1
|
Llewellyn J, Baratam R, Culig L, Beerman I. Cellular stress and epigenetic regulation in adult stem cells. Life Sci Alliance 2024; 7:e202302083. [PMID: 39348938 PMCID: PMC11443024 DOI: 10.26508/lsa.202302083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 09/16/2024] [Accepted: 09/16/2024] [Indexed: 10/02/2024] Open
Abstract
Stem cells are a unique class of cells that possess the ability to differentiate and self-renew, enabling them to repair and replenish tissues. To protect and maintain the potential of stem cells, the cells and the environment surrounding these cells (stem cell niche) are highly responsive and tightly regulated. However, various stresses can affect the stem cells and their niches. These stresses are both systemic and cellular and can arise from intrinsic or extrinsic factors which would have strong implications on overall aging and certain disease states. Therefore, understanding the breadth of drivers, namely epigenetic alterations, involved in cellular stress is important for the development of interventions aimed at maintaining healthy stem cells and tissue homeostasis. In this review, we summarize published findings of epigenetic responses to replicative, oxidative, mechanical, and inflammatory stress on various types of adult stem cells.
Collapse
Affiliation(s)
- Joey Llewellyn
- https://ror.org/049v75w11 Epigenetics and Stem Cell Unit, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Rithvik Baratam
- https://ror.org/049v75w11 Epigenetics and Stem Cell Unit, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Luka Culig
- https://ror.org/049v75w11 Epigenetics and Stem Cell Unit, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Isabel Beerman
- https://ror.org/049v75w11 Epigenetics and Stem Cell Unit, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| |
Collapse
|
2
|
Attree E, Griffiths B, Panchal K, Xia D, Werling D, Banos G, Oikonomou G, Psifidi A. Identification of DNA methylation markers for age and Bovine Respiratory Disease in dairy cattle: A pilot study based on Reduced Representation Bisulfite Sequencing. Commun Biol 2024; 7:1251. [PMID: 39363014 PMCID: PMC11450024 DOI: 10.1038/s42003-024-06925-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 09/18/2024] [Indexed: 10/05/2024] Open
Abstract
Methylation profiles of animals are known to differ by age and disease status. Bovine respiratory disease (BRD), a complex infectious disease, primarily affects calves and has significant impact on animal welfare and the cattle industry, due to production losses, increased veterinary costs as well as animal losses. BRD susceptibility is multifactorial, influenced by both environmental and genetic factors. We have performed a pilot study to investigate the epigenetic profile of BRD susceptibility in six calves (three healthy versus three diagnosed with BRD) and age-related methylation differences between healthy calves and adult dairy cows (three calves versus four adult cows) using Reduced Representation Bisulfite Sequencing (RRBS). We identified 2537 genes within differentially methylated regions between calves and adults. Functional analysis revealed enrichment of developmental pathways including cell fate commitment and tissue morphogenesis. Between healthy and BRD affected calves, 964 genes were identified within differentially methylated regions. Immune and vasculature regulatory pathways were enriched and key candidates in BRD susceptibility involved in complement cascade regulation, vasoconstriction and respiratory cilia structure and function were identified. Further studies with a greater sample size are needed to validate these findings and formulate integration into breeding programmes aiming to increase animal longevity and disease resistance.
Collapse
Affiliation(s)
- E Attree
- Department of Clinical Science and Services, The Royal Veterinary College, Hatfield, UK.
| | - B Griffiths
- Department of Livestock and One Health, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Neston, UK
| | - K Panchal
- Institute of Applied Sciences, Charotar University of Science and Technology (CHARUSAT), Gujarat, India
| | - D Xia
- Department of Pathobiology and Population Sciences, Centre for Vaccinology and Regenerative Medicine, Royal Veterinary College, Hatfield, UK
| | - D Werling
- Department of Pathobiology and Population Sciences, Centre for Vaccinology and Regenerative Medicine, Royal Veterinary College, Hatfield, UK
| | - G Banos
- Scotland's Rural College (SRUC), Easter Bush, Midlothian, Scotland, UK
| | - G Oikonomou
- Department of Livestock and One Health, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Neston, UK
| | - A Psifidi
- Department of Clinical Science and Services, The Royal Veterinary College, Hatfield, UK.
- Department of Pathobiology and Population Sciences, Centre for Vaccinology and Regenerative Medicine, Royal Veterinary College, Hatfield, UK.
| |
Collapse
|
3
|
Cohen CE, Swallow DM, Walker C. The molecular basis of lactase persistence: Linking genetics and epigenetics. Ann Hum Genet 2024. [PMID: 39171584 DOI: 10.1111/ahg.12575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024]
Abstract
Lactase persistence (LP) - the genetic trait that determines the continued expression of the enzyme lactase into adulthood - has undergone recent, rapid positive selection since the advent of animal domestication and dairying in some human populations. While underlying evolutionary explanations have been widely posited and studied, the molecular basis of LP remains less so. This review considers the genetic and epigenetic bases of LP. Multiple single-nucleotide polymorphisms (SNPs) in an LCT enhancer in intron 13 of the neighbouring MCM6 gene are associated with LP. These SNPs alter binding of transcription factors (TFs) and likely prevent age-related increases in methylation in the enhancer, maintaining LCT expression into adulthood to cause LP. However, the complex relationship between the genetics and epigenetics of LP is not fully characterised, and the mode of action of methylation quantitative trait loci (meQTLs) (SNPs affecting methylation) generally remains poorly understood. Here, we examine published LP data to propose a model describing how methylation in the LCT enhancer is prevented in LP adults. We argue that this occurs through altered binding of the TF Oct-1 (encoded by the gene POU2F1) and neighbouring TFs GATA-6 (GATA6), HNF-3A (FOXA1) and c-Ets1 (ETS1) acting in concert. We therefore suggest a plausible new model for LCT downregulation in the context of LP, with wider relevance for future work on the mechanisms of other meQTLs.
Collapse
Affiliation(s)
- Céleste E Cohen
- Department of Genetics, Evolution and Environment, University College London Genetics Institute (UGI), London, UK
| | - Dallas M Swallow
- Department of Genetics, Evolution and Environment, University College London Genetics Institute (UGI), London, UK
| | - Catherine Walker
- Department of Genetics, Evolution and Environment, University College London Genetics Institute (UGI), London, UK
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
4
|
Izadi M, Sadri N, Abdi A, Serajian S, Jalalei D, Tahmasebi S. Epigenetic biomarkers in aging and longevity: Current and future application. Life Sci 2024; 351:122842. [PMID: 38879158 DOI: 10.1016/j.lfs.2024.122842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024]
Abstract
The aging process has been one of the most necessary research fields in the current century, and knowing different theories of aging and the role of different genetic, epigenetic, molecular, and environmental modulating factors in increasing the knowledge of aging mechanisms and developing appropriate diagnostic, therapeutic, and preventive ways would be helpful. One of the most conserved signs of aging is epigenetic changes, including DNA methylation, histone modifications, chromatin remodeling, noncoding RNAs, and extracellular RNAs. Numerous biological processes and hallmarks are vital in aging development, but epigenomic alterations are especially notable because of their importance in gene regulation and cellular identity. The mounting evidence points to a possible interaction between age-related epigenomic alterations and other aging hallmarks, like genome instability. To extend a healthy lifespan and possibly reverse some facets of aging and aging-related diseases, it will be crucial to comprehend global and locus-specific epigenomic modifications and recognize corresponding regulators of health and longevity. In the current study, we will aim to discuss the role of epigenomic mechanisms in aging and the most recent developments in epigenetic diagnostic biomarkers, which have the potential to focus efforts on reversing the destructive signs of aging and extending the lifespan.
Collapse
Affiliation(s)
- Mehran Izadi
- Department of Infectious and Tropical Diseases, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran; Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran
| | - Nariman Sadri
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran; Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran; School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirhossein Abdi
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran; Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran; Royan Institute for Stem Cell Biology and Technology, Tehran, Iran
| | - Sahar Serajian
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran; Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran; Royan Institute for Stem Cell Biology and Technology, Tehran, Iran
| | - Dorsa Jalalei
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran; Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran; School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Safa Tahmasebi
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran; Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran; Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Jain N, Li JL, Tong L, Jasmine F, Kibriya MG, Demanelis K, Oliva M, Chen LS, Pierce BL. DNA methylation correlates of chronological age in diverse human tissue types. Epigenetics Chromatin 2024; 17:25. [PMID: 39118140 PMCID: PMC11308253 DOI: 10.1186/s13072-024-00546-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/15/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND While the association of chronological age with DNA methylation (DNAm) in whole blood has been extensively studied, the tissue-specificity of age-related DNAm changes remains an active area of research. Studies investigating the association of age with DNAm in tissues such as brain, skin, immune cells, fat, and liver have identified tissue-specific and non-specific effects, thus, motivating additional studies of diverse human tissue and cell types. RESULTS Here, we performed an epigenome-wide association study, leveraging DNAm data (Illumina EPIC array) from 961 tissue samples representing 9 tissue types (breast, lung, colon, ovary, prostate, skeletal muscle, testis, whole blood, and kidney) from the Genotype-Tissue Expression (GTEx) project. We identified age-associated CpG sites (false discovery rate < 0.05) in 8 tissues (all except skeletal muscle, n = 47). This included 162,002 unique hypermethylated and 90,626 hypomethylated CpG sites across all tissue types, with 130,137 (80%) hypermethylated CpGs and 74,703 (82%) hypomethylated CpG sites observed in a single tissue type. While the majority of age-associated CpG sites appeared tissue-specific, the patterns of enrichment among genomic features, such as chromatin states and CpG islands, were similar across most tissues, suggesting common mechanisms underlying cellular aging. Consistent with previous findings, we observed that hypermethylated CpG sites are enriched in regions with repressed polycomb signatures and CpG islands, while hypomethylated CpG sites preferentially occurred in non-CpG islands and enhancers. To gain insights into the functional effects of age-related DNAm changes, we assessed the correlation between DNAm and local gene expression changes to identify age-related expression quantitative trait methylation (age-eQTMs). We identified several age-eQTMs present in multiple tissue-types, including in the CDKN2A, HENMT1, and VCWE regions. CONCLUSION Overall, our findings will aid future efforts to develop biomarkers of aging and understand mechanisms of aging in diverse human tissue types.
Collapse
Affiliation(s)
- Niyati Jain
- Department of Public Health Sciences, University of Chicago, Chicago, IL, 60637, USA
- Committee on Genetics, Genomics and Systems Biology, University of Chicago, Chicago, IL, 60637, USA
| | - James L Li
- Department of Public Health Sciences, University of Chicago, Chicago, IL, 60637, USA
- Interdisciplinary Scientist Training Program, University of Chicago, Chicago, IL, 60637, USA
| | - Lin Tong
- Department of Public Health Sciences, University of Chicago, Chicago, IL, 60637, USA
| | - Farzana Jasmine
- Institute for Population and Precision Health (IPPH), Biological Sciences Division, University of Chicago, Chicago, IL, 60637, USA
| | - Muhammad G Kibriya
- Department of Public Health Sciences, University of Chicago, Chicago, IL, 60637, USA
| | - Kathryn Demanelis
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA, 15232, USA
| | - Meritxell Oliva
- Department of Public Health Sciences, University of Chicago, Chicago, IL, 60637, USA
- Genomics Research Center, AbbVie, North Chicago, IL, 60064, USA
| | - Lin S Chen
- Department of Public Health Sciences, University of Chicago, Chicago, IL, 60637, USA
| | - Brandon L Pierce
- Department of Public Health Sciences, University of Chicago, Chicago, IL, 60637, USA.
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA.
- Comprehensive Cancer Center, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
6
|
Gomez-Pinilla F, Thapak P. Exercise epigenetics is fueled by cell bioenergetics: Supporting role on brain plasticity and cognition. Free Radic Biol Med 2024; 220:43-55. [PMID: 38677488 PMCID: PMC11144461 DOI: 10.1016/j.freeradbiomed.2024.04.237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/04/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
Exercise has the unique aptitude to benefit overall health of body and brain. Evidence indicates that the effects of exercise can be saved in the epigenome for considerable time to elevate the threshold for various diseases. The action of exercise on epigenetic regulation seems central to building an "epigenetic memory" to influence long-term brain function and behavior. As an intrinsic bioenergetic process, exercise engages the function of the mitochondria and redox pathways to impinge upon molecular mechanisms that regulate synaptic plasticity and learning and memory. We discuss how the action of exercise uses mechanisms of bioenergetics to support a "epigenetic memory" with long-term implications for neural and behavioral plasticity. This information is crucial for directing the power of exercise to reduce the burden of neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Fernando Gomez-Pinilla
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA; Department of Neurosurgery, UCLA Brain Injury Research Center, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Pavan Thapak
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
7
|
Górczak K, Burzykowski T, Claesen J. A varying-coefficient model for the analysis of methylation sequencing data. Comput Biol Chem 2024; 111:108094. [PMID: 38781748 DOI: 10.1016/j.compbiolchem.2024.108094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
DNA methylation is an important epigenetic modification involved in gene regulation. Advances in the next generation sequencing technology have enabled the retrieval of DNA methylation information at single-base-resolution. However, due to the sequencing process and the limited amount of isolated DNA, DNA-methylation-data are often noisy and sparse, which complicates the identification of differentially methylated regions (DMRs), especially when few replicates are available. We present a varying-coefficient model for detecting DMRs by using single-base-resolved methylation information. The model simultaneously smooths the methylation profiles and allows detection of DMRs, while accounting for additional covariates. The proposed model takes into account possible overdispersion by using a beta-binomial distribution. The overdispersion itself can be modeled as a function of the genomic region and explanatory variables. We illustrate the properties of the proposed model by applying it to two real-life case studies.
Collapse
Affiliation(s)
- Katarzyna Górczak
- Data Science Institute, Hasselt University, Belgium; Open Analytics NV, Antwerp, Belgium
| | - Tomasz Burzykowski
- Data Science Institute, Hasselt University, Belgium; Department of Biostatistics and Medical Informatics, Medical University of Bialystok, Poland; International Drug Development Institute (IDDI), Belgium
| | - Jürgen Claesen
- Data Science Institute, Hasselt University, Belgium; Department of Epidemiology and Data Science, Amsterdam UMC, VU Amsterdam, The Netherlands.
| |
Collapse
|
8
|
Zhang M, Hu T, Ma T, Huang W, Wang Y. Epigenetics and environmental health. Front Med 2024; 18:571-596. [PMID: 38806988 DOI: 10.1007/s11684-023-1038-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/15/2023] [Indexed: 05/30/2024]
Abstract
Epigenetic modifications including DNA methylation, histone modifications, chromatin remodeling, and RNA modifications complicate gene regulation and heredity and profoundly impact various physiological and pathological processes. In recent years, accumulating evidence indicates that epigenetics is vulnerable to environmental changes and regulates the growth, development, and diseases of individuals by affecting chromatin activity and regulating gene expression. Environmental exposure or induced epigenetic changes can regulate the state of development and lead to developmental disorders, aging, cardiovascular disease, Alzheimer's disease, cancers, and so on. However, epigenetic modifications are reversible. The use of specific epigenetic inhibitors targeting epigenetic changes in response to environmental exposure is useful in disease therapy. Here, we provide an overview of the role of epigenetics in various diseases. Furthermore, we summarize the mechanism of epigenetic alterations induced by different environmental exposures, the influence of different environmental exposures, and the crosstalk between environmental variation epigenetics, and genes that are implicated in the body's health. However, the interaction of multiple factors and epigenetics in regulating the initiation and progression of various diseases complicates clinical treatments. We discuss some commonly used epigenetic drugs targeting epigenetic modifications and methods to prevent or relieve various diseases regulated by environmental exposure and epigenetics through diet.
Collapse
Affiliation(s)
- Min Zhang
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Ting Hu
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tianyu Ma
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Wei Huang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
| | - Yan Wang
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
9
|
Short AK, Weber R, Kamei N, Wilcox Thai C, Arora H, Mortazavi A, Stern HS, Glynn L, Baram TZ. Individual longitudinal changes in DNA-methylome identify signatures of early-life adversity and correlate with later outcome. Neurobiol Stress 2024; 31:100652. [PMID: 38962694 PMCID: PMC11219970 DOI: 10.1016/j.ynstr.2024.100652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/02/2024] [Accepted: 05/27/2024] [Indexed: 07/05/2024] Open
Abstract
Adverse early-life experiences (ELA) affect a majority of the world's children. Whereas the enduring impact of ELA on cognitive and emotional health is established, there are no tools to predict vulnerability to ELA consequences in an individual child. Epigenetic markers including peripheral-cell DNA-methylation profiles may encode ELA and provide predictive outcome markers, yet the interindividual variance of the human genome and rapid changes in DNA methylation in childhood pose significant challenges. Hoping to mitigate these challenges we examined the relation of several ELA dimensions to DNA methylation changes and outcome using a within-subject longitudinal design and a high methylation-change threshold. DNA methylation was analyzed in buccal swab/saliva samples collected twice (neonatally and at 12 months) in 110 infants. We identified CpGs differentially methylated across time for each child and determined whether they associated with ELA indicators and executive function at age 5. We assessed sex differences and derived a sex-dependent 'impact score' based on sites that most contributed to methylation changes. Changes in methylation between two samples of an individual child reflected age-related trends and correlated with executive function years later. Among tested ELA dimensions and life factors including income to needs ratios, maternal sensitivity, body mass index and infant sex, unpredictability of parental and household signals was the strongest predictor of executive function. In girls, high early-life unpredictability interacted with methylation changes to presage executive function. Thus, longitudinal, within-subject changes in methylation profiles may provide a signature of ELA and a potential predictive marker of individual outcome.
Collapse
Affiliation(s)
- Annabel K. Short
- Department of Anatomy and Neurobiology, ersity of California- Irvine, Irvine, CA, 92697, USA
- Departments of Pediatrics and Neurology, University of California-Irvine, Irvine, CA, 92697, USA
| | - Ryan Weber
- Department of Developmental and Cell Biology, University of California-Irvine, Irvine, CA, 92697, USA
| | - Noriko Kamei
- Department of Anatomy and Neurobiology, ersity of California- Irvine, Irvine, CA, 92697, USA
| | - Christina Wilcox Thai
- Department of Developmental and Cell Biology, University of California-Irvine, Irvine, CA, 92697, USA
| | - Hina Arora
- Department of Statistics, University of California-Irvine, Irvine, CA, 92697, USA
| | - Ali Mortazavi
- Department of Developmental and Cell Biology, University of California-Irvine, Irvine, CA, 92697, USA
| | - Hal S. Stern
- Department of Statistics, University of California-Irvine, Irvine, CA, 92697, USA
| | - Laura Glynn
- Department of Psychology, Chapman University, Orange, CA, 92866, USA
| | - Tallie Z. Baram
- Department of Anatomy and Neurobiology, ersity of California- Irvine, Irvine, CA, 92697, USA
- Departments of Pediatrics and Neurology, University of California-Irvine, Irvine, CA, 92697, USA
| |
Collapse
|
10
|
Yokomizo T, Oshima M, Iwama A. Epigenetics of hematopoietic stem cell aging. Curr Opin Hematol 2024; 31:207-216. [PMID: 38640057 DOI: 10.1097/moh.0000000000000818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
PURPOSE OF REVIEW The development of new antiaging medicines is of great interest to the current elderly and aging population. Aging of the hematopoietic system is attributed to the aging of hematopoietic stem cells (HSCs), and epigenetic alterations are the key effectors driving HSC aging. Understanding the epigenetics of HSC aging holds promise of providing new insights for combating HSC aging and age-related hematological malignancies. RECENT FINDINGS Aging is characterized by the progressive loss of physiological integrity, leading to impaired function and increased vulnerability to death. During aging, the HSCs undergo both quantitative and qualitative changes. These functional changes in HSCs cause dysregulated hematopoiesis, resulting in anemia, immune dysfunction, and an increased risk of hematological malignancies. Various cell-intrinsic and cell-extrinsic effectors influencing HSC aging have also been identified. Epigenetic alterations are one such mechanism. SUMMARY Cumulative epigenetic alterations in aged HSCs affect their fate, leading to aberrant self-renewal, differentiation, and function of aged HSCs. In turn, these factors provide an opportunity for aged HSCs to expand by modulating their self-renewal and differentiation balance, thereby contributing to the development of hematological malignancies.
Collapse
Affiliation(s)
- Takako Yokomizo
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | | |
Collapse
|
11
|
Kientega T, Marcoux S, Bourbonnais J, Montpetit J, Caru M, Cardin GB, Arbour N, Marcil V, Curnier D, Laverdière C, Sinnett D, Rodier F. Premature thymic functional senescence is a hallmark of childhood acute lymphoblastic leukemia survivorship. Blood Cancer J 2024; 14:96. [PMID: 38871704 DOI: 10.1038/s41408-024-01071-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/07/2024] [Accepted: 05/16/2024] [Indexed: 06/15/2024] Open
Abstract
Childhood acute lymphoblastic leukemia (cALL) survivors suffer early-onset chronic diseases classically associated with aging. Normal aging is accompanied by organ dysfunctions, including immunological ones. We hypothesize that thymic immunosenescence occurs in cALL survivors and that its severity may correlate with early-onset chronic diseases. The PETALE study is a cALL survivor cohort with an extensive cardiovascular and metabolic evaluation. The thymic immunosenescence biomarker, signal joint T-cell receptor excision circles (TREC), was evaluated and was highly correlated with age in healthy participants (n = 281) and cALL survivors (n = 248). We observed a systematic thymic immunoage accentuation in each cALL survivor compared to controls ranging from 5.9 to 88.3 years. The immunoage gain was independent of age at diagnosis and treatment modalities and was more severe for females. Thymic aging was associated with several pathophysiological parameters, was greater in survivors suffering from metabolic syndrome, but there was no significant association with global physical condition. The decrease in TREC was independent from blood cell counts, which were normal, suggesting a segmental aging of the thymic compartment. Indeed, increased plasmatic T cell regulatory cytokines IL-6, IL-7 and GM-CSF accompanied high immunoage gain. Our data reveal that cALL or its treatment trigger a rapid immunoage gain followed by further gradual thymic immunosenescence, similar to normal aging. This leads to an enduring shift in accentuated immunoage compared to chronological age. Thus, accentuated thymic immunosenescence is a hallmark of cALL survivorship and TREC levels could be useful immunosenescence biomarkers to help monitoring the health of cancer survivors.
Collapse
Affiliation(s)
- Tibila Kientega
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CHUM), Montréal, QC, Canada
- Institut du cancer de Montréal, Montréal, QC, Canada
| | - Sophie Marcoux
- Université Laval, Département de médecine sociale et préventive, Québec, QC, Canada
- Centre de recherche du Centre hospitalier universitaire de Québec-Université Laval, Québec, QC, Canada
| | - Jessica Bourbonnais
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CHUM), Montréal, QC, Canada
- Institut du cancer de Montréal, Montréal, QC, Canada
| | - Jade Montpetit
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CHUM), Montréal, QC, Canada
- Institut du cancer de Montréal, Montréal, QC, Canada
| | - Maxime Caru
- Centre de recherche Azrieli du CHU Sainte-Justine, Montréal, QC, Canada
- Department of Pediatrics, Division of Hematology and Oncology, Penn State College of Medicine, Hershey, PA, USA
| | - Guillaume B Cardin
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CHUM), Montréal, QC, Canada
- Institut du cancer de Montréal, Montréal, QC, Canada
| | - Nathalie Arbour
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CHUM), Montréal, QC, Canada
- Université de Montréal, Département de Neurosciences, Montréal, QC, Canada
| | - Valérie Marcil
- Centre de recherche Azrieli du CHU Sainte-Justine, Montréal, QC, Canada
- Université de Montréal, Département de Nutrition, Montréal, QC, Canada
| | - Daniel Curnier
- Centre de recherche Azrieli du CHU Sainte-Justine, Montréal, QC, Canada
- Université de Montréal, Faculté de médecine, École de kinésiologie et des sciences de l'activité physique, Laboratoire de physiopathologie de l'exercice (LPEX), Montréal, QC, Canada
| | - Caroline Laverdière
- Centre de recherche Azrieli du CHU Sainte-Justine, Montréal, QC, Canada
- Université de Montréal, Département de Pédiatrie, Montréal, QC, Canada
| | - Daniel Sinnett
- Centre de recherche Azrieli du CHU Sainte-Justine, Montréal, QC, Canada
- Université de Montréal, Département de Pédiatrie, Montréal, QC, Canada
| | - Francis Rodier
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CHUM), Montréal, QC, Canada.
- Institut du cancer de Montréal, Montréal, QC, Canada.
- Université de Montréal, Département de Radiologie, radio-oncologie et médecine nucléaire, Montréal, QC, Canada.
| |
Collapse
|
12
|
Mojica EA, Fu Y, Kültz D. Salinity-responsive histone PTMs identified in the gills and gonads of Mozambique tilapia (Oreochromis mossambicus). BMC Genomics 2024; 25:586. [PMID: 38862901 PMCID: PMC11167857 DOI: 10.1186/s12864-024-10471-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 05/29/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Histone post-translational modifications (PTMs) are epigenetic marks that can be induced by environmental stress and elicit heritable patterns of gene expression. To investigate this process in an ecological context, we characterized the influence of salinity stress on histone PTMs within the gills, kidney, and testes of Mozambique tilapia (Oreochromis mossambicus). A total of 221 histone PTMs were quantified in each tissue sample and compared between freshwater-adapted fish exposed to salinity treatments that varied in intensity and duration. RESULTS Four salinity-responsive histone PTMs were identified in this study. When freshwater-adapted fish were exposed to seawater for two hours, the relative abundance of H1K16ub significantly increased in the gills. Long-term salinity stress elicited changes in both the gills and testes. When freshwater-adapted fish were exposed to a pulse of severe salinity stress, where salinity gradually increased from freshwater to a maximum of 82.5 g/kg, the relative abundance of H1S1ac significantly decreased in the gills. Under the same conditions, the relative abundance of both H3K14ac and H3K18ub decreased significantly in the testes of Mozambique tilapia. CONCLUSIONS This study demonstrates that salinity stress can alter histone PTMs in the gills and gonads of Mozambique tilapia, which, respectively, signify a potential for histone PTMs to be involved in salinity acclimation and adaptation in euryhaline fishes. These results thereby add to a growing body of evidence that epigenetic mechanisms may be involved in such processes.
Collapse
Affiliation(s)
- Elizabeth A Mojica
- Department of Animal Sciences & Genome Center, University of California - Davis, One Shields Ave., Meyer Hall, Davis, CA, 95616, USA
| | - Yuhan Fu
- Department of Animal Sciences & Genome Center, University of California - Davis, One Shields Ave., Meyer Hall, Davis, CA, 95616, USA
| | - Dietmar Kültz
- Department of Animal Sciences & Genome Center, University of California - Davis, One Shields Ave., Meyer Hall, Davis, CA, 95616, USA.
| |
Collapse
|
13
|
Tong H, Dwaraka VB, Chen Q, Luo Q, Lasky-Su JA, Smith R, Teschendorff AE. Quantifying the stochastic component of epigenetic aging. NATURE AGING 2024; 4:886-901. [PMID: 38724732 PMCID: PMC11186785 DOI: 10.1038/s43587-024-00600-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/21/2024] [Indexed: 05/15/2024]
Abstract
DNA methylation clocks can accurately estimate chronological age and, to some extent, also biological age, yet the process by which age-associated DNA methylation (DNAm) changes are acquired appears to be quasi-stochastic, raising a fundamental question: how much of an epigenetic clock's predictive accuracy could be explained by a stochastic process of DNAm change? Here, using DNAm data from sorted immune cells, we build realistic simulation models, subsequently demonstrating in over 22,770 sorted and whole-blood samples from 25 independent cohorts that approximately 66-75% of the accuracy underpinning Horvath's clock could be driven by a stochastic process. This fraction increases to 90% for the more accurate Zhang's clock, but is lower (63%) for the PhenoAge clock, suggesting that biological aging is reflected by nonstochastic processes. Confirming this, we demonstrate that Horvath's age acceleration in males and PhenoAge's age acceleration in severe coronavirus disease 2019 cases and smokers are not driven by an increased rate of stochastic change but by nonstochastic processes. These results significantly deepen our understanding and interpretation of epigenetic clocks.
Collapse
Affiliation(s)
- Huige Tong
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | - Qingwen Chen
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Qi Luo
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jessica A Lasky-Su
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Andrew E Teschendorff
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
14
|
Wang K, Sartor MA, Colacino JA, Dolinoy DC, Svoboda LK. Sex-Specific Deflection of Age-Related DNA Methylation and Gene Expression in Mouse Heart by Perinatal Toxicant Exposures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.25.591125. [PMID: 38712146 PMCID: PMC11071472 DOI: 10.1101/2024.04.25.591125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Background Global and site-specific changes in DNA methylation and gene expression are associated with cardiovascular aging and disease, but how toxicant exposures during early development influence the normal trajectory of these age-related molecular changes, and whether there are sex differences, has not yet been investigated. Objectives We used an established mouse model of developmental exposures to investigate the effects of perinatal exposure to either lead (Pb) or diethylhexyl phthalate (DEHP), two ubiquitous environmental contaminants strongly associated with CVD, on age-related cardiac DNA methylation and gene expression. Methods Dams were randomly assigned to receive human physiologically relevant levels of Pb (32 ppm in water), DEHP (25 mg/kg chow), or control water and chow. Exposures started two weeks prior to mating and continued until weaning at postnatal day 21 (3 weeks of age). Approximately one male and one female offspring per litter were followed to 3 weeks, 5 months, or 10 months of age, at which time whole hearts were collected (n ≥ 5 per sex per exposure). Enhanced reduced representation bisulfite sequencing (ERRBS) was used to assess the cardiac DNA methylome at 3 weeks and 10 months, and RNA-seq was conducted at all 3 time points. MethylSig and edgeR were used to identify age-related differentially methylated regions (DMRs) and differentially expressed genes (DEGs), respectively, within each sex and exposure group. Cell type deconvolution of bulk RNA-seq data was conducted using the MuSiC algorithm and publicly available single cell RNA-seq data. Results Thousands of DMRs and hundreds of DEGs were identified in control, DEHP, and Pb-exposed hearts across time between 3 weeks and 10 months of age. A closer look at the genes and pathways showing differential DNA methylation revealed that the majority were unique to each sex and exposure group. Overall, pathways governing development and differentiation were most frequently altered with age in all conditions. A small number of genes in each group showed significant changes in DNA methylation and gene expression with age, including several that were altered by both toxicants but were unchanged in control. We also observed subtle, but significant changes in the proportion of several cell types due to age, sex, and developmental exposure. Discussion Together these data show that perinatal Pb or DEHP exposures deflect normal age-related gene expression, DNA methylation programs, and cellular composition across the life course, long after cessation of exposure, and highlight potential biomarkers of developmental toxicant exposures. Further studies are needed to investigate how these epigenetic and transcriptional changes impact cardiovascular health across the life course.
Collapse
|
15
|
Teschendorff AE. On epigenetic stochasticity, entropy and cancer risk. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230054. [PMID: 38432318 PMCID: PMC10909509 DOI: 10.1098/rstb.2023.0054] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 09/26/2023] [Indexed: 03/05/2024] Open
Abstract
Epigenetic changes are known to accrue in normal cells as a result of ageing and cumulative exposure to cancer risk factors. Increasing evidence points towards age-related epigenetic changes being acquired in a quasi-stochastic manner, and that they may play a causal role in cancer development. Here, I describe the quasi-stochastic nature of DNA methylation (DNAm) changes in ageing cells as well as in normal cells at risk of neoplastic transformation, discussing the implications of this stochasticity for developing cancer risk prediction strategies, and in particular, how it may require a conceptual paradigm shift in how we select cancer risk markers. I also describe the mounting evidence that a significant proportion of DNAm changes in ageing and cancer development are related to cell proliferation, reflecting tissue-turnover and the opportunity this offers for predicting cancer risk via the development of epigenetic mitotic-like clocks. Finally, I describe how age-associated DNAm changes may be causally implicated in cancer development via an irreversible suppression of tissue-specific transcription factors that increases epigenetic and transcriptomic entropy, promoting a more plastic yet aberrant cancer stem-cell state. This article is part of a discussion meeting issue 'Causes and consequences of stochastic processes in development and disease'.
Collapse
Affiliation(s)
- Andrew E. Teschendorff
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institute for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, People's Republic of China
| |
Collapse
|
16
|
Yu X, Ren J, Long H, Zeng R, Zhang G, Bilal A, Cui Y. iDNA-OpenPrompt: OpenPrompt learning model for identifying DNA methylation. Front Genet 2024; 15:1377285. [PMID: 38689652 PMCID: PMC11058834 DOI: 10.3389/fgene.2024.1377285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 03/07/2024] [Indexed: 05/02/2024] Open
Abstract
Introduction: DNA methylation is a critical epigenetic modification involving the addition of a methyl group to the DNA molecule, playing a key role in regulating gene expression without changing the DNA sequence. The main difficulty in identifying DNA methylation sites lies in the subtle and complex nature of methylation patterns, which may vary across different tissues, developmental stages, and environmental conditions. Traditional methods for methylation site identification, such as bisulfite sequencing, are typically labor-intensive, costly, and require large amounts of DNA, hindering high-throughput analysis. Moreover, these methods may not always provide the resolution needed to detect methylation at specific sites, especially in genomic regions that are rich in repetitive sequences or have low levels of methylation. Furthermore, current deep learning approaches generally lack sufficient accuracy. Methods: This study introduces the iDNA-OpenPrompt model, leveraging the novel OpenPrompt learning framework. The model combines a prompt template, prompt verbalizer, and Pre-trained Language Model (PLM) to construct the prompt-learning framework for DNA methylation sequences. Moreover, a DNA vocabulary library, BERT tokenizer, and specific label words are also introduced into the model to enable accurate identification of DNA methylation sites. Results and Discussion: An extensive analysis is conducted to evaluate the predictive, reliability, and consistency capabilities of the iDNA-OpenPrompt model. The experimental outcomes, covering 17 benchmark datasets that include various species and three DNA methylation modifications (4mC, 5hmC, 6mA), consistently indicate that our model surpasses outstanding performance and robustness approaches.
Collapse
Affiliation(s)
- Xia Yu
- School of Information and Communication Engineering, Hainan University, Haikou, Hainan, China
- School of Information Science and Technology, Hainan Normal University, Haikou, Hainan, China
| | - Jia Ren
- School of Information and Communication Engineering, Hainan University, Haikou, Hainan, China
| | - Haixia Long
- School of Information Science and Technology, Hainan Normal University, Haikou, Hainan, China
| | - Rao Zeng
- School of Information Science and Technology, Hainan Normal University, Haikou, Hainan, China
| | - Guoqiang Zhang
- School of Information Science and Technology, Hainan Normal University, Haikou, Hainan, China
| | - Anas Bilal
- School of Information Science and Technology, Hainan Normal University, Haikou, Hainan, China
| | - Yani Cui
- School of Information and Communication Engineering, Hainan University, Haikou, Hainan, China
| |
Collapse
|
17
|
Jin K, McCoy BM, Goldman EA, Usova V, Tkachev V, Chitsazan AD, Kakebeen A, Jeffery U, Creevy KE, Wills A, Snyder‐Mackler N, Promislow DEL. DNA methylation and chromatin accessibility predict age in the domestic dog. Aging Cell 2024; 23:e14079. [PMID: 38263575 PMCID: PMC11019125 DOI: 10.1111/acel.14079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 01/25/2024] Open
Abstract
Across mammals, the epigenome is highly predictive of chronological age. These "epigenetic clocks," most of which have been built using DNA methylation (DNAm) profiles, have gained traction as biomarkers of aging and organismal health. While the ability of DNAm to predict chronological age has been repeatedly demonstrated, the ability of other epigenetic features to predict age remains unclear. Here, we use two types of epigenetic information-DNAm, and chromatin accessibility as measured by ATAC-seq-to develop age predictors in peripheral blood mononuclear cells sampled from a population of domesticated dogs. We measured DNAm and ATAC-seq profiles for 71 dogs, building separate predictive clocks from each, as well as the combined dataset. We also use fluorescence-assisted cell sorting to quantify major lymphoid populations for each sample. We found that chromatin accessibility can accurately predict chronological age (R2 ATAC = 26%), though less accurately than the DNAm clock (R2 DNAm = 33%), and the clock built from the combined datasets was comparable to both (R2 combined = 29%). We also observed various populations of CD62L+ T cells significantly correlated with dog age. Finally, we found that all three clocks selected features that were in or near at least two protein-coding genes: BAIAP2 and SCARF2, both previously implicated in processes related to cognitive or neurological impairment. Taken together, these results highlight the potential of chromatin accessibility as a complementary epigenetic resource for modeling and investigating biologic age.
Collapse
Affiliation(s)
- Kelly Jin
- Department of Laboratory Medicine & PathologyUniversity of WashingtonSeattleWashingtonUSA
| | - Brianah M. McCoy
- Center for Evolution and MedicineArizona State UniversityTempeArizonaUSA
- School of Life SciencesArizona State UniversityTempeArizonaUSA
| | | | - Viktoria Usova
- Department of Laboratory Medicine & PathologyUniversity of WashingtonSeattleWashingtonUSA
| | - Victor Tkachev
- Division of Pediatric Hematology/OncologyBoston Children's HospitalBostonMassachusettsUSA
- Dana Farber Cancer InstituteBostonMassachusettsUSA
- Harvard Medical SchoolBostonMassachusettsUSA
| | - Alex D. Chitsazan
- Department of BiochemistryUniversity of WashingtonSeattleWashingtonUSA
| | - Anneke Kakebeen
- Department of BiochemistryUniversity of WashingtonSeattleWashingtonUSA
| | - Unity Jeffery
- College of Veterinary MedicineTexas A & M UniversityCollege StationTexasUSA
| | - Kate E. Creevy
- College of Veterinary MedicineTexas A & M UniversityCollege StationTexasUSA
| | - Andrea Wills
- Department of BiochemistryUniversity of WashingtonSeattleWashingtonUSA
| | - Noah Snyder‐Mackler
- Center for Evolution and MedicineArizona State UniversityTempeArizonaUSA
- School of Life SciencesArizona State UniversityTempeArizonaUSA
| | - Daniel E. L. Promislow
- Department of Laboratory Medicine & PathologyUniversity of WashingtonSeattleWashingtonUSA
- Department of BiologyUniversity of WashingtonSeattleWashingtonUSA
| |
Collapse
|
18
|
Okada D. Application of a mathematical model to clarify the statistical characteristics of a pan-tissue DNA methylation clock. GeroScience 2024; 46:2001-2015. [PMID: 37787856 PMCID: PMC10828133 DOI: 10.1007/s11357-023-00949-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/14/2023] [Indexed: 10/04/2023] Open
Abstract
DNA methylation clocks estimate biological age based on DNA methylation profiles. This study developed a mathematical model to describe DNA methylation aging and the establishment of a pan-tissue DNA methylation clock. The model simulates the aging dynamics of DNA methylation profiles based on passive demethylation as well as the process of cross-sectional bulk data acquisition. As a result, this study identified two conditions under which the pan-tissue DNA methylation clock can successfully predict biological age: one condition is that the target tissues are sufficiently well represented in the training dataset, and the other condition is that the target sample contains cell subsets that are common among different tissues. When either of these conditions is met, the clock performs well. It is also suggested that the epigenetic age of all samples in the target tissue tends to be either over or underestimated when biological age prediction fails. The model can reveal the statistical characteristics of DNA methylation clocks.
Collapse
Affiliation(s)
- Daigo Okada
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, 53 Syogoin-Kawaramachi, Sakyo-ku, Kyoto, Kyoto, 606-8507, Japan.
| |
Collapse
|
19
|
Lossi L, Castagna C, Merighi A. An Overview of the Epigenetic Modifications in the Brain under Normal and Pathological Conditions. Int J Mol Sci 2024; 25:3881. [PMID: 38612690 PMCID: PMC11011998 DOI: 10.3390/ijms25073881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Epigenetic changes are changes in gene expression that do not involve alterations to the DNA sequence. These changes lead to establishing a so-called epigenetic code that dictates which and when genes are activated, thus orchestrating gene regulation and playing a central role in development, health, and disease. The brain, being mostly formed by cells that do not undergo a renewal process throughout life, is highly prone to the risk of alterations leading to neuronal death and neurodegenerative disorders, mainly at a late age. Here, we review the main epigenetic modifications that have been described in the brain, with particular attention on those related to the onset of developmental anomalies or neurodegenerative conditions and/or occurring in old age. DNA methylation and several types of histone modifications (acetylation, methylation, phosphorylation, ubiquitination, sumoylation, lactylation, and crotonylation) are major players in these processes. They are directly or indirectly involved in the onset of neurodegeneration in Alzheimer's or Parkinson's disease. Therefore, this review briefly describes the roles of these epigenetic changes in the mechanisms of brain development, maturation, and aging and some of the most important factors dynamically regulating or contributing to these changes, such as oxidative stress, inflammation, and mitochondrial dysfunction.
Collapse
Affiliation(s)
| | | | - Adalberto Merighi
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, Italy; (L.L.); (C.C.)
| |
Collapse
|
20
|
Tahara S, Tahara T, Yamazaki J, Shijimaya T, Horiguchi N, Funasaka K, Fukui T, Nakagawa Y, Shibata T, Naganuma M, Tsukamoto T, Ohmiya N. Helicobacter pylori infection associated DNA methylation in primary gastric cancer significantly correlates with specific molecular and clinicopathological features. Mol Carcinog 2024; 63:266-274. [PMID: 37846801 DOI: 10.1002/mc.23650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 08/23/2023] [Accepted: 10/01/2023] [Indexed: 10/18/2023]
Abstract
Helicobacter pylori induces DNA methylation in gastric mucosa, which links to gastric cancer (GC) risk. In contrast, CpG island methylator phenotype (CIMP) is defined as high levels of cancer-specific methylation and provides distinct molecular and clinicopathological features of GC. The association between those two types of methylation in GC remains unclear. We examined DNA methylation of well-validated H. pylori infection associated genes in GC and its adjacent mucosa and investigated its association with CIMP, various molecular subtypes and clinical features. We studied 50 candidate loci in 24 gastric samples to identify H. pylori infection associated genes. Identified loci were further examined in 624 gastric tissue from 217 primary GC, 217 adjacent mucosa, and 190 mucosae from cancer-free subjects. We identified five genes (IGF2, SLC16A2, SOX11, P2RX7, and MYOD1) as hypermethylated in H. pylori infected gastric mucosa. In non-neoplastic mucosa, methylation of H. pylori infection associated genes was higher in patients with GC than those without. In primary GC tissues, higher methylation of H. pylori infection associated genes correlated with CIMP-positive and its related features, such as MLH1 methylated cases. On the other hand, GC with lower methylation of these genes presented aggressive clinicopathological features including undifferentiated histopathology, advanced stage at diagnosis. H. pylori infection associated DNA methylation is correlated with CIMP, specific molecular and clinicopathological features in GC, supporting its utility as promising biomarker in this tumor type.
Collapse
Affiliation(s)
- Sayumi Tahara
- Department of Diagnostic Pathology I, Fujita Health University School of Medicine, Toyoake, Japan
| | - Tomomitsu Tahara
- Department of Gastroenterology, Fujita Health University School of Medicine, Toyoake, Japan
- Third Department of Internal Medicine, Kansai Medical University, Hirakata, Japan
| | - Jumpei Yamazaki
- Translational Research Unit, Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
| | - Takuya Shijimaya
- Third Department of Internal Medicine, Kansai Medical University, Hirakata, Japan
| | - Noriyuki Horiguchi
- Department of Gastroenterology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Kohei Funasaka
- Department of Gastroenterology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Toshiro Fukui
- Third Department of Internal Medicine, Kansai Medical University, Hirakata, Japan
| | - Yoshihito Nakagawa
- Department of Gastroenterology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Tomoyuki Shibata
- Department of Gastroenterology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Makoto Naganuma
- Third Department of Internal Medicine, Kansai Medical University, Hirakata, Japan
| | - Tetsuya Tsukamoto
- Department of Diagnostic Pathology I, Fujita Health University School of Medicine, Toyoake, Japan
| | - Naoki Ohmiya
- Department of Advanced Endoscopy, Fujita Health University, Toyoake, Aichi, Japan
| |
Collapse
|
21
|
Yang L, Peery RC, Farmer LM, Gao X, Zhang Y, Creighton CJ, Zhang L, Shen L. Dietary Folate and Cofactors Accelerate Age-dependent p16 Epimutation to Promote Intestinal Tumorigenesis. CANCER RESEARCH COMMUNICATIONS 2024; 4:164-169. [PMID: 38259096 PMCID: PMC10798135 DOI: 10.1158/2767-9764.crc-23-0356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/28/2023] [Accepted: 01/03/2024] [Indexed: 01/13/2024]
Abstract
The extent to which non-genetic environmental factors, such as diet, contribute to carcinogenesis has been long debated. One potential mechanism for the effects of environmental factors is through epigenetic modifications that affect gene expression without changing the underlying DNA sequence. However, the functional cooperation between dietary factors and cancer-causing epigenetic regulation is largely unknown. Here, we use a mouse model of age-dependent p16 epimutation, in which the p16 gene activity is directly controlled by promoter DNA methylation. We show p16 epimutation is modulated by folate and cofactors in dietary supplementation, which leads to increased colon cancer risk. Importantly, our findings provide functional evidence concerning the safety of folate fortification in the general population. SIGNIFICANCE Our study demonstrates that dietary folate and cofactors modulate tumor-suppressor gene methylation to increase intestinal tumorigenesis. Our findings highlight the need for monitoring the long-term safety of folate fortification in high-risk individuals.
Collapse
Affiliation(s)
- Li Yang
- USDA Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Robert C. Peery
- USDA Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Leah M. Farmer
- USDA Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Xia Gao
- USDA Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Yiqun Zhang
- Dan L. Duncan Comprehensive Cancer Center Division of Biostatistics, Baylor College of Medicine, Houston, Texas
| | - Chad J. Creighton
- Dan L. Duncan Comprehensive Cancer Center Division of Biostatistics, Baylor College of Medicine, Houston, Texas
- Department of Medicine and Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - Lanjing Zhang
- Department of Pathology, Princeton Medical Center, Plainsboro, New Jersey
- Department of Chemical Biology, Earnest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey
| | - Lanlan Shen
- USDA Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
22
|
Evangelinakis N, Geladari EV, Geladari CV, Kontogeorgi A, Papaioannou GK, Peppa M, Kalantaridou S. The influence of environmental factors on premature ovarian insufficiency and ovarian aging. Maturitas 2024; 179:107871. [PMID: 37925867 DOI: 10.1016/j.maturitas.2023.107871] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/12/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023]
Abstract
Premature ovarian insufficiency and ovarian aging are complex conditions that affect women's reproductive health and overall well-being. They are both characterized by hypergonadotropic hypogonadism and infertility, and together affect about 1 in 100 women by the age of 40. This review explores the influence of environmental factors on the development and progression of premature ovarian insufficiency and ovarian aging. When referring to environmental factors, we include a wide range of external agents and conditions, including chemicals, socioeconomic factors and lifestyle choices. Through a review of the literature, we attempt to highlight the link between environmental factors and ovarian health. We examine the impact of endocrine-disrupting chemicals, such as bisphenol A and phthalates, on ovarian function and investigate the mechanisms by which these chemicals can disrupt hormone signaling pathways, leading to alterations in ovarian reserve, oocyte quality, and folliculogenesis. Moreover, we explore lifestyle factors like obesity, stress, smoking and alcohol in relation to their effects on ovarian aging. Epigenetic changes may play a crucial role in the prevalence of premature ovarian insufficiency. Understanding the impact of environmental factors on premature ovarian insufficiency and ovarian aging is very important in public and clinical health contexts. By identifying risk factors, healthcare providers can develop targeted and strategic prevention and intervention plans. Furthermore, this knowledge can promote reproductive health and minimize exposure to harmful environmental agents.
Collapse
Affiliation(s)
- Nikolaos Evangelinakis
- 3rd Department of Obstetrics and Gynecology, Aristotle University of Thessaloniki 54124, Thessaloniki, Greece
| | - Eleni V Geladari
- 3rd Internal Medicine Department, Evangelismos General Hospital, Liver Outpatient Clinic, Ypsilantou 45-47, Athens 106 76, Greece
| | - Charalampia V Geladari
- Hellenic Society of Environmental and Climate Medicine, 92 Danaon Street, 13122 Ilion, Athens, Greece
| | - Adamantia Kontogeorgi
- Department of Obstetrics and Gynecology, University of Crete, Andrea Kalokerinou 13, Giofirakia, 71500 Heraklion, Crete, Greece
| | | | - Melpomeni Peppa
- 2nd Department of Internal Medicine, Research Institute and Diabetes Center, National and Kapodistrian University of Athens, Attikon University Hospital 1 Rimini Street, 12462, Chaidari, Greece
| | - Sophia Kalantaridou
- 3rd Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, Attikon University Hospital 1 Rimini Street, 12462 Chaidari, Athens, Greece.
| |
Collapse
|
23
|
Short AK, Weber R, Kamei N, Thai CW, Arora H, Mortazavi A, Stern HS, Glynn L, Baram TZ. Within-subject changes in methylome profile identify individual signatures of early-life adversity, with a potential to predict neuropsychiatric outcome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.16.571594. [PMID: 38187766 PMCID: PMC10769190 DOI: 10.1101/2023.12.16.571594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Background Adverse early-life experiences (ELA), including poverty, trauma and neglect, affect a majority of the world's children. Whereas the impact of ELA on cognitive and emotional health throughout the lifespan is well-established, it is not clear how distinct types of ELA influence child development, and there are no tools to predict for an individual child their vulnerability or resilience to the consequences of ELAs. Epigenetic markers including DNA-methylation profiles of peripheral cells may encode ELA and provide a predictive outcome marker. However, the rapid dynamic changes in DNA methylation in childhood and the inter-individual variance of the human genome pose barriers to identifying profiles predicting outcomes of ELA exposure. Here, we examined the relation of several dimensions of ELA to changes of DNA methylation, using a longitudinal within-subject design and a high threshold for methylation changes in the hope of mitigating the above challenges. Methods We analyzed DNA methylation in buccal swab samples collected twice for each of 110 infants: neonatally and at 12 months. We identified CpGs differentially methylated across time, calculated methylation changes for each child, and determined whether several indicators of ELA associated with changes of DNA methylation for individual infants. We then correlated select dimensions of ELA with methylation changes as well as with measures of executive function at age 5 years. We examined for sex differences, and derived a sex-dependent 'impact score' based on sites that most contributed to the methylation changes. Findings Setting a high threshold for methylation changes, we discovered that changes in methylation between two samples of an individual child reflected age-related trends towards augmented methylation, and also correlated with executive function years later. Among the tested factors and ELA dimensions, including income to needs ratios, maternal sensitivity, body mass index and sex, unpredictability of parental and household signals was the strongest predictor of executive function. In girls, an interaction was observed between a measure of high early-life unpredictability and methylation changes, in presaging executive function. Interpretation These findings establish longitudinal, within-subject changes in methylation profiles as a signature of some types of ELA in an individual child. Notably, such changes are detectable beyond the age-associated DNA methylation dynamics. Future studies are required to determine if the methylation profile changes identified here provide a predictive marker of vulnerabilities to poorer cognitive and emotional outcomes.
Collapse
Affiliation(s)
- Annabel K. Short
- Department of Anatomy and Neurobiology, University of California- Irvine, Irvine, CA 92697
- Departments of Pediatrics and Neurology, University of California-Irvine, Irvine, CA, 92697
- Brain Tumour Research Program, Telethon Kids Institute, Nedlands, WA, Australia, 6009 (current)
- Division of Paediatrics/Centre for Child Health Research, Medical School, University of Western Australia, Crawley, WA, Australia, 6009 (current)
| | - Ryan Weber
- Department of Developmental and Cell Biology, University of California-Irvine, Irvine, CA 92697
| | - Noriko Kamei
- Department of Anatomy and Neurobiology, University of California- Irvine, Irvine, CA 92697
| | - Christina Wilcox Thai
- Department of Developmental and Cell Biology, University of California-Irvine, Irvine, CA 92697
| | - Hina Arora
- Department of Statistics, University of California-Irvine, Irvine, CA, 92697
| | - Ali Mortazavi
- Department of Developmental and Cell Biology, University of California-Irvine, Irvine, CA 92697
| | - Hal S. Stern
- Department of Statistics, University of California-Irvine, Irvine, CA, 92697
| | - Laura Glynn
- Department of Psychology, Chapman University, Orange, CA, 92866
| | - Tallie Z. Baram
- Department of Anatomy and Neurobiology, University of California- Irvine, Irvine, CA 92697
- Departments of Pediatrics and Neurology, University of California-Irvine, Irvine, CA, 92697
| |
Collapse
|
24
|
Sun A, Park P, Cole L, Vaidya H, Maegawa S, Keith K, Calendo G, Madzo J, Jelinek J, Jobin C, Issa JPJ. Non-pathogenic microbiota accelerate age-related CpG Island methylation in colonic mucosa. Epigenetics 2023; 18:2160568. [PMID: 36572998 PMCID: PMC9980687 DOI: 10.1080/15592294.2022.2160568] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 11/11/2022] [Indexed: 12/28/2022] Open
Abstract
DNA methylation is an epigenetic process altered in cancer and ageing. Age-related methylation drift can be used to estimate lifespan and can be influenced by extrinsic factors such as diet. Here, we report that non-pathogenic microbiota accelerate age-related methylation drift in the colon when compared with germ-free mice. DNA methylation analyses showed that microbiota and IL10KO were associated with changes in 5% and 4.1% of CpG sites, while mice with both factors had 18% alterations. Microbiota, IL10KO, and their combination altered 0.4%, 0.4%, and 4% of CpG island methylation, respectively. These are comparable to what is seen in colon cancer. Ageing changes were accelerated in the IL10KO mice with microbiota, and the affected genes were more likely to be altered in colon cancer. Thus, the microbiota affect DNA methylation of the colon in patterns reminiscent of what is observed in ageing and colorectal cancer.
Collapse
Affiliation(s)
- Ang Sun
- Fels Cancer Institute for Personalized Medicine, Temple University School of Medicine, Philadelphia, PA, United States
| | - Pyounghwa Park
- Fels Cancer Institute for Personalized Medicine, Temple University School of Medicine, Philadelphia, PA, United States
- Coriell Institute for Medical Research, Camden, NJ, United States
| | - Lauren Cole
- Fels Cancer Institute for Personalized Medicine, Temple University School of Medicine, Philadelphia, PA, United States
| | - Himani Vaidya
- Fels Cancer Institute for Personalized Medicine, Temple University School of Medicine, Philadelphia, PA, United States
- Coriell Institute for Medical Research, Camden, NJ, United States
| | - Shinji Maegawa
- Fels Cancer Institute for Personalized Medicine, Temple University School of Medicine, Philadelphia, PA, United States
- Research Department of Pediatrics, University of Texas, MD Anderson Cancer Center Department of Pediatrics, University of Texas, MD Anderson Cancer CenterHouston, TX, USA
| | - Kelsey Keith
- Fels Cancer Institute for Personalized Medicine, Temple University School of Medicine, Philadelphia, PA, United States
- Coriell Institute for Medical Research, Camden, NJ, United States
| | - Gennaro Calendo
- Coriell Institute for Medical Research, Camden, NJ, United States
| | - Jozef Madzo
- Fels Cancer Institute for Personalized Medicine, Temple University School of Medicine, Philadelphia, PA, United States
- Coriell Institute for Medical Research, Camden, NJ, United States
| | - Jaroslav Jelinek
- Fels Cancer Institute for Personalized Medicine, Temple University School of Medicine, Philadelphia, PA, United States
- Coriell Institute for Medical Research, Camden, NJ, United States
| | - Christian Jobin
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Jean-Pierre J. Issa
- Fels Cancer Institute for Personalized Medicine, Temple University School of Medicine, Philadelphia, PA, United States
- Coriell Institute for Medical Research, Camden, NJ, United States
| |
Collapse
|
25
|
Mozhui K, Kim H, Villani F, Haghani A, Sen S, Horvath S. Pleiotropic influence of DNA methylation QTLs on physiological and ageing traits. Epigenetics 2023; 18:2252631. [PMID: 37691384 PMCID: PMC10496549 DOI: 10.1080/15592294.2023.2252631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/31/2023] [Accepted: 08/16/2023] [Indexed: 09/12/2023] Open
Abstract
DNA methylation is influenced by genetic and non-genetic factors. Here, we chart quantitative trait loci (QTLs) that modulate levels of methylation at highly conserved CpGs using liver methylome data from mouse strains belonging to the BXD family. A regulatory hotspot on chromosome 5 had the highest density of trans-acting methylation QTLs (trans-meQTLs) associated with multiple distant CpGs. We refer to this locus as meQTL.5a. Trans-modulated CpGs showed age-dependent changes and were enriched in developmental genes, including several members of the MODY pathway (maturity onset diabetes of the young). The joint modulation by genotype and ageing resulted in a more 'aged methylome' for BXD strains that inherited the DBA/2J parental allele at meQTL.5a. Further, several gene expression traits, body weight, and lipid levels mapped to meQTL.5a, and there was a modest linkage with lifespan. DNA binding motif and protein-protein interaction enrichment analyses identified the hepatic nuclear factor, Hnf1a (MODY3 gene in humans), as a strong candidate. The pleiotropic effects of meQTL.5a could contribute to variations in body size and metabolic traits, and influence CpG methylation and epigenetic ageing that could have an impact on lifespan.
Collapse
Affiliation(s)
- Khyobeni Mozhui
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Hyeonju Kim
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Flavia Villani
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Amin Haghani
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Altos Labs, San Diego, CA, USA
| | - Saunak Sen
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Altos Labs, San Diego, CA, USA
- Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
26
|
Naue J. Getting the chronological age out of DNA: using insights of age-dependent DNA methylation for forensic DNA applications. Genes Genomics 2023; 45:1239-1261. [PMID: 37253906 PMCID: PMC10504122 DOI: 10.1007/s13258-023-01392-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/15/2023] [Indexed: 06/01/2023]
Abstract
BACKGROUND DNA analysis for forensic investigations has a long tradition with important developments and optimizations since its first application. Traditionally, short tandem repeats analysis has been the most powerful method for the identification of individuals. However, in addition, epigenetic changes, i.e., DNA methylation, came into focus of forensic DNA research. Chronological age prediction is one promising application to allow for narrowing the pool of possible individuals who caused a trace, as well as to support the identification of unknown bodies and for age verification of living individuals. OBJECTIVE This review aims to provide an overview of the current knowledge, possibilities, and (current) limitations about DNA methylation-based chronological age prediction with emphasis on forensic application. METHODS The development, implementation and application of age prediction tools requires a deep understanding about the biological background, the analysis methods, the age-dependent DNA methylation markers, as well as the mathematical models for age prediction and their evaluation. Furthermore, additional influences can have an impact. Therefore, the literature was evaluated in respect to these diverse topics. CONCLUSION The numerous research efforts in recent years have led to a rapid change in our understanding of the application of DNA methylation for chronological age prediction, which is now on the way to implementation and validation. Knowledge of the various aspects leads to a better understanding and allows a more informed interpretation of DNAm quantification results, as well as the obtained results by the age prediction tools.
Collapse
Affiliation(s)
- Jana Naue
- Institute of Forensic Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
27
|
Gupta MK, Peng H, Li Y, Xu CJ. The role of DNA methylation in personalized medicine for immune-related diseases. Pharmacol Ther 2023; 250:108508. [PMID: 37567513 DOI: 10.1016/j.pharmthera.2023.108508] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Epigenetics functions as a bridge between host genetic & environmental factors, aiding in human health and diseases. Many immune-related diseases, including infectious and allergic diseases, have been linked to epigenetic mechanisms, particularly DNA methylation. In this review, we summarized an updated overview of DNA methylation and its importance in personalized medicine, and demonstrated that DNA methylation has excellent potential for disease prevention, diagnosis, and treatment in a personalized manner. The future implications and limitations of the DNA methylation study have also been well-discussed.
Collapse
Affiliation(s)
- Manoj Kumar Gupta
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany; TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - He Peng
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany; TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Yang Li
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany; TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany; Department of Internal Medicine and Radboud Institute for Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Cheng-Jian Xu
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany; TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany; Department of Internal Medicine and Radboud Institute for Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
28
|
López-Gil L, Pascual-Ahuir A, Proft M. Genomic Instability and Epigenetic Changes during Aging. Int J Mol Sci 2023; 24:14279. [PMID: 37762580 PMCID: PMC10531692 DOI: 10.3390/ijms241814279] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Aging is considered the deterioration of physiological functions along with an increased mortality rate. This scientific review focuses on the central importance of genomic instability during the aging process, encompassing a range of cellular and molecular changes that occur with advancing age. In particular, this revision addresses the genetic and epigenetic alterations that contribute to genomic instability, such as telomere shortening, DNA damage accumulation, and decreased DNA repair capacity. Furthermore, the review explores the epigenetic changes that occur with aging, including modifications to histones, DNA methylation patterns, and the role of non-coding RNAs. Finally, the review discusses the organization of chromatin and its contribution to genomic instability, including heterochromatin loss, chromatin remodeling, and changes in nucleosome and histone abundance. In conclusion, this review highlights the fundamental role that genomic instability plays in the aging process and underscores the need for continued research into these complex biological mechanisms.
Collapse
Affiliation(s)
- Lucía López-Gil
- Department of Biotechnology, Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València, Ingeniero Fausto Elio s/n, 46022 Valencia, Spain;
- Department of Molecular and Cellular Pathology and Therapy, Instituto de Biomedicina de Valencia IBV-CSIC, Consejo Superior de Investigaciones Científicas CSIC, Jaime Roig 11, 46010 Valencia, Spain
| | - Amparo Pascual-Ahuir
- Department of Biotechnology, Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València, Ingeniero Fausto Elio s/n, 46022 Valencia, Spain;
| | - Markus Proft
- Department of Molecular and Cellular Pathology and Therapy, Instituto de Biomedicina de Valencia IBV-CSIC, Consejo Superior de Investigaciones Científicas CSIC, Jaime Roig 11, 46010 Valencia, Spain
| |
Collapse
|
29
|
Jones JD, Martinez S, Gonzalez I, Odom GJ, Comer SD. No evidence of accelerated epigenetic aging among black heroin users: A case vs control analysis. ADDICTION NEUROSCIENCE 2023; 7:100096. [PMID: 37388854 PMCID: PMC10305791 DOI: 10.1016/j.addicn.2023.100096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
This study sought to assess the association between illicit opioid use and accelerated epigenetic aging (A.K.A. DNAm Age) among people of African ancestry who use heroin. DNA was obtained from participants with opioid use disorder (OUD) who confirmed heroin as their primary drug of choice. Clinical inventories of drug use included: the Addiction Severity Index (ASI) Drug-Composite Score (range: 0-1), and Drug Abuse Screening Test (DAST-10; range: 0-10). A control group of participants of African ancestry who did not use heroin was recruited and matched to heroin users on sex, age, socioeconomic level, and smoking status. Methylation data were assessed in an epigenetic clock to determined and compare Epigenetic Age to Chronological Age (i.e., age acceleration or deceleration). Data were obtained from 32 controls [mean age 36.3 (±7.5) years] and 64 heroin users [mean age 48.1 (±6.6) years]. The experimental group used heroin for an average of 18.1 (±10.6) years, reported use of 6.4 (±6.1) bags of heroin/day, with a mean DAST-10 score of 7.0 (±2.6) and ASI Score of 0.33 (±0.19). Mean age acceleration for heroin users [+0.56 (± 9.5) years] was significantly (p< 0.05) lower than controls [+5.19 (± 9.1) years]. This study did not find evidence that heroin use causes epigenetic age acceleration.
Collapse
Affiliation(s)
- Jermaine D. Jones
- Department of Psychiatry, Division on Substance Use Disorders, New York State Psychiatric Institute, and Columbia University Irving Medical Center, 1051 Riverside Drive, New York, NY 10032, USA
| | - Suky Martinez
- Department of Psychiatry, Division on Substance Use Disorders, New York State Psychiatric Institute, and Columbia University Irving Medical Center, 1051 Riverside Drive, New York, NY 10032, USA
| | - Ingrid Gonzalez
- Department of Biostatistics, Robert Stempel College of Public Health, Florida International University, 1200 SW 8th St, Miami, FL 33174, USA
| | - Gabriel J. Odom
- Department of Biostatistics, Robert Stempel College of Public Health, Florida International University, 1200 SW 8th St, Miami, FL 33174, USA
| | - Sandra D. Comer
- Department of Psychiatry, Division on Substance Use Disorders, New York State Psychiatric Institute, and Columbia University Irving Medical Center, 1051 Riverside Drive, New York, NY 10032, USA
| |
Collapse
|
30
|
Cui W, Huang Z, Jin SG, Johnson J, Lau KH, Hostetter G, Pfeifer GP. Deficiency of the Polycomb Protein RYBP and TET Methylcytosine Oxidases Promotes Extensive CpG Island Hypermethylation and Malignant Transformation. Cancer Res 2023; 83:2480-2495. [PMID: 37272752 PMCID: PMC10391329 DOI: 10.1158/0008-5472.can-23-0269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/24/2023] [Accepted: 05/31/2023] [Indexed: 06/06/2023]
Abstract
Hypermethylation of CpG islands (CGI) is a common feature of cancer cells and predominantly affects Polycomb-associated genomic regions. Elucidating the underlying mechanisms leading to DNA hypermethylation in human cancer could help identify chemoprevention strategies. Here, we evaluated the role of Polycomb complexes and 5-methylcytosine (5mC) oxidases in protecting CGIs from DNA methylation and observed that four genes coding for components of Polycomb repressive complex 1 (PRC1) are downregulated in tumors. Inactivation of RYBP, a key activator of variant PRC1 complexes, in combination with all three 5mC oxidases (TET proteins) in nontumorigenic bronchial epithelial cells led to widespread hypermethylation of Polycomb-marked CGIs affecting almost 4,000 target genes, which closely resembled the DNA hypermethylation landscape observed in human squamous cell lung tumors. The RYBP- and TET-deficient cells showed methylation-associated aberrant regulation of cancer-relevant pathways, including defects in the Hippo tumor suppressor network. Notably, the quadruple knockout cells acquired a transformed phenotype, including anchorage-independent growth and formation of squamous cell carcinomas in mice. This work provides a mechanism promoting hypermethylation of CGIs and shows that such hypermethylation can lead to cell transformation. The breakdown of a two-pronged protection mechanism can be a route towards genome-wide hypermethylation of CGIs in tumors. SIGNIFICANCE Dysfunction of the Polycomb component RYBP in combination with loss of 5-methylcytosine oxidases promotes widespread hypermethylation of CpG islands in bronchial cells and induces tumorigenesis, resembling changes seen in human lung tumors.
Collapse
Affiliation(s)
- Wei Cui
- Department of Epigenetics, Van Andel Institute, Grand Rapids, Michigan
| | - Zhijun Huang
- Department of Epigenetics, Van Andel Institute, Grand Rapids, Michigan
| | - Seung-Gi Jin
- Department of Epigenetics, Van Andel Institute, Grand Rapids, Michigan
| | - Jennifer Johnson
- Department of Epigenetics, Van Andel Institute, Grand Rapids, Michigan
| | - Kin H. Lau
- Bioinformatics and Biostatistics Core, Van Andel Institute, Grand Rapids, Michigan
| | - Galen Hostetter
- Pathology and Biorepository Core, Van Andel Institute, Grand Rapids, Michigan
| | - Gerd P. Pfeifer
- Department of Epigenetics, Van Andel Institute, Grand Rapids, Michigan
| |
Collapse
|
31
|
Senapati P, Miyano M, Sayaman RW, Basam M, Leung A, LaBarge MA, Schones DE. Loss of epigenetic suppression of retrotransposons with oncogenic potential in aging mammary luminal epithelial cells. Genome Res 2023; 33:1229-1241. [PMID: 37463750 PMCID: PMC10547379 DOI: 10.1101/gr.277511.122] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 06/23/2023] [Indexed: 07/20/2023]
Abstract
A primary function of DNA methylation in mammalian genomes is to repress transposable elements (TEs). The widespread methylation loss that is commonly observed in cancer cells results in the loss of epigenetic repression of TEs. The aging process is similarly characterized by changes to the methylome. However, the impact of these epigenomic alterations on TE silencing and the functional consequences of this have remained unclear. To assess the epigenetic regulation of TEs in aging, we profiled DNA methylation in human mammary luminal epithelial cells (LEps)-a key cell lineage implicated in age-related breast cancers-from younger and older women. We report here that several TE subfamilies function as regulatory elements in normal LEps, and a subset of these display consistent methylation changes with age. Methylation changes at these TEs occurred at lineage-specific transcription factor binding sites, consistent with loss of lineage specificity. Whereas TEs mainly showed methylation loss, CpG islands (CGIs) that are targets of the Polycomb repressive complex 2 (PRC2) show a gain of methylation in aging cells. Many TEs with methylation loss in aging LEps have evidence of regulatory activity in breast cancer samples. We furthermore show that methylation changes at TEs impact the regulation of genes associated with luminal breast cancers. These results indicate that aging leads to DNA methylation changes at TEs that undermine the maintenance of lineage specificity, potentially increasing susceptibility to breast cancer.
Collapse
Affiliation(s)
- Parijat Senapati
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of Hope, Duarte, California 91010, USA
| | - Masaru Miyano
- Department of Population Sciences, Beckman Research Institute, City of Hope, Duarte, California 91010, USA
| | - Rosalyn W Sayaman
- Department of Population Sciences, Beckman Research Institute, City of Hope, Duarte, California 91010, USA
- Department of Laboratory Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California 94143-0981, USA
| | - Mudaser Basam
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of Hope, Duarte, California 91010, USA
- Department of Population Sciences, Beckman Research Institute, City of Hope, Duarte, California 91010, USA
| | - Amy Leung
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of Hope, Duarte, California 91010, USA
| | - Mark A LaBarge
- Department of Population Sciences, Beckman Research Institute, City of Hope, Duarte, California 91010, USA
- Irell & Manella Graduate School of Biological Sciences, City of Hope, Duarte, California 91010, USA
- Center for Cancer Biomarker Research, University of Bergen, 5021 Bergen, Norway
| | - Dustin E Schones
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of Hope, Duarte, California 91010, USA;
- Irell & Manella Graduate School of Biological Sciences, City of Hope, Duarte, California 91010, USA
| |
Collapse
|
32
|
Simpson DJ, Zhao Q, Olova NN, Dabrowski J, Xie X, Latorre‐Crespo E, Chandra T. Region-based epigenetic clock design improves RRBS-based age prediction. Aging Cell 2023; 22:e13866. [PMID: 37170475 PMCID: PMC10410054 DOI: 10.1111/acel.13866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/13/2023] Open
Abstract
Recent studies suggest that epigenetic rejuvenation can be achieved using drugs that mimic calorie restriction and techniques such as reprogramming-induced rejuvenation. To effectively test rejuvenation in vivo, mouse models are the safest alternative. However, we have found that the recent epigenetic clocks developed for mouse reduced-representation bisulphite sequencing (RRBS) data have significantly poor performance when applied to external datasets. We show that the sites captured and the coverage of key CpGs required for age prediction vary greatly between datasets, which likely contributes to the lack of transferability in RRBS clocks. To mitigate these coverage issues in RRBS-based age prediction, we present two novel design strategies that use average methylation over large regions rather than individual CpGs, whereby regions are defined by sliding windows (e.g. 5 kb), or density-based clustering of CpGs. We observe improved correlation and error in our regional blood clocks (RegBCs) compared to published individual-CpG-based techniques when applied to external datasets. The RegBCs are also more robust when applied to low coverage data and detect a negative age acceleration in mice undergoing calorie restriction. Our RegBCs offer a proof of principle that age prediction of RRBS datasets can be improved by accounting for multiple CpGs over a region, which negates the lack of read depth currently hindering individual-CpG-based approaches.
Collapse
Affiliation(s)
- Daniel J. Simpson
- MRC Human Genetics Unit, MRC Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
| | - Qian Zhao
- MRC Human Genetics Unit, MRC Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
| | - Nelly N. Olova
- MRC Human Genetics Unit, MRC Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
| | - Jan Dabrowski
- MRC Human Genetics Unit, MRC Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
| | - Xiaoxiao Xie
- MRC Human Genetics Unit, MRC Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
| | - Eric Latorre‐Crespo
- MRC Human Genetics Unit, MRC Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
| | - Tamir Chandra
- MRC Human Genetics Unit, MRC Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
| |
Collapse
|
33
|
Jeong S, Cho S, Yang SK, Oh SA, Kang YK. Parallel shift of DNA methylation and gene expression toward the mean in mouse spleen with aging. Aging (Albany NY) 2023; 15:6690-6709. [PMID: 37494662 PMCID: PMC10415566 DOI: 10.18632/aging.204903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/06/2023] [Indexed: 07/28/2023]
Abstract
Age-associated DNA-methylation drift (AMD) manifests itself in two ways in mammals: global decrease (hypomethylation) and local increase of DNA methylation (hypermethylation). To comprehend the principle behind this bidirectional AMD, we studied methylation states of spatially clustered CpG dinucleotides in mouse splenic DNA using reduced-representation-bisulfite-sequencing (RRBS). The mean methylation levels of whole CpGs declined with age. Promoter-resident CpGs, generally weakly methylated (<5%) in young mice, became hypermethylated in old mice, whereas CpGs in gene-body and intergenic regions, initially moderately (~33%) and extensively (>80%) methylated, respectively, were hypomethylated in the old. Chromosome-wise analysis of methylation revealed that inter-individual heterogeneities increase with age. The density of nearby CpGs was used to classify individual CpGs, which found hypermethylation in CpG-rich regions and hypomethylation in CpG-poor regions. When genomic regions were grouped by methylation level, high-methylation regions tended to become hypomethylated whereas low-methylation regions tended to become hypermethylated, regardless of genomic structure/function. Data analysis revealed that while methylation level and CpG density were interdependent, methylation level was a better predictor of the AMD pattern representing a shift toward the mean. Further analysis of gene-expression data showed a decrease in the expression of highly-expressed genes and an increase in the expression of lowly-expressed genes with age. This shift towards the mean in gene-expression changes was correlated with that of methylation changes, indicating a potential link between the two age-associated changes. Our findings suggest that age-associated hyper- and hypomethylation events are stochastic and attributed to malfunctioning intrinsic mechanisms for methylation maintenance in low- and high-methylation regions, respectively.
Collapse
Affiliation(s)
- Sangkyun Jeong
- Medical Research Division, Korea Institute of Oriental Medicine (KIOM), Yuseong-gu, Daejeon 34054, South Korea
- Genomics Department, Keyomics Co. Ltd., Yuseong-gu, Daejeon 34013, South Korea
| | - Sunwha Cho
- Genomics Department, Keyomics Co. Ltd., Yuseong-gu, Daejeon 34013, South Korea
| | - Seung Kyoung Yang
- Genomics Department, Keyomics Co. Ltd., Yuseong-gu, Daejeon 34013, South Korea
| | - Soo A. Oh
- Medical Research Division, Korea Institute of Oriental Medicine (KIOM), Yuseong-gu, Daejeon 34054, South Korea
| | - Yong-Kook Kang
- Development and Differentiation Research Center, Aging Convergence Research Center (ACRC), Korea Research Institute of Bioscience Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, South Korea
| |
Collapse
|
34
|
Yu X, Ren J, Cui Y, Zeng R, Long H, Ma C. DRSN4mCPred: accurately predicting sites of DNA N4-methylcytosine using deep residual shrinkage network for diagnosis and treatment of gastrointestinal cancer in the precision medicine era. Front Med (Lausanne) 2023; 10:1187430. [PMID: 37215722 PMCID: PMC10192687 DOI: 10.3389/fmed.2023.1187430] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/05/2023] [Indexed: 05/24/2023] Open
Abstract
Introduction The DNA N4-methylcytosine (4mC) site levels of those suffering from digestive system cancers were higher, and the pathogenesis of digestive system cancers may also be related to the changes in DNA 4mC levels. Identifying DNA 4mC sites is a very important step in studying the analysis of biological function and cancer prediction. Extracting accurate features from DNA sequences is the key to establishing a prediction model of effective DNA 4mC sites. This study sought to develop a new predictive model, DRSN4mCPred, which aimed to improve the performance of the predicting DNA 4mC sites. Methods The model adopted multi-scale channel attention to extract features and used attention feature fusion (AFF) to fuse features. In order to capture features information more accurately and effectively, this model utilized Deep Residual Shrinkage Network with Channel-Wise thresholds (DRSN-CW) to eliminate noise-related features and achieve a more precise feature representation, thereby, distinguishing the sites in DNA with 4mC and non-4mC. Additionally, the predictive model incorporated an inverted residual block, a Multi-scale Channel Attention Module (MS-CAM), a Bi-directional Long Short Term Memory Network (Bi-LSTM), AFF, and DRSN-CW. Results and Discussion The results indicated the predictive model DRSN4mCPred had extremely good performance in predicting the DNA 4mC sites across different species. This paper will potentially provide support for the diagnosis and treatment of gastrointestinal cancer based on artificial intelligence in the precise medical era.
Collapse
Affiliation(s)
- Xia Yu
- School of Information and Communication Engineering, Hainan University, Haikou, Hainan, China
- School of Information Science and Technology, Hainan Normal University, Haikou, Hainan, China
| | - Jia Ren
- Industrial Design School, Shandong University of ART and Design, Jinan, Shandong, China
| | - Yani Cui
- School of Information and Communication Engineering, Hainan University, Haikou, Hainan, China
| | - Rao Zeng
- School of Information Science and Technology, Hainan Normal University, Haikou, Hainan, China
| | - Haixia Long
- School of Information Science and Technology, Hainan Normal University, Haikou, Hainan, China
| | - Cuihua Ma
- School of Information Science and Technology, Hainan Normal University, Haikou, Hainan, China
| |
Collapse
|
35
|
Yang L, Chen X, Lee C, Shi J, Lawrence EB, Zhang L, Li Y, Gao N, Jung SY, Creighton CJ, Li JJ, Cui Y, Arimura S, Lei Y, Li W, Shen L. Functional characterization of age-dependent p16 epimutation reveals biological drivers and therapeutic targets for colorectal cancer. J Exp Clin Cancer Res 2023; 42:113. [PMID: 37143122 PMCID: PMC10157929 DOI: 10.1186/s13046-023-02689-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/27/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Methylation of the p16 promoter resulting in epigenetic gene silencing-known as p16 epimutation-is frequently found in human colorectal cancer and is also common in normal-appearing colonic mucosa of aging individuals. Thus, to improve clinical care of colorectal cancer (CRC) patients, we explored the role of age-related p16 epimutation in intestinal tumorigenesis. METHODS We established a mouse model that replicates two common genetic and epigenetic events observed in human CRCs: Apc mutation and p16 epimutation. We conducted long-term survival and histological analysis of tumor development and progression. Colonic epithelial cells and tumors were collected from mice and analyzed by RNA sequencing (RNA-seq), quantitative PCR, and flow cytometry. We performed single-cell RNA sequencing (scRNA-seq) to characterize tumor-infiltrating immune cells throughout tumor progression. We tested whether anti-PD-L1 immunotherapy affects overall survival of tumor-bearing mice and whether inhibition of both epigenetic regulation and immune checkpoint is more efficacious. RESULTS Mice carrying combined Apc mutation and p16 epimutation had significantly shortened survival and increased tumor growth compared to those with Apc mutation only. Intriguingly, colon tumors with p16 epimutation exhibited an activated interferon pathway, increased expression of programmed death-ligand 1 (Pdl1), and enhanced infiltration of immune cells. scRNA-seq further revealed the presence of Foxp3+ Tregs and γδT17 cells, which contribute to an immunosuppressive tumor microenvironment (TME). Furthermore, we showed that a combined therapy using an inhibitor of DNA methylation and a PD-L1 immune checkpoint inhibitor is more effective for improving survival in tumor-bearing mice than blockade of either pathway alone. CONCLUSIONS Our study demonstrated that age-dependent p16 epimutation creates a permissive microenvironment for malignant transformation of polyps to colon cancer. Our findings provide a mechanistic rationale for future targeted therapy in patients with p16 epimutation.
Collapse
Affiliation(s)
- Li Yang
- USDA Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, TX, Houston, USA
| | - Xiaomin Chen
- USDA Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, TX, Houston, USA
| | - Christy Lee
- Department of Statistics, University of California, Los Angeles, CA, USA
| | - Jiejun Shi
- Division of Computational Biomedicine, Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA, USA
- Present address: Department of General Surgery, Shanghai Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Emily B Lawrence
- USDA Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, TX, Houston, USA
| | - Lanjing Zhang
- Department of Pathology, Princeton Medical Center, Plainsboro, NJ, USA
- Department of Chemical Biology, Earnest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA
| | - Yumei Li
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Nan Gao
- Department of Biological Sciences, Rutgers University, Newark, NJ, USA
| | - Sung Yun Jung
- Department of Biochemistry, Baylor College of Medicine, Houston, TX, USA
| | - Chad J Creighton
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Jingyi Jessica Li
- Department of Statistics, University of California, Los Angeles, CA, USA
| | - Ya Cui
- Division of Computational Biomedicine, Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA, USA
| | - Sumimasa Arimura
- Department of Medicine and Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, TX, USA
| | - Yunping Lei
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Wei Li
- Division of Computational Biomedicine, Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA, USA
| | - Lanlan Shen
- USDA Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, TX, Houston, USA.
| |
Collapse
|
36
|
Razzoli M, Nyuyki-Dufe K, Chen BH, Bartolomucci A. Contextual modifiers of healthspan, lifespan, and epigenome in mice under chronic social stress. Proc Natl Acad Sci U S A 2023; 120:e2211755120. [PMID: 37043532 PMCID: PMC10120026 DOI: 10.1073/pnas.2211755120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 02/24/2023] [Indexed: 04/13/2023] Open
Abstract
Sustained life stress and low socioeconomic status are among the major causes of aging-related diseases and decreased life expectancy. Experimental rodent models can help to identify the underlying mechanisms, yet very few studies address the long-term consequences of social stress on aging. We conducted a randomized study involving more than 300 male mice of commonly used laboratory strains (C57BL/6J, CD1, and Sv129Ev) chosen for the spontaneous aggression gradient and stress-vulnerability. Mice were exposed to a lifelong chronic psychosocial stress protocol to model social gradients in aging and disease vulnerability. Low social rank, inferred based on a discretized aggression index, was found to negatively impact lifespan in our study population. However, social rank interacted with genetic background in that low-ranking C57BL/6J, high-ranking Sv129Ev, and middle-ranking CD1 mice had lower survival, respectively, implying a cost of maintaining a given social rank that varies across strains. Machine learning linear discriminant analysis identified baseline fat-free mass as the most important predictor of mouse genetic background and social rank in the present dataset. Finally, strain and social rank differences were significantly associated with epigenetic changes, most significantly in Sv129Ev mice and in high-ranking compared to lower ranking subjects. Overall, we identified genetic background and social rank as critical contextual modifiers of aging and lifespan in an ethologically relevant rodent model of social stress, thereby providing a preclinical experimental paradigm to study the impact of social determinants of health disparities and accelerated aging.
Collapse
Affiliation(s)
- Maria Razzoli
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN55455
| | - Kewir Nyuyki-Dufe
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN55455
| | - Brian H. Chen
- FOXO Technologies Inc., Minneapolis, MN55401
- Division of Epidemiology, The Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA92093
| | - Alessandro Bartolomucci
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN55455
| |
Collapse
|
37
|
Molinero N, Antón-Fernández A, Hernández F, Ávila J, Bartolomé B, Moreno-Arribas MV. Gut Microbiota, an Additional Hallmark of Human Aging and Neurodegeneration. Neuroscience 2023; 518:141-161. [PMID: 36893982 DOI: 10.1016/j.neuroscience.2023.02.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 02/10/2023] [Accepted: 02/19/2023] [Indexed: 03/09/2023]
Abstract
Gut microbiota represents a diverse and dynamic population of microorganisms harbouring the gastrointestinal tract, which influences host health and disease. Bacterial colonization of the gastrointestinal tract begins at birth and changes throughout life, with age being one of the conditioning factors for its vitality. Aging is also a primary risk factor for most neurodegenerative diseases. Among them, Alzheimeŕs disease (AD) is probably the one where its association with a state of dysbiosis of the gut microbiota has been most studied. In particular, intestinal microbial-derived metabolites have been associated with β-amyloid formation and brain amyloid deposition, tau phosphorylation, as well as neuroinflammation in AD patients. Moreover, it has been suggested that some oral bacteria increase the risk of developing AD. However, the causal connections among microbiome, amyloid-tau interaction, and neurodegeneration need to be addressed. This paper summarizes the emerging evidence in the literature regarding the link between the oral and gut microbiome and neurodegeneration with a focus on AD. Taxonomic features of bacteria as well as microbial functional alterations associated with AD biomarkers are the main points reviewed. Data from clinical studies as well as the link between microbiome and clinical determinants of AD are particularly emphasized. Further, relationships between gut microbiota and age-dependent epigenetic changes and other neurological disorders are also described. Together, all this evidence suggests that, in some sense, gut microbiota can be seen as an additional hallmark of human aging and neurodegeneration.
Collapse
Affiliation(s)
- Natalia Molinero
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM. c/ Nicolás Cabrera, 9. 28049 Madrid, Spain
| | - Alejandro Antón-Fernández
- Centro de Biología Molecular Severo Ochoa (CBMSO), CSIC-UAM. c/ Nicolás Cabrera, 1. 28049 Madrid, Spain
| | - Félix Hernández
- Centro de Biología Molecular Severo Ochoa (CBMSO), CSIC-UAM. c/ Nicolás Cabrera, 1. 28049 Madrid, Spain
| | - Jesús Ávila
- Centro de Biología Molecular Severo Ochoa (CBMSO), CSIC-UAM. c/ Nicolás Cabrera, 1. 28049 Madrid, Spain
| | - Begoña Bartolomé
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM. c/ Nicolás Cabrera, 9. 28049 Madrid, Spain
| | - M Victoria Moreno-Arribas
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM. c/ Nicolás Cabrera, 9. 28049 Madrid, Spain.
| |
Collapse
|
38
|
Xie S, Choudhari S, Wu CL, Abramson K, Corcoran D, Gregory SG, Thimmapuram J, Guilak F, Little D. Aging and obesity prime the methylome and transcriptome of adipose stem cells for disease and dysfunction. FASEB J 2023; 37:e22785. [PMID: 36794668 PMCID: PMC10561192 DOI: 10.1096/fj.202201413r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/20/2022] [Accepted: 01/09/2023] [Indexed: 02/17/2023]
Abstract
The epigenome of stem cells occupies a critical interface between genes and environment, serving to regulate expression through modification by intrinsic and extrinsic factors. We hypothesized that aging and obesity, which represent major risk factors for a variety of diseases, synergistically modify the epigenome of adult adipose stem cells (ASCs). Using integrated RNA- and targeted bisulfite-sequencing in murine ASCs from lean and obese mice at 5- and 12-months of age, we identified global DNA hypomethylation with either aging or obesity, and a synergistic effect of aging combined with obesity. The transcriptome of ASCs in lean mice was relatively stable to the effects of age, but this was not true in obese mice. Functional pathway analyses identified a subset of genes with critical roles in progenitors and in diseases of obesity and aging. Specifically, Mapt, Nr3c2, App, and Ctnnb1 emerged as potential hypomethylated upstream regulators in both aging and obesity (AL vs. YL and AO vs. YO), and App, Ctnnb1, Hipk2, Id2, and Tp53 exhibited additional effects of aging in obese animals. Furthermore, Foxo3 and Ccnd1 were potential hypermethylated upstream regulators of healthy aging (AL vs. YL), and of the effects of obesity in young animals (YO vs. YL), suggesting that these factors could play a role in accelerated aging with obesity. Finally, we identified candidate driver genes that appeared recurrently in all analyses and comparisons undertaken. Further mechanistic studies are needed to validate the roles of these genes capable of priming ASCs for dysfunction in aging- and obesity-associated pathologies.
Collapse
Affiliation(s)
- Shaojun Xie
- Bioinformatics Core, Purdue University, 1022 Young Hall, 155 S. Grant Street, West Lafayette, IN 47907
| | - Sulbha Choudhari
- Bioinformatics Core, Purdue University, 1022 Young Hall, 155 S. Grant Street, West Lafayette, IN 47907
- Advanced Biomedical Computational Science, Bioinformatics and Computational Science, Frederick National Laboratory for Cancer Research, 8560 Progress Drive, Frederick, MD 2170
| | - Chia-Lung Wu
- Department of Orthopaedics and Rehabilitation, Center for Musculoskeletal Research, University of Rochester, Rochester, NY, 14611
| | - Karen Abramson
- Duke Molecular Physiology Institute, 300 North Duke Street, Durham, NC 27701
| | - David Corcoran
- Genomic Analysis and Bioinformatics Shared Resource, Duke Center for Genomic and Computational Biology, 101 Science Drive, Duke University Medical Center Box 3382, Durham, NC 27708
- Lineberger Bioinformatics Core, 5200 Marsico Hall, University of North Carolina-Chapel Hill, Chapel Hill, NC 27516
| | - Simon G. Gregory
- Duke Molecular Physiology Institute, 300 North Duke Street, Durham, NC 27701
- Department of Neurology, Duke University School of Medicine, 311 Research Drive, Durham, NC 27710
| | - Jyothi Thimmapuram
- Bioinformatics Core, Purdue University, 1022 Young Hall, 155 S. Grant Street, West Lafayette, IN 47907
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Washington University in St. Louis, 4515 McKinley Ave., St. Louis, MO 63110
- Shriners Hospitals for Children – St. Louis, 4400 Clayton Ave, St. Louis Missouri 63110
| | - Dianne Little
- Departments of Basic Medical Sciences and Biomedical Engineering, Purdue University, 2186 Lynn Hall, 625 Harrison St, West Lafayette, IN 47907-2026
| |
Collapse
|
39
|
Vaidya H, Jeong HS, Keith K, Maegawa S, Calendo G, Madzo J, Jelinek J, Issa JPJ. DNA methylation entropy as a measure of stem cell replication and aging. Genome Biol 2023; 24:27. [PMID: 36797759 PMCID: PMC9933260 DOI: 10.1186/s13059-023-02866-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 02/05/2023] [Indexed: 02/18/2023] Open
Abstract
BACKGROUND Epigenetic marks are encoded by DNA methylation and accumulate errors as organisms age. This drift correlates with lifespan, but the biology of how this occurs is still unexplained. We analyze DNA methylation with age in mouse intestinal stem cells and compare them to nonstem cells. RESULTS Age-related changes in DNA methylation are identical in stem and nonstem cells, affect most prominently CpG islands and correlate weakly with gene expression. Age-related DNA methylation entropy, measured by the Jensen-Shannon Distribution, affects up to 25% of the detectable CpG sites and is a better measure of aging than individual CpG methylation. We analyze this entropy as a function of age in seven other tissues (heart, kidney, skeletal muscle, lung, liver, spleen, and blood) and it correlates strikingly with tissue-specific stem cell division rates. Thus, DNA methylation drift and increased entropy with age are primarily caused by and are sensors for, stem cell replication in adult tissues. CONCLUSIONS These data have implications for the mechanisms of tissue-specific functional declines with aging and for the development of DNA-methylation-based biological clocks.
Collapse
Affiliation(s)
- Himani Vaidya
- grid.282012.b0000 0004 0627 5048Coriell Institute for Medical Research, Camden, NJ 08013 USA
| | - Hye Seon Jeong
- grid.282012.b0000 0004 0627 5048Coriell Institute for Medical Research, Camden, NJ 08013 USA ,grid.411665.10000 0004 0647 2279Department of Neurology, Chungnam National University Hospital, Daejeon, South Korea
| | - Kelsey Keith
- grid.282012.b0000 0004 0627 5048Coriell Institute for Medical Research, Camden, NJ 08013 USA
| | - Shinji Maegawa
- grid.240145.60000 0001 2291 4776Department of Pediatrics, University of Texas, MD Anderson Cancer Center, Houston, TX USA
| | - Gennaro Calendo
- grid.282012.b0000 0004 0627 5048Coriell Institute for Medical Research, Camden, NJ 08013 USA
| | - Jozef Madzo
- grid.282012.b0000 0004 0627 5048Coriell Institute for Medical Research, Camden, NJ 08013 USA
| | - Jaroslav Jelinek
- grid.282012.b0000 0004 0627 5048Coriell Institute for Medical Research, Camden, NJ 08013 USA
| | - Jean-Pierre J. Issa
- grid.282012.b0000 0004 0627 5048Coriell Institute for Medical Research, Camden, NJ 08013 USA
| |
Collapse
|
40
|
Feinberg AP, Levchenko A. Epigenetics as a mediator of plasticity in cancer. Science 2023; 379:eaaw3835. [PMID: 36758093 PMCID: PMC10249049 DOI: 10.1126/science.aaw3835] [Citation(s) in RCA: 81] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 12/22/2022] [Indexed: 02/11/2023]
Abstract
The concept of an epigenetic landscape describing potential cellular fates arising from pluripotent cells, first advanced by Conrad Waddington, has evolved in light of experiments showing nondeterministic outcomes of regulatory processes and mathematical methods for quantifying stochasticity. In this Review, we discuss modern approaches to epigenetic and gene regulation landscapes and the associated ideas of entropy and attractor states, illustrating how their definitions are both more precise and relevant to understanding cancer etiology and the plasticity of cancerous states. We address the interplay between different types of regulatory landscapes and how their changes underlie cancer progression. We also consider the roles of cellular aging and intrinsic and extrinsic stimuli in modulating cellular states and how landscape alterations can be quantitatively mapped onto phenotypic outcomes and thereby used in therapy development.
Collapse
Affiliation(s)
- Andrew P Feinberg
- Center for Epigenetics, Johns Hopkins University Schools of Medicine, Biomedical Engineering, and Public Health, Baltimore, MD 21205, USA
| | - Andre Levchenko
- Yale Systems Biology Institute and Department of Biomedical Engineering, Yale University, West Haven, CT 06516, USA
| |
Collapse
|
41
|
Meyer BS, Moiron M, Caswara C, Chow W, Fedrigo O, Formenti G, Haase B, Howe K, Mountcastle J, Uliano-Silva M, Wood J, Jarvis ED, Liedvogel M, Bouwhuis S. Sex-specific changes in autosomal methylation rate in ageing common terns. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.982443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Senescence, an age-related decline in survival and/or reproductive performance, occurs in species across the tree of life. Molecular mechanisms underlying this within-individual phenomenon are still largely unknown, but DNA methylation changes with age are among the candidates. Using a longitudinal approach, we investigated age-specific changes in autosomal methylation of common terns, relatively long-lived migratory seabirds known to show senescence. We collected blood at 1-, 3- and/or 4-year intervals, extracted DNA from the erythrocytes and estimated autosomal DNA methylation by mapping Reduced Representative Bisulfite Sequencing reads to a de novo assembled reference genome. We found autosomal methylation levels to decrease with age within females, but not males, and no evidence for selective (dis)appearance of birds of either sex in relation to their methylation level. Moreover, although we found positions in the genome to consistently vary in their methylation levels, individuals did not show such strong consistent variance. These results pave the way for studies at the level of genome features or specific positions, which should elucidate the functional consequences of the patterns observed, and how they translate to the ageing phenotype.
Collapse
|
42
|
Wang J, Sun X, Yang Z, Li S, Wang Y, Ren R, Liu Z, Yu D. Epigenetic regulation in premature ovarian failure: A literature review. Front Physiol 2023; 13:998424. [PMID: 36685174 PMCID: PMC9846267 DOI: 10.3389/fphys.2022.998424] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/14/2022] [Indexed: 01/05/2023] Open
Abstract
Premature ovarian failure (POF), or premature ovarian insufficiency (POI), is a multifactorial and heterogeneous disease characterized by amenorrhea, decreased estrogen levels and increased female gonadotropin levels. The incidence of POF is increasing annually, and POF has become one of the main causes of infertility in women of childbearing age. The etiology and pathogenesis of POF are complex and have not yet been clearly elucidated. In addition to genetic factors, an increasing number of studies have revealed that epigenetic changes play an important role in the occurrence and development of POF. However, we found that very few papers have summarized epigenetic variations in POF, and a systematic analysis of this topic is therefore necessary. In this article, by reviewing and analyzing the most relevant literature in this research field, we expound on the relationship between DNA methylation, histone modification and non-coding RNA expression and the development of POF. We also analyzed how environmental factors affect POF through epigenetic modulation. Additionally, we discuss potential epigenetic biomarkers and epigenetic treatment targets for POF. We anticipate that our paper may provide new therapeutic clues for improving ovarian function and maintaining fertility in POF patients.
Collapse
Affiliation(s)
- Jing Wang
- Department of Reproductive Medicine, Department of Prenatal Diagnosis, Changchun, China
| | | | | | - Sijie Li
- Department of Breast Surgery, Changchun, China
| | - Yufeng Wang
- Public Research Platform, The First Hospital of Jilin University, Jilin, China
| | - Ruoxue Ren
- Public Research Platform, The First Hospital of Jilin University, Jilin, China
| | - Ziyue Liu
- Public Research Platform, The First Hospital of Jilin University, Jilin, China
| | - Dehai Yu
- Public Research Platform, The First Hospital of Jilin University, Jilin, China,*Correspondence: Dehai Yu,
| |
Collapse
|
43
|
Ayala-Guerrero L, Claudio-Galeana S, Furlan-Magaril M, Castro-Obregón S. Chromatin Structure from Development to Ageing. Subcell Biochem 2023; 102:7-51. [PMID: 36600128 DOI: 10.1007/978-3-031-21410-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Nuclear structure influences genome architecture, which contributes to determine patterns of gene expression. Global changes in chromatin dynamics are essential during development and differentiation, and are one of the hallmarks of ageing. This chapter describes the molecular dynamics of chromatin structure that occur during development and ageing. In the first part, we introduce general information about the nuclear lamina, the chromatin structure, and the 3D organization of the genome. Next, we detail the molecular hallmarks found during development and ageing, including the role of DNA and histone modifications, 3D genome dynamics, and changes in the nuclear lamina. Within the chapter we discuss the implications that genome structure has on the mechanisms that drive development and ageing, and the physiological consequences when these mechanisms fail.
Collapse
Affiliation(s)
- Lorelei Ayala-Guerrero
- Departamento de Neurodesarrollo y Fisiología, Instituto de Fisiología Celular, UNAM, Mexico City, Mexico
| | - Sherlyn Claudio-Galeana
- Departamento de Genética Molecular, Instituto de Fisiología Celular, UNAM, Mexico City, Mexico
| | - Mayra Furlan-Magaril
- Departamento de Genética Molecular, Instituto de Fisiología Celular, UNAM, Mexico City, Mexico.
| | - Susana Castro-Obregón
- Departamento de Neurodesarrollo y Fisiología, Instituto de Fisiología Celular, UNAM, Mexico City, Mexico.
| |
Collapse
|
44
|
Bagher Hosseini N, Moosapour S, Fakhar HBZ, Nazari AR, Hasehmi MO, Hadavand F, Seraj M, Akbari ME. Can paternal environmental experiences affect the breast cancer risk in offspring? A systematic review. Breast Dis 2023; 42:361-374. [PMID: 38073366 DOI: 10.3233/bd-220062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
INTRODUCTION Studies in recent years have shown that parental environmental experiences can affect their offspring's risk of breast cancer (BC). We assessed the effect of different paternal factors on BC risk in offspring by reviewing the existing literature. METHOD This systematic review followed the Joanna Briggs Institute's (JBI) method for systematic reviews of qualitative evidence. The primary keywords were searched in reliable databases such as PubMed, Google Scholar, Elsevier, SID, and Wiley in English until 31 December 2021. Two authors independently examined the articles in terms of inclusion criteria and quality assessment of the articles. RESULTS Of the 438 studies, 19 met the inclusion criteria of this systematic review and were included in the study. Paternal factors investigated in these studies included age at delivery, diet, occupational exposures, occupation type and education. The reported relationships between these factors and breast cancer varied among different studies. CONCLUSION Studies considered in this article show that fathers' age at the time of delivery of the child, dietary habits, overweight and occupational factors can affect the incidence of BC risk in the next generation.
Collapse
Affiliation(s)
- Najmeh Bagher Hosseini
- Cancer Research Centre (CRC), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Moosapour
- Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | | | - Afshin Ryan Nazari
- Cancer Research Centre (CRC), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Omrani Hasehmi
- Cancer Research Centre (CRC), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Hadavand
- Cancer Research Centre (CRC), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Seraj
- Cancer Research Centre (CRC), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
45
|
Aminzadeh-Gohari S, Kofler B, Herzog C. Dietary restriction in senolysis and prevention and treatment of disease. Crit Rev Food Sci Nutr 2022; 64:5242-5268. [PMID: 36484738 PMCID: PMC7616065 DOI: 10.1080/10408398.2022.2153355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aging represents a key risk factor for a plethora of diseases. Targeting detrimental processes which occur during aging, especially before onset of age-related disease, could provide drastic improvements in healthspan. There is increasing evidence that dietary restriction (DR), including caloric restriction, fasting, or fasting-mimicking diets, extend both lifespan and healthspan. This has sparked interest in the use of dietary regimens as a non-pharmacological means to slow aging and prevent disease. Here, we review the current evidence on the molecular mechanisms underlying DR-induced health improvements, including removal of senescent cells, metabolic reprogramming, and epigenetic rejuvenation.
Collapse
Affiliation(s)
- Sepideh Aminzadeh-Gohari
- Research Program for Receptor Biochemistry and Tumor Metabollism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
- European Translational Oncology Prevention and Screening Institute, Universität Innsbruck, Innsbruck, Austria
- Research Institute for Biomedical Ageing, Universität Innsbruck, Innsbruck, Austria
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumor Metabollism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Chiara Herzog
- European Translational Oncology Prevention and Screening Institute, Universität Innsbruck, Innsbruck, Austria
- Research Institute for Biomedical Ageing, Universität Innsbruck, Innsbruck, Austria
| |
Collapse
|
46
|
Wang K, Liu H, Hu Q, Wang L, Liu J, Zheng Z, Zhang W, Ren J, Zhu F, Liu GH. Epigenetic regulation of aging: implications for interventions of aging and diseases. Signal Transduct Target Ther 2022; 7:374. [PMID: 36336680 PMCID: PMC9637765 DOI: 10.1038/s41392-022-01211-8] [Citation(s) in RCA: 152] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/14/2022] [Accepted: 09/28/2022] [Indexed: 11/09/2022] Open
Abstract
Aging is accompanied by the decline of organismal functions and a series of prominent hallmarks, including genetic and epigenetic alterations. These aging-associated epigenetic changes include DNA methylation, histone modification, chromatin remodeling, non-coding RNA (ncRNA) regulation, and RNA modification, all of which participate in the regulation of the aging process, and hence contribute to aging-related diseases. Therefore, understanding the epigenetic mechanisms in aging will provide new avenues to develop strategies to delay aging. Indeed, aging interventions based on manipulating epigenetic mechanisms have led to the alleviation of aging or the extension of the lifespan in animal models. Small molecule-based therapies and reprogramming strategies that enable epigenetic rejuvenation have been developed for ameliorating or reversing aging-related conditions. In addition, adopting health-promoting activities, such as caloric restriction, exercise, and calibrating circadian rhythm, has been demonstrated to delay aging. Furthermore, various clinical trials for aging intervention are ongoing, providing more evidence of the safety and efficacy of these therapies. Here, we review recent work on the epigenetic regulation of aging and outline the advances in intervention strategies for aging and age-associated diseases. A better understanding of the critical roles of epigenetics in the aging process will lead to more clinical advances in the prevention of human aging and therapy of aging-related diseases.
Collapse
Affiliation(s)
- Kang Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Huicong Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 200030, Shanghai, China
| | - Qinchao Hu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, 100101, Beijing, China
- Hospital of Stomatology, Sun Yat-sen University, 510060, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 510060, Guangzhou, China
| | - Lingna Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, 200030, Shanghai, China
| | - Jiaqing Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 200030, Shanghai, China
| | - Zikai Zheng
- University of Chinese Academy of Sciences, 100049, Beijing, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, 100101, Beijing, China
| | - Weiqi Zhang
- University of Chinese Academy of Sciences, 100049, Beijing, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, 100101, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China
| | - Jie Ren
- University of Chinese Academy of Sciences, 100049, Beijing, China.
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, 100101, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China.
| | - Fangfang Zhu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 200030, Shanghai, China.
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China.
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, 100101, Beijing, China.
| |
Collapse
|
47
|
Higham J, Kerr L, Zhang Q, Walker RM, Harris SE, Howard DM, Hawkins EL, Sandu AL, Steele JD, Waiter GD, Murray AD, Evans KL, McIntosh AM, Visscher PM, Deary IJ, Cox SR, Sproul D. Local CpG density affects the trajectory and variance of age-associated DNA methylation changes. Genome Biol 2022; 23:216. [PMID: 36253871 PMCID: PMC9575273 DOI: 10.1186/s13059-022-02787-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/05/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND DNA methylation is an epigenetic mark associated with the repression of gene promoters. Its pattern in the genome is disrupted with age and these changes can be used to statistically predict age with epigenetic clocks. Altered rates of aging inferred from these clocks are observed in human disease. However, the molecular mechanisms underpinning age-associated DNA methylation changes remain unknown. Local DNA sequence can program steady-state DNA methylation levels, but how it influences age-associated methylation changes is unknown. RESULTS We analyze longitudinal human DNA methylation trajectories at 345,895 CpGs from 600 individuals aged between 67 and 80 to understand the factors responsible for age-associated epigenetic changes at individual CpGs. We show that changes in methylation with age occur at 182,760 loci largely independently of variation in cell type proportions. These changes are especially apparent at 8322 low CpG density loci. Using SNP data from the same individuals, we demonstrate that methylation trajectories are affected by local sequence polymorphisms at 1487 low CpG density loci. More generally, we find that low CpG density regions are particularly prone to change and do so variably between individuals in people aged over 65. This differs from the behavior of these regions in younger individuals where they predominantly lose methylation. CONCLUSIONS Our results, which we reproduce in two independent groups of individuals, demonstrate that local DNA sequence influences age-associated DNA methylation changes in humans in vivo. We suggest that this occurs because interactions between CpGs reinforce maintenance of methylation patterns in CpG dense regions.
Collapse
Affiliation(s)
- Jonathan Higham
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Lyndsay Kerr
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Qian Zhang
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
- Present address: Wellcome Sanger Institute, Hinxton, Cambridgeshire, UK
| | - Rosie M Walker
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Present address: School of Psychology, University of Exeter, Edinburgh, UK
| | - Sarah E Harris
- Department of Psychology, Lothian Birth Cohorts Group, University of Edinburgh, Edinburgh, UK
| | - David M Howard
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - Emma L Hawkins
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - Anca-Larisa Sandu
- Aberdeen Biomedical Imaging Centre, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - J Douglas Steele
- Division of Imaging Science and Technology, Medical School, University of Dundee, Dundee, UK
| | - Gordon D Waiter
- Aberdeen Biomedical Imaging Centre, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Alison D Murray
- Aberdeen Biomedical Imaging Centre, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Kathryn L Evans
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Andrew M McIntosh
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - Peter M Visscher
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Ian J Deary
- Department of Psychology, Lothian Birth Cohorts Group, University of Edinburgh, Edinburgh, UK
| | - Simon R Cox
- Department of Psychology, Lothian Birth Cohorts Group, University of Edinburgh, Edinburgh, UK
| | - Duncan Sproul
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
- CRUK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
48
|
Jin J, Yu Y, Wang R, Zeng X, Pang C, Jiang Y, Li Z, Dai Y, Su R, Zou Q, Nakai K, Wei L. iDNA-ABF: multi-scale deep biological language learning model for the interpretable prediction of DNA methylations. Genome Biol 2022; 23:219. [PMID: 36253864 PMCID: PMC9575223 DOI: 10.1186/s13059-022-02780-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 10/03/2022] [Indexed: 11/29/2022] Open
Abstract
In this study, we propose iDNA-ABF, a multi-scale deep biological language learning model that enables the interpretable prediction of DNA methylations based on genomic sequences only. Benchmarking comparisons show that our iDNA-ABF outperforms state-of-the-art methods for different methylation predictions. Importantly, we show the power of deep language learning in capturing both sequential and functional semantics information from background genomes. Moreover, by integrating the interpretable analysis mechanism, we well explain what the model learns, helping us build the mapping from the discovery of important sequential determinants to the in-depth analysis of their biological functions.
Collapse
Affiliation(s)
- Junru Jin
- School of Software, Shandong University, Jinan, 250101, China
- Joint SDU-NTU Centre for Artificial Intelligence Research (C-FAIR), Shandong University, Jinan, 250101, China
| | - Yingying Yu
- School of Software, Shandong University, Jinan, 250101, China
- Joint SDU-NTU Centre for Artificial Intelligence Research (C-FAIR), Shandong University, Jinan, 250101, China
| | - Ruheng Wang
- School of Software, Shandong University, Jinan, 250101, China
- Joint SDU-NTU Centre for Artificial Intelligence Research (C-FAIR), Shandong University, Jinan, 250101, China
| | - Xin Zeng
- Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
- Department of Computational Biology and Medical Sciences, The University of Tokyo, Kashiwa, 277-8563, Japan
| | - Chao Pang
- School of Software, Shandong University, Jinan, 250101, China
- Joint SDU-NTU Centre for Artificial Intelligence Research (C-FAIR), Shandong University, Jinan, 250101, China
| | - Yi Jiang
- School of Software, Shandong University, Jinan, 250101, China
- Joint SDU-NTU Centre for Artificial Intelligence Research (C-FAIR), Shandong University, Jinan, 250101, China
| | - Zhongshen Li
- School of Software, Shandong University, Jinan, 250101, China
- Joint SDU-NTU Centre for Artificial Intelligence Research (C-FAIR), Shandong University, Jinan, 250101, China
| | - Yutong Dai
- Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
- Department of Computational Biology and Medical Sciences, The University of Tokyo, Kashiwa, 277-8563, Japan
| | - Ran Su
- College of Intelligence and Computing, Tianjin University, Tianjin, 300350, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Kenta Nakai
- Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan.
- Department of Computational Biology and Medical Sciences, The University of Tokyo, Kashiwa, 277-8563, Japan.
| | - Leyi Wei
- School of Software, Shandong University, Jinan, 250101, China.
- Joint SDU-NTU Centre for Artificial Intelligence Research (C-FAIR), Shandong University, Jinan, 250101, China.
| |
Collapse
|
49
|
Li M, Bao L, Zhu P, Wang S. Effect of metformin on the epigenetic age of peripheral blood in patients with diabetes mellitus. Front Genet 2022; 13:955835. [PMID: 36226195 PMCID: PMC9548538 DOI: 10.3389/fgene.2022.955835] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Metformin has been proven to have an antiaging effect. However, studies on how metformin affects global epigenetic regulation and its effect on the epigenetic clock in diabetes mellitus (DM) patients are limited. This study aims to investigate the impact of metformin on the epigenetic age in subjects with type 2 DM. Results: We collected the peripheral blood of the metformin group and the no-metformin group of the 32 DM patients. Three previously established epigenetic clocks (Hannum, Horvath, and DNAmPhenoAge) were used to estimate the epigenetic age acceleration of the two groups. We defined biological age acceleration for each group by comparing the estimated biological age with the chronological age. Results were presented as follows: 1) all three epigenetic clocks were strongly correlated with chronological age. 2) We found a strong association between metformin intake and slower epigenetic aging by Horvath’s clock and Hannum’s clock. Conclusions: Here, we found an association between metformin intake and slower epigenetic aging.
Collapse
Affiliation(s)
- Man Li
- Department of Geriatrics, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Litao Bao
- Institute of Gerontology, Second Medical Center, PLA General Hospital, Beijing, China
| | - Ping Zhu
- Department of Geriatrics, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Shuxia Wang
- Department of Geriatrics, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
- *Correspondence: Shuxia Wang,
| |
Collapse
|
50
|
Parmar S, Easwaran H. Genetic and epigenetic dependencies in colorectal cancer development. Gastroenterol Rep (Oxf) 2022; 10:goac035. [PMID: 35975243 PMCID: PMC9373935 DOI: 10.1093/gastro/goac035] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/24/2022] [Accepted: 05/22/2022] [Indexed: 11/12/2022] Open
Abstract
Recent studies have mapped key genetic changes in colorectal cancer (CRC) that impact important pathways contributing to the multistep models for CRC initiation and development. In parallel with genetic changes, normal and cancer tissues harbor epigenetic alterations impacting regulation of critical genes that have been shown to play profound roles in the tumor initiation. Cumulatively, these molecular changes are only loosely associated with heterogenous transcriptional programs, reflecting the heterogeneity in the various CRC molecular subtypes and the paths to CRC development. Studies from mapping molecular alterations in early CRC lesions and use of experimental models suggest that the intricate dependencies of various genetic and epigenetic hits shape the early development of CRC via different pathways and its manifestation into various CRC subtypes. We highlight the dependency of epigenetic and genetic changes in driving CRC development and discuss factors affecting epigenetic alterations over time and, by extension, risk for cancer.
Collapse
Affiliation(s)
- Sehej Parmar
- Cancer Genetics and Epigenetics, Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hariharan Easwaran
- Cancer Genetics and Epigenetics, Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|