1
|
De la Fuente IM, Cortes JM, Malaina I, Pérez-Yarza G, Martinez L, López JI, Fedetz M, Carrasco-Pujante J. The main sources of molecular organization in the cell. Atlas of self-organized and self-regulated dynamic biostructures. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2025; 195:167-191. [PMID: 39805422 DOI: 10.1016/j.pbiomolbio.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
One of the most important goals of contemporary biology is to understand the principles of the molecular order underlying the complex dynamic architecture of cells. Here, we present an overview of the main driving forces involved in the cellular molecular complexity and in the emergent functional dynamic structures, spanning from the most basic molecular organization levels to the complex emergent integrative systemic behaviors. First, we address the molecular information processing which is essential in many complex fundamental mechanisms such as the epigenetic memory, alternative splicing, regulation of transcriptional system, and the adequate self-regulatory adaptation to the extracellular environment. Next, we approach the biochemical self-organization, which is central to understand the emergency of metabolic rhythms, circadian oscillations, and spatial traveling waves. Such a complex behavior is also fundamental to understand the temporal compartmentalization of the cellular metabolism and the dynamic regulation of many physiological activities. Numerous examples of biochemical self-organization are considered here, which show that practically all the main physiological processes in the cell exhibit this type of dynamic molecular organization. Finally, we focus on the biochemical self-assembly which, at a primary level of organization, is a basic but important mechanism for the order in the cell allowing biomolecules in a disorganized state to form complex aggregates necessary for a plethora of essential structures and physiological functions. In total, more than 500 references have been compiled in this review. Due to these main sources of order, systemic functional structures emerge in the cell, driving the metabolic functionality towards the biological complexity.
Collapse
Affiliation(s)
- Ildefonso M De la Fuente
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain.
| | - Jesus M Cortes
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain; Biobizkaia Health Research Institute, Barakaldo, 48903, Spain; IKERBASQUE: The Basque Foundation for Science, Bilbao, Spain
| | - Iker Malaina
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain
| | - Gorka Pérez-Yarza
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain
| | - Luis Martinez
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain
| | - José I López
- Biobizkaia Health Research Institute, Barakaldo, 48903, Spain
| | - Maria Fedetz
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine "López-Neyra", CSIC, Granada, 18016, Spain
| | - Jose Carrasco-Pujante
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain
| |
Collapse
|
2
|
Jamadar A, Ward CJ, Remadevi V, Varghese MM, Pabla NS, Gumz ML, Rao R. Circadian Clock Disruption and Growth of Kidney Cysts in Autosomal Dominant Polycystic Kidney Disease. J Am Soc Nephrol 2025; 36:378-392. [PMID: 39401086 PMCID: PMC11888963 DOI: 10.1681/asn.0000000528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/04/2024] [Indexed: 10/23/2024] Open
Abstract
Key Points Lack of Bmal1 , a circadian clock protein in renal collecting ducts disrupted the clock and increased cyst growth and fibrosis in an autosomal dominant polycystic kidney disease mouse model. Bmal1 gene deletion increased cell proliferation by increasing lipogenesis in kidney cells. Thus, circadian clock disruption could be a risk factor for accelerated disease progression in patients with autosomal dominant polycystic kidney disease. Background Autosomal dominant polycystic kidney disease (ADPKD) is caused by mutations in the PKD1 and PKD2 genes and often progresses to kidney failure. ADPKD progression is not uniform among patients, suggesting that factors secondary to the PKD1/2 gene mutation could regulate the rate of disease progression. Here, we tested the effect of circadian clock disruption on ADPKD progression. Circadian rhythms are regulated by cell-autonomous circadian clocks composed of clock proteins. BMAL1 is a core constituent of the circadian clock. Methods To disrupt the circadian clock, we deleted Bmal1 gene in the renal collecting ducts of the Pkd1 RC/RC (RC/RC) mouse model of ADPKD (RC/RC;Bmal1 f/f;Pkhd1 cre, called double knockout [DKO] mice) and in Pkd1 knockout mouse inner medullary collecting duct cells (Pkd1Bmal1 KO mouse renal inner medullary collecting duct cells). Only male mice were used. Results Human nephrectomy ADPKD kidneys showed altered clock gene expression when compared with normal control human kidneys. When compared with RC/RC kidneys, DKO kidneys showed significantly altered clock gene expression, increased cyst growth, cell proliferation, apoptosis, and fibrosis. DKO kidneys also showed increased lipogenesis and cholesterol synthesis–related gene expression and increased tissue triglyceride levels compared with RC/RC kidneys. Similarly, in vitro , Pkd1Bmal1 KO cells showed altered clock genes, increased lipogenesis and cholesterol synthesis–related genes, and reduced fatty acid oxidation–related gene expression compared with Pkd1KO cells. The Pkd1Bmal1 KO cells showed increased cell proliferation compared with Pkd1KO cells, which was rescued by pharmacological inhibition of lipogenesis. Conclusions Renal collecting duct–specific Bmal1 gene deletion disrupted the circadian clock and triggered accelerated ADPKD progression by altering lipid metabolism–related gene expression.
Collapse
Affiliation(s)
- Abeda Jamadar
- Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
- Department of Medicine, Division of Nephrology, University of Kansas Medical Center, Kansas City, Kansas
| | - Christopher J. Ward
- Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
- Department of Medicine, Division of Nephrology, University of Kansas Medical Center, Kansas City, Kansas
| | - Viji Remadevi
- Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
- Department of Medicine, Division of Nephrology, University of Kansas Medical Center, Kansas City, Kansas
| | - Meekha M. Varghese
- Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
- Department of Medicine, Division of Nephrology, University of Kansas Medical Center, Kansas City, Kansas
| | - Navjot S. Pabla
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Michelle L. Gumz
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Physiology and Aging, Department of Medicine, University of Florida, Gainesville, Florida
| | - Reena Rao
- Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
- Department of Medicine, Division of Nephrology, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
3
|
Mustafa AF, He W, Belsham DD. Transforming growth factor β-2 is rhythmically expressed in both WT and BMAL1-deficient hypothalamic neurons and regulates neuropeptide Y: Disruption by palmitate. Mol Cell Endocrinol 2025; 595:112411. [PMID: 39522861 DOI: 10.1016/j.mce.2024.112411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
The hypothalamus contains neuropeptide Y (NPY)-expressing neurons that control food intake and regulate energy homeostasis. During the development of obesity, neuroinflammation occurs in the hypothalamus before peripheral tissues, but the cytokines involved have not been thoroughly studied. Among them is the transforming growth factor beta (TGF-β) family of cytokines. Herein, we demonstrate that Tgfb 1-3, as well as its receptors Tgfbr1 and Tgfbr2, exhibit high levels of expression in the whole hypothalamus, primary hypothalamic culture, and immortalized hypothalamic neurons. Of interest, only Tgfb2 mRNA displays circadian expression in the immortalized hypothalamic neurons and maintains this rhythmicity in BMAL1-KO-derived hypothalamic neurons that are deficient of inherent clock gene rhythmicity. Although BMAL2 may serve as an alternative rhythm generation mechanism in the absence of BMAL1, its knockdown did not affect Tgfb2 expression. Treatment of immortalized NPY-expressing neurons with TGF-β2 upregulates the core circadian oscillators Bmal1 and Nr1d1, and importantly, also Npy mRNA expression. With obesity, the hypothalamus is exposed to elevated levels of palmitate, a saturated fatty acid that promotes neuroinflammation by upregulating pro-inflammatory cytokines. Palmitate treatment disrupts the expression of TGF-β signaling components, increases BMAL1 binding to the Tgfb2 5' regulatory region, and upregulates Npy mRNA, whereas antagonizing TGFBRI attenuates the upregulation of Npy. These results suggest that hypothalamic neuronal TGF-β2 lies at the intersection of circadian rhythms, feeding neuropeptide control, and neuroinflammation. A better understanding of the underlying mechanisms that link nutrient excess to hypothalamic dysfunction is critical for the development of effective prevention and treatment strategies.
Collapse
Affiliation(s)
- Aws F Mustafa
- Department of Physiology, University of Toronto, Ontario, Canada
| | - Wenyuan He
- Department of Physiology, University of Toronto, Ontario, Canada
| | - Denise D Belsham
- Department of Physiology, University of Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Ontario, Canada.
| |
Collapse
|
4
|
Xie D, Zhong S, Luo M, Xu J, Zheng R, Luo J, Wang Y, Guo Y, Guo L, Wu B, Lu D. Disruption of local circadian clocks in aristolochic acid-induced nephropathy in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156235. [PMID: 39541665 DOI: 10.1016/j.phymed.2024.156235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/17/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Aristolochic acid I (AAI), an emerging biogenic contaminant widely present in Aristolochic plants, has been implicated in the progression of tubulointerstitial disease, known as aristolochic acid nephropathy (AAN). The circadian clock, a vital regulator of organ homeostasis, is susceptible to external chemical cues, including toxins. However, the reciprocal interactions between AAI and the circadian clock remain unexplored. METHODS We initially assessed sex- and time-dependent nephropathy and behavioral responses in C57BL/6J mice exposed to AAI. Subsequently, we evaluated changes in the expression of circadian clock genes following treatment with AAI or its bioactive metabolite, aristolactam I, using real-time quantitative PCR and immunoblotting in renal tissues and cells. Additionally, real-time reporter assays were conducted on kidney explants from PER2::Luc knock-in reporter mice and Per2-dLuc/Bmal1-dLuc reporter cell lines. To further elucidate the regulatory role of circadian clocks in AAI-induced nephropathy, mice with global or kidney-specific knockout of Bmal1, as well as mice subjected to experimental jetlag, were utilized. RESULTS Our findings revealed a sex-dependent nephrotoxicity of AAI, with males exhibiting greater vulnerability. AAI-induced nephropathy was accompanied by impaired spatial cognitive function, disruptions in free-running locomotor activity, altered renal expression of multiple core clock genes, and disturbances in the circadian rhythm of renal PER2::Luc activity. Notably, kidney-specific ablation of the core clock gene Bmal1 significantly exacerbated renal injury and inflammation, whereas disruptions to the central clock, either genetically (through conventional knockout of Bmal1) or environmentally (mimicking jetlag), had minimal effects on AAI nephrotoxicity. Furthermore, both AAI and its bioactive metabolite aristolactam I demonstrated the ability to disrupt circadian clocks in human osteosarcoma cells (U2OS) and mouse renal tubular epithelial cells (mRTEC). CONCLUSION Collectively, these findings highlight the detrimental impact of aristolochic acids on local renal circadian clocks, ultimately exacerbating kidney damage. This study provides novel insights into the molecular mechanisms underlying AAI nephrotoxicity, potentially opening avenues for therapeutic interventions aimed at modulating the renal circadian clock to treat AAN.
Collapse
Affiliation(s)
- Dihao Xie
- Institute of Molecular Rhythm and Metabolism, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Simin Zhong
- Institute of Molecular Rhythm and Metabolism, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Meixue Luo
- Institute of Molecular Rhythm and Metabolism, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiahao Xu
- Institute of Molecular Rhythm and Metabolism, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ruoyan Zheng
- Institute of Molecular Rhythm and Metabolism, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiading Luo
- Institute of Molecular Rhythm and Metabolism, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yiting Wang
- Institute of Molecular Rhythm and Metabolism, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yongxing Guo
- Institute of Molecular Rhythm and Metabolism, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lianxia Guo
- Institute of Molecular Rhythm and Metabolism, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Baojian Wu
- Institute of Molecular Rhythm and Metabolism, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Danyi Lu
- Institute of Molecular Rhythm and Metabolism, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
5
|
Chang SJ, Chen WT, Chai CY. Arsenic-induced disruption of circadian rhythms and glutamine anaplerosis in human urothelial carcinoma. J Trace Elem Med Biol 2024; 86:127507. [PMID: 39137608 DOI: 10.1016/j.jtemb.2024.127507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/29/2024] [Accepted: 07/29/2024] [Indexed: 08/15/2024]
Abstract
Inorganic arsenic (iAs)-induced urothelial carcinoma (UC) develops into a poor-prognosis malignancy. Arsenic-induced oxidative stress contributes to circadian rhythm disruption altered metabolism. Glutamine anaplerosis is a common metabolic feature of rapidly proliferating malignant cells, in which glutaminase (GLS) is a key enzyme in this process. Therefore, this study intends to determine if arsenic-induced oxidative stress can alter circadian rhythms and promote glutamine anaplerosis. Exonic expression of core circadian molecules (CLOCK, ARNTL, and NR1D1) and GLS in varying grades of UC were assessed using 423 bladder cancer samples from the TCGA Urothelial Bladder Cancer (BLCA) dataset. The levels of circadian proteins and metabolic markers in 44 UC patients from non-black foot disease (BFD) and BFD areas were detected by immunohistochemistry. In vitro and in vivo experiments elucidated the regulatory mechanisms of arsenic-mediated circadian disturbance and metabolic alteration. Public database analysis showed that ARNTL, NR1D1, and GLS exhibited greater expression in more high-grade UC. Strong immunoreactivity for BMAL1, GLS, and low levels of NR1D1 were found in malignant urothelial lesions, especially in arsenic-exposed UC. Arsenic-induced overexpression of BMAL1 and GLS involves activation of NADH: quinone oxidoreductase 1 (NQO1), continuously altering the NADH oscillations to promote glutamate metabolism in SV-HUC-1, T24 and BFTC-905 cells. These phenomenon were also demonstrated in the urothelium of arsenic-exposed animals. The present findings highlight the potential clinical significance of BMAL1 and GLS in UC in the BFD region. Furthermore, these results suggest that arsenic interferes with circadian rhythm and glutamine anaplerosis by NADH oscillatory imbalance in urothelial cells and urothelial cancer cells, predisposing them to malignant development.
Collapse
Affiliation(s)
- Shu-Jyuan Chang
- Department of Pathology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Wan-Tzu Chen
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chee-Yin Chai
- Department of Pathology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Institute of Biomedical Sciences, National Sun Yat-Sen University Kaohsiung, Taiwan.
| |
Collapse
|
6
|
Torres M, Kirchner M, Marks CG, Mertins P, Kramer A. Proteomic insights into circadian transcription regulation: novel E-box interactors revealed by proximity labeling. Genes Dev 2024; 38:1020-1032. [PMID: 39562139 DOI: 10.1101/gad.351836.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 10/23/2024] [Indexed: 11/21/2024]
Abstract
Circadian clocks (∼24 h) are responsible for daily physiological, metabolic, and behavioral changes. Central to these oscillations is the regulation of gene transcription. Previous research has identified clock protein complexes that interact with the transcriptional machinery to orchestrate circadian transcription, but technological constraints have limited the identification of de novo proteins. Here we use a novel genomic locus-specific quantitative proteomics approach to provide a new perspective on time of day-dependent protein binding at a critical chromatin locus involved in circadian transcription: the E-box. Using proximity labeling proteomics at the E-box of the clock-controlled Dbp gene in mouse fibroblasts, we identified 69 proteins at this locus at the time of BMAL1 binding. This method successfully enriched BMAL1 as well as HDAC3 and HISTONE H2A.V/Z, known circadian regulators. New E-box proteins include the MINK1 kinase and the transporters XPO7 and APPL1, whose depletion in human U-2 OS cells results in disrupted circadian rhythms, suggesting a role in the circadian transcriptional machinery. Overall, our approach uncovers novel circadian modulators and provides a new strategy to obtain a complete temporal picture of circadian transcriptional regulation.
Collapse
Affiliation(s)
- Manon Torres
- Laboratory of Chronobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Marieluise Kirchner
- Core Unit Proteomics, Berlin Institute of Health at Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Caroline G Marks
- Laboratory of Chronobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Philipp Mertins
- Core Unit Proteomics, Berlin Institute of Health at Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Achim Kramer
- Laboratory of Chronobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany;
| |
Collapse
|
7
|
Luo Q, Sangani N, Abhyankar S, Somalraju S, Janga SC, Bhatwadekar AD. Global mapping of BMAL1 protein-DNA interactions in human retinal Müller cells. Mol Vis 2024; 30:379-389. [PMID: 39959169 PMCID: PMC11829784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 11/08/2024] [Indexed: 02/18/2025] Open
Abstract
The circadian clock, a conserved biologic timekeeping mechanism, is pivotal in orchestrating rhythmic physiologic processes. While extensively studied in the central clock, the involvement of BMAL1 in peripheral clocks, particularly in human Müller cells, remains underexplored. Müller cells, critical for retinal homeostasis, may unveil novel insights into circadian regulation. Employing ChIP-sequencing, we comprehensively mapped BMAL1 binding sites in human Müller cells. The analysis identified 275 reproducible peaks, with predominant distribution across promoters (26.6%), intronic (26.3%), and intergenic (22.1%) regions, with 80% of these confident peaks linked to protein-coding genes. Differential peak analysis revealed 89 unique genes significantly enriched with BMAL1 sites in their promoters, while functional enrichment of the associated genes indicated key biologic processes such as circadian regulation of gene expression, photoperiodism, and glucocorticoid receptor signaling pathway regulation. Motif analysis revealed a highly conserved 6-nucleotide motif, CACGTG, appearing in 89.09% of the peaks. Analysis of the binding sites across genomic regions highlighted the robust BMAL1 binding, further confirmed by qPCR validation of circadian targets such as G6PC3, CIART, PER1, and TXNIP, which are critical for Müller cell health, along with SHMT2 and MALAT1, which have emerged as novel genes that may have implications for Müller cell health. Our findings unveil the regulatory landscape of BMAL1 in Müller cells, contributing to a broader understanding of the clock-mediated mechanism in ocular tissues. These insights hold therapeutic potential for circadian-related retinal diseases, presenting avenues for chronotherapeutic interventions.
Collapse
Affiliation(s)
- Qianyi Luo
- Department of Ophthalmology, Indiana University School of Medicine, Eugene and Marilyn Glick Eye Institute, Indianapolis, IN
| | - Neel Sangani
- Department of Biomedical Engineering and Informatics, Luddy School of Informatics, Computing & Engineering, Indiana University Indianapolis (IUI), Indianapolis, IN
| | - Surabhi Abhyankar
- Department of Ophthalmology, Indiana University School of Medicine, Eugene and Marilyn Glick Eye Institute, Indianapolis, IN
| | - Sahiti Somalraju
- Department of Biomedical Engineering and Informatics, Luddy School of Informatics, Computing & Engineering, Indiana University Indianapolis (IUI), Indianapolis, IN
| | - Sarath Chandra Janga
- Department of Biomedical Engineering and Informatics, Luddy School of Informatics, Computing & Engineering, Indiana University Indianapolis (IUI), Indianapolis, IN
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN
- Centre for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN
| | - Ashay D Bhatwadekar
- Department of Ophthalmology, Indiana University School of Medicine, Eugene and Marilyn Glick Eye Institute, Indianapolis, IN
| |
Collapse
|
8
|
Jamadar A, Ward CJ, Remadevi V, Varghese MM, Pabla NS, Gumz ML, Rao R. Circadian clock disruption and growth of kidney cysts in autosomal dominant polycystic kidney disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.05.606676. [PMID: 39211074 PMCID: PMC11361200 DOI: 10.1101/2024.08.05.606676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Background Autosomal dominant polycystic kidney disease (ADPKD) is caused by mutations in the PKD1 and PKD2 genes, and often progresses to kidney failure. ADPKD progression is not uniform among patients, suggesting that factors secondary to the PKD1/2 gene mutation could regulate the rate of disease progression. Here we tested the effect of circadian clock disruption on ADPKD progression. Circadian rhythms are regulated by cell-autonomous circadian clocks composed of clock proteins. BMAL1 is a core constituent of the circadian clock. Methods To disrupt the circadian clock, we deleted Bmal1 gene in the renal collecting ducts of the Pkd1 RC/RC (RC/RC) mouse model of ADPKD (RC/RC; Bmal1 f/f ; Pkhd1 cre , called DKO mice), and in Pkd1 knockout mouse inner medullary collecting duct cells ( Pkd1Bmal1 KO mIMCD3 cells). Only male mice were used. Results Human nephrectomy ADPKD kidneys and Pkd1 KO mIMCD3 cells showed reduced Bmal1 gene expression compared to normal controls. When compared to RC/RC kidneys, DKO kidneys showed significantly altered clock gene expression, increased cyst growth, cell proliferation, apoptosis and fibrosis. DKO kidneys also showed increased lipogenesis and cholesterol synthesis-related gene expression, and increased tissue triglyceride levels compared to RC/RC kidneys. Similarly, in vitro, Pkd1Bmal1 KO cells showed altered clock genes, increased lipogenesis and cholesterol synthesis-related genes, and reduced fatty-acid oxidation-related gene expression compared to Pkd1KO cells. The Pkd1Bmal1 KO cells showed increased cell proliferation compared to Pkd1KO cells, which was rescued by pharmacological inhibition of lipogenesis. Conclusion Renal collecting duct specific Bmal1 gene deletion disrupts the circadian clock and triggers accelerated ADPKD progression by altering lipid metabolism-related gene expression. Key points Lack of BMAL1, a circadian clock protein in renal collecting ducts disrupted the clock and increased cyst growth and fibrosis in an ADPKD mouse model.BMAL1 gene deletion increased cell proliferation by increasing lipogenesis in kidney cells.Thus, circadian clock disruption could be a risk factor for accelerated disease progression in patients with ADPKD.
Collapse
|
9
|
Pacheco-Bernal I, Becerril-Pérez F, Bustamante-Zepeda M, González-Suárez M, Olmedo-Suárez MA, Hernández-Barrientos LR, Alarcón-Del-Carmen A, Escalante-Covarrubias Q, Mendoza-Viveros L, Hernández-Lemus E, León-Del-Río A, de la Rosa-Velázquez IA, Orozco-Solis R, Aguilar-Arnal L. Transitions in chromatin conformation shaped by fatty acids and the circadian clock underlie hepatic transcriptional reorganization in obese mice. Cell Mol Life Sci 2024; 81:309. [PMID: 39060446 PMCID: PMC11335233 DOI: 10.1007/s00018-024-05364-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/25/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024]
Abstract
The circadian clock system coordinates metabolic, physiological, and behavioral functions across a 24-h cycle, crucial for adapting to environmental changes. Disruptions in circadian rhythms contribute to major metabolic pathologies like obesity and Type 2 diabetes. Understanding the regulatory mechanisms governing circadian control is vital for identifying therapeutic targets. It is well characterized that chromatin remodeling and 3D structure at genome regulatory elements contributes to circadian transcriptional cycles; yet the impact of rhythmic chromatin topology in metabolic disease is largely unexplored. In this study, we explore how the spatial configuration of the genome adapts to diet, rewiring circadian transcription and contributing to dysfunctional metabolism. We describe daily fluctuations in chromatin contacts between distal regulatory elements of metabolic control genes in livers from lean and obese mice and identify specific lipid-responsive regions recruiting the clock molecular machinery. Interestingly, under high-fat feeding, a distinct interactome for the clock-controlled gene Dbp strategically promotes the expression of distal metabolic genes including Fgf21. Alongside, new chromatin loops between regulatory elements from genes involved in lipid metabolism control contribute to their transcriptional activation. These enhancers are responsive to lipids through CEBPβ, counteracting the circadian repressor REVERBa. Our findings highlight the intricate coupling of circadian gene expression to a dynamic nuclear environment under high-fat feeding, supporting a temporally regulated program of gene expression and transcriptional adaptation to diet.
Collapse
Affiliation(s)
- Ignacio Pacheco-Bernal
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Fernando Becerril-Pérez
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Marcia Bustamante-Zepeda
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Mirna González-Suárez
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Miguel A Olmedo-Suárez
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Luis Ricardo Hernández-Barrientos
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Alejandro Alarcón-Del-Carmen
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Quetzalcoatl Escalante-Covarrubias
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Lucía Mendoza-Viveros
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
- Laboratorio de Cronobiología, Metabolismo y Envejecimiento, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Centro de Investigacíon sobre el Envejecimiento, Centro de Investigación y de Estudios Avanzados (CIE-CINVESTAV), Mexico City, México
- Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosí, Mexico
| | - Enrique Hernández-Lemus
- Department of Computational Genomics, Centro de Ciencias de La Complejidad (C3), Instituto Nacional de Medicina Genómica (INMEGEN), Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Alfonso León-Del-Río
- Departamento de Medicina Genómica y Toxicología Ambiental, Programa Institucional de Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Inti A de la Rosa-Velázquez
- Genomics Laboratory, Red de Apoyo a la Investigación-CIC, Universidad Nacional Autónoma de México, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, 14080, Mexico City, Mexico
- Next Generation Sequencing Core Facility, Helmholtz Zentrum Muenchen, Ingolstaedter Landstr 1, 85754, Neuherberg, Germany
| | - Ricardo Orozco-Solis
- Laboratorio de Cronobiología, Metabolismo y Envejecimiento, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Centro de Investigacíon sobre el Envejecimiento, Centro de Investigación y de Estudios Avanzados (CIE-CINVESTAV), Mexico City, México
| | - Lorena Aguilar-Arnal
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico.
| |
Collapse
|
10
|
Van Drunen R, Dai Y, Wei H, Fekry B, Noori S, Shivshankar S, Bravo R, Zhao Z, Yoo SH, Justice N, Wu JQ, Tong Q, Eckel-Mahan K. Cell-specific regulation of the circadian clock by BMAL1 in the paraventricular nucleus: Implications for regulation of systemic biological rhythms. Cell Rep 2024; 43:114380. [PMID: 38935503 PMCID: PMC11446153 DOI: 10.1016/j.celrep.2024.114380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 03/28/2024] [Accepted: 06/03/2024] [Indexed: 06/29/2024] Open
Abstract
Circadian rhythms are internal biological rhythms driving temporal tissue-specific, metabolic programs. Loss of the circadian transcription factor BMAL1 in the paraventricular nucleus (PVN) of the hypothalamus reveals its importance in metabolic rhythms, but its functions in individual PVN cells are poorly understood. Here, loss of BMAL1 in the PVN results in arrhythmicity of processes controlling energy balance and alters peripheral diurnal gene expression. BMAL1 chromatin immunoprecipitation sequencing (ChIP-seq) and single-nucleus RNA sequencing (snRNA-seq) reveal its temporal regulation of target genes, including oxytocin (OXT), and restoring circulating OXT peaks in BMAL1-PVN knockout (KO) mice rescues absent activity rhythms. While glutamatergic neurons undergo day/night changes in expression of genes involved in cell morphogenesis, astrocytes and oligodendrocytes show gene expression changes in cytoskeletal organization and oxidative phosphorylation. Collectively, our findings show diurnal gene regulation in neuronal and non-neuronal PVN cells and that BMAL1 contributes to diurnal OXT secretion, which is important for systemic diurnal rhythms.
Collapse
Affiliation(s)
- Rachel Van Drunen
- UT Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; MD Anderson Cancer Center/UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Yulin Dai
- Center for Precision Health, McWilliams School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Haichao Wei
- UT Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Baharan Fekry
- UT Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Sina Noori
- UT Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Samay Shivshankar
- UT Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Rafael Bravo
- UT Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Zhongming Zhao
- Center for Precision Health, McWilliams School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Seung-Hee Yoo
- MD Anderson Cancer Center/UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Department of Biochemistry and Cell Biology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Nicholas Justice
- UT Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; MD Anderson Cancer Center/UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Jia Qian Wu
- UT Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; MD Anderson Cancer Center/UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Qingchun Tong
- UT Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; MD Anderson Cancer Center/UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Kristin Eckel-Mahan
- UT Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; MD Anderson Cancer Center/UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| |
Collapse
|
11
|
Arrieta A, Chapski DJ, Reese A, Kimball TH, Song K, Rosa-Garrido M, Vondriska TM. Circadian control of histone turnover during cardiac development and growth. J Biol Chem 2024; 300:107434. [PMID: 38830405 PMCID: PMC11261805 DOI: 10.1016/j.jbc.2024.107434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/30/2024] [Accepted: 05/21/2024] [Indexed: 06/05/2024] Open
Abstract
During postnatal cardiac hypertrophy, cardiomyocytes undergo mitotic exit, relying on DNA replication-independent mechanisms of histone turnover to maintain chromatin organization and gene transcription. In other tissues, circadian oscillations in nucleosome occupancy influence clock-controlled gene expression, suggesting a role for the circadian clock in temporal control of histone turnover and coordinated cardiomyocyte gene expression. We sought to elucidate roles for the master circadian transcription factor, Bmal1, in histone turnover, chromatin organization, and myocyte-specific gene expression and cell growth in the neonatal period. Bmal1 knockdown in neonatal rat ventricular myocytes decreased myocyte size, total cellular protein synthesis, and transcription of the fetal hypertrophic gene Nppb after treatment with serum or the α-adrenergic agonist phenylephrine. Depletion of Bmal1 decreased the expression of clock-controlled genes Per2 and Tcap, as well as Sik1, a Bmal1 target upregulated in adult versus embryonic hearts. Bmal1 knockdown impaired Per2 and Sik1 promoter accessibility as measured by micrococcal nuclease-quantitative PCR and impaired histone turnover as measured by metabolic labeling of acid-soluble chromatin fractions. Sik1 knockdown in turn decreased myocyte size, while simultaneously inhibiting natriuretic peptide B transcription and activating Per2 transcription. Linking these changes to chromatin remodeling, depletion of the replication-independent histone variant H3.3a inhibited myocyte hypertrophy and prevented phenylephrine-induced changes in clock-controlled gene transcription. Bmal1 is required for neonatal myocyte growth, replication-independent histone turnover, and chromatin organization at the Sik1 promoter. Sik1 represents a novel clock-controlled gene that coordinates myocyte growth with hypertrophic and clock-controlled gene transcription. Replication-independent histone turnover is required for transcriptional remodeling of clock-controlled genes in cardiac myocytes in response to growth stimuli.
Collapse
Affiliation(s)
- Adrian Arrieta
- Department of Anesthesiology & Perioperative Medicine, David Geffen School of Medicine at UCLA, UCLA, Los Angeles, California, USA
| | - Douglas J Chapski
- Department of Anesthesiology & Perioperative Medicine, David Geffen School of Medicine at UCLA, UCLA, Los Angeles, California, USA
| | - Anna Reese
- Department of Anesthesiology & Perioperative Medicine, David Geffen School of Medicine at UCLA, UCLA, Los Angeles, California, USA
| | - Todd H Kimball
- Department of Anesthesiology & Perioperative Medicine, David Geffen School of Medicine at UCLA, UCLA, Los Angeles, California, USA
| | - Kunhua Song
- Internal Medicine, Heart Institute, Center for Regenerative Medicine, University of South Florida, Tampa, Florida, USA
| | - Manuel Rosa-Garrido
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Thomas M Vondriska
- Department of Anesthesiology & Perioperative Medicine, David Geffen School of Medicine at UCLA, UCLA, Los Angeles, California, USA; Division of Cardiology, Department of Medicine, UCLA, Los Angeles, California, USA; Department of Physiology, UCLA, Los Angeles, California, USA; Molecular Biology Institute, UCLA, Los Angeles, California, USA.
| |
Collapse
|
12
|
Chen R, Zhang Z, Ma J, Liu B, Huang Z, Hu G, Huang J, Xu Y, Wang GZ. Circadian-driven tissue specificity is constrained under caloric restricted feeding conditions. Commun Biol 2024; 7:752. [PMID: 38902439 PMCID: PMC11190204 DOI: 10.1038/s42003-024-06421-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 06/06/2024] [Indexed: 06/22/2024] Open
Abstract
Tissue specificity is a fundamental property of an organ that affects numerous biological processes, including aging and longevity, and is regulated by the circadian clock. However, the distinction between circadian-affected tissue specificity and other tissue specificities remains poorly understood. Here, using multi-omics data on circadian rhythms in mice, we discovered that approximately 35% of tissue-specific genes are directly affected by circadian regulation. These circadian-affected tissue-specific genes have higher expression levels and are associated with metabolism in hepatocytes. They also exhibit specific features in long-reads sequencing data. Notably, these genes are associated with aging and longevity at both the gene level and at the network module level. The expression of these genes oscillates in response to caloric restricted feeding regimens, which have been demonstrated to promote longevity. In addition, aging and longevity genes are disrupted in various circadian disorders. Our study indicates that the modulation of circadian-affected tissue specificity is essential for understanding the circadian mechanisms that regulate aging and longevity at the genomic level.
Collapse
Affiliation(s)
- Renrui Chen
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ziang Zhang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Junjie Ma
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Bing Liu
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhengyun Huang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Su Genomic Resource Center, Medical School of Soochow University, Suzhou, Jiangsu, 215123, China
| | - Ganlu Hu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Ju Huang
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ying Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Su Genomic Resource Center, Medical School of Soochow University, Suzhou, Jiangsu, 215123, China
| | - Guang-Zhong Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
13
|
Tikhomirov R, Oakley RH, Anderson C, Xiang Y, Al-Othman S, Smith M, Yaar S, Torre E, Li J, Wilson LR, Goulding DR, Donaldson I, Harno E, Soattin L, Shiels HA, Morris GM, Zhang H, Boyett MR, Cidlowski JA, Mesirca P, Mangoni ME, D’Souza A. Cardiac GR Mediates the Diurnal Rhythm in Ventricular Arrhythmia Susceptibility. Circ Res 2024; 134:1306-1326. [PMID: 38533639 PMCID: PMC11081863 DOI: 10.1161/circresaha.123.323464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 02/15/2024] [Accepted: 03/13/2024] [Indexed: 03/28/2024]
Abstract
BACKGROUND Ventricular arrhythmias (VAs) demonstrate a prominent day-night rhythm, commonly presenting in the morning. Transcriptional rhythms in cardiac ion channels accompany this phenomenon, but their role in the morning vulnerability to VAs and the underlying mechanisms are not understood. We investigated the recruitment of transcription factors that underpins transcriptional rhythms in ion channels and assessed whether this mechanism was pertinent to the heart's intrinsic diurnal susceptibility to VA. METHODS AND RESULTS Assay for transposase-accessible chromatin with sequencing performed in mouse ventricular myocyte nuclei at the beginning of the animals' inactive (ZT0) and active (ZT12) periods revealed differentially accessible chromatin sites annotating to rhythmically transcribed ion channels and distinct transcription factor binding motifs in these regions. Notably, motif enrichment for the glucocorticoid receptor (GR; transcriptional effector of corticosteroid signaling) in open chromatin profiles at ZT12 was observed, in line with the well-recognized ZT12 peak in circulating corticosteroids. Molecular, electrophysiological, and in silico biophysically-detailed modeling approaches demonstrated GR-mediated transcriptional control of ion channels (including Scn5a underlying the cardiac Na+ current, Kcnh2 underlying the rapid delayed rectifier K+ current, and Gja1 responsible for electrical coupling) and their contribution to the day-night rhythm in the vulnerability to VA. Strikingly, both pharmacological block of GR and cardiomyocyte-specific genetic knockout of GR blunted or abolished ion channel expression rhythms and abolished the ZT12 susceptibility to pacing-induced VA in isolated hearts. CONCLUSIONS Our study registers a day-night rhythm in chromatin accessibility that accompanies diurnal cycles in ventricular myocytes. Our approaches directly implicate the cardiac GR in the myocyte excitability rhythm and mechanistically link the ZT12 surge in glucocorticoids to intrinsic VA propensity at this time.
Collapse
Affiliation(s)
- Roman Tikhomirov
- Division of Cardiovascular Sciences (R.T., C.A., S.A.O., M.S., S.Y., L.S., H.A.S., G.M.M., A.D.), The University of Manchester, United Kingdom
- Myocardial Function Section, National Heart and Lung Institute, Imperial College London, United Kingdom (R.T., M.S., A.D.)
| | - Robert H. Oakley
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health (R.H.O., J.L., L.R.W., D.R.G., J.A.C.)
| | - Cali Anderson
- Division of Cardiovascular Sciences (R.T., C.A., S.A.O., M.S., S.Y., L.S., H.A.S., G.M.M., A.D.), The University of Manchester, United Kingdom
| | - Yirong Xiang
- Department of Physics and Astronomy (Y.X., H.Z.), The University of Manchester, United Kingdom
| | - Sami Al-Othman
- Division of Cardiovascular Sciences (R.T., C.A., S.A.O., M.S., S.Y., L.S., H.A.S., G.M.M., A.D.), The University of Manchester, United Kingdom
| | - Matthew Smith
- Division of Cardiovascular Sciences (R.T., C.A., S.A.O., M.S., S.Y., L.S., H.A.S., G.M.M., A.D.), The University of Manchester, United Kingdom
- Myocardial Function Section, National Heart and Lung Institute, Imperial College London, United Kingdom (R.T., M.S., A.D.)
| | - Sana Yaar
- Division of Cardiovascular Sciences (R.T., C.A., S.A.O., M.S., S.Y., L.S., H.A.S., G.M.M., A.D.), The University of Manchester, United Kingdom
| | - Eleonora Torre
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), F-34094 Montpellier France (E.T., P.M., M.E.M.)
| | - Jianying Li
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health (R.H.O., J.L., L.R.W., D.R.G., J.A.C.)
| | - Leslie R. Wilson
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health (R.H.O., J.L., L.R.W., D.R.G., J.A.C.)
| | - David R. Goulding
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health (R.H.O., J.L., L.R.W., D.R.G., J.A.C.)
| | - Ian Donaldson
- Bioinformatics Core Facility (I.D.), The University of Manchester, United Kingdom
| | - Erika Harno
- Division of Diabetes, Endocrinology and Gastroenterology (E.H.), The University of Manchester, United Kingdom
| | - Luca Soattin
- Division of Cardiovascular Sciences (R.T., C.A., S.A.O., M.S., S.Y., L.S., H.A.S., G.M.M., A.D.), The University of Manchester, United Kingdom
| | - Holly A. Shiels
- Division of Cardiovascular Sciences (R.T., C.A., S.A.O., M.S., S.Y., L.S., H.A.S., G.M.M., A.D.), The University of Manchester, United Kingdom
| | - Gwilym M. Morris
- Division of Cardiovascular Sciences (R.T., C.A., S.A.O., M.S., S.Y., L.S., H.A.S., G.M.M., A.D.), The University of Manchester, United Kingdom
- Department of Cardiology, John Hunter Hospital, Newcastle, NSW, Australia (G.M.M.)
| | - Henggui Zhang
- Department of Physics and Astronomy (Y.X., H.Z.), The University of Manchester, United Kingdom
| | - Mark R. Boyett
- Faculty of Life Sciences, University of Bradford, United Kingdom (M.R.B.)
| | - John A. Cidlowski
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health (R.H.O., J.L., L.R.W., D.R.G., J.A.C.)
| | - Pietro Mesirca
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), F-34094 Montpellier France (E.T., P.M., M.E.M.)
| | - Matteo E. Mangoni
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), F-34094 Montpellier France (E.T., P.M., M.E.M.)
| | - Alicia D’Souza
- Division of Cardiovascular Sciences (R.T., C.A., S.A.O., M.S., S.Y., L.S., H.A.S., G.M.M., A.D.), The University of Manchester, United Kingdom
- Myocardial Function Section, National Heart and Lung Institute, Imperial College London, United Kingdom (R.T., M.S., A.D.)
| |
Collapse
|
14
|
Nie XY, Menet JS. Circadian regulation of stereotypic chromatin conformations at enhancers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.24.590818. [PMID: 38712031 PMCID: PMC11071494 DOI: 10.1101/2024.04.24.590818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Cooperation between the circadian transcription factor (TF) CLOCK:BMAL1 and other TFs at cis-regulatory elements (CREs) is critical to daily rhythms of transcription. Yet, the modalities of this cooperation are unclear. Here, we analyzed the co-binding of multiple TFs on single DNA molecules in mouse liver using single molecule footprinting (SMF). We found that SMF reads clustered in stereotypic chromatin states that reflect distinguishable organization of TFs and nucleosomes, and that were remarkably conserved between all samples. DNA protection at CLOCK:BMAL1 binding motif (E-box) varied between CREs, from E-boxes being solely bound by CLOCK:BMAL1 to situations where other TFs competed with CLOCK:BMAL1 for E-box binding. SMF also uncovered CLOCK:BMAL1 cooperative binding at E-boxes separated by 250 bp, which structurally altered the CLOCK:BMAL1-DNA interface. Importantly, we discovered multiple nucleosomes with E-boxes at entry/exit sites that were removed upon CLOCK:BMAL1 DNA binding, thereby promoting the formation of open chromatin states that facilitate DNA binding of other TFs and that were associated with rhythmic transcription. These results demonstrate the utility of SMF for studying how CLOCK:BMAL1 and other TFs regulate stereotypical chromatin states at CREs to promote transcription.
Collapse
Affiliation(s)
- Xinyu Y. Nie
- Department of Biology, Center for Biological Clock Research, Texas A&M University, College Station, TX
| | - Jerome S. Menet
- Department of Biology, Center for Biological Clock Research, Texas A&M University, College Station, TX
- Interdisciplinary Program of Genetics, Texas A&M University, College Station, TX
| |
Collapse
|
15
|
Zhou Q, Wang R, Su Y, Wang B, Zhang Y, Qin X. The molecular circadian rhythms regulating the cell cycle. J Cell Biochem 2024; 125:e30539. [PMID: 38372014 DOI: 10.1002/jcb.30539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/25/2024] [Accepted: 02/02/2024] [Indexed: 02/20/2024]
Abstract
The circadian clock controls the expression of a large proportion of protein-coding genes in mammals and can modulate a wide range of physiological processes. Recent studies have demonstrated that disruption or dysregulation of the circadian clock is involved in the development and progression of several diseases, including cancer. The cell cycle is considered to be the fundamental process related to cancer. Accumulating evidence suggests that the circadian clock can control the expression of a large number of genes related to the cell cycle. This article reviews the mechanism of cell cycle-related genes whose chromatin regulatory elements are rhythmically occupied by core circadian clock transcription factors, while their RNAs are rhythmically expressed. This article further reviews the identified oscillatory cell cycle-related genes in higher organisms such as baboons and humans. The potential functions of these identified genes in regulating cell cycle progression are also discussed. Understanding how the molecular clock controls the expression of cell cycle genes will be beneficial for combating and treating cancer.
Collapse
Affiliation(s)
- Qin Zhou
- Institute of Health Sciences and Technology, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui Province, China
| | - Ruohan Wang
- Institute of Health Sciences and Technology, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui Province, China
| | - Yunxia Su
- Institute of Health Sciences and Technology, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui Province, China
| | - Bowen Wang
- Institute of Health Sciences and Technology, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui Province, China
| | - Yunfei Zhang
- Modern Experiment Technology Center, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui Province, China
| | - Ximing Qin
- Institute of Health Sciences and Technology, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui Province, China
| |
Collapse
|
16
|
Lal H, Verma SK, Wang Y, Xie M, Young ME. Circadian Rhythms in Cardiovascular Metabolism. Circ Res 2024; 134:635-658. [PMID: 38484029 PMCID: PMC10947116 DOI: 10.1161/circresaha.123.323520] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/23/2024] [Indexed: 03/19/2024]
Abstract
Energetic demand and nutrient supply fluctuate as a function of time-of-day, in alignment with sleep-wake and fasting-feeding cycles. These daily rhythms are mirrored by 24-hour oscillations in numerous cardiovascular functional parameters, including blood pressure, heart rate, and myocardial contractility. It is, therefore, not surprising that metabolic processes also fluctuate over the course of the day, to ensure temporal needs for ATP, building blocks, and metabolism-based signaling molecules are met. What has become increasingly clear is that in addition to classic signal-response coupling (termed reactionary mechanisms), cardiovascular-relevant cells use autonomous circadian clocks to temporally orchestrate metabolic pathways in preparation for predicted stimuli/stresses (termed anticipatory mechanisms). Here, we review current knowledge regarding circadian regulation of metabolism, how metabolic rhythms are synchronized with cardiovascular function, and whether circadian misalignment/disruption of metabolic processes contribute toward the pathogenesis of cardiovascular disease.
Collapse
Affiliation(s)
- Hind Lal
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Suresh Kumar Verma
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Yajing Wang
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Min Xie
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Martin E. Young
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
17
|
Zhu X, Maier G, Panda S. Learning from circadian rhythm to transform cancer prevention, prognosis, and survivorship care. Trends Cancer 2024; 10:196-207. [PMID: 38001006 PMCID: PMC10939944 DOI: 10.1016/j.trecan.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023]
Abstract
Circadian timekeeping mechanisms and cell cycle regulation share thematic biological principles in responding to signals, repairing cellular damage, coordinating metabolism, and allocating cellular resources for optimal function. Recent studies show interactions between cell cycle regulators and circadian clock components, offering insights into potential cancer treatment approaches. Understanding circadian control of metabolism informs timing for therapies to reduce adverse effects and enhance treatment efficacy. Circadian adaptability to lifestyle factors, such as activity, sleep, and nutrition sheds light on their impact on cancer. Leveraging circadian regulatory mechanisms for cancer prevention and care is vital, as most risk stems from modifiable lifestyles. Monitoring circadian factors aids risk assessment and targeted interventions across the cancer care continuum.
Collapse
Affiliation(s)
- Xiaoyan Zhu
- The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Geraldine Maier
- The Salk Institute for Biological Studies, La Jolla, CA, USA
| | | |
Collapse
|
18
|
Mok H, Ostendorf E, Ganninger A, Adler AJ, Hazan G, Haspel JA. Circadian immunity from bench to bedside: a practical guide. J Clin Invest 2024; 134:e175706. [PMID: 38299593 PMCID: PMC10836804 DOI: 10.1172/jci175706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024] Open
Abstract
The immune system is built to counteract unpredictable threats, yet it relies on predictable cycles of activity to function properly. Daily rhythms in immune function are an expanding area of study, and many originate from a genetically based timekeeping mechanism known as the circadian clock. The challenge is how to harness these biological rhythms to improve medical interventions. Here, we review recent literature documenting how circadian clocks organize fundamental innate and adaptive immune activities, the immunologic consequences of circadian rhythm and sleep disruption, and persisting knowledge gaps in the field. We then consider the evidence linking circadian rhythms to vaccination, an important clinical realization of immune function. Finally, we discuss practical steps to translate circadian immunity to the patient's bedside.
Collapse
Affiliation(s)
- Huram Mok
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Elaine Ostendorf
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Alex Ganninger
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Avi J. Adler
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Guy Hazan
- Department of Pediatrics, Soroka University Medical Center, Beer-Sheva, Israel
- Research and Innovation Center, Saban Children’s Hospital, Beer-Sheva, Israel
| | - Jeffrey A. Haspel
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
19
|
da Silveira EJD, Barros CCDS, Bottino MC, Castilho RM, Squarize C. The rhythms of histones in regeneration: The epigenetic modifications determined by clock genes. Exp Dermatol 2024; 33:e15005. [PMID: 38284199 PMCID: PMC10865818 DOI: 10.1111/exd.15005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/30/2023] [Accepted: 12/18/2023] [Indexed: 01/30/2024]
Abstract
The evolutionary establishment of an internal biological clock is a primordial event tightly associated with a 24-h period. Changes in the circadian rhythm can affect cellular functions, including proliferation, DNA repair and redox state. Even isolated organs, tissues and cells can maintain an autonomous circadian rhythm. These cell-autonomous molecular mechanisms are driven by intracellular clock genes, such as BMAL1. Little is known about the role of core clock genes and epigenetic modifications in the skin. Our focus was to identify BMAL1-driven epigenetic modifications associated with gene transcription by mapping the acetylation landscape of histones in epithelial cells responding to injury. We explored the role of BMAL1 in epidermal wound and tissue regeneration using a loss-of-function approach in vivo. We worked with BMAL1 knockout mice and a contraction-resistance wound healing protocol, determining the histone modifications using specific antibodies to detect the acetylation levels of histones H3 and H4. We found significant differences in the acetylation levels of histones in both homeostatic and injured skin with deregulated BMAL1. The intact skin displayed varied acetylation levels of histones H3 and H4, including hyperacetylation of H3 Lys 9 (H3K9). The most pronounced changes were observed at the repair site, with notable alterations in the acetylation pattern of histone H4. These findings reveal the importance of histone modifications in response to injury and indicate that modulation of BMAL1 and its associated epigenetic events could be therapeutically harnessed to improve skin regeneration.
Collapse
Affiliation(s)
- Ericka J. D. da Silveira
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
- Department of Dentistry, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Caio C. D. S. Barros
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Marco C. Bottino
- Department of Cariology, Restorative Sciences, and Endodontics, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Rogerio M. Castilho
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
- Michigan Medicine, University of Michigan Rogel Cancer Center, Ann Arbor, Michigan, USA
| | - Cristiane Squarize
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
- Michigan Medicine, University of Michigan Rogel Cancer Center, Ann Arbor, Michigan, USA
| |
Collapse
|
20
|
Feng T, Hu T, Liu W, Zhang Y. Enhancer Recognition: A Transformer Encoder-Based Method with WGAN-GP for Data Augmentation. Int J Mol Sci 2023; 24:17548. [PMID: 38139375 PMCID: PMC10743946 DOI: 10.3390/ijms242417548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/29/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Enhancers are located upstream or downstream of key deoxyribonucleic acid (DNA) sequences in genes and can adjust the transcription activity of neighboring genes. Identifying enhancers and determining their functions are important for understanding gene regulatory networks and expression regulatory mechanisms. However, traditional enhancer recognition relies on manual feature engineering, which is time-consuming and labor-intensive, making it difficult to perform large-scale recognition analysis. In addition, if the original dataset is too small, there is a risk of overfitting. In recent years, emerging methods, such as deep learning, have provided new insights for enhancing identification. However, these methods also present certain challenges. Deep learning models typically require a large amount of high-quality data, and data acquisition demands considerable time and resources. To address these challenges, in this paper, we propose a data-augmentation method based on generative adversarial networks to solve the problem of small datasets. Moreover, we used regularization methods such as weight decay to improve the generalizability of the model and alleviate overfitting. The Transformer encoder was used as the main component to capture the complex relationships and dependencies in enhancer sequences. The encoding layer was designed based on the principle of k-mers to preserve more information from the original DNA sequence. Compared with existing methods, the proposed approach made significant progress in enhancing the accuracy and strength of enhancer identification and prediction, demonstrating the effectiveness of the proposed method. This paper provides valuable insights for enhancer analysis and is of great significance for understanding gene regulatory mechanisms and studying disease correlations.
Collapse
Affiliation(s)
- Tianyu Feng
- College of Information Science & Engineering, Lanzhou University, Lanzhou 730000, China; (T.F.); (T.H.)
| | - Tao Hu
- College of Information Science & Engineering, Lanzhou University, Lanzhou 730000, China; (T.F.); (T.H.)
| | - Wenyu Liu
- College of Ecology, Lanzhou University, Lanzhou 730000, China;
| | - Yang Zhang
- Supercomputer Center, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
21
|
Arrieta A, Chapski DJ, Reese A, Kimball T, Song K, Rosa-Garrido M, Vondriska TM. Circadian Control of Histone Turnover During Cardiac Development and Growth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.14.567086. [PMID: 38014083 PMCID: PMC10680691 DOI: 10.1101/2023.11.14.567086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Rationale: During postnatal cardiac hypertrophy, cardiomyocytes undergo mitotic exit, relying on DNA replication-independent mechanisms of histone turnover to maintain chromatin organization and gene transcription. In other tissues, circadian oscillations in nucleosome occupancy influence clock-controlled gene expression, suggesting an unrecognized role for the circadian clock in temporal control of histone turnover and coordinate cardiomyocyte gene expression. Objective: To elucidate roles for the master circadian transcription factor, Bmal1, in histone turnover, chromatin organization, and myocyte-specific gene expression and cell growth in the neonatal period. Methods and Results: Bmal1 knockdown in neonatal rat ventricular myocytes (NRVM) decreased myocyte size, total cellular protein, and transcription of the fetal hypertrophic gene Nppb following treatment with increasing serum concentrations or the α-adrenergic agonist phenylephrine (PE). Bmal1 knockdown decreased expression of clock-controlled genes Per2 and Tcap, and salt-inducible kinase 1 (Sik1) which was identified via gene ontology analysis of Bmal1 targets upregulated in adult versus embryonic hearts. Epigenomic analyses revealed co-localized chromatin accessibility and Bmal1 localization in the Sik1 promoter. Bmal1 knockdown impaired Per2 and Sik1 promoter accessibility as measured by MNase-qPCR and impaired histone turnover indicated by metabolic labeling of acid-soluble chromatin fractions and immunoblots of total and chromatin-associated core histones. Sik1 knockdown basally increased myocyte size, while simultaneously impairing and driving Nppb and Per2 transcription, respectively. Conclusions: Bmal1 is required for neonatal myocyte growth, replication-independent histone turnover, and chromatin organization at the Sik1 promoter. Sik1 represents a novel clock-controlled gene that coordinates myocyte growth with hypertrophic and clock-controlled gene transcription.
Collapse
|
22
|
Abenza JF, Rossetti L, Mouelhi M, Burgués J, Andreu I, Kennedy K, Roca-Cusachs P, Marco S, García-Ojalvo J, Trepat X. Mechanical control of the mammalian circadian clock via YAP/TAZ and TEAD. J Cell Biol 2023; 222:e202209120. [PMID: 37378613 PMCID: PMC10308087 DOI: 10.1083/jcb.202209120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 04/13/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Autonomous circadian clocks exist in nearly every mammalian cell type. These cellular clocks are subjected to a multilayered regulation sensitive to the mechanochemical cell microenvironment. Whereas the biochemical signaling that controls the cellular circadian clock is increasingly well understood, mechanisms underlying regulation by mechanical cues are largely unknown. Here we show that the fibroblast circadian clock is mechanically regulated through YAP/TAZ nuclear levels. We use high-throughput analysis of single-cell circadian rhythms and apply controlled mechanical, biochemical, and genetic perturbations to study the expression of the clock gene Rev-erbα. We observe that Rev-erbα circadian oscillations are disrupted with YAP/TAZ nuclear translocation. By targeted mutations and overexpression of YAP/TAZ, we show that this mechanobiological regulation, which also impacts core components of the clock such as Bmal1 and Cry1, depends on the binding of YAP/TAZ to the transcriptional effector TEAD. This mechanism could explain the impairment of circadian rhythms observed when YAP/TAZ activity is upregulated, as in cancer and aging.
Collapse
Affiliation(s)
- Juan F. Abenza
- Institute for Bioengineering of Catalonia, The Barcelona Institute for Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, Barcelona, Spain
| | - Leone Rossetti
- Institute for Bioengineering of Catalonia, The Barcelona Institute for Science and Technology, Barcelona, Spain
| | - Malèke Mouelhi
- Institute for Bioengineering of Catalonia, The Barcelona Institute for Science and Technology, Barcelona, Spain
| | - Javier Burgués
- Institute for Bioengineering of Catalonia, The Barcelona Institute for Science and Technology, Barcelona, Spain
| | - Ion Andreu
- Institute for Bioengineering of Catalonia, The Barcelona Institute for Science and Technology, Barcelona, Spain
| | - Keith Kennedy
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Pere Roca-Cusachs
- Institute for Bioengineering of Catalonia, The Barcelona Institute for Science and Technology, Barcelona, Spain
- Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | - Santiago Marco
- Institute for Bioengineering of Catalonia, The Barcelona Institute for Science and Technology, Barcelona, Spain
- Department of Electronics and Biomedical Engineering, Universitat de Barcelona, Barcelona, Spain
| | - Jordi García-Ojalvo
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Xavier Trepat
- Institute for Bioengineering of Catalonia, The Barcelona Institute for Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, Barcelona, Spain
- Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| |
Collapse
|
23
|
Xu W, Li X. Regulation of Pol II Pausing during Daily Gene Transcription in Mouse Liver. BIOLOGY 2023; 12:1107. [PMID: 37626993 PMCID: PMC10452108 DOI: 10.3390/biology12081107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/20/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023]
Abstract
Cell autonomous circadian oscillation is present in central and various peripheral tissues. The intrinsic tissue clock and various extrinsic cues drive gene expression rhythms. Transcription regulation is thought to be the main driving force for gene rhythms. However, how transcription rhythms arise remains to be fully characterized due to the fact that transcription is regulated at multiple steps. In particular, Pol II recruitment, pause release, and premature transcription termination are critical regulatory steps that determine the status of Pol II pausing and transcription output near the transcription start site (TSS) of the promoter. Recently, we showed that Pol II pausing exhibits genome-wide changes during daily transcription in mouse liver. In this article, we review historical as well as recent findings on the regulation of transcription rhythms by the circadian clock and other transcription factors, and the potential limitations of those results in explaining rhythmic transcription at the TSS. We then discuss our results on the genome-wide characteristics of daily changes in Pol II pausing, the possible regulatory mechanisms involved, and their relevance to future research on circadian transcription regulation.
Collapse
Affiliation(s)
| | - Xiaodong Li
- College of Life Sciences, Wuhan University, Wuhan 430072, China;
| |
Collapse
|
24
|
Borrmann H, Ulkar G, Kliszczak AE, Ismed D, Schilling M, Magri A, Harris JM, Balfe P, Vasudevan S, Borrow P, Zhuang X, McKeating JA. Molecular components of the circadian clock regulate HIV-1 replication. iScience 2023; 26:107007. [PMID: 37534138 PMCID: PMC10391662 DOI: 10.1016/j.isci.2023.107007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/24/2023] [Accepted: 05/26/2023] [Indexed: 08/04/2023] Open
Abstract
Human immunodeficiency virus 1 (HIV-1) causes major health burdens worldwide and still lacks curative therapies and vaccines. Circadian rhythms are endogenous daily oscillations that coordinate an organism's response to its environment and invading pathogens. Peripheral viral loads of HIV-1 infected patients show diurnal variation; however, the underlying mechanisms remain unknown. Here, we demonstrate a role for the cell-intrinsic clock to regulate rhythmic HIV-1 replication in circadian-synchronized systems. Silencing the circadian activator Bmal1 abolishes this phenotype, and we observe BMAL1 binding to the HIV-1 promoter. Importantly, we show differential binding of the nuclear receptors REV-ERB and ROR to the HIV-long terminal repeat at different circadian times, demonstrating a dynamic interplay in time-of-day regulation of HIV-1 transcription. Bioinformatic analysis shows circadian regulation of host factors that control HIV-1 replication, providing an additional mechanism for rhythmic viral replication. This study increases our understanding of the circadian regulation of HIV-1, which can ultimately inform new therapies.
Collapse
Affiliation(s)
- Helene Borrmann
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Görkem Ulkar
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Anna E. Kliszczak
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Dini Ismed
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Mirjam Schilling
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Andrea Magri
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - James M. Harris
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Peter Balfe
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | | | - Persephone Borrow
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Xiaodong Zhuang
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Jane A. McKeating
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK
| |
Collapse
|
25
|
Sato S, Hishida T, Kinouchi K, Hatanaka F, Li Y, Nguyen Q, Chen Y, Wang PH, Kessenbrock K, Li W, Izpisua Belmonte JC, Sassone-Corsi P. The circadian clock CRY1 regulates pluripotent stem cell identity and somatic cell reprogramming. Cell Rep 2023; 42:112590. [PMID: 37261952 DOI: 10.1016/j.celrep.2023.112590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 03/28/2023] [Accepted: 05/16/2023] [Indexed: 06/03/2023] Open
Abstract
Distinct metabolic conditions rewire circadian-clock-controlled signaling pathways leading to the de novo construction of signal transduction networks. However, it remains unclear whether metabolic hallmarks unique to pluripotent stem cells (PSCs) are connected to clock functions. Reprogramming somatic cells to a pluripotent state, here we highlighted non-canonical functions of the circadian repressor CRY1 specific to PSCs. Metabolic reprogramming, including AMPK inactivation and SREBP1 activation, was coupled with the accumulation of CRY1 in PSCs. Functional assays verified that CRY1 is required for the maintenance of self-renewal capacity, colony organization, and metabolic signatures. Genome-wide occupancy of CRY1 identified CRY1-regulatory genes enriched in development and differentiation in PSCs, albeit not somatic cells. Last, cells lacking CRY1 exhibit differential gene expression profiles during induced PSC (iPSC) reprogramming, resulting in impaired iPSC reprogramming efficiency. Collectively, these results suggest the functional implication of CRY1 in pluripotent reprogramming and ontogenesis, thereby dictating PSC identity.
Collapse
Affiliation(s)
- Shogo Sato
- Center for Epigenetics and Metabolism, Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA; Center for Biological Clocks Research, Department of Biology, Texas A&M University, College Station, TX, USA.
| | - Tomoaki Hishida
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA; Laboratory of Biological Chemistry, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama, Japan
| | - Kenichiro Kinouchi
- Center for Epigenetics and Metabolism, Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Fumiaki Hatanaka
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA; Altos Labs, San Diego, CA, USA
| | - Yumei Li
- Division of Computational Biomedicine, Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Quy Nguyen
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Yumay Chen
- UC Irvine Diabetes Center, Sue and Bill Gross Stem Cell Research Center, Department of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Ping H Wang
- UC Irvine Diabetes Center, Sue and Bill Gross Stem Cell Research Center, Department of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Kai Kessenbrock
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Wei Li
- Division of Computational Biomedicine, Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Juan Carlos Izpisua Belmonte
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA; Altos Labs, San Diego, CA, USA.
| | - Paolo Sassone-Corsi
- Center for Epigenetics and Metabolism, Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
26
|
Marri D, Filipovic D, Kana O, Tischkau S, Bhattacharya S. Prediction of mammalian tissue-specific CLOCK-BMAL1 binding to E-box DNA motifs. Sci Rep 2023; 13:7742. [PMID: 37173345 PMCID: PMC10182026 DOI: 10.1038/s41598-023-34115-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
The Brain and Muscle ARNTL-Like 1 protein (BMAL1) forms a heterodimer with either Circadian Locomotor Output Cycles Kaput (CLOCK) or Neuronal PAS domain protein 2 (NPAS2) to act as a master regulator of the mammalian circadian clock gene network. The dimer binds to E-box gene regulatory elements on DNA, activating downstream transcription of clock genes. Identification of transcription factor binding sites and genomic features that correlate to DNA binding by BMAL1 is a challenging problem, given that CLOCK-BMAL1 or NPAS2-BMAL1 bind to several distinct binding motifs (CANNTG) on DNA. Using three different types of tissue-specific machine learning models with features based on (1) DNA sequence, (2) DNA sequence plus DNA shape, and (3) DNA sequence and shape plus histone modifications, we developed an interpretable predictive model of genome-wide BMAL1 binding to E-box motifs and dissected the mechanisms underlying BMAL1-DNA binding. Our results indicated that histone modifications, the local shape of the DNA, and the flanking sequence of the E-box motif are sufficient predictive features for BMAL1-DNA binding. Our models also provide mechanistic insights into tissue specificity of DNA binding by BMAL1.
Collapse
Affiliation(s)
- Daniel Marri
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - David Filipovic
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Omar Kana
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
| | - Shelley Tischkau
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Sudin Bhattacharya
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA.
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA.
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA.
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
27
|
Escalante-Covarrubias Q, Mendoza-Viveros L, González-Suárez M, Sitten-Olea R, Velázquez-Villegas LA, Becerril-Pérez F, Pacheco-Bernal I, Carreño-Vázquez E, Mass-Sánchez P, Bustamante-Zepeda M, Orozco-Solís R, Aguilar-Arnal L. Time-of-day defines NAD + efficacy to treat diet-induced metabolic disease by synchronizing the hepatic clock in mice. Nat Commun 2023; 14:1685. [PMID: 36973248 PMCID: PMC10043291 DOI: 10.1038/s41467-023-37286-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 03/07/2023] [Indexed: 03/29/2023] Open
Abstract
The circadian clock is an endogenous time-tracking system that anticipates daily environmental changes. Misalignment of the clock can cause obesity, which is accompanied by reduced levels of the clock-controlled, rhythmic metabolite NAD+. Increasing NAD+ is becoming a therapy for metabolic dysfunction; however, the impact of daily NAD+ fluctuations remains unknown. Here, we demonstrate that time-of-day determines the efficacy of NAD+ treatment for diet-induced metabolic disease in mice. Increasing NAD+ prior to the active phase in obese male mice ameliorated metabolic markers including body weight, glucose and insulin tolerance, hepatic inflammation and nutrient sensing pathways. However, raising NAD+ immediately before the rest phase selectively compromised these responses. Remarkably, timed NAD+ adjusted circadian oscillations of the liver clock until completely inverting its oscillatory phase when increased just before the rest period, resulting in misaligned molecular and behavioral rhythms in male and female mice. Our findings unveil the time-of-day dependence of NAD+-based therapies and support a chronobiology-based approach.
Collapse
Affiliation(s)
- Quetzalcoatl Escalante-Covarrubias
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Lucía Mendoza-Viveros
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
- Laboratorio de Cronobiología y Metabolismo, Instituto Nacional de Medicina Genómica, 14610, Mexico City, Mexico
| | - Mirna González-Suárez
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Román Sitten-Olea
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Laura A Velázquez-Villegas
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, 14080, Mexico City, Mexico
| | - Fernando Becerril-Pérez
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Ignacio Pacheco-Bernal
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Erick Carreño-Vázquez
- Laboratorio de Cronobiología y Metabolismo, Instituto Nacional de Medicina Genómica, 14610, Mexico City, Mexico
| | - Paola Mass-Sánchez
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Marcia Bustamante-Zepeda
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Ricardo Orozco-Solís
- Laboratorio de Cronobiología y Metabolismo, Instituto Nacional de Medicina Genómica, 14610, Mexico City, Mexico
- Centro de Investigación sobre el Envejecimiento, Centro de Investigación y de Estudios Avanzados, 14330, Mexico City, Mexico
| | - Lorena Aguilar-Arnal
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico.
| |
Collapse
|
28
|
Zhang C, Chen L, Sun L, Jin H, Ren K, Liu S, Qian Y, Li S, Li F, Zhu C, Zhao Y, Liu H, Liu Y. BMAL1 collaborates with CLOCK to directly promote DNA double-strand break repair and tumor chemoresistance. Oncogene 2023; 42:967-979. [PMID: 36725890 PMCID: PMC10038804 DOI: 10.1038/s41388-023-02603-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 02/03/2023]
Abstract
Accumulating evidence indicates a correlation between circadian dysfunction and genomic instability. However, whether the circadian machinery directly regulates DNA damage repair, especially in double-strand breaks (DSBs), remains poorly understood. Here, we report that in response to DSBs, BMAL1 is activated by ATM-mediated phosphorylation at S183. Phosphorylated BMAL1 is then localized to DNA damage sites, where it facilitates acetylase CLOCK to load in the chromatin, regulating the acetylation of histone H4 (H4Ac) at DSB sites. In this way, the BMAL1-CLOCK-H4Ac axis promotes the DNA end-resection to generate single-stranded DNA (ssDNA) and the subsequent homologous recombination (HR). BMAL1 deficient cells display defective HR, accumulation of unrepaired DSBs and genome instability. Accordingly, depletion of BMAL1 significantly enhances the sensitivity of adrenocortical carcinoma (ACC) to DNA damage-based therapy in vitro and in vivo. These findings uncover non-canonical function of BMAL1 and CLOCK in HR-mediated DSB repair, which may have an implication in cancer therapeutics.
Collapse
Affiliation(s)
- Canfeng Zhang
- The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China.
| | - Liping Chen
- The Center for Medical Research, The First People's Hospital of Nanning City, Nanning, 530021, China
| | - Lu Sun
- The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Heping Jin
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510006, China
| | - Kai Ren
- The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Shiqi Liu
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510006, China
| | - Yongyu Qian
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510006, China
| | - Shupeng Li
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Fangping Li
- The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Chengming Zhu
- The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Yong Zhao
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510006, China
| | - Haiying Liu
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510006, China
| | - Yan Liu
- The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China.
| |
Collapse
|
29
|
Chamorro R, Jouffe C, Oster H, Uhlenhaut NH, Meyhöfer SM. When should I eat: A circadian view on food intake and metabolic regulation. Acta Physiol (Oxf) 2023; 237:e13936. [PMID: 36645134 DOI: 10.1111/apha.13936] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/19/2022] [Accepted: 01/11/2023] [Indexed: 01/17/2023]
Abstract
The circadian clock is a hierarchical timing system regulating most physiological and behavioral functions with a period of approximately 24 h in humans and other mammalian species. The circadian clock drives daily eating rhythms that, in turn, reinforce the circadian clock network itself to anticipate and orchestrate metabolic responses to food intake. Eating is tightly interconnected with the circadian clock and recent evidence shows that the timing of meals is crucial for the control of appetite and metabolic regulation. Obesity results from combined long-term dysregulation in food intake (homeostatic and hedonic circuits), energy expenditure, and energy storage. Increasing evidence supports that the loss of synchrony of daily rhythms significantly impairs metabolic homeostasis and is associated with obesity. This review presents an overview of mechanisms regulating food intake (homeostatic/hedonic) and focuses on the crucial role of the circadian clock on the metabolic response to eating, thus providing a fundamental research axis to maintain a healthy eating behavior.
Collapse
Affiliation(s)
- Rodrigo Chamorro
- Institute for Endocrinology and Diabetes, University of Lübeck, Lübeck, Germany.,Department of Nutrition, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Céline Jouffe
- Institute for Diabetes and Endocrinology, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany.,Institute for Diabetes and Cancer, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany
| | - Henrik Oster
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany.,Institute of Neurobiology, University of Lübeck, Lübeck, Germany
| | - N Henriette Uhlenhaut
- Institute for Diabetes and Endocrinology, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany.,Chair for Metabolic Programming, TUM School of Life Sciences Weihenstephan, & ZIEL-Institute for Food & Health, Freising, Germany
| | - Sebastian M Meyhöfer
- Institute for Endocrinology and Diabetes, University of Lübeck, Lübeck, Germany.,Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| |
Collapse
|
30
|
The circadian demethylation of a unique intronic deoxymethylCpG-rich island boosts the transcription of its cognate circadian clock output gene. Proc Natl Acad Sci U S A 2023; 120:e2214062120. [PMID: 36791105 PMCID: PMC9974474 DOI: 10.1073/pnas.2214062120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
We demonstrate that there is a tight functional relationship between two highly evolutionary conserved cell processes, i.e., the circadian clock (CC) and the circadian DNA demethylation-methylation of cognate deoxyCpG-rich islands. We have discovered that every circadian clock-controlled output gene (CCG), but not the core clock nor its immediate-output genes, contains a single cognate intronic deoxyCpG-rich island, the demethylation-methylation of which is controlled by the CC. During the transcriptional activation period, these intronic islands are demethylated and, upon dimerization of two YY1 protein binding sites located upstream to the transcriptional enhancer and downstream from the deoxyCpG-rich island, store activating components initially assembled on a cognate active enhancer (a RORE, a D-box or an E-box), in keeping with the generation of a transcriptionally active condensate that boosts the initiation of transcription of their cognate pre-mRNAs. We report how these single intronic deoxyCpG-rich islands are instrumental in such a circadian activation/repression transcriptional process.
Collapse
|
31
|
The HP1α protein is mandatory to repress the circadian clock and its output genes during the 12 h period of transcriptional repression. Proc Natl Acad Sci U S A 2023; 120:e2213075120. [PMID: 36791098 PMCID: PMC9974504 DOI: 10.1073/pnas.2213075120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
The transcriptional repressions driven by the circadian core clock repressors RevErbα, E4BP4, and CRY1/PER1 involve feedback loops which are mandatory for generating the circadian rhythms. These repressors are known to bind to cognate DNA binding sites, but how their circadian bindings trigger the cascade of events leading to these repressions remain to be elucidated. Through molecular and genetic analyses, we now demonstrate that the chromatin protein HP1α plays a key role in these transcriptional repressions of both the circadian clock (CC) genes and their cognate output genes (CCGs). We show that these CC repressors recruit the HP1α protein downstream from a repressive cascade, and that this recruitment is mandatory for the maintenance of both the CC integrity and the expression of the circadian genes. We further show that the presence of HP1α is critical for both the repressor-induced chromatin compaction and the generation of "transcriptionally repressed biomolecular hydrophobic condensates" and demonstrates that HP1α is mandatory within the CC output genes for both the recruitment of DNA methylating enzymes on the intronic deoxyCpG islands and their subsequent methylation.
Collapse
|
32
|
Chen SJ, Huang Y, Yu F, Feng X, Zheng YY, Li Q, Niu Q, Jiang YH, Zhao LQ, Wang M, Cheng PP, Song LJ, Liang LM, He XL, Xiong L, Xiang F, Wang X, Ma WL, Ye H. BMAL1/p53 mediating bronchial epithelial cell autophagy contributes to PM2.5-aggravated asthma. Cell Commun Signal 2023; 21:39. [PMID: 36803515 PMCID: PMC9940367 DOI: 10.1186/s12964-023-01057-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 01/27/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Fine particulate matter (PM2.5) is associated with increased incidence and severity of asthma. PM2.5 exposure disrupts airway epithelial cells, which elicits and sustains PM2.5-induced airway inflammation and remodeling. However, the mechanisms underlying development and exacerbation of PM2.5-induced asthma were still poorly understood. The aryl hydrocarbon receptor nuclear translocator-like protein 1 (BMAL1) is a major circadian clock transcriptional activator that is also extensively expressed in peripheral tissues and plays a crucial role in organ and tissue metabolism. RESULTS In this study, we found PM2.5 aggravated airway remodeling in mouse chronic asthma, and exacerbated asthma manifestation in mouse acute asthma. Next, low BMAL1 expression was found to be crucial for airway remodeling in PM2.5-challenged asthmatic mice. Subsequently, we confirmed that BMAL1 could bind and promote ubiquitination of p53, which can regulate p53 degradation and block its increase under normal conditions. However, PM2.5-induced BMAL1 inhibition resulted in up-regulation of p53 protein in bronchial epithelial cells, then increased-p53 promoted autophagy. Autophagy in bronchial epithelial cells mediated collagen-I synthesis as well as airway remodeling in asthma. CONCLUSIONS Taken together, our results suggest that BMAL1/p53-mediated bronchial epithelial cell autophagy contributes to PM2.5-aggravated asthma. This study highlights the functional importance of BMAL1-dependent p53 regulation during asthma, and provides a novel mechanistic insight into the therapeutic mechanisms of BMAL1. Video Abstract.
Collapse
Affiliation(s)
- Shuai-Jun Chen
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hang Kong Road, Wuhan, 430030, China
| | - Yi Huang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, China
| | - Fan Yu
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, China.,Key Laboratory of Respiratory Diseases, National Health Commission of China, Wuhan, China
| | - Xiao Feng
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hang Kong Road, Wuhan, 430030, China
| | - Yuan-Yi Zheng
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hang Kong Road, Wuhan, 430030, China
| | - Qian Li
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hang Kong Road, Wuhan, 430030, China
| | - Qian Niu
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, China
| | - Ye-Han Jiang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, China
| | - Li-Qin Zhao
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, China
| | - Meng Wang
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hang Kong Road, Wuhan, 430030, China
| | - Pei-Pei Cheng
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hang Kong Road, Wuhan, 430030, China
| | - Lin-Jie Song
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, China.,Key Laboratory of Respiratory Diseases, National Health Commission of China, Wuhan, China
| | - Li-Mei Liang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, China.,Key Laboratory of Respiratory Diseases, National Health Commission of China, Wuhan, China
| | - Xin-Liang He
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, China.,Key Laboratory of Respiratory Diseases, National Health Commission of China, Wuhan, China
| | - Liang Xiong
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, China.,Key Laboratory of Respiratory Diseases, National Health Commission of China, Wuhan, China
| | - Fei Xiang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, China.,Key Laboratory of Respiratory Diseases, National Health Commission of China, Wuhan, China
| | - Xiaorong Wang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, China.,Key Laboratory of Respiratory Diseases, National Health Commission of China, Wuhan, China
| | - Wan-Li Ma
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, China. .,Key Laboratory of Respiratory Diseases, National Health Commission of China, Wuhan, China.
| | - Hong Ye
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hang Kong Road, Wuhan, 430030, China. .,Key Laboratory of Respiratory Diseases, National Health Commission of China, Wuhan, China.
| |
Collapse
|
33
|
Abstract
The molecular mechanisms that maintain circadian rhythms in mammalian as well as non-mammalian systems are well documented in neuronal populations but comparatively understudied in glia. Glia are highly dynamic in form and function, and the circadian clock provides broad dynamic ranges for the maintenance of this homeostasis, thus glia are key to understanding the role of circadian biology in brain function. Here, we highlight the implications of the molecular circadian clock on the homeodynamic nature of glia, underscoring the current gap in understanding the role of the circadian system in oligodendroglia lineage cells and subsequent myelination. Through this perspective, we will focus on the intersection of circadian and glial biology and how it interfaces with global circadian rhythm maintenance associated with normative and aberrant brain function.
Collapse
Affiliation(s)
- Daniela Rojo
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Anna Badner
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Erin M. Gibson
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94305, USA,Corresponding Author: Erin M. Gibson, PhD, 3165 Porter Drive, #2178, Palo Alto, CA 94304, (650)725-6659,
| |
Collapse
|
34
|
False-positive IRESes from Hoxa9 and other genes resulting from errors in mammalian 5' UTR annotations. Proc Natl Acad Sci U S A 2022; 119:e2122170119. [PMID: 36037358 PMCID: PMC9456764 DOI: 10.1073/pnas.2122170119] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hyperconserved genomic sequences have great promise for understanding core biological processes. It has been recently proposed that scores of hyperconserved 5' untranslated regions (UTRs), also known as transcript leaders (hTLs), encode internal ribosome entry sites (IRESes) that drive cap-independent translation, in part, via interactions with ribosome expansion segments. However, the direct functional significance of such interactions has not yet been definitively demonstrated. We provide evidence that the putative IRESes previously reported in Hox gene hTLs are rarely included in transcript leaders. Instead, these regions function independently as transcriptional promoters. In addition, we find the proposed RNA structure of the putative Hoxa9 IRES is not conserved. Instead, sequences previously shown to be essential for putative IRES activity encode a hyperconserved transcription factor binding site (E-box) that contributes to its promoter activity and is bound by several transcription factors, including USF1 and USF2. Similar E-box sequences enhance the promoter activities of other putative Hoxa gene IRESes. Moreover, we provide evidence that the vast majority of hTLs with putative IRES activity overlap transcriptional promoters, enhancers, and 3' splice sites that are most likely responsible for their reported IRES activities. These results argue strongly against recently reported widespread IRES-like activities from hTLs and contradict proposed interactions between ribosomal expansion segment ES9S and putative IRESes. Furthermore, our work underscores the importance of accurate transcript annotations, controls in bicistronic reporter assays, and the power of synthesizing publicly available data from multiple sources.
Collapse
|
35
|
Zhong W, Liu W, Chen J, Sun Q, Hu M, Li Y. Understanding the function of regulatory DNA interactions in the interpretation of non-coding GWAS variants. Front Cell Dev Biol 2022; 10:957292. [PMID: 36060805 PMCID: PMC9437546 DOI: 10.3389/fcell.2022.957292] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/21/2022] [Indexed: 01/11/2023] Open
Abstract
Genome-wide association studies (GWAS) have identified a vast number of variants associated with various complex human diseases and traits. However, most of these GWAS variants reside in non-coding regions producing no proteins, making the interpretation of these variants a daunting challenge. Prior evidence indicates that a subset of non-coding variants detected within or near cis-regulatory elements (e.g., promoters, enhancers, silencers, and insulators) might play a key role in disease etiology by regulating gene expression. Advanced sequencing- and imaging-based technologies, together with powerful computational methods, enabling comprehensive characterization of regulatory DNA interactions, have substantially improved our understanding of the three-dimensional (3D) genome architecture. Recent literature witnesses plenty of examples where using chromosome conformation capture (3C)-based technologies successfully links non-coding variants to their target genes and prioritizes relevant tissues or cell types. These examples illustrate the critical capability of 3D genome organization in annotating non-coding GWAS variants. This review discusses how 3D genome organization information contributes to elucidating the potential roles of non-coding GWAS variants in disease etiology.
Collapse
Affiliation(s)
- Wujuan Zhong
- Biostatistics and Research Decision Sciences, Merck & Co, Inc, Rahway, NJ, United States
| | - Weifang Liu
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jiawen Chen
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Quan Sun
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Ming Hu
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Yun Li
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
36
|
Abstract
Circadian rhythms are approximately 24-hour cycles of variation in physiological processes, gene expression, and behavior. They result from the interplay of internal biological clocks with daily environmental rhythms, including light/dark and feeding/fasting. Note that 24-hour rhythms of liver metabolic processes have been known for almost 100 years. Modern studies reveal that, like metabolism, hepatic gene expression is highly rhythmic. Genetic or environmental changes can disrupt the circadian rhythms of the liver, leading to metabolic disorders and hepatocellular carcinoma. In this review, we summarize the current understanding of mechanisms regulating rhythmic gene expression in the liver, highlighting the roles of transcription factors that comprise the core clock molecular as well as noncanonical regulators. We emphasize the plasticity of circadian rhythms in the liver as it responds to multiple inputs from the external and internal environments as well as the potential of circadian medicine to impact liver-related diseases.
Collapse
Affiliation(s)
- Dongyin Guan
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX,Correspondence: Dongyin Guan, PhD (); Mitchell A. Lazar, MD, PhD ()
| | - Mitchell A. Lazar
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA,Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA,Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA,Correspondence: Dongyin Guan, PhD (); Mitchell A. Lazar, MD, PhD ()
| |
Collapse
|
37
|
Hunter AL, Poolman TM, Kim D, Gonzalez FJ, Bechtold DA, Loudon ASI, Iqbal M, Ray DW. HNF4A modulates glucocorticoid action in the liver. Cell Rep 2022; 39:110697. [PMID: 35443180 PMCID: PMC9380254 DOI: 10.1016/j.celrep.2022.110697] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 01/24/2022] [Accepted: 03/29/2022] [Indexed: 12/13/2022] Open
Abstract
The glucocorticoid receptor (GR) is a nuclear receptor critical to the regulation of energy metabolism and inflammation. The actions of GR are dependent on cell type and context. Here, we demonstrate the role of liver lineage-determining factor hepatocyte nuclear factor 4A (HNF4A) in defining liver specificity of GR action. In mouse liver, the HNF4A motif lies adjacent to the glucocorticoid response element (GRE) at GR binding sites within regions of open chromatin. In the absence of HNF4A, the liver GR cistrome is remodeled, with loss and gain of GR recruitment evident. Loss of chromatin accessibility at HNF4A-marked sites associates with loss of GR binding at weak GRE motifs. GR binding and chromatin accessibility are gained at sites characterized by strong GRE motifs, which show GR recruitment in non-liver tissues. The functional importance of these HNF4A-regulated GR sites is indicated by an altered transcriptional response to glucocorticoid treatment in the Hnf4a-null liver.
Collapse
Affiliation(s)
- A Louise Hunter
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Toryn M Poolman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford OX3 7LE, UK
| | - Donghwan Kim
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - David A Bechtold
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Andrew S I Loudon
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Mudassar Iqbal
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - David W Ray
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford OX3 7LE, UK; NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford OX3 9DU, UK.
| |
Collapse
|
38
|
Koch AA, Bagnall JS, Smyllie NJ, Begley N, Adamson AD, Fribourgh JL, Spiller DG, Meng QJ, Partch CL, Strimmer K, House TA, Hastings MH, Loudon ASI. Quantification of protein abundance and interaction defines a mechanism for operation of the circadian clock. eLife 2022; 11:73976. [PMID: 35285799 PMCID: PMC8983044 DOI: 10.7554/elife.73976] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
The mammalian circadian clock exerts control of daily gene expression through cycles of DNA binding. Here, we develop a quantitative model of how a finite pool of BMAL1 protein can regulate thousands of target sites over daily time scales. We used quantitative imaging to track dynamic changes in endogenous labelled proteins across peripheral tissues and the SCN. We determine the contribution of multiple rhythmic processes coordinating BMAL1 DNA binding, including cycling molecular abundance, binding affinities, and repression. We find nuclear BMAL1 concentration determines corresponding CLOCK through heterodimerisation and define a DNA residence time of this complex. Repression of CLOCK:BMAL1 is achieved through rhythmic changes to BMAL1:CRY1 association and high-affinity interactions between PER2:CRY1 which mediates CLOCK:BMAL1 displacement from DNA. Finally, stochastic modelling reveals a dual role for PER:CRY complexes in which increasing concentrations of PER2:CRY1 promotes removal of BMAL1:CLOCK from genes consequently enhancing ability to move to new target sites.
Collapse
Affiliation(s)
- Alex Ashton Koch
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - James S Bagnall
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Nicola J Smyllie
- Laboratory of Molecular Biology, Medical Research Council, Cambridge, United Kingdom
| | - Nicola Begley
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Antony D Adamson
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Jennifer L Fribourgh
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, United States
| | - David G Spiller
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Qing-Jun Meng
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Carrie L Partch
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, United States
| | - Korbinian Strimmer
- Department of Mathematics, University of Manchester, Manchester, United Kingdom
| | - Thomas A House
- Department of Mathematics, University of Manchester, Manchester, United Kingdom
| | - Michael H Hastings
- Laboratory of Molecular Biology, Medical Research Council, Cambridge, United Kingdom
| | - Andrew S I Loudon
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
39
|
Brown MR, Matveyenko AV. It's What and When You Eat: An Overview of Transcriptional and Epigenetic Responses to Dietary Perturbations in Pancreatic Islets. Front Endocrinol (Lausanne) 2022; 13:842603. [PMID: 35355560 PMCID: PMC8960041 DOI: 10.3389/fendo.2022.842603] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/07/2022] [Indexed: 01/07/2023] Open
Abstract
Our ever-changing modern environment is a significant contributor to the increased prevalence of many chronic diseases, and particularly, type 2 diabetes mellitus (T2DM). Although the modern era has ushered in numerous changes to our daily living conditions, changes in "what" and "when" we eat appear to disproportionately fuel the rise of T2DM. The pancreatic islet is a key biological controller of an organism's glucose homeostasis and thus plays an outsized role to coordinate the response to environmental factors to preserve euglycemia through a delicate balance of endocrine outputs. Both successful and failed adaptation to dynamic environmental stimuli has been postulated to occur due to changes in the transcriptional and epigenetic regulation of pathways associated with islet secretory function and survival. Therefore, in this review we examined and evaluated the current evidence elucidating the key epigenetic mechanisms and transcriptional programs underlying the islet's coordinated response to the interaction between the timing and the composition of dietary nutrients common to modern lifestyles. With the explosion of next generation sequencing, along with the development of novel informatic and -omic approaches, future work will continue to unravel the environmental-epigenetic relationship in islet biology with the goal of identifying transcriptional and epigenetic targets associated with islet perturbations in T2DM.
Collapse
Affiliation(s)
- Matthew R. Brown
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Aleksey V. Matveyenko
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
- Division of Endocrinology, Metabolism, Diabetes, and Nutrition, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| |
Collapse
|
40
|
Systematic modeling-driven experiments identify distinct molecular clockworks underlying hierarchically organized pacemaker neurons. Proc Natl Acad Sci U S A 2022; 119:2113403119. [PMID: 35193959 PMCID: PMC8872709 DOI: 10.1073/pnas.2113403119] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2022] [Indexed: 12/11/2022] Open
Abstract
In metazoan organisms, circadian (∼24 h) rhythms are regulated by pacemaker neurons organized in a master-slave hierarchy. Although it is widely accepted that master pacemakers and slave oscillators generate rhythms via an identical negative feedback loop of transcription factor CLOCK (CLK) and repressor PERIOD (PER), their different roles imply heterogeneity in their molecular clockworks. Indeed, in Drosophila, defective binding between CLK and PER disrupts molecular rhythms in the master pacemakers, small ventral lateral neurons (sLNvs), but not in the slave oscillator, posterior dorsal neuron 1s (DN1ps). Here, we develop a systematic and expandable approach that unbiasedly searches the source of the heterogeneity in molecular clockworks from time-series data. In combination with in vivo experiments, we find that sLNvs exhibit higher synthesis and turnover of PER and lower CLK levels than DN1ps. Importantly, light shift analysis reveals that due to such a distinct molecular clockwork, sLNvs can obtain paradoxical characteristics as the master pacemaker, generating strong rhythms that are also flexibly adjustable to environmental changes. Our results identify the different characteristics of molecular clockworks of pacemaker neurons that underlie hierarchical multi-oscillator structure to ensure the rhythmic fitness of the organism.
Collapse
|
41
|
Quattrocelli M, Wintzinger M, Miz K, Levine DC, Peek CB, Bass J, McNally EM. Muscle mitochondrial remodeling by intermittent glucocorticoid drugs requires an intact circadian clock and muscle PGC1α. SCIENCE ADVANCES 2022; 8:eabm1189. [PMID: 35179955 PMCID: PMC8856622 DOI: 10.1126/sciadv.abm1189] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Exogenous glucocorticoids interact with the circadian clock, but little attention is paid to the timing of intake. We recently found that intermittent once-weekly prednisone improved nutrient oxidation in dystrophic muscle. Here, we investigated whether dosage time affected prednisone effects on muscle bioenergetics. In mice treated with once-weekly prednisone, drug dosing in the light-phase promoted nicotinamide adenine dinucleotide (NAD+) levels and mitochondrial function in wild-type muscle, while this response was lost with dark-phase dosing. These effects depended on a normal circadian clock since they were disrupted in muscle from [Brain and muscle Arnt-like protein-1 (Bmal1)]-knockout mice. The light-phase prednisone pulse promoted BMAL1-dependent glucocorticoid receptor recruitment on noncanonical targets, including Nampt and Ppargc1a [peroxisome proliferator-activated receptor-γ coactivator 1α (PGC1α)]. In mice with muscle-restricted inducible PGC1α ablation, bioenergetic stimulation by light-phase prednisone required PGC1α. These results demonstrate that glucocorticoid "chronopharmacology" for muscle bioenergetics requires an intact clock and muscle PGC1α activity.
Collapse
Affiliation(s)
- Mattia Quattrocelli
- Division of Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Michelle Wintzinger
- Division of Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Karen Miz
- Division of Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Daniel C. Levine
- Division of Endocrinology, Metabolism and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Clara Bien Peek
- Division of Endocrinology, Metabolism and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Joseph Bass
- Division of Endocrinology, Metabolism and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Elizabeth M. McNally
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
42
|
Song S, Tien CL, Cui H, Basil P, Zhu N, Gong Y, Li W, Li H, Fan Q, Min Choi J, Luo W, Xue Y, Cao R, Zhou W, Ortiz AR, Stork B, Mundra V, Putluri N, York B, Chu M, Chang J, Yun Jung S, Xie L, Song J, Zhang L, Sun Z. Myocardial Rev-erb-Mediated Diurnal Metabolic Rhythm and Obesity Paradox. Circulation 2022; 145:448-464. [PMID: 35034472 PMCID: PMC8812427 DOI: 10.1161/circulationaha.121.056076] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 12/02/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND The nuclear receptor Rev-erbα/β, a key component of the circadian clock, emerges as a drug target for heart diseases, but the function of cardiac Rev-erb has not been studied in vivo. Circadian disruption is implicated in heart diseases, but it is unknown whether cardiac molecular clock dysfunction is associated with the progression of any naturally occurring human heart diseases. Obesity paradox refers to the seemingly protective role of obesity for heart failure, but the mechanism is unclear. METHODS We generated mouse lines with cardiac-specific Rev-erbα/β knockout (KO), characterized cardiac phenotype, conducted multi-omics (RNA-sequencing, chromatin immunoprecipitation sequencing, proteomics, and metabolomics) analyses, and performed dietary and pharmacological rescue experiments to assess the time-of-the-day effects. We compared the temporal pattern of cardiac clock gene expression with the cardiac dilation severity in failing human hearts. RESULTS KO mice display progressive dilated cardiomyopathy and lethal heart failure. Inducible ablation of Rev-erbα/β in adult hearts causes similar phenotypes. Impaired fatty acid oxidation in the KO myocardium, in particular, in the light cycle, precedes contractile dysfunctions with a reciprocal overreliance on carbohydrate utilization, in particular, in the dark cycle. Increasing dietary lipid or sugar supply in the dark cycle does not affect cardiac dysfunctions in KO mice. However, obesity coupled with systemic insulin resistance paradoxically ameliorates cardiac dysfunctions in KO mice, associated with rescued expression of lipid oxidation genes only in the light cycle in phase with increased fatty acid availability from adipose lipolysis. Inhibition of glycolysis in the light cycle and lipid oxidation in the dark cycle, but not vice versa, ameliorate cardiac dysfunctions in KO mice. Altered temporal patterns of cardiac Rev-erb gene expression correlate with the cardiac dilation severity in human hearts with dilated cardiomyopathy. CONCLUSIONS The study delineates temporal coordination between clock-mediated anticipation and nutrient-induced response in myocardial metabolism at multi-omics levels. The obesity paradox is attributable to increased cardiac lipid supply from adipose lipolysis in the fasting cycle due to systemic insulin resistance and adiposity. Cardiac molecular chronotypes may be involved in human dilated cardiomyopathy. Myocardial bioenergetics downstream of Rev-erb may be a chronotherapy target in treating heart failure and dilated cardiomyopathy.
Collapse
Affiliation(s)
- Shiyang Song
- Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism (S.S., P.B., N.Z., Y.G., W. Li, Y.X., R.C., W.Z., V.M., Z.S.), Baylor College of Medicine, Houston, TX
- Children’s Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, China (S.S., M.C.)
| | - Chih-Liang Tien
- Department of Molecular and Human Genetics (C.-L.T., H.L., L.Z.), Baylor College of Medicine, Houston, TX
| | - Hao Cui
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, China (H.C., J.S.)
| | - Paul Basil
- Department of Critical Care, Division of Anesthesiology, Critical Care, and Pain Medicine, University of Texas MD Anderson Cancer Center, Houston, TX (P.B.)
| | - Ningxia Zhu
- Department of Pathology and Physiopathology, Guilin Medical University, Guilin, China (N.Z.)
| | - Yingyun Gong
- Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism (S.S., P.B., N.Z., Y.G., W. Li, Y.X., R.C., W.Z., V.M., Z.S.), Baylor College of Medicine, Houston, TX
| | - Wenbo Li
- Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism (S.S., P.B., N.Z., Y.G., W. Li, Y.X., R.C., W.Z., V.M., Z.S.), Baylor College of Medicine, Houston, TX
| | - Hui Li
- Department of Molecular and Human Genetics (C.-L.T., H.L., L.Z.), Baylor College of Medicine, Houston, TX
| | - Qiying Fan
- Department of Medicine, Division of Atherosclerosis and Vascular Medicine, Cardiovascular Research Institute (CVRI), Houston, TX (Q.F., L.X.)
| | - Jong Min Choi
- Department of Molecular and Cellular Biology (J.M.C., A.R.O., B.S., N.P., B.Y., S.Y.J.), Baylor College of Medicine, Houston, TX
| | - Weijia Luo
- Center for Genomic and Precision Medicine, Texas A&M University, Institute of Biosciences and Technology, Houston (W. Luo, J.C., L.Z.)
| | - Yanfeng Xue
- Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism (S.S., P.B., N.Z., Y.G., W. Li, Y.X., R.C., W.Z., V.M., Z.S.), Baylor College of Medicine, Houston, TX
| | - Rui Cao
- Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism (S.S., P.B., N.Z., Y.G., W. Li, Y.X., R.C., W.Z., V.M., Z.S.), Baylor College of Medicine, Houston, TX
| | - Wenjun Zhou
- Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism (S.S., P.B., N.Z., Y.G., W. Li, Y.X., R.C., W.Z., V.M., Z.S.), Baylor College of Medicine, Houston, TX
| | - Andrea R. Ortiz
- Department of Molecular and Cellular Biology (J.M.C., A.R.O., B.S., N.P., B.Y., S.Y.J.), Baylor College of Medicine, Houston, TX
| | - Brittany Stork
- Department of Molecular and Cellular Biology (J.M.C., A.R.O., B.S., N.P., B.Y., S.Y.J.), Baylor College of Medicine, Houston, TX
| | - Vatsala Mundra
- Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism (S.S., P.B., N.Z., Y.G., W. Li, Y.X., R.C., W.Z., V.M., Z.S.), Baylor College of Medicine, Houston, TX
| | - Nagireddy Putluri
- Department of Molecular and Cellular Biology (J.M.C., A.R.O., B.S., N.P., B.Y., S.Y.J.), Baylor College of Medicine, Houston, TX
| | - Brian York
- Department of Molecular and Cellular Biology (J.M.C., A.R.O., B.S., N.P., B.Y., S.Y.J.), Baylor College of Medicine, Houston, TX
| | - Maoping Chu
- Children’s Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, China (S.S., M.C.)
| | - Jiang Chang
- Center for Genomic and Precision Medicine, Texas A&M University, Institute of Biosciences and Technology, Houston (W. Luo, J.C., L.Z.)
| | - Sung Yun Jung
- Department of Molecular and Cellular Biology (J.M.C., A.R.O., B.S., N.P., B.Y., S.Y.J.), Baylor College of Medicine, Houston, TX
| | - Liang Xie
- Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism (S.S., P.B., N.Z., Y.G., W. Li, Y.X., R.C., W.Z., V.M., Z.S.), Baylor College of Medicine, Houston, TX
| | - Jiangping Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, China (H.C., J.S.)
| | - Lilei Zhang
- Department of Molecular and Human Genetics (C.-L.T., H.L., L.Z.), Baylor College of Medicine, Houston, TX
- Center for Genomic and Precision Medicine, Texas A&M University, Institute of Biosciences and Technology, Houston (W. Luo, J.C., L.Z.)
| | - Zheng Sun
- Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism (S.S., P.B., N.Z., Y.G., W. Li, Y.X., R.C., W.Z., V.M., Z.S.), Baylor College of Medicine, Houston, TX
| |
Collapse
|
43
|
Yildirim E, Curtis R, Hwangbo DS. Roles of peripheral clocks: lessons from the fly. FEBS Lett 2022; 596:263-293. [PMID: 34862983 PMCID: PMC8844272 DOI: 10.1002/1873-3468.14251] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 02/03/2023]
Abstract
To adapt to and anticipate rhythmic changes in the environment such as daily light-dark and temperature cycles, internal timekeeping mechanisms called biological clocks evolved in a diverse set of organisms, from unicellular bacteria to humans. These biological clocks play critical roles in organisms' fitness and survival by temporally aligning physiological and behavioral processes to the external cues. The central clock is located in a small subset of neurons in the brain and drives daily activity rhythms, whereas most peripheral tissues harbor their own clock systems, which generate metabolic and physiological rhythms. Since the discovery of Drosophila melanogaster clock mutants in the early 1970s, the fruit fly has become an extensively studied model organism to investigate the mechanism and functions of circadian clocks. In this review, we primarily focus on D. melanogaster to survey key discoveries and progresses made over the past two decades in our understanding of peripheral clocks. We discuss physiological roles and molecular mechanisms of peripheral clocks in several different peripheral tissues of the fly.
Collapse
Affiliation(s)
| | - Rachel Curtis
- Department of Biology, University of Louisville, Louisville, KY, USA
| | - Dae-Sung Hwangbo
- Department of Biology, University of Louisville, Louisville, KY, USA
| |
Collapse
|
44
|
Tuning up an aged clock: Circadian clock regulation in metabolism and aging. TRANSLATIONAL MEDICINE OF AGING 2022. [DOI: 10.1016/j.tma.2021.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
45
|
Crislip GR, Johnston JG, Douma LG, Costello HM, Juffre A, Boyd K, Li W, Maugans CC, Gutierrez-Monreal M, Esser KA, Bryant AJ, Liu AC, Gumz ML. Circadian Rhythm Effects on the Molecular Regulation of Physiological Systems. Compr Physiol 2021; 12:2769-2798. [PMID: 34964116 PMCID: PMC11514412 DOI: 10.1002/cphy.c210011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Nearly every system within the body contains an intrinsic cellular circadian clock. The circadian clock contributes to the regulation of a variety of homeostatic processes in mammals through the regulation of gene expression. Circadian disruption of physiological systems is associated with pathophysiological disorders. Here, we review the current understanding of the molecular mechanisms contributing to the known circadian rhythms in physiological function. This article focuses on what is known in humans, along with discoveries made with cell and rodent models. In particular, the impact of circadian clock components in metabolic, cardiovascular, endocrine, musculoskeletal, immune, and central nervous systems are discussed. © 2021 American Physiological Society. Compr Physiol 11:1-30, 2021.
Collapse
Affiliation(s)
- G. Ryan Crislip
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation
| | - Jermaine G. Johnston
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation
| | | | - Hannah M. Costello
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation
| | | | - Kyla Boyd
- Department of Biochemistry and Molecular Biology
| | - Wendy Li
- Department of Biochemistry and Molecular Biology
| | | | | | - Karyn A. Esser
- Department of Physiology and Functional Genomics
- Myology Institute
| | | | - Andrew C. Liu
- Department of Physiology and Functional Genomics
- Myology Institute
| | - Michelle L. Gumz
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation
- Department of Biochemistry and Molecular Biology
- Department of Physiology and Functional Genomics
- Center for Integrative Cardiovascular and Metabolic Disease
| |
Collapse
|
46
|
Murata K, Mimura A, Suzuki H, Mikami N, Hamada Y, Kato K, Iki N, Ishida M, Daitoku Y, Tanimoto Y, Okiyoneda T, Fujiyama T, Dinh TTH, Mizuno S, Sugiyama F. Efficient induction of proximity-dependent labelling by biotin feeding in BMAL1-BioID knock-in mice. J Biochem 2021; 170:453-461. [PMID: 33982090 DOI: 10.1093/jb/mvab059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/06/2021] [Indexed: 11/13/2022] Open
Abstract
Proximity-dependent biotin identification (BioID) is a useful method to identify unknown protein-protein interactions. Few reports have described genetically engineered knock-in mouse models for in vivo BioID. Thus, little is known about the proper method for biotin administration and which tissues are applicable. Here, we established a BioID knock-in mouse model of Brain and Muscle ARNT-Like 1 (BMAL1) and the BirA biotin ligase with R118G mutation (BirA*). The BMAL1-BioID mouse model was used to investigate the effect of biotin diet feeding on protein biotinylation in several tissues. The BMAL1-BirA* fusion protein-retained proper intracellular localization of BMAL1 and binding to CLOCK protein in HEK293T cells. A biotin labelling assay in mouse embryonic fibroblasts revealed the protein biotinylation activity of BMAL1-BirA* expressed in knock-in mouse cells depending on biotin supplementation. Lastly, feeding a 0.5% biotin diet for 7 days induced protein biotinylation in the brain, heart, testis and liver of BMAL1-BioID mice without adverse effects on spermatogenesis. In the kidney, the biotin diet increased biotinylated protein levels in BMAL1-BioID and control mice, suggesting the existence of endogenous biotinylation activity. These results provide valuable information to optimize the in vivo BioID procedure.
Collapse
Affiliation(s)
- Kazuya Murata
- Laboratory Animal Resource Center, Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Asuka Mimura
- College of Biological Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Hayate Suzuki
- Doctoral Program in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Natsuki Mikami
- School of Medical Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Yuko Hamada
- Laboratory Animal Resource Center, Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Kanako Kato
- Laboratory Animal Resource Center, Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Natsumi Iki
- Laboratory Animal Resource Center, Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Miyuki Ishida
- Laboratory Animal Resource Center, Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Yoko Daitoku
- Laboratory Animal Resource Center, Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Yoko Tanimoto
- Laboratory Animal Resource Center, Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Tsukasa Okiyoneda
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan
| | - Tomoyuki Fujiyama
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Tra Thi Huong Dinh
- Laboratory Animal Resource Center, Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center, Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Fumihiro Sugiyama
- Laboratory Animal Resource Center, Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
47
|
Qu M, Qu H, Jia Z, Kay SA. HNF4A defines tissue-specific circadian rhythms by beaconing BMAL1::CLOCK chromatin binding and shaping the rhythmic chromatin landscape. Nat Commun 2021; 12:6350. [PMID: 34732735 PMCID: PMC8566521 DOI: 10.1038/s41467-021-26567-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 10/12/2021] [Indexed: 11/30/2022] Open
Abstract
Transcription modulated by the circadian clock is diverse across cell types, underlying circadian control of peripheral metabolism and its observed perturbation in human diseases. We report that knockout of the lineage-specifying Hnf4a gene in mouse liver causes associated reductions in the genome-wide distribution of core clock component BMAL1 and accessible chromatin marks (H3K4me1 and H3K27ac). Ectopically expressing HNF4A remodels chromatin landscape and nucleates distinct tissue-specific BMAL1 chromatin binding events, predominantly in enhancer regions. Circadian rhythms are disturbed in Hnf4a knockout liver and HNF4A-MODY diabetic model cells. Additionally, the epigenetic state and accessibility of the liver genome dynamically change throughout the day, synchronized with chromatin occupancy of HNF4A and clustered expression of circadian outputs. Lastly, Bmal1 knockout attenuates HNF4A genome-wide binding in the liver, likely due to downregulated Hnf4a transcription. Our results may provide a general mechanism for establishing circadian rhythm heterogeneity during development and disease progression, governed by chromatin structure.
Collapse
Affiliation(s)
- Meng Qu
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA.
| | - Han Qu
- Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| | - Zhenyu Jia
- Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
- Graduate Program in Genetics, Genomics, and Bioinformatics, University of California, Riverside, CA, 92521, USA
| | - Steve A Kay
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
48
|
Cai YD, Chiu JC. Timeless in animal circadian clocks and beyond. FEBS J 2021; 289:6559-6575. [PMID: 34699674 PMCID: PMC9038958 DOI: 10.1111/febs.16253] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/09/2021] [Accepted: 10/26/2021] [Indexed: 12/13/2022]
Abstract
TIMELESS (TIM) was first identified as a molecular cog in the Drosophila circadian clock. Almost three decades of investigations have resulted in an insightful model describing the critical role of Drosophila TIM (dTIM) in circadian timekeeping in insects, including its function in mediating light entrainment and temperature compensation of the molecular clock. Furthermore, exciting discoveries on its sequence polymorphism and thermosensitive alternative RNA splicing have also established its role in regulating seasonal biology. Although mammalian TIM (mTIM), its mammalian paralog, was first identified as a potential circadian clock component in 1990s due to sequence similarity to dTIM, its role in clock regulation has been more controversial. Mammalian TIM has now been characterized as a DNA replication fork component and has been shown to promote fork progression and participate in cell cycle checkpoint signaling in response to DNA damage. Despite defective circadian rhythms displayed by mtim mutants, it remains controversial whether the regulation of circadian clocks by mTIM is direct, especially given the interconnection between the cell cycle and circadian clocks. In this review, we provide a historical perspective on the identification of animal tim genes, summarize the roles of TIM proteins in biological timing and genomic stability, and draw parallels between dTIM and mTIM despite apparent functional divergence.
Collapse
Affiliation(s)
- Yao D Cai
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, CA, USA
| | - Joanna C Chiu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, CA, USA
| |
Collapse
|
49
|
Zhuang X, Tsukuda S, Wrensch F, Wing PA, Schilling M, Harris JM, Borrmann H, Morgan SB, Cane JL, Mailly L, Thakur N, Conceicao C, Sanghani H, Heydmann L, Bach C, Ashton A, Walsh S, Tan TK, Schimanski L, Huang KYA, Schuster C, Watashi K, Hinks TS, Jagannath A, Vausdevan SR, Bailey D, Baumert TF, McKeating JA. The circadian clock component BMAL1 regulates SARS-CoV-2 entry and replication in lung epithelial cells. iScience 2021; 24:103144. [PMID: 34545347 PMCID: PMC8443536 DOI: 10.1016/j.isci.2021.103144] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 09/11/2021] [Accepted: 09/13/2021] [Indexed: 12/15/2022] Open
Abstract
The coronavirus disease 2019 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) coronavirus, is a global health issue with unprecedented challenges for public health. SARS-CoV-2 primarily infects cells of the respiratory tract via spike glycoprotein binding to angiotensin-converting enzyme (ACE2). Circadian rhythms coordinate an organism's response to its environment and can regulate host susceptibility to virus infection. We demonstrate that silencing the circadian regulator Bmal1 or treating lung epithelial cells with the REV-ERB agonist SR9009 reduces ACE2 expression and inhibits SARS-CoV-2 entry and replication. Importantly, treating infected cells with SR9009 limits SARS-CoV-2 replication and secretion of infectious particles, showing that post-entry steps in the viral life cycle are influenced by the circadian system. Transcriptome analysis revealed that Bmal1 silencing induced interferon-stimulated gene transcripts in Calu-3 lung epithelial cells, providing a mechanism for the circadian pathway to limit SARS-CoV-2 infection. Our study highlights alternative approaches to understand and improve therapeutic targeting of SARS-CoV-2.
Collapse
Affiliation(s)
- Xiaodong Zhuang
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Senko Tsukuda
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Florian Wrensch
- Université de Strasbourg, Strasbourg, France and INSERM, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
| | - Peter A.C. Wing
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Chinese Academy of Medical Sciences (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | - Mirjam Schilling
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - James M. Harris
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Helene Borrmann
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Sophie B. Morgan
- Respiratory Medicine Unit and National Institute for Health Research Oxford Biomedical Research Centre, Nuffield Department of Medicine, Experimental Medicine, University of Oxford, UK
| | - Jennifer L. Cane
- Respiratory Medicine Unit and National Institute for Health Research Oxford Biomedical Research Centre, Nuffield Department of Medicine, Experimental Medicine, University of Oxford, UK
| | - Laurent Mailly
- Université de Strasbourg, Strasbourg, France and INSERM, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
| | - Nazia Thakur
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, UK
| | - Carina Conceicao
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, UK
| | - Harshmeena Sanghani
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Laura Heydmann
- Université de Strasbourg, Strasbourg, France and INSERM, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
| | - Charlotte Bach
- Université de Strasbourg, Strasbourg, France and INSERM, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
| | - Anna Ashton
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Steven Walsh
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Tiong Kit Tan
- MRC Human Immunology Unit, MRC Weatherall Institute, John Radcliffe Hospital, Oxford 17 OX3 9DS, UK
| | - Lisa Schimanski
- Chinese Academy of Medical Sciences (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
- MRC Human Immunology Unit, MRC Weatherall Institute, John Radcliffe Hospital, Oxford 17 OX3 9DS, UK
| | - Kuan-Ying A. Huang
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University and Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Catherine Schuster
- Université de Strasbourg, Strasbourg, France and INSERM, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
| | - Koichi Watashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
- Department of Applied Biological Science, Tokyo University of Science, Noda 278-8510, Japan
| | - Timothy S.C. Hinks
- Respiratory Medicine Unit and National Institute for Health Research Oxford Biomedical Research Centre, Nuffield Department of Medicine, Experimental Medicine, University of Oxford, UK
| | - Aarti Jagannath
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | | | - Dalan Bailey
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, UK
| | - Thomas F. Baumert
- Université de Strasbourg, Strasbourg, France and INSERM, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Pole Hépato-digestif, IHU, Hopitaux Universitaires de Strasbourg, Strasbourg, France
| | - Jane A. McKeating
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Chinese Academy of Medical Sciences (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| |
Collapse
|
50
|
Guo X, Zheng J, Zhang S, Jiang X, Chen T, Yu J, Wang S, Ma X, Wu C. Advances in Unhealthy Nutrition and Circadian Dysregulation in Pathophysiology of NAFLD. FRONTIERS IN CLINICAL DIABETES AND HEALTHCARE 2021; 2:691828. [PMID: 36994336 PMCID: PMC10012147 DOI: 10.3389/fcdhc.2021.691828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 09/27/2021] [Indexed: 11/13/2022]
Abstract
Unhealthy diets and lifestyle result in various metabolic conditions including metabolic syndrome and non-alcoholic fatty liver disease (NAFLD). Much evidence indicates that disruption of circadian rhythms contributes to the development and progression of excessive hepatic fat deposition and inflammation, as well as liver fibrosis, a key characteristic of non-steatohepatitis (NASH) or the advanced form of NAFLD. In this review, we emphasize the importance of nutrition as a critical factor in the regulation of circadian clock in the liver. We also focus on the roles of the rhythms of nutrient intake and the composition of diets in the regulation of circadian clocks in the context of controlling hepatic glucose and fat metabolism. We then summarize the effects of unhealthy nutrition and circadian dysregulation on the development of hepatic steatosis and inflammation. A better understanding of how the interplay among nutrition, circadian rhythms, and dysregulated metabolism result in hepatic steatosis and inflammation can help develop improved preventive and/or therapeutic strategies for managing NAFLD.
Collapse
Affiliation(s)
- Xin Guo
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Xin Guo, ; Chaodong Wu,
| | - Juan Zheng
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Shixiu Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaofan Jiang
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ting Chen
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Jiayu Yu
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Shu'e Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaomin Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chaodong Wu
- Department of Nutrition, Texas A&M University, College Station, TX, United States
- *Correspondence: Xin Guo, ; Chaodong Wu,
| |
Collapse
|