1
|
Zhao Y, Jiang Y, Feng Y, Zhao R. RNA m 6A-mediated post-transcriptional repression of glucocorticoid receptor in LPS-activated Kupffer cells on broilers. Poult Sci 2025; 104:104393. [PMID: 39571201 PMCID: PMC11617446 DOI: 10.1016/j.psj.2024.104393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/03/2024] [Accepted: 10/02/2024] [Indexed: 12/08/2024] Open
Abstract
Glucocorticoid receptors are distributed in various cells of the body and participate in the regulation of metabolism and immunity in response to glucocorticoids. RNA m6A methylation participates in various metabolic and inflammatory responses, yet it remains elusive whether m6A is involved in GR regulation during immune activation. Here, we observed uncoupled GR responses with increased mRNA yet suppressed protein levels in the LPS-challenged broilers chicken liver, in association with global elevation of RNA m6A methylation, especially in the expression of METTL3 and YTHDF2. Further analysis using isolated primary hepatocytes and Kupffer cells revealed that such uncoupled GR responses and m6A hypermethylation occurred specifically in KCs. The same GR and m6A responses were reproduced in LPS-activated KC cell line, implying a possible role of m6A in the post-transcriptional suppression of GR in KC. Indeed, m6A inhibitor cycloleucine alleviated LPS-induced GR protein suppression, whilst GR antagonist RU486 had no effect on global m6A methylation in KC. We observed that YTHDF2 siRNA can alleviate LPS-induced GR mRNA stability decrease. Subsequently, specific m6A sites on GR were predicted and verified. Mutation m6A sites and luciferase reporter assay was also applied to validate these findings. Mechanistically, m6A methylation on the transcripts of GR impairs its mRNA stability in a YTHDF2-dependent manner, which leads to the decrease of its protein. Our study indicates successive roles of RNA m6A modification in the down regulation of GR expression, which provides new drug targets for epigenetic therapy of liver inflammation.
Collapse
Affiliation(s)
- Yulan Zhao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing, Jiangsu, PR China; Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Yidan Jiang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing, Jiangsu, PR China; Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Yue Feng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing, Jiangsu, PR China; Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Ruqian Zhao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing, Jiangsu, PR China; Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China.
| |
Collapse
|
2
|
Tripathy S, Nagari A, Chiu SP, Nandu T, Camacho CV, Mahendroo M, Kraus WL. Relaxin Modulates the Genomic Actions and Biological Effects of Estrogen in the Myometrium. Endocrinology 2024; 165:bqae123. [PMID: 39283953 PMCID: PMC11462454 DOI: 10.1210/endocr/bqae123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/02/2024] [Accepted: 09/13/2024] [Indexed: 09/25/2024]
Abstract
Estradiol (E2) and relaxin (Rln) are steroid and polypeptide hormones, respectively, with important roles in the female reproductive tract, including myometrium. Some actions of Rln, which are mediated by its membrane receptor RXFP1, require or are augmented by E2 signaling through its cognate nuclear steroid receptor, estrogen receptor alpha (ERα). In contrast, other actions of Rln act in opposition to the effects of E2. Here we explored the molecular and genomic mechanisms that underlie the functional interplay between E2 and Rln in the myometrium. We used both ovariectomized female mice and immortalized human myometrial cells expressing wild-type or mutant ERα (hTERT-HM-ERα cells). Our results indicate that Rln modulates the genomic actions and biological effects of estrogen in the myometrium and myometrial cells by reducing phosphorylation of ERα on serine 118 (S118), as well as by reducing the E2-dependent binding of ERα across the genome. These effects were associated with changes in the hormone-regulated transcriptome, including a decrease in the E2-dependent expression of some genes and enhanced expression of others. The inhibitory effects of Rln cotreatment on the E2-dependent phosphorylation of ERα required the nuclear dual-specificity phosphatases DUSP1 and DUSP5. Moreover, the inhibitory effects of Rln were reflected in a concomitant inhibition of the E2-dependent contraction of myometrial cells. Collectively, our results identify a pathway that integrates Rln/RXFP1 and E2/ERα signaling, resulting in a convergence of membrane and nuclear signaling pathways to control genomic and biological outcomes.
Collapse
Affiliation(s)
- Sudeshna Tripathy
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Laboratory of Cervical Remodeling and Preterm Birth, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Section of Laboratory Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Anusha Nagari
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Computational Core Facility, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shu-Ping Chiu
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tulip Nandu
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Computational Core Facility, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Cristel V Camacho
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Section of Laboratory Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Mala Mahendroo
- Laboratory of Cervical Remodeling and Preterm Birth, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Section of Laboratory Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - W Lee Kraus
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Section of Laboratory Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
3
|
Tripathy S, Nagari A, Chiu SP, Nandu T, Camacho CV, Mahendroo M, Kraus WL. Relaxin Modulates the Genomic Actions and Biological Effects of Estrogen in the Myometrium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.15.589654. [PMID: 38659934 PMCID: PMC11042280 DOI: 10.1101/2024.04.15.589654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Estradiol (E2) and relaxin (Rln) are steroid and polypeptide hormones, respectively, with important roles in the female reproductive tract, including myometrium. Some actions of Rln, which are mediated by its membrane receptor RXFP1, require or are augmented by E2 signaling through its cognate nuclear steroid receptor, estrogen receptor alpha (ERα). In contrast, other actions of Rln act in opposition to the effects of E2. Here we explored the molecular and genomic mechanisms that underlie the functional interplay between E2 and Rln in the myometrium. We used both ovariectomized female mice and immortalized human myometrial cells expressing wild-type or mutant ERα (hTERT-HM-ERα cells). Our results indicate that Rln modulates the genomic actions and biological effects of estrogen in the myometrium and myometrial cells by reducing phosphorylation of ERα on serine 118 (S118), as well as by reducing the E2-dependent binding of ERα across the genome. These effects were associated with changes in the hormone-regulated transcriptome, including a decrease in the E2-dependent expression of some genes and enhanced expression of others. The inhibitory effects of Rln cotreatment on the E2-dependent phosphorylation of ERα required the nuclear dual-specificity phosphatases DUSP1 and DUSP5. Moreover, the inhibitory effects of Rln were reflected in a concomitant inhibition of the E2-dependent contraction of myometrial cells. Collectively, our results identify a pathway that integrates Rln/RXFP1 and E2/ERα signaling, resulting in a convergence of membrane and nuclear signaling pathways to control genomic and biological outcomes.
Collapse
Affiliation(s)
- Sudeshna Tripathy
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Laboratory of Cervical Remodeling and Preterm Birth, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Section of Laboratory Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Anusha Nagari
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Computational Core Facility, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shu-Ping Chiu
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tulip Nandu
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Computational Core Facility, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Cristel V. Camacho
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Section of Laboratory Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Mala Mahendroo
- Laboratory of Cervical Remodeling and Preterm Birth, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Section of Laboratory Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - W. Lee Kraus
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Section of Laboratory Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
4
|
Miler M, Živanović J, Kovačević S, Vidović N, Djordjevic A, Filipović B, Ajdžanović V. Citrus Flavanone Effects on the Nrf2-Keap1/GSK3/NF-κB/NLRP3 Regulation and Corticotroph-Stress Hormone Loop in the Old Pituitary. Int J Mol Sci 2024; 25:8918. [PMID: 39201604 PMCID: PMC11354440 DOI: 10.3390/ijms25168918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/10/2024] [Accepted: 08/11/2024] [Indexed: 09/02/2024] Open
Abstract
Oxidative stress and inflammation are significant causes of aging. At the same time, citrus flavanones, naringenin (NAR), and hesperetin (HES) are bioactives with proven antioxidant and anti-inflammatory properties. Nevertheless, there are still no data about flavanone's influence and its potential effects on the healthy aging process and improving pituitary functioning. Thus, using qPCR, immunoblot, histological techniques, and biochemical assays, our study aimed to elucidate how citrus flavanones (15 mg/kg b.m. per os) affect antioxidant defense, inflammation, and stress hormone output in the old rat model. Our results showed that HES restores the redox environment in the pituitary by down-regulating the nuclear factor erythroid 2-related factor 2 (Nrf2) protein while increasing kelch-like ECH-associated protein 1 (Keap1), thioredoxin reductase (TrxR1), and superoxide dismutase 2 (SOD2) protein expression. Immunofluorescent analysis confirmed Nrf2 and Keap1 down- and up-regulation, respectively. Supplementation with NAR increased Keap1, Trxr1, glutathione peroxidase (Gpx), and glutathione reductase (Gr) mRNA expression. Decreased oxidative stress aligned with NLRP3 decrement after both flavanones and glycogen synthase kinase-3 (GSK3) only after HES. The signal intensity of adrenocorticotropic hormone (ACTH) cells did not change, while corticosterone levels in serum decreased after both flavanones. HES showed higher potential than NAR in affecting a redox environment without increasing the inflammatory response, while a decrease in corticosterone level has a solid link to longevity. Our findings suggest that HES could improve and facilitate redox and inflammatory dysregulation in the rat's old pituitary.
Collapse
Affiliation(s)
- Marko Miler
- Department of Cytology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia; (J.Ž.); (B.F.); (V.A.)
| | - Jasmina Živanović
- Department of Cytology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia; (J.Ž.); (B.F.); (V.A.)
| | - Sanja Kovačević
- Department of Biochemistry, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia; (S.K.); (A.D.)
| | - Nevena Vidović
- Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia;
| | - Ana Djordjevic
- Department of Biochemistry, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia; (S.K.); (A.D.)
| | - Branko Filipović
- Department of Cytology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia; (J.Ž.); (B.F.); (V.A.)
| | - Vladimir Ajdžanović
- Department of Cytology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia; (J.Ž.); (B.F.); (V.A.)
| |
Collapse
|
5
|
Hiltunen J, Helminen L, Paakinaho V. Glucocorticoid receptor action in prostate cancer: the role of transcription factor crosstalk. Front Endocrinol (Lausanne) 2024; 15:1437179. [PMID: 39027480 PMCID: PMC11254642 DOI: 10.3389/fendo.2024.1437179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
Prostate cancer is one of the most prevalent malignancies and is primarily driven by aberrant androgen receptor (AR) signaling. While AR-targeted therapies form the cornerstone of prostate cancer treatment, they often inadvertently activate compensatory pathways, leading to therapy resistance. This resistance is frequently mediated through changes in transcription factor (TF) crosstalk, reshaping gene regulatory programs and ultimately weakening treatment efficacy. Consequently, investigating TF interactions has become crucial for understanding the mechanisms driving therapy-resistant cancers. Recent evidence has highlighted the crosstalk between the glucocorticoid receptor (GR) and AR, demonstrating that GR can induce prostate cancer therapy resistance by replacing the inactivated AR, thereby becoming a driver of the disease. In addition to this oncogenic role, GR has also been shown to act as a tumor suppressor in prostate cancer. Owing to this dual role and the widespread use of glucocorticoids as adjuvant therapy, it is essential to understand GR's actions across different stages of prostate cancer development. In this review, we explore the current knowledge of GR in prostate cancer, with a specific focus on its crosstalk with other TFs. GR can directly and indirectly interact with a variety of TFs, and these interactions vary significantly depending on the type of prostate cancer cells. By highlighting these crosstalk interactions, we aim to provide insights that can guide the research and development of new GR-targeted therapies to mitigate its harmful effects in prostate cancer.
Collapse
Affiliation(s)
| | | | - Ville Paakinaho
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
6
|
Lisco G, Giagulli VA, De Pergola G, Guastamacchia E, Jirillo E, Vitale E, Triggiani V. Chronic Stress as a Risk Factor for Type 2 Diabetes: Endocrine, Metabolic, and Immune Implications. Endocr Metab Immune Disord Drug Targets 2024; 24:321-332. [PMID: 37534489 DOI: 10.2174/1871530323666230803095118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/01/2023] [Accepted: 06/20/2023] [Indexed: 08/04/2023]
Abstract
BACKGROUND Chronic stress is a condition of pressure on the brain and whole body, which in the long term may lead to a frank disease status, even including type 2 diabetes (T2D). Stress activates the hypothalamus-pituitary-adrenal axis with release of glucocorticoids (GCs) and catecholamines, as well as activation of the inflammatory pathway of the immune system, which alters glucose and lipid metabolism, ultimately leading to beta-cell destruction, insulin resistance and T2D onset. Alteration of the glucose and lipid metabolism accounts for insulin resistance and T2D outcome. Furthermore, stress-related subversion of the intestinal microbiota leads to an imbalance of the gut-brain-immune axis, as evidenced by the stress-related depression often associated with T2D. A condition of generalized inflammation and subversion of the intestinal microbiota represents another facet of stress-induced disease. In fact, chronic stress acts on the gut-brain axis with multiorgan consequences, as evidenced by the association between depression and T2D. Oxidative stress with the production of reactive oxygen species and cytokine-mediated inflammation represents the main hallmarks of chronic stress. ROS production and pro-inflammatory cytokines represent the main hallmarks of stress-related disorders, and therefore, the use of natural antioxidant and anti-inflammatory substances (nutraceuticals) may offer an alternative therapeutic approach to combat stress-related T2D. Single or combined administration of nutraceuticals would be very beneficial in targeting the neuro-endocrine-immune axis, thus, regulating major pathways involved in T2D onset. However, more clinical trials are needed to establish the effectiveness of nutraceutical treatment, dosage, time of administration and the most favorable combinations of compounds. Therefore, in view of their antioxidant and anti-inflammatory properties, the use of natural products or nutraceuticals for the treatment of stress-related diseases, even including T2D, will be discussed. Several evidences suggest that chronic stress represents one of the main factors responsible for the outcome of T2D.
Collapse
Affiliation(s)
- Giuseppe Lisco
- Interdisciplinary Department of Medicine, University of Bari, "Aldo Moro", Bari, Italy
| | - Vito Angelo Giagulli
- Interdisciplinary Department of Medicine, University of Bari, "Aldo Moro", Bari, Italy
| | - Giovanni De Pergola
- Interdisciplinary Department of Medicine, University of Bari, "Aldo Moro", Bari, Italy
| | - Edoardo Guastamacchia
- Interdisciplinary Department of Medicine, University of Bari, "Aldo Moro", Bari, Italy
| | - Emilio Jirillo
- Interdisciplinary Department of Medicine, University of Bari, "Aldo Moro", Bari, Italy
| | - Elsa Vitale
- Department of Mental Health, University of Bari Aldo Moro, Local Health Authority Bari, Bari, Italy
| | - Vincenzo Triggiani
- Interdisciplinary Department of Medicine, University of Bari, "Aldo Moro", Bari, Italy
| |
Collapse
|
7
|
Seah C, Signer R, Deans M, Bader H, Rusielewicz T, Hicks EM, Young H, Cote A, Townsley K, Xu C, Hunter CJ, McCarthy B, Goldberg J, Dobariya S, Holtzherimer PE, Young KA, Noggle SA, Krystal JH, Paull D, Girgenti MJ, Yehuda R, Brennand KJ, Huckins LM. Common genetic variation impacts stress response in the brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.27.573459. [PMID: 38234801 PMCID: PMC10793429 DOI: 10.1101/2023.12.27.573459] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
To explain why individuals exposed to identical stressors experience divergent clinical outcomes, we determine how molecular encoding of stress modifies genetic risk for brain disorders. Analysis of post-mortem brain (n=304) revealed 8557 stress-interactive expression quantitative trait loci (eQTLs) that dysregulate expression of 915 eGenes in response to stress, and lie in stress-related transcription factor binding sites. Response to stress is robust across experimental paradigms: up to 50% of stress-interactive eGenes validate in glucocorticoid treated hiPSC-derived neurons (n=39 donors). Stress-interactive eGenes show brain region- and cell type-specificity, and, in post-mortem brain, implicate glial and endothelial mechanisms. Stress dysregulates long-term expression of disorder risk genes in a genotype-dependent manner; stress-interactive transcriptomic imputation uncovered 139 novel genes conferring brain disorder risk only in the context of traumatic stress. Molecular stress-encoding explains individualized responses to traumatic stress; incorporating trauma into genomic studies of brain disorders is likely to improve diagnosis, prognosis, and drug discovery.
Collapse
|
8
|
Wang C, Manders F, Groh L, Oldenkamp R, Logie C. Corticosteroid-induced chromatin loop dynamics at the FKBP5 gene. Ann N Y Acad Sci 2023; 1529:109-119. [PMID: 37796452 DOI: 10.1111/nyas.15064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
FKBP5 is a 115-kb-long glucocorticoid-inducible gene implicated in psychiatric disorders. To investigate the complexities of chromatin interaction frequencies at the FKBP5 topologically associated domain (TAD), we deployed 15 one-to-all chromatin capture viewpoints near gene promoters, enhancers, introns, and CTCF-loop anchors. This revealed a "one-TAD-one-gene" structure encompassing the FKBP5 promoter and its enhancers. The FKBP5 promoter and its two glucocorticoid-stimulated enhancers roam the entire TAD while displaying subtle cell type-specific interactomes. The FKBP5 TAD consists of two nested CTCF loops that are coordinated by one CTCF site in the eighth intron of FKBP5 and another beyond its polyadenylation site, 61 kb further. Loop extension correlates with transcription increases through the intronic CTCF site. This is efficiently compensated for, since the short loop is restored even under high transcription regimes. The boundaries of the FKBP5 TAD consist of divergent CTCF site patterns, harbor multiple smaller genes, and are resilient to glucocorticoid stimulation. Interestingly, both FKBP5 TAD boundaries harbor H3K27me3-marked heterochromatin blocks that may reinforce them. We propose that cis-acting genetic and epigenetic polymorphisms underlying FKBP5 expression variation are likely to reside within a 240-kb region that consists of the FKBP5 TAD, its left sub-TAD, and both its boundaries.
Collapse
Affiliation(s)
- Cheng Wang
- Department of Molecular Biology, Radboud Institute for Molecular Science, Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - Freek Manders
- Department of Molecular Biology, Radboud Institute for Molecular Science, Faculty of Science, Radboud University, Nijmegen, The Netherlands
- Gendx, Utrecht, The Netherlands
| | - Laszlo Groh
- Department of Molecular Biology, Radboud Institute for Molecular Science, Faculty of Science, Radboud University, Nijmegen, The Netherlands
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Roel Oldenkamp
- Department of Molecular Biology, Radboud Institute for Molecular Science, Faculty of Science, Radboud University, Nijmegen, The Netherlands
- Division of Cell Biology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Colin Logie
- Department of Molecular Biology, Radboud Institute for Molecular Science, Faculty of Science, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
9
|
Deploey N, Van Moortel L, Rogatsky I, Peelman F, De Bosscher K. The Biologist's Guide to the Glucocorticoid Receptor's Structure. Cells 2023; 12:1636. [PMID: 37371105 PMCID: PMC10297449 DOI: 10.3390/cells12121636] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
The glucocorticoid receptor α (GRα) is a member of the nuclear receptor superfamily and functions as a glucocorticoid (GC)-responsive transcription factor. GR can halt inflammation and kill off cancer cells, thus explaining the widespread use of glucocorticoids in the clinic. However, side effects and therapy resistance limit GR's therapeutic potential, emphasizing the importance of resolving all of GR's context-specific action mechanisms. Fortunately, the understanding of GR structure, conformation, and stoichiometry in the different GR-controlled biological pathways is now gradually increasing. This information will be crucial to close knowledge gaps on GR function. In this review, we focus on the various domains and mechanisms of action of GR, all from a structural perspective.
Collapse
Affiliation(s)
- Nick Deploey
- VIB Center for Medical Biotechnology, VIB, 9052 Ghent, Belgium; (N.D.); (L.V.M.); (F.P.)
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Translational Nuclear Receptor Research (TNRR) Laboratory, VIB, 9052 Ghent, Belgium
| | - Laura Van Moortel
- VIB Center for Medical Biotechnology, VIB, 9052 Ghent, Belgium; (N.D.); (L.V.M.); (F.P.)
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Translational Nuclear Receptor Research (TNRR) Laboratory, VIB, 9052 Ghent, Belgium
| | - Inez Rogatsky
- Hospital for Special Surgery Research Institute, The David Z. Rosensweig Genomics Center, New York, NY 10021, USA;
- Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Frank Peelman
- VIB Center for Medical Biotechnology, VIB, 9052 Ghent, Belgium; (N.D.); (L.V.M.); (F.P.)
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Karolien De Bosscher
- VIB Center for Medical Biotechnology, VIB, 9052 Ghent, Belgium; (N.D.); (L.V.M.); (F.P.)
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Translational Nuclear Receptor Research (TNRR) Laboratory, VIB, 9052 Ghent, Belgium
| |
Collapse
|
10
|
Gellisch M, Bablok M, Divvela SSK, Morosan-Puopolo G, Brand-Saberi B. Systemic Prenatal Stress Exposure through Corticosterone Application Adversely Affects Avian Embryonic Skin Development. BIOLOGY 2023; 12:biology12050656. [PMID: 37237470 DOI: 10.3390/biology12050656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023]
Abstract
Prenatal stress exposure is considered a risk factor for developmental deficits and postnatal behavioral disorders. While the effect of glucocorticoid-associated prenatal stress exposure has been comprehensively studied in many organ systems, there is a lack of in-depth embryological investigations regarding the effects of stress on the integumentary system. To approach this, we employed the avian embryo as a model organism and investigated the effects of systemic pathologically-elevated glucocorticoid exposure on the development of the integumentary system. After standardized corticosterone injections on embryonic day 6, we compared the stress-exposed embryos with a control cohort, using histological and immunohistochemical analyses as well as in situ hybridization. The overarching developmental deficits observed in the stress-exposed embryos were reflected through downregulation of both vimentin as well as fibronectin. In addition, a deficient composition in the different skin layers became apparent, which could be linked to a reduced expression of Dermo-1 along with significantly reduced proliferation rates. An impairment of skin appendage formation could be demonstrated by diminished expression of Sonic hedgehog. These results contribute to a more profound understanding of prenatal stress causing severe deficits in the integumentary system of developing organisms.
Collapse
Affiliation(s)
- Morris Gellisch
- Department of Anatomy and Molecular Embryology, Institute of Anatomy, Medical Faculty, Ruhr University Bochum, 44801 Bochum, Germany
| | - Martin Bablok
- Department of Anatomy and Molecular Embryology, Institute of Anatomy, Medical Faculty, Ruhr University Bochum, 44801 Bochum, Germany
| | - Satya Srirama Karthik Divvela
- Department of Anatomy and Molecular Embryology, Institute of Anatomy, Medical Faculty, Ruhr University Bochum, 44801 Bochum, Germany
| | - Gabriela Morosan-Puopolo
- Department of Anatomy and Molecular Embryology, Institute of Anatomy, Medical Faculty, Ruhr University Bochum, 44801 Bochum, Germany
| | - Beate Brand-Saberi
- Department of Anatomy and Molecular Embryology, Institute of Anatomy, Medical Faculty, Ruhr University Bochum, 44801 Bochum, Germany
| |
Collapse
|
11
|
Moliki JM, Nhundu TJ, Maritz L, Avenant C, Hapgood JP. Glucocorticoids and medroxyprogesterone acetate synergize with inflammatory stimuli to selectively upregulate CCL20 transcription. Mol Cell Endocrinol 2023; 563:111855. [PMID: 36646303 PMCID: PMC9892260 DOI: 10.1016/j.mce.2023.111855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/29/2022] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
The pro-inflammatory cytokine, chemokine (C-C motif) ligand 20 (CCL20), is emerging as a therapeutic target for immune-based therapies. Cooperative regulation of CCL20 by glucocorticoids and progestins used in endocrine therapy and pro-inflammatory mediators could modulate immune function and affect disease outcomes. We show that glucocorticoids as well as medroxyprogesterone acetate (MPA), the progestin widely used in injectable contraception in sub-Saharan Africa, cooperate with pro-inflammatory mediators to upregulate CCL20 protein and/or mRNA in human peripheral blood mononuclear cells (PBMCs) and human cervical cell lines. Changes in CCL20 mRNA levels were shown to be synergistic, as assessed by Chou analysis, cell- and gene-specific and to involve transcriptional regulation, with a requirement for a nuclear factor kappa B (NF-κB) site and glucocorticoid receptor (GR) involvement. The novel results suggest a mechanism whereby MPA, like glucocorticoids, may impact inflammation both systemically and in the genital tract in patients using MPA and/or glucocorticoid therapy.
Collapse
Affiliation(s)
- Johnson M Moliki
- Department of Molecular and Cell Biology, University of Cape Town, South Africa
| | - Tawanda J Nhundu
- Department of Molecular and Cell Biology, University of Cape Town, South Africa
| | - Leo Maritz
- Department of Molecular and Cell Biology, University of Cape Town, South Africa
| | - Chanel Avenant
- Department of Molecular and Cell Biology, University of Cape Town, South Africa
| | - Janet P Hapgood
- Department of Molecular and Cell Biology, University of Cape Town, South Africa; Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa.
| |
Collapse
|
12
|
Pinheiro EDS, Preato AM, Petrucci TVB, dos Santos LS, Glezer I. Phase-separation: a possible new layer for transcriptional regulation by glucocorticoid receptor. Front Endocrinol (Lausanne) 2023; 14:1160238. [PMID: 37124728 PMCID: PMC10145926 DOI: 10.3389/fendo.2023.1160238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/20/2023] [Indexed: 05/02/2023] Open
Abstract
Glucocorticoids (GCs) are hormones involved in circadian adaptation and stress response, and it is also noteworthy that these steroidal molecules present potent anti-inflammatory action through GC receptors (GR). Upon ligand-mediated activation, GR translocates to the nucleus, and regulates gene expression related to metabolism, acute-phase response and innate immune response. GR field of research has evolved considerably in the last decades, providing varied mechanisms that contributed to the understanding of transcriptional regulation and also impacted drug design for treating inflammatory diseases. Liquid-liquid phase separation (LLPS) in cellular processes represents a recent topic in biology that conceptualizes membraneless organelles and microenvironments that promote, or inhibit, chemical reactions and interactions of protein or nucleic acids. The formation of these molecular condensates has been implicated in gene expression control, and recent evidence shows that GR and other steroid receptors can nucleate phase separation (PS). Here we briefly review the varied mechanisms of transcriptional control by GR, which are largely studied in the context of inflammation, and further present how PS can be involved in the control of gene expression. Lastly, we consider how the reported advances on LLPS during transcription control, specially for steroid hormone receptors, could impact the different modalities of GR action on gene expression, adding a new plausible molecular event in glucocorticoid signal transduction.
Collapse
|
13
|
Wang ZL, Jin R, Hao M, Xie YD, Liu ZC, Wang XX, Feng B. Treatment of ursodeoxycholic acid with glucocorticoids and immunosuppressants may improve the long-term survival rate in primary biliary cholangitis patients. Medicine (Baltimore) 2022; 101:e31395. [PMID: 36401422 PMCID: PMC9678505 DOI: 10.1097/md.0000000000031395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Primary biliary cholangitis (PBC) is an autoimmune cholestatic liver disease. The clinical effectiveness of ursodeoxycholic acid (UDCA) plus glucocorticoids and/or immunosuppressants remains controversial in PBC patients. The study aimed to compare the efficacy of monotherapy and combination therapy in patients with PBC and to assess the factors affecting the efficacy. In this retrospective study, 266 patients diagnosed with PBC were divided into monotherapy group (UDCA), double therapy group (UDCA plus glucocorticoids or immunosuppressants), and triple therapy group (UDCA plus glucocorticoids and immunosuppressants) according to different treatments. Demographic characteristics, immune parameters, biochemistry profiles, and other indicators were evaluated at baseline, 6 months, and 1 year following treatment. The prognosis was evaluated using the Paris II standard. The liver transplant-free survival at 3, 5, 10, and 15 years was predicted by GLOBE score. All statistical analyses were conducted using SPSS (version 24) software (SPSS Inc, Chicago, IL). The long-term survival rate of the triple therapy group was significantly improved compared with the monotherapy group (P = .005). In addition, multivariate analysis showed that abnormal platelet count, alkaline phosphatase, and albumin levels were risk factors for poor response. When IgG levels were elevated but below twice the upper limit of normal, the clinical benefit was not significant compared with monotherapy (P > .05). Compared with monotherapy and double therapy, triple therapy may improve the long-term survival rate of PBC patients. Abnormal platelet count, alkaline phosphatase, and albumin levels were associated with a poor prognosis.
Collapse
Affiliation(s)
- Zi-Long Wang
- Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University Hepatology Institute, Peking University People’s Hospital, Beijing, China
| | - Rui Jin
- Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University Hepatology Institute, Peking University People’s Hospital, Beijing, China
| | - Mei Hao
- Medical Information Center, Peking University People’s Hospital, Beijing, China
| | - Yan-Di Xie
- Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University Hepatology Institute, Peking University People’s Hospital, Beijing, China
| | - Zhi-Cheng Liu
- Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University Hepatology Institute, Peking University People’s Hospital, Beijing, China
| | - Xiao-Xiao Wang
- Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University Hepatology Institute, Peking University People’s Hospital, Beijing, China
| | - Bo Feng
- Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University Hepatology Institute, Peking University People’s Hospital, Beijing, China
- * Correspondence: Bo Feng, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University Hepatology Institute, Peking University People’s Hospital, 11 Xizhimen South Street, Xicheng District, Beijing 10044, China (e-mail: )
| |
Collapse
|
14
|
Albano GD, Gagliardo RP, Montalbano AM, Profita M. Overview of the Mechanisms of Oxidative Stress: Impact in Inflammation of the Airway Diseases. Antioxidants (Basel) 2022; 11:2237. [PMID: 36421423 PMCID: PMC9687037 DOI: 10.3390/antiox11112237] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 08/01/2023] Open
Abstract
Inflammation of the human lung is mediated in response to different stimuli (e.g., physical, radioactive, infective, pro-allergenic or toxic) such as cigarette smoke and environmental pollutants. They often promote an increase in inflammatory activities in the airways that manifest themselves as chronic diseases (e.g., allergic airway diseases, asthma, chronic bronchitis/chronic obstructive pulmonary disease (COPD) or even lung cancer). Increased levels of oxidative stress (OS) reduce the antioxidant defenses, affect the autophagy/mitophagy processes, and the regulatory mechanisms of cell survival, promoting inflammation in the lung. In fact, OS potentiate the inflammatory activities in the lung, favoring the progression of chronic airway diseases. OS increases the production of reactive oxygen species (ROS), including superoxide anions (O2-), hydroxyl radicals (OH) and hydrogen peroxide (H2O2), by the transformation of oxygen through enzymatic and non-enzymatic reactions. In this manner, OS reduces endogenous antioxidant defenses in both nucleated and non-nucleated cells. The production of ROS in the lung can derive from both exogenous insults (cigarette smoke or environmental pollution) and endogenous sources such as cell injury and/or activated inflammatory and structural cells. In this review, we describe the most relevant knowledge concerning the functional interrelation between the mechanisms of OS and inflammation in airway diseases.
Collapse
|
15
|
Zhang X, Wei Y, Li X, Li C, Zhang L, Liu Z, Cao Y, Li W, Zhang X, Zhang J, Shen M, Liu H. The Corticosterone–Glucocorticoid Receptor–AP1/CREB Axis Inhibits the Luteinizing Hormone Receptor Expression in Mouse Granulosa Cells. Int J Mol Sci 2022; 23:ijms232012454. [PMID: 36293309 PMCID: PMC9604301 DOI: 10.3390/ijms232012454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/18/2022] Open
Abstract
Under stress conditions, luteinizing hormone (LH)-mediated ovulation is inhibited, resulting in insufficient oocyte production and excretion during follicular development. When the body is stressed, a large amount of corticosterone (CORT) is generated, which will lead to a disorder of the body’s endocrine system and damage to the body. Our previous work showed that CORT can block follicular development in mice. Since LH acts through binding with the luteinizing hormone receptor (Lhcgr), the present study aimed to investigate whether and how corticosterone (CORT) influences Lhcgr expression in mouse ovarian granulosa cells (GCs). For this purpose, three-week-old ICR female mice were injected intraperitoneally with pregnant mare serum gonadotropin (PMSG). In addition, the treatment group was injected with CORT (1 mg/mouse) at intervals of 8 h and the control group was injected with the same volume of methyl sulfoxide (DMSO). GCs were collected at 24 h, 48 h, and 55 h after PMSG injection. For in vitro experiments, the mouse GCs obtained from healthy follicles were treated with CORT alone, or together with inhibitors against the glucocorticoid receptor (Nr3c1). The results showed that the CORT caused a downregulation of Lhcgr expression in GCs, which was accompanied by impaired cell viability. Moreover, the effect of the CORT was mediated by binding to its receptor (Nr3c1) in GCs. Further investigation revealed that Nr3c1 might regulate the transcription of Lhcgr through inhibiting the expression of Lhcgr transcription factors, including AP1 and Creb. Taken together, our findings suggested a possible mechanism of CORT-induced anovulation involving the inhibition of Lhcgr expression in GCs by the CORT–Nr3c1–AP1/Creb axis.
Collapse
Affiliation(s)
- Xuan Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yinghui Wei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China
| | - Xiaoxuan Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chengyu Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Liangliang Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhaojun Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yan Cao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Weijian Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiying Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiaqing Zhang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Ming Shen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (M.S.); (H.L.)
| | - Honglin Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (M.S.); (H.L.)
| |
Collapse
|
16
|
An Expanded Interplay Network between NF-κB p65 (RelA) and E2F1 Transcription Factors: Roles in Physiology and Pathology. Cancers (Basel) 2022; 14:cancers14205047. [PMID: 36291831 PMCID: PMC9600032 DOI: 10.3390/cancers14205047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/30/2022] [Accepted: 10/10/2022] [Indexed: 11/17/2022] Open
Abstract
Transcription Factors (TFs) are the main regulators of gene expression, controlling among others cell homeostasis, identity, and fate. TFs may either act synergistically or antagonistically on nearby regulatory elements and their interplay may activate or repress gene expression. The family of NF-κB TFs is among the most important TFs in the regulation of inflammation, immunity, and stress-like responses, while they also control cell growth and survival, and are involved in inflammatory diseases and cancer. The family of E2F TFs are major regulators of cell cycle progression in most cell types. Several studies have suggested the interplay between these two TFs in the regulation of numerous genes controlling several biological processes. In the present study, we compared the genomic binding landscape of NF-κB RelA/p65 subunit and E2F1 TFs, based on high throughput ChIP-seq and RNA-seq data in different cell types. We confirmed that RelA/p65 has a binding profile with a high preference for distal enhancers bearing active chromatin marks which is distinct to that of E2F1, which mostly generates promoter-specific binding. Moreover, the RelA/p65 subunit and E2F1 cistromes have limited overlap and tend to bind chromatin that is in an active state even prior to immunogenic stimulation. Finally, we found that a fraction of the E2F1 cistrome is recruited by NF-κΒ near pro-inflammatory genes following LPS stimulation in immune cell types.
Collapse
|
17
|
Galasso M, Dalla Pozza E, Chignola R, Gambino S, Cavallini C, Quaglia FM, Lovato O, Dando I, Malpeli G, Krampera M, Donadelli M, Romanelli MG, Scupoli MT. The rs1001179 SNP and CpG methylation regulate catalase expression in chronic lymphocytic leukemia. Cell Mol Life Sci 2022; 79:521. [PMID: 36112236 PMCID: PMC9481481 DOI: 10.1007/s00018-022-04540-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/23/2022] [Accepted: 08/28/2022] [Indexed: 11/26/2022]
Abstract
Chronic lymphocytic leukemia (CLL) is an incurable disease characterized by an extremely variable clinical course. We have recently shown that high catalase (CAT) expression identifies patients with an aggressive clinical course. Elucidating mechanisms regulating CAT expression in CLL is preeminent to understand disease mechanisms and develop strategies for improving its clinical management. In this study, we investigated the role of the CAT promoter rs1001179 single nucleotide polymorphism (SNP) and of the CpG Island II methylation encompassing this SNP in the regulation of CAT expression in CLL. Leukemic cells harboring the rs1001179 SNP T allele exhibited a significantly higher CAT expression compared with cells bearing the CC genotype. CAT promoter harboring the T -but not C- allele was accessible to ETS-1 and GR-β transcription factors. Moreover, CLL cells exhibited lower methylation levels than normal B cells, in line with the higher CAT mRNA and protein expressed by CLL in comparison with normal B cells. Methylation levels at specific CpG sites negatively correlated with CAT levels in CLL cells. Inhibition of methyltransferase activity induced a significant increase in CAT levels, thus functionally validating the role of CpG methylation in regulating CAT expression in CLL. Finally, the CT/TT genotypes were associated with lower methylation and higher CAT levels, suggesting that the rs1001179 T allele and CpG methylation may interact in regulating CAT expression in CLL. This study identifies genetic and epigenetic mechanisms underlying differential expression of CAT, which could be of crucial relevance for the development of therapies targeting redox regulatory pathways in CLL.
Collapse
Affiliation(s)
- Marilisa Galasso
- Biology and Genetics Section, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134, Verona, Italy
- Section of Hematology, Department of Medicine, University of Verona, Policlinico G.B. Rossi, P. L.A. Scuro 10, 37134, Verona, Italy
| | - Elisa Dalla Pozza
- Biology and Genetics Section, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134, Verona, Italy
| | - Roberto Chignola
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Simona Gambino
- Biology and Genetics Section, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134, Verona, Italy
| | - Chiara Cavallini
- Research Center LURM, University of Verona, Policlinico G.B. Rossi, P. L.A. Scuro 10, 37134, Verona, Italy
| | - Francesca Maria Quaglia
- Section of Hematology, Department of Medicine, University of Verona, Policlinico G.B. Rossi, P. L.A. Scuro 10, 37134, Verona, Italy
| | - Ornella Lovato
- Research Center LURM, University of Verona, Policlinico G.B. Rossi, P. L.A. Scuro 10, 37134, Verona, Italy
| | - Ilaria Dando
- Biology and Genetics Section, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134, Verona, Italy
| | - Giorgio Malpeli
- Department of Surgery, Dentistry, Pediatrics, and Gynecology, University of Verona, Policlinico G.B. Rossi, P. L.A. Scuro 10, 37134, Verona, Italy
| | - Mauro Krampera
- Section of Hematology, Department of Medicine, University of Verona, Policlinico G.B. Rossi, P. L.A. Scuro 10, 37134, Verona, Italy
| | - Massimo Donadelli
- Biology and Genetics Section, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134, Verona, Italy
| | - Maria G Romanelli
- Biology and Genetics Section, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134, Verona, Italy.
| | - Maria T Scupoli
- Biology and Genetics Section, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134, Verona, Italy.
- Research Center LURM, University of Verona, Policlinico G.B. Rossi, P. L.A. Scuro 10, 37134, Verona, Italy.
| |
Collapse
|
18
|
Portuguez AS, Grbesa I, Tal M, Deitch R, Raz D, Kliker L, Weismann R, Schwartz M, Loza O, Cohen L, Marchenkov-Flam L, Sung MH, Kaplan T, Hakim O. Ep300 sequestration to functionally distinct glucocorticoid receptor binding loci underlie rapid gene activation and repression. Nucleic Acids Res 2022; 50:6702-6714. [PMID: 35713523 PMCID: PMC9262608 DOI: 10.1093/nar/gkac488] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 05/18/2022] [Accepted: 05/26/2022] [Indexed: 12/24/2022] Open
Abstract
The rapid transcriptional response to the transcription factor, glucocorticoid receptor (GR), including gene activation or repression, is mediated by the spatial association of genes with multiple GR binding sites (GBSs) over large genomic distances. However, only a minority of the GBSs have independent GR-mediated activating capacity, and GBSs with independent repressive activity were rarely reported. To understand the positive and negative effects of GR we mapped the regulatory environment of its gene targets. We show that the chromatin interaction networks of GR-activated and repressed genes are spatially separated and vary in the features and configuration of their GBS and other non-GBS regulatory elements. The convergence of the KLF4 pathway in GR-activated domains and the STAT6 pathway in GR-repressed domains, impose opposite transcriptional effects to GR, independent of hormone application. Moreover, the ROR and Rev-erb transcription factors serve as positive and negative regulators, respectively, of GR-mediated gene activation. We found that the spatial crosstalk between GBSs and non-GBSs provides a physical platform for sequestering the Ep300 co-activator from non-GR regulatory loci in both GR-activated and -repressed gene compartments. While this allows rapid gene repression, Ep300 recruitment to GBSs is productive specifically in the activated compartments, thus providing the basis for gene induction.
Collapse
Affiliation(s)
| | | | - Moran Tal
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Building 206, Ramat-Gan 5290002, Israel
| | - Rachel Deitch
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Building 206, Ramat-Gan 5290002, Israel
| | - Dana Raz
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Building 206, Ramat-Gan 5290002, Israel
| | - Limor Kliker
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Building 206, Ramat-Gan 5290002, Israel
| | - Ran Weismann
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Building 206, Ramat-Gan 5290002, Israel
| | - Michal Schwartz
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Building 206, Ramat-Gan 5290002, Israel
| | - Olga Loza
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Building 206, Ramat-Gan 5290002, Israel
| | - Leslie Cohen
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Building 206, Ramat-Gan 5290002, Israel
| | - Libi Marchenkov-Flam
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Building 206, Ramat-Gan 5290002, Israel
| | - Myong-Hee Sung
- Laboratory of Molecular Biology and Immunology, NIA, National Institutes of Health, Baltimore, MD 21224, USA
| | - Tommy Kaplan
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem 91904, Israel,Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91121, Israel
| | - Ofir Hakim
- To whom correspondence should be addressed. Tel: +972 3 738 4295; Fax: +972 3 738 4296;
| |
Collapse
|
19
|
Strickland BA, Ansari SA, Dantoft W, Uhlenhaut NH. How to tame your genes: mechanisms of inflammatory gene repression by glucocorticoids. FEBS Lett 2022; 596:2596-2616. [PMID: 35612756 DOI: 10.1002/1873-3468.14409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/24/2022] [Accepted: 05/18/2022] [Indexed: 01/08/2023]
Abstract
Glucocorticoids (GCs) are widely used therapeutic agents to treat a broad range of inflammatory conditions. Their functional effects are elicited by binding to the glucocorticoid receptor (GR), which regulates transcription of distinct gene networks in response to ligand. However, the mechanisms governing various aspects of undesired side effects versus beneficial immunomodulation upon GR activation remain complex and incompletely understood. In this review, we discuss emerging models of inflammatory gene regulation by GR, highlighting GR's regulatory specificity conferred by context-dependent changes in chromatin architecture and transcription factor or co-regulator dynamics. GR controls both gene activation and repression, with the repression mechanism being central to favorable clinical outcomes. We describe current knowledge about 3D genome organization and its role in spatiotemporal transcriptional control by GR. Looking beyond, we summarize the evidence for dynamics in gene regulation by GR through cooperative convergence of epigenetic modifications, transcription factor crosstalk, molecular condensate formation and chromatin looping. Further characterizing these genomic events will reframe our understanding of mechanisms of transcriptional repression by GR.
Collapse
Affiliation(s)
- Benjamin A Strickland
- Metabolic Programming, Technische Universitaet Muenchen (TUM), School of Life Sciences Weihenstephan, ZIEL - Institute for Food and Health, Gregor-Mendel-Str. 2, 85354, Freising, Germany
| | - Suhail A Ansari
- Institute for Diabetes and Endocrinology (IDE), Helmholtz Center Munich (HMGU) and German Center for Diabetes Research (DZD), Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany
| | - Widad Dantoft
- Institute for Diabetes and Endocrinology (IDE), Helmholtz Center Munich (HMGU) and German Center for Diabetes Research (DZD), Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany
| | - N Henriette Uhlenhaut
- Metabolic Programming, Technische Universitaet Muenchen (TUM), School of Life Sciences Weihenstephan, ZIEL - Institute for Food and Health, Gregor-Mendel-Str. 2, 85354, Freising, Germany.,Institute for Diabetes and Endocrinology (IDE), Helmholtz Center Munich (HMGU) and German Center for Diabetes Research (DZD), Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany
| |
Collapse
|
20
|
Bansal A, Mostafa MM, Kooi C, Sasse SK, Michi AN, Shah SV, Leigh R, Gerber AN, Newton R. Interplay between nuclear factor-κB, p38 MAPK and glucocorticoid receptor signaling synergistically induces functional TLR2 in lung epithelial cells. J Biol Chem 2022; 298:101747. [PMID: 35189144 PMCID: PMC8942839 DOI: 10.1016/j.jbc.2022.101747] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 12/05/2022] Open
Abstract
While glucocorticoids act via the glucocorticoid receptor (GR; NR3C1) to reduce the expression of many inflammatory genes, repression is not an invariable outcome. Here, we explore synergy occurring between synthetic glucocorticoids (dexamethasone and budesonide) and proinflammatory cytokines (IL1B and TNF) on the expression of the toll-like receptor 2 (TLR2). This effect is observed in epithelial cell lines and both undifferentiated and differentiated primary human bronchial epithelial cells (pHBECs). In A549 cells, IL1B-plus-glucocorticoid–induced TLR2 expression required nuclear factor (NF)-κB and GR. Likewise, in A549 cells, BEAS-2B cells, and pHBECs, chromatin immunoprecipitation identified GR- and NF-κB/p65-binding regions ∼32 kb (R1) and ∼7.3 kb (R2) upstream of the TLR2 gene. Treatment of BEAS-2B cells with TNF or/and dexamethasone followed by global run-on sequencing confirmed transcriptional activity at these regions. Furthermore, cloning R1 or R2 into luciferase reporters revealed transcriptional activation by budesonide or IL1B, respectively, while R1+R2 juxtaposition enabled synergistic activation by IL1B and budesonide. In addition, small-molecule inhibitors and siRNA knockdown showed p38α MAPK to negatively regulate both IL1B-induced TLR2 expression and R1+R2 reporter activity. Finally, agonism of IL1B-plus-dexamethasone–induced TLR2 in A549 cells and pHBECs stimulated NF-κB- and interferon regulatory factor-dependent reporter activity and chemokine release. We conclude that glucocorticoid-plus-cytokine-driven synergy at TLR2 involves GR and NF-κB acting via specific enhancer regions, which combined with the inhibition of p38α MAPK promotes TLR2 expression. Subsequent inflammatory effects that occur following TLR2 agonism may be pertinent in severe neutrophilic asthma or chronic obstructive pulmonary disease, where glucocorticoid-based therapies are less efficacious.
Collapse
Affiliation(s)
- Akanksha Bansal
- Department of Physiology & Pharmacology and Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Mahmoud M Mostafa
- Department of Physiology & Pharmacology and Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Cora Kooi
- Department of Medicine and Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Sarah K Sasse
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Aubrey N Michi
- Department of Physiology & Pharmacology and Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Suharsh V Shah
- Department of Physiology & Pharmacology and Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Richard Leigh
- Department of Physiology & Pharmacology and Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Medicine and Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Anthony N Gerber
- Department of Medicine, National Jewish Health, Denver, Colorado, USA; Department of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Robert Newton
- Department of Physiology & Pharmacology and Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
21
|
Shimba A, Ejima A, Ikuta K. Pleiotropic Effects of Glucocorticoids on the Immune System in Circadian Rhythm and Stress. Front Immunol 2021; 12:706951. [PMID: 34691020 PMCID: PMC8531522 DOI: 10.3389/fimmu.2021.706951] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 09/22/2021] [Indexed: 12/16/2022] Open
Abstract
Glucocorticoids (GCs) are a class of steroid hormones secreted from the adrenal cortex. Their production is controlled by circadian rhythm and stress, the latter of which includes physical restraint, hunger, and inflammation. Importantly, GCs have various effects on immunity, metabolism, and cognition, including pleiotropic effects on the immune system. In general, GCs have strong anti-inflammatory and immunosuppressive effects. Indeed, they suppress inflammatory cytokine expression and cell-mediated immunity, leading to increased risks of some infections. However, recent studies have shown that endogenous GCs induced by the diurnal cycle and dietary restriction enhance immune responses against some infections by promoting the survival, redistribution, and response of T and B cells via cytokine and chemokine receptors. Furthermore, although GCs are reported to reduce expression of Th2 cytokines, GCs enhance type 2 immunity and IL-17-associated immunity in some stress conditions. Taken together, GCs have both immunoenhancing and immunosuppressive effects on the immune system.
Collapse
Affiliation(s)
- Akihiro Shimba
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Aki Ejima
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Koichi Ikuta
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
22
|
Kokkinopoulou I, Diakoumi A, Moutsatsou P. Glucocorticoid Receptor Signaling in Diabetes. Int J Mol Sci 2021; 22:ijms222011173. [PMID: 34681832 PMCID: PMC8537243 DOI: 10.3390/ijms222011173] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/04/2021] [Accepted: 10/12/2021] [Indexed: 12/20/2022] Open
Abstract
Stress and depression increase the risk of Type 2 Diabetes (T2D) development. Evidence demonstrates that the Glucocorticoid (GC) negative feedback is impaired (GC resistance) in T2D patients resulting in Hypothalamic-Pituitary-Adrenal (HPA) axis hyperactivity and hypercortisolism. High GCs, in turn, activate multiple aspects of glucose homeostasis in peripheral tissues leading to hyperglycemia. Elucidation of the underlying molecular mechanisms revealed that Glucocorticoid Receptor (GR) mediates the GC-induced dysregulation of glucose production, uptake and insulin signaling in GC-sensitive peripheral tissues, such as liver, skeletal muscle, adipose tissue, and pancreas. In contrast to increased GR peripheral sensitivity, an impaired GR signaling in Peripheral Blood Mononuclear Cells (PBMCs) of T2D patients, associated with hyperglycemia, hyperlipidemia, and increased inflammation, has been shown. Given that GR changes in immune cells parallel those in brain, the above data implicate that a reduced brain GR function may be the biological link among stress, HPA hyperactivity, hypercortisolism and hyperglycemia. GR polymorphisms have also been associated with metabolic disturbances in T2D while dysregulation of micro-RNAs—known to target GR mRNA—has been described. Collectively, GR has a crucial role in T2D, acting in a cell-type and context-specific manner, leading to either GC sensitivity or GC resistance. Selective modulation of GR signaling in T2D therapy warrants further investigation.
Collapse
|
23
|
Haj-Mirzaian A, Ramezanzadeh K, Shariatzadeh S, Tajik M, Khalafi F, Tafazolimoghadam A, Radmard M, Rahbar A, Pirri F, Kazemi K, Khosravi A, Shababi N, Dehpour AR. Role of hypothalamic-pituitary adrenal-axis, toll-like receptors, and macrophage polarization in pre-atherosclerotic changes induced by social isolation stress in mice. Sci Rep 2021; 11:19091. [PMID: 34580342 PMCID: PMC8476494 DOI: 10.1038/s41598-021-98276-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/06/2021] [Indexed: 02/08/2023] Open
Abstract
It has been well documented that chronic stress can induce atherosclerotic changes, however, the underlying mechanisms is yet to be established. In this regard, this study aimed to elucidate the relation between hypothalamic-pituitary adrenal-axis (HPA-axis), toll-like receptors (TLRs), as well as M1/M2 macrophage ratio and pre-atherosclerotic changes in social isolation stress (SIS) in mice. We used small interfering RNA against the glucocorticoid receptor (GR) to evaluate the relation between HPA-axis and TLRs. C57BL/6J mice were subjected to SIS and RT-PCR, ELISA, flow cytometry, and immunohistochemistry were used to assess the relations between pre-atherosclerotic changes and TLRs, macrophage polarization, pro-inflammatory cytokines, and cell adhesion molecules in aortic tissue. We used TAK-242 (0.3 mg/kg, intraperitoneally), a selective antagonist of TLR4, as a possible prophylactic treatment for atherosclerotic changes induced by SIS. We observed that isolated animals had higher serum concentration of corticosterone and higher body weight in comparison to normal animals. In isolated animals, results of in vitro study showed that knocking-down of the GR in bone marrow-derived monocytes significantly decreased the expression of TLR4. In vivo study suggested higher expression of TLR4 on circulating monocytes and higher M1/M2 ratio in aortic samples. Pathological study showed a mild pre-atherosclerotic change in isolated animals. Finally, we observed that treating animals with TAK-242 could significantly inhibit the pre-atherosclerotic changes. SIS can possibly increase the risk of atherosclerosis through inducing abnormal HPA-axis activity and subsequently lead to TLR4 up-regulation, vascular inflammation, high M1/M2 ratio in intima. Thus, TLR4 inhibitors might be a novel treatment to decrease the risk of atherosclerosis induced by chronic stress.
Collapse
Affiliation(s)
- Arvin Haj-Mirzaian
- grid.411705.60000 0001 0166 0922Experimental Medicine Research Center, Tehran University of Medical Sciences, P.O. Box: 13145-784, Tehran, Iran ,grid.411705.60000 0001 0166 0922Department of Pharmacology, Tehran University of Medical Sciences, Tehran, Iran ,grid.411600.2Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kiana Ramezanzadeh
- grid.411705.60000 0001 0166 0922Experimental Medicine Research Center, Tehran University of Medical Sciences, P.O. Box: 13145-784, Tehran, Iran ,grid.411705.60000 0001 0166 0922Department of Pharmacology, Tehran University of Medical Sciences, Tehran, Iran ,grid.411600.2Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Siavash Shariatzadeh
- grid.411705.60000 0001 0166 0922Department of Pharmacology, Tehran University of Medical Sciences, Tehran, Iran ,grid.411600.2Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Michael Tajik
- grid.411705.60000 0001 0166 0922Experimental Medicine Research Center, Tehran University of Medical Sciences, P.O. Box: 13145-784, Tehran, Iran ,grid.411705.60000 0001 0166 0922Department of Pharmacology, Tehran University of Medical Sciences, Tehran, Iran ,grid.411600.2Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farima Khalafi
- grid.411705.60000 0001 0166 0922Experimental Medicine Research Center, Tehran University of Medical Sciences, P.O. Box: 13145-784, Tehran, Iran ,grid.411705.60000 0001 0166 0922Department of Pharmacology, Tehran University of Medical Sciences, Tehran, Iran ,grid.411600.2Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Armin Tafazolimoghadam
- grid.411705.60000 0001 0166 0922Experimental Medicine Research Center, Tehran University of Medical Sciences, P.O. Box: 13145-784, Tehran, Iran ,grid.411705.60000 0001 0166 0922Department of Pharmacology, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahla Radmard
- grid.411705.60000 0001 0166 0922Experimental Medicine Research Center, Tehran University of Medical Sciences, P.O. Box: 13145-784, Tehran, Iran ,grid.411705.60000 0001 0166 0922Department of Pharmacology, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Rahbar
- grid.411705.60000 0001 0166 0922Experimental Medicine Research Center, Tehran University of Medical Sciences, P.O. Box: 13145-784, Tehran, Iran ,grid.411705.60000 0001 0166 0922Department of Pharmacology, Tehran University of Medical Sciences, Tehran, Iran ,grid.412505.70000 0004 0612 5912Department of Pharmacology, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fardad Pirri
- grid.411705.60000 0001 0166 0922Experimental Medicine Research Center, Tehran University of Medical Sciences, P.O. Box: 13145-784, Tehran, Iran ,grid.411705.60000 0001 0166 0922Department of Pharmacology, Tehran University of Medical Sciences, Tehran, Iran
| | - Kiarash Kazemi
- grid.411705.60000 0001 0166 0922Experimental Medicine Research Center, Tehran University of Medical Sciences, P.O. Box: 13145-784, Tehran, Iran ,grid.411705.60000 0001 0166 0922Department of Pharmacology, Tehran University of Medical Sciences, Tehran, Iran
| | - Ayda Khosravi
- grid.411705.60000 0001 0166 0922Experimental Medicine Research Center, Tehran University of Medical Sciences, P.O. Box: 13145-784, Tehran, Iran ,grid.411705.60000 0001 0166 0922Department of Pharmacology, Tehran University of Medical Sciences, Tehran, Iran
| | - Niloufar Shababi
- grid.411705.60000 0001 0166 0922Experimental Medicine Research Center, Tehran University of Medical Sciences, P.O. Box: 13145-784, Tehran, Iran ,grid.411705.60000 0001 0166 0922Department of Pharmacology, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- grid.411705.60000 0001 0166 0922Experimental Medicine Research Center, Tehran University of Medical Sciences, P.O. Box: 13145-784, Tehran, Iran ,grid.411705.60000 0001 0166 0922Department of Pharmacology, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Lu L, Huang J, Deng X, Sun X, Dong J. Application of glucocorticoids in patients with novel coronavirus infection: From bench to bedside. TRADITIONAL MEDICINE AND MODERN MEDICINE 2021. [DOI: 10.1142/s257590002030009x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Glucocorticoids (GCs) have potential anti-inflammatory and immunosuppressive effects. There is plenty of controversy about the application of glucocorticoids in the treatment of coronavirus disease 2019 (COVID-19). This paper briefly summarizes the mechanism of glucocorticoids and their receptors and clinical applications in COVID-19. Through reviewing the current literature, our aim is to have a deeper understanding of the mechanism of GCs and their clinical applications, so as to find possible ways to enhance their efficacy and reduce drug resistance or side effects.
Collapse
Affiliation(s)
- Linwei Lu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai 200040, P. R. China
- Qingpu Chinese Medicine Hospital, Institutes of Integrative Medicine, Fudan University, Shanghai, P. R. China
| | - Jianhua Huang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai 200040, P. R. China
- Qingpu Chinese Medicine Hospital, Institutes of Integrative Medicine, Fudan University, Shanghai, P. R. China
| | - Xiaohong Deng
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai 200040, P. R. China
- Qingpu Chinese Medicine Hospital, Institutes of Integrative Medicine, Fudan University, Shanghai, P. R. China
| | - Xianjun Sun
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai 200040, P. R. China
- Qingpu Chinese Medicine Hospital, Institutes of Integrative Medicine, Fudan University, Shanghai, P. R. China
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai 200040, P. R. China
- Qingpu Chinese Medicine Hospital, Institutes of Integrative Medicine, Fudan University, Shanghai, P. R. China
| |
Collapse
|
25
|
Gupte R, Nandu T, Kraus WL. Nuclear ADP-ribosylation drives IFNγ-dependent STAT1α enhancer formation in macrophages. Nat Commun 2021; 12:3931. [PMID: 34168143 PMCID: PMC8225886 DOI: 10.1038/s41467-021-24225-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 06/04/2021] [Indexed: 02/01/2023] Open
Abstract
STAT1α is a key transcription factor driving pro-inflammatory responses in macrophages. We found that the interferon gamma (IFNγ)-regulated transcriptional program in macrophages is controlled by ADP-ribosylation (ADPRylation) of STAT1α, a post-translational modification resulting in the site-specific covalent attachment of ADP-ribose moieties. PARP-1, the major nuclear poly(ADP-ribose) polymerase (PARP), supports IFNγ-stimulated enhancer formation by regulating the genome-wide binding and IFNγ-dependent transcriptional activation of STAT1α. It does so by ADPRylating STAT1α on specific residues in its DNA-binding domain (DBD) and transcription activation (TA) domain. ADPRylation of the DBD controls STAT1α binding to its cognate DNA elements, whereas ADPRylation of the TA domain regulates enhancer activation by modulating STAT1α phosphorylation and p300 acetyltransferase activity. Loss of ADPRylation at either site leads to diminished IFNγ-dependent transcription and downstream pro-inflammatory responses. We conclude that PARP-1-mediated ADPRylation of STAT1α drives distinct enhancer activation mechanisms and is a critical regulator of inflammatory responses in macrophages.
Collapse
Affiliation(s)
- Rebecca Gupte
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tulip Nandu
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - W Lee Kraus
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
26
|
Glucocorticoid receptor wields chromatin interactions to tune transcription for cytoskeleton stabilization in podocytes. Commun Biol 2021; 4:675. [PMID: 34083716 PMCID: PMC8175753 DOI: 10.1038/s42003-021-02209-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 05/12/2021] [Indexed: 12/20/2022] Open
Abstract
Elucidating transcription mediated by the glucocorticoid receptor (GR) is crucial for understanding the role of glucocorticoids (GCs) in the treatment of diseases. Podocyte is a useful model for studying GR regulation because GCs are the primary medication for podocytopathy. In this study, we integrated data from transcriptome, transcription factor binding, histone modification, and genome topology. Our data reveals that the GR binds and activates selective regulatory elements in podocyte. The 3D interactome captured by HiChIP facilitates the identification of remote targets of GR. We found that GR in podocyte is enriched at transcriptional interaction hubs and super-enhancers. We further demonstrate that the target gene of the top GR-associated super-enhancer is indispensable to the effective functioning of GC in podocyte. Our findings provided insights into the mechanisms underlying the protective effect of GCs on podocyte, and demonstrate the importance of considering transcriptional interactions in order to fine-map regulatory networks of GR.
Collapse
|
27
|
Repression of transcription by the glucocorticoid receptor: A parsimonious model for the genomics era. J Biol Chem 2021; 296:100687. [PMID: 33891947 PMCID: PMC8141881 DOI: 10.1016/j.jbc.2021.100687] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 12/15/2022] Open
Abstract
Glucocorticoids are potent anti-inflammatory drugs that are used to treat an extraordinary range of human disease, including COVID-19, underscoring the ongoing importance of understanding their molecular mechanisms. Early studies of GR signaling led to broad acceptance of models in which glucocorticoid receptor (GR) monomers tether repressively to inflammatory transcription factors, thus abrogating inflammatory gene expression. However, newer data challenge this core concept and present an exciting opportunity to reframe our understanding of GR signaling. Here, we present an alternate, two-part model for transcriptional repression by glucocorticoids. First, widespread GR-mediated induction of transcription results in rapid, primary repression of inflammatory gene transcription and associated enhancers through competition-based mechanisms. Second, a subset of GR-induced genes, including targets that are regulated in coordination with inflammatory transcription factors such as NF-κB, exerts secondary repressive effects on inflammatory gene expression. Within this framework, emerging data indicate that the gene set regulated through the cooperative convergence of GR and NF-κB signaling is central to the broad clinical effectiveness of glucocorticoids in terminating inflammation and promoting tissue repair.
Collapse
|
28
|
Glucocorticoid-induced eosinopenia results from CXCR4-dependent bone marrow migration. Blood 2021; 136:2667-2678. [PMID: 32659786 DOI: 10.1182/blood.2020005161] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/26/2020] [Indexed: 12/27/2022] Open
Abstract
Glucocorticoids are considered first-line therapy in a variety of eosinophilic disorders. They lead to a transient, profound decrease in circulating human eosinophils within hours of administration. The phenomenon of glucocorticoid-induced eosinopenia has been the basis for the use of glucocorticoids in eosinophilic disorders, and it has intrigued clinicians for 7 decades, yet its mechanism remains unexplained. To investigate, we first studied the response of circulating eosinophils to in vivo glucocorticoid administration in 3 species and found that the response in rhesus macaques, but not in mice, closely resembled that in humans. We then developed an isolation technique to purify rhesus macaque eosinophils from peripheral blood and performed live tracking of zirconium-89-oxine-labeled eosinophils by serial positron emission tomography/computed tomography imaging, before and after administration of glucocorticoids. Glucocorticoids induced rapid bone marrow homing of eosinophils. The kinetics of glucocorticoid-induced eosinopenia and bone marrow migration were consistent with those of the induction of the glucocorticoid-responsive chemokine receptor CXCR4, and selective blockade of CXCR4 reduced or eliminated the early glucocorticoid-induced reduction in blood eosinophils. Our results indicate that glucocorticoid-induced eosinopenia results from CXCR4-dependent migration of eosinophils to the bone marrow. These findings provide insight into the mechanism of action of glucocorticoids in eosinophilic disorders, with implications for the study of glucocorticoid resistance and the development of more targeted therapies. The human study was registered at ClinicalTrials.gov as #NCT02798523.
Collapse
|
29
|
Diaz A, Taub CJ, Lippman ME, Antoni MH, Blomberg BB. Effects of brief stress management interventions on distress and leukocyte nuclear factor kappa B expression during primary treatment for breast cancer: A randomized trial. Psychoneuroendocrinology 2021; 126:105163. [PMID: 33611132 PMCID: PMC9295339 DOI: 10.1016/j.psyneuen.2021.105163] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND A randomized controlled trial (RCT) of 5-week stress management interventions teaching cognitive behavioral therapy (CBT) or relaxation training (RT) techniques showed decreases in stress and serum inflammatory markers over 12 months in women undergoing treatment for breast cancer (BCa). To understand the molecular mechanisms involved, we examined the effects of these interventions on the transcription factor NF-κB DNA binding activity in leukocytes in parallel with circulating inflammatory markers, stress management skill efficacy and multiple distress indicators. METHODS This is a secondary analysis using blood samples of 51 BCa patients (Stage 0-III) with high cancer-specific distress selected from a completed RCT (NCT02103387). Women were randomized to one of three conditions, CBT, RT or health education control (HE). Blood samples and self-reported distress measures (Affects Balance Scale-Negative Affect [ABS-NA], Impact of Events Scale-hyperarousal [IES-H] and intrusive thoughts [IES-I]) were collected at baseline (T0) and 12-month follow-up (T2). Self-reported distress measures and perceived stress management skills (PSMS) were also measured immediately post-intervention (baseline + 2 months: T1). Repeated measures analyses compared changes in distress and NF-κB expression among conditions, controlling for age, stage of cancer, days from surgery to baseline, and receipt of chemotherapy and radiation. Regression analyses related T0 to T2 change in NF-κB expression with T0 to T1 changes in self-reported PSMS and distress measures. Exploratory regression analyses also associated change in NF-κB expression with change in serum cytokines (IL-1β, IL-6 and TNF-α); and s100A8/A9, a circulating inflammatory marker important in breast cancer progression. RESULTS There was a significant condition (CBT/RT, HE)xtime (T0, T2) effect on NF-κB, F(1, 39)= 5.267, p = 0.036, wherein NF-κB expression significantly increased over time for HE but did not change for RT or CBT. Greater increases in PSMS from T0 to T1 were associated with less increase in NF-κB expression over 12 months (β = -0.426, t(36) = -2.637, p = 0.048). We found that women assigned to active intervention (CBT/RT) had significant decreases in ABS-NA (F(1, 40)= 6.537, p = 0.028) and IES-I (F(1, 40)= 4.391, p = 0.043) from T0 to T1 compared to women assigned to HE, who showed no change over time (p's > 0.10). For women assigned to CBT or RT, lower NF-κB expression at T2 was related to less ABS-NA, IES-H, and IES-I, all p's < 0.05, although T0-T1 change in distress was not related to T0-T2 change in NF-κB expression for those in an active intervention. CONCLUSIONS Brief CBT or RT stress management interventions can mitigate increases in pro-inflammatory leukocyte NF-κB binding over 12 months of primary treatment in highly distressed BCa patients. These effects are likely brought about by improved stress management skills.
Collapse
Affiliation(s)
- Alain Diaz
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Chloe J Taub
- Department of Psychology, University of Miami, Coral Gables, FL, USA
| | - Marc E Lippman
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Michael H Antoni
- Department of Psychology, University of Miami, Coral Gables, FL, USA; Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Bonnie B Blomberg
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
30
|
Genome-wide binding potential and regulatory activity of the glucocorticoid receptor's monomeric and dimeric forms. Nat Commun 2021; 12:1987. [PMID: 33790284 PMCID: PMC8012360 DOI: 10.1038/s41467-021-22234-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 03/05/2021] [Indexed: 02/01/2023] Open
Abstract
A widely regarded model for glucocorticoid receptor (GR) action postulates that dimeric binding to DNA regulates unfavorable metabolic pathways while monomeric receptor binding promotes repressive gene responses related to its anti-inflammatory effects. This model has been built upon the characterization of the GRdim mutant, reported to be incapable of DNA binding and dimerization. Although quantitative live-cell imaging data shows GRdim as mostly dimeric, genomic studies based on recovery of enriched half-site response elements suggest monomeric engagement on DNA. Here, we perform genome-wide studies on GRdim and a constitutively monomeric mutant. Our results show that impairing dimerization affects binding even to open chromatin. We also find that GRdim does not exclusively bind half-response elements. Our results do not support a physiological role for monomeric GR and are consistent with a common mode of receptor binding via higher order structures that drives both the activating and repressive actions of glucocorticoids.
Collapse
|
31
|
Alizada A, Khyzha N, Wang L, Antounians L, Chen X, Khor M, Liang M, Rathnakumar K, Weirauch MT, Medina-Rivera A, Fish JE, Wilson MD. Conserved regulatory logic at accessible and inaccessible chromatin during the acute inflammatory response in mammals. Nat Commun 2021; 12:567. [PMID: 33495464 PMCID: PMC7835376 DOI: 10.1038/s41467-020-20765-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 12/18/2020] [Indexed: 12/18/2022] Open
Abstract
The regulatory elements controlling gene expression during acute inflammation are not fully elucidated. Here we report the identification of a set of NF-κB-bound elements and common chromatin landscapes underlying the acute inflammatory response across cell-types and mammalian species. Using primary vascular endothelial cells (human/mouse/bovine) treated with the pro-inflammatory cytokine, Tumor Necrosis Factor-α, we identify extensive (~30%) conserved orthologous binding of NF-κB to accessible, as well as nucleosome-occluded chromatin. Regions with the highest NF-κB occupancy pre-stimulation show dramatic increases in NF-κB binding and chromatin accessibility post-stimulation. These 'pre-bound' regions are typically conserved (~56%), contain multiple NF-κB motifs, are utilized by diverse cell types, and overlap rare non-coding mutations and common genetic variation associated with both inflammatory and cardiovascular phenotypes. Genetic ablation of conserved, 'pre-bound' NF-κB regions within the super-enhancer associated with the chemokine-encoding CCL2 gene and elsewhere supports the functional relevance of these elements.
Collapse
Affiliation(s)
- Azad Alizada
- Hospital for Sick Children, Genetics and Genome Biology, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Nadiya Khyzha
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- University Health Network, Toronto General Hospital Research Institute, Toronto, Canada
| | - Liangxi Wang
- Hospital for Sick Children, Genetics and Genome Biology, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Lina Antounians
- Hospital for Sick Children, Genetics and Genome Biology, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Xiaoting Chen
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Melvin Khor
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- University Health Network, Toronto General Hospital Research Institute, Toronto, Canada
| | - Minggao Liang
- Hospital for Sick Children, Genetics and Genome Biology, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Kumaragurubaran Rathnakumar
- Hospital for Sick Children, Genetics and Genome Biology, Toronto, Canada
- University Health Network, Toronto General Hospital Research Institute, Toronto, Canada
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital, Cincinnati, OH, USA
- Division of Biomedical Informatics, Cincinnati Children's Hospital, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Developmental Biology, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Alejandra Medina-Rivera
- Hospital for Sick Children, Genetics and Genome Biology, Toronto, Canada
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Juriquilla, Mexico
| | - Jason E Fish
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.
- University Health Network, Toronto General Hospital Research Institute, Toronto, Canada.
- University Health Network, Peter Munk Cardiac Centre, Toronto, Canada.
| | - Michael D Wilson
- Hospital for Sick Children, Genetics and Genome Biology, Toronto, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, Canada.
| |
Collapse
|
32
|
Mostafa MM, Bansal A, Michi AN, Sasse SK, Proud D, Gerber AN, Newton R. Genomic determinants implicated in the glucocorticoid-mediated induction of KLF9 in pulmonary epithelial cells. J Biol Chem 2021; 296:100065. [PMID: 33184061 PMCID: PMC7949084 DOI: 10.1074/jbc.ra120.015755] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022] Open
Abstract
Ligand-activated glucocorticoid receptor (GR) elicits variable glucocorticoid-modulated transcriptomes in different cell types. However, some genes, including Krüppel-like factor 9 (KLF9), a putative transcriptional repressor, demonstrate conserved responses. We show that glucocorticoids induce KLF9 expression in the human airways in vivo and in differentiated human bronchial epithelial (HBE) cells grown at air-liquid interface (ALI). In A549 and BEAS-2B pulmonary epithelial cells, glucocorticoids induce KLF9 expression with similar kinetics to primary HBE cells in submersion culture. A549 and BEAS-2B ChIP-seq data reveal four common glucocorticoid-induced GR binding sites (GBSs). Two GBSs mapped to the 5'-proximal region relative to KLF9 transcription start site (TSS) and two occurred at distal sites. These were all confirmed in primary HBE cells. Global run-on (GRO) sequencing indicated robust enhancer RNA (eRNA) production from three of these GBSs in BEAS-2B cells. This was confirmed in A549 cells, plus submersion, and ALI culture of HBE cells. Cloning each GBS into luciferase reporters revealed glucocorticoid-induced activity requiring a glucocorticoid response element (GRE) within each distal GBS. While the proximal GBSs drove modest reporter induction by glucocorticoids, this region exhibited basal eRNA production, RNA polymerase II enrichment, and looping to the TSS, plausibly underlying constitutive KLF9 expression. Post glucocorticoid treatment, interactions between distal and proximal GBSs and the TSS correlated with KLF9 induction. CBP/P300 silencing reduced proximal GBS activity, but negligibly affected KLF9 expression. Overall, a model for glucocorticoid-mediated regulation of KLF9 involving multiple GBSs is depicted. This work unequivocally demonstrates that mechanistic insights gained from cell lines can translate to physiologically relevant systems.
Collapse
Affiliation(s)
- Mahmoud M Mostafa
- Department of Physiology & Pharmacology and Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Akanksha Bansal
- Department of Physiology & Pharmacology and Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Aubrey N Michi
- Department of Physiology & Pharmacology and Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Sarah K Sasse
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - David Proud
- Department of Physiology & Pharmacology and Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Anthony N Gerber
- Department of Medicine, National Jewish Health, Denver, Colorado, USA; Department of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Robert Newton
- Department of Physiology & Pharmacology and Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Canada.
| |
Collapse
|
33
|
Joseph S, Walejko JM, Zhang S, Edison AS, Keller-Wood M. Maternal hypercortisolemia alters placental metabolism: a multiomics view. Am J Physiol Endocrinol Metab 2020; 319:E950-E960. [PMID: 32954824 PMCID: PMC7790119 DOI: 10.1152/ajpendo.00190.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Previous studies have suggested that increases in maternal cortisol or maternal stress in late pregnancy increase the risk of stillbirth at term. In an ovine model with increased maternal cortisol over the last 0.20 of gestation, we have previously found evidence of disruption of fetal serum and cardiac metabolomics and altered expression of genes related to mitochondrial function and metabolism in biceps femoris, diaphragm, and cardiac muscle. The present studies were designed to test for effects of chronically increased maternal cortisol on gene expression and metabolomics in placentomes near term. We hypothesized that changes in placenta might underlie or contribute to the alterations in fetal serum metabolomics and thereby contribute to changes in striated muscle metabolism. Placentomes were collected from pregnancies in early labor (143 ± 1 days gestation) of control ewes (n = 7) or ewes treated with cortisol (1 mg·kg-1·day-1 iv; n = 5) starting at day 115 of gestation. Transcriptomics and metabolomics were performed using an ovine gene expression microarray (Agilent 019921) and HR-MAS NMR, respectively. Multiomic analysis indicates that amino acid metabolism, particularly of branched-chain amino acids and glutamate, occur in placenta; changes in amino acid metabolism, degradation, or biosynthesis in placenta were consistent with changes in valine, isoleucine, leucine, and glycine in fetal serum. The analysis also indicates changes in glycerophospholipid metabolism and suggests changes in endoplasmic reticulum stress and antioxidant status in the placenta. These findings suggest that changes in placental function occurring with excess maternal cortisol in late gestation may contribute to metabolic dysfunction at birth.
Collapse
Affiliation(s)
- Serene Joseph
- Department of Pharmacodynamics, University of Florida, Gainesville, Florida
| | - Jacquelyn M Walejko
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville Florida
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia
| | - Sicong Zhang
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia
| | - Arthur S Edison
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia
- Department of Genetics, Institute of Bioinformatics, University of Georgia, Athens, Georgia
| | - Maureen Keller-Wood
- Department of Pharmacodynamics, University of Florida, Gainesville, Florida
- D.H. Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, Florida
| |
Collapse
|
34
|
Escoter-Torres L, Greulich F, Quagliarini F, Wierer M, Uhlenhaut NH. Anti-inflammatory functions of the glucocorticoid receptor require DNA binding. Nucleic Acids Res 2020; 48:8393-8407. [PMID: 32619221 PMCID: PMC7470971 DOI: 10.1093/nar/gkaa565] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 06/19/2020] [Accepted: 06/24/2020] [Indexed: 12/12/2022] Open
Abstract
The glucocorticoid receptor is an important immunosuppressive drug target and metabolic regulator that acts as a ligand-gated transcription factor. Generally, GR’s anti-inflammatory effects are attributed to the silencing of inflammatory genes, while its adverse effects are ascribed to the upregulation of metabolic targets. GR binding directly to DNA is proposed to activate, whereas GR tethering to pro-inflammatory transcription factors is thought to repress transcription. Using mice with a point mutation in GR’s zinc finger, that still tether via protein–protein interactions while being unable to recognize DNA, we demonstrate that DNA binding is essential for both transcriptional activation and repression. Performing ChIP-Seq, RNA-Seq and proteomics under inflammatory conditions, we show that DNA recognition is required for the assembly of a functional co-regulator complex to mediate glucocorticoid responses. Our findings may contribute to the development of safer immunomodulators with fewer side effects.
Collapse
Affiliation(s)
- Laura Escoter-Torres
- Molecular Endocrinology, Institutes for Diabetes and Obesity & Diabetes and Cancer IDO & IDC, Helmholtz Zentrum Muenchen (HMGU) and German Center for Diabetes Research (DZD), Munich 85764, Germany
| | - Franziska Greulich
- Molecular Endocrinology, Institutes for Diabetes and Obesity & Diabetes and Cancer IDO & IDC, Helmholtz Zentrum Muenchen (HMGU) and German Center for Diabetes Research (DZD), Munich 85764, Germany.,Metabolic Programming, TUM School of Life Sciences Weihenstephan and ZIEL Institute for Food & Health, Munich 85354, Germany
| | - Fabiana Quagliarini
- Molecular Endocrinology, Institutes for Diabetes and Obesity & Diabetes and Cancer IDO & IDC, Helmholtz Zentrum Muenchen (HMGU) and German Center for Diabetes Research (DZD), Munich 85764, Germany
| | - Michael Wierer
- Department of Proteomics and Signal Transduction, Max Planck Institute for Biochemistry, Munich 82152, Germany
| | - Nina Henriette Uhlenhaut
- Molecular Endocrinology, Institutes for Diabetes and Obesity & Diabetes and Cancer IDO & IDC, Helmholtz Zentrum Muenchen (HMGU) and German Center for Diabetes Research (DZD), Munich 85764, Germany.,Metabolic Programming, TUM School of Life Sciences Weihenstephan and ZIEL Institute for Food & Health, Munich 85354, Germany
| |
Collapse
|
35
|
Insights into glucocorticoid responses derived from omics studies. Pharmacol Ther 2020; 218:107674. [PMID: 32910934 DOI: 10.1016/j.pharmthera.2020.107674] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 08/20/2020] [Indexed: 12/26/2022]
Abstract
Glucocorticoid drugs are commonly used in the treatment of several conditions, including autoimmune diseases, asthma and cancer. Despite their widespread use and knowledge of biological pathways via which they act, much remains to be learned about the cell type-specific mechanisms of glucocorticoid action and the reasons why patients respond differently to them. In recent years, human and in vitro studies have addressed these questions with genomics, transcriptomics and other omics approaches. Here, we summarize key insights derived from omics studies of glucocorticoid response, and we identify existing knowledge gaps related to mechanisms of glucocorticoid action that future studies can address.
Collapse
|
36
|
Junking M, Rattanaburee T, Panya A, Budunova I, Haegeman G, Yenchitsomanus PT. Anti-Proliferative Effects of Compound A and Its Effect in Combination with Cisplatin in Cholangiocarcinoma Cells. Asian Pac J Cancer Prev 2020; 21:2673-2681. [PMID: 32986368 PMCID: PMC7779449 DOI: 10.31557/apjcp.2020.21.9.2673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Cholangiocarcinoma (CCA) is a fatal cancer with high resistance to anticancer drugs. The development of new drugs or compounds to be used alone or in combination with currently available chemotherapeutic agents to improve the treatment of CCA is needed. Compound A (CpdA), which is a small plant-derived glucocorticoid receptor modulator, strongly inhibited the growth and survival of several cancers. However, the effect of CpdA on cholangiocarcinoma has not been elucidated. The aim of this study was to investigate the effect of CpdA on CCA. METHODS Cytotoxicity of CpdA was tested in primary cells including peripheral blood mononuclear cells (PBMCs), fibroblasts, and human umbilical vein endothelial cells (HUVECs), as well as on CCA cell lines (KKU-100, KKU-055, and KKU-213) was examined. Cell cycle distribution and IL-6 expression was assessed by flow cytometry and real-time polymerase chain reaction, respectively. The effect of combination CpdA and cisplatin was evaluated by cell viability assay. RESULTS CpdA significantly inhibited cell cycle at G1 phase in CCA cell lines, and reduced IL-6 mRNA expression. However, combination CpdA and cisplatin did not enhance the inhibitory effect. TGFβR-II expression was increased in CCA cells after the combination treatment. CONCLUSIONS These results indicate the potential of CpdA for CCA treatment. However, combination treatment with CpdA and cisplatin increased CCA cell survival. The molecular mechanism is likely attributable to promotes cell survival via the TGFβR-II signaling pathway. The combination of CpdA with other anticancer drugs for CCA treatment should be further examined.
Collapse
Affiliation(s)
- Mutita Junking
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Thidarath Rattanaburee
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Aussara Panya
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Bioresources for Agriculture, Industry and Medicine, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Irina Budunova
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Guy Haegeman
- Laboratory of Eukaryotic Gene Expression and Signal Transduction (LEGEST), Department of Physiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Pa-Thai Yenchitsomanus
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
37
|
Steardo L, Steardo L, Verkhratsky A. Psychiatric face of COVID-19. Transl Psychiatry 2020; 10:261. [PMID: 32732883 PMCID: PMC7391235 DOI: 10.1038/s41398-020-00949-5] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/07/2020] [Accepted: 07/14/2020] [Indexed: 12/20/2022] Open
Abstract
The Coronavirus Disease 2019 (COVID-19) represents a severe multiorgan pathology which, besides cardio-respiratory manifestations, affects the function of the central nervous system (CNS). The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), similarly to other coronaviruses demonstrate neurotropism; the viral infection of the brain stem may complicate the course of the disease through damaging central cardio-respiratory control. The systemic inflammation as well as neuroinflammatory changes are associated with massive increase of the brain pro-inflammatory molecules, neuroglial reactivity, altered neurochemical landscape and pathological remodelling of neuronal networks. These organic changes, emerging in concert with environmental stress caused by experiences of intensive therapy wards, pandemic fears and social restrictions, promote neuropsychiatric pathologies including major depressive disorder, bipolar disorder (BD), various psychoses, obsessive-compulsive disorder and post-traumatic stress disorder. The neuropsychiatric sequelae of COVID-19 represent serious clinical challenge that has to be considered for future complex therapies.
Collapse
Affiliation(s)
| | - Luca Steardo
- Sapienza University Rome, Rome, Italy.
- Fortunato University, Benevento, Italy.
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK.
- Achucarro Center for Neuroscience, IKERBASQUE, 48011, Bilbao, Spain.
- Sechenov First Moscow State Medical University, Moscow, Russia.
| |
Collapse
|
38
|
Srivastava D, Mahony S. Sequence and chromatin determinants of transcription factor binding and the establishment of cell type-specific binding patterns. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2020; 1863:194443. [PMID: 31639474 PMCID: PMC7166147 DOI: 10.1016/j.bbagrm.2019.194443] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/21/2019] [Accepted: 10/06/2019] [Indexed: 12/14/2022]
Abstract
Transcription factors (TFs) selectively bind distinct sets of sites in different cell types. Such cell type-specific binding specificity is expected to result from interplay between the TF's intrinsic sequence preferences, cooperative interactions with other regulatory proteins, and cell type-specific chromatin landscapes. Cell type-specific TF binding events are highly correlated with patterns of chromatin accessibility and active histone modifications in the same cell type. However, since concurrent chromatin may itself be a consequence of TF binding, chromatin landscapes measured prior to TF activation provide more useful insights into how cell type-specific TF binding events became established in the first place. Here, we review the various sequence and chromatin determinants of cell type-specific TF binding specificity. We identify the current challenges and opportunities associated with computational approaches to characterizing, imputing, and predicting cell type-specific TF binding patterns. We further focus on studies that characterize TF binding in dynamic regulatory settings, and we discuss how these studies are leading to a more complex and nuanced understanding of dynamic protein-DNA binding activities. We propose that TF binding activities at individual sites can be viewed along a two-dimensional continuum of local sequence and chromatin context. Under this view, cell type-specific TF binding activities may result from either strongly favorable sequence features or strongly favorable chromatin context.
Collapse
Affiliation(s)
- Divyanshi Srivastava
- Center for Eukaryotic Gene Regulation, Department of Biochemistry & Molecular Biology, The Pennsylvania State University, University Park, PA, United States of America
| | - Shaun Mahony
- Center for Eukaryotic Gene Regulation, Department of Biochemistry & Molecular Biology, The Pennsylvania State University, University Park, PA, United States of America.
| |
Collapse
|
39
|
Qian W, Xiao Q, Wang L, Qin T, Xiao Y, Li J, Yue Y, Zhou C, Duan W, Ma Q, Ma J. Resveratrol slows the tumourigenesis of pancreatic cancer by inhibiting NFκB activation. Biomed Pharmacother 2020; 127:110116. [PMID: 32428833 DOI: 10.1016/j.biopha.2020.110116] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 02/08/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant tumour with an extremely poor prognosis due to its insidious initiation and a lack of therapeutic strategies. Resveratrol suppresses pancreatic cancer progression and attenuates pancreatitis by modulating multiple targets, including nuclear factor kappa B (NFκB) signalling pathways. However, the effect of resveratrol on pancreatic cancer initiation and its mechanisms remain unclear. In this study, we utilised the LSL-KrasG12D/+; Pdx1-Cre (KC) spontaneous pancreatic precancerous lesion mouse model to explore the anti-tumourigenesis mechanisms of resveratrol in vivo. In vitro acinar-to-ductal metaplasia (ADM) and pancreatic intraepithelial neoplasias (PanINs) formation assays were performed by pancreatic acinar cell 3-dimensional (3D) culture. Histopathological analysis was used to examine the pathological morphology of pancreatic tissues. Resveratrol prevented the progression of pancreatic precancerous lesions and inhibited the activation of NFκB signalling pathway-related molecules in KC mouse pancreatic tissues. In addition, resveratrol reduced the severity of cerulein-induced pancreatitis and the formation of ADM/PanINs in vivo and in vitro, which may be related to its effect on NFκB inactivation. Furthermore, pancreatic acinar 3D culture demonstrated that activation of the NFκB signalling pathway promoted the formation of ADM/PanINs in vitro, and this initiating effect of NFκB was blocked by resveratrol. Resveratrol slowed the tumourigenesis of pancreatic cancer by inhibiting NFκB activation.
Collapse
Affiliation(s)
- Weikun Qian
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Qigui Xiao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Lin Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Tao Qin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Ying Xiao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Jie Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Yangyang Yue
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Cancan Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Wanxing Duan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Qingyong Ma
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Jiguang Ma
- Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
40
|
Meduri GU, Chrousos GP. General Adaptation in Critical Illness: Glucocorticoid Receptor-alpha Master Regulator of Homeostatic Corrections. Front Endocrinol (Lausanne) 2020; 11:161. [PMID: 32390938 PMCID: PMC7189617 DOI: 10.3389/fendo.2020.00161] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/09/2020] [Indexed: 12/20/2022] Open
Abstract
In critical illness, homeostatic corrections representing the culmination of hundreds of millions of years of evolution, are modulated by the activated glucocorticoid receptor alpha (GRα) and are associated with an enormous bioenergetic and metabolic cost. Appreciation of how homeostatic corrections work and how they evolved provides a conceptual framework to understand the complex pathobiology of critical illness. Emerging literature place the activated GRα at the center of all phases of disease development and resolution, including activation and re-enforcement of innate immunity, downregulation of pro-inflammatory transcription factors, and restoration of anatomy and function. By the time critically ill patients necessitate vital organ support for survival, they have reached near exhaustion or exhaustion of neuroendocrine homeostatic compensation, cell bio-energetic and adaptation functions, and reserves of vital micronutrients. We review how critical illness-related corticosteroid insufficiency, mitochondrial dysfunction/damage, and hypovitaminosis collectively interact to accelerate an anti-homeostatic active process of natural selection. Importantly, the allostatic overload imposed by these homeostatic corrections impacts negatively on both acute and long-term morbidity and mortality. Since the bioenergetic and metabolic reserves to support homeostatic corrections are time-limited, early interventions should be directed at increasing GRα and mitochondria number and function. Present understanding of the activated GC-GRα's role in immunomodulation and disease resolution should be taken into account when re-evaluating how to administer glucocorticoid treatment and co-interventions to improve cellular responsiveness. The activated GRα interdependence with functional mitochondria and three vitamin reserves (B1, C, and D) provides a rationale for co-interventions that include prolonged glucocorticoid treatment in association with rapid correction of hypovitaminosis.
Collapse
Affiliation(s)
- Gianfranco Umberto Meduri
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
- Memphis Veterans Affairs Medical Center, Memphis, TN, United States
| | - George P. Chrousos
- University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| |
Collapse
|
41
|
Lucafò M, Franzin M, Decorti G, Stocco G. A patent review of anticancer glucocorticoid receptor modulators (2014-present). Expert Opin Ther Pat 2020; 30:313-324. [PMID: 32148111 DOI: 10.1080/13543776.2020.1740206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Introduction: Natural and synthetic glucocorticoids are widely employed in different diseases, among which are hematological and solid tumors. Their use is however associated with a number of serious side effects and by the occurrence of resistance. With the aim of separating their gene transactivating effect, more linked to side effects, from transrepressive properties, associated with therapeutic efficacy, a number of selective glucocorticoid modulators have been identified.Areas covered: This review summarizes the patent applications from 2014 to present in the field of selective glucocorticoid receptor modulators employed in cancer therapy. Only few patents have been identified, that concern the identification of new molecules or the method of use of already patented compounds. In addition, a discussion of the mechanism of action of these compounds is included.Expert opinion: Only a very limited number of patents have been applied that concern selective glucocorticoid receptor modulators and their use in cancer. Biological information is scarce for most of these patents; more research is necessary in this field in particular concerning clinical data in order to understand whether it is actually possible to improve the efficacy and therapeutic index of these compounds in cancer therapy.
Collapse
Affiliation(s)
- Marianna Lucafò
- Institute for Maternal and Child Health I.R.C.C.S. Burlo Garofolo, Trieste, Italy
| | - Martina Franzin
- PhD Course in Reproductive and Developmental Sciences, University of Trieste, Trieste, Italy
| | - Giuliana Decorti
- Institute for Maternal and Child Health I.R.C.C.S. Burlo Garofolo, Trieste, Italy.,Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Gabriele Stocco
- Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
42
|
Sasse SK, Gruca M, Allen MA, Kadiyala V, Song T, Gally F, Gupta A, Pufall MA, Dowell RD, Gerber AN. Nascent transcript analysis of glucocorticoid crosstalk with TNF defines primary and cooperative inflammatory repression. Genome Res 2019; 29:1753-1765. [PMID: 31519741 PMCID: PMC6836729 DOI: 10.1101/gr.248187.119] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 09/06/2019] [Indexed: 12/16/2022]
Abstract
The glucocorticoid receptor (NR3C1, also known as GR) binds to specific DNA sequences and directly induces transcription of anti-inflammatory genes that contribute to cytokine repression, frequently in cooperation with NF-kB. Whether inflammatory repression also occurs through local interactions between GR and inflammatory gene regulatory elements has been controversial. Here, using global run-on sequencing (GRO-seq) in human airway epithelial cells, we show that glucocorticoid signaling represses transcription within 10 min. Many repressed regulatory regions reside within "hyper-ChIPable" genomic regions that are subject to dynamic, yet nonspecific, interactions with some antibodies. When this artifact was accounted for, we determined that transcriptional repression does not require local GR occupancy. Instead, widespread transcriptional induction through canonical GR binding sites is associated with reciprocal repression of distal TNF-regulated enhancers through a chromatin-dependent process, as evidenced by chromatin accessibility and motif displacement analysis. Simultaneously, transcriptional induction of key anti-inflammatory effectors is decoupled from primary repression through cooperation between GR and NF-kB at a subset of regulatory regions. Thus, glucocorticoids exert bimodal restraints on inflammation characterized by rapid primary transcriptional repression without local GR occupancy and secondary anti-inflammatory effects resulting from transcriptional cooperation between GR and NF-kB.
Collapse
Affiliation(s)
- Sarah K Sasse
- Department of Medicine, National Jewish Health, Denver, Colorado 80206, USA
| | - Margaret Gruca
- BioFrontiers Institute, University of Colorado, Boulder, Colorado 80309, USA
| | - Mary A Allen
- BioFrontiers Institute, University of Colorado, Boulder, Colorado 80309, USA
| | - Vineela Kadiyala
- Department of Medicine, National Jewish Health, Denver, Colorado 80206, USA
| | - Tengyao Song
- Department of Medicine, National Jewish Health, Denver, Colorado 80206, USA
| | - Fabienne Gally
- Department of Biomedical Research, National Jewish Health, Denver, Colorado 80206, USA
| | - Arnav Gupta
- Department of Medicine, University of Colorado, Aurora, Colorado 80045, USA
| | - Miles A Pufall
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | - Robin D Dowell
- BioFrontiers Institute, University of Colorado, Boulder, Colorado 80309, USA
- Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309, USA
- Computer Science, University of Colorado, Boulder, Colorado 80309, USA
| | - Anthony N Gerber
- Department of Medicine, National Jewish Health, Denver, Colorado 80206, USA
- Department of Biomedical Research, National Jewish Health, Denver, Colorado 80206, USA
- Department of Medicine, University of Colorado, Aurora, Colorado 80045, USA
| |
Collapse
|
43
|
Khan H, Ullah H, Castilho PCMF, Gomila AS, D'Onofrio G, Filosa R, Wang F, Nabavi SM, Daglia M, Silva AS, Rengasamy KRR, Ou J, Zou X, Xiao J, Cao H. Targeting NF-κB signaling pathway in cancer by dietary polyphenols. Crit Rev Food Sci Nutr 2019; 60:2790-2800. [PMID: 31512490 DOI: 10.1080/10408398.2019.1661827] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Being a transcription factor, NF-κB regulates gene expressions involving cell survival and proliferation, drug resistance, metastasis, and angiogenesis. The activation of NF-κB plays a central role in the development of inflammation and cancer. Thus, the down-regulation of NF-κB may be an exciting target in prevention and treatment of cancer. NF-κB could act as a tumor activator or tumor suppressant decided by the site of action (organ). Polyphenols are widely distributed in plant species, consumption of which have been documented to negatively regulate the NF-κB signaling pathway. They depress the phosphorylation of kinases, inhibit NF-κB translocate into the nucleus as well as interfere interactions between NF-κB and DNA. Through inhibition of NF-κB, polyphenols downregulate inflammatory cascade, induce apoptosis and decrease cell proliferation and metastasis. This review highlights the anticancer effects of polyphenols on the basis of NF-κB signaling pathway regulation.
Collapse
Affiliation(s)
- Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Hammad Ullah
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | | | - Antoni Sureda Gomila
- Research Group on Community Nutrition and Oxidative Stress, University of the Balearic Islands, Palma de Mallorca, Spain.,CIBEROBN (Physiopathology of Obesity and Nutrition, CB12/03/30038), Instituto de Salud Carlos III, Madrid, Spain
| | - Grazia D'Onofrio
- Department of Medical Sciences, IRCCS "Casa Sollievo della Sofferenza", Complex Unit of Geriatrics, San Giovanni Rotondo, Italy
| | - Rosanna Filosa
- Department of Experimental Medicine, Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy.,Consorzio Sannio Tech, Apollosa, Italy
| | - Fang Wang
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Maria Daglia
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Pavia, Italy
| | - Ana Sanches Silva
- National Institute for Agricultural and Veterinary Research, Vairão, Vila do Conde, Portugal.,Center for Study in Animal Science (CECA), ICETA, University of Oporto, Oporto, Portugal
| | - Kannan R R Rengasamy
- Department of Bio-resources and Food Science, Konkuk University, Seoul, South Korea
| | - Juanying Ou
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| | - Xiaobo Zou
- Institute of Food Safety and Nutrition, Jiangsu University, Zhenjiang, China
| | - Jianbo Xiao
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China.,Institute of Food Safety and Nutrition, Jiangsu University, Zhenjiang, China
| | - Hui Cao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
44
|
Zwinderman MRH, de Weerd S, Dekker FJ. Targeting HDAC Complexes in Asthma and COPD. EPIGENOMES 2019; 3:19. [PMID: 34968229 PMCID: PMC8594684 DOI: 10.3390/epigenomes3030019] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 01/08/2023] Open
Abstract
Around three million patients die due to airway inflammatory diseases each year. The most notable of these diseases are asthma and chronic obstructive pulmonary disease (COPD). Therefore, new therapies are urgently needed. Promising targets are histone deacetylases (HDACs), since they regulate posttranslational protein acetylation. Over a thousand proteins are reversibly acetylated, and acetylation critically influences aberrant intracellular signaling pathways in asthma and COPD. The diverse set of selective and non-selective HDAC inhibitors used in pre-clinical models of airway inflammation show promising results, but several challenges still need to be overcome. One such challenge is the design of HDAC inhibitors with unique selectivity profiles, such as selectivity towards specific HDAC complexes. Novel strategies to disrupt HDAC complexes should be developed to validate HDACs further as targets for new anti-inflammatory pulmonary treatments.
Collapse
Affiliation(s)
| | | | - Frank J. Dekker
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV Groningen, The Netherlands (M.R.H.Z.) (S.d.W.)
| |
Collapse
|
45
|
Escoter-Torres L, Caratti G, Mechtidou A, Tuckermann J, Uhlenhaut NH, Vettorazzi S. Fighting the Fire: Mechanisms of Inflammatory Gene Regulation by the Glucocorticoid Receptor. Front Immunol 2019; 10:1859. [PMID: 31440248 PMCID: PMC6693390 DOI: 10.3389/fimmu.2019.01859] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/23/2019] [Indexed: 12/12/2022] Open
Abstract
For many decades, glucocorticoids have been widely used as the gold standard treatment for inflammatory conditions. Unfortunately, their clinical use is limited by severe adverse effects such as insulin resistance, cardiometabolic diseases, muscle and skin atrophies, osteoporosis, and depression. Glucocorticoids exert their effects by binding to the Glucocorticoid Receptor (GR), a ligand-activated transcription factor which both positively, and negatively regulates gene expression. Extensive research during the past several years has uncovered novel mechanisms by which the GR activates and represses its target genes. Genome-wide studies and mouse models have provided valuable insight into the molecular mechanisms of inflammatory gene regulation by GR. This review focusses on newly identified target genes and GR co-regulators that are important for its anti-inflammatory effects in innate immune cells, as well as mutations within the GR itself that shed light on its transcriptional activity. This research progress will hopefully serve as the basis for the development of safer immune suppressants with reduced side effect profiles.
Collapse
Affiliation(s)
- Laura Escoter-Torres
- Molecular Endocrinology, Helmholtz Zentrum München (HMGU), German Center for Diabetes Research (DZD), Institute for Diabetes and Cancer IDC, Munich, Germany
| | - Giorgio Caratti
- Department of Biology, Institute for Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany
| | - Aikaterini Mechtidou
- Molecular Endocrinology, Helmholtz Zentrum München (HMGU), German Center for Diabetes Research (DZD), Institute for Diabetes and Cancer IDC, Munich, Germany
| | - Jan Tuckermann
- Department of Biology, Institute for Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany
| | - Nina Henriette Uhlenhaut
- Molecular Endocrinology, Helmholtz Zentrum München (HMGU), German Center for Diabetes Research (DZD), Institute for Diabetes and Cancer IDC, Munich, Germany.,Gene Center, Ludwig-Maximilians-Universität (LMU), Munich, Germany
| | - Sabine Vettorazzi
- Department of Biology, Institute for Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany
| |
Collapse
|
46
|
Timmermans S, Souffriau J, Libert C. A General Introduction to Glucocorticoid Biology. Front Immunol 2019; 10:1545. [PMID: 31333672 PMCID: PMC6621919 DOI: 10.3389/fimmu.2019.01545] [Citation(s) in RCA: 325] [Impact Index Per Article: 54.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 06/20/2019] [Indexed: 12/13/2022] Open
Abstract
Glucocorticoids (GCs) are steroid hormones widely used for the treatment of inflammation, autoimmune diseases, and cancer. To exert their broad physiological and therapeutic effects, GCs bind to the GC receptor (GR) which belongs to the nuclear receptor superfamily of transcription factors. Despite their success, GCs are hindered by the occurrence of side effects and glucocorticoid resistance (GCR). Increased knowledge on GC and GR biology together with a better understanding of the molecular mechanisms underlying the GC side effects and GCR are necessary for improved GC therapy development. We here provide a general overview on the current insights in GC biology with a focus on GC synthesis, regulation and physiology, role in inflammation inhibition, and on GR function and plasticity. Furthermore, novel and selective therapeutic strategies are proposed based on recently recognized distinct molecular mechanisms of the GR. We will explain the SEDIGRAM concept, which was launched based on our research results.
Collapse
Affiliation(s)
- Steven Timmermans
- Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jolien Souffriau
- Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Claude Libert
- Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
47
|
Piaszyk-Borychowska A, Széles L, Csermely A, Chiang HC, Wesoły J, Lee CK, Nagy L, Bluyssen HAR. Signal Integration of IFN-I and IFN-II With TLR4 Involves Sequential Recruitment of STAT1-Complexes and NFκB to Enhance Pro-inflammatory Transcription. Front Immunol 2019; 10:1253. [PMID: 31231385 PMCID: PMC6558219 DOI: 10.3389/fimmu.2019.01253] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 05/17/2019] [Indexed: 12/18/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory disease of the blood vessels, characterized by atherosclerotic lesion formation. Vascular Smooth Muscle Cells (VSMC), macrophages (MΦ), and dendritic cells (DC) play a crucial role in vascular inflammation and atherosclerosis. Interferon (IFN)α, IFNγ, and Toll-like receptor (TLR)4 activate pro-inflammatory gene expression and are pro-atherogenic. Gene expression regulation of many pro-inflammatory genes has shown to rely on Signal Integration (SI) between IFNs and TLR4 through combinatorial actions of the Signal Transducer and Activator of Transcription (STAT)1 complexes ISGF3 and γ-activated factor (GAF), and Nuclear Factor-κB (NFκB). Thus, IFN pre-treatment (“priming”) followed by LPS stimulation leads to enhanced transcriptional responses as compared to the individual stimuli. To characterize the mechanism of priming-induced IFNα + LPS- and IFNγ + LPS-dependent SI in vascular cells as compared to immune cells, we performed a comprehensive genome-wide analysis of mouse VSMC, MΦ, and DC in response to IFNα, IFNγ, and/or LPS. Thus, we identified IFNα + LPS or IFNγ + LPS induced genes commonly expressed in these cell types that bound STAT1 and p65 at comparable γ-activated sequence (GAS), Interferon-stimulated response element (ISRE), or NFκB sites in promoter proximal and distal regions. Comparison of the relatively high number of overlapping ISRE sites in these genes unraveled a novel role of ISGF3 and possibly STAT1/IRF9 in IFNγ responses. In addition, similar STAT1-p65 co-binding modes were detected for IFNα + LPS and IFNγ + LPS up-regulated genes, which involved recruitment of STAT1 complexes preceding p65 to closely located GAS/NFκB or ISRE/NFκB composite sites already upon IFNα or IFNγ treatment. This STAT1-p65 co-binding significantly increased after subsequent LPS exposure and correlated with histone acetylation, PolII recruitment, and amplified target gene transcription in a STAT1-p65 co-bound dependent manner. Thus, co-binding of STAT1-containing transcription factor complexes and NFκB, activated by IFN-I or IFN-II together with LPS, provides a platform for robust transcriptional activation of pro-inflammatory genes. Moreover, our data offer an explanation for the comparable effects of IFNα or IFNγ priming on TLR4-induced activation in vascular and immune cells, with important implications in atherosclerosis.
Collapse
Affiliation(s)
| | - Lajos Széles
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary
| | - Attila Csermely
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary
| | - Hsin-Chien Chiang
- Graduate Institute of Immunology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Joanna Wesoły
- Laboratory of High Throughput Technologies, Adam Mickiewicz University, Poznan, Poland
| | - Chien-Kuo Lee
- Graduate Institute of Immunology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Laszlo Nagy
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary.,Departments of Medicine and Biological Chemistry, Johns Hopkins All Children's Hospital, Johns Hopkins University School of Medicine, St. Petersburg, FL, United States
| | - Hans A R Bluyssen
- Department of Human Molecular Genetics, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
48
|
Xie Y, Tolmeijer S, Oskam JM, Tonkens T, Meijer AH, Schaaf MJM. Glucocorticoids inhibit macrophage differentiation towards a pro-inflammatory phenotype upon wounding without affecting their migration. Dis Model Mech 2019; 12:dmm.037887. [PMID: 31072958 PMCID: PMC6550045 DOI: 10.1242/dmm.037887] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 04/24/2019] [Indexed: 12/18/2022] Open
Abstract
Glucocorticoid drugs are widely used to treat immune-related diseases, but their use is limited by side effects and by resistance, which especially occurs in macrophage-dominated diseases. In order to improve glucocorticoid therapies, more research is required into the mechanisms of glucocorticoid action. In the present study, we have used a zebrafish model for inflammation to study glucocorticoid effects on the innate immune response. In zebrafish larvae, the migration of neutrophils towards a site of injury is inhibited upon glucocorticoid treatment, whereas migration of macrophages is glucocorticoid resistant. We show that wounding-induced increases in the expression of genes that encode neutrophil-specific chemoattractants (Il8 and Cxcl18b) are attenuated by the synthetic glucocorticoid beclomethasone, but that beclomethasone does not attenuate the induction of the genes encoding Ccl2 and Cxcl11aa, which are required for macrophage recruitment. RNA sequencing on FACS-sorted macrophages shows that the vast majority of the wounding-induced transcriptional changes in these cells are inhibited by beclomethasone, whereas only a small subset is glucocorticoid-insensitive. As a result, beclomethasone decreases the number of macrophages that differentiate towards a pro-inflammatory (M1) phenotype, which we demonstrated using a tnfa:eGFP-F reporter line and analysis of macrophage morphology. We conclude that differentiation and migration of macrophages are regulated independently, and that glucocorticoids leave the chemotactic migration of macrophages unaffected, but exert their anti-inflammatory effect on these cells by inhibiting their differentiation to an M1 phenotype. The resistance of macrophage-dominated diseases to glucocorticoid therapy can therefore not be attributed to an intrinsic insensitivity of macrophages to glucocorticoids. Summary: In a zebrafish model for inflammation, glucocorticoids do not affect the migration of macrophages, but inhibit their differentiation towards an M1 phenotype, by strongly attenuating transcriptional responses in these cells.
Collapse
Affiliation(s)
- Yufei Xie
- Animal Science and Health Cluster, Institute of Biology, Leiden University, 2333CC Leiden, The Netherlands
| | - Sofie Tolmeijer
- Animal Science and Health Cluster, Institute of Biology, Leiden University, 2333CC Leiden, The Netherlands
| | - Jelle M Oskam
- Animal Science and Health Cluster, Institute of Biology, Leiden University, 2333CC Leiden, The Netherlands
| | - Tijs Tonkens
- Animal Science and Health Cluster, Institute of Biology, Leiden University, 2333CC Leiden, The Netherlands
| | - Annemarie H Meijer
- Animal Science and Health Cluster, Institute of Biology, Leiden University, 2333CC Leiden, The Netherlands
| | - Marcel J M Schaaf
- Animal Science and Health Cluster, Institute of Biology, Leiden University, 2333CC Leiden, The Netherlands
| |
Collapse
|
49
|
Jumeau C, Awad F, Assrawi E, Cobret L, Duquesnoy P, Giurgea I, Valeyre D, Grateau G, Amselem S, Bernaudin JF, Karabina SA. Expression of SAA1, SAA2 and SAA4 genes in human primary monocytes and monocyte-derived macrophages. PLoS One 2019; 14:e0217005. [PMID: 31100086 PMCID: PMC6524798 DOI: 10.1371/journal.pone.0217005] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 05/02/2019] [Indexed: 12/28/2022] Open
Abstract
Circulating serum amyloid A (SAA) is increased in various inflammatory conditions. The human SAA protein family comprises the acute phase SAA1/SAA2, known to activate a large set of innate and adaptive immune cells, and the constitutive SAA4. The liver synthesis of SAA1/SAA2 is well-established but there is still an open debate on extrahepatic SAA expression especially in macrophages. We aimed to investigate the ability of human primary monocytes and monocyte-derived macrophages to express SAA1, SAA2 and SAA4 at both the transcriptional and protein levels, as previous studies almost exclusively dealt with monocytic cell lines. Monocytes and derived macrophages from healthy donors were stimulated under various conditions. In parallel with SAA, pro-inflammatory IL1A, IL1B and IL6 cytokine expression was assessed. While LPS alone was non-effective, a combined LPS/dexamethasone treatment induced SAA1 and to a lesser extent SAA2 transcription in human monocytes and macrophages. In contrast, as expected, pro-inflammatory cytokine expression was strongly induced following stimulation with LPS, an effect which was dampened in the presence of dexamethasone. Furthermore, in monocytes polarized towards a pro-inflammatory M1 phenotype, SAA expression in response to LPS/dexamethasone was potentiated; a result mainly seen for SAA1. However, a major discrepancy was observed between SAA mRNA and intracellular protein levels under the experimental conditions used. Our results demonstrate that human monocytes and macrophages can express SAA genes, mainly SAA1 in response to an inflammatory environment. While SAA is considered as a member of a large cytokine network, its expression in the monocytes-macrophages in response to LPS-dexamethasone is strikingly different from that observed for classic pro-inflammatory cytokines. As monocytes-macrophages are major players in chronic inflammatory diseases, it may be hypothesized that SAA production from macrophages may contribute to the local inflammatory microenvironment, especially when macrophages are compactly organized in granulomas as in sarcoidosis.
Collapse
Affiliation(s)
- Claire Jumeau
- Sorbonne Université, INSERM, UMR_S 933, Assistance Publique Hôpitaux de Paris, Hôpital Trousseau, Service de Génétique et d’Embryologie médicale, Paris, France
| | - Fawaz Awad
- Sorbonne Université, INSERM, UMR_S 933, Assistance Publique Hôpitaux de Paris, Hôpital Trousseau, Service de Génétique et d’Embryologie médicale, Paris, France
| | - Eman Assrawi
- Sorbonne Université, INSERM, UMR_S 933, Assistance Publique Hôpitaux de Paris, Hôpital Trousseau, Service de Génétique et d’Embryologie médicale, Paris, France
| | - Laetitia Cobret
- Sorbonne Université, INSERM, UMR_S 933, Assistance Publique Hôpitaux de Paris, Hôpital Trousseau, Service de Génétique et d’Embryologie médicale, Paris, France
| | - Philippe Duquesnoy
- Sorbonne Université, INSERM, UMR_S 933, Assistance Publique Hôpitaux de Paris, Hôpital Trousseau, Service de Génétique et d’Embryologie médicale, Paris, France
| | - Irina Giurgea
- Sorbonne Université, INSERM, UMR_S 933, Assistance Publique Hôpitaux de Paris, Hôpital Trousseau, Service de Génétique et d’Embryologie médicale, Paris, France
| | - Dominique Valeyre
- Assistance Publique Hôpitaux de Paris, Hôpital Avicenne, Service de Pneumologie, Bobigny, France
- Université Paris 13, INSERM UMR 1272, Laboratoire ‘Hypoxie & Poumon’, Bobigny, France
| | - Gilles Grateau
- Sorbonne Université, INSERM, UMR_S 933, Assistance Publique Hôpitaux de Paris, Hôpital Trousseau, Service de Génétique et d’Embryologie médicale, Paris, France
- Assistance Publique Hôpitaux de Paris, Hôpital Tenon, Service de médecine interne, Paris, France
| | - Serge Amselem
- Sorbonne Université, INSERM, UMR_S 933, Assistance Publique Hôpitaux de Paris, Hôpital Trousseau, Service de Génétique et d’Embryologie médicale, Paris, France
| | - Jean-François Bernaudin
- Sorbonne Université, INSERM, UMR_S 933, Assistance Publique Hôpitaux de Paris, Hôpital Trousseau, Service de Génétique et d’Embryologie médicale, Paris, France
- Assistance Publique Hôpitaux de Paris, Hôpital Avicenne, Service de Pneumologie, Bobigny, France
- Université Paris 13, INSERM UMR 1272, Laboratoire ‘Hypoxie & Poumon’, Bobigny, France
| | - Sonia-Athina Karabina
- Sorbonne Université, INSERM, UMR_S 933, Assistance Publique Hôpitaux de Paris, Hôpital Trousseau, Service de Génétique et d’Embryologie médicale, Paris, France
| |
Collapse
|
50
|
Kertser A, Baruch K, Deczkowska A, Weiner A, Croese T, Kenigsbuch M, Cooper I, Tsoory M, Ben-Hamo S, Amit I, Schwartz M. Corticosteroid signaling at the brain-immune interface impedes coping with severe psychological stress. SCIENCE ADVANCES 2019; 5:eaav4111. [PMID: 31149632 PMCID: PMC6541460 DOI: 10.1126/sciadv.aav4111] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 04/22/2019] [Indexed: 05/22/2023]
Abstract
The immune system supports brain plasticity and homeostasis, yet it is prone to changes following psychological stress. Thus, it remains unclear whether and how stress-induced immune alterations contribute to the development of mental pathologies. Here, we show that following severe stress in mice, leukocyte trafficking through the choroid plexus (CP), a compartment that mediates physiological immune-brain communication, is impaired. Blocking glucocorticoid receptor signaling, either systemically or locally through its genetic knockdown at the CP, facilitated the recruitment of Gata3- and Foxp3-expressing T cells to the brain and attenuated post-traumatic behavioral deficits. These findings functionally link post-traumatic stress behavior with elevated stress-related corticosteroid signaling at the brain-immune interface and suggest a novel therapeutic target to attenuate the consequences of severe psychological stress.
Collapse
Affiliation(s)
- A. Kertser
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - K. Baruch
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - A. Deczkowska
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - A. Weiner
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - T. Croese
- Clinical Neuroimmunology Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - M. Kenigsbuch
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - I. Cooper
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Ramat Gan, Israel
| | - M. Tsoory
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - S. Ben-Hamo
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - I. Amit
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - M. Schwartz
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
- Corresponding author.
| |
Collapse
|