1
|
Papp H, Tóth E, Bóvári-Biri J, Bánfai K, Juhász P, Mahdi M, Russo LC, Bajusz D, Sipos A, Petri L, Szalai TV, Kemény Á, Madai M, Kuczmog A, Batta G, Mózner O, Vaskó D, Hirsch E, Bohus P, Méhes G, Tőzsér J, Curtin NJ, Helyes Z, Tóth A, Hoch NC, Jakab F, Keserű GM, Pongrácz JE, Bai P. The PARP inhibitor rucaparib blocks SARS-CoV-2 virus binding to cells and the immune reaction in models of COVID-19. Br J Pharmacol 2024; 181:4782-4803. [PMID: 39191429 DOI: 10.1111/bph.17305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND AND PURPOSE To date, there are limited options for severe Coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2 virus. As ADP-ribosylation events are involved in regulating the life cycle of coronaviruses and the inflammatory reactions of the host; we have, here, assessed the repurposing of registered PARP inhibitors for the treatment of COVID-19. EXPERIMENTAL APPROACH The effects of PARP inhibitors on virus uptake were assessed in cell-based experiments using multiple variants of SARS-CoV-2. The binding of rucaparib to spike protein was tested by molecular modelling and microcalorimetry. The anti-inflammatory properties of rucaparib were demonstrated in cell-based models upon challenging with recombinant spike protein or SARS-CoV-2 RNA vaccine. KEY RESULTS We detected high levels of oxidative stress and strong PARylation in all cell types in the lungs of COVID-19 patients, both of which negatively correlated with lymphocytopaenia. Interestingly, rucaparib, unlike other tested PARP inhibitors, reduced the SARS-CoV-2 infection rate through binding to the conserved 493-498 amino acid region located in the spike-ACE2 interface in the spike protein and prevented viruses from binding to ACE2. In addition, the spike protein and viral RNA-induced overexpression of cytokines was down-regulated by the inhibition of PARP1 by rucaparib at pharmacologically relevant concentrations. CONCLUSION AND IMPLICATIONS These results point towards repurposing rucaparib for treating inflammatory responses in COVID-19.
Collapse
Affiliation(s)
- Henrietta Papp
- National Laboratory of Virology, University of Pécs, Pécs, Hungary
- Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
- Szentagothai Research Centre, University of Pécs, Pécs, Hungary
| | - Emese Tóth
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- HUN-REN-DE Cell Biology and Signaling Research Group, Debrecen, Hungary
| | - Judit Bóvári-Biri
- Szentagothai Research Centre, University of Pécs, Pécs, Hungary
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pécs, Pécs, Hungary
| | - Krisztina Bánfai
- Szentagothai Research Centre, University of Pécs, Pécs, Hungary
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pécs, Pécs, Hungary
| | - Péter Juhász
- Department of Pathology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Mohamed Mahdi
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Lilian Cristina Russo
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Dávid Bajusz
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Budapest, Hungary
| | - Adrienn Sipos
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- HUN-REN-DE Cell Biology and Signaling Research Group, Debrecen, Hungary
| | - László Petri
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Budapest, Hungary
| | - Tibor Viktor Szalai
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Budapest, Hungary
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Budapest, Hungary
| | - Ágnes Kemény
- Szentagothai Research Centre, University of Pécs, Pécs, Hungary
- Department of Pharmacology and Pharmacotherapy, Medical School & Centre for Neuroscience, University of Pécs, Pécs, Hungary
- Department of Medical Biology, Medical School, Pécs, Hungary
| | - Mónika Madai
- National Laboratory of Virology, University of Pécs, Pécs, Hungary
- Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
- Szentagothai Research Centre, University of Pécs, Pécs, Hungary
| | - Anett Kuczmog
- National Laboratory of Virology, University of Pécs, Pécs, Hungary
- Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
- Szentagothai Research Centre, University of Pécs, Pécs, Hungary
| | - Gyula Batta
- Department of Organic Chemistry, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Orsolya Mózner
- Doctoral School of Molecular Medicine, Semmelweis University, Budapest, Hungary
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Dorottya Vaskó
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Budapest, Hungary
| | - Edit Hirsch
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Budapest, Hungary
| | | | - Gábor Méhes
- Department of Pathology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - József Tőzsér
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Nicola J Curtin
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School & Centre for Neuroscience, University of Pécs, Pécs, Hungary
- Hungarian Research Network, Chronic Pain Research Group, University of Pécs, Pécs, Hungary
- National Laboratory for Drug Research and Development, Budapest, Hungary
| | - Attila Tóth
- Section of Clinical Physiology, Department of Cardiology, University of Debrecen, Debrecen, Hungary
| | - Nicolas C Hoch
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Ferenc Jakab
- National Laboratory of Virology, University of Pécs, Pécs, Hungary
- Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - György M Keserű
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Budapest, Hungary
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Budapest, Hungary
| | - Judit E Pongrácz
- Szentagothai Research Centre, University of Pécs, Pécs, Hungary
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pécs, Pécs, Hungary
| | - Péter Bai
- Szentagothai Research Centre, University of Pécs, Pécs, Hungary
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, Hungary
- Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
2
|
Cagliani R, Forni D, Mozzi A, Fuchs R, Hagai T, Sironi M. Evolutionary analysis of ZAP and its cofactors identifies intrinsically disordered regions as central elements in host-pathogen interactions. Comput Struct Biotechnol J 2024; 23:3143-3154. [PMID: 39234301 PMCID: PMC11372611 DOI: 10.1016/j.csbj.2024.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 09/06/2024] Open
Abstract
The zinc-finger antiviral protein (ZAP) is an innate immunity sensor of non-self nucleic acids. Its antiviral activity is exerted through the physical interaction with different cofactors, including TRIM25, Riplet and KHNYN. Cellular proteins that interact with infectious agents are expected to be engaged in genetic conflicts that often result in their rapid evolution. To test this possibility and to identify the regions most strongly targeted by natural selection, we applied in silico molecular evolution tools to analyze the evolutionary history of ZAP and cofactors in four mammalian groups. We report evidence of positive selection in all genes and in most mammalian groups. On average, the intrinsically disordered regions (IDRs) embedded in the four proteins evolve significantly faster than folded domains and most positively selected sites fall within IDRs. In ZAP, the PARP domain also shows abundant signals of selection, and independent evolution in different mammalian groups suggests modulation of its ADP-ribose binding ability. Detailed analyses of the biophysical properties of IDRs revealed that chain compaction and conformational entropy are conserved across mammals. The IDRs in ZAP and KHNYN are particularly compact, indicating that they may promote phase separation (PS). In line with this hypothesis, we predicted several PS-promoting regions in ZAP and KHNYN, as well as in TRIM25. Positively selected sites are abundant in these regions, suggesting that PS may be important for the antiviral functions of these proteins and the evolutionary arms race with viruses. Our data shed light into the evolution of ZAP and cofactors and indicate that IDRs represent central elements in host-pathogen interactions.
Collapse
Affiliation(s)
- Rachele Cagliani
- Scientific Institute IRCCS E. MEDEA, Computational Biology Unit, Bosisio Parini 23842, Italy
| | - Diego Forni
- Scientific Institute IRCCS E. MEDEA, Computational Biology Unit, Bosisio Parini 23842, Italy
| | - Alessandra Mozzi
- Scientific Institute IRCCS E. MEDEA, Computational Biology Unit, Bosisio Parini 23842, Italy
| | - Rotem Fuchs
- Shmunis School of Biomedicine and Cancer Research, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Tzachi Hagai
- Shmunis School of Biomedicine and Cancer Research, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Manuela Sironi
- Scientific Institute IRCCS E. MEDEA, Computational Biology Unit, Bosisio Parini 23842, Italy
| |
Collapse
|
3
|
Chen J, Hui Q, Titanji BK, So-Armah K, Freiberg M, Justice AC, Xu K, Zhu X, Gwinn M, Marconi VC, Sun YV. A multi-trait epigenome-wide association study identified DNA methylation signature of inflammation among men with HIV. Clin Epigenetics 2024; 16:152. [PMID: 39488703 DOI: 10.1186/s13148-024-01763-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/14/2024] [Indexed: 11/04/2024] Open
Abstract
Inflammation underlies many conditions causing excess morbidity and mortality among people with HIV (PWH). A handful of single-trait epigenome-wide association studies (EWAS) have suggested that inflammation is associated with DNA methylation (DNAm) among PWH. Multi-trait EWAS may further improve statistical power and reveal pathways in common between different inflammatory markers. We conducted single-trait EWAS of three inflammatory markers (soluble CD14, D-dimers and interleukin-6) in the Veterans Aging Cohort Study (n = 920). The study population was all male PWH with an average age of 51 years, and 82.3% self-reported as Black. We then applied two multi-trait EWAS methods-CPASSOC and OmniTest-to combine single-trait EWAS results. CPASSOC and OmniTest identified 189 and 157 inflammation-associated DNAm sites, respectively, of which 112 overlapped. Among the identified sites, 56% were not significant in any single-trait EWAS. Top sites were mapped to inflammation-related genes including IFITM1, PARP9 and STAT1. These genes were significantly enriched in pathways such as "type I interferon signaling" and "immune response to virus." We demonstrate that multi-trait EWAS can improve the discovery of inflammation-associated DNAm sites, genes and pathways. These DNAm sites might hold the key to addressing persistent inflammation in PWH.
Collapse
Affiliation(s)
- Junyu Chen
- Department of Epidemiology, Rollins School of Public Health, Emory University, 1518 Clifton Road NE #3049, Atlanta, GA, 30322, USA
| | - Qin Hui
- Department of Epidemiology, Rollins School of Public Health, Emory University, 1518 Clifton Road NE #3049, Atlanta, GA, 30322, USA
| | - Boghuma K Titanji
- Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, USA
| | - Kaku So-Armah
- Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Matthew Freiberg
- Cardiovascular Medicine Division, Vanderbilt University School of Medicine and Tennessee Valley Healthcare System, Nashville, TN, USA
| | - Amy C Justice
- Connecticut Veteran Health System, West Haven, CT, USA
- Schools of Medicine and Public Health, Yale University, New Haven, CT, USA
| | - Ke Xu
- Connecticut Veteran Health System, West Haven, CT, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Xiaofeng Zhu
- Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Marta Gwinn
- Department of Epidemiology, Rollins School of Public Health, Emory University, 1518 Clifton Road NE #3049, Atlanta, GA, 30322, USA
| | - Vincent C Marconi
- Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, USA
- Hubert Department of Global Health, Rollins School of Public Health, Atlanta, GA, USA
- Atlanta Veterans Affairs Health Care System, Decatur, GA, USA
| | - Yan V Sun
- Department of Epidemiology, Rollins School of Public Health, Emory University, 1518 Clifton Road NE #3049, Atlanta, GA, 30322, USA.
- Atlanta Veterans Affairs Health Care System, Decatur, GA, USA.
| |
Collapse
|
4
|
Kerr CM, Pfannenstiel JJ, Alhammad YM, O'Connor JJ, Ghimire R, Shrestha R, Khattabi R, Saenjamsai P, Parthasarathy S, McDonald PR, Gao P, Johnson DK, More S, Roy A, Channappanavar R, Fehr AR. Mutation of a highly conserved isoleucine residue in loop 2 of several β-coronavirus macrodomains indicates that enhanced ADP-ribose binding is detrimental for replication. J Virol 2024:e0131324. [PMID: 39387584 DOI: 10.1128/jvi.01313-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/18/2024] [Indexed: 10/13/2024] Open
Abstract
All coronaviruses (CoVs) encode for a conserved macrodomain (Mac1) located in non-structural protein 3. Mac1 is an ADP-ribosylhydrolase that binds and hydrolyzes mono-ADP-ribose from target proteins. Previous work has shown that Mac1 is important for virus replication and pathogenesis. Within Mac1, there are several regions that are highly conserved across CoVs, including the glycine-isoleucine-phenylalanine motif. While we previously demonstrated the importance of the glycine residue for CoV replication and pathogenesis, the impact of the isoleucine and phenylalanine residues remains unknown. To determine how the biochemical activities of these residues impact CoV replication, the isoleucine and the phenylalanine residues were mutated to alanine (I-A/F-A) in both recombinant Mac1 proteins and recombinant CoVs, including murine hepatitis virus, Middle East respiratory syndrome coronavirus (MERS-CoV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The F-A mutant proteins had ADP-ribose binding and/or hydrolysis defects that correlated with attenuated replication and pathogenesis of F-A mutant MERS-CoV and SARS-CoV-2 viruses in cell culture and mice. In contrast, the I-A mutant proteins had normal enzyme activity and enhanced ADP-ribose binding. Despite only demonstrating increased ADP-ribose binding, I-A mutant MERS-CoV and SARS-CoV-2 viruses were highly attenuated in both cell culture and mice, indicating that this isoleucine residue acts as a gate that controls ADP-ribose binding for efficient virus replication. These results highlight the function of this highly conserved residue and provide unique insight into how macrodomains control ADP-ribose binding and hydrolysis to promote viral replication. IMPORTANCE The conserved coronavirus (CoV) macrodomain (Mac1) counters the activity of host ADP-ribosyltransferases and is critical for CoV replication and pathogenesis. As such, Mac1 is a potential therapeutic target for CoV-induced disease. However, we lack a basic knowledge of how several residues in its ADP-ribose binding pocket contribute to its biochemical and virological functions. We engineered mutations into two highly conserved residues in the ADP-ribose binding pocket of Mac1, both as recombinant proteins and viruses for Middle East respiratory syndrome coronavirus (MERS-CoV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Interestingly, a Mac1 isoleucine-to-alanine mutant protein had enhanced ADP-ribose binding which proved to be detrimental for virus replication, indicating that this isoleucine controls ADP-ribose binding and is beneficial for virus replication and pathogenesis. These results provide unique insight into how macrodomains control ADP-ribose binding and will be critical for the development of novel inhibitors targeting Mac1 that could be used to treat CoV-induced disease.
Collapse
Affiliation(s)
- Catherine M Kerr
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | | | - Yousef M Alhammad
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Joseph J O'Connor
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Roshan Ghimire
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Rakshya Shrestha
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Reem Khattabi
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Pradtahna Saenjamsai
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | | | - Peter R McDonald
- High Throughput Screening Laboratory, University of Kansas, Lawrence, Kansas, USA
| | - Philip Gao
- Protein Production Group, University of Kansas, Lawrence, Kansas, USA
| | - David K Johnson
- Molecular Graphics and Modeling Laboratory and the Computational Chemical Biology Core, University of Kansas, Lawrence, Kansas, USA
| | - Sunil More
- High Throughput Screening Laboratory, University of Kansas, Lawrence, Kansas, USA
- Oklahoma Center for Respiratory and Infectious Diseases, College of Veterinary Medicine, Stillwater, Oklahoma, USA
| | - Anuradha Roy
- High Throughput Screening Laboratory, University of Kansas, Lawrence, Kansas, USA
| | - Rudragouda Channappanavar
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, Oklahoma, USA
- Oklahoma Center for Respiratory and Infectious Diseases, College of Veterinary Medicine, Stillwater, Oklahoma, USA
| | - Anthony R Fehr
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| |
Collapse
|
5
|
Ariza A, Liu Q, Cowieson NP, Ahel I, Filippov DV, Rack JGM. Evolutionary and molecular basis of ADP-ribosylation reversal by zinc-dependent macrodomains. J Biol Chem 2024; 300:107770. [PMID: 39270823 PMCID: PMC11490716 DOI: 10.1016/j.jbc.2024.107770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/14/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Dynamic ADP-ribosylation signaling is a crucial pathway that controls fundamental cellular processes, in particular, the response to cellular stresses such as DNA damage, reactive oxygen species, and infection. In some pathogenic microbes, the response to oxidative stress is controlled by a SirTM/zinc-containing macrodomain (Zn-Macro) pair responsible for establishment and removal of the modification, respectively. Targeting this defence mechanism against the host's innate immune response may lead to novel approaches to support the fight against emerging antimicrobial resistance. Earlier studies suggested that Zn-Macros play a key role in the activation of this defence. Therefore, we used phylogenetic, biochemical, and structural approaches to elucidate the functional properties of these enzymes. Using the substrate mimetic asparagine-ADP-ribose as well as the ADP-ribose product, we characterize the catalytic role of the zinc ion in the removal of the ADP-ribosyl modification. Furthermore, we determined structural properties that contribute to substrate selectivity within the different Zn-Macro branches. Together, our data not only give new insights into the Zn-Macro family but also highlight their distinct features that may be exploited for the development of future therapies.
Collapse
Affiliation(s)
- Antonio Ariza
- School of Biosciences, University of Sheffield, Sheffield, UK; Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Qiang Liu
- Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Beijing, China; Chinese Academy of Sciences, Shanghai Institute of Materia Medica, Beijing, China
| | - Nathan P Cowieson
- Harwell Science and Innovation Campus, Diamond Light Source, Didcot, Oxfordshire, UK
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| | - Dmitri V Filippov
- Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands.
| | | |
Collapse
|
6
|
Zhang Z, Uribe I, Davis KA, McPherson RL, Larson GP, Badiee M, Tran V, Ledwith MP, Feltman E, Yú S, Caì Y, Chang CY, Yang X, Ma Z, Chang P, Kuhn JH, Leung AKL, Mehle A. Global remodeling of ADP-ribosylation by PARP1 suppresses influenza A virus infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.19.613696. [PMID: 39345583 PMCID: PMC11430048 DOI: 10.1101/2024.09.19.613696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
ADP-ribosylation is a highly dynamic and fully reversible post-translational modification performed by poly(ADP-ribose) polymerases (PARPs) that modulates protein function, abundance, localization and turnover. Here we show that influenza A virus infection causes a rapid and dramatic upregulation of global ADP-ribosylation that inhibits viral replication. Mass spectrometry defined for the first time the global ADP-ribosylome during infection, creating an infection-specific profile with almost 4,300 modification sites on ~1,080 host proteins, as well as over 100 modification sites on viral proteins. Our data indicate that the global increase likely reflects a change in the form of ADP-ribosylation rather than modification of new targets. Functional assays demonstrated that modification of the viral replication machinery antagonizes its activity and further revealed that the anti-viral activity of PARPs and ADP-ribosylation is counteracted by the influenza A virus protein NS1, assigning a new activity to the primary viral antagonist of innate immunity. We identified PARP1 as the enzyme producing the majority of poly(ADP-ribose) present during infection. Influenza A virus replicated faster in cells lacking PARP1, linking PARP1 and ADP-ribosylation to the anti-viral phenotype. Together, these data establish ADP-ribosylation as an anti-viral innate immune-like response to viral infection antagonized by a previously unknown activity of NS1.
Collapse
Affiliation(s)
- Zhenyu Zhang
- Medical Microbiology and Immunology, University of Wisconsin—Madison, Madison, WI
| | - Isabel Uribe
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Kaitlin A. Davis
- Medical Microbiology and Immunology, University of Wisconsin—Madison, Madison, WI
| | - Robert Lyle McPherson
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Gloria P Larson
- Medical Microbiology and Immunology, University of Wisconsin—Madison, Madison, WI
| | - Mohsen Badiee
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Vy Tran
- Medical Microbiology and Immunology, University of Wisconsin—Madison, Madison, WI
| | - Mitchell P. Ledwith
- Medical Microbiology and Immunology, University of Wisconsin—Madison, Madison, WI
| | - Elizabeth Feltman
- Medical Microbiology and Immunology, University of Wisconsin—Madison, Madison, WI
| | - Shuǐqìng Yú
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Yíngyún Caì
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Che-Yuan Chang
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Xingyi Yang
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Zhuo Ma
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Paul Chang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Anthony K. L. Leung
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Molecular Biology and Genetics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Genetic Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Andrew Mehle
- Medical Microbiology and Immunology, University of Wisconsin—Madison, Madison, WI
- Lead Contact
| |
Collapse
|
7
|
Wang T, Coshic K, Badiee M, McDonald MR, Aksimentiev A, Pollack L, Leung AKL. Cation-induced intramolecular coil-to-globule transition in poly(ADP-ribose). Nat Commun 2024; 15:7901. [PMID: 39256374 PMCID: PMC11387394 DOI: 10.1038/s41467-024-51972-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 08/22/2024] [Indexed: 09/12/2024] Open
Abstract
Poly(ADP-ribose) (PAR), a non-canonical nucleic acid, is essential for DNA/RNA metabolism and protein condensation, and its dysregulation is linked to cancer and neurodegeneration. However, key structural insights into PAR's functions remain largely uncharacterized, hindered by the challenges in synthesizing and characterizing PAR, which are attributed to its length heterogeneity. A central issue is how PAR, comprised solely of ADP-ribose units, attains specificity in its binding and condensing proteins based on chain length. Here, we integrate molecular dynamics simulations with small-angle X-ray scattering to analyze PAR structures. We identify diverse structural ensembles of PAR that fall into distinct subclasses and reveal distinct compaction of two different lengths of PAR upon the addition of small amounts of Mg2+ ions. Unlike PAR15, PAR22 forms ADP-ribose bundles via local intramolecular coil-to-globule transitions. Understanding these length-dependent structural changes could be central to deciphering the specific biological functions of PAR.
Collapse
Affiliation(s)
- Tong Wang
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, 14853, USA
| | - Kush Coshic
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana Champaign, Urbana, IL, 61801, USA
| | - Mohsen Badiee
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Maranda R McDonald
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
- Chemistry-Biology Interface Graduate Program, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Aleksei Aksimentiev
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana Champaign, Urbana, IL, 61801, USA.
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana Champaign, Urbana, IL, 61801, USA.
- Department of Physics, University of Illinois Urbana Champaign, Urbana, IL, 61801, USA.
| | - Lois Pollack
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, 14853, USA.
| | - Anthony K L Leung
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA.
- Chemistry-Biology Interface Graduate Program, Johns Hopkins University, Baltimore, MD, 21218, USA.
- Department of Molecular Biology and Genetics, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA.
- Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA.
- Department of Genetic Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA.
| |
Collapse
|
8
|
Moura RDD, Mattos PDD, Valente PF, Hoch NC. Molecular mechanisms of cell death by parthanatos: More questions than answers. Genet Mol Biol 2024; 47Suppl 1:e20230357. [PMID: 39356140 PMCID: PMC11445734 DOI: 10.1590/1678-4685-gmb-2023-0357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 06/16/2024] [Indexed: 10/03/2024] Open
Abstract
Regulated cell death by a non-apoptotic pathway known as parthanatos is increasingly recognised as a central player in pathological processes, including ischaemic tissue damage and neurodegenerative diseases. Parthanatos is activated under conditions that induce high levels of DNA damage, leading to hyperactivation of the DNA damage sensor PARP1. While this strict dependence on PARP1 activation is a defining feature of parthanatos that distinguishes it from other forms of cell death, the molecular events downstream of PARP1 activation remain poorly understood. In this mini-review, we highlight a number of important questions that remain to be answered about this enigmatic form of cell death.
Collapse
Affiliation(s)
- Rafael Dias de Moura
- Universidade de São Paulo, Instituto de Química, Departamento de Bioquímica, São Paulo, SP, Brasil
| | | | | | - Nícolas Carlos Hoch
- Universidade de São Paulo, Instituto de Química, Departamento de Bioquímica, São Paulo, SP, Brasil
| |
Collapse
|
9
|
Huang S, Girdner J, Nguyen LP, Sandoval C, Fregoso OI, Enard D, Li MMH. Positive selection analyses identify a single WWE domain residue that shapes ZAP into a more potent restriction factor against alphaviruses. PLoS Pathog 2024; 20:e1011836. [PMID: 39207950 PMCID: PMC11361444 DOI: 10.1371/journal.ppat.1011836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
The host interferon pathway upregulates intrinsic restriction factors in response to viral infection. Many of them block a diverse range of viruses, suggesting that their antiviral functions might have been shaped by multiple viral families during evolution. Host-virus conflicts have led to the rapid adaptation of host and viral proteins at their interaction hotspots. Hence, we can use evolutionary genetic analyses to elucidate antiviral mechanisms and domain functions of restriction factors. Zinc finger antiviral protein (ZAP) is a restriction factor against RNA viruses such as alphaviruses, in addition to other RNA, retro-, and DNA viruses, yet its precise antiviral mechanism is not fully characterized. Previously, an analysis of 13 primate ZAP orthologs identified three positively selected residues in the poly(ADP-ribose) polymerase-like domain. However, selective pressure from ancient alphaviruses and others likely drove ZAP adaptation in a wider representation of mammals. We performed positive selection analyses in 261 mammalian ZAP using more robust methods with complementary strengths and identified seven positively selected sites in all domains of the protein. We generated ZAP inducible cell lines in which the positively selected residues of ZAP are mutated and tested their effects on alphavirus replication and known ZAP activities. Interestingly, the mutant in the second WWE domain of ZAP (N658A) is dramatically better than wild-type ZAP at blocking replication of Sindbis virus and other ZAP-sensitive alphaviruses due to enhanced viral translation inhibition. The N658A mutant is adjacent to the previously reported poly(ADP-ribose) (PAR) binding pocket, but surprisingly has reduced binding to PAR. In summary, the second WWE domain is critical for engineering a more potent ZAP and fluctuations in PAR binding modulate ZAP antiviral activity. Our study has the potential to unravel the role of ADP-ribosylation in the host innate immune defense and viral evolutionary strategies that antagonize this post-translational modification.
Collapse
Affiliation(s)
- Serina Huang
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| | - Juliana Girdner
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, United States of America
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, United States of America
| | - LeAnn P. Nguyen
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, United States of America
- Molecular Biology Institute, University of California, Los Angeles, California, United States of America
| | - Carina Sandoval
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, United States of America
| | - Oliver I. Fregoso
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, United States of America
- Molecular Biology Institute, University of California, Los Angeles, California, United States of America
| | - David Enard
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, United States of America
| | - Melody M. H. Li
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, United States of America
- Molecular Biology Institute, University of California, Los Angeles, California, United States of America
- AIDS Institute, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| |
Collapse
|
10
|
Matos IDA, Dallazen JL, Reis LR, Souza LF, Bevevino RC, de Moura RD, Ronsein GE, Hoch NC, da Costa Júnior NB, Costa SKP, Meotti FC. Targeting Myeloperoxidase Ameliorates Gouty Arthritis: A Virtual Screening Success Story. J Med Chem 2024; 67:12012-12032. [PMID: 38991154 DOI: 10.1021/acs.jmedchem.4c00721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
This study presents a new approach for identifying myeloperoxidase (MPO) inhibitors with strong in vivo efficacy. By combining inhibitor-like rules and structure-based virtual screening, the pipeline achieved a 70% success rate in discovering diverse, nanomolar-potency reversible inhibitors and hypochlorous acid (HOCl) scavengers. Mechanistic analysis identified RL6 as a genuine MPO inhibitor and RL7 as a potent HOCl scavenger. Both compounds effectively suppressed HOCl production in cells and neutrophils, with RL6 showing a superior inhibition of neutrophil extracellular trap release (NETosis). In a gout arthritis mouse model, intraperitoneal RL6 administration reduced edema, peroxidase activity, and IL-1β levels. RL6 also exhibited oral bioavailability, significantly reducing paw edema when administered orally. This study highlights the efficacy of integrating diverse screening methods to enhance virtual screening success, validating the anti-inflammatory potential of potent inhibitors, and advancing the MPO inhibitor research.
Collapse
Affiliation(s)
- Isaac de A Matos
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-000, Brazil
| | - Jorge L Dallazen
- Department of Pharmacology, Institute of Biological Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Lorenna R Reis
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-000, Brazil
| | - Luiz Felipe Souza
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-000, Brazil
| | - Regina C Bevevino
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-000, Brazil
| | - Rafael D de Moura
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-000, Brazil
| | - Graziella E Ronsein
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-000, Brazil
| | - Nicolas Carlos Hoch
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-000, Brazil
| | | | - Soraia Kátia P Costa
- Department of Pharmacology, Institute of Biological Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Flavia C Meotti
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-000, Brazil
| |
Collapse
|
11
|
Kerr CM, Pfannenstiel JJ, Alhammad YM, O’Connor JJ, Ghimire R, Shrestha R, Khattabi R, Saenjamsai P, Parthasarathy S, McDonald PR, Gao P, Johnson DK, More S, Roy A, Channappanavar R, Fehr AR. Mutation of a highly conserved isoleucine residue in loop 2 of several β-coronavirus macrodomains indicates that enhanced ADP-ribose binding is detrimental to infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.03.574082. [PMID: 38260573 PMCID: PMC10802294 DOI: 10.1101/2024.01.03.574082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
All coronaviruses (CoVs) encode for a conserved macrodomain (Mac1) located in nonstructural protein 3 (nsp3). Mac1 is an ADP-ribosylhydrolase that binds and hydrolyzes mono-ADP-ribose from target proteins. Previous work has shown that Mac1 is important for virus replication and pathogenesis. Within Mac1, there are several regions that are highly conserved across CoVs, including the GIF (glycine-isoleucine-phenylalanine) motif. To determine how the biochemical activities of these residues impact CoV replication, the isoleucine and the phenylalanine residues were mutated to alanine (I-A/F-A) in both recombinant Mac1 proteins and recombinant CoVs, including murine hepatitis virus (MHV), Middle East respiratory syndrome coronavirus (MERS-CoV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The F-A mutant proteins had ADP-ribose binding and/or hydrolysis defects that led to attenuated replication and pathogenesis in cell culture and mice. In contrast, the I-A mutations had normal enzyme activity and enhanced ADP-ribose binding. Despite increased ADP-ribose binding, I-A mutant MERS-CoV and SARS-CoV-2 were highly attenuated in both cell culture and mice, indicating that this isoleucine residue acts as a gate that controls ADP-ribose binding for efficient virus replication. These results highlight the function of this highly conserved residue and provide unique insight into how macrodomains control ADP-ribose binding and hydrolysis to promote viral replication.
Collapse
Affiliation(s)
- Catherine M. Kerr
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| | | | - Yousef M. Alhammad
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| | - Joseph J. O’Connor
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| | - Roshan Ghimire
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, Oklahoma 74078, USA
| | - Rakshya Shrestha
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, Oklahoma 74078, USA
| | - Reem Khattabi
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| | - Pradtahna Saenjamsai
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| | | | - Peter R. McDonald
- High Throughput Screening Laboratory, University of Kansas, Lawrence, Kansas 66047, USA
| | - Philip Gao
- Protein Production Group, University of Kansas, Lawrence, Kansas 66047, USA
| | - David K. Johnson
- Molecular Graphics and Modeling Laboratory and the Computational Chemical Biology Core, University of Kansas, Lawrence, Kansas 66047, USA
| | - Sunil More
- High Throughput Screening Laboratory, University of Kansas, Lawrence, Kansas 66047, USA
- Oklahoma Center for Respiratory and Infectious Diseases, College of Veterinary Medicine, Stillwater, Oklahoma 74078, USA
| | - Anuradha Roy
- High Throughput Screening Laboratory, University of Kansas, Lawrence, Kansas 66047, USA
| | - Rudragouda Channappanavar
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, Oklahoma 74078, USA
- Oklahoma Center for Respiratory and Infectious Diseases, College of Veterinary Medicine, Stillwater, Oklahoma 74078, USA
| | - Anthony R. Fehr
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| |
Collapse
|
12
|
Kar P, Chatrin C, Đukić N, Suyari O, Schuller M, Zhu K, Prokhorova E, Bigot N, Baretić D, Ahel J, Elsborg JD, Nielsen ML, Clausen T, Huet S, Niepel M, Sanyal S, Ahel D, Smith R, Ahel I. PARP14 and PARP9/DTX3L regulate interferon-induced ADP-ribosylation. EMBO J 2024; 43:2929-2953. [PMID: 38834853 PMCID: PMC11251020 DOI: 10.1038/s44318-024-00126-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 05/01/2024] [Accepted: 05/08/2024] [Indexed: 06/06/2024] Open
Abstract
PARP-catalysed ADP-ribosylation (ADPr) is important in regulating various cellular pathways. Until recently, PARP-dependent mono-ADP-ribosylation has been poorly understood due to the lack of sensitive detection methods. Here, we utilised an improved antibody to detect mono-ADP-ribosylation. We visualised endogenous interferon (IFN)-induced ADP-ribosylation and show that PARP14 is a major enzyme responsible for this modification. Fittingly, this signalling is reversed by the macrodomain from SARS-CoV-2 (Mac1), providing a possible mechanism by which Mac1 counteracts the activity of antiviral PARPs. Our data also elucidate a major role of PARP9 and its binding partner, the E3 ubiquitin ligase DTX3L, in regulating PARP14 activity through protein-protein interactions and by the hydrolytic activity of PARP9 macrodomain 1. Finally, we also present the first visualisation of ADPr-dependent ubiquitylation in the IFN response. These approaches should further advance our understanding of IFN-induced ADPr and ubiquitin signalling processes and could shed light on how different pathogens avoid such defence pathways.
Collapse
Affiliation(s)
- Pulak Kar
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
- Department of Biological Sciences, SRM University-AP, Amaravati, 522502, India
| | - Chatrin Chatrin
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Nina Đukić
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Osamu Suyari
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Marion Schuller
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Kang Zhu
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Evgeniia Prokhorova
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Nicolas Bigot
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, BIOSIT - UMS3480, F-35000, Rennes, France
| | - Domagoj Baretić
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Juraj Ahel
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter, Vienna, Austria
| | - Jonas Damgaard Elsborg
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Michael L Nielsen
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Tim Clausen
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter, Vienna, Austria
- Medical University of Vienna, Vienna, Austria
| | - Sébastien Huet
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, BIOSIT - UMS3480, F-35000, Rennes, France
| | | | - Sumana Sanyal
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Dragana Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Rebecca Smith
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK.
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK.
| |
Collapse
|
13
|
Sales Conniff A, Tur J, Kohena K, Zhang M, Gibbons J, Heller LC. DNA Electrotransfer Regulates Molecular Functions in Skeletal Muscle. Bioelectricity 2024; 6:80-90. [PMID: 39119567 PMCID: PMC11304878 DOI: 10.1089/bioe.2022.0041] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024] Open
Abstract
Background Tissues, such as skeletal muscle, have been targeted for the delivery of plasmid DNA (pDNA) encoding vaccines and therapeutics. The application of electric pulses (electroporation or electrotransfer) increases cell membrane permeability to enhance plasmid delivery and expression. However, the molecular effects of DNA electrotransfer on the muscle tissue are poorly characterized. Materials and Methods Four hours after intramuscular plasmid electrotransfer, we evaluated gene expression changes by RNA sequencing. Differentially expressed genes were analyzed by gene ontology (GO) pathway enrichment analysis. Results GO analysis highlighted many enriched molecular functions. The terms regulated by pulse application were related to muscle stress, the cytoskeleton and inflammation. The terms regulated by pDNA injection were related to a DNA-directed response and its control. Several terms regulated by pDNA electrotransfer were similar to those regulated by pulse application. However, the terms related to pDNA injection differed, focusing on entry of the plasmid into the cells and intracellular trafficking. Conclusion Each muscle stimulus resulted in specific regulated molecular functions. Identifying the unique intrinsic molecular changes driven by intramuscular DNA electrotransfer will aid in the design of preventative and therapeutic gene therapies.
Collapse
Affiliation(s)
- Amanda Sales Conniff
- Department of Medical Engineering, University of South Florida, Tampa, Florida, USA
| | - Jared Tur
- Department of Medical Engineering, University of South Florida, Tampa, Florida, USA
| | - Kristopher Kohena
- Department of Medical Engineering, University of South Florida, Tampa, Florida, USA
| | - Min Zhang
- USF Genomics Core, University of South Florida, Tampa, Florida, USA
| | - Justin Gibbons
- USF Omics Hub, University of South Florida, Tampa, Florida, USA
| | - Loree C. Heller
- Department of Medical Engineering, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
14
|
Chen J, Hui Q, Titanji BK, So-Armah K, Freiberg M, Justice AC, Xu K, Zhu X, Gwinn M, Marconi VC, Sun YV. A multi-trait epigenome-wide association study identified DNA methylation signature of inflammation among people with HIV. RESEARCH SQUARE 2024:rs.3.rs-4419840. [PMID: 38854093 PMCID: PMC11160930 DOI: 10.21203/rs.3.rs-4419840/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Inflammation underlies many conditions causing excess morbidity and mortality among people with HIV (PWH). A handful of single-trait epigenome-wide association studies (EWAS) have suggested that inflammation is associated with DNA methylation (DNAm) among PWH. Multi-trait EWAS may further improve statistical power and reveal pathways in common between different inflammatory markers. We conducted single-trait EWAS of three inflammatory markers (soluble CD14, D-dimers, and interleukin 6) in the Veteran Aging Cohort Study (n = 920). The study population was all male PWH with an average age of 51 years, and 82.3% self-reported as Black. We then applied two multi-trait EWAS methods-CPASSOC and OmniTest-to combine single-trait EWAS results. CPASSOC and OmniTest identified 189 and 157 inflammation-associated DNAm sites respectively, of which 112 overlapped. Among the identified sites, 56% were not significant in any single-trait EWAS. Top sites were mapped to inflammation-related genes including IFITM1, PARP9 and STAT1. These genes were significantly enriched in pathways such as "type I interferon signaling" and "immune response to virus". We demonstrate that multi-trait EWAS can improve the discovery of inflammation-associated DNAm sites, genes, and pathways. These DNAm sites suggest molecular mechanisms in response to inflammation associated with HIV and might hold the key to addressing persistent inflammation in PWH.
Collapse
Affiliation(s)
| | | | | | - Kaku So-Armah
- Boston University Chobanian and Avedisian School of Medicine
| | - Matthew Freiberg
- Vanderbilt University School of Medicine and Tennessee Valley Healthcare System
| | | | - Ke Xu
- Connecticut Veteran Health System
| | | | | | | | | |
Collapse
|
15
|
Chen L, Han W, Jing W, Feng M, Zhou Q, Cheng X. Novel anti- Acanthamoeba effects elicited by a repurposed poly (ADP-ribose) polymerase inhibitor AZ9482. Front Cell Infect Microbiol 2024; 14:1414135. [PMID: 38863831 PMCID: PMC11165085 DOI: 10.3389/fcimb.2024.1414135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/13/2024] [Indexed: 06/13/2024] Open
Abstract
Introduction Acanthamoeba infection is a serious public health concern, necessitating the development of effective and safe anti-Acanthamoeba chemotherapies. Poly (ADP-ribose) polymerases (PARPs) govern a colossal amount of biological processes, such as DNA damage repair, protein degradation and apoptosis. Multiple PARP-targeted compounds have been approved for cancer treatment. However, repurposing of PARP inhibitors to treat Acanthamoeba is poorly understood. Methods In the present study, we attempted to fill these knowledge gaps by performing anti-Acanthamoeba efficacy assays, cell biology experiments, bioinformatics, and transcriptomic analyses. Results Using a homology model of Acanthamoeba poly (ADP-ribose) polymerases (PARPs), molecular docking of approved drugs revealed three potential inhibitory compounds: olaparib, venadaparib and AZ9482. In particular, venadaparib exhibited superior docking scores (-13.71) and favorable predicted binding free energy (-89.28 kcal/mol), followed by AZ9482, which showed a docking score of -13.20 and a binding free energy of -92.13 kcal/mol. Notably, the positively charged cyclopropylamine in venadaparib established a salt bridge (through E535) and a hydrogen bond (via N531) within the binding pocket. For comparison, AZ9482 was well stacked by the surrounding aromatic residues including H625, Y652, Y659 and Y670. In an assessment of trophozoites viability, AZ9482 exhibited a dose-and time-dependent anti-trophozoite effect by suppressing Acanthamoeba PARP activity, unlike olaparib and venadaparib. An Annexin V-fluorescein isothiocyanate/propidium iodide apoptosis assay revealed AZ9482 induced trophozoite necrotic cell death rather than apoptosis. Transcriptomics analyses conducted on Acanthamoeba trophozoites treated with AZ9482 demonstrated an atlas of differentially regulated proteins and genes, and found that AZ9482 rapidly upregulates a multitude of DNA damage repair pathways in trophozoites, and intriguingly downregulates several virulent genes. Analyzing gene expression related to DNA damage repair pathway and the rate of apurinic/apyrimidinic (AP) sites indicated DNA damage efficacy and repair modulation in Acanthamoeba trophozoites following AZ9482 treatment. Discussion Collectively, these findings highlight AZ9482, as a structurally unique PARP inhibitor, provides a promising prototype for advancing anti-Acanthamoeba drug research.
Collapse
Affiliation(s)
- Lijun Chen
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wei Han
- Research Center for Intelligent Computing Platforms, Zhejiang Lab, Hangzhou, China
| | - Wenwen Jing
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Meng Feng
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Qingtong Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xunjia Cheng
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
16
|
Szántó M, Yélamos J, Bai P. Specific and shared biological functions of PARP2 - is PARP2 really a lil' brother of PARP1? Expert Rev Mol Med 2024; 26:e13. [PMID: 38698556 PMCID: PMC11140550 DOI: 10.1017/erm.2024.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/07/2024] [Accepted: 03/20/2024] [Indexed: 05/05/2024]
Abstract
PARP2, that belongs to the family of ADP-ribosyl transferase enzymes (ART), is a discovery of the millennium, as it was identified in 1999. Although PARP2 was described initially as a DNA repair factor, it is now evident that PARP2 partakes in the regulation or execution of multiple biological processes as inflammation, carcinogenesis and cancer progression, metabolism or oxidative stress-related diseases. Hereby, we review the involvement of PARP2 in these processes with the aim of understanding which processes are specific for PARP2, but not for other members of the ART family. A better understanding of the specific functions of PARP2 in all of these biological processes is crucial for the development of new PARP-centred selective therapies.
Collapse
Affiliation(s)
- Magdolna Szántó
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - José Yélamos
- Hospital del Mar Research Institute, Barcelona, Spain
| | - Péter Bai
- HUN-REN-UD Cell Biology and Signaling Research Group, Debrecen, 4032, Hungary
- MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, 4032, Hungary
- Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen 4032, Hungary
| |
Collapse
|
17
|
Cihlova B, Lu Y, Mikoč A, Schuller M, Ahel I. Specificity of DNA ADP-Ribosylation Reversal by NADARs. Toxins (Basel) 2024; 16:208. [PMID: 38787060 PMCID: PMC11125620 DOI: 10.3390/toxins16050208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
Recent discoveries establish DNA and RNA as bona fide substrates for ADP-ribosylation. NADAR ("NAD- and ADP-ribose"-associated) enzymes reverse guanine ADP-ribosylation and serve as antitoxins in the DarT-NADAR operon. Although NADARs are widespread across prokaryotes, eukaryotes, and viruses, their specificity and broader physiological roles remain poorly understood. Using phylogenetic and biochemical analyses, we further explore de-ADP-ribosylation activity and antitoxin functions of NADAR domains. We demonstrate that different subfamilies of NADAR proteins from representative E. coli strains and an E. coli-infecting phage retain biochemical activity while displaying specificity in providing protection from toxic guanine ADP-ribosylation in cells. Furthermore, we identify a myxobacterial enzyme within the YbiA subfamily that functions as an antitoxin for its associated DarT-unrelated ART toxin, which we termed YarT, thus presenting a hitherto uncharacterised ART-YbiA toxin-antitoxin pair. Our studies contribute to the burgeoning field of DNA ADP-ribosylation, supporting its physiological relevance within and beyond bacterial toxin-antitoxin systems. Notably, the specificity and confinement of NADARs to non-mammals infer their potential as highly specific targets for antimicrobial drugs with minimal off-target effects.
Collapse
Affiliation(s)
- Bara Cihlova
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK; (B.C.); (Y.L.)
| | - Yang Lu
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK; (B.C.); (Y.L.)
| | - Andreja Mikoč
- Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia;
| | - Marion Schuller
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK; (B.C.); (Y.L.)
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK; (B.C.); (Y.L.)
| |
Collapse
|
18
|
Wazir S, Parviainen TAO, Pfannenstiel JJ, Duong MTH, Cluff D, Sowa ST, Galera-Prat A, Ferraris D, Maksimainen MM, Fehr AR, Heiskanen JP, Lehtiö L. Discovery of 2-Amide-3-methylester Thiophenes that Target SARS-CoV-2 Mac1 and Repress Coronavirus Replication, Validating Mac1 as an Antiviral Target. J Med Chem 2024; 67:6519-6536. [PMID: 38592023 PMCID: PMC11144470 DOI: 10.1021/acs.jmedchem.3c02451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus has made it clear that further development of antiviral therapies will be needed. Here, we describe small-molecule inhibitors for SARS-CoV-2 Mac1, which counters ADP-ribosylation-mediated innate immune responses. Three high-throughput screening hits had the same 2-amide-3-methylester thiophene scaffold. We studied the compound binding mode using X-ray crystallography, allowing us to design analogues. Compound 27 (MDOLL-0229) had an IC50 of 2.1 μM and was selective for CoV Mac1 proteins after profiling for activity against a panel of viral and human proteins. The improved potency allowed testing of its effect on virus replication, and indeed, 27 inhibited replication of both murine hepatitis virus (MHV) prototypes CoV and SARS-CoV-2. Sequencing of a drug-resistant MHV identified mutations in Mac1, further demonstrating the specificity of 27. Compound 27 is the first Mac1-targeted small molecule demonstrated to inhibit coronavirus replication in a cell model.
Collapse
Affiliation(s)
- Sarah Wazir
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, 90220 Oulu, Finland
| | - Tomi A. O. Parviainen
- Research Unit of Sustainable Chemistry, University of Oulu, P.O. Box 4300, 90014 Oulu, Finland
| | - Jessica J. Pfannenstiel
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, United States of America
| | - Men Thi Hoai Duong
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, 90220 Oulu, Finland
| | - Daniel Cluff
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, United States of America
| | - Sven T. Sowa
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, 90220 Oulu, Finland
| | - Albert Galera-Prat
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, 90220 Oulu, Finland
| | - Dana Ferraris
- McDaniel College Department of Chemistry, 2 College Hill, Westminster, MD 21157, USA
| | - Mirko M. Maksimainen
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, 90220 Oulu, Finland
| | - Anthony R. Fehr
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, United States of America
| | - Juha P. Heiskanen
- Research Unit of Sustainable Chemistry, University of Oulu, P.O. Box 4300, 90014 Oulu, Finland
| | - Lari Lehtiö
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, 90220 Oulu, Finland
| |
Collapse
|
19
|
Zhu Z, Weng S, Zheng F, Zhao Q, Xu Y, Wu J. Identification of Poly(ADP-ribose) Polymerase 9 (PARP9) as a Potent Suppressor for Mycobacterium tuberculosis Infection. PHENOMICS (CHAM, SWITZERLAND) 2024; 4:158-170. [PMID: 38884060 PMCID: PMC11169154 DOI: 10.1007/s43657-023-00112-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/18/2024]
Abstract
ADP-ribosylation is a reversible and dynamic post-translational modification mediated by ADP-ribosyltransferases (ARTs). Poly(ADP-ribose) polymerases (PARPs) are an important family of human ARTs. ADP-ribosylation and PARPs have crucial functions in host-pathogen interaction, especially in viral infections. However, the functions and potential molecular mechanisms of ADP-ribosylation and PARPs in Mycobacterium infection remain unknown. In this study, bioinformatics analysis revealed significantly changed expression levels of several PARPs in tuberculosis patients compared to healthy individuals. Moreover, the expression levels of these PARPs returned to normal following tuberculosis treatment. Then, the changes in the expression levels of PARPs during Mycobacterium infection were validated in Tohoku Hospital Pediatrics-1 (THP1)-induced differentiated macrophages infected with Mycobacterium model strains bacillus Calmette-Guérin (BCG) and in human lung adenocarcinoma A549 cells infected with Mycobacterium smegmatis (Ms), respectively. The mRNA levels of PARP9, PARP10, PARP12, and PARP14 were most significantly increased during infection, with corresponding increases in protein levels, indicating the possible biological functions of these PARPs during Mycobacterium infection. In addition, the biological function of host PARP9 in Mycobacterium infection was further studied. PARP9 deficiency significantly increased the infection efficiency and intracellular proliferation ability of Ms, which was reversed by the reconstruction of PARP9. Collectively, this study updates the understanding of changes in PARP expression during Mycobacterium infection and provides evidence supporting PARP9 as a potent suppressor for Mycobacterium infection. Supplementary Information The online version contains supplementary material available at 10.1007/s43657-023-00112-2.
Collapse
Affiliation(s)
- Zhenyu Zhu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200433 China
| | - Shufeng Weng
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200433 China
| | - Fen Zheng
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200433 China
| | - Qi Zhao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200433 China
| | - Ying Xu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200433 China
| | - Jiaxue Wu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200433 China
| |
Collapse
|
20
|
Wu J, Han K, Sack MN. Targeting NAD+ Metabolism to Modulate Autoimmunity and Inflammation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1043-1050. [PMID: 38498807 PMCID: PMC10954088 DOI: 10.4049/jimmunol.2300693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/18/2023] [Indexed: 03/20/2024]
Abstract
NAD+ biology is involved in controlling redox balance, functioning as a coenzyme in numerous enzymatic reactions, and is a cofactor for Sirtuin enzymes and a substrate for multiple regulatory enzyme reactions within and outside the cell. At the same time, NAD+ levels are diminished with aging and are consumed during the development of inflammatory and autoimmune diseases linked to aberrant immune activation. Direct NAD+ augmentation via the NAD+ salvage and Priess-Handler pathways is being investigated as a putative therapeutic intervention to improve the healthspan in inflammation-linked diseases. In this review, we survey NAD+ biology and its pivotal roles in the regulation of immunity and inflammation. Furthermore, we discuss emerging studies evaluate NAD+ boosting in murine models and in human diseases, and we highlight areas of research that remain unresolved in understanding the mechanisms of action of these nutritional supplementation strategies.
Collapse
Affiliation(s)
- Jing Wu
- Laboratory of Mitochondrial Biology and Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Kim Han
- Laboratory of Mitochondrial Biology and Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Michael N Sack
- Laboratory of Mitochondrial Biology and Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
21
|
Sturniolo I, Váróczy C, Regdon Z, Mázló A, Muzsai S, Bácsi A, Intili G, Hegedűs C, Boothby MR, Holechek J, Ferraris D, Schüler H, Virág L. PARP14 Contributes to the Development of the Tumor-Associated Macrophage Phenotype. Int J Mol Sci 2024; 25:3601. [PMID: 38612413 PMCID: PMC11011797 DOI: 10.3390/ijms25073601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Cancers reprogram macrophages (MΦs) to a tumor-growth-promoting TAM (tumor-associated MΦ) phenotype that is similar to the anti-inflammatory M2 phenotype. Poly(ADP-ribose) polymerase (PARP) enzymes regulate various aspects of MΦ biology, but their role in the development of TAM phenotype has not yet been investigated. Here, we show that the multispectral PARP inhibitor (PARPi) PJ34 and the PARP14 specific inhibitor MCD113 suppress the expression of M2 marker genes in IL-4-polarized primary murine MΦs, in THP-1 monocytic human MΦs, and in primary human monocyte-derived MΦs. MΦs isolated from PARP14 knockout mice showed a limited ability to differentiate to M2 cells. In a murine model of TAM polarization (4T1 breast carcinoma cell supernatant transfer to primary MΦs) and in a human TAM model (spheroids formed from JIMT-1 breast carcinoma cells and THP-1-MΦs), both PARPis and the PARP14 KO phenotype caused weaker TAM polarization. Increased JIMT-1 cell apoptosis in co-culture spheroids treated with PARPis suggested reduced functional TAM reprogramming. Protein profiling arrays identified lipocalin-2, macrophage migration inhibitory factor, and plasminogen activator inhibitor-1 as potential (ADP-ribosyl)ation-dependent mediators of TAM differentiation. Our data suggest that PARP14 inhibition might be a viable anticancer strategy with a potential to boost anticancer immune responses by reprogramming TAMs.
Collapse
Affiliation(s)
- Isotta Sturniolo
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (I.S.); (C.V.); (Z.R.); (C.H.)
- Doctoral School of Molecular Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Csongor Váróczy
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (I.S.); (C.V.); (Z.R.); (C.H.)
- National Academy of Scientist Education, 4032 Debrecen, Hungary
| | - Zsolt Regdon
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (I.S.); (C.V.); (Z.R.); (C.H.)
| | - Anett Mázló
- Department of Immunology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (A.M.); (S.M.); (A.B.)
| | - Szabolcs Muzsai
- Department of Immunology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (A.M.); (S.M.); (A.B.)
- Gyula Petrányi Doctoral School of Clinical Immunology and Allergology, University of Debrecen, 4032 Debrecen, Hungary
| | - Attila Bácsi
- Department of Immunology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (A.M.); (S.M.); (A.B.)
- HUN-REN-DE Allergology Research Group, 4032 Debrecen, Hungary
| | - Giorgia Intili
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy;
| | - Csaba Hegedűs
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (I.S.); (C.V.); (Z.R.); (C.H.)
| | - Mark R. Boothby
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN 37235, USA;
| | | | - Dana Ferraris
- Department of Chemistry, McDaniel College, Westminster, MD 21157, USA;
| | - Herwig Schüler
- Center for Molecular Protein Science, Department of Chemistry, Lund University, 22100 Lund, Sweden;
| | - László Virág
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (I.S.); (C.V.); (Z.R.); (C.H.)
- HUN-REN-DE Cell Biology and Signaling Research Group, 4032 Debrecen, Hungary
| |
Collapse
|
22
|
Pandi K, Angabo S, Makkawi H, Benyamini H, Elgavish S, Nussbaum G. P. gingivalis-Induced TLR2 Interactome Analysis Reveals Association with PARP9. J Dent Res 2024; 103:329-338. [PMID: 38344758 DOI: 10.1177/00220345231222181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024] Open
Abstract
Porphyromonas gingivalis is a Gram-negative anaerobic bacterium strongly associated with periodontal disease. Toll-like receptor 2 (TLR2) is indispensable for the host response to P. gingivalis, but P. gingivalis escapes from immune clearance via TLR2-dependent activation of phosphoinositide-3-kinase (PI3K). To probe the TLR2-dependent escape pathway of P. gingivalis, we analyzed the TLR2 interactome induced following P. gingivalis infection or activation by a synthetic lipopeptide TLR2/1 agonist on human macrophages overexpressing TLR2. Interacting proteins were stabilized by cross-linking and then immunoprecipitated and analyzed by mass spectrometry. In total, 792 proteins were recovered and network analysis enabled mapping of the TLR2 interactome at baseline and in response to infection. The P. gingivalis infection-induced TLR2 interactome included the poly (ADP-ribose) polymerase family member mono-ADP-ribosyltransferase protein 9 (PARP9) and additional members of the PARP9 complex (DTX3L and NMI). PARP9 and its complex members are highly upregulated in macrophages exposed to P. gingivalis or to the synthetic TLR2/1 ligand Pam3Cys-Ser-(Lys)4 (PAM). Consistent with its known role in virally induced interferon production, PARP9 knockdown blocked type I interferon (IFN-I) production in response to P. gingivalis and reduced inflammatory cytokine production. We found that P. gingivalis drives signal transducer and activation of transcription (STAT) 1 (S727) phosphorylation through TLR2-PARP9, explaining PARP9's role in the induction of IFN-I downstream of TLR2. Furthermore, PARP9 knockdown reduced PI3K activation by P. gingivalis, leading to improved macrophage bactericidal activity. In summary, PARP9 is a novel TLR2 interacting partner that enables IFN-I induction and P. gingivalis immune escape in macrophages downstream of TLR2 sensing.
Collapse
Affiliation(s)
- K Pandi
- Institute of Biomedical and Oral Research, Hebrew University-Hadassah Faculty of Dental Medicine, Jerusalem, Israel
| | - S Angabo
- Institute of Biomedical and Oral Research, Hebrew University-Hadassah Faculty of Dental Medicine, Jerusalem, Israel
| | - H Makkawi
- Institute of Biomedical and Oral Research, Hebrew University-Hadassah Faculty of Dental Medicine, Jerusalem, Israel
| | - H Benyamini
- Info-CORE, Bioinformatics Unit of the I-CORE, Hebrew University of Jerusalem, Jerusalem, Israel
| | - S Elgavish
- Info-CORE, Bioinformatics Unit of the I-CORE, Hebrew University of Jerusalem, Jerusalem, Israel
| | - G Nussbaum
- Institute of Biomedical and Oral Research, Hebrew University-Hadassah Faculty of Dental Medicine, Jerusalem, Israel
| |
Collapse
|
23
|
Mustafa K, Han Y, He D, Wang Y, Niu N, Jose PA, Jiang Y, Kopp JB, Lee H, Qu P. Poly-(ADP-ribose) polymerases inhibition by olaparib attenuates activities of the NLRP3 inflammasome and of NF-κB in THP-1 monocytes. PLoS One 2024; 19:e0295837. [PMID: 38335214 PMCID: PMC10857571 DOI: 10.1371/journal.pone.0295837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 12/01/2023] [Indexed: 02/12/2024] Open
Abstract
Poly-(ADP-ribose) polymerases (PARPs) are a protein family that make ADP-ribose modifications on target genes and proteins. PARP family members contribute to the pathogenesis of chronic inflammatory diseases, including atherosclerosis, in which monocytes/macrophages play important roles. PARP inhibition is protective against atherosclerosis. However, the mechanisms by which PARP inhibition exerts this beneficial effect are not well understood. Here we show that in THP-1 monocytes, inhibition of PARP by olaparib attenuated oxidized low-density lipoprotein (oxLDL)-induced protein expressions of nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain-containing-3 (NLRP3) inflammasome components: NLRP3, apoptosis-associated speck-like protein containing a caspase activation and recruitment domain (ASC), and caspase-1. Consistent with this effect, olaparib decreased oxLDL-enhanced interleukin (IL)-1β and IL-18 protein expression. Olaparib also decreased the oxLDL-mediated increase in mitochondrial reactive oxygen species. Similar to the effects of the NLRP3 inhibitor, MCC950, olaparib attenuated oxLDL-induced adhesion of monocytes to cultured human umbilical vein endothelial cells and reduced foam cell formation. Furthermore, olaparib attenuated the oxLDL-mediated activation of nuclear factor (NF)-κB through the oxLDL-mediated increase in IκBα phosphorylation and assembly of NF-κB subunits, demonstrated by co-immunoprecipitation of IκBα with RelA/p50 and RelB/p52 subunits. Moreover, PARP inhibition decreased oxLDL-mediated protein expression of a NF-κB target gene, VCAM1, encoding vascular cell adhesion molecule-1. This finding indicates an important role for NF-κB activity in PARP-mediated activation of the NLRP3 inflammasome. Thus, PARP inhibition by olaparib attenuates NF-κB and NLRP3 inflammasome activities, lessening monocyte cell adhesion and macrophage foam cell formation. These inhibitory effects of olaparib on NLRP3 activity potentially protect against atherosclerosis.
Collapse
Affiliation(s)
- Khamis Mustafa
- Institute of Heart and Vessel Diseases, The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Ying Han
- Department of Cardiology, Jinqiu Hospital of Liaoning Province, Shenyang, China
| | - Dan He
- Institute of Heart and Vessel Diseases, The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Ying Wang
- Institute of Heart and Vessel Diseases, The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Nan Niu
- Department of Cardiology, The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Pedro A. Jose
- Department of Medicine, The George Washington University School of Medicine & Health Sciences, Washington, District of Columbia, United States of America
- Department of Physiology/Pharmacology, The George Washington University School of Medicine & Health Sciences, Washington, District of Columbia, United States of America
| | - Yinong Jiang
- Department of Cardiology, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Jeffrey B. Kopp
- Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Hewang Lee
- Institute of Heart and Vessel Diseases, The Second Affiliated Hospital, Dalian Medical University, Dalian, China
- Department of Medicine, The George Washington University School of Medicine & Health Sciences, Washington, District of Columbia, United States of America
- Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Peng Qu
- Institute of Heart and Vessel Diseases, The Second Affiliated Hospital, Dalian Medical University, Dalian, China
- Department of Cardiology, The Second Affiliated Hospital, Dalian Medical University, Dalian, China
- Faculty of Medicine, Dalian University of Technology, Dalian, China
| |
Collapse
|
24
|
Liu YT, Che Y, Qiu HL, Xia HX, Feng YZ, Deng JY, Yuan Y, Tang QZ. ADP-ribosylation: An emerging direction for disease treatment. Ageing Res Rev 2024; 94:102176. [PMID: 38141734 DOI: 10.1016/j.arr.2023.102176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 12/25/2023]
Abstract
ADP-ribosylation (ADPr) is a dynamically reversible post-translational modification (PTM) driven primarily by ADP-ribosyltransferases (ADPRTs or ARTs), which have ADP-ribosyl transfer activity. ADPr modification is involved in signaling pathways, DNA damage repair, metabolism, immunity, and inflammation. In recent years, several studies have revealed that new targets or treatments for tumors, cardiovascular diseases, neuromuscular diseases and infectious diseases can be explored by regulating ADPr. Here, we review the recent research progress on ART-mediated ADP-ribosylation and the latest findings in the diagnosis and treatment of related diseases.
Collapse
Affiliation(s)
- Yu-Ting Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China
| | - Yan Che
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China
| | - Hong-Liang Qiu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China
| | - Hong-Xia Xia
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China
| | - Yi-Zhou Feng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China
| | - Jiang-Yang Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China
| | - Yuan Yuan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China.
| |
Collapse
|
25
|
Minnee H, Rack JGM, van der Marel GA, Overkleeft HS, Codée JDC, Ahel I, Filippov DV. Solid-Phase Synthesis and Biological Evaluation of Peptides ADP-Ribosylated at Histidine. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 136:e202313317. [PMID: 38516349 PMCID: PMC10952255 DOI: 10.1002/ange.202313317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Indexed: 03/23/2024]
Abstract
The transfer of an adenosine diphosphate (ADP) ribose moiety to a nucleophilic side chain by consumption of nicotinamide adenine dinucleotide is referred to as ADP-ribosylation, which allows for the spatiotemporal regulation of vital processes such as apoptosis and DNA repair. Recent mass-spectrometry based analyses of the "ADP-ribosylome" have identified histidine as ADP-ribose acceptor site. In order to study this modification, a fully synthetic strategy towards α-configured N(τ)- and N(π)-ADP-ribosylated histidine-containing peptides has been developed. Ribofuranosylated histidine building blocks were obtained via Mukaiyama-type glycosylation and the building blocks were integrated into an ADP-ribosylome derived peptide sequence using fluorenylmethyloxycarbonyl (Fmoc)-based solid-phase peptide synthesis. On-resin installation of the ADP moiety was achieved using phosphoramidite chemistry, and global deprotection provided the desired ADP-ribosylated oligopeptides. The stability under various chemical conditions and resistance against (ADP-ribosyl) hydrolase-mediated degradation has been investigated to reveal that the constructs are stable under various chemical conditions and non-degradable by any of the known ADP-ribosylhydrolases.
Collapse
Affiliation(s)
- Hugo Minnee
- Bio-Organic SynthesisLeiden Institute of ChemistryLeiden UniversityRA-2300LeidenThe Netherlands
| | - Johannes G. M. Rack
- Sir William Dunn School of PathologyUniversity of OxfordSouth Parks RoadOxfordOX1 3REUK
- Current address: Medical Research Council Centre for Medical Mycology at the University of ExeterUniversity of Exeter, Geoffrey Pope BuildingStocker RoadExeterEX4 4QDUK
| | | | - Herman S. Overkleeft
- Bio-Organic SynthesisLeiden Institute of ChemistryLeiden UniversityRA-2300LeidenThe Netherlands
| | - Jeroen D. C. Codée
- Bio-Organic SynthesisLeiden Institute of ChemistryLeiden UniversityRA-2300LeidenThe Netherlands
| | - Ivan Ahel
- Sir William Dunn School of PathologyUniversity of OxfordSouth Parks RoadOxfordOX1 3REUK
| | - Dmitri V. Filippov
- Bio-Organic SynthesisLeiden Institute of ChemistryLeiden UniversityRA-2300LeidenThe Netherlands
| |
Collapse
|
26
|
Minnee H, Rack JGM, van der Marel GA, Overkleeft HS, Codée JDC, Ahel I, Filippov DV. Solid-Phase Synthesis and Biological Evaluation of Peptides ADP-Ribosylated at Histidine. Angew Chem Int Ed Engl 2024; 63:e202313317. [PMID: 37903139 PMCID: PMC10952301 DOI: 10.1002/anie.202313317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/01/2023]
Abstract
The transfer of an adenosine diphosphate (ADP) ribose moiety to a nucleophilic side chain by consumption of nicotinamide adenine dinucleotide is referred to as ADP-ribosylation, which allows for the spatiotemporal regulation of vital processes such as apoptosis and DNA repair. Recent mass-spectrometry based analyses of the "ADP-ribosylome" have identified histidine as ADP-ribose acceptor site. In order to study this modification, a fully synthetic strategy towards α-configured N(τ)- and N(π)-ADP-ribosylated histidine-containing peptides has been developed. Ribofuranosylated histidine building blocks were obtained via Mukaiyama-type glycosylation and the building blocks were integrated into an ADP-ribosylome derived peptide sequence using fluorenylmethyloxycarbonyl (Fmoc)-based solid-phase peptide synthesis. On-resin installation of the ADP moiety was achieved using phosphoramidite chemistry, and global deprotection provided the desired ADP-ribosylated oligopeptides. The stability under various chemical conditions and resistance against (ADP-ribosyl) hydrolase-mediated degradation has been investigated to reveal that the constructs are stable under various chemical conditions and non-degradable by any of the known ADP-ribosylhydrolases.
Collapse
Affiliation(s)
- Hugo Minnee
- Bio-Organic SynthesisLeiden Institute of ChemistryLeiden UniversityRA-2300Leiden (TheNetherlands
| | - Johannes G. M. Rack
- Sir William Dunn School of PathologyUniversity of OxfordSouth Parks RoadOxfordOX1 3REUK
- Current address: Medical Research Council Centre for Medical Mycology at the University of ExeterUniversity of Exeter, Geoffrey Pope BuildingStocker RoadExeterEX4 4QDUK
| | | | - Herman S. Overkleeft
- Bio-Organic SynthesisLeiden Institute of ChemistryLeiden UniversityRA-2300Leiden (TheNetherlands
| | - Jeroen D. C. Codée
- Bio-Organic SynthesisLeiden Institute of ChemistryLeiden UniversityRA-2300Leiden (TheNetherlands
| | - Ivan Ahel
- Sir William Dunn School of PathologyUniversity of OxfordSouth Parks RoadOxfordOX1 3REUK
| | - Dmitri V. Filippov
- Bio-Organic SynthesisLeiden Institute of ChemistryLeiden UniversityRA-2300Leiden (TheNetherlands
| |
Collapse
|
27
|
Staheli JP, Neal ML, Navare A, Mast FD, Aitchison JD. Predicting host-based, synthetic lethal antiviral targets from omics data. NAR MOLECULAR MEDICINE 2024; 1:ugad001. [PMID: 38994440 PMCID: PMC11233254 DOI: 10.1093/narmme/ugad001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/08/2023] [Accepted: 01/03/2024] [Indexed: 07/13/2024]
Abstract
Traditional antiviral therapies often have limited effectiveness due to toxicity and the emergence of drug resistance. Host-based antivirals are an alternative, but can cause nonspecific effects. Recent evidence shows that virus-infected cells can be selectively eliminated by targeting synthetic lethal (SL) partners of proteins disrupted by viral infection. Thus, we hypothesized that genes depleted in CRISPR knockout (KO) screens of virus-infected cells may be enriched in SL partners of proteins altered by infection. To investigate this, we established a computational pipeline predicting antiviral SL drug targets. First, we identified SARS-CoV-2-induced changes in gene products via a large compendium of omics data. Second, we identified SL partners for each altered gene product. Last, we screened CRISPR KO data for SL partners required for cell viability in infected cells. Despite differences in virus-induced alterations detected by various omics data, they share many predicted SL targets, with significant enrichment in CRISPR KO-depleted datasets. Our comparison of SARS-CoV-2 and influenza infection data revealed potential broad-spectrum, host-based antiviral SL targets. This suggests that CRISPR KO data are replete with common antiviral targets due to their SL relationship with virus-altered states and that such targets can be revealed from analysis of omics datasets and SL predictions.
Collapse
Affiliation(s)
- Jeannette P Staheli
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Maxwell L Neal
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Arti Navare
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Fred D Mast
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - John D Aitchison
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| |
Collapse
|
28
|
Wazir S, Parviainen TAO, Pfannenstiel JJ, Duong MTH, Cluff D, Sowa ST, Galera-Prat A, Ferraris D, Maksimainen MM, Fehr AR, Heiskanen JP, Lehtiö L. Discovery of 2-amide-3-methylester thiophenes that target SARS-CoV-2 Mac1 and repress coronavirus replication, validating Mac1 as an anti-viral target. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.28.555062. [PMID: 38234730 PMCID: PMC10793406 DOI: 10.1101/2023.08.28.555062] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus has made it clear that further development of antiviral therapies will be needed to combat additional SARS-CoV-2 variants or novel CoVs. Here, we describe small molecule inhibitors for SARS-CoV-2 Mac1, which counters ADP-ribosylation mediated innate immune responses. The compounds inhibiting Mac1 were discovered through high-throughput screening (HTS) using a protein FRET-based competition assay and the best hit compound had an IC50 of 14 μM. Three validated HTS hits have the same 2-amide-3-methylester thiophene scaffold and the scaffold was selected for structure-activity relationship (SAR) studies through commercial and synthesized analogs. We studied the compound binding mode in detail using X-ray crystallography and this allowed us to focus on specific features of the compound and design analogs. Compound 27 (MDOLL-0229) had an IC50 of 2.1 μM and was generally selective for CoV Mac1 proteins after profiling for activity against a panel of viral and human ADP-ribose binding proteins. The improved potency allowed testing of its effect on virus replication and indeed, 27 inhibited replication of both MHVa prototype CoV, and SARS-CoV-2. Furthermore, sequencing of a drug-resistant MHV identified mutations in Mac1, further demonstrating the specificity of 27. Compound 27 is the first Mac1 targeted small molecule demonstrated to inhibit coronavirus replication in a cell model. This, together with its well-defined binding mode, makes 27 a good candidate for further hit/lead-optimization efforts.
Collapse
Affiliation(s)
- Sarah Wazir
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Finland
| | - Tomi A. O. Parviainen
- Research Unit of Sustainable Chemistry, University of Oulu, P.O. Box 4300, FI-90014 Oulu, Finland
| | - Jessica J. Pfannenstiel
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
| | - Men Thi Hoai Duong
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Finland
| | - Daniel Cluff
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
| | - Sven T. Sowa
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Finland
| | - Albert Galera-Prat
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Finland
| | - Dana Ferraris
- McDaniel College Department of Chemistry, 2 College Hill, Westminster, MD, USA
| | - Mirko M. Maksimainen
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Finland
| | - Anthony R. Fehr
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
| | - Juha P. Heiskanen
- Research Unit of Sustainable Chemistry, University of Oulu, P.O. Box 4300, FI-90014 Oulu, Finland
| | - Lari Lehtiö
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Finland
| |
Collapse
|
29
|
Wang J, Wan YW, Al-Ouran R, Huang M, Liu Z. CoRegNet: unraveling gene co-regulation networks from public RNA-Seq repositories using a beta-binomial statistical model. Brief Bioinform 2023; 25:bbad380. [PMID: 38113079 PMCID: PMC10729864 DOI: 10.1093/bib/bbad380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/13/2023] [Indexed: 12/21/2023] Open
Abstract
Millions of RNA sequencing samples have been deposited into public databases, providing a rich resource for biological research. These datasets encompass tens of thousands of experiments and offer comprehensive insights into human cellular regulation. However, a major challenge is how to integrate these experiments that acquired at different conditions. We propose a new statistical tool based on beta-binomial distributions that can construct robust gene co-regulation network (CoRegNet) across tens of thousands of experiments. Our analysis of over 12 000 experiments involving human tissues and cells shows that CoRegNet significantly outperforms existing gene co-expression-based methods. Although the majority of the genes are linearly co-regulated, we did discover an interesting set of genes that are non-linearly co-regulated; half of the time they change in the same direction and the other half they change in the opposite direction. Additionally, we identified a set of gene pairs that follows the Simpson's paradox. By utilizing public domain data, CoRegNet offers a powerful approach for identifying functionally related gene pairs, thereby revealing new biological insights.
Collapse
Affiliation(s)
- Jiasheng Wang
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX 77030, USA
- Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ying-Wooi Wan
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Howard Hughes Medical Institute, Houston, TX 77030, USA
| | | | - Meichen Huang
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX 77030, USA
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhandong Liu
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX 77030, USA
- Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
30
|
Yazdani B, Sirous H, Brogi S, Calderone V. Structure-Based High-Throughput Virtual Screening and Molecular Dynamics Simulation for the Discovery of Novel SARS-CoV-2 NSP3 Mac1 Domain Inhibitors. Viruses 2023; 15:2291. [PMID: 38140532 PMCID: PMC10747130 DOI: 10.3390/v15122291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Since the emergence of SARS-CoV-2, many genetic variations within its genome have been identified, but only a few mutations have been found in nonstructural proteins (NSPs). Among this class of viral proteins, NSP3 is a multidomain protein with 16 different domains, and its largest domain is known as the macrodomain or Mac1 domain. In this study, we present a virtual screening campaign in which we computationally evaluated the NCI anticancer library against the NSP3 Mac1 domain, using Molegro Virtual Docker. The top hits with the best MolDock and Re-Rank scores were selected. The physicochemical analysis and drug-like potential of the top hits were analyzed using the SwissADME data server. The binding stability and affinity of the top NSC compounds against the NSP3 Mac1 domain were analyzed using molecular dynamics (MD) simulation, using Desmond software, and their interaction energies were analyzed using the MM/GBSA method. In particular, by applying subsequent computational filters, we identified 10 compounds as possible NSP3 Mac1 domain inhibitors. Among them, after the assessment of binding energies (ΔGbind) on the whole MD trajectories, we identified the four most interesting compounds that acted as strong binders of the NSP3 Mac1 domain (NSC-358078, NSC-287067, NSC-123472, and NSC-142843), and, remarkably, it could be further characterized for developing innovative antivirals against SARS-CoV-2.
Collapse
Affiliation(s)
- Behnaz Yazdani
- Bioscience Department, Faculty of Science and Technology (FCT), Universitat de Vic—Universitat Central de Catalunya (Uvic-UCC), 08500 Vic, Spain;
| | - Hajar Sirous
- Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Simone Brogi
- Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy;
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy;
| |
Collapse
|
31
|
Huang S, Girdner J, Nguyen LP, Enard D, Li MM. Positive selection analyses identify a single WWE domain residue that shapes ZAP into a super restriction factor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.20.567784. [PMID: 38045310 PMCID: PMC10690157 DOI: 10.1101/2023.11.20.567784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The host interferon pathway upregulates intrinsic restriction factors in response to viral infection. Many of them block a diverse range of viruses, suggesting that their antiviral functions might have been shaped by multiple viral families during evolution. Virus-host conflicts have led to the rapid adaptation of viral and host proteins at their interaction hotspots. Hence, we can use evolutionary genetic analyses to elucidate antiviral mechanisms and domain functions of restriction factors. Zinc finger antiviral protein (ZAP) is a restriction factor against RNA viruses such as alphaviruses, in addition to other RNA, retro-, and DNA viruses, yet its precise antiviral mechanism is not fully characterized. Previously, an analysis of 13 primate ZAP identified 3 positively selected residues in the poly(ADP-ribose) polymerase-like domain. However, selective pressure from ancient alphaviruses and others likely drove ZAP adaptation in a wider representation of mammals. We performed positive selection analyses in 261 mammalian ZAP using more robust methods with complementary strengths and identified 7 positively selected sites in all domains of the protein. We generated ZAP inducible cell lines in which the positively selected residues of ZAP are mutated and tested their effects on alphavirus replication and known ZAP activities. Interestingly, the mutant in the second WWE domain of ZAP (N658A) is dramatically better than wild-type ZAP at blocking replication of Sindbis virus and other ZAP-sensitive alphaviruses due to enhanced viral translation inhibition. The N658A mutant inhabits the space surrounding the previously reported poly(ADP-ribose) (PAR) binding pocket, but surprisingly has reduced binding to PAR. In summary, the second WWE domain is critical for engineering a super restrictor ZAP and fluctuations in PAR binding modulate ZAP antiviral activity. Our study has the potential to unravel the role of ADP-ribosylation in the host innate immune defense and viral evolutionary strategies that antagonize this post-translational modification.
Collapse
Affiliation(s)
- Serina Huang
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Juliana Girdner
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, USA
| | - LeAnn P Nguyen
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - David Enard
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Melody Mh Li
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
- AIDS Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| |
Collapse
|
32
|
Andrabi SBA, Batkulwar K, Bhosale SD, Moulder R, Khan MH, Buchacher T, Khan MM, Arnkil I, Rasool O, Marson A, Kalim UU, Lahesmaa R. HIC1 interacts with FOXP3 multi protein complex: Novel pleiotropic mechanisms to regulate human regulatory T cell differentiation and function. Immunol Lett 2023; 263:123-132. [PMID: 37838026 DOI: 10.1016/j.imlet.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 10/16/2023]
Abstract
Transcriptional repressor, hypermethylated in cancer 1 (HIC1) participates in a range of important biological processes, such as tumor repression, immune suppression, embryonic development and epigenetic gene regulation. Further to these, we previously demonstrated that HIC1 provides a significant contribution to the function and development of regulatory T (Treg) cells. However, the mechanism by which it regulates these processes was not apparent. To address this question, we used affinity-purification mass spectrometry to characterize the HIC1 interactome in human Treg cells. Altogether 61 high-confidence interactors were identified, including IKZF3, which is a key transcription factor in the development of Treg cells. The biological processes associated with these interacting proteins include protein transport, mRNA processing, non-coding (ncRNA) transcription and RNA metabolism. The results revealed that HIC1 is part of a FOXP3-RUNX1-CBFB protein complex that regulates Treg signature genes thus improving our understanding of HIC1 function during early Treg cell differentiation.
Collapse
Affiliation(s)
- Syed Bilal Ahmad Andrabi
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland; InFLAMES Research Flagship Center, University of Turku
| | - Kedar Batkulwar
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland; InFLAMES Research Flagship Center, University of Turku
| | - Santosh D Bhosale
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland; Precision Biomarker Laboratories, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Robert Moulder
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland; InFLAMES Research Flagship Center, University of Turku
| | - Meraj Hasan Khan
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland; InFLAMES Research Flagship Center, University of Turku
| | - Tanja Buchacher
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland; InFLAMES Research Flagship Center, University of Turku
| | - Mohd Moin Khan
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland; InFLAMES Research Flagship Center, University of Turku
| | - Ilona Arnkil
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland; InFLAMES Research Flagship Center, University of Turku
| | - Omid Rasool
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland; InFLAMES Research Flagship Center, University of Turku
| | - Alexander Marson
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA; Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Ubaid Ullah Kalim
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland; InFLAMES Research Flagship Center, University of Turku
| | - Riitta Lahesmaa
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland; InFLAMES Research Flagship Center, University of Turku; Institute of Biomedicine, University of Turku.
| |
Collapse
|
33
|
Wang T, Coshic K, Badiee M, Aksimentiev A, Pollack L, Leung AKL. Length-dependent Intramolecular Coil-to-Globule Transition in Poly(ADP-ribose) Induced by Cations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.25.564012. [PMID: 37961637 PMCID: PMC10634823 DOI: 10.1101/2023.10.25.564012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Poly(ADP-ribose) (PAR), as part of a post-translational modification, serves as a flexible scaffold for noncovalent protein binding. Such binding is influenced by PAR chain length through a mechanism yet to be elucidated. Structural insights have been elusive, partly due to the difficulties associated with synthesizing PAR chains of defined lengths. Here, we employ an integrated approach combining molecular dynamics (MD) simulations with small-angle X-ray scattering (SAXS) experiments, enabling us to identify highly heterogeneous ensembles of PAR conformers at two different, physiologically relevant lengths: PAR 15 and PAR 22 . Our findings reveal that numerous factors including backbone conformation, base stacking, and chain length contribute to determining the structural ensembles. We also observe length-dependent compaction of PAR upon the addition of small amounts of Mg 2+ ions, with the 22-mer exhibiting ADP-ribose bundles formed through local intramolecular coil-to-globule transitions. This study illuminates how such bundling could be instrumental in deciphering the length-dependent action of PAR. GRAPHICAL ABSTRACT
Collapse
|
34
|
Kasai T, Kuraoka S, Higashi H, Delanghe B, Aikawa M, Singh SA. A Combined Gas-Phase Separation Strategy for ADP-ribosylated Peptides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2136-2145. [PMID: 37589412 PMCID: PMC10557377 DOI: 10.1021/jasms.3c00129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/13/2023] [Accepted: 06/21/2023] [Indexed: 08/18/2023]
Abstract
ADP-ribosylation (ADPr) is a post-translational modification that is best studied using mass spectrometry. Method developments that are permissive with low inputs or baseline levels of protein ribosylation represent the next frontier in the field. High-field asymmetric waveform ion mobility spectrometry (FAIMS) reduces peptide complexity in the gas phase, providing a means to achieve maximal ADPr peptide sequencing depth. We therefore investigated the extent to which FAIMS with or without traditional gas-phase fractionation-separation (GPS) can increase the number of ADPr peptides. We examined ADPr peptides enriched from mouse spleens. We gleaned additional insight by also reporting findings from the corresponding non-ADPr peptide contaminants and the peptide inputs for ADPr peptide enrichment. At increasingly higher negative compensation voltages, ADPr peptides were more stable, whereas the non-ADPr peptides were filtered out. A combination of 3 GPS survey scans, each with 8 compensation voltages, resulted in 790 high-confidence ADPr peptides, compared to 90 with GPS alone. A simplified acquisition strategy requiring only two injections corresponding to two MS1 scan ranges coupled to optimized compensation voltage settings provided 402 ADPr peptides corresponding to 234 ADPr proteins. We conclude that our combined GPS strategy is a valuable addition to any ADP-ribosylome workflow. The data are available via ProteomeXchange with identifier PXD040898.
Collapse
Affiliation(s)
- Taku Kasai
- Center
for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular
Medicine, Department of Medicine, Brigham
and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Shiori Kuraoka
- Center
for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular
Medicine, Department of Medicine, Brigham
and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Hideyuki Higashi
- Center
for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular
Medicine, Department of Medicine, Brigham
and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | | | - Masanori Aikawa
- Center
for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular
Medicine, Department of Medicine, Brigham
and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Center
for Excellence in Vascular Biology, Division of Cardiovascular Medicine,
Brigham and Women’s Hospital, Harvard
Medical School, Boston, Massachusetts 02115, United States
- Channing
Division of Network Medicine, Department of Medicine, Brigham and
Women’s Hospital, Harvard Medical
School, Boston, Massachusetts 02115, United States
| | - Sasha A. Singh
- Center
for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular
Medicine, Department of Medicine, Brigham
and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
35
|
Ortega Granda O, Alvarez K, Mate-Perez MJ, Canard B, Ferron F, Rabah N. Macro1 domain residue F156: A hallmark of SARS-CoV-2 de-MARylation specificity. Virology 2023; 587:109845. [PMID: 37517331 DOI: 10.1016/j.virol.2023.109845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 07/17/2023] [Indexed: 08/01/2023]
Abstract
SARS-CoV-2 is a large, enveloped and positive sense single stranded RNA virus. Its genome codes for 16 non-structural proteins. The largest protein of this complex is nsp3, that contains a well conserved Macro1 domain. Viral Macro domains were shown to bind to mono-ADP-ribose (MAR) and poly-ADP-ribose (PAR) in their free form or conjugated to protein substrates. They carry ADP-ribose hydrolase activities implicated in the regulation of innate immunity. SARS-CoV-2 and SARS-CoV show widely different induction and handling of the host interferon response. Herein, we have conducted a mutational study on the key amino-acid residue F156 in SARS-CoV-2, pinpointed by bioinformatic and structural studies, and its cognate residue N157 in SARS-CoV. Our data suggest that the exchange of these residues slightly modifies ADP-ribose binding, but drastically impacts de-MARylation activity. Alanine substitutions at this position hampers PAR binding, abolishes MAR hydrolysis of SARS-CoV-2, and reduces by 70% this activity in the case of SARS-CoV.
Collapse
Affiliation(s)
| | - Karine Alvarez
- Aix Marseille Université, CNRS, AFMB UMR 7257, Marseille, France
| | | | - Bruno Canard
- Aix Marseille Université, CNRS, AFMB UMR 7257, Marseille, France
| | - François Ferron
- Aix Marseille Université, CNRS, AFMB UMR 7257, Marseille, France
| | - Nadia Rabah
- Aix Marseille Université, CNRS, AFMB UMR 7257, Marseille, France; Previous Affiliation: Université de Toulon, 83130, La Garde, France.
| |
Collapse
|
36
|
Kerr CM, Parthasarathy S, Schwarting N, O'Connor JJ, Pfannenstiel JJ, Giri E, More S, Orozco RC, Fehr AR. PARP12 is required to repress the replication of a Mac1 mutant coronavirus in a cell- and tissue-specific manner. J Virol 2023; 97:e0088523. [PMID: 37695054 PMCID: PMC10537751 DOI: 10.1128/jvi.00885-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 07/13/2023] [Indexed: 09/12/2023] Open
Abstract
ADP-ribosyltransferases (ARTs) mediate the transfer of ADP-ribose from NAD+ to protein or nucleic acid substrates. This modification can be removed by several different types of proteins, including macrodomains. Several ARTs, also known as PARPs, are stimulated by interferon indicating ADP-ribosylation is an important aspect of the innate immune response. All coronaviruses (CoVs) encode for a highly conserved macrodomain (Mac1) that is critical for CoVs to replicate and cause disease, indicating that ADP-ribosylation can effectively control coronavirus infection. Our siRNA screen indicated that PARP12 might inhibit the replication of a murine hepatitis virus (MHV) Mac1 mutant virus in bone-marrow-derived macrophages (BMDMs). To conclusively demonstrate that PARP12 is a key mediator of the antiviral response to CoVs both in cell culture and in vivo, we produced PARP12-/-mice and tested the ability of MHV A59 (hepatotropic/neurotropic) and JHM (neurotropic) Mac1 mutant viruses to replicate and cause disease in these mice. Notably, in the absence of PARP12, Mac1 mutant replication was increased in BMDMs and mice. In addition, liver pathology was also increased in A59-infected mice. However, the PARP12 knockout did not restore Mac1 mutant virus replication to WT virus levels in all cell or tissue types and did not significantly increase the lethality of Mac1 mutant viruses. These results demonstrate that while PARP12 inhibits MHV Mac1 mutant virus infection, additional PARPs or innate immune factors must contribute to the extreme attenuation of this virus in mice. IMPORTANCE Over the last decade, the importance of ADP-ribosyltransferases (ARTs), also known as PARPs, in the antiviral response has gained increased significance as several were shown to either restrict virus replication or impact innate immune responses. However, there are few studies showing ART-mediated inhibition of virus replication or pathogenesis in animal models. We found that the CoV macrodomain (Mac1) was required to prevent ART-mediated inhibition of virus replication in cell culture. Using knockout mice, we found that PARP12, an interferon-stimulated ART, was required to repress the replication of a Mac1 mutant CoV both in cell culture and in mice, demonstrating that PARP12 represses coronavirus replication. However, the deletion of PARP12 did not fully rescue Mac1 mutant virus replication or pathogenesis, indicating that multiple PARPs function to counter coronavirus infection.
Collapse
Affiliation(s)
- Catherine M. Kerr
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | | | - Nancy Schwarting
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Joseph J. O'Connor
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | | | - Emily Giri
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Sunil More
- Department of Veterinary Pathology, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Robin C. Orozco
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Anthony R. Fehr
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| |
Collapse
|
37
|
Alegre GFS, Pastore GM. NAD+ Precursors Nicotinamide Mononucleotide (NMN) and Nicotinamide Riboside (NR): Potential Dietary Contribution to Health. Curr Nutr Rep 2023; 12:445-464. [PMID: 37273100 PMCID: PMC10240123 DOI: 10.1007/s13668-023-00475-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2023] [Indexed: 06/06/2023]
Abstract
PURPOSE OF REVIEW NAD+ is a vital molecule that takes part as a redox cofactor in several metabolic reactions besides being used as a substrate in important cellular signaling in regulation pathways for energetic, genotoxic, and infectious stress. In stress conditions, NAD+ biosynthesis and levels decrease as well as the activity of consuming enzymes rises. Dietary precursors can promote NAD+ biosynthesis and increase intracellular levels, being a potential strategy for reversing physiological decline and preventing diseases. In this review, we will show the biochemistry and metabolism of NAD+ precursors NR (nicotinamide riboside) and NMN (nicotinamide mononucleotide), the latest findings on their beneficial physiological effects, their interplay with gut microbiota, and the future perspectives for research in nutrition and food science fields. RECENT FINDINGS NMN and NR demonstrated protect against diabetes, Alzheimer disease, endothelial dysfunction, and inflammation. They also reverse gut dysbiosis and promote beneficial effects at intestinal and extraintestinal levels. NR and NMN have been found in vegetables, meat, and milk, and microorganisms in fermented beverages can also produce them. NMN and NR can be obtained through the diet either in their free form or as metabolites derivate from the digestion of NAD+. The prospection of NR and NMN to find potential food sources and their dietary contribution in increasing NAD+ levels are still an unexplored field of research. Moreover, it could enable the development of new functional foods and processing strategies to maintain and enhance their physiological benefits, besides the studies of new raw materials for extraction and biotechnological development.
Collapse
Affiliation(s)
- Gabriela Fabiana Soares Alegre
- Department of Food Science and Nutrition, Faculty of Food Engineering, State University of Campinas, Campinas, Brazil.
- Laboratory of Bioflavours and Bioactive Compounds-Rua Monteiro Lobato, Cidade Universitária "Zeferino Vaz" Barão Geraldo, 80-CEP 13083-862, Campinas, SP, Brazil.
| | - Glaucia Maria Pastore
- Department of Food Science and Nutrition, Faculty of Food Engineering, State University of Campinas, Campinas, Brazil
- Laboratory of Bioflavours and Bioactive Compounds-Rua Monteiro Lobato, Cidade Universitária "Zeferino Vaz" Barão Geraldo, 80-CEP 13083-862, Campinas, SP, Brazil
| |
Collapse
|
38
|
Alhammad YM, Parthasarathy S, Ghimire R, Kerr CM, O’Connor JJ, Pfannenstiel JJ, Chanda D, Miller CA, Baumlin N, Salathe M, Unckless RL, Zuñiga S, Enjuanes L, More S, Channappanavar R, Fehr AR. SARS-CoV-2 Mac1 is required for IFN antagonism and efficient virus replication in cell culture and in mice. Proc Natl Acad Sci U S A 2023; 120:e2302083120. [PMID: 37607224 PMCID: PMC10468617 DOI: 10.1073/pnas.2302083120] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/30/2023] [Indexed: 08/24/2023] Open
Abstract
Several coronavirus (CoV) encoded proteins are being evaluated as targets for antiviral therapies for COVID-19. Included in these drug targets is the conserved macrodomain, or Mac1, an ADP-ribosylhydrolase and ADP-ribose binding protein encoded as a small domain at the N terminus of nonstructural protein 3. Utilizing point mutant recombinant viruses, Mac1 was shown to be critical for both murine hepatitis virus (MHV) and severe acute respiratory syndrome (SARS)-CoV virulence. However, as a potential drug target, it is imperative to understand how a complete Mac1 deletion impacts the replication and pathogenesis of different CoVs. To this end, we created recombinant bacterial artificial chromosomes (BACs) containing complete Mac1 deletions (ΔMac1) in MHV, MERS-CoV, and SARS-CoV-2. While we were unable to recover infectious virus from MHV or MERS-CoV ΔMac1 BACs, SARS-CoV-2 ΔMac1 was readily recovered from BAC transfection, indicating a stark difference in the requirement for Mac1 between different CoVs. Furthermore, SARS-CoV-2 ΔMac1 replicated at or near wild-type levels in multiple cell lines susceptible to infection. However, in a mouse model of severe infection, ΔMac1 was quickly cleared causing minimal pathology without any morbidity. ΔMac1 SARS-CoV-2 induced increased levels of interferon (IFN) and IFN-stimulated gene expression in cell culture and mice, indicating that Mac1 blocks IFN responses which may contribute to its attenuation. ΔMac1 infection also led to a stark reduction in inflammatory monocytes and neutrophils. These results demonstrate that Mac1 only minimally impacts SARS-CoV-2 replication, unlike MHV and MERS-CoV, but is required for SARS-CoV-2 pathogenesis and is a unique antiviral drug target.
Collapse
Affiliation(s)
- Yousef M. Alhammad
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS66047
| | | | - Roshan Ghimire
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK74078
| | - Catherine M. Kerr
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS66047
| | - Joseph J. O’Connor
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS66047
| | | | - Debarati Chanda
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK74078
| | - Caden A. Miller
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK74078
| | - Nathalie Baumlin
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS66160
| | - Matthias Salathe
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS66160
| | - Robert L. Unckless
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS66047
| | - Sonia Zuñiga
- Department of Molecular and Cell Biology, National Center of Biotechnology, Madrid28049, Spain
| | - Luis Enjuanes
- Department of Molecular and Cell Biology, National Center of Biotechnology, Madrid28049, Spain
| | - Sunil More
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK74078
| | | | - Anthony R. Fehr
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS66047
| |
Collapse
|
39
|
Bamunuarachchi G, Vaddadi K, Yang X, Dang Q, Zhu Z, Hewawasam S, Huang C, Liang Y, Guo Y, Liu L. MicroRNA-9-1 Attenuates Influenza A Virus Replication via Targeting Tankyrase 1. J Innate Immun 2023; 15:647-664. [PMID: 37607510 PMCID: PMC10601686 DOI: 10.1159/000532063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 07/11/2023] [Indexed: 08/24/2023] Open
Abstract
An unstable influenza genome leads to the virus resistance to antiviral drugs that target viral proteins. Thus, identification of host factors essential for virus replication may pave the way to develop novel antiviral therapies. In this study, we investigated the roles of the poly(ADP-ribose) polymerase enzyme, tankyrase 1 (TNKS1), and the endogenous small noncoding RNA, miR-9-1, in influenza A virus (IAV) infection. Increased expression of TNKS1 was observed in IAV-infected human lung epithelial cells and mouse lungs. TNKS1 knockdown by RNA interference repressed influenza viral replication. A screen using TNKS1 3'-untranslation region (3'-UTR) reporter assays and predicted microRNAs identified that miR-9-1 targeted TNKS1. Overexpression of miR-9-1 reduced influenza viral replication in lung epithelial cells as measured by viral mRNA and protein levels as well as virus production. miR-9-1 induced type I interferon production and enhanced the phosphorylation of STAT1 in cell culture. The ectopic expression of miR-9-1 in the lungs of mice by using an adenoviral viral vector enhanced type I interferon response, inhibited viral replication, and reduced susceptibility to IAV infection. Our results indicate that miR-9-1 is an anti-influenza microRNA that targets TNKS1 and enhances cellular antiviral state.
Collapse
Affiliation(s)
- Gayan Bamunuarachchi
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK, USA
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Kishore Vaddadi
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK, USA
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Xiaoyun Yang
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK, USA
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Quanjin Dang
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK, USA
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Zhengyu Zhu
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK, USA
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Sankha Hewawasam
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK, USA
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Chaoqun Huang
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK, USA
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Yurong Liang
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK, USA
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Yujie Guo
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK, USA
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Lin Liu
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK, USA
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, OK, USA
| |
Collapse
|
40
|
Iqbal S, Lin SX. Deep Drug Discovery of Mac Domain of SARS-CoV-2 (WT) Spike Inhibitors: Using Experimental ACE2 Inhibition TR-FRET Assay, Screening, Molecular Dynamic Simulations and Free Energy Calculations. Bioengineering (Basel) 2023; 10:961. [PMID: 37627846 PMCID: PMC10451221 DOI: 10.3390/bioengineering10080961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/07/2023] [Accepted: 07/22/2023] [Indexed: 08/27/2023] Open
Abstract
SARS-CoV-2 exploits the homotrimer transmembrane Spike glycoproteins (S protein) during host cell invasion. The Omicron XBB subvariant, delta, and prototype SARS-CoV-2 receptor-binding domain show similar binding strength to hACE2 (human Angiotensin-Converting Enzyme 2). Here we utilized multiligand virtual screening to identify small molecule inhibitors for their efficacy against SARS-CoV-2 virus using QPLD, pseudovirus ACE2 Inhibition -Time Resolved Forster/Fluorescence energy transfer (TR-FRET) Assay Screening, and Molecular Dynamics simulations (MDS). Three hundred and fifty thousand compounds were screened against the macrodomain of the nonstructural protein 3 of SARS-CoV-2. Using TR-FRET Assay, we filtered out two of 10 compounds that had no reported activity in in vitro screen against Spike S1: ACE2 binding assay. The percentage inhibition at 30 µM was found to be 79% for "Compound F1877-0839" and 69% for "Compound F0470-0003". This first of its kind study identified "FILLY" pocket in macrodomains. Our 200 ns MDS revealed stable binding poses of both leads. They can be used for further development of preclinical candidates.
Collapse
Affiliation(s)
- Saleem Iqbal
- Axe Molecular Endocrinology and Nephrology, CHU Research Center, Laval University, Quebec City, QC G1V 4G2, Canada
| | - Sheng-Xiang Lin
- Axe Molecular Endocrinology and Nephrology, CHU Research Center, Laval University, Quebec City, QC G1V 4G2, Canada
| |
Collapse
|
41
|
Wolfram-Schauerte M, Pozhydaieva N, Grawenhoff J, Welp LM, Silbern I, Wulf A, Billau FA, Glatter T, Urlaub H, Jäschke A, Höfer K. A viral ADP-ribosyltransferase attaches RNA chains to host proteins. Nature 2023; 620:1054-1062. [PMID: 37587340 PMCID: PMC10468400 DOI: 10.1038/s41586-023-06429-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/12/2023] [Indexed: 08/18/2023]
Abstract
The mechanisms by which viruses hijack the genetic machinery of the cells they infect are of current interest. When bacteriophage T4 infects Escherichia coli, it uses three different adenosine diphosphate (ADP)-ribosyltransferases (ARTs) to reprogram the transcriptional and translational apparatus of the host by ADP-ribosylation using nicotinamide adenine dinucleotide (NAD) as a substrate1,2. NAD has previously been identified as a 5' modification of cellular RNAs3-5. Here we report that the T4 ART ModB accepts not only NAD but also NAD-capped RNA (NAD-RNA) as a substrate and attaches entire RNA chains to acceptor proteins in an 'RNAylation' reaction. ModB specifically RNAylates the ribosomal proteins rS1 and rL2 at defined Arg residues, and selected E. coli and T4 phage RNAs are linked to rS1 in vivo. T4 phages that express an inactive mutant of ModB have a decreased burst size and slowed lysis of E. coli. Our findings reveal a distinct biological role for NAD-RNA, namely the activation of the RNA for enzymatic transfer to proteins. The attachment of specific RNAs to ribosomal proteins might provide a strategy for the phage to modulate the host's translation machinery. This work reveals a direct connection between RNA modification and post-translational protein modification. ARTs have important roles far beyond viral infections6, so RNAylation may have far-reaching implications.
Collapse
Affiliation(s)
- Maik Wolfram-Schauerte
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | | | - Julia Grawenhoff
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Luisa M Welp
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Department of Clinical Chemistry, University Medical Center, Göttingen, Germany
| | - Ivan Silbern
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Department of Clinical Chemistry, University Medical Center, Göttingen, Germany
| | - Alexander Wulf
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Franziska A Billau
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Timo Glatter
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Department of Clinical Chemistry, University Medical Center, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), Georg-August-University, Göttingen, Germany
| | - Andres Jäschke
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany.
| | - Katharina Höfer
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany.
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg, Germany.
| |
Collapse
|
42
|
Taha TY, Suryawanshi RK, Chen IP, Correy GJ, McCavitt-Malvido M, O’Leary PC, Jogalekar MP, Diolaiti ME, Kimmerly GR, Tsou CL, Gascon R, Montano M, Martinez-Sobrido L, Krogan NJ, Ashworth A, Fraser JS, Ott M. A single inactivating amino acid change in the SARS-CoV-2 NSP3 Mac1 domain attenuates viral replication in vivo. PLoS Pathog 2023; 19:e1011614. [PMID: 37651466 PMCID: PMC10499221 DOI: 10.1371/journal.ppat.1011614] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/13/2023] [Accepted: 08/16/2023] [Indexed: 09/02/2023] Open
Abstract
Despite unprecedented efforts, our therapeutic arsenal against SARS-CoV-2 remains limited. The conserved macrodomain 1 (Mac1) in NSP3 is an enzyme exhibiting ADP-ribosylhydrolase activity and a possible drug target. To determine the role of Mac1 catalytic activity in viral replication, we generated recombinant viruses and replicons encoding a catalytically inactive NSP3 Mac1 domain by mutating a critical asparagine in the active site. While substitution to alanine (N40A) reduced catalytic activity by ~10-fold, mutations to aspartic acid (N40D) reduced activity by ~100-fold relative to wild-type. Importantly, the N40A mutation rendered Mac1 unstable in vitro and lowered expression levels in bacterial and mammalian cells. When incorporated into SARS-CoV-2 molecular clones, the N40D mutant only modestly affected viral fitness in immortalized cell lines, but reduced viral replication in human airway organoids by 10-fold. In mice, the N40D mutant replicated at >1000-fold lower levels compared to the wild-type virus while inducing a robust interferon response; all animals infected with the mutant virus survived infection. Our data validate the critical role of SARS-CoV-2 NSP3 Mac1 catalytic activity in viral replication and as a promising therapeutic target to develop antivirals.
Collapse
Affiliation(s)
- Taha Y. Taha
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, California, United States of America
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, California, United States of America
| | - Rahul K. Suryawanshi
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, California, United States of America
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, California, United States of America
| | - Irene P. Chen
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, California, United States of America
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, California, United States of America
- Department of Medicine, University of California, San Francisco, California, United States of America
| | - Galen J. Correy
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, California, United States of America
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, United States of America
| | - Maria McCavitt-Malvido
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, California, United States of America
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, California, United States of America
| | - Patrick C. O’Leary
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, California, United States of America
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California, United States of America
| | - Manasi P. Jogalekar
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, California, United States of America
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California, United States of America
| | - Morgan E. Diolaiti
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, California, United States of America
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California, United States of America
| | - Gabriella R. Kimmerly
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, California, United States of America
| | - Chia-Lin Tsou
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, California, United States of America
| | - Ronnie Gascon
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, California, United States of America
| | - Mauricio Montano
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, California, United States of America
| | - Luis Martinez-Sobrido
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, California, United States of America
- Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Nevan J. Krogan
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, California, United States of America
- Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, California, United States of America
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, California, United States of America
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, United States of America
| | - Alan Ashworth
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, California, United States of America
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California, United States of America
| | - James S. Fraser
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, California, United States of America
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, United States of America
| | - Melanie Ott
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, California, United States of America
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, California, United States of America
- Department of Medicine, University of California, San Francisco, California, United States of America
- Chan Zuckerberg Biohub–San Francisco, San Francisco, California, United States of America
| |
Collapse
|
43
|
Antal D, Pór Á, Kovács I, Dull K, Póliska S, Ujlaki G, Demény MÁ, Szöllősi AG, Kiss B, Szegedi A, Bai P, Szántó M. PARP2 promotes inflammation in psoriasis by modulating estradiol biosynthesis in keratinocytes. J Mol Med (Berl) 2023; 101:987-999. [PMID: 37351597 PMCID: PMC10400701 DOI: 10.1007/s00109-023-02338-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 05/09/2023] [Accepted: 06/12/2023] [Indexed: 06/24/2023]
Abstract
Poly(ADP-ribose) polymerase 2 (PARP2) alongside PARP1 are responsible for the bulk of cellular PARP activity, and they were first described as DNA repair factors. However, research in past decades implicated PARPs in biological functions as diverse as the regulation of cellular energetics, lipid homeostasis, cell death, and inflammation. PARP activation was described in Th2-mediated inflammatory processes, but studies focused on the role of PARP1, while we have little information on PARP2 in inflammatory regulation. In this study, we assessed the role of PARP2 in a Th17-mediated inflammatory skin condition, psoriasis. We found that PARP2 mRNA expression is increased in human psoriatic lesions. Therefore, we studied the functional consequence of decreased PARP2 expression in murine and cellular human models of psoriasis. We observed that the deletion of PARP2 attenuated the imiquimod-induced psoriasis-like dermatitis in mice. Silencing of PARP2 in human keratinocytes prevented their hyperproliferation, maintained their terminal differentiation, and reduced their production of inflammatory mediators after treatment with psoriasis-mimicking cytokines IL17A and TNFα. Underlying these observations, we found that aromatase was induced in the epidermis of PARP2 knock-out mice and in PARP2-deficient human keratinocytes, and the resulting higher estradiol production suppressed NF-κB activation, and hence, inflammation in keratinocytes. Steroidogenic alterations have previously been described in psoriasis, and we extend these observations by showing that aromatase expression is reduced in psoriatic lesions. Collectively, our data identify PARP2 as a modulator of estrogen biosynthesis by epidermal keratinocytes that may be relevant in Th17 type inflammation. KEY MESSAGES : PARP2 mRNA expression is increased in lesional skin of psoriasis patients. PARP2 deletion in mice attenuated IMQ-induced psoriasis-like dermatitis. NF-κB activation is suppressed in PARP2-deficient human keratinocytes. Higher estradiol in PARP2-deficient keratinocytes conveys anti-inflammatory effect.
Collapse
Affiliation(s)
- Dóra Antal
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem ter 1., Elettudomanyi Epulet, H-4032, Debrecen, Hungary
- The Hungarian Academy of Sciences, Center of Excellence, Budapest, Hungary
| | - Ágnes Pór
- Department of Pathology, Gyula Kenézy Campus, Clinical Centre, University of Debrecen, Debrecen, Hungary
| | - Ilona Kovács
- Department of Pathology, Gyula Kenézy Campus, Clinical Centre, University of Debrecen, Debrecen, Hungary
| | - Katalin Dull
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Szilárd Póliska
- Genomic Medicine and Bioinformatics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gyula Ujlaki
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem ter 1., Elettudomanyi Epulet, H-4032, Debrecen, Hungary
- The Hungarian Academy of Sciences, Center of Excellence, Budapest, Hungary
| | - Máté Ágoston Demény
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem ter 1., Elettudomanyi Epulet, H-4032, Debrecen, Hungary
- The Hungarian Academy of Sciences, Center of Excellence, Budapest, Hungary
| | - Attila Gábor Szöllősi
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Borbála Kiss
- Department of Oncology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Andrea Szegedi
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- ELKH-DE Allergology Research Group, University of Debrecen, Debrecen, Hungary
| | - Péter Bai
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem ter 1., Elettudomanyi Epulet, H-4032, Debrecen, Hungary
- The Hungarian Academy of Sciences, Center of Excellence, Budapest, Hungary
- NKFIH-DE Lendület Laboratory of Cellular Metabolism, Debrecen, Hungary
- Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- MTA-DE Cell Biology and Signaling Research Group ELKH, Debrecen, Hungary
| | - Magdolna Szántó
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem ter 1., Elettudomanyi Epulet, H-4032, Debrecen, Hungary.
- The Hungarian Academy of Sciences, Center of Excellence, Budapest, Hungary.
| |
Collapse
|
44
|
Santinelli-Pestana DV, Aikawa E, Singh SA, Aikawa M. PARPs and ADP-Ribosylation in Chronic Inflammation: A Focus on Macrophages. Pathogens 2023; 12:964. [PMID: 37513811 PMCID: PMC10386340 DOI: 10.3390/pathogens12070964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/25/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
Aberrant adenosine diphosphate-ribose (ADP)-ribosylation of proteins and nucleic acids is associated with multiple disease processes such as infections and chronic inflammatory diseases. The poly(ADP-ribose) polymerase (PARP)/ADP-ribosyltransferase (ART) family members promote mono- or poly-ADP-ribosylation. Although evidence has linked PARPs/ARTs and macrophages in the context of chronic inflammation, the underlying mechanisms remain incompletely understood. This review provides an overview of literature focusing on the roles of PARP1/ARTD1, PARP7/ARTD14, PARP9/ARTD9, and PARP14/ARTD8 in macrophages. PARPs/ARTs regulate changes in macrophages during chronic inflammatory processes not only via catalytic modifications but also via non-catalytic mechanisms. Untangling complex mechanisms, by which PARPs/ARTs modulate macrophage phenotype, and providing molecular bases for the development of new therapeutics require the development and implementation of innovative technologies.
Collapse
Affiliation(s)
- Diego V. Santinelli-Pestana
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (D.V.S.-P.); (E.A.); (S.A.S.)
| | - Elena Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (D.V.S.-P.); (E.A.); (S.A.S.)
- Center for Excellence in Vascular Biology, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Sasha A. Singh
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (D.V.S.-P.); (E.A.); (S.A.S.)
| | - Masanori Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (D.V.S.-P.); (E.A.); (S.A.S.)
- Center for Excellence in Vascular Biology, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
45
|
Sano H, Kratz A, Nishino T, Imamura H, Yoshida Y, Shimizu N, Kitano H, Yachie A. Nicotinamide mononucleotide (NMN) alleviates the poly(I:C)-induced inflammatory response in human primary cell cultures. Sci Rep 2023; 13:11765. [PMID: 37474783 PMCID: PMC10359400 DOI: 10.1038/s41598-023-38762-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 07/14/2023] [Indexed: 07/22/2023] Open
Abstract
NMN is the direct precursor of nicotinamide adenine dinucleotide (NAD+) and is considered as a key factor for increasing NAD+ levels and mitochondrial activity in cells. In this study, based on transcriptome analysis, we showed that NMN alleviates the poly(I:C)-induced inflammatory response in cultures of two types of human primary cells, human pulmonary microvascular endothelial cells (HPMECs) and human coronary artery endothelial cells (HCAECs). Major inflammatory mediators, including IL6 and PARP family members, were grouped into coexpressed gene modules and significantly downregulated under NMN exposure in poly(I:C)-activated conditions in both cell types. The Bayesian network analysis of module hub genes predicted common genes, including eukaryotic translation initiation factor 4B (EIF4B), and distinct genes, such as platelet-derived growth factor binding molecules, in HCAECs, which potentially regulate the identified inflammation modules. These results suggest a robust regulatory mechanism by which NMN alleviates inflammatory pathway activation, which may open up the possibility of a new role for NMN replenishment in the treatment of chronic or acute inflammation.
Collapse
Affiliation(s)
- Hitomi Sano
- The Systems Biology Institute, Saisei Ikedayama Bldg., 5-10-25, Higashi Gotanda, Shinagawa-ku, Tokyo, 141-0022, Japan
| | - Anton Kratz
- The Systems Biology Institute, Saisei Ikedayama Bldg., 5-10-25, Higashi Gotanda, Shinagawa-ku, Tokyo, 141-0022, Japan
| | - Taiko Nishino
- The Systems Biology Institute, Saisei Ikedayama Bldg., 5-10-25, Higashi Gotanda, Shinagawa-ku, Tokyo, 141-0022, Japan
| | - Haruna Imamura
- The Systems Biology Institute, Saisei Ikedayama Bldg., 5-10-25, Higashi Gotanda, Shinagawa-ku, Tokyo, 141-0022, Japan
| | - Yuki Yoshida
- Ginza Research Center, Mirailab Bioscience Inc., 6F Prairie Ginza Bldg., 1-14-4, Ginza, Chuo-ku, Tokyo, 104-0061, Japan
| | - Noriaki Shimizu
- Ginza Research Center, Mirailab Bioscience Inc., 6F Prairie Ginza Bldg., 1-14-4, Ginza, Chuo-ku, Tokyo, 104-0061, Japan
| | - Hiroaki Kitano
- The Systems Biology Institute, Saisei Ikedayama Bldg., 5-10-25, Higashi Gotanda, Shinagawa-ku, Tokyo, 141-0022, Japan
| | - Ayako Yachie
- The Systems Biology Institute, Saisei Ikedayama Bldg., 5-10-25, Higashi Gotanda, Shinagawa-ku, Tokyo, 141-0022, Japan.
- SBX BioSciences, Inc., 1600 - 925 West Georgia Street, Vancouver, BC, V6C 3L2, Canada.
| |
Collapse
|
46
|
Clark TC, Naseer S, Gundappa MK, Laurent A, Perquis A, Collet B, Macqueen DJ, Martin SAM, Boudinot P. Conserved and divergent arms of the antiviral response in the duplicated genomes of salmonid fishes. Genomics 2023; 115:110663. [PMID: 37286012 DOI: 10.1016/j.ygeno.2023.110663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/24/2023] [Accepted: 05/31/2023] [Indexed: 06/09/2023]
Abstract
Antiviral innate immunity is orchestrated by the interferon system, which appeared in ancestors of jawed vertebrates. Interferon upregulation induces hundreds of interferon-stimulated-genes (ISGs) with effector or regulatory functions. Here we investigated the evolutionary diversification of ISG responses through comparison of two salmonid fishes, accounting for the impact of sequential whole genome duplications ancestral to teleosts and salmonids. We analysed the transcriptomic response of the IFN pathway in the head kidney of rainbow trout and Atlantic salmon, which separated 25-30 Mya. We identified a large set of ISGs conserved in both species and cross-referenced them with zebrafish and human ISGs. In contrast, around one-third of salmonid ISG lacked orthologs in human, mouse, chicken or frog, and often between rainbow trout and Atlantic salmon, revealing a fast-evolving, lineage-specific arm of the antiviral response. This study also provides a key resource for in-depth functional analysis of ISGs in salmonids of commercial significance.
Collapse
Affiliation(s)
- Thomas C Clark
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas 78350, France; Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - Shahmir Naseer
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - Manu Kumar Gundappa
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | | | | | - Bertrand Collet
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas 78350, France
| | - Daniel J Macqueen
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Samuel A M Martin
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK.
| | - Pierre Boudinot
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas 78350, France.
| |
Collapse
|
47
|
Izadpanah A, Mudd JC, Garcia JGN, Srivastav S, Abdel-Mohsen M, Palmer C, Goldman AR, Kolls JK, Qin X, Rappaport J. SARS-CoV-2 infection dysregulates NAD metabolism. Front Immunol 2023; 14:1158455. [PMID: 37457744 PMCID: PMC10344451 DOI: 10.3389/fimmu.2023.1158455] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/19/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction Severe COVID-19 results initially in pulmonary infection and inflammation. Symptoms can persist beyond the period of acute infection, and patients with Post-Acute Sequelae of COVID (PASC) often exhibit a variety of symptoms weeks or months following acute phase resolution including continued pulmonary dysfunction, fatigue, and neurocognitive abnormalities. We hypothesized that dysregulated NAD metabolism contributes to these abnormalities. Methods RNAsequencing of lungs from transgenic mice expressing human ACE2 (K18-hACE2) challenged with SARS-CoV-2 revealed upregulation of NAD biosynthetic enzymes, including NAPRT1, NMNAT1, NAMPT, and IDO1 6 days post-infection. Results Our data also demonstrate increased gene expression of NAD consuming enzymes: PARP 9,10,14 and CD38. At the same time, SIRT1, a protein deacetylase (requiring NAD as a cofactor and involved in control of inflammation) is downregulated. We confirmed our findings by mining sequencing data from lungs of patients that died from SARS-CoV-2 infection. Our validated findings demonstrating increased NAD turnover in SARS-CoV-2 infection suggested that modulating NAD pathways may alter disease progression and may offer therapeutic benefits. Specifically, we hypothesized that treating K18-hACE2 mice with nicotinamide riboside (NR), a potent NAD precursor, may mitigate lethality and improve recovery from SARS-CoV-2 infection. We also tested the therapeutic potential of an anti- monomeric NAMPT antibody using the same infection model. Treatment with high dose anti-NAMPT antibody resulted in significantly decreased body weight compared to control, which was mitigated by combining HD anti-NAMPT antibody with NR. We observed a significant increase in lipid metabolites, including eicosadienoic acid, oleic acid, and palmitoyl carnitine in the low dose antibody + NR group. We also observed significantly increased nicotinamide related metabolites in NR treated animals. Discussion Our data suggest that infection perturbs NAD pathways, identify novel mechanisms that may explain some pathophysiology of CoVID-19 and suggest novel strategies for both treatment and prevention.
Collapse
Affiliation(s)
- Amin Izadpanah
- Tulane National Primate Research Center, Covington, Louisiana, LA, United States
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, LA, United States
| | - Joseph C. Mudd
- Tulane National Primate Research Center, Covington, Louisiana, LA, United States
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, LA, United States
| | - Joe G. N. Garcia
- Department of Medicine, College of Medicine Tucson, University of Arizona, Tucson, AZ, United States
| | - Sudesh Srivastav
- Biostatistics and Data Science, Tulane University School of Public Health, New Orleans, LA, United States
| | | | - Clovis Palmer
- Tulane National Primate Research Center, Covington, Louisiana, LA, United States
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, LA, United States
| | - Aaron R. Goldman
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, United States
- Proteomics and Metabolomics Shared Resource, The Wistar Institute, Philadelphia, PA, United States
| | - Jay K. Kolls
- Center for Translational Research in Infection and Inflammation, Tulane School of Medicine, New Orleans, Louisiana, LA, United States
| | - Xuebin Qin
- Tulane National Primate Research Center, Covington, Louisiana, LA, United States
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, LA, United States
| | - Jay Rappaport
- Tulane National Primate Research Center, Covington, Louisiana, LA, United States
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, LA, United States
| |
Collapse
|
48
|
Duma L, Ahel I. The function and regulation of ADP-ribosylation in the DNA damage response. Biochem Soc Trans 2023; 51:995-1008. [PMID: 37171085 PMCID: PMC10317172 DOI: 10.1042/bst20220749] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/13/2023]
Abstract
ADP-ribosylation is a post-translational modification involved in DNA damage response (DDR). In higher organisms it is synthesised by PARP 1-3, DNA strand break sensors. Recent advances have identified serine residues as the most common targets for ADP-ribosylation during DDR. To ADP-ribosylate serine, PARPs require an accessory factor, HPF1 which completes the catalytic domain. Through ADP-ribosylation, PARPs recruit a variety of factors to the break site and control their activities. However, the timely removal of ADP-ribosylation is also key for genome stability and is mostly performed by two hydrolases: PARG and ARH3. Here, we describe the key writers, readers and erasers of ADP-ribosylation and their contribution to the mounting of the DDR. We also discuss the use of PARP inhibitors in cancer therapy and the ways to tackle PARPi treatment resistance.
Collapse
Affiliation(s)
- Lena Duma
- Sir William Dunn School of Pathology, University of Oxford, Oxford, U.K
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, U.K
| |
Collapse
|
49
|
Kerr CM, Parthasarathy S, Schwarting N, O’Connor JJ, Giri E, More S, Orozco RC, Fehr AR. PARP12 is required to repress the replication of a Mac1 mutant coronavirus in a cell and tissue specific manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.16.545351. [PMID: 37398292 PMCID: PMC10312760 DOI: 10.1101/2023.06.16.545351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
ADP-ribosyltransferases (ARTs) mediate the transfer of ADP-ribose from NAD + to protein or nucleic acid substrates. This modification can be removed by several different types of proteins, including macrodomains. Several ARTs, also known as PARPs, are stimulated by interferon, indicating ADP-ribosylation is an important aspect of the innate immune response. All coronaviruses (CoVs) encode for a highly conserved macrodomain (Mac1) that is critical for CoVs to replicate and cause disease, indicating that ADP-ribosylation can effectively control coronavirus infection. Our siRNA screen indicated that PARP12 might inhibit the replication of a MHV Mac1 mutant virus in bone-marrow derived macrophages (BMDMs). To conclusively demonstrate that PARP12 is a key mediator of the antiviral response to CoVs both in cell culture and in vivo , we produced PARP12 -/- mice and tested the ability of MHV A59 (hepatotropic/neurotropic) and JHM (neurotropic) Mac1 mutant viruses to replicate and cause disease in these mice. Notably, in the absence of PARP12, Mac1 mutant replication was increased in BMDMs and in mice. In addition, liver pathology was also increased in A59 infected mice. However, the PARP12 knockout did not restore Mac1 mutant virus replication to WT virus levels in all cell or tissue types and did not significantly increase the lethality of Mac1 mutant viruses. These results demonstrate that while PARP12 inhibits MHV Mac1 mutant virus infection, additional PARPs or innate immune factors must contribute to the extreme attenuation of this virus in mice. IMPORTANCE Over the last decade, the importance of ADP-ribosyltransferases (ARTs), also known as PARPs, in the antiviral response has gained increased significance as several were shown to either restrict virus replication or impact innate immune responses. However, there are few studies showing ART-mediated inhibition of virus replication or pathogenesis in animal models. We found that the CoV macrodomain (Mac1) was required to prevent ART-mediated inhibition of virus replication in cell culture. Here, using knockout mice, we found that PARP12, an interferon-stimulated ART, was required to repress the replication of a Mac1 mutant CoV both in cell culture and in mice, demonstrating that PARP12 represses coronavirus replication. However, the deletion of PARP12 did not fully rescue Mac1 mutant virus replication or pathogenesis, indicating that multiple PARPs function to counter coronavirus infection.
Collapse
Affiliation(s)
- Catherine M. Kerr
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| | | | - Nancy Schwarting
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| | - Joseph J. O’Connor
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| | - Emily Giri
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| | - Sunil More
- Department of Veterinary Pathology, Oklahoma State University, Stillwater Oklahoma 74048, USA
| | - Robin C. Orozco
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| | - Anthony R. Fehr
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| |
Collapse
|
50
|
Anmangandla A, Jana S, Peng K, Wallace SD, Bagde SR, Drown BS, Xu J, Hergenrother PJ, Fromme JC, Lin H. A Fluorescence Polarization Assay for Macrodomains Facilitates the Identification of Potent Inhibitors of the SARS-CoV-2 Macrodomain. ACS Chem Biol 2023; 18:1200-1207. [PMID: 37126856 PMCID: PMC10178785 DOI: 10.1021/acschembio.3c00092] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/10/2023] [Indexed: 05/03/2023]
Abstract
Viral macrodomains, which can bind to and/or hydrolyze adenine diphosphate ribose (ADP-ribose or ADPr) from proteins, have been suggested to counteract host immune response and be viable targets for the development of antiviral drugs. Therefore, developing high-throughput screening (HTS) techniques for macrodomain inhibitors is of great interest. Herein, using a novel tracer TAMRA-ADPr, an ADP-ribose compound conjugated with tetramethylrhodamine, we developed a robust fluorescence polarization assay for various viral and human macrodomains including SARS-CoV-2 Macro1, VEEV Macro, CHIKV Macro, human MacroD1, MacroD2, and PARP9 Macro2. Using this assay, we validated Z8539 (IC50 6.4 μM) and GS441524 (IC50 15.2 μM), two literature-reported small-molecule inhibitors of SARS-CoV-2 Macro1. Our data suggest that GS441524 is highly selective for SARS-CoV-2 Macro1 over other human and viral macrodomains. Furthermore, using this assay, we identified pNP-ADPr (ADP-ribosylated p-nitrophenol, IC50 370 nM) and TFMU-ADPr (ADP-ribosylated trifluoromethyl umbelliferone, IC50 590 nM) as the most potent SARS-CoV-2 Macro1 binders reported to date. An X-ray crystal structure of SARS-CoV-2 Macro1 in complex with TFMU-ADPr revealed how the TFMU moiety contributes to the binding affinity. Our data demonstrate that this fluorescence polarization assay is a useful addition to the HTS methods for the identification of macrodomain inhibitors.
Collapse
Affiliation(s)
- Ananya Anmangandla
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United States
| | - Sadhan Jana
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United States
| | - Kewen Peng
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United States
| | - Shamar D. Wallace
- Department
of Molecular Biology and Genetics, Weill Institute for Cell and Molecular
Biology, Cornell University, Ithaca, New York 14853, United States
| | - Saket R. Bagde
- Department
of Molecular Biology and Genetics, Weill Institute for Cell and Molecular
Biology, Cornell University, Ithaca, New York 14853, United States
| | - Bryon S. Drown
- Department
of Chemistry, Institute for Genomic Biology,
and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, 261 Roger Adams Lab Box 36-5, 600
S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Jiashu Xu
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United States
| | - Paul J. Hergenrother
- Department
of Chemistry, Institute for Genomic Biology,
and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, 261 Roger Adams Lab Box 36-5, 600
S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - J. Christopher Fromme
- Department
of Molecular Biology and Genetics, Weill Institute for Cell and Molecular
Biology, Cornell University, Ithaca, New York 14853, United States
| | - Hening Lin
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United States
- Howard
Hughes Medical Institute; Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|