1
|
Zhang Y, Zhou S, Zhao R, Huang Y, Wang Y. Chronic cold exposure reprograms feeding-regulated LPL activity in white adipose tissues through hepatic ANGPTL3 and ANGPTL8. LIFE METABOLISM 2025; 4:loae037. [PMID: 39872988 PMCID: PMC11770819 DOI: 10.1093/lifemeta/loae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/28/2024] [Accepted: 10/12/2024] [Indexed: 01/30/2025]
Abstract
Graphical Abstract Lipoprotein lipase (LPL) mediates peripheral tissue triglyceride (TG) uptake. Hepatic ANGPTL3 (A3) and ANGPTL8 (A8) form a complex and inhibit LPL activity in the white adipose tissue (WAT) via systematic circulation. ANGPTL4 (A4) is expressed in WAT and inhibits LPL activity locally. Feeding increases hepatic A8 expression and increases its inhibition for WAT LPL activity together with A3, while feeding suppresses WAT A4 expression and releases its inhibition on LPL. At room temperature, the feeding-suppressed A4 overrides the feeding-increased A3/A8, resulting in increased LPL activity in WAT by food intake. Browning improves hepatic insulin sensitivity and increases postprandial A8 expression. The feeding-increased A3/A8 overrides the feeding-suppressed A4, resulting in suppressed LPL activity in WAT by food intake. This reprogrammed LPL regulation plays an important role in reprogramming TG metabolism during adipose tissue browning.
Collapse
Affiliation(s)
- Yiliang Zhang
- Hubei Key Laboratory of Cell Homeostasis, Department of Biochemistry, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Shengyang Zhou
- Hubei Key Laboratory of Cell Homeostasis, Department of Biochemistry, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Runming Zhao
- Hubei Key Laboratory of Cell Homeostasis, Department of Biochemistry, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Yingzhen Huang
- Hubei Key Laboratory of Cell Homeostasis, Department of Biochemistry, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Yan Wang
- Hubei Key Laboratory of Cell Homeostasis, Department of Biochemistry, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei 430072, China
| |
Collapse
|
2
|
Luk C, Bridge KI, Warmke N, Simmons KJ, Drozd M, Moran A, MacCannell ADV, Cheng CW, Straw S, Scragg JL, Smith J, Ozber CH, Wilkinson CG, Skromna A, Makava N, Prag HA, Simon Futers T, Brown OI, Bruns AF, Walker AM, Watt NT, Mughal R, Griffin KJ, Yuldasheva NY, Limumpornpetch S, Viswambharan H, Sukumar P, Beech DJ, Vidal-Puig A, Witte KK, Murphy MP, Hartley RC, Wheatcroft SB, Cubbon RM, Roberts LD, Kearney MT, Haywood NJ. Paracrine role of endothelial IGF-1 receptor in depot-specific adipose tissue adaptation in male mice. Nat Commun 2025; 16:170. [PMID: 39747815 PMCID: PMC11696296 DOI: 10.1038/s41467-024-54669-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 11/18/2024] [Indexed: 01/04/2025] Open
Abstract
During recent decades, changes in lifestyle have led to widespread nutritional obesity and its related complications. Remodelling adipose tissue as a therapeutic goal for obesity and its complications has attracted much attention and continues to be actively explored. The endothelium lines all blood vessels and is close to all cells, including adipocytes. The endothelium has been suggested to act as a paracrine organ. We explore the role of endothelial insulin-like growth factor-1 receptor (IGF-1R), as a paracrine modulator of white adipose phenotype. We show that a reduction in endothelial IGF-1R expression in the presence of high-fat feeding in male mice leads to depot-specific beneficial white adipose tissue remodelling, increases whole-body energy expenditure and enhances insulin sensitivity via a non-cell-autonomous paracrine mechanism. We demonstrate that increased endothelial malonate may be contributory and that malonate prodrugs have potentially therapeutically relevant properties in the treatment of obesity-related metabolic disease.
Collapse
Affiliation(s)
- Cheukyau Luk
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Katherine I Bridge
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Nele Warmke
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
- Integrative Vascular Biology Laboratory, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Katie J Simmons
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
- School of Biomedical Sciences, Faculty of Biological Sciences & Astbury Centre, University of Leeds, Leeds, UK
| | - Michael Drozd
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Amy Moran
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Amanda D V MacCannell
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Chew W Cheng
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Sam Straw
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Jason L Scragg
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Jessica Smith
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Claire H Ozber
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
- Division of Gastroenterology & Surgery, Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Chloe G Wilkinson
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
- North West Genomic Laboratory Hub, Manchester University NHS Foundation Trust, St Mary's Hospital, Oxford Road, Manchester, UK
| | - Anna Skromna
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Natallia Makava
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Hiran A Prag
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - T Simon Futers
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Oliver I Brown
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Alexander-Francisco Bruns
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Andrew Mn Walker
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Nicole T Watt
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Romana Mughal
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
- Department of Optometry and Vision Sciences, University of Huddersfield, Huddersfield, UK
| | - Kathryn J Griffin
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Nadira Y Yuldasheva
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Sunti Limumpornpetch
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
- Division of Internal Medicine, Cardiology Unit, Faculty of Medicine Prince of Songkla University, Songkhla, Thailand
| | - Hema Viswambharan
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Piruthivi Sukumar
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - David J Beech
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | | | - Klaus K Witte
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | | | - Stephen B Wheatcroft
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Richard M Cubbon
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Lee D Roberts
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Mark T Kearney
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK.
| | - Natalie J Haywood
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| |
Collapse
|
3
|
Munoz M, Solis C, McCann M, Park J, Rafael-Clyke K, Chowdhury SAK, Jiang Y, Rosas PC. P21-activated kinase-1 signaling is required to preserve adipose tissue homeostasis and cardiac function. Mol Cell Biochem 2025; 480:249-263. [PMID: 38430300 PMCID: PMC11371416 DOI: 10.1007/s11010-024-04968-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 02/13/2024] [Indexed: 03/03/2024]
Abstract
While P21-activated kinase-1 (PAK1) has been extensively studied in relation to cardiovascular health and glucose metabolism, its roles within adipose tissue and cardiometabolic diseases are less understood. In this study, we explored the effects of PAK1 deletion on energy balance, adipose tissue homeostasis, and cardiac function utilizing a whole-body PAK1 knockout (PAK1-/-) mouse model. Our findings revealed that body weight differences between PAK1-/- and WT mice emerged at 9 weeks of age, with further increases observed at 12 weeks. Furthermore, PAK1-/- mice displayed increased fat mass and decreased lean mass at 12 weeks, indicating a shift towards adiposity. In conjunction with the increased body weight, PAK1-/- mice had increased food intake and reduced energy expenditure. At a mechanistic level, PAK1 deletion boosted the expression of lipogenic markers while diminishing thermogenic markers expression in adipose tissues, contributing to reduced energy expenditure and the overall obesogenic phenotype. Moreover, our findings highlighted a significant impact on cardiac function following PAK1 deletion, including alterations in calcium kinetics and compromised systolic and lusitropy functions. In summary, our study emphasizes the significant role of PAK1 in weight regulation and cardiac function, enriching our comprehension of heart health and metabolism. These findings could potentially facilitate the identification of novel therapeutic targets in cardiometabolic diseases.
Collapse
Affiliation(s)
- Marcos Munoz
- Divison of Endocrinology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Christopher Solis
- Department of Health, Nutrition & Food Sciences, Florida State University, Tallahassee, FL, USA
| | - Maximilian McCann
- Department of Ophthalmology & Visual Sciences, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Jooman Park
- Department of Physiology & Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Koreena Rafael-Clyke
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Shamim A K Chowdhury
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Yuwei Jiang
- Department of Physiology & Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Paola C Rosas
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
4
|
Masip G, Nielsen DE. Relationships between the Planetary Health Diet Index, its food groups, and polygenic risk of obesity in the CARTaGENE cohort. Nutr Metab (Lond) 2024; 21:116. [PMID: 39741271 DOI: 10.1186/s12986-024-00890-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 12/18/2024] [Indexed: 01/02/2025] Open
Abstract
BACKGROUND The Planetary Health Diet, proposed by the EAT-Lancet Commission, seeks to promote a sustainable and healthy diet for both humans and the environment. However, few studies have investigated relationships between the Planetary Health Diet and the genetic pathway of obesity. The aim of this study was to assess whether adherence to a Planetary Health Diet Index (PHDI) mediated or moderated the genetic susceptibility to obesity. METHODS Participants were 7,037 adults (57% females, aged 55.6 ± 7.7) from the Quebec CARTaGENE Biobank. We constructed a primary polygenic risk score (PRS-Khera) for body mass index (BMI) comprised of ~ 2 million SNPs and utilized a secondary 97 SNPs polygenic risk score (PRS-Locke) for sensitivity analyses. The PHDI was based on 16 food groups. General linear models were conducted to assess main effect associations between the PRSs, the Planetary Health Diet Index (PHDI), and the individual food groups that comprise the PHDI on obesity outcomes. Causal mediation analyses (CMA) were used to evaluate mediation and interaction effects. All models were adjusted for age, sex, genetic ancestry, socio-demographic, and lifestyle variables, including those associated with dietary habits. RESULTS The overall PHDI was inversely associated with BMI (β = - 0.11, 95% confidence interval (CI): - 0.13, - 0.09), waist circumference (WC) (β = - 0.12, 95% CI: - 0.14, - 0.10), and body fat % (β = - 0.10, 95% CI: - 0.12, - 0.08) for all participants, but did not mediate or moderate obesity polygenic risk. Associations between the PRS-Khera and obesity outcomes in all participants were partly mediated by the intake of red meat (mediation effect BMI: 1.72%, p = 0.01; WC: 2.22%, p = 0.01; body fat %: 2.14%, p = 0.01). Moreover, among males, whole grains intake partly mediated the association between the PRS-Khera and outcomes cross-sectionally (BMI: 1.28%, p = 0.03; WC: 1.71%, p = 0.02; body fat %: 2.19%, p = 0.02) and longitudinally (BMI: 3.80%, p = 0.02; WC: 7.38%, p = 0.04), but some observations were attenuated upon correction for multiple comparisons. CONCLUSIONS PHDI adherence was associated with a lower BMI, WC, and body fat % and genetic susceptibility to obesity was partly mediated by the intake of red meat and whole grains. Some components of a plant-based diet could be implicated in mechanisms underlying genetic susceptibility to obesity.
Collapse
Affiliation(s)
- Guiomar Masip
- School of Human Nutrition, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada
- GENUD (Growth, Exercise, Nutrition and Development) Research Group, Facultad de Ciencias de la Salud, Universidad de Zaragoza, Instituto Agroalimentario de Aragón (IA2), Instituto de Investigación Sanitaria de Aragón (IISA), Zaragoza, Spain
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Daiva E Nielsen
- School of Human Nutrition, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada.
| |
Collapse
|
5
|
Thakur P, Baraskar K, Shrivastava VK, Medhi B. Cross-talk between adipose tissue and microbiota-gut-brain-axis in brain development and neurological disorder. Brain Res 2024; 1844:149176. [PMID: 39182900 DOI: 10.1016/j.brainres.2024.149176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/25/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024]
Abstract
The gut microbiota is an important factor responsible for the physiological processes as well as pathogenesis of host. The communication between central nervous system (CNS) and microbiota occurs by different pathways i.e., chemical, neural, immune, and endocrine. Alteration in gut microbiota i.e., gut dysbiosis causes alteration in the bidirectional communication between CNS and gut microbiota and linked to the pathogenesis of neurological and neurodevelopmental disorder. Therefore, now-a-days microbiota-gut-brain-axis (MGBA) has emerged as therapeutic target for the treatment of metabolic disorder. But, experimental data available on MGBA from basic research has limited application in clinical study. In present study we first summarized molecular mechanism of microbiota interaction with brain physiology and pathogenesis via collecting data from different sources i.e., PubMed, Scopus, Web of Science. Furthermore, evidence shows that adipose tissue (AT) is active during metabolic activities and may also interact with MGBA. Hence, in present study we have focused on the relationship among MGBA, brown adipose tissue, and white adipose tissue. Along with this, we have also studied functional specificity of AT, and understanding heterogeneity among MGBA and different types of AT. Therefore, molecular interaction among them may provide therapeutic target for the treatment of neurological disorder.
Collapse
Affiliation(s)
- Pratibha Thakur
- Endocrinology Unit, Bioscience Department, Barkatullah University, Bhopal, Madhya Pradesh 462026, India.
| | - Kirti Baraskar
- Endocrinology Unit, Bioscience Department, Barkatullah University, Bhopal, Madhya Pradesh 462026, India
| | - Vinoy K Shrivastava
- Endocrinology Unit, Bioscience Department, Barkatullah University, Bhopal, Madhya Pradesh 462026, India
| | - Bikash Medhi
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, Punjab 160012, India.
| |
Collapse
|
6
|
Mohaghegh N, Ahari A, Buttles C, Davani S, Hoang H, Huang Q, Huang Y, Hosseinpour B, Abbasgholizadeh R, Cottingham AL, Farhadi N, Akbari M, Kang H, Khademhosseini A, Jucaud V, Pearson RM, Hassani Najafabadi A. Simvastatin-Loaded Polymeric Nanoparticles: Targeting Inflammatory Macrophages for Local Adipose Tissue Browning in Obesity Treatment. ACS NANO 2024; 18:27764-27781. [PMID: 39342648 DOI: 10.1021/acsnano.4c10742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Obesity is defined as chronic, low-grade inflammation within specific tissues. Given the escalating prevalence of obesity among individuals of all ages, obesity has reached epidemic proportions, posing an important public health challenge. Despite significant advancements in treating obesity, conventional approaches remain largely ineffective or involve severe side effects, thus underscoring the pressing need to explore and develop treatment approaches. Targeted and local immunomodulation using nanoparticles (NPs) can influence fat production and utilization processes. Statins, known for their anti-inflammatory properties, show the potential for mitigating obesity-related inflammation. A localized delivery option offers several advantages over oral and parenteral delivery methods. Here, we developed simvastatin (Sim) encapsulated within PLGA NPs (Sim-NP) for localized delivery of Sim to adipose tissues (ATs) for immunomodulation to treat obesity. In vitro experiments revealed the strong anti-inflammatory effects of Sim-NPs, which resulted in enhanced modulation of macrophage (MΦ) polarization and induction of AT browning. We then extended our investigation to an in vivo mouse model of high-fat-diet (HFD)-induced obesity. Sim-NP administration led to the controlled release of Sim within AT, directly impacting MΦ activity and inducing AT browning while inducing weight loss. Our findings demonstrated that Sim-NP administration effectively inhibited the progression of obesity-related inflammation, controlled white fat production, and enhanced AT modulation. These results highlight the potential of Sim-NP as a potent nanotherapy for treating obesity by modulating the immune system.
Collapse
Affiliation(s)
- Neda Mohaghegh
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Amir Ahari
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
- Department of Surgery, University of California-Los Angeles, Los Angeles, California 90095, United States
| | - Claire Buttles
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
- Department of Biology, Indiana University Bloomington, Bloomington, Indiana 47405, United States
| | - Saya Davani
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
- Department of Neurobiology, Physiology, and Behavior, University of California Davis, Briggs Hall, Davis, California 95616, United States
| | - Hanna Hoang
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90024, United States
| | - Qiang Huang
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Yixuan Huang
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Bahareh Hosseinpour
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
- Department of Chemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Reza Abbasgholizadeh
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Andrea L Cottingham
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Neda Farhadi
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Mohsen Akbari
- Department of Mechanical Engineering, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
- Biotechnology Center, Silesian University of Technology, Gliwice 44-100, Poland
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Vadim Jucaud
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Ryan M Pearson
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | | |
Collapse
|
7
|
Yan XY, Luo YY, Chen HJ, Hu XQ, Zheng P, Fang HT, Ding F, Zhang L, Li Z, Yan YE. IRX3 promotes adipose tissue browning and inhibits fibrosis in obesity-resistant mice. Int J Biochem Cell Biol 2024; 175:106638. [PMID: 39173825 DOI: 10.1016/j.biocel.2024.106638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 08/05/2024] [Accepted: 08/17/2024] [Indexed: 08/24/2024]
Abstract
Obesity is one of the threats to human health and survival. High fat diet (HFD)-induced obesity leads to adipose tissue fibrosis and a series of metabolic diseases. There are some people still thin under HFD, a phenomenon known as the "obesity resistance (OR) phenotype". It was found that Iroquois homeobox 3 (IRX3) is considered as a regulator in obesity, but the regulatory mechanism between OR and IRX3 is still unclear. In this study, we investigated OR on a HFD and the role of the IRX3 gene. Using mice, we observed that OR mice had lower body weights, reduced liver lipid synthesis, and increased white adipose tissue (WAT) lipolysis compared to obesity-prone (OP) mice. Additionally, OR mice exhibited spontaneous WAT browning and less fibrosis, correlating with higher Irx3 expression. Utilizing 3T3-L1 differentiated adipocytes, our study demonstrated that overexpression of Irx3 promoted thermogenesis-related gene expression and reduced adipocyte fibrosis. Therefore, Irx3 promotes WAT browning and inhibits fibrosis in OR mice. These results provide insight into the differences between obesity and OR, new perspectives on obesity treatment, and guidance for lessening adipose tissue fibrosis.
Collapse
Affiliation(s)
- Xi-Yue Yan
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Yuan-Yuan Luo
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Hui-Jian Chen
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Xiao-Qin Hu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Peng Zheng
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Hong-Ting Fang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Fei Ding
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Li Zhang
- Demonstration Center for Experimental Basic Medicine Education, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Zhen Li
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital, Wuhan University, Wuhan, China.
| | - You-E Yan
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China.
| |
Collapse
|
8
|
Neha, Chaudhary S, Tiwari P, Parvez S. Amelioration of Phytanic Acid-Induced Neurotoxicity by Nutraceuticals: Mechanistic Insights. Mol Neurobiol 2024; 61:7303-7318. [PMID: 38374317 DOI: 10.1007/s12035-024-03985-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 01/22/2024] [Indexed: 02/21/2024]
Abstract
Phytanic acid (PA) (3,7,11,15-tetramethylhexadecanoic acid) is a methyl-branched fatty acid that enters the body through food consumption, primarily through red meat, dairy products, and fatty marine foods. The metabolic byproduct of phytol is PA, which is then oxidized by the ruminal microbiota and some marine species. The first methyl group at the 3-position prevents the β-oxidation of branched-chain fatty acid (BCFA). Instead, α-oxidation of PA results in the production of pristanic acid (2,10,14-tetramethylpentadecanoic acid) with CO2. This fatty acid (FA) builds up in individuals with certain peroxisomal disorders and is historically linked to neurological impairment. It also causes oxidative stress in synaptosomes, as demonstrated by an increase in the production of reactive oxygen species (ROS), which is a sign of oxidative stress. This review concludes that the nutraceuticals (melatonin, piperine, quercetin, curcumin, resveratrol, epigallocatechin-3-gallate (EGCG), coenzyme Q10, ω-3 FA) can reduce oxidative stress and enhanced the activity of mitochondria. Furthermore, the use of nutraceuticals completely reversed the neurotoxic effects of PA on NO level and membrane potential. Additionally, the review further emphasizes the urgent need for more research into dairy-derived BCFAs and their impact on human health.
Collapse
Affiliation(s)
- Neha
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110 062, India
| | - Shaista Chaudhary
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110 062, India
| | - Prachi Tiwari
- Department of Physiotherapy, School of Nursing Sciences and Allied Health, Jamia Hamdard, New Delhi, 110 062, India
| | - Suhel Parvez
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110 062, India.
| |
Collapse
|
9
|
Qu J, Tian L, Zhang M, Sun B, Chen L. SGLT2 inhibitor canagliflozin reduces visceral adipose tissue in db/db mice by modulating AMPK/KLF4 signaling and regulating mitochondrial dynamics to induce browning. Mol Cell Endocrinol 2024; 592:112320. [PMID: 38964727 DOI: 10.1016/j.mce.2024.112320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/19/2024] [Accepted: 06/24/2024] [Indexed: 07/06/2024]
Abstract
Obesity is characterized by excessive accumulation of adipose tissue (mainly visceral). The morphology and function of mitochondria are crucial for regulating adipose browning and weight loss. Research suggests that the SGLT2 inhibitor canagliflozin may induce weight loss through an unknown mechanism, particularly targeting visceral adipose tissue. While Krueppel-Like Factor 4 (KLF4) is known to be essential for energy metabolism and mitochondrial function, its specific impact on visceral adipose tissue remains unclear. We administered canagliflozin to db/db mice for 8 weeks, or exposed adipocytes to canagliflozin for 24 h. The expression levels of browning markers, mitochondrial dynamics, and KLF4 were assessed. Then we validated the function of KLF4 through overexpression in vivo and in vitro. Adenosine monophosphate-activated protein kinase (AMPK) agonists, inhibitors, and KLF4 si-RNA were employed to elucidate the relationship between AMPK and KLF4. The findings demonstrated that canagliflozin significantly decreased body weight in db/db mice and augmented cold-induced thermogenesis. Additionally, canagliflozin increased the expression of mitochondrial fusion-related factors while reducing the levels of fission markers in epididymal white adipose tissue. These consistent findings were mirrored in canagliflozin-treated adipocytes. Similarly, overexpression of KLF4 in both adipocytes and db/db mice yielded comparable results. In all, canagliflozin mitigates obesity in db/db mice by promoting the brown visceral adipocyte phenotype through enhanced mitochondrial fusion via AMPK/KLF4 signaling.
Collapse
Affiliation(s)
- Jingru Qu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, People's Republic of China
| | - Lei Tian
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, People's Republic of China
| | - Man Zhang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, People's Republic of China
| | - Bei Sun
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, People's Republic of China.
| | - Liming Chen
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, People's Republic of China.
| |
Collapse
|
10
|
Mao L, Lu J, Hou Y, Nie T. Directly targeting PRDM16 in thermogenic adipose tissue to treat obesity and its related metabolic diseases. Front Endocrinol (Lausanne) 2024; 15:1458848. [PMID: 39351529 PMCID: PMC11439700 DOI: 10.3389/fendo.2024.1458848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/28/2024] [Indexed: 10/04/2024] Open
Abstract
Obesity is increasing globally and is closely associated with a range of metabolic disorders, including metabolic associated fatty liver disease, diabetes, and cardiovascular diseases. An effective strategy to combat obesity involves stimulating brown and beige adipocyte thermogenesis, which significantly enhances energy expenditure. Recent research has underscored the vital role of PRDM16 in the development and functionality of thermogenic adipocytes. Consequently, PRDM16 has been identified as a potential therapeutic target for obesity and its related metabolic disorders. This review comprehensively examines various studies that focus on combating obesity by directly targeting PRDM16 in adipose tissue.
Collapse
Affiliation(s)
- Liufeng Mao
- The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jinli Lu
- The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yunliang Hou
- The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, China
| | - Tao Nie
- School of Basic Medicine, Hubei University of Arts and Science, Xiangyang, China
| |
Collapse
|
11
|
Branquinho J, Neves RL, Martin RP, Arata JG, Bittencourt CA, Araújo RC, Icimoto MY, Pesquero JB. Kinin B1 receptor deficiency promotes enhanced adipose tissue thermogenic response to β3-adrenergic stimulation. Inflamm Res 2024; 73:1565-1579. [PMID: 39017739 DOI: 10.1007/s00011-024-01917-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/18/2024] Open
Abstract
OBJECTIVE AND DESIGN Kinin B1 receptor (B1R) has a key role in adipocytes to protect against obesity and glycemic metabolism, thus becoming a potential target for regulation of energy metabolism and adipose tissue thermogenesis. MATERIAL OR SUBJECTS Kinin B1 knockout mice (B1KO) were subjected to acute induction with CL 316,243 and chronic cold exposure. METHODS Metabolic and histological analyses, gene and protein expression and RNA-seq were performed on interscapular brown adipose tissue (iBAT) and inguinal white adipose tissue (iWAT) of mice. RESULTS B1KO mice, under acute effect of CL 316,243, exhibited increased energy expenditure and upregulated thermogenic genes in iWAT. They were also protected from chronic cold, showing enhanced non-shivering thermogenesis with increased iBAT mass (~ 90%) and recruitment of beige adipocytes in iWAT (~ 50%). Positive modulation of thermogenic and electron transport chain genes, reaching a 14.5-fold increase for Ucp1 in iWAT. RNA-seq revealed activation of the insulin signaling pathways for iBAT and oxidative phosphorylation, tricarboxylic acid cycle, and browning pathways for iWAT. CONCLUSION B1R deficiency induced metabolic and gene expression alterations in adipose tissue, activating thermogenic pathways and increasing energy metabolism. B1R antagonists emerge as promising therapeutic targets for regulating obesity and associated metabolic disorders, such as inflammation and diabetes.
Collapse
MESH Headings
- Animals
- Male
- Mice
- Adipose Tissue, Brown/metabolism
- Adipose Tissue, Brown/drug effects
- Adipose Tissue, White/metabolism
- Adipose Tissue, White/drug effects
- Adrenergic beta-3 Receptor Agonists/pharmacology
- Cold Temperature
- Dioxoles/pharmacology
- Energy Metabolism/drug effects
- Mice, Inbred C57BL
- Mice, Knockout
- Receptor, Bradykinin B1/genetics
- Receptor, Bradykinin B1/metabolism
- Receptors, Adrenergic, beta-3/genetics
- Receptors, Adrenergic, beta-3/metabolism
- Thermogenesis/drug effects
- Thiazoles/pharmacology
- Uncoupling Protein 1/genetics
- Uncoupling Protein 1/metabolism
Collapse
Affiliation(s)
- Jéssica Branquinho
- Center for Research and Molecular Diagnostic of Genetic Diseases, Department of Biophysics, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Raquel L Neves
- Center for Research and Molecular Diagnostic of Genetic Diseases, Department of Biophysics, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Renan P Martin
- Center for Research and Molecular Diagnostic of Genetic Diseases, Department of Biophysics, Federal University of São Paulo, São Paulo, SP, Brazil
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Júlia G Arata
- Center for Research and Molecular Diagnostic of Genetic Diseases, Department of Biophysics, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Clarissa A Bittencourt
- Center for Research and Molecular Diagnostic of Genetic Diseases, Department of Biophysics, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Ronaldo C Araújo
- Department of Biophysics, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Marcelo Y Icimoto
- Department of Biophysics, Federal University of São Paulo, São Paulo, SP, Brazil.
| | - João B Pesquero
- Center for Research and Molecular Diagnostic of Genetic Diseases, Department of Biophysics, Federal University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
12
|
Wang R, Gomez Salazar M, Pruñonosa Cervera I, Coutts A, French K, Pinto MM, Gohlke S, García-Martín R, Blüher M, Schofield CJ, Kourtzelis I, Stimson RH, Bénézech C, Christian M, Schulz TJ, Gudmundsson EF, Jennings LL, Gudnason VG, Chavakis T, Morton NM, Emilsson V, Michailidou Z. Adipocyte deletion of the oxygen-sensor PHD2 sustains elevated energy expenditure at thermoneutrality. Nat Commun 2024; 15:7483. [PMID: 39209825 PMCID: PMC11362468 DOI: 10.1038/s41467-024-51718-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
Enhancing thermogenic brown adipose tissue (BAT) function is a promising therapeutic strategy for metabolic disease. However, predominantly thermoneutral modern human living conditions deactivate BAT. We demonstrate that selective adipocyte deficiency of the oxygen-sensor HIF-prolyl hydroxylase (PHD2) gene overcomes BAT dormancy at thermoneutrality. Adipocyte-PHD2-deficient mice maintain higher energy expenditure having greater BAT thermogenic capacity. In human and murine adipocytes, a PHD inhibitor increases Ucp1 levels. In murine brown adipocytes, antagonising the major PHD2 target, hypoxia-inducible factor-(HIF)-2a abolishes Ucp1 that cannot be rescued by PHD inhibition. Mechanistically, PHD2 deficiency leads to HIF2 stabilisation and binding of HIF2 to the Ucp1 promoter, thus enhancing its expression in brown adipocytes. Serum proteomics analysis of 5457 participants in the deeply phenotyped Age, Gene and Environment Study reveal that serum PHD2 associates with increased risk of metabolic disease. Here we show that adipose-PHD2-inhibition is a therapeutic strategy for metabolic disease and identify serum PHD2 as a disease biomarker.
Collapse
Affiliation(s)
- Rongling Wang
- Centre for Cardiovascular Sciences, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Mario Gomez Salazar
- Centre for Cardiovascular Sciences, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Iris Pruñonosa Cervera
- Centre for Cardiovascular Sciences, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Amanda Coutts
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Clifton, Nottingham, UK
| | - Karen French
- Centre for Cardiovascular Sciences, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Marlene Magalhaes Pinto
- Centre for Cardiovascular Sciences, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Sabrina Gohlke
- Department of Adipocyte Development and Nutrition, German Institute of Human Nutrition, Potsdam-Rehbrücke, Nuthetal, Germany
| | - Ruben García-Martín
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC (CNB-CSIC), Campus-UAM, Madrid, Spain
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research University of Oxford, Oxford, UK
| | - Ioannis Kourtzelis
- Hull York Medical School, York Biomedical Research Institute, University of York, York, UK
| | - Roland H Stimson
- Centre for Cardiovascular Sciences, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Cécile Bénézech
- Centre for Cardiovascular Sciences, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Mark Christian
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Clifton, Nottingham, UK
| | - Tim J Schulz
- Department of Adipocyte Development and Nutrition, German Institute of Human Nutrition, Potsdam-Rehbrücke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | | | - Lori L Jennings
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Vilmundur G Gudnason
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Triantafyllos Chavakis
- Centre for Cardiovascular Sciences, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden, Helmholtz Zentrum München, University Hospital and Faculty of Medicine Technische Universität Dresden, Dresden, Germany
| | - Nicholas M Morton
- Centre for Cardiovascular Sciences, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Clifton, Nottingham, UK
| | - Valur Emilsson
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Zoi Michailidou
- Centre for Cardiovascular Sciences, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK.
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Clifton, Nottingham, UK.
| |
Collapse
|
13
|
Krüger P, Hartinger R, Djabali K. Navigating Lipodystrophy: Insights from Laminopathies and Beyond. Int J Mol Sci 2024; 25:8020. [PMID: 39125589 PMCID: PMC11311807 DOI: 10.3390/ijms25158020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/06/2024] [Accepted: 07/16/2024] [Indexed: 08/12/2024] Open
Abstract
Recent research into laminopathic lipodystrophies-rare genetic disorders caused by mutations in the LMNA gene-has greatly expanded our knowledge of their complex pathology and metabolic implications. These disorders, including Hutchinson-Gilford progeria syndrome (HGPS), Mandibuloacral Dysplasia (MAD), and Familial Partial Lipodystrophy (FPLD), serve as crucial models for studying accelerated aging and metabolic dysfunction, enhancing our understanding of the cellular and molecular mechanisms involved. Research on laminopathies has highlighted how LMNA mutations disrupt adipose tissue function and metabolic regulation, leading to altered fat distribution and metabolic pathway dysfunctions. Such insights improve our understanding of the pathophysiological interactions between genetic anomalies and metabolic processes. This review merges current knowledge on the phenotypic classifications of these diseases and their associated metabolic complications, such as insulin resistance, hypertriglyceridemia, hepatic steatosis, and metabolic syndrome, all of which elevate the risk of cardiovascular disease, stroke, and diabetes. Additionally, a range of published therapeutic strategies, including gene editing, antisense oligonucleotides, and novel pharmacological interventions aimed at addressing defective adipocyte differentiation and lipid metabolism, will be explored. These therapies target the core dysfunctional lamin A protein, aiming to mitigate symptoms and provide a foundation for addressing similar metabolic and genetic disorders.
Collapse
Affiliation(s)
| | | | - Karima Djabali
- Epigenetics of Aging, Department of Dermatology and Allergy, TUM School of Medicine, Munich Institute of Biomedical Engineering (MIBE), Technical University of Munich (TUM), 85748 Garching, Germany; (P.K.); (R.H.)
| |
Collapse
|
14
|
Mattar P, Reginato A, Lavados C, Das D, Kalyani M, Martinez-Lopez N, Sharma M, Skovbjerg G, Skytte JL, Roostalu U, Subbarayan R, Picarda E, Zang X, Zhang J, Guha C, Schwartz G, Rajbhandari P, Singh R. Insulin and leptin oscillations license food-entrained browning and metabolic flexibility. Cell Rep 2024; 43:114390. [PMID: 38900636 PMCID: PMC11562929 DOI: 10.1016/j.celrep.2024.114390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/23/2024] [Accepted: 06/06/2024] [Indexed: 06/22/2024] Open
Abstract
Timed feeding drives adipose browning, although the integrative mechanisms for the same remain unclear. Here, we show that twice-a-night (TAN) feeding generates biphasic oscillations of circulating insulin and leptin, representing their entrainment by timed feeding. Insulin and leptin surges lead to marked cellular, functional, and metabolic remodeling of subcutaneous white adipose tissue (sWAT), resulting in increased energy expenditure. Single-cell RNA-sequencing (scRNA-seq) analyses and flow cytometry demonstrate a role for insulin and leptin surges in innate lymphoid type 2 (ILC2) cell recruitment and sWAT browning, since sWAT depot denervation or loss of leptin or insulin receptor signaling or ILC2 recruitment each dampens TAN feeding-induced sWAT remodeling and energy expenditure. Consistently, recreating insulin and leptin oscillations via once-a-day timed co-injections is sufficient to favorably remodel innervated sWAT. Innervation is necessary for sWAT remodeling, since denervation of sWAT, but not brown adipose tissue (BAT), blocks TAN-induced sWAT remodeling and resolution of inflammation. In sum, reorganization of nutrient-sensitive pathways remodels sWAT and drives the metabolic benefits of timed feeding.
Collapse
Affiliation(s)
- Pamela Mattar
- Department of Medicine, Division of Digestive Diseases, University of Los Angeles, Los Angeles, CA, USA
| | - Andressa Reginato
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Christian Lavados
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Debajyoti Das
- Department of Medicine, Division of Digestive Diseases, University of Los Angeles, Los Angeles, CA, USA
| | - Manu Kalyani
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Nuria Martinez-Lopez
- Department of Medicine, Division of Digestive Diseases, University of Los Angeles, Los Angeles, CA, USA; Comprehensive Liver Research Center at UCLA, University of Los Angeles, Los Angeles, CA, USA
| | - Mridul Sharma
- Department of Medicine, Division of Digestive Diseases, University of Los Angeles, Los Angeles, CA, USA
| | | | | | | | | | - Elodie Picarda
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Xingxing Zang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jinghang Zhang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Chandan Guha
- Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Gary Schwartz
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Prashant Rajbhandari
- Department of Medicine, Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rajat Singh
- Department of Medicine, Division of Digestive Diseases, University of Los Angeles, Los Angeles, CA, USA; Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA; Comprehensive Liver Research Center at UCLA, University of Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
15
|
Savulescu-Fiedler I, Mihalcea R, Dragosloveanu S, Scheau C, Baz RO, Caruntu A, Scheau AE, Caruntu C, Benea SN. The Interplay between Obesity and Inflammation. Life (Basel) 2024; 14:856. [PMID: 39063610 PMCID: PMC11277997 DOI: 10.3390/life14070856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Obesity is an important condition affecting the quality of life of numerous patients and increasing their associated risk for multiple diseases, including tumors and immune-mediated disorders. Inflammation appears to play a major role in the development of obesity and represents a central point for the activity of cellular and humoral components in the adipose tissue. Macrophages play a key role as the main cellular component of the adipose tissue regulating the chronic inflammation and modulating the secretion and differentiation of various pro- and anti-inflammatory cytokines. Inflammation also involves a series of signaling pathways that might represent the focus for new therapies and interventions. Weight loss is essential in decreasing cardiometabolic risks and the degree of associated inflammation; however, the latter can persist for long after the excess weight is lost, and can involve changes in macrophage phenotypes that can ensure the metabolic adjustment. A clear understanding of the pathophysiological processes in the adipose tissue and the interplay between obesity and chronic inflammation can lead to a better understanding of the development of comorbidities and may ensure future targets for the treatment of obesity.
Collapse
Affiliation(s)
- Ilinca Savulescu-Fiedler
- Department of Internal Medicine, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Internal Medicine and Cardiology, Coltea Clinical Hospital, 030167 Bucharest, Romania
| | - Razvan Mihalcea
- Department of Internal Medicine and Cardiology, Coltea Clinical Hospital, 030167 Bucharest, Romania
| | - Serban Dragosloveanu
- Department of Orthopaedics, “Foisor” Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 021382 Bucharest, Romania
- Department of Orthopaedics and Traumatology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Cristian Scheau
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania (C.C.)
- Department of Radiology and Medical Imaging, “Foisor” Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 030167 Bucharest, Romania
| | - Radu Octavian Baz
- Clinical Laboratory of Radiology and Medical Imaging, “Sf. Apostol Andrei” County Emergency Hospital, 900591 Constanta, Romania
- Department of Radiology and Medical Imaging, Faculty of Medicine, “Ovidius” University, 900527 Constanta, Romania
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, “Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, “Titu Maiorescu” University, 031593 Bucharest, Romania
| | - Andreea-Elena Scheau
- Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania (C.C.)
- Department of Dermatology, “Prof. N.C. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| | - Serban Nicolae Benea
- Department of Infectious Diseases, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- “Prof. Dr. Matei Balș” National Institute for Infectious Diseases, 021105 Bucharest, Romania
| |
Collapse
|
16
|
Zhao L, Li W, Zhang P, Wang D, Yang L, Yuan G. Liraglutide induced browning of visceral white adipose through regulation of miRNAs in high-fat-diet-induced obese mice. Endocrine 2024; 85:222-232. [PMID: 38378894 DOI: 10.1007/s12020-024-03734-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/06/2024] [Indexed: 02/22/2024]
Abstract
OBJECTIVE Obesity is characterized by excessive accumulation of white adipose tissue (WAT). Conversely, brown adipose tissue is protective against obesity. We recently reported liraglutide, a glucagon-like peptide-1 receptor agonist (GLP-1RA), could inhibit high-fat-diet-induced obesity by browning of WAT. However, the molecular mechanism involved is not well defined. Hence, we aimed to explore whether GLP-1RA could promote brown remodeling in WAT by regulating miRNAs. METHODS After the obesity model was successfully constructed, C57BL/6J mice were treated with liraglutide (200 μg/kg/d) or equivoluminal saline subcutaneously for 12 weeks. Then, the deposition of abdominal fat was measured by CT scanning. At the end of the treatments, glucose and insulin tolerance in mice were assessed. Serum lipid levels were monitored and epididymal WAT (eWAT) were collected for analysis. Quantitative real-time PCR and western blot analyses were conducted to evaluate the expression of genes and miRNAs associated with white fat browning. RESULTS Liraglutide significantly reduced body weight and visceral fat mass. Levels of lipid profile were also improved. Liraglutide upregulated the expression of browning-related genes in eWAT. Meanwhile, the expression level of miRNAs (miR-196a and miR-378a) positively associated with the browning of WAT were increased, while the expression of miR-155, miR-199a, and miR-382 negatively related with browning of WAT were decreased. CONCLUSION Our findings suggest that liraglutide could promote brown remodeling of visceral WAT by bi-regulating miRNAs; this might be one of the mechanisms underlying its effect on weight loss.
Collapse
Affiliation(s)
- Li Zhao
- Department of Endocrinology and Metabolism, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China.
| | - Wenxin Li
- Department of Endocrinology and Metabolism, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Panpan Zhang
- Department of Endocrinology, Taicang Hospital of Traditional Chinese Medicine, Taicang, Jiangsu, China
| | - Dong Wang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ling Yang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Guoyue Yuan
- Department of Endocrinology and Metabolism, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China.
| |
Collapse
|
17
|
Proença AB, Medeiros GR, Reis GDS, Losito LDF, Ferraz LM, Bargut TCL, Soares NP, Alexandre-Santos B, Campagnole-Santos MJ, Magliano DC, Nobrega ACLD, Santos RAS, Frantz EDC. Adipose tissue plasticity mediated by the counterregulatory axis of the renin-angiotensin system: Role of Mas and MrgD receptors. J Cell Physiol 2024; 239:e31265. [PMID: 38577921 DOI: 10.1002/jcp.31265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/28/2024] [Accepted: 03/18/2024] [Indexed: 04/06/2024]
Abstract
The renin-angiotensin system (RAS) is an endocrine system composed of two main axes: the classical and the counterregulatory, very often displaying opposing effects. The classical axis, primarily mediated by angiotensin receptors type 1 (AT1R), is linked to obesity-associated metabolic effects. On the other hand, the counterregulatory axis appears to exert antiobesity effects through the activation of two receptors, the G protein-coupled receptor (MasR) and Mas-related receptor type D (MrgD). The local RAS in adipose organ has prompted extensive research into white adipose tissue and brown adipose tissue (BAT), with a key role in regulating the cellular and metabolic plasticity of these tissues. The MasR activation favors the brown plasticity signature in the adipose organ by improve the thermogenesis, adipogenesis, and lipolysis, decrease the inflammatory state, and overall energy homeostasis. The MrgD metabolic effects are related to the maintenance of BAT functionality, but the signaling remains unexplored. This review provides a summary of RAS counterregulatory actions triggered by Mas and MrgD receptors on adipose tissue plasticity. Focus on the effects related to the morphology and function of adipose tissue, especially from animal studies, will be given targeting new avenues for treatment of obesity-associated metabolic effects.
Collapse
Affiliation(s)
- Ana Beatriz Proença
- Department of Physiology, Laboratory of Exercise Sciences, Biomedical Institute, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
- Department of Morphology, Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
| | - Gabriela Rodrigues Medeiros
- Department of Physiology, Laboratory of Exercise Sciences, Biomedical Institute, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
- Department of Morphology, Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
| | - Guilherme Dos Santos Reis
- Department of Physiology, Laboratory of Exercise Sciences, Biomedical Institute, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
- Department of Morphology, Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
| | - Luiza da França Losito
- Department of Physiology, Laboratory of Exercise Sciences, Biomedical Institute, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
- Department of Morphology, Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
| | - Luiza Mazzali Ferraz
- Department of Physiology, Laboratory of Exercise Sciences, Biomedical Institute, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
- Department of Morphology, Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
| | - Thereza Cristina Lonzetti Bargut
- Department of Basic Sciences, Nova Friburgo Health Institute, Fluminense Federal University, Nova Friburgo, Rio de Janeiro, Brazil
| | - Nícia Pedreira Soares
- Department of Physiology and Biophysics, National Institute of Science and Technology in Nanobiopharmaceutics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Beatriz Alexandre-Santos
- Department of Physiology, Laboratory of Exercise Sciences, Biomedical Institute, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
- Department of Morphology, Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
| | - Maria Jose Campagnole-Santos
- Department of Physiology and Biophysics, National Institute of Science and Technology in Nanobiopharmaceutics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - D'Angelo Carlo Magliano
- Department of Morphology, Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
| | - Antonio Claudio Lucas da Nobrega
- Department of Physiology, Laboratory of Exercise Sciences, Biomedical Institute, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
| | - Robson Augusto Souza Santos
- Department of Physiology and Biophysics, National Institute of Science and Technology in Nanobiopharmaceutics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Eliete Dalla Corte Frantz
- Department of Physiology, Laboratory of Exercise Sciences, Biomedical Institute, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
- Department of Morphology, Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
| |
Collapse
|
18
|
Han J, Chen Y, Xu X, Li Q, Xiang X, Shen J, Ma X. Development of Recombinant High-Density Lipoprotein Platform with Innate Adipose Tissue-Targeting Abilities for Regional Fat Reduction. ACS NANO 2024; 18:13635-13651. [PMID: 38753978 DOI: 10.1021/acsnano.4c00403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
As an escalating public health issue, obesity and overweight conditions are predispositions to various diseases and are exacerbated by concurrent chronic inflammation. Nonetheless, extant antiobesity pharmaceuticals (quercetin, capsaicin, catecholamine, etc.) manifest constrained efficacy alongside systemic toxic effects. Effective therapeutic approaches that selectively target adipose tissue, thereby enhancing local energy expenditure, surmounting the limitations of prevailing antiobesity modalities are highly expected. In this context, we developed a temperature-sensitive hydrogel loaded with recombinant high-density lipoprotein (rHDL) to achieve targeted delivery of resveratrol, an adipose browning activator, to adipose tissue. rHDL exhibits self-regulation on fat cell metabolism and demonstrates natural targeting toward scavenger receptor class B type I (SR-BI), which is highly expressed by fat cells, thereby achieving a synergistic effect for the treatment of obesity. Additionally, the dispersion of rHDL@Res in temperature-sensitive hydrogels, coupled with the regulation of their degradation and drug release rate, facilitated sustainable drug release at local adipose tissues over an extended period. Following 24 days' treatment regimen, obese mice exhibited improved metabolic status, resulting in a reduction of 68.2% of their inguinal white adipose tissue (ingWAT). Specifically, rHDL@Res/gel facilitated the conversion of fatty acids to phospholipids (PA, PC), expediting fat mobilization, mitigating triglyceride accumulation, and therefore facilitating adipose tissue reduction. Furthermore, rHDL@Res/gel demonstrated efficacy in attenuating obesity-induced inflammation and fostering angiogenesis in ingWAT. Collectively, this engineered local fat reduction platform demonstrated heightened effectiveness and safety through simultaneously targeting adipocytes, promoting WAT browning, regulating lipid metabolism, and controlling inflammation, showing promise for adipose-targeted therapy.
Collapse
Affiliation(s)
- Junhua Han
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| | - Yingxian Chen
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| | - Xiaolong Xu
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| | - Qingmeng Li
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| | - Xin Xiang
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| | - Jianzhong Shen
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| | - Xiaowei Ma
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
- Sanya Institute of China Agricultural University, Sanya, Hainan 572025, P. R. China
| |
Collapse
|
19
|
Chand S, Tripathi AS, Dewani AP, Sheikh NWA. Molecular targets for management of diabetes: Remodelling of white adipose to brown adipose tissue. Life Sci 2024; 345:122607. [PMID: 38583857 DOI: 10.1016/j.lfs.2024.122607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/09/2024]
Abstract
Diabetes mellitus is a disorder characterised metabolic dysfunction that results in elevated glucose level in the bloodstream. Diabetes is of two types, type1 and type 2 diabetes. Obesity is considered as one of the major reasons intended for incidence of diabetes hence it turns out to be essential to study about the adipose tissue which is responsible for fat storage in body. Adipose tissues play significant role in maintaining the balance between energy stabilization and homeostasis. The three forms of adipose tissue are - White adipose tissue (WAT), Brown adipose tissue (BAT) and Beige adipose tissue (intermediate form). The amount of BAT gets reduced, and WAT starts to increase with the age. WAT when exposed to certain stimuli gets converted to BAT by the help of certain transcriptional regulators. The browning of WAT has been a matter of study to treat the metabolic disorders and to initiate the expenditure of energy. The three main regulators responsible for the browning of WAT are PRDM16, PPARγ and PGC-1α via various cellular and molecular mechanism. Presented review article includes the detailed elaborative aspect of genes and proteins involved in conversion of WAT to BAT.
Collapse
Affiliation(s)
- Shushmita Chand
- Amity Institute of Pharmacy, Amity University, Sector 125, Noida, Uttar Pradesh, India
| | - Alok Shiomurti Tripathi
- Department of Pharmacology, ERA College of Pharmacy, ERA University, Lucknow, Uttar Pradesh, India.
| | - Anil P Dewani
- Department of Pharmacology, P. Wadhwani College of Pharmacy, Yavatmal, Maharashtra, India
| | | |
Collapse
|
20
|
Ma L, Gilani A, Rubio-Navarro A, Cortada E, Li A, Reilly SM, Tang L, Lo JC. Adipsin and adipocyte-derived C3aR1 regulate thermogenic fat in a sex-dependent fashion. JCI Insight 2024; 9:e178925. [PMID: 38713526 PMCID: PMC11382875 DOI: 10.1172/jci.insight.178925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/26/2024] [Indexed: 05/09/2024] Open
Abstract
Thermogenesis in beige/brown adipose tissues can be leveraged to combat metabolic disorders such as type 2 diabetes and obesity. The complement system plays pleiotropic roles in metabolic homeostasis and organismal energy balance with canonical effects on immune cells and noncanonical effects on nonimmune cells. The adipsin/C3a/C3a receptor 1 (C3aR1) pathway stimulates insulin secretion and sustains pancreatic β cell mass. However, its role in adipose thermogenesis has not been defined. Here, we show that male Adipsin/Cfd-knockout mice exhibited increased energy expenditure and white adipose tissue (WAT) browning. In addition, male adipocyte-specific C3aR1-knockout mice exhibited enhanced WAT thermogenesis and increased respiration. In stark contrast, female adipocyte-specific C3aR1-knockout mice displayed decreased brown fat thermogenesis and were cold intolerant. Female mice expressed lower levels of Adipsin in thermogenic adipocytes and adipose tissues than males. C3aR1 was also lower in female subcutaneous adipose tissue than in males. Collectively, these results reveal sexual dimorphism in the adipsin/C3a/C3aR1 axis in regulating adipose thermogenesis and defense against cold stress. Our findings establish a potentially new role of the alternative complement pathway in adaptive thermogenesis and highlight sex-specific considerations in potential therapeutic targets for metabolic diseases.
Collapse
Affiliation(s)
- Lunkun Ma
- Division of Cardiology, Department of Medicine
- Weill Center for Metabolic Health; and
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, New York, USA
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Ankit Gilani
- Division of Cardiology, Department of Medicine
- Weill Center for Metabolic Health; and
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, New York, USA
| | - Alfonso Rubio-Navarro
- Division of Cardiology, Department of Medicine
- Weill Center for Metabolic Health; and
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, New York, USA
| | - Eric Cortada
- Division of Cardiology, Department of Medicine
- Weill Center for Metabolic Health; and
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, New York, USA
| | - Ang Li
- Division of Cardiology, Department of Medicine
- Weill Center for Metabolic Health; and
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, New York, USA
| | - Shannon M Reilly
- Division of Cardiology, Department of Medicine
- Weill Center for Metabolic Health; and
| | - Liling Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - James C Lo
- Division of Cardiology, Department of Medicine
- Weill Center for Metabolic Health; and
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
21
|
Bavaresco A, Mazzeo P, Lazzara M, Barbot M. Adipose tissue in cortisol excess: What Cushing's syndrome can teach us? Biochem Pharmacol 2024; 223:116137. [PMID: 38494065 DOI: 10.1016/j.bcp.2024.116137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/14/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Endogenous Cushing's syndrome (CS) is a rare condition due to prolonged exposure to elevated circulating cortisol levels that features its typical phenotype characterised by moon face, proximal myopathy, easy bruising, hirsutism in females and a centripetal distribution of body fat. Given the direct and indirect effects of hypercortisolism, CS is a severe disease burdened by increased cardio-metabolic morbidity and mortality in which visceral adiposity plays a leading role. Although not commonly found in clinical setting, endogenous CS is definitely underestimated leading to delayed diagnosis with consequent increased rate of complications and reduced likelihood of their reversal after disease control. Most of all, CS is a unique model for systemic impairment induced by exogenous glucocorticoid therapy that is commonly prescribed for a number of chronic conditions in a relevant proportion of the worldwide population. In this review we aim to summarise on one side, the mechanisms behind visceral adiposity and lipid metabolism impairment in CS during active disease and after remission and on the other explore the potential role of cortisol in promoting adipose tissue accumulation.
Collapse
Affiliation(s)
- Alessandro Bavaresco
- Department of Medicine DIMED, University of Padua, Padua, Italy; Endocrinology Unit, Department of Medicine DIMED, University-Hospital of Padua, Padua, Italy
| | - Pierluigi Mazzeo
- Department of Medicine DIMED, University of Padua, Padua, Italy; Endocrinology Unit, Department of Medicine DIMED, University-Hospital of Padua, Padua, Italy
| | - Martina Lazzara
- Department of Medicine DIMED, University of Padua, Padua, Italy; Endocrinology Unit, Department of Medicine DIMED, University-Hospital of Padua, Padua, Italy
| | - Mattia Barbot
- Department of Medicine DIMED, University of Padua, Padua, Italy; Endocrinology Unit, Department of Medicine DIMED, University-Hospital of Padua, Padua, Italy.
| |
Collapse
|
22
|
Qin X, He X, Chen L, Han Y, Yun Y, Wu J, Sha L, Borjigin G. Transcriptome analysis of adipose tissue in grazing cattle: Identifying key regulators of fat metabolism. Open Life Sci 2024; 19:20220843. [PMID: 38681730 PMCID: PMC11049749 DOI: 10.1515/biol-2022-0843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/05/2024] [Accepted: 02/20/2024] [Indexed: 05/01/2024] Open
Abstract
The taste and tenderness of meat are the main determinants of carcass quality in many countries. This study aimed to discuss the mechanisms of intramuscular fat deposition in grazing and house-breeding cattle. We performed transcriptome analysis to characterize messenger RNA and microRNA (miRNA) expression profiles. A total of 456 and 66 differentially expressed genes (DEGs) and differentially expressed (DE) miRNAs were identified in the adipose tissue of grazing and house-breeding cattle. Kyoto Encyclopedia of Genes and Genomes pathway analysis identified the association of DEGs with fatty acid metabolism, fatty acid degradation, peroxisome proliferator-activated receptors signaling pathway, adenosine monophosphate-activated protein kinase signaling pathway, adipocytokine signaling pathway, and the association of DE miRNAs with mitogen-activated protein kinase signaling pathway. Apolipoprotein L domain containing 1, pyruvate dehydrogenase kinase 4, and sphingosine-1-phosphate lyase 1 genes may be the key regulators of fat metabolism in grazing cattle. Finally, we found that miR-211 and miR-331-5p were negatively correlated with the elongation of very long-chain fatty acids protein 6 (ELOVL6), and miR-331-5p might be the new regulator involved in fat metabolism. The results indicated that ELOVL6 participated in various functions and pathways related to fat metabolism. Meanwhile, miR-331-5p, as a new regulator, might play an essential role in this process. Our findings laid a more in-depth and systematic research foundation for the formation mechanism and characteristics of adipose tissue in grazing cattle.
Collapse
Affiliation(s)
- Xia Qin
- College of Food Science and Engineering, Inner Mongolia Agricultural University, #306 Zhaowuda Road, Saihan District, Huhhot, Inner Mongolia 010018, China
- Pharmacy and Materials School, Huainan Union University, Huainan232038, China
| | - Xige He
- College of Food Science and Engineering, Inner Mongolia Agricultural University, #306 Zhaowuda Road, Saihan District, Huhhot, Inner Mongolia 010018, China
| | - Lu Chen
- College of Food Science and Engineering, Inner Mongolia Agricultural University, #306 Zhaowuda Road, Saihan District, Huhhot, Inner Mongolia 010018, China
| | - Yunfei Han
- College of Food Science and Engineering, Inner Mongolia Agricultural University, #306 Zhaowuda Road, Saihan District, Huhhot, Inner Mongolia 010018, China
| | - Yueying Yun
- College of Food Science and Engineering, Inner Mongolia Agricultural University, #306 Zhaowuda Road, Saihan District, Huhhot, Inner Mongolia 010018, China
| | - Jindi Wu
- College of Food Science and Engineering, Inner Mongolia Agricultural University, #306 Zhaowuda Road, Saihan District, Huhhot, Inner Mongolia 010018, China
| | - Lina Sha
- College of Food Science and Engineering, Inner Mongolia Agricultural University, #306 Zhaowuda Road, Saihan District, Huhhot, Inner Mongolia 010018, China
| | - Gerelt Borjigin
- College of Food Science and Engineering, Inner Mongolia Agricultural University, #306 Zhaowuda Road, Saihan District, Huhhot, Inner Mongolia 010018, China
| |
Collapse
|
23
|
Zeng B, Shen Q, Wang B, Tang X, Jiang J, Zheng Y, Huang H, Zhuo W, Wang W, Gao Y, Li X, Wang S, Li W, Qian G, Qin J, Hou M, Lv H. Spexin ameliorated obesity-related metabolic disorders through promoting white adipose browning mediated by JAK2-STAT3 pathway. Nutr Metab (Lond) 2024; 21:22. [PMID: 38658956 PMCID: PMC11040786 DOI: 10.1186/s12986-024-00790-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 03/13/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND Spexin, a 14 amino acid peptide, has been reported to regulate obesity and its associated complications. However, little is known about the underlying molecular mechanism. Therefore, this study aimed to investigate the effects of spexin on obesity and explore the detailed molecular mechanisms in vivo and in vitro. METHODS Male C57BL/6J mice were fed a high-fat diet (HFD) for 12 weeks to induce obesity, and mice fed a standard fat diet were used as controls. Then, these mice were treated with SPX or Vehicle by intraperitoneal injection for an additional 12 weeks, respectively. The metabolic profile, fat-browning specific markers and mitochondrial contents were detected. In vitro, 3T3-L1 cells were used to investigate the molecular mechanisms. RESULTS After 12 weeks of treatment, SPX significantly decreased body weight, serum lipid levels, and improved insulin sensitivity in HFD-induced obese mice. Moreover, SPX was found to promote oxygen consumption in HFD mice, and it increased mitochondrial content as well as the expression of brown-specific markers in white adipose tissue (WAT) of HFD mice. These results were consistent with the increase in mitochondrial content and the expression of brown-specific markers in 3T3-L1 mature adipocytes. Of note, the spexin-mediated beneficial pro-browning actions were abolished by the JAK2/STAT3 pathway antagonists in mature 3T3-L1 cells. CONCLUSIONS These data indicate that spexin ameliorates obesity-induced metabolic disorders by improving WAT browning via activation of the JAK2/STAT3 signaling pathway. Therefore, SPX may serve as a new therapeutic candidate for treating obesity.
Collapse
Affiliation(s)
- Bihe Zeng
- Department of Cardiology, Children's Hospital of Soochow University, 215025, Suzhou, China
- Department of Pediatrics, Affiliated Huai'an Hospital of Xuzhou Medical University, 223002, Huai'an, China
| | - Qin Shen
- Department of Cardiology, Children's Hospital of Soochow University, 215025, Suzhou, China
| | - Bo Wang
- Department of Cardiology, Children's Hospital of Soochow University, 215025, Suzhou, China
| | - Xuan Tang
- Department of Cardiology, Children's Hospital of Soochow University, 215025, Suzhou, China
| | - Jiaqi Jiang
- Department of Cardiology, Children's Hospital of Soochow University, 215025, Suzhou, China
| | - Yiming Zheng
- Department of Cardiology, Children's Hospital of Soochow University, 215025, Suzhou, China
| | - Hongbiao Huang
- Department of Cardiology, Children's Hospital of Soochow University, 215025, Suzhou, China
| | - Wenyu Zhuo
- Department of Cardiology, Children's Hospital of Soochow University, 215025, Suzhou, China
| | - Wang Wang
- Department of Cardiology, Children's Hospital of Soochow University, 215025, Suzhou, China
| | - Yang Gao
- Department of Cardiology, Children's Hospital of Soochow University, 215025, Suzhou, China
| | - Xuan Li
- Department of Cardiology, Children's Hospital of Soochow University, 215025, Suzhou, China
| | - Shuhui Wang
- Department of Cardiology, Children's Hospital of Soochow University, 215025, Suzhou, China
| | - Wenjie Li
- Department of Cardiology, Children's Hospital of Soochow University, 215025, Suzhou, China
| | - Guanghui Qian
- Department of Cardiology, Children's Hospital of Soochow University, 215025, Suzhou, China
| | - Jie Qin
- Department of Cardiology, Children's Hospital of Soochow University, 215025, Suzhou, China
| | - Miao Hou
- Department of Cardiology, Children's Hospital of Soochow University, 215025, Suzhou, China.
| | - Haitao Lv
- Department of Cardiology, Children's Hospital of Soochow University, 215025, Suzhou, China.
| |
Collapse
|
24
|
Su Y, Li X, Zhao J, Ji B, Zhao X, Feng J, Zhao J. Guanidinoacetic acid ameliorates hepatic steatosis and inflammation and promotes white adipose tissue browning in middle-aged mice with high-fat-diet-induced obesity. Food Funct 2024; 15:4515-4526. [PMID: 38567805 DOI: 10.1039/d3fo05201j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Guanidinoacetic acid (GAA) is a naturally occurring amino acid derivative that plays a critical role in energy metabolism. In recent years, a growing body of evidence has emerged supporting the importance of GAA in metabolic dysfunction. Hence, we aimed to investigate the effects of GAA on hepatic and adipose tissue metabolism, as well as systemic inflammatory responses in obese middle-aged mice models and attempted to explore the underlying mechanism. We found that dietary supplementation of GAA inhibited inguinal white adipose tissue (iWAT) hypertrophy in high-fat diet (HFD)-fed mice. In addition, GAA supplementation observably decreased the levels of some systemic inflammatory factors, including IL-4, TNF-α, IL-1β, and IL-6. Intriguingly, GAA supplementation ameliorated hepatic steatosis and lipid deposition in HFD-fed mice, which was revealed by decreased levels of TG, TC, LDL-C, PPARγ, SREBP-1c, FASN, ACC, FABP1, and APOB and increased levels of HDL-C in the liver. Moreover, GAA supplementation increased the expression of browning markers and mitochondrial-related genes in the iWAT. Further investigation showed that dietary GAA promoted the browning of the iWAT via activating the AMPK/Sirt1 signaling pathway and might be associated with futile creatine cycling in obese mice. These results indicate that GAA has the potential to be used as an effective ingredient in dietary interventions and thus may play an important role in ameliorating and preventing HFD-induced obesity and related metabolic diseases.
Collapse
Affiliation(s)
- Yuan Su
- College of Animal Sciences, Shanxi Agricultural University, Taigu 030801, PR China.
- Shanxi Key Laboratory of Animal Genetics Resource Utilization and Breeding, Shanxi Agricultural University, Taigu 030801, PR China
| | - Xinrui Li
- College of Animal Sciences, Shanxi Agricultural University, Taigu 030801, PR China.
| | - Jiamin Zhao
- College of Animal Sciences, Shanxi Agricultural University, Taigu 030801, PR China.
| | - Bingzhen Ji
- College of Animal Sciences, Shanxi Agricultural University, Taigu 030801, PR China.
| | - Xiaoyi Zhao
- College of Animal Sciences, Shanxi Agricultural University, Taigu 030801, PR China.
| | - Jinxin Feng
- College of Animal Sciences, Shanxi Agricultural University, Taigu 030801, PR China.
| | - Junxing Zhao
- College of Animal Sciences, Shanxi Agricultural University, Taigu 030801, PR China.
- Shanxi Key Laboratory of Animal Genetics Resource Utilization and Breeding, Shanxi Agricultural University, Taigu 030801, PR China
| |
Collapse
|
25
|
Hager M, Chang P, Lee M, Burns CM, Endicott SJ, Miller RA, Li X. Recapitulation of anti-aging phenotypes by global overexpression of PTEN in mice. GeroScience 2024; 46:2653-2670. [PMID: 38114855 PMCID: PMC10828233 DOI: 10.1007/s11357-023-01025-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/20/2023] [Indexed: 12/21/2023] Open
Abstract
The PTEN gene negatively regulates the oncogenic PI3K-AKT pathway by encoding a lipid and protein phosphatase that dephosphorylates lipid phosphatidylinositol-3,4,5-triphosphate (PIP3) resulting in the inhibition of PI3K and downstream inhibition of AKT. Overexpression of PTEN in mice leads to a longer lifespan compared to control littermates, although the mechanism is unknown. Here, we provide evidence that young adult PTENOE mice exhibit many characteristics shared by other slow-aging mouse models, including those with mutations that affect GH/IGF1 pathways, calorie-restricted mice, and mice treated with anti-aging drugs. PTENOE white adipose tissue (WAT) has increased UCP1, a protein linked to increased thermogenesis. WAT of PTENOE mice also shows a change in polarization of fat-associated macrophages, with elevated levels of arginase 1 (Arg1, characteristic of M2 macrophages) and decreased production of inducible nitric oxide synthase (iNOS, characteristic of M1 macrophages). Muscle and hippocampus showed increased expression of the myokine FNDC5, and higher levels of its cleavage product irisin in plasma, which has been linked to increased conversion of WAT to more thermogenic beige/brown adipose tissue. PTENOE mice also have an increase, in plasma and liver, of GPLD1, which is known to improve cognition in mice. Hippocampus of the PTENOE mice has elevation of both BDNF and DCX, indices of brain resilience and neurogenesis. These changes in fat, macrophages, liver, muscle, hippocampus, and plasma may be considered "aging rate indicators" in that they seem to be consistently changed across many of the long-lived mouse models and may help to extend lifespan by delaying many forms of late-life illness. Our new findings show that PTENOE mice can be added to the group of long-lived mice that share this multi-tissue suite of biochemical characteristics.
Collapse
Affiliation(s)
- Mary Hager
- College of Literature, Sciences, & the Arts, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Peter Chang
- College of Literature, Sciences, & the Arts, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Michael Lee
- College of Literature, Sciences, & the Arts, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Calvin M Burns
- Department of Pathology, University of Michigan School of Medicine, Room 3160, BSRB ,109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - S Joseph Endicott
- Department of Pathology, University of Michigan School of Medicine, Room 3160, BSRB ,109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
- University of Michigan Geriatrics Center, Ann Arbor, MI, 48109, USA
| | - Richard A Miller
- Department of Pathology, University of Michigan School of Medicine, Room 3160, BSRB ,109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
- University of Michigan Geriatrics Center, Ann Arbor, MI, 48109, USA
| | - Xinna Li
- Department of Pathology, University of Michigan School of Medicine, Room 3160, BSRB ,109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA.
- University of Michigan Geriatrics Center, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
26
|
Ghesmati Z, Rashid M, Fayezi S, Gieseler F, Alizadeh E, Darabi M. An update on the secretory functions of brown, white, and beige adipose tissue: Towards therapeutic applications. Rev Endocr Metab Disord 2024; 25:279-308. [PMID: 38051471 PMCID: PMC10942928 DOI: 10.1007/s11154-023-09850-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/30/2023] [Indexed: 12/07/2023]
Abstract
Adipose tissue, including white adipose tissue (WAT), brown adipose tissue (BAT), and beige adipose tissue, is vital in modulating whole-body energy metabolism. While WAT primarily stores energy, BAT dissipates energy as heat for thermoregulation. Beige adipose tissue is a hybrid form of adipose tissue that shares characteristics with WAT and BAT. Dysregulation of adipose tissue metabolism is linked to various disorders, including obesity, type 2 diabetes, cardiovascular diseases, cancer, and infertility. Both brown and beige adipocytes secrete multiple molecules, such as batokines, packaged in extracellular vesicles or as soluble signaling molecules that play autocrine, paracrine, and endocrine roles. A greater understanding of the adipocyte secretome is essential for identifying novel molecular targets in treating metabolic disorders. Additionally, microRNAs show crucial roles in regulating adipose tissue differentiation and function, highlighting their potential as biomarkers for metabolic disorders. The browning of WAT has emerged as a promising therapeutic approach in treating obesity and associated metabolic disorders. Many browning agents have been identified, and nanotechnology-based drug delivery systems have been developed to enhance their efficacy. This review scrutinizes the characteristics of and differences between white, brown, and beige adipose tissues, the molecular mechanisms involved in the development of the adipocytes, the significant roles of batokines, and regulatory microRNAs active in different adipose tissues. Finally, the potential of WAT browning in treating obesity and atherosclerosis, the relationship of BAT with cancer and fertility disorders, and the crosstalk between adipose tissue with circadian system and circadian disorders are also investigated.
Collapse
Affiliation(s)
- Zeinab Ghesmati
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohsen Rashid
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shabnam Fayezi
- Department of Gynecologic Endocrinology and Fertility Disorders, Women's Hospital, Ruprecht-Karls University of Heidelberg, Heidelberg, Germany
| | - Frank Gieseler
- Division of Experimental Oncology, Department of Hematology and Oncology, University Medical Center Schleswig-Holstein, Campus Lübeck, 23538, Lübeck, Germany
| | - Effat Alizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Masoud Darabi
- Division of Experimental Oncology, Department of Hematology and Oncology, University Medical Center Schleswig-Holstein, Campus Lübeck, 23538, Lübeck, Germany.
| |
Collapse
|
27
|
Vily-Petit J, Soty-Roca M, Silva M, Micoud M, Evrard F, Bron C, Raffin M, Beiroa D, Nogueiras R, Roussel D, Gautier-Stein A, Rajas F, Cota D, Mithieux G. Antiobesity effects of intestinal gluconeogenesis are mediated by the brown adipose tissue sympathetic nervous system. Obesity (Silver Spring) 2024; 32:710-722. [PMID: 38311801 DOI: 10.1002/oby.23985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 12/04/2023] [Accepted: 12/19/2023] [Indexed: 02/06/2024]
Abstract
OBJECTIVE Intestinal gluconeogenesis (IGN), via the initiation of a gut-brain nervous circuit, accounts for the metabolic benefits linked to dietary proteins or fermentable fiber in rodents and has been positively correlated with the rapid amelioration of body weight after gastric bypass surgery in humans with obesity. In particular, the activation of IGN moderates the development of hepatic steatosis accompanying obesity. In this study, we investigated the specific effects of IGN on adipose tissue metabolism, independent of its induction by nutritional manipulation. METHODS We used two transgenic mouse models of suppression or overexpression of G6pc1, the catalytic subunit of glucose-6 phosphatase, which is the key enzyme of endogenous glucose production specifically in the intestine. RESULTS Under a hypercaloric diet, mice overexpressing IGN showed lower adiposity and higher thermogenic capacities than wild-type mice, featuring marked browning of white adipose tissue (WAT) and prevention of the whitening of brown adipose tissue (BAT). Sympathetic denervation restricted to BAT caused the loss of the antiobesity effects associated with IGN. Conversely, IGN-deficient mice exhibited an increase in adiposity under a standard diet, which was associated with decreased expression of markers of thermogenesis in both BAT and WAT. CONCLUSIONS IGN is sufficient to activate the sympathetic nervous system and prevent the expansion and the metabolic alterations of BAT and WAT metabolism under a high-calorie diet, thereby preventing the development of obesity. These data increase knowledge of the mechanisms of weight reduction in gastric bypass surgery and pave the way for new approaches to prevent or cure obesity.
Collapse
Affiliation(s)
- Justine Vily-Petit
- Institute of Health and Medical Research, Lyon, France
- Claude Bernard Lyon University 1, Villeurbanne, France
- University of Lyon, Lyon, France
| | - Maud Soty-Roca
- Institute of Health and Medical Research, Lyon, France
- Claude Bernard Lyon University 1, Villeurbanne, France
- University of Lyon, Lyon, France
| | - Marine Silva
- Institute of Health and Medical Research, Lyon, France
- Claude Bernard Lyon University 1, Villeurbanne, France
- University of Lyon, Lyon, France
| | - Manon Micoud
- Institute of Health and Medical Research, Lyon, France
- Claude Bernard Lyon University 1, Villeurbanne, France
- University of Lyon, Lyon, France
| | - Félicie Evrard
- Institute of Health and Medical Research, Lyon, France
- Claude Bernard Lyon University 1, Villeurbanne, France
- University of Lyon, Lyon, France
| | - Clara Bron
- Institute of Health and Medical Research, Lyon, France
- Claude Bernard Lyon University 1, Villeurbanne, France
- University of Lyon, Lyon, France
| | - Margaux Raffin
- Institute of Health and Medical Research, Lyon, France
- Claude Bernard Lyon University 1, Villeurbanne, France
- University of Lyon, Lyon, France
| | - Daniel Beiroa
- Department of Physiology, School of Medicine, Singular Research Center in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela-Health Research Institute Sanitaria, A Coruña, Spain
- CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), Santiago de Compostela, Spain
| | - Rubén Nogueiras
- Department of Physiology, School of Medicine, Singular Research Center in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela-Health Research Institute Sanitaria, A Coruña, Spain
- CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), Santiago de Compostela, Spain
| | - Damien Roussel
- Claude Bernard Lyon University 1, Villeurbanne, France
- University of Lyon, Lyon, France
- Scientific Research National Center, UMR 5023-LEHNA, Villeurbanne, France
| | - Amandine Gautier-Stein
- Institute of Health and Medical Research, Lyon, France
- Claude Bernard Lyon University 1, Villeurbanne, France
- University of Lyon, Lyon, France
| | - Fabienne Rajas
- Institute of Health and Medical Research, Lyon, France
- Claude Bernard Lyon University 1, Villeurbanne, France
- University of Lyon, Lyon, France
| | - Daniela Cota
- Bordeaux University, INSERM, Magendie Neurocenter, Bordeaux, France
| | - Gilles Mithieux
- Institute of Health and Medical Research, Lyon, France
- Claude Bernard Lyon University 1, Villeurbanne, France
- University of Lyon, Lyon, France
| |
Collapse
|
28
|
Giordano AP, Gambaro SE, Alzamendi A, Harnichar AE, Rey MA, Ongaro L, Spinedi E, Zubiría MG, Giovambattista A. Dexamethasone Inhibits White Adipose Tissue Browning. Int J Mol Sci 2024; 25:2714. [PMID: 38473960 DOI: 10.3390/ijms25052714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/20/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
White adipose tissue (WAT) regulates energy balance through energy storage, adipokines secretion and the thermogenesis process. Beige adipocytes are responsible for WAT thermogenesis. They are generated by adipogenesis or transdifferentiation during cold or β3-adrenergic agonist stimulus through a process called browning. Browning has gained significant interest for to its preventive effect on obesity. Glucocorticoids (GCs) have several functions in WAT biology; however, their role in beige adipocyte generation and WAT browning is not fully understood. The aim of our study was to determine the effect of dexamethasone (DXM) on WAT thermogenesis. For this purpose, rats were treated with DXM at room temperature (RT) or cold conditions to determine different thermogenic markers. Furthermore, the effects of DXM on the adipogenic potential of beige precursors and on mature beige adipocytes were evaluated in vitro. Our results showed that DXM decreased UCP-1 mRNA and protein levels, mainly after cold exposure. In vitro studies showed that DXM decreased the expression of a beige precursor marker (Ebf2), affecting their ability to differentiate into beige adipocytes, and inhibited the thermogenic response of mature beige adipocytes (Ucp-1, Dio2 and Pgc1α gene expressions and mitochondrial respiration). Overall, our data strongly suggest that DXM can inhibit the thermogenic program of both retroperitoneal and inguinal WAT depots, an effect that could be exerted, at least partially, by inhibiting de novo cell generation and the thermogenic response in beige adipocytes.
Collapse
Affiliation(s)
- Alejandra Paula Giordano
- Neuroendocrinology Laboratory, Multidisciplinary Institute of Cellular Biology (IMBICE, CICPBA-CONICET-UNLP), La Plata 1900, Argentina
- Biology Department, School of Exact Sciences, Universidad Nacional de La Plata, La Plata 1900, Argentina
| | - Sabrina Eliana Gambaro
- Neuroendocrinology Laboratory, Multidisciplinary Institute of Cellular Biology (IMBICE, CICPBA-CONICET-UNLP), La Plata 1900, Argentina
- Biology Department, School of Exact Sciences, Universidad Nacional de La Plata, La Plata 1900, Argentina
| | - Ana Alzamendi
- Neuroendocrinology Laboratory, Multidisciplinary Institute of Cellular Biology (IMBICE, CICPBA-CONICET-UNLP), La Plata 1900, Argentina
| | - Alejandro Ezequiel Harnichar
- Neuroendocrinology Laboratory, Multidisciplinary Institute of Cellular Biology (IMBICE, CICPBA-CONICET-UNLP), La Plata 1900, Argentina
| | - María Amanda Rey
- Neuroendocrinology Laboratory, Multidisciplinary Institute of Cellular Biology (IMBICE, CICPBA-CONICET-UNLP), La Plata 1900, Argentina
| | - Luisina Ongaro
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC H3A 0G4, Canada
| | - Eduardo Spinedi
- CENEXA (UNLP-CONICET), La Plata Medical School-UNLP, Calles 60 y 120, La Plata 1900, Argentina
| | - María Guillermina Zubiría
- Neuroendocrinology Laboratory, Multidisciplinary Institute of Cellular Biology (IMBICE, CICPBA-CONICET-UNLP), La Plata 1900, Argentina
- Biology Department, School of Exact Sciences, Universidad Nacional de La Plata, La Plata 1900, Argentina
| | - Andrés Giovambattista
- Neuroendocrinology Laboratory, Multidisciplinary Institute of Cellular Biology (IMBICE, CICPBA-CONICET-UNLP), La Plata 1900, Argentina
- Biology Department, School of Exact Sciences, Universidad Nacional de La Plata, La Plata 1900, Argentina
| |
Collapse
|
29
|
Wu S, Qiu C, Ni J, Guo W, Song J, Yang X, Sun Y, Chen Y, Zhu Y, Chang X, Sun P, Wang C, Li K, Han X. M2 macrophages independently promote beige adipogenesis via blocking adipocyte Ets1. Nat Commun 2024; 15:1646. [PMID: 38388532 PMCID: PMC10883921 DOI: 10.1038/s41467-024-45899-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
Adipose tissue macrophages can promote beige adipose thermogenesis by altering local sympathetic activity. Here, we perform sympathectomy in mice and further eradicate subcutaneous adipose macrophages and discover that these macrophages have a direct beige-promoting function that is independent of sympathetic system. We further identify adipocyte Ets1 as a vital mediator in this process. The anti-inflammatory M2 macrophages suppress Ets1 expression in adipocytes, transcriptionally activate mitochondrial biogenesis, as well as suppress mitochondrial clearance, thereby increasing the mitochondrial numbers and promoting the beiging process. Male adipocyte Ets1 knock-in mice are completely cold intolerant, whereas male mice lacking Ets1 in adipocytes show enhanced energy expenditure and are resistant to metabolic disorders caused by high-fat-diet. Our findings elucidate a direct communication between M2 macrophages and adipocytes, and uncover a function for Ets1 in responding to macrophages and negatively governing mitochondrial content and beige adipocyte formation.
Collapse
Affiliation(s)
- Suyang Wu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Chen Qiu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China
- Department of Endocrinology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, 225300, China
- Key Laboratory of the Model Animal Research, Animal Core Facility of Nanjing Medical University, Nanjing, 211166, China
| | - Jiahao Ni
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Wenli Guo
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Jiyuan Song
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Xingyin Yang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Yulin Sun
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Yanjun Chen
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Yunxia Zhu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Xiaoai Chang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Peng Sun
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Chunxia Wang
- Laboratory of Critical Care Translational Medicine, Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200062, China
| | - Kai Li
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China.
- Department of Endocrinology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, 225300, China.
| | - Xiao Han
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
30
|
Lhamyani S, Gentile AM, Mengual-Mesa M, Grueso E, Giráldez-Pérez RM, Fernandez-Garcia JC, Vega-Rioja A, Clemente-Postigo M, Pearson JR, González-Mariscal I, Olveira G, Bermudez-Silva FJ, El Bekay R. Au@16-pH-16/miR-21 mimic nanosystem: An efficient treatment for obesity through browning and thermogenesis induction. Biomed Pharmacother 2024; 171:116104. [PMID: 38198956 DOI: 10.1016/j.biopha.2023.116104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
Despite the abundance of registered clinical trials worldwide, the availability of effective drugs for obesity treatment is limited due to their associated side effects. Thus, there is growing interest in therapies that stimulate energy expenditure in white adipose tissue. Recently, we demonstrated that the delivery of a miR-21 mimic using JetPEI effectively inhibits weight gain in an obese mouse model by promoting metabolism, browning, and thermogenesis, suggesting the potential of miR-21 mimic as a treatment for obesity. Despite these promising results, the implementation of more advanced delivery system techniques for miR-21 mimic would greatly enhance the advancement of safe and efficient treatment approaches for individuals with obesity in the future. Our objective is to explore whether a new delivery system based on gold nanoparticles and Gemini surfactants (Au@16-ph-16) can replicate the favorable effects of the miR-21 mimic on weight gain, browning, and thermogenesis. We found that dosages as low as 0.2 μg miR-21 mimic /animal significantly inhibited weight gain and induced browning and thermogenic parameters. This was evidenced by the upregulation of specific genes and proteins associated with these processes, as well as the biogenesis of beige adipocytes and mitochondria. Significant increases in miR-21 levels were observed in adipose tissue but not in other tissue types. Our data indicates that Au@16-ph-16 could serve as an effective delivery system for miRNA mimics, suggesting its potential suitability for the development of future clinical treatments against obesity.
Collapse
Affiliation(s)
- Said Lhamyani
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29580 Malaga, Spain; Clinical Unit of Endocrinology and Nutrition, University Regional Hospital of Malaga, 29009 Malaga, Spain; Obesity and Nutrition CIBER (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Adriana-Mariel Gentile
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29580 Malaga, Spain; Clinical Unit of Endocrinology and Nutrition, University Regional Hospital of Malaga, 29009 Malaga, Spain
| | - María Mengual-Mesa
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29580 Malaga, Spain; Universidad de Málaga. Andalucía Tech, Faculty of Health Sciences, Department of Systems and Automation Engineering, Malaga, Spain
| | - Elia Grueso
- Departamento de Física Química, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - Rosa M Giráldez-Pérez
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Córdoba, Spain
| | - José Carlos Fernandez-Garcia
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29580 Malaga, Spain; Clinical Unit of Endocrinology and Nutrition, University Regional Hospital of Malaga, 29009 Malaga, Spain; Obesity and Nutrition CIBER (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Vega-Rioja
- Laboratorio de Inmunología y Alergia-FISEVI, UGC de Alergología. Hospital Universitario Virgen Macarena, Sevilla, Spain; Departamento de Medicina. Facultad de Medicina. Universidad de Sevilla, Sevilla, Spain
| | - Mercedes Clemente-Postigo
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29580 Malaga, Spain; Obesity and Nutrition CIBER (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain; Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Malaga, Spain; Department of Cell Biology, Genetics, and Physiology, Faculty of Science, University of Malaga, Malaga, Spain
| | - John R Pearson
- Instituto de Biomedicina de Sevilla (IBiS), Seville, Spain
| | - Isabel González-Mariscal
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29580 Malaga, Spain; Inserm UMR1190, CHU de Lille, Universite de Lille, Institute Pasteur de Lille, Lille, France
| | - Gabriel Olveira
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29580 Malaga, Spain; Clinical Unit of Endocrinology and Nutrition, University Regional Hospital of Malaga, 29009 Malaga, Spain; The Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain; Departamento de Medicina y Cirugía, Universidad de Málaga, Málaga, Spain
| | - Francisco-Javier Bermudez-Silva
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29580 Malaga, Spain; Clinical Unit of Endocrinology and Nutrition, University Regional Hospital of Malaga, 29009 Malaga, Spain; The Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Rajaa El Bekay
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29580 Malaga, Spain; Clinical Unit of Endocrinology and Nutrition, University Regional Hospital of Malaga, 29009 Malaga, Spain; Obesity and Nutrition CIBER (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
31
|
Abbasi K, Zarezadeh R, Valizadeh A, Mehdizadeh A, Hamishehkar H, Nouri M, Darabi M. White-brown adipose tissue interplay in polycystic ovary syndrome: Therapeutic avenues. Biochem Pharmacol 2024; 220:116012. [PMID: 38159686 DOI: 10.1016/j.bcp.2023.116012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
This study highlights the therapeutic potential of activating brown adipose tissue (BAT) for managing polycystic ovary syndrome (PCOS), a prevalent endocrine disorder associated with metabolic and reproductive abnormalities. BAT plays a crucial role in regulating energy expenditure and systemic insulin sensitivity, making it an attractive target for the treatment of obesity and metabolic diseases. Recent research suggests that impaired BAT function and mass may contribute to the link between metabolic disturbances and reproductive issues in PCOS. Additionally, abnormal white adipose tissue (WAT) can exacerbate these conditions by releasing adipokines and nonesterified fatty acids. In this review, we explored the impact of WAT changes on BAT function in PCOS and discussed the potential of BAT activation as a therapeutic strategy to improve PCOS symptoms. We propose that BAT activation holds promise for managing PCOS; however, further research is needed to confirm its efficacy and to develop clinically feasible methods for BAT activation.
Collapse
Affiliation(s)
- Khadijeh Abbasi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Zarezadeh
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Valizadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Mehdizadeh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Masoud Darabi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Division of Experimental Oncology, Department of Hematology and Oncology, University Medical Center Schleswig-Holstein, Campus Lübeck, Germany.
| |
Collapse
|
32
|
Zhao MF, Zhang XG, Tang YP, Zhu YX, Nie HY, Bu DD, Fang L, Li CJ. Ketone bodies promote epididymal white adipose expansion to alleviate liver steatosis in response to a ketogenic diet. J Biol Chem 2024; 300:105617. [PMID: 38176653 PMCID: PMC10847776 DOI: 10.1016/j.jbc.2023.105617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/11/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024] Open
Abstract
Liver can sense the nutrient status and send signals to other organs to regulate overall metabolic homoeostasis. Herein, we demonstrate that ketone bodies act as signals released from the liver that specifically determine the distribution of excess lipid in epididymal white adipose tissue (eWAT) when exposed to a ketogenic diet (KD). An acute KD can immediately result in excess lipid deposition in the liver. Subsequently, the liver sends the ketone body β-hydroxybutyrate (BHB) to regulate white adipose expansion, including adipogenesis and lipogenesis, to alleviate hepatic lipid accumulation. When ketone bodies are depleted by deleting 3-hydroxy-3-methylglutaryl-CoA synthase 2 gene in the liver, the enhanced lipid deposition in eWAT but not in inguinal white adipose tissue is preferentially blocked, while lipid accumulation in liver is not alleviated. Mechanistically, ketone body BHB can significantly decrease lysine acetylation of peroxisome proliferator-activated receptor gamma in eWAT, causing enhanced activity of peroxisome proliferator-activated receptor gamma, the key adipogenic transcription factor. These observations suggest that the liver senses metabolic stress first and sends a corresponding signal, that is, ketone body BHB, to specifically promote eWAT expansion to adapt to metabolic challenges.
Collapse
Affiliation(s)
- Meng-Fei Zhao
- Model Animal Research Center, Medical School of Nanjing University, Nanjing University, Nanjing, China
| | - Xin-Ge Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Yi-Ping Tang
- Model Animal Research Center, Medical School of Nanjing University, Nanjing University, Nanjing, China
| | - Ying-Xi Zhu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Hong-Yu Nie
- Model Animal Research Center, Medical School of Nanjing University, Nanjing University, Nanjing, China
| | - Dan-Dan Bu
- Model Animal Research Center, Medical School of Nanjing University, Nanjing University, Nanjing, China
| | - Lei Fang
- Model Animal Research Center, Medical School of Nanjing University, Nanjing University, Nanjing, China.
| | - Chao-Jun Li
- Model Animal Research Center, Medical School of Nanjing University, Nanjing University, Nanjing, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
33
|
Jeon YG, Nahmgoong H, Oh J, Lee D, Kim DW, Kim JE, Kim YY, Ji Y, Han JS, Kim SM, Sohn JH, Lee WT, Kim SW, Park J, Huh JY, Jo K, Cho JY, Park J, Kim JB. Ubiquitin ligase RNF20 coordinates sequential adipose thermogenesis with brown and beige fat-specific substrates. Nat Commun 2024; 15:940. [PMID: 38296968 PMCID: PMC10831072 DOI: 10.1038/s41467-024-45270-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 01/19/2024] [Indexed: 02/02/2024] Open
Abstract
In mammals, brown adipose tissue (BAT) and inguinal white adipose tissue (iWAT) execute sequential thermogenesis to maintain body temperature during cold stimuli. BAT rapidly generates heat through brown adipocyte activation, and further iWAT gradually stimulates beige fat cell differentiation upon prolonged cold challenges. However, fat depot-specific regulatory mechanisms for thermogenic activation of two fat depots are poorly understood. Here, we demonstrate that E3 ubiquitin ligase RNF20 orchestrates adipose thermogenesis with BAT- and iWAT-specific substrates. Upon cold stimuli, BAT RNF20 is rapidly downregulated, resulting in GABPα protein elevation by controlling protein stability, which stimulates thermogenic gene expression. Accordingly, BAT-specific Rnf20 suppression potentiates BAT thermogenic activity via GABPα upregulation. Moreover, upon prolonged cold stimuli, iWAT RNF20 is gradually upregulated to promote de novo beige adipogenesis. Mechanistically, iWAT RNF20 mediates NCoR1 protein degradation, rather than GABPα, to activate PPARγ. Together, current findings propose fat depot-specific regulatory mechanisms for temporal activation of adipose thermogenesis.
Collapse
Affiliation(s)
- Yong Geun Jeon
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Hahn Nahmgoong
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Jiyoung Oh
- Department of Biological Sciences, College of Information and Bioengineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, South Korea
| | - Dabin Lee
- Department of Biochemistry, BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, South Korea
| | - Dong Wook Kim
- Department of Biochemistry, BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, South Korea
| | - Jane Eunsoo Kim
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Ye Young Kim
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Yul Ji
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Ji Seul Han
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Sung Min Kim
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Jee Hyung Sohn
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Won Taek Lee
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Sun Won Kim
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Jeu Park
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Jin Young Huh
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
- Department of Life Science, Sogang University, Seoul, 04107, South Korea
| | - Kyuri Jo
- Department of Computer Engineering, Chungbuk National University, Cheongju, 28644, South Korea
| | - Je-Yoel Cho
- Department of Biochemistry, BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, South Korea
| | - Jiyoung Park
- Department of Biological Sciences, College of Information and Bioengineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, South Korea
| | - Jae Bum Kim
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
34
|
Chen W, Jiang J, Gao J, Wang G, Wang R, Lv J, Ben J. Roles and signaling pathways of CITED1 in tumors: overview and novel insights. J Int Med Res 2024; 52:3000605231220890. [PMID: 38190845 PMCID: PMC10775745 DOI: 10.1177/03000605231220890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/24/2023] [Indexed: 01/10/2024] Open
Abstract
CBP/p300 interacting transactivator with Glu/Asp-rich carboxy-terminal domain 1 (CITED1) is a transcriptional activator belonging to the non-DNA-binding transcription co-regulator family. It regulates diverse pathways, including the transforming growth factor/bone morphogenetic protein/SMAD, estrogen, Wnt-β-catenin, and androgen-AR signaling pathways, by binding to CBP/p300 co-activators through its conserved transactivation domain CR2. CITED1 plays an important role in embryonic development and a certain regulatory role in the occurrence and development of various tumors. In this article, the biological characteristics, expression regulation, participating signaling pathways, and potential roles of CITED1 in the clinical diagnosis and treatment of tumors are reviewed.
Collapse
Affiliation(s)
- Wenting Chen
- Department of Oncology Medicine, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
- The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Dalian, China
| | - Jianing Jiang
- Department of Oncology Medicine, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
- The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Dalian, China
| | - Jinqi Gao
- Department of Intervention, The Second Hospital Affiliated to Dalian Medical University, Dalian, China
| | - Gang Wang
- Department of Oncology Medicine, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Ruoyu Wang
- Department of Oncology Medicine, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
- The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Dalian, China
| | - Jinyan Lv
- Department of Oncology Medicine, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Jing Ben
- Department of Oncology Medicine, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| |
Collapse
|
35
|
Miranda CS, Silva-Veiga FM, Santana-Oliveira DA, Vasques-Monteiro IML, Daleprane JB, Souza-Mello V. PPARα/γ synergism activates UCP1-dependent and -independent thermogenesis and improves mitochondrial dynamics in the beige adipocytes of high-fat fed mice. Nutrition 2024; 117:112253. [PMID: 37944411 DOI: 10.1016/j.nut.2023.112253] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/11/2023] [Accepted: 09/29/2023] [Indexed: 11/12/2023]
Abstract
OBJECTIVE The aim of this study was to investigate the role of peroxisome proliferator-activated receptor (PPAR) activation (single PPARα or PPARγ, and dual PPARα/γ) on UCP1-dependent and -independent thermogenic pathways and mitochondrial metabolism in the subcutaneous white adipose tissue of mice fed a high-fat diet. METHODS Male C57BL/6 mice received either a control diet (10% lipids) or a high-fat diet (HF; 50% lipids) for 12 wk. The HF group was divided to receive the treatments for 4 wk: HFγ (pioglitazone, 10 mg/kg), HFα (WY-14643, 3.5 mg/kg), and HFα/γ (tesaglitazar, 4 mg/kg). RESULTS The HF group was overweight, insulin resistant, and had subcutaneous white adipocyte dysfunction. Treatment with PPARα and PPARα/γ reduced body mass, mitigated insulin resistance, and induced browning with increased UCP1-dependent and -independent thermogenesis activation and improved mitochondrial metabolism to support the beige adipocyte phenotype. CONCLUSION PPARα and dual PPARα/γ activation recruited UCP1+ beige adipocytes and favored UCP1-independent thermogenesis, yielding body mass and insulin sensitivity normalization. Preserved mitochondrial metabolism emerges as a potential target for obesity treatment using PPAR agonists, with possible clinical applications.
Collapse
Affiliation(s)
- Carolline Santos Miranda
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Flávia Maria Silva-Veiga
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Daiana Araujo Santana-Oliveira
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Isabela Macedo Lopes Vasques-Monteiro
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Julio Beltrame Daleprane
- Laboratory for Studies of Interactions Between Nutrition and Genetics (LEING), Institute of Nutrition, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Vanessa Souza-Mello
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil.
| |
Collapse
|
36
|
Bódis K, Breuer S, Crepzia-Pevzner A, Zaharia OP, Schön M, Saatmann N, Altenhofen D, Springer C, Szendroedi J, Wagner R, Al-Hasani H, Roden M, Pesta D, Chadt A. Impact of physical fitness and exercise training on subcutaneous adipose tissue beiging markers in humans with and without diabetes and a high-fat diet-fed mouse model. Diabetes Obes Metab 2024; 26:339-350. [PMID: 37869933 DOI: 10.1111/dom.15322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/21/2023] [Accepted: 09/23/2023] [Indexed: 10/24/2023]
Abstract
AIMS Exercise training induces white adipose tissue (WAT) beiging and improves glucose homeostasis and mitochondrial function in rodents. This could be relevant for type 2 diabetes in humans, but the effect of physical fitness on beiging of subcutaneous WAT (scWAT) remains unclear. This translational study investigates if beiging of scWAT associates with physical fitness in healthy humans and recent-onset type 2 diabetes and if a voluntary running wheel intervention is sufficient to induce beiging in mice. MATERIALS AND METHODS Gene expression levels of established beiging markers were measured in scWAT biopsies of humans with (n = 28) or without type 2 diabetes (n = 28), stratified by spiroergometry into low (L-FIT; n = 14 each) and high physical fitness (H-FIT; n = 14 each). High-fat diet-fed FVB/N mice underwent voluntary wheel running, treadmill training or no training (n = 8 each group). Following the training intervention, mitochondrial respiration and content of scWAT were assessed by high-resolution respirometry and citrate synthase activity, respectively. RESULTS Secreted CD137 antigen (Tnfrsf9/Cd137) expression was three-fold higher in glucose-tolerant H-FIT than in L-FIT, but not different between H-FIT and L-FIT with type 2 diabetes. In mice, both training modalities increased Cd137 expression and enhanced mitochondrial content without changing respiration in scWAT. Treadmill but not voluntary wheel running led to improved whole-body insulin sensitivity. CONCLUSIONS Higher physical fitness and different exercise interventions associated with higher gene expression levels of the beiging marker CD137 in healthy humans and mice on a high-fat diet. Humans with recent-onset type 2 diabetes show an impaired adipose tissue-specific response to physical activity.
Collapse
Affiliation(s)
- Kálmán Bódis
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
| | - Saida Breuer
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Assja Crepzia-Pevzner
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Oana-Patricia Zaharia
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
| | - Martin Schön
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
| | - Nina Saatmann
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
| | - Delsi Altenhofen
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Christian Springer
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Julia Szendroedi
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- Department of Internal Medicine I and Clinical Chemistry, University Hospital Heidelberg, Heidelberg, Germany
- Joint Heidelberg-IDC Transnational Diabetes Program, Inner Medicine I, Heidelberg University Hospital, Heidelberg, Germany
| | - Robert Wagner
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
| | - Hadi Al-Hasani
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Michael Roden
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
| | - Dominik Pesta
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Faculty of Medicine and University Hospital, Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Alexandra Chadt
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
37
|
Sun W, Zhang X, Bai X, Du K, Chen L, Wang H, Jia X, Lai S. miR-889-3p Facilitates the Browning Process of White Adipocyte Precursors by Targeting the SON Gene. Int J Mol Sci 2023; 24:17580. [PMID: 38139409 PMCID: PMC10743546 DOI: 10.3390/ijms242417580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/02/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
It is well-established that beige/brown adipose tissue can dissipate stored energy through thermogenesis; hence, the browning of white adipocytes (WAT) has garnered significant interest in contemporary research. Our preceding investigations have identified a marked downregulation of miR-889-3p concurrent with the natural maturation of brown adipose tissue. However, the specific role and underlying molecular mechanisms of miR-889-3p in the browning process of white adipose tissue warrant further elucidation. In this research, we initially delved into the potential role of miR-889-3p in preadipocyte growth via flow cytometry and CCK-8 assay, revealing that miR-889-3p can stimulate preadipocyte growth. To validate the potential contribution of miR-889-3p in the browning process of white adipose tissue, we established an in vitro rabbit white adipocyte browning induction, which exhibited a significant upregulation of miR-889-3p during the browning process. RT-qPCR and Western blot analysis indicated that miR-889-3p overexpression significantly amplified the mRNA levels of UCP1, PRDM16, and CIDEA, as well as UCP1 protein levels. Furthermore, miR-889-3p overexpression fostered intracellular triglyceride accumulation. Conversely, the downregulation of miR-889-3p hindered the browning of rabbit preadipocytes. Subsequently, based on target gene prediction and luciferase reporter gene determination, we demonstrated that miR-889-3p directly targets the 3'-UTR region of SON. Lastly, we observed that inhibiting SON could facilitate the browning of rabbit preadipocytes. In conclusion, our findings suggest that miR-889-3p facilitates the browning process of white adipocyte precursors by specifically targeting the SON gene.
Collapse
Affiliation(s)
- Wenqiang Sun
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611134, China; (W.S.); (X.Z.); (X.B.); (K.D.); (L.C.); (H.W.); (X.J.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611134, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611134, China
| | - Xiaoxiao Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611134, China; (W.S.); (X.Z.); (X.B.); (K.D.); (L.C.); (H.W.); (X.J.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611134, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611134, China
| | - Xue Bai
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611134, China; (W.S.); (X.Z.); (X.B.); (K.D.); (L.C.); (H.W.); (X.J.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611134, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611134, China
| | - Kun Du
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611134, China; (W.S.); (X.Z.); (X.B.); (K.D.); (L.C.); (H.W.); (X.J.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611134, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611134, China
| | - Li Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611134, China; (W.S.); (X.Z.); (X.B.); (K.D.); (L.C.); (H.W.); (X.J.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611134, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611134, China
| | - Haoding Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611134, China; (W.S.); (X.Z.); (X.B.); (K.D.); (L.C.); (H.W.); (X.J.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611134, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611134, China
| | - Xianbo Jia
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611134, China; (W.S.); (X.Z.); (X.B.); (K.D.); (L.C.); (H.W.); (X.J.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611134, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611134, China
| | - Songjia Lai
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611134, China; (W.S.); (X.Z.); (X.B.); (K.D.); (L.C.); (H.W.); (X.J.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611134, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611134, China
| |
Collapse
|
38
|
Dong H, Qin M, Wang P, Li S, Wang X. Regulatory effects and mechanisms of exercise on activation of brown adipose tissue (BAT) and browning of white adipose tissue (WAT). Adipocyte 2023; 12:2266147. [PMID: 37795948 PMCID: PMC10563630 DOI: 10.1080/21623945.2023.2266147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/27/2023] [Indexed: 10/06/2023] Open
Abstract
Exercise is a universally acknowledged and healthy way to reducing body weight. However, the roles and mechanisms of exercise on metabolism of adipose tissue remain largely unclear. Adipose tissues include white adipose tissue (WAT), brown adipose tissue (BAT) and beige adipose tissue (BeAT). The main function of WAT is to store energy, while the BAT and BeAT can generate heat and consume energy. Therefore, promotion of BAT activation and WAT browning contributes to body weight loss. To date, many studies have suggested that exercise exerts the potential regulatory effects on BAT activation and WAT browning. In the present review, we compile the evidence for the regulatory effects of exercise on BAT activation and WAT browning and summarize the possible mechanisms whereby exercise modulates BAT activation and WAT browning, including activating sympathetic nervous system (SNS) and promoting the secretion of exerkines, with special focus on exerkines. These data might provide reference for prevention or treatment of obesity and the related metabolic disease through exercise.
Collapse
Affiliation(s)
- Haijun Dong
- Department of Physical Education, University of Shanghai for Science and Technology, Shanghai, China
| | - Man Qin
- School of Sports and Health, Shanghai Lixin Accounting and Finance University, Shanghai, China
| | - Peng Wang
- School of Physical Education, Shanghai University of Sport, Shanghai, China
| | - Shufan Li
- School of Physical Education, Shanghai University of Sport, Shanghai, China
| | - Xing Wang
- School of Physical Education, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
39
|
Pelczyńska M, Miller-Kasprzak E, Piątkowski M, Mazurek R, Klause M, Suchecka A, Bucoń M, Bogdański P. The Role of Adipokines and Myokines in the Pathogenesis of Different Obesity Phenotypes-New Perspectives. Antioxidants (Basel) 2023; 12:2046. [PMID: 38136166 PMCID: PMC10740719 DOI: 10.3390/antiox12122046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/19/2023] [Accepted: 11/25/2023] [Indexed: 12/24/2023] Open
Abstract
Obesity is a characteristic disease of the twenty-first century that is affecting an increasing percentage of society. Obesity expresses itself in different phenotypes: normal-weight obesity (NWO), metabolically obese normal-weight (MONW), metabolically healthy obesity (MHO), and metabolically unhealthy obesity (MUO). A range of pathophysiological mechanisms underlie the occurrence of obesity, including inflammation, oxidative stress, adipokine secretion, and other processes related to the pathophysiology of adipose tissue (AT). Body mass index (BMI) is the key indicator in the diagnosis of obesity; however, in the case of the NWO and MONW phenotypes, the metabolic disturbances are present despite BMI being within the normal range. On the other hand, MHO subjects with elevated BMI values do not present metabolic abnormalities. The MUO phenotype involves both a high BMI value and an abnormal metabolic profile. In this regard, attention has been focused on the variety of molecules produced by AT and their role in the development of obesity. Nesfatin-1, neuregulin 4, myonectin, irisin, and brain-derived neurotrophic factor (BDNF) all seem to have protective effects against obesity. The primary mechanism underlying the action of nesfatin-1 involves an increase in insulin sensitivity and reduced food intake. Neuregulin 4 sup-presses lipogenesis, decreases lipid accumulation, and reduces chronic low-grade inflammation. Myonectin lowers the amount of fatty acids in the bloodstream by increasing their absorption in the liver and AT. Irisin stimulates the browning of white adipose tissue (WAT) and consequently in-creases energy expenditure, additionally regulating glucose metabolism. Another molecule, BDNF, has anorexigenic effects. Decorin protects against the development of hyperglycemia, but may also contribute to proinflammatory processes. Similar effects are shown in the case of visfatin and chemerin, which may predispose to obesity. Visfatin increases adipogenesis, causes cholesterol accumulation in macrophages, and contributes to the development of glucose intolerance. Chemerin induces angiogenesis, which promotes the expansion of AT. This review aims to discuss the role of adipokines and myokines in the pathogenesis of the different obesity phenotypes.
Collapse
Affiliation(s)
- Marta Pelczyńska
- Chair and Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, 84 Szamarzewskiego Street, 60-569 Poznań, Poland; (E.M.-K.); (P.B.)
| | - Ewa Miller-Kasprzak
- Chair and Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, 84 Szamarzewskiego Street, 60-569 Poznań, Poland; (E.M.-K.); (P.B.)
| | - Marcin Piątkowski
- Faculty of Medicine, Poznan University of Medical Sciences, 70 Bukowska Street, 60-812 Poznań, Poland
| | - Roksana Mazurek
- Faculty of Medicine, Poznan University of Medical Sciences, 70 Bukowska Street, 60-812 Poznań, Poland
| | - Mateusz Klause
- Faculty of Medicine, Poznan University of Medical Sciences, 70 Bukowska Street, 60-812 Poznań, Poland
| | - Anna Suchecka
- Faculty of Medicine, Poznan University of Medical Sciences, 70 Bukowska Street, 60-812 Poznań, Poland
| | - Magdalena Bucoń
- Faculty of Medicine, Poznan University of Medical Sciences, 70 Bukowska Street, 60-812 Poznań, Poland
| | - Paweł Bogdański
- Chair and Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, 84 Szamarzewskiego Street, 60-569 Poznań, Poland; (E.M.-K.); (P.B.)
| |
Collapse
|
40
|
Redruello-Romero A, Benitez-Cantos MS, Lopez-Perez D, García-Rubio J, Tamayo F, Pérez-Bartivas D, Moreno-SanJuan S, Ruiz-Palmero I, Puentes-Pardo JD, Vilchez JR, López-Nevot MÁ, García F, Cano C, León J, Carazo Á. Human adipose tissue as a major reservoir of cytomegalovirus-reactive T cells. Front Immunol 2023; 14:1303724. [PMID: 38053998 PMCID: PMC10694288 DOI: 10.3389/fimmu.2023.1303724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/01/2023] [Indexed: 12/07/2023] Open
Abstract
Introduction Cytomegalovirus (CMV) is a common herpesvirus with a high prevalence worldwide. After the acute infection phase, CMV can remain latent in several tissues. CD8 T cells in the lungs and salivary glands mainly control its reactivation control. White adipose tissue (WAT) contains a significant population of memory T cells reactive to viral antigens, but CMV specificity has mainly been studied in mouse WAT. Therefore, we obtained blood, omental WAT (oWAT), subcutaneous WAT (sWAT), and liver samples from 11 obese donors to characterize the human WAT adaptive immune landscape from a phenotypic and immune receptor specificity perspective. Methods We performed high-throughput sequencing of the T cell receptor (TCR) locus to analyze tissue and blood TCR repertoires of the 11 donors. The presence of TCRs specific to CMV epitopes was tested through ELISpot assays. Moreover, phenotypic characterization of T cells was carried out through flow cytometry. Results High-throughput sequencing analyses revealed that tissue TCR repertoires in oWAT, sWAT, and liver samples were less diverse and dominated by hyperexpanded clones when compared to blood samples. Additionally, we predicted the presence of TCRs specific to viral epitopes, particularly from CMV, which was confirmed by ELISpot assays. Remarkably, we found that oWAT has a higher proportion of CMV-reactive T cells than blood or sWAT. Finally, flow cytometry analyses indicated that most WAT-infiltrated lymphocytes were tissue-resident effector memory CD8 T cells. Discussion Overall, these findings postulate human oWAT as a major reservoir of CMV-specific T cells, presumably for latent viral reactivation control. This study enhances our understanding of the adaptive immune response in human WAT and highlights its potential role in antiviral defense.
Collapse
Affiliation(s)
| | - Maria S. Benitez-Cantos
- Research Unit, Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain
- Department of Biochemistry and Molecular Biology III and Immunology, Faculty of Medicine, University of Granada, Granada, Spain
- GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, Granada, Spain
| | - David Lopez-Perez
- Research Unit, Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain
- Department of Pharmacology, Faculty of Pharmacy, University of Granada, Granada, Spain
| | | | | | - Daniel Pérez-Bartivas
- Research Unit, Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain
| | - Sara Moreno-SanJuan
- Research Unit, Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain
- Cytometry and Microscopy Research Service, Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain
| | - Isabel Ruiz-Palmero
- Research Unit, Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain
| | - Jose D. Puentes-Pardo
- Research Unit, Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain
- Department of Pharmacology, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Jose R. Vilchez
- Research Unit, Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain
- Clinical Analyses and Immunology Unit, Virgen de las Nieves University Hospital, Granada, Spain
| | - Miguel Á. López-Nevot
- Research Unit, Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain
- Department of Biochemistry and Molecular Biology III and Immunology, Faculty of Medicine, University of Granada, Granada, Spain
- Clinical Analyses and Immunology Unit, Virgen de las Nieves University Hospital, Granada, Spain
| | - Federico García
- Research Unit, Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain
- Clinical Microbiology Unit, San Cecilio University Hospital, Granada, Spain
- Centro de Investigación Biomédica en Red (CIBER) of Infectious Diseases, Health Institute Carlos III, Madrid, Spain
| | - Carlos Cano
- Department of Computer Science and Artificial Intelligence, University of Granada, Granada, Spain
| | - Josefa León
- Research Unit, Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain
- Digestive Unit, San Cecilio University Hospital, Granada, Spain
| | - Ángel Carazo
- Research Unit, Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain
- Clinical Microbiology Unit, San Cecilio University Hospital, Granada, Spain
| |
Collapse
|
41
|
Lu S, Cao ZB. Interplay between Vitamin D and Adipose Tissue: Implications for Adipogenesis and Adipose Tissue Function. Nutrients 2023; 15:4832. [PMID: 38004226 PMCID: PMC10675652 DOI: 10.3390/nu15224832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/10/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
Adipose tissue encompasses various types, including White Adipose Tissue (WAT), Brown Adipose Tissue (BAT), and beige adipose tissue, each having distinct roles in energy storage and thermogenesis. Vitamin D (VD), a fat-soluble vitamin, maintains a complex interplay with adipose tissue, exerting significant effects through its receptor (VDR) on the normal development and functioning of adipocytes. The VDR and associated metabolic enzymes are widely expressed in the adipocytes of both rodents and humans, and they partake in the regulation of fat metabolism and functionality through various pathways. These encompass adipocyte differentiation, adipogenesis, inflammatory responses, and adipokine synthesis and secretion. This review primarily appraises the role and mechanisms of VD in different adipocyte differentiation, lipid formation, and inflammatory responses, concentrating on the pivotal role of the VD/VDR pathway in adipogenesis. This insight furnishes new perspectives for the development of micronutrient-related intervention strategies in the prevention and treatment of obesity.
Collapse
Affiliation(s)
| | - Zhen-Bo Cao
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China;
| |
Collapse
|
42
|
Maisto M, Marzocchi A, Keivani N, Piccolo V, Summa V, Tenore GC. Natural Chalcones for the Management of Obesity Disease. Int J Mol Sci 2023; 24:15929. [PMID: 37958912 PMCID: PMC10648025 DOI: 10.3390/ijms242115929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
In the last decade, the incidence of obesity has increased dramatically worldwide, reaching a dangerous pandemic spread. This condition has serious public health implications as it significantly increases the risk of chronic diseases such as type 2 diabetes, fatty liver, hypertension, heart attack, and stroke. The treatment of obesity is therefore the greatest health challenge of our time. Conventional therapeutic treatment of obesity is based on the use of various synthetic molecules belonging to the class of appetite suppressants, lipase inhibitors, hormones, metabolic regulators, and inhibitors of intestinal peptide receptors. The long-term use of these molecules is generally limited by various side effects and tolerance. For this reason, the search for natural alternatives to treat obesity is a current research goal. This review therefore examined the anti-obesity potential of natural chalcones based on available evidence from in vitro and animal studies. In particular, the results of the main in vitro studies describing the principal molecular therapeutic targets and the mechanism of action of the different chalcones investigated were described. In addition, the results of the most relevant animal studies were reported. Undoubtedly, future clinical studies are urgently needed to confirm and validate the potential of natural chalcones in the clinical prophylaxis of obesity.
Collapse
Affiliation(s)
- Maria Maisto
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano, 59, 80131 Naples, Italy; (A.M.); (N.K.); (V.P.); (V.S.); (G.C.T.)
| | | | | | | | | | | |
Collapse
|
43
|
Huang L, Xing Y, Ning X, Yu Z, Bai X, Liu L, Sun S. Roles of Twist1 in lipid and glucose metabolism. Cell Commun Signal 2023; 21:270. [PMID: 37784111 PMCID: PMC10544448 DOI: 10.1186/s12964-023-01262-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/09/2023] [Indexed: 10/04/2023] Open
Abstract
The abnormal lipid and glucose metabolisms are linked to the metabolic disorders, tumorigenesis, and fibrotic diseases, which attracts the increasing attention to find out the key molecules involved in the lipid and glucose metabolism as the possible therapeutic targets on these diseases. A transcriptional factor Twist1 has been associated with not only the embryonic development, cancer, and fibrotic diseases, but also the regulation of lipid and glucose metabolism. In this review, we will discuss the roles and mechanisms of Twist1 in the obesity-associated white adipose tissue inflammation and insulin resistance, brown adipose tissue metabolism, fatty acid oxidation, and glucose metabolism in skeletal muscle to provide a rational perspective to consider Twist1 as a potential treatment target in clinic. Video Abstract.
Collapse
Affiliation(s)
- Liuyifei Huang
- Department of Nephrology, Xijing Hospital, The Fourth Military Medical University, Changle Road, No. 127 Changle West Road, Xi'an, Shaanxi, China
| | - Yan Xing
- Department of Nephrology, Xijing Hospital, The Fourth Military Medical University, Changle Road, No. 127 Changle West Road, Xi'an, Shaanxi, China
| | - Xiaoxuan Ning
- Department of Geriatrics, Xijing Hospital, The Fourth Military Medical University, Changle Road, No. 127 Changle West Road, Xi'an, Shaanxi, China
| | - Zhixiang Yu
- Department of Nephrology, Xijing Hospital, The Fourth Military Medical University, Changle Road, No. 127 Changle West Road, Xi'an, Shaanxi, China
| | - Xiao Bai
- Department of Nephrology, Xijing Hospital, The Fourth Military Medical University, Changle Road, No. 127 Changle West Road, Xi'an, Shaanxi, China
| | - Limin Liu
- School of Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710032, Shaanxi, China.
| | - Shiren Sun
- Department of Nephrology, Xijing Hospital, The Fourth Military Medical University, Changle Road, No. 127 Changle West Road, Xi'an, Shaanxi, China.
| |
Collapse
|
44
|
von Essen G, Lindsund E, Maldonado EM, Zouhar P, Cannon B, Nedergaard J. Highly recruited brown adipose tissue does not in itself protect against obesity. Mol Metab 2023; 76:101782. [PMID: 37499977 PMCID: PMC10432997 DOI: 10.1016/j.molmet.2023.101782] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/10/2023] [Accepted: 07/21/2023] [Indexed: 07/29/2023] Open
Abstract
OBJECTIVE The possibility to counteract the development of obesity in humans by recruiting brown or brite/beige adipose tissue (and thus UCP1) has attracted much attention. Here we examine if a diet that can activate diet-induced thermogenesis can exploit pre-enhanced amounts of UCP1 to counteract the development of diet-induced obesity. METHODS To investigate the anti-obesity significance of highly augmented amounts of UCP1 for control of body energy reserves, we physiologically increased total UCP1 amounts by recruitment of brown and brite/beige tissues in mice. We then examined the influence of the augmented UCP1 levels on metabolic parameters when the mice were exposed to a high-fat/high-sucrose diet under thermoneutral conditions. RESULTS The total UCP1 levels achieved were about 50-fold higher in recruited than in non-recruited mice. Contrary to underlying expectations, in the mice with highly recruited UCP1 and exposed to a high-fat/high-sucrose diet the thermogenic capacity of this UCP1 was completely inactivate. The mice even transiently (in an adipostat-like manner) demonstrated a higher metabolic efficiency and fat gain than did non-recruited mice. This was accomplished without altering energy expenditure or food absorption efficiency. The metabolic efficiency here was indistinguishable from that of mice totally devoid of UCP1. CONCLUSIONS Although UCP1 protein may be available, it is not inevitably utilized for diet-induced thermogenesis. Thus, although attempts to recruit UCP1 in humans may become successful as such, it is only if constant activation of the UCP1 is also achieved that amelioration of obesity development could be attained.
Collapse
Affiliation(s)
- Gabriella von Essen
- Department of Molecular Biosciences, The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Erik Lindsund
- Department of Molecular Biosciences, The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Elaina M Maldonado
- Department of Molecular Biosciences, The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Petr Zouhar
- Department of Molecular Biosciences, The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, SE-106 91 Stockholm, Sweden; Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, CZ-142 00 Prague, Czech Republic
| | - Barbara Cannon
- Department of Molecular Biosciences, The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Jan Nedergaard
- Department of Molecular Biosciences, The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, SE-106 91 Stockholm, Sweden.
| |
Collapse
|
45
|
Noriega L, Yang CY, Wang CH. Brown Fat and Nutrition: Implications for Nutritional Interventions. Nutrients 2023; 15:4072. [PMID: 37764855 PMCID: PMC10536824 DOI: 10.3390/nu15184072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Brown and beige adipocytes are renowned for their unique ability to generate heat through a mechanism known as thermogenesis. This process can be induced by exposure to cold, hormonal signals, drugs, and dietary factors. The activation of these thermogenic adipocytes holds promise for improving glucose metabolism, reducing fat accumulation, and enhancing insulin sensitivity. However, the translation of preclinical findings into effective clinical therapies poses challenges, warranting further research to identify the molecular mechanisms underlying the differentiation and function of brown and beige adipocytes. Consequently, research has focused on the development of drugs, such as mirabegron, ephedrine, and thyroid hormone, that mimic the effects of cold exposure to activate brown fat activity. Additionally, nutritional interventions have been explored as an alternative approach to minimize potential side effects. Brown fat and beige fat have emerged as promising targets for addressing nutritional imbalances, with the potential to develop strategies for mitigating the impact of metabolic diseases. Understanding the influence of nutritional factors on brown fat activity can facilitate the development of strategies to promote its activation and mitigate metabolic disorders.
Collapse
Affiliation(s)
- Lloyd Noriega
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung 406040, Taiwan
| | - Cheng-Ying Yang
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung 406040, Taiwan
| | - Chih-Hao Wang
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung 406040, Taiwan
- Graduate Institute of Cell Biology, College of Life Sciences, China Medical University, Taichung 406040, Taiwan
| |
Collapse
|
46
|
Vinnai BÁ, Arianti R, Győry F, Bacso Z, Fésüs L, Kristóf E. Extracellular thiamine concentration influences thermogenic competency of differentiating neck area-derived human adipocytes. Front Nutr 2023; 10:1207394. [PMID: 37781121 PMCID: PMC10534038 DOI: 10.3389/fnut.2023.1207394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/14/2023] [Indexed: 10/03/2023] Open
Abstract
Introduction Brown adipose tissue (BAT) dissipates energy in the form of heat majorly via the mitochondrial uncoupling protein 1 (UCP1). The activation of BAT, which is enriched in the neck area and contains brown and beige adipocytes in humans, was considered as a potential therapeutic target to treat obesity. Therefore, finding novel agents that can stimulate the differentiation and recruitment of brown or beige thermogenic adipocytes are important subjects for investigation. The current study investigated how the availability of extracellular thiamine (vitamin B1), an essential cofactor of mitochondrial enzyme complexes that catalyze key steps in the catabolism of nutrients, affects the expression of thermogenic marker genes and proteins and subsequent functional parameters during ex vivo adipocyte differentiation. Methods We differentiated primary human adipogenic progenitors that were cultivated from subcutaneous (SC) or deep neck (DN) adipose tissues in the presence of gradually increasing thiamine concentrations during their 14-day differentiation program. mRNA and protein expression of thermogenic genes were analyzed by RT-qPCR and western blot, respectively. Cellular respiration including stimulated maximal and proton-leak respiration was measured by Seahorse analysis. Results Higher thiamine levels resulted in increased expression of thiamine transporter 1 and 2 both at mRNA and protein levels in human neck area-derived adipocytes. Gradually increasing concentrations of thiamine led to increased basal, cAMP-stimulated, and proton-leak respiration along with elevated mitochondrial biogenesis of the differentiated adipocytes. The extracellular thiamine availability during adipogenesis determined the expression levels of UCP1, PGC1a, CKMT2, and other browning-related genes and proteins in primary SC and DN-derived adipocytes in a concentration-dependent manner. Providing abundant amounts of thiamine further increased the thermogenic competency of the adipocytes. Discussion Case studies in humans reported that thiamine deficiency was found in patients with type 2 diabetes and obesity. Our study raises the possibility of a novel strategy with long-term thiamine supplementation, which can enhance the thermogenic competency of differentiating neck area-derived adipocytes for preventing or combating obesity.
Collapse
Affiliation(s)
- Boglárka Ágnes Vinnai
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Debrecen, Hungary
| | - Rini Arianti
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Universitas Muhammadiyah Bangka Belitung, Pangkalanbaru, Indonesia
| | - Ferenc Győry
- Department of Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zsolt Bacso
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Debrecen, Hungary
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| | - László Fésüs
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Endre Kristóf
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
47
|
Barayan D, Abdullahi A, Knuth CM, Khalaf F, Rehou S, Screaton RA, Jeschke MG. Lactate shuttling drives the browning of white adipose tissue after burn. Am J Physiol Endocrinol Metab 2023; 325:E180-E191. [PMID: 37406182 PMCID: PMC10396278 DOI: 10.1152/ajpendo.00084.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 07/07/2023]
Abstract
High levels of plasma lactate are associated with increased mortality in critically injured patients, including those with severe burns. Although lactate has long been considered a waste product of glycolysis, it was recently revealed that it acts as a potent inducer of white adipose tissue (WAT) browning, a response implicated in mediating postburn cachexia, hepatic steatosis, and sustained hypermetabolism. Despite the clinical presentation of hyperlactatemia and browning in burns, whether these two pathological responses are linked is currently unknown. Here, we report that elevated lactate plays a causal signaling role in mediating adverse outcomes after burn trauma by directly promoting WAT browning. Using WAT obtained from human burn patients and mouse models of thermal injury, we show that the induction of postburn browning is positively correlated with a shift toward lactate import and metabolism. Furthermore, daily administration of l-lactate is sufficient to augment burn-induced mortality and weight loss in vivo. At the organ level, increased lactate transport amplified the thermogenic activation of WAT and its associated wasting, thereby driving postburn hepatic lipotoxicity and dysfunction. Mechanistically, the thermogenic effects of lactate appeared to result from increased import through MCT transporters, which in turn increased intracellular redox pressure, [NADH/NAD+], and expression of the batokine, FGF21. In fact, pharmacological inhibition of MCT-mediated lactate uptake attenuated browning and improved hepatic function in mice after injury. Collectively, our findings identify a signaling role for lactate that impacts multiple aspects of postburn hypermetabolism, necessitating further investigation of this multifaceted metabolite in trauma and critical illness.NEW & NOTEWORTHY To our knowledge, this study was the first to investigate the role of lactate signaling in mediating white adipose tissue browning after burn trauma. We show that the induction of browning in both human burn patients and mice is positively correlated with a shift toward lactate import and metabolism. Daily l-lactate administration augments burn-induced mortality, browning, and hepatic lipotoxicity in vivo, whereas pharmacologically targeting lactate transport alleviates burn-induced browning and improves liver dysfunction after injury.
Collapse
Affiliation(s)
- Dalia Barayan
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Sunnybrook Research Institute, Toronto, Ontario, Canada
- Hamilton Health Sciences, Hamilton, Ontario, Canada
| | - Abdikarim Abdullahi
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Carly M Knuth
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Sunnybrook Research Institute, Toronto, Ontario, Canada
- Hamilton Health Sciences, Hamilton, Ontario, Canada
| | - Fadi Khalaf
- Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Sarah Rehou
- Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Sunnybrook Research Institute, Toronto, Ontario, Canada
- Hamilton Health Sciences, Hamilton, Ontario, Canada
| | - Robert A Screaton
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Marc G Jeschke
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Surgery, McMaster University, Hamilton, Ontario, Canada
- Hamilton Health Sciences, Hamilton, Ontario, Canada
| |
Collapse
|
48
|
Wang B, Du M. Increasing adipocyte number and reducing adipocyte size: the role of retinoids in adipose tissue development and metabolism. Crit Rev Food Sci Nutr 2023; 64:10608-10625. [PMID: 37427553 PMCID: PMC10776826 DOI: 10.1080/10408398.2023.2227258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The rising prevalence of obesity is a grave public health threat. In response to excessive energy intake, adipocyte hypertrophy impairs cellular function and leads to metabolic dysfunctions while de novo adipogenesis leads to healthy adipose tissue expansion. Through burning fatty acids and glucose, the thermogenic activity of brown/beige adipocytes can effectively reduce the size of adipocytes. Recent studies show that retinoids, especially retinoic acid (RA), promote adipose vascular development which in turn increases the number of adipose progenitors surrounding the vascular vessels. RA also promotes preadipocyte commitment. In addition, RA promotes white adipocyte browning and stimulates the thermogenic activity of brown/beige adipocytes. Thus, vitamin A is a promising anti-obesity micronutrient.
Collapse
Affiliation(s)
- Bo Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, PR China
| | - Min Du
- Laboratory of Nutrigenomics and Growth Biology, Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
49
|
Gulbins A, Horstmann M, Daser A, Flögel U, Oeverhaus M, Bechrakis NE, Banga JP, Keitsch S, Wilker B, Krause G, Hammer GD, Spencer AG, Zeidan R, Eckstein A, Philipp S, Görtz GE. Linsitinib, an IGF-1R inhibitor, attenuates disease development and progression in a model of thyroid eye disease. Front Endocrinol (Lausanne) 2023; 14:1211473. [PMID: 37435490 PMCID: PMC10331459 DOI: 10.3389/fendo.2023.1211473] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/06/2023] [Indexed: 07/13/2023] Open
Abstract
Introduction Graves' disease (GD) is an autoimmune disorder caused by autoantibodies against the thyroid stimulating hormone receptor (TSHR) leading to overstimulation of the thyroid gland. Thyroid eye disease (TED) is the most common extra thyroidal manifestation of GD. Therapeutic options to treat TED are very limited and novel treatments need to be developed. In the present study we investigated the effect of linsitinib, a dual small-molecule kinase inhibitor of the insulin-like growth factor 1 receptor (IGF-1R) and the Insulin receptor (IR) on the disease outcome of GD and TED. Methods Linsitinib was administered orally for four weeks with therapy initiating in either the early ("active") or the late ("chronic") phases of the disease. In the thyroid and the orbit, autoimmune hyperthyroidism and orbitopathy were analyzed serologically (total anti-TSHR binding antibodies, stimulating anti TSHR antibodies, total T4 levels), immunohistochemically (H&E-, CD3-, TNFa- and Sirius red staining) and with immunofluorescence (F4/80 staining). An MRI was performed to quantify in vivo tissue remodeling inside the orbit. Results Linsitinib prevented autoimmune hyperthyroidism in the early state of the disease, by reducing morphological changes indicative for hyperthyroidism and blocking T-cell infiltration, visualized by CD3 staining. In the late state of the disease linsitinib had its main effect in the orbit. Linsitinib reduced immune infiltration of T-cells (CD3 staining) and macrophages (F4/80 and TNFa staining) in the orbita in experimental GD suggesting an additional, direct effect of linsitinib on the autoimmune response. In addition, treatment with linsitinib normalized the amount of brown adipose tissue in both the early and late group. An in vivo MRI of the late group was performed and revealed a marked decrease of inflammation, visualized by 19F MR imaging, significant reduction of existing muscle edema and formation of brown adipose tissue. Conclusion Here, we demonstrate that linsitinib effectively prevents development and progression of thyroid eye disease in an experimental murine model for Graves' disease. Linsitinib improved the total disease outcome, indicating the clinical significance of the findings and providing a path to therapeutic intervention of Graves' Disease. Our data support the use of linsitinib as a novel treatment for thyroid eye disease.
Collapse
Affiliation(s)
- Anne Gulbins
- Molecular Ophthalmology, Department of Ophthalmology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Mareike Horstmann
- Molecular Ophthalmology, Department of Ophthalmology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Anke Daser
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Ulrich Flögel
- Experimental Cardiovascular Imaging, Department of Molecular Cardiology, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Michael Oeverhaus
- Molecular Ophthalmology, Department of Ophthalmology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Nikolaos E. Bechrakis
- Department of Ophthalmology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - J. Paul Banga
- Molecular Ophthalmology, Department of Ophthalmology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Simone Keitsch
- Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | - Barbara Wilker
- Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | - Gerd Krause
- Department of Structural Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Gary D. Hammer
- Endocrine Oncology Program, University of Michigan, Ann Arbor, MI, United States
| | | | - Ryan Zeidan
- Sling Therapeutics Inc., Ann Arbor, MI, United States
| | - Anja Eckstein
- Molecular Ophthalmology, Department of Ophthalmology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Svenja Philipp
- Molecular Ophthalmology, Department of Ophthalmology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Gina-Eva Görtz
- Molecular Ophthalmology, Department of Ophthalmology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
50
|
Gopan G, Jose J, Khot KB, Bandiwadekar A. The use of cellulose, chitosan and hyaluronic acid in transdermal therapeutic management of obesity: A review. Int J Biol Macromol 2023:125374. [PMID: 37330096 DOI: 10.1016/j.ijbiomac.2023.125374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/29/2023] [Accepted: 06/11/2023] [Indexed: 06/19/2023]
Abstract
Obesity is a clinical condition with rising popularity and detrimental impacts on human health. According to the World Health Organization, obesity is the sixth most common cause of death worldwide. It is challenging to combat obesity because medications that are successful in the clinical investigation have harmful side effects when administered orally. The conventional approaches for treating obesity primarily entail synthetic compounds and surgical techniques but possess severe adverse effects and recurrences. As a result, a safe and effective strategy to combat obesity must be initiated. Recent studies have shown that biological macromolecules of the carbohydrate class, such as cellulose, hyaluronic acid, and chitosan, can enhance the release and efficacy of medications for obesity but due to their short biological half-lives and poor oral bioavailability, their distribution rate is affected. This helps to comprehend the need for an effective therapeutic approach via a transdermal drug delivery system. This review focuses on the transdermal administration, utilizing cellulose, chitosan, and hyaluronic acid via microneedles, as it offers a promising solution to overcome existing therapy limitations in managing obesity and it also highlights how microneedles can effectively deliver therapeutic substances through the skin's outer layer, bypassing pain receptors and specifically targeting adipose tissue.
Collapse
Affiliation(s)
- Gopika Gopan
- NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangalore 575018, India
| | - Jobin Jose
- NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangalore 575018, India.
| | - Kartik Bhairu Khot
- NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangalore 575018, India
| | - Akshay Bandiwadekar
- NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangalore 575018, India
| |
Collapse
|