most Prevalent Inflammatory Event, in Peroxisome Proliferator-Activated Receptors Linking Nutrition and Energy Metabolism. Int J Mol Sci 2017; 18:ijms18071438. [PMID: 28678155 PMCID: PMC5535929 DOI: 10.3390/ijms18071438] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/27/2017] [Accepted: 06/28/2017] [Indexed: 12/14/2022] Open
Abstract
Periodontal disease is considered one of the main pathologic diseases occurring in humans. Its pathologic process involves inflammatory reactions producing periodontal bone resorption and the tooth loss. But some patients do not present an evident clinical inflammation with bone resorption, and in others, the inflammation is prominent without bone resorption. A key question could be to investigate a different way of responding to aggression. Inflammation requires a complex intracellular metabolic process, starting with the harmful recognition and activation of the inflammasome, continues the energy supply with the alteration of oxidative stress conditions, and finishes with the elimination of the aggression with autophagy/apoptosis mechanisms, then concludes with recovery. Peroxisome proliferator-activated receptors (PPARs) are essential molecules produced in inflammation, and its genes and its activation have been related to periodontal disease. Also, an important aspect is the influence of PPARs in bone metabolism; the main periodontitis symptom is bone loss and PPARγ activation that can downregulate the bone resorption in experimental periodontitis, PPARγ-coated titanium dental implant surfaces could carry the antiinflammatory gene and restrain inflammation. PPARs could be one of the meeting background points with atherosclerosis/cardiovascular disease, diabetes and metabolic syndrome showing a modified proinflammatory statement such as it is described in periodontitis.
Collapse
Affiliation(s)
- Lourdes Román-Malo
- Laboratorio de Investigacion, Departamento de Estomatologia, Universidad de Sevilla, c/ Avicena s/n, Sevilla 41009, Spain.
| | - Pedro Bullon
- Laboratorio de Investigacion, Departamento de Estomatologia, Universidad de Sevilla, c/ Avicena s/n, Sevilla 41009, Spain.
| |
Collapse
|
39
|
Toral M, Romero M, Pérez-Vizcaíno F, Duarte J, Jiménez R. Antihypertensive effects of peroxisome proliferator-activated receptor-β/δ activation. Am J Physiol Heart Circ Physiol 2016; 312:H189-H200. [PMID: 27881385 DOI: 10.1152/ajpheart.00155.2016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 09/12/2016] [Accepted: 11/21/2016] [Indexed: 01/16/2023]
Abstract
Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear hormone receptor superfamily of ligand-activated transcription factors, which is composed of three members encoded by distinct genes: PPARα, PPARβ/δ, and PPARγ. The biological actions of PPARα and PPARγ and their potential as a cardiovascular therapeutic target have been extensively reviewed, whereas the biological actions of PPARβ/δ and its effectiveness as a therapeutic target in the treatment of hypertension remain less investigated. Preclinical studies suggest that pharmacological PPARβ/δ activation induces antihypertensive effects in direct [spontaneously hypertensive rat (SHR), ANG II, and DOCA-salt] and indirect (dyslipemic and gestational) models of hypertension, associated with end-organ damage protection. This review summarizes mechanistic insights into the antihypertensive effects of PPARβ/δ activators, including molecular and functional mechanisms. Pharmacological PPARβ/δ activation induces genomic actions including the increase of regulators of G protein-coupled signaling (RGS), acute nongenomic vasodilator effects, as well as the ability to improve the endothelial dysfunction, reduce vascular inflammation, vasoconstrictor responses, and sympathetic outflow from central nervous system. Evidence from clinical trials is also examined. These preclinical and clinical outcomes of PPARβ/δ ligands may provide a basis for the development of therapies in combating hypertension.
Collapse
Affiliation(s)
- Marta Toral
- Department of Pharmacology, School of Pharmacy, University of Granada, Granada, Spain
| | - Miguel Romero
- Department of Pharmacology, School of Pharmacy, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain
| | - Francisco Pérez-Vizcaíno
- Department of Pharmacology, School of Medicine, University Complutense of Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid. Spain; and.,Ciber Enfermedades Respiratorias (Ciberes). Madrid. Spain
| | - Juan Duarte
- Department of Pharmacology, School of Pharmacy, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain
| | - Rosario Jiménez
- Department of Pharmacology, School of Pharmacy, University of Granada, Granada, Spain; .,Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain
| |
Collapse
|
40
|
Echeverría F, Ortiz M, Valenzuela R, Videla LA. Long-chain polyunsaturated fatty acids regulation of PPARs, signaling: Relationship to tissue development and aging. Prostaglandins Leukot Essent Fatty Acids 2016; 114:28-34. [PMID: 27926461 DOI: 10.1016/j.plefa.2016.10.001] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 10/04/2016] [Accepted: 10/05/2016] [Indexed: 12/31/2022]
Abstract
Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors that function as ligand-dependent transcription factors that can be activated by different types of fatty acids (FAs). Three isoforms of PPARs have been identify, namely, PPARα, PPARβ/δ, and PPARγ, which are able to bind long-chain polyunsaturated FAs (LCPUFAs), n-3 LCPUFAs being bound with greater affinity to achieve activation. FA binding induces a conformational change of the nuclear receptors, triggering the transcription of specific genes including those encoding for various metabolic and cellular processes such as FA β-oxidation and adipogenesis, thus representing key mediators of lipid homeostasis. In addition, PPARs have important roles during placental, embryonal, and fetal development, and in the regulation of processes related to aging comprising oxidative stress, inflammation, and neuroprotection. The aim of this review was to assess the role of FAs as PPARs ligands, in terms of their main functions associated with FA metabolism and their relevance in the prevention and treatment of related pathologies during human life span.
Collapse
Affiliation(s)
| | - Macarena Ortiz
- Nutrition Department, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Rodrigo Valenzuela
- Nutrition Department, Faculty of Medicine, University of Chile, Santiago, Chile.
| | - Luis A Videla
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
41
|
Beyaz S, Yilmaz ÖH. Molecular Pathways: Dietary Regulation of Stemness and Tumor Initiation by the PPAR-δ Pathway. Clin Cancer Res 2016; 22:5636-5641. [PMID: 27702819 DOI: 10.1158/1078-0432.ccr-16-0775] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/06/2016] [Accepted: 09/07/2016] [Indexed: 12/30/2022]
Abstract
Peroxisome proliferator-activated receptor delta (PPAR-δ) is a nuclear receptor transcription factor that regulates gene expression during development and disease states, such as cancer. However, the precise role of PPAR-δ during tumorigenesis is not well understood. Recent data suggest that PPAR-δ may have context-specific oncogenic and tumor-suppressive roles depending on the tissue, cell-type, or diet-induced physiology in question. For example, in the intestine, pro-obesity diets, such as a high-fat diet (HFD), are associated with increased colorectal cancer incidence. Interestingly, many of the effects of an HFD in the stem and progenitor cell compartment are driven by a robust PPAR-δ program and contribute to the early steps of intestinal tumorigenesis. Importantly, the PPAR-δ pathway or its downstream mediators may serve as therapeutic intervention points or biomarkers in colon cancer that arise in patients who are obese. Although potent PPAR-δ agonists and antagonists exist, their clinical utility may be enhanced by uncovering how PPAR-δ mediates tumorigenesis in diverse tissues and cell types as well as in response to diet. Clin Cancer Res; 22(23); 5636-41. ©2016 AACR.
Collapse
Affiliation(s)
- Semir Beyaz
- The David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, Massachusetts.,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts.,Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts
| | - Ömer H Yilmaz
- The David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, Massachusetts. .,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts.,Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
42
|
Yin K, Smith AG. Nuclear receptor function in skin health and disease: therapeutic opportunities in the orphan and adopted receptor classes. Cell Mol Life Sci 2016; 73:3789-800. [PMID: 27544210 PMCID: PMC11108460 DOI: 10.1007/s00018-016-2329-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 08/04/2016] [Indexed: 12/12/2022]
Abstract
The skin forms a vital barrier between an organism's external environment, providing protection from pathogens and numerous physical and chemical threats. Moreover, the intact barrier is essential to prevent water and electrolyte loss without which terrestrial life could not be maintained. Accordingly, acute disruption of the skin through physical or chemical trauma needs to be repaired timely and efficiently as sustained skin pathologies ranging from mild irritations and inflammation through to malignancy impact considerably on morbidity and mortality. The Nuclear Hormone Receptor Family of transcriptional regulators has proven to be highly valuable targets for addressing a range of pathologies, including metabolic syndrome and cancer. Indeed members of the classic endocrine sub-group, such as the glucocorticoid, retinoid, and Vitamin D receptors, represent mainstay treatment strategies for numerous inflammatory skin disorders, though side effects from prolonged use are common. Emerging evidence has now highlighted important functional roles for nuclear receptors belonging to the adopted and orphan subgroups in skin physiology and patho-physiology. This review will focus on these subgroups and explore the current evidence that suggests these nuclear receptor hold great promise as future stand-alone or complementary drug targets in treating common skin diseases and maintaining skin homeostasis.
Collapse
Affiliation(s)
- Kelvin Yin
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Aaron G Smith
- Dermatology Research Centre, School of Medicine, University of Queensland, Brisbane, QLD, 4072, Australia.
- School of Biomedical Science, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology, Woolloongabba, QLD, 4102, Australia.
| |
Collapse
|
43
|
Adeogun AO, Ibor OR, Onoja AB, Arukwe A. Fish condition factor, peroxisome proliferator activated receptors and biotransformation responses in Sarotherodon melanotheron from a contaminated freshwater dam (Awba Dam) in Ibadan, Nigeria. MARINE ENVIRONMENTAL RESEARCH 2016; 121:74-86. [PMID: 26898991 DOI: 10.1016/j.marenvres.2016.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/31/2016] [Accepted: 02/03/2016] [Indexed: 06/05/2023]
Abstract
The relationship between condition factor (CF), peroxisome proliferator-activated receptors (PPARs), phase 1 biotransformation (CYP1A isoforms) and contaminant burden has been studied in Sarotherodon melanotheron from a contaminated tropical freshwater dam (Awba Dam) and compared to a reference site (Modete Dam) in Southwest, Nigeria. A total of 89 fish (57 males and 32 females) was collected from Awba Dam and 95 fish (48 males and 47 females) from the reference site. In general, fish sampled from Awba Dam were bigger than reference site. Sediment samples were also collected from both sites for contaminant analysis. Expression of ppar and cyp1 isoforms was analyzed using validated real-time PCR, while CYP1A and PPAR protein levels were analyzed using immunochemical method with specific antibodies. CYP-mediated catalytic responses (EROD, MROD and BROD) were performed by biochemical methods. We observed significant increases in ppar and cyp1 isoforms mRNA in both male and female fish from Awba Dam, compared to the reference site. Catalytic activities of EROD, MROD and BROD paralleled cyp1 transcript levels. Sex-related differences in PPAR and CYP1A protein levels were also observed, showing higher CYP1A proteins in males, compared with females, and higher PPAR proteins in females compared with males. Principal component analysis (PCA) biplot showed positive relationships between biological responses (ppar isoforms), condition factor (CF) and sediment PCBs, PAHs, OCPs and heavy metal concentrations. The present study shows that S. melanotheron inhabiting Awba Dam are severely affected by different classes of environmental contaminants that target metabolic processes (PPAR) and biotransformation pathways (CYP1A) in male and female fish, compared to a reference site. Interestingly, fish from Awba Dam were exhibiting good growth (evidence by high CF values) that paralleled increases in the transcriptional activation of ppar and cyp1 isoforms, despite the high contaminant burdens, suggesting a possible contaminant-induced obesogenic effects.
Collapse
Affiliation(s)
- Aina O Adeogun
- Department of Zoology, University of Ibadan, Ibadan, Nigeria
| | - Oju R Ibor
- Department of Zoology, University of Ibadan, Ibadan, Nigeria
| | - Anyebe B Onoja
- Department of Virology, University of Ibadan, Ibadan, Nigeria
| | - Augustine Arukwe
- Department of Biology, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, N-7491 Trondheim, Norway.
| |
Collapse
|
44
|
Tan NS, Vázquez-Carrera M, Montagner A, Sng MK, Guillou H, Wahli W. Transcriptional control of physiological and pathological processes by the nuclear receptor PPARβ/δ. Prog Lipid Res 2016; 64:98-122. [PMID: 27665713 DOI: 10.1016/j.plipres.2016.09.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 08/31/2016] [Accepted: 09/20/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Nguan Soon Tan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Academia, 20 College Road, 169856, Singapore; Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Agency for Science Technology & Research, 138673, Singapore; KK Research Centre, KK Women's and Children's Hospital, 100 Bukit Timah Road, 229899, Singapore.
| | - Manuel Vázquez-Carrera
- Department of Pharmacology and Therapeutic Chemistry, Faculty of Pharmacy, University of Barcelona, Institute of Biomedicine of the University of Barcelona (IBUB), Pediatric Research Institute-Hospital Sant Joan de Déu, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Diseases (CIBERDEM), Barcelona, Spain
| | | | - Ming Keat Sng
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Academia, 20 College Road, 169856, Singapore
| | - Hervé Guillou
- INRA ToxAlim, UMR1331, Chemin de Tournefeuille, Toulouse Cedex 3, France
| | - Walter Wahli
- Lee Kong Chian School of Medicine, Nanyang Technological University, Academia, 20 College Road, 169856, Singapore; INRA ToxAlim, UMR1331, Chemin de Tournefeuille, Toulouse Cedex 3, France; Center for Integrative Genomics, University of Lausanne, Le Génopode, CH 1015 Lausanne, Switzerland.
| |
Collapse
|
45
|
Degueurce G, D'Errico I, Pich C, Ibberson M, Schütz F, Montagner A, Sgandurra M, Mury L, Jafari P, Boda A, Meunier J, Rezzonico R, Brembilla NC, Hohl D, Kolios A, Hofbauer G, Xenarios I, Michalik L. Identification of a novel PPARβ/δ/miR-21-3p axis in UV-induced skin inflammation. EMBO Mol Med 2016; 8:919-36. [PMID: 27250636 PMCID: PMC4967944 DOI: 10.15252/emmm.201505384] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Although excessive exposure to UV is widely recognized as a major factor leading to skin perturbations and cancer, the complex mechanisms underlying inflammatory skin disorders resulting from UV exposure remain incompletely characterized. The nuclear hormone receptor PPARβ/δ is known to control mouse cutaneous repair and UV-induced skin cancer development. Here, we describe a novel PPARβ/δ-dependent molecular cascade involving TGFβ1 and miR-21-3p, which is activated in the epidermis in response to UV exposure. We establish that the passenger miRNA miR-21-3p, that we identify as a novel UV-induced miRNA in the epidermis, plays a pro-inflammatory function in keratinocytes and that its high level of expression in human skin is associated with psoriasis and squamous cell carcinomas. Finally, we provide evidence that inhibition of miR-21-3p reduces UV-induced cutaneous inflammation in ex vivo human skin biopsies, thereby underlining the clinical relevance of miRNA-based topical therapies for cutaneous disorders.
Collapse
Affiliation(s)
- Gwendoline Degueurce
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Ilenia D'Errico
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Christine Pich
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Mark Ibberson
- SIB Swiss Institute of Bioinformatics University of Lausanne, Lausanne, Switzerland
| | - Frédéric Schütz
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland SIB Swiss Institute of Bioinformatics University of Lausanne, Lausanne, Switzerland
| | - Alexandra Montagner
- INRA ToxAlim, Integrative Toxicology and Metabolism, UMR1331, Toulouse, France
| | - Marie Sgandurra
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Lionel Mury
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Paris Jafari
- Department of Musculoskeletal Medicine, Service of Plastic and Reconstructive Surgery CHUV, Epalinges, Switzerland
| | - Akash Boda
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Julien Meunier
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Roger Rezzonico
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, UMR 7275, Valbonne, France
| | - Nicolò Costantino Brembilla
- Dermatology, University Hospital and School of Medicine, Geneva, Switzerland Immunology and Allergy, University Hospital and School of Medicine, Geneva Switzerland
| | - Daniel Hohl
- Service de dermatologie et venereology, Hôpital de Beaumont CHUV, Lausanne, Switzerland
| | - Antonios Kolios
- Department of Immunology, University Hospital, University of Zürich, Zürich, Switzerland Department of Dermatology, University Hospital, University of Zürich, Zürich, Switzerland
| | - Günther Hofbauer
- Department of Dermatology, University Hospital, University of Zürich, Zürich, Switzerland
| | - Ioannis Xenarios
- SIB Swiss Institute of Bioinformatics University of Lausanne, Lausanne, Switzerland
| | - Liliane Michalik
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
46
|
Marchwicka A, Cunningham A, Marcinkowska E, Brown G. Therapeutic use of selective synthetic ligands for retinoic acid receptors: a patent review. Expert Opin Ther Pat 2016; 26:957-71. [PMID: 27336223 DOI: 10.1080/13543776.2016.1205586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Differentiation therapy using all-trans retinoic acid (ATRA) revolutionised the treatment of acute promyelocytic leukaemia to such an extent that it is now one of the most curable types of leukaemia, with ATRA and anthracycline-based chemotherapy providing cure rates above 80%. Isotretinoin is used to treat chronic acne. Here, we examine the information described in recent patents and the extent to which new findings are influencing extending retinoid-based differentiation therapy to other cancers, as well as the development of new therapies for other disorders. AREAS COVERED A search has been performed on the literature and worldwide patents filed during 2014 to the present time, focusing on synthetic agonists and antagonists of retinoic acid receptors and novel compositions for the delivery of these agents. EXPERT OPINION New potential therapeutic applications have been described, including lung, breast and head and neck cancers, T cell lymphoma and neurodegenerative, metabolic, ophthalmic, muscle, and inflammatory disorders. Recent patents have described the means to maximise retinoid activity. Two decades of efforts to extend retinoid-based therapies have been disappointing and new synthetic retinoids, target diseases and modes of delivery may well resolve this long standing issue.
Collapse
Affiliation(s)
- Aleksandra Marchwicka
- a Laboratory of Protein Biochemistry, Faculty of Biotechnology , University of Wroclaw , Wroclaw , Poland
| | - Alan Cunningham
- b Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences , University of Birmingham , Birmingham , UK
| | - Ewa Marcinkowska
- a Laboratory of Protein Biochemistry, Faculty of Biotechnology , University of Wroclaw , Wroclaw , Poland
| | - Geoffrey Brown
- c Institute of Clinical Sciences, College of Medical and Dental Sciences , University of Birmingham , Birmingham , UK
| |
Collapse
|
47
|
Transition from inflammation to proliferation: a critical step during wound healing. Cell Mol Life Sci 2016; 73:3861-85. [PMID: 27180275 PMCID: PMC5021733 DOI: 10.1007/s00018-016-2268-0] [Citation(s) in RCA: 934] [Impact Index Per Article: 103.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/22/2016] [Accepted: 05/06/2016] [Indexed: 02/08/2023]
Abstract
The ability to rapidly restore the integrity of a broken skin barrier is critical and is the ultimate goal of therapies for hard-to-heal-ulcers. Unfortunately effective treatments to enhance healing and reduce scarring are still lacking. A deeper understanding of the physiology of normal repair and of the pathology of delayed healing is a prerequisite for the development of more effective therapeutic interventions. Transition from the inflammatory to the proliferative phase is a key step during healing and accumulating evidence associates a compromised transition with wound healing disorders. Thus, targeting factors that impact this phase transition may offer a rationale for therapeutic development. This review summarizes mechanisms regulating the inflammation-proliferation transition at cellular and molecular levels. We propose that identification of such mechanisms will reveal promising targets for development of more effective therapies.
Collapse
|
48
|
Adeogun AO, Ibor OR, Regoli F, Arukwe A. Peroxisome proliferator-activated receptors and biotransformation responses in relation to condition factor and contaminant burden in tilapia species from Ogun River, Nigeria. Comp Biochem Physiol C Toxicol Pharmacol 2016; 183-184:7-19. [PMID: 26743957 DOI: 10.1016/j.cbpc.2015.12.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/16/2015] [Accepted: 12/19/2015] [Indexed: 12/18/2022]
Abstract
A major development in fishery science has been the Fulton's condition factor (CF) as a reliable physiological index of fish growth and health status (Fulton 1902). As a general rule, CF-value greater than 1 (>1) should be regarded as an indicator for good growth and health. Therefore, exposure of fish to contaminants in the environment will be expected to produce a reduction in scope for growth, since energy for growth will be allocated to overcome stressful conditions. In the present study, we hypothesized that tilapia species from Ogun River (Nigeria) are experiencing severe contaminant-induced obesogen effects leading to high CF (≥ 2) in fish with pathological alterations. The environmental obesogen hypothesis has related the interaction between environmental pollutants and PPAR isoform activation In this respect, peroxisome proliferator-activated receptors (PPARs) and biotransformation responses in relation to contaminant burden were investigated in a total of 1074 specimens of Tilapias species (Tilapia guineensis, Sarotherodon galileaus and Oreochromis niloticus) collected from three areas with different degrees of anthropogenic contamination and from a putative control site along the Ogun River. Liver mRNA expression of cytochrome cyp1 isoforms (cyp1a, 1b and 1c) and PPAR isoforms (ppar-α, β and γ) were analyzed using validated real-time PCR. Fish were also analyzed for CF and muscle contaminant burden (aliphatic and polycyclic aromatic hydrocarbons, organochlorine pesticides, and polychlorinated biphenyls). A significant increase in mRNA expression of cyp1- and ppar isoforms was observed in fish from polluted areas, and these results paralleled data on PCBs and PAHs tissue concentrations. Further, cyp1 isoforms showed clear sex-related differences, with higher mRNA expression in male fish than in females. Principal component analysis revealed a relationship between cyp1 isoforms, ppar-α, β, PCBs and PAHs and these interactions may suggest a crosstalk between AhR- and PPARs mediated pathways on metabolic and energetic processes. The PCA biplot also highlighted a positive relationship between ppar-γ, body weight, total length and PAHs. The CF for fish from all the sites was ≥ 2 indicating that this parameter may not be a reliable index for evaluating fish growth and health condition, especially in wild fish population exposed to complex cocktails of environmental pollutants.
Collapse
Affiliation(s)
- Aina O Adeogun
- Department of Zoology, University of Ibadan, Ibadan, Nigeria
| | - Oju R Ibor
- Department of Zoology, University of Ibadan, Ibadan, Nigeria
| | - Francesco Regoli
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Augustine Arukwe
- Department of Biology, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, N-7491 Trondheim, Norway.
| |
Collapse
|
49
|
The role of barrier genes in epidermal malignancy. Oncogene 2016; 35:5705-5712. [PMID: 27041586 DOI: 10.1038/onc.2016.84] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 02/17/2016] [Accepted: 02/18/2016] [Indexed: 12/24/2022]
Abstract
The outermost layer of the mammalian skin, the epidermis, forms a protective barrier against pathogenic microbes and tissue dehydration. This barrier is formed and maintained by complex genetic networks that connect cellular differentiation processes, enzymatic activities and cellular junctions. Disruption in these networks affects the balance between keratinocyte proliferation and differentiation resulting in barrier function impairment, epidermal hyperproliferation and in some cases, squamous cell carcinoma (SCC). Recent studies in wound-induced inflammation-mediated cancers in mice have identified dysregulation of core barrier components as tumor drivers. We therefore propose a hypothesis in which loss of key barrier genes, induce barrier dysfunction, and promote inflammation-driven epidermal hyperplasia and carcinogenesis over time. This emerging vision suggests that under specific genetic circumstances, localized barrier impairment could be considered as a hallmark of initiating lesions in epidermal SCC.
Collapse
|
50
|
Benedetti E, Di Loreto S, D'Angelo B, Cristiano L, d'Angelo M, Antonosante A, Fidoamore A, Golini R, Cinque B, Cifone MG, Ippoliti R, Giordano A, Cimini A. The PPARβ/δ Agonist GW0742 Induces Early Neuronal Maturation of Cortical Post-Mitotic Neurons: Role of PPARβ/δ in Neuronal Maturation. J Cell Physiol 2016. [PMID: 26206209 DOI: 10.1002/jcp.25103] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Increasing evidences support that signaling lipids participate in synaptic plasticity and cell survival, and that the lipid signaling is closely associated with neuronal differentiation, learning, and memory and with pathologic events, such as epilepsy and Alzheimer's disease. The Peroxisome Proliferator-Activated Receptors (PPAR) are strongly involved in the fatty acid cell signaling, as many of the natural lypophylic compounds are PPAR ligands. We have previously shown that PPARβ/δ is the main isotype present in cortical neuron primary cultures and that during neuronal maturation, PPARβ/δ is gradually increased and activated. To get more insight into the molecular mechanism by which PPARβ/δ may be involved in neuronal maturation processes, in this work a specific PPARβ/δ agonist, GW0742 was used administered alone or in association with a specific PPARβ/δ antagonist, the GSK0660, and the parameters involved in neuronal differentiation and maturation were assayed. The data obtained demonstrated the strong involvement of PPARβ/δ in neuronal maturation, triggering the agonist an anticipation of neuronal differentiation, and the antagonist abolishing the observed effects. These effects appear to be mediated by the activation of BDNF pathway.
Collapse
Affiliation(s)
- Elisabetta Benedetti
- Department of Life Health and Environmental Sciences, University of L'Aquila, Italy
| | - Silvia Di Loreto
- Institute of Translational Pharmacology (IFT)-CNR, L'Aquila, Italy
| | - Barbara D'Angelo
- Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, Temple University, Philadelphia, Pennsylvania
| | - Loredana Cristiano
- Department of Life Health and Environmental Sciences, University of L'Aquila, Italy
| | - Michele d'Angelo
- Department of Life Health and Environmental Sciences, University of L'Aquila, Italy
| | - Andrea Antonosante
- Department of Life Health and Environmental Sciences, University of L'Aquila, Italy
| | - Alessia Fidoamore
- Department of Life Health and Environmental Sciences, University of L'Aquila, Italy
| | - Raffaella Golini
- Department of Life Health and Environmental Sciences, University of L'Aquila, Italy
| | - Benedetta Cinque
- Department of Life Health and Environmental Sciences, University of L'Aquila, Italy
| | - Maria Grazia Cifone
- Department of Life Health and Environmental Sciences, University of L'Aquila, Italy
| | - Rodolfo Ippoliti
- Department of Life Health and Environmental Sciences, University of L'Aquila, Italy
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, Temple University, Philadelphia, Pennsylvania.,Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Annamaria Cimini
- Department of Life Health and Environmental Sciences, University of L'Aquila, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, Temple University, Philadelphia, Pennsylvania.,National Institute for Nuclear Physics (INFN), Gran Sasso National Laboratory (LNGS), Assergi, Italy
| |
Collapse
|